Detection rates of the MODIS active fire product in the United States
Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.; Stewart, S.I.
2008-01-01
MODIS active fire data offer new information about global fire patterns. However, uncertainties in detection rates can render satellite-derived fire statistics difficult to interpret. We evaluated the MODIS 1??km daily active fire product to quantify detection rates for both Terra and Aqua MODIS sensors, examined how cloud cover and fire size affected detection rates, and estimated how detection rates varied across the United States. MODIS active fire detections were compared to 361 reference fires (??? 18??ha) that had been delineated using pre- and post-fire Landsat imagery. Reference fires were considered detected if at least one MODIS active fire pixel occurred within 1??km of the edge of the fire. When active fire data from both Aqua and Terra were combined, 82% of all reference fires were found, but detection rates were less for Aqua and Terra individually (73% and 66% respectively). Fires not detected generally had more cloudy days, but not when the Aqua data were considered exclusively. MODIS detection rates decreased with fire size, and the size at which 50% of all fires were detected was 105??ha when combining Aqua and Terra (195??ha for Aqua and 334??ha for Terra alone). Across the United States, detection rates were greatest in the West, lower in the Great Plains, and lowest in the East. The MODIS active fire product captures large fires in the U.S. well, but may under-represent fires in areas with frequent cloud cover or rapidly burning, small, and low-intensity fires. We recommend that users of the MODIS active fire data perform individual validations to ensure that all relevant fires are included. ?? 2008 Elsevier Inc. All rights reserved.
Fire flame detection based on GICA and target tracking
NASA Astrophysics Data System (ADS)
Rong, Jianzhong; Zhou, Dechuang; Yao, Wei; Gao, Wei; Chen, Juan; Wang, Jian
2013-04-01
To improve the video fire detection rate, a robust fire detection algorithm based on the color, motion and pattern characteristics of fire targets was proposed, which proved a satisfactory fire detection rate for different fire scenes. In this fire detection algorithm: (a) a rule-based generic color model was developed based on analysis on a large quantity of flame pixels; (b) from the traditional GICA (Geometrical Independent Component Analysis) model, a Cumulative Geometrical Independent Component Analysis (C-GICA) model was developed for motion detection without static background and (c) a BP neural network fire recognition model based on multi-features of the fire pattern was developed. Fire detection tests on benchmark fire video clips of different scenes have shown the robustness, accuracy and fast-response of the algorithm.
46 CFR 193.05-1 - Fire detecting, manual alarm, and supervised patrol systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Fire detecting, manual alarm, and supervised patrol...) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 193.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...
46 CFR 193.05-1 - Fire detecting, manual alarm, and supervised patrol systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Fire detecting, manual alarm, and supervised patrol...) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 193.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...
46 CFR 193.05-1 - Fire detecting, manual alarm, and supervised patrol systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Fire detecting, manual alarm, and supervised patrol...) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 193.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...
46 CFR 193.05-1 - Fire detecting, manual alarm, and supervised patrol systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Fire detecting, manual alarm, and supervised patrol...) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 193.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...
46 CFR 95.05-1 - Fire detecting, manual alarm, and supervised patrol systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Fire detecting, manual alarm, and supervised patrol... AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 95.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...
46 CFR 95.05-1 - Fire detecting, manual alarm, and supervised patrol systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Fire detecting, manual alarm, and supervised patrol... AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 95.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...
46 CFR 193.05-1 - Fire detecting, manual alarm, and supervised patrol systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Fire detecting, manual alarm, and supervised patrol...) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 193.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...
46 CFR 95.05-1 - Fire detecting, manual alarm, and supervised patrol systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Fire detecting, manual alarm, and supervised patrol... AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Fire Detecting and Extinguishing Equipment, Where Required § 95.05-1 Fire detecting, manual alarm, and supervised patrol systems. (a) Fire detecting, manual...
Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.
2012-01-01
Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.
34 CFR 668.49 - Institutional fire safety policies and fire statistics.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fire. Fire safety system: Any mechanism or system related to the detection of a fire, the warning resulting from a fire, or the control of a fire. This may include sprinkler systems or other fire extinguishing systems, fire detection devices, stand-alone smoke alarms, devices that alert one to the presence...
34 CFR 668.49 - Institutional fire safety policies and fire statistics.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fire. Fire safety system: Any mechanism or system related to the detection of a fire, the warning resulting from a fire, or the control of a fire. This may include sprinkler systems or other fire extinguishing systems, fire detection devices, stand-alone smoke alarms, devices that alert one to the presence...
34 CFR 668.49 - Institutional fire safety policies and fire statistics.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fire. Fire safety system: Any mechanism or system related to the detection of a fire, the warning resulting from a fire, or the control of a fire. This may include sprinkler systems or other fire extinguishing systems, fire detection devices, stand-alone smoke alarms, devices that alert one to the presence...
34 CFR 668.49 - Institutional fire safety policies and fire statistics.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fire. Fire safety system: Any mechanism or system related to the detection of a fire, the warning resulting from a fire, or the control of a fire. This may include sprinkler systems or other fire extinguishing systems, fire detection devices, stand-alone smoke alarms, devices that alert one to the presence...
Fire Detection Organizing Questions
NASA Technical Reports Server (NTRS)
2004-01-01
Verified models of fire precursor transport in low and partial gravity: a. Development of models for large-scale transport in reduced gravity. b. Validated CFD simulations of transport of fire precursors. c. Evaluation of the effect of scale on transport and reduced gravity fires. Advanced fire detection system for gaseous and particulate pre-fire and fire signaturesa: a. Quantification of pre-fire pyrolysis products in microgravity. b. Suite of gas and particulate sensors. c. Reduced gravity evaluation of candidate detector technologies. d. Reduced gravity verification of advanced fire detection system. e. Validated database of fire and pre-fire signatures in low and partial gravity.
Active fire detection using a peat fire radiance model
NASA Astrophysics Data System (ADS)
Kushida, K.; Honma, T.; Kaku, K.; Fukuda, M.
2011-12-01
The fire fractional area and radiances at 4 and 11 μm of active fires in Indonesia were estimated using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. Based on these fire information, a stochastic fire model was used for evaluating two fire detection algorithms of Moderate Resolution Imaging Spectroradiometer (MODIS). One is single-image stochastic fire detection, and the other is multitemporal stochastic fire detection (Kushida, 2010 - IEEE Geosci. Remote Sens. Lett.). The average fire fractional area per one 1 km2 ×1 km2 pixel was 1.7%; this value corresponds to 32% of that of Siberian and Mongolian boreal forest fires. The average radiances at 4 and 11 μm of active fires were 7.2 W/(m2.sr.μm) and 11.1 W/(m2.sr.μm); these values correspond to 47% and 91% of those of Siberian and Mongolian boreal forest fires, respectively. In order to get false alarms less than 20 points per 106 km2 area, for the Siberian and Mongolian boreal forest fires, omission errors (OE) of 50-60% and about 40% were expected for the detections by using the single and multitemporal images, respectively. For Indonesian peat fires, OE of 80-90% was expected for the detections by using the single images. For the peat-fire detections by using the multitemporal images, OE of about 40% was expected, provided that the background radiances were estimated from past multitemporal images with less than the standard deviation of 1K. The analyses indicated that it was difficult to obtain sufficient active-fire information of Indonesian peat fires from single MODIS images for the fire fighting, and that the use of the multitemporal images was important.
Assessment of the Utility of the Advanced Himawari Imager to Detect Active Fire Over Australia
NASA Astrophysics Data System (ADS)
Hally, B.; Wallace, L.; Reinke, K.; Jones, S.
2016-06-01
Wildfire detection and attribution is an issue of importance due to the socio-economic impact of fires in Australia. Early detection of fires allows emergency response agencies to make informed decisions in order to minimise loss of life and protect strategic resources in threatened areas. Until recently, the ability of land management authorities to accurately assess fire through satellite observations of Australia was limited to those made by polar orbiting satellites. The launch of the Japan Meteorological Agency (JMA) Himawari-8 satellite, with the 16-band Advanced Himawari Imager (AHI-8) onboard, in October 2014 presents a significant opportunity to improve the timeliness of satellite fire detection across Australia. The near real-time availability of images, at a ten minute frequency, may also provide contextual information (background temperature) leading to improvements in the assessment of fire characteristics. This paper investigates the application of the high frequency observation data supplied by this sensor for fire detection and attribution. As AHI-8 is a new sensor we have performed an analysis of the noise characteristics of the two spectral bands used for fire attribution across various land use types which occur in Australia. Using this information we have adapted existing algorithms, based upon least squares error minimisation and Kalman filtering, which utilise high frequency observations of surface temperature to detect and attribute fire. The fire detection and attribution information provided by these algorithms is then compared to existing satellite based fire products as well as in-situ information provided by land management agencies. These comparisons were made Australia-wide for an entire fire season - including many significant fire events (wildfires and prescribed burns). Preliminary detection results suggest that these methods for fire detection perform comparably to existing fire products and fire incident reporting from relevant fire authorities but with the advantage of being near-real time. Issues remain for detection due to cloud and smoke obscuration, along with validation of the attribution of fire characteristics using these algorithms.
46 CFR 108.405 - Fire detection system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Fire detection system. 108.405 Section 108.405 Shipping... EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and each smoke detection system on a unit must— (1) Be approved by the Commandant; and (2) Have a visual...
46 CFR 161.002-2 - Types of fire-protective systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., but not be limited to, automatic fire and smoke detecting systems, manual fire alarm systems, sample extraction smoke detection systems, watchman's supervisory systems, and combinations of these systems. (b) Automatic fire detecting systems. For the purpose of this subpart, automatic fire and smoke detecting...
46 CFR 161.002-2 - Types of fire-protective systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., but not be limited to, automatic fire and smoke detecting systems, manual fire alarm systems, sample extraction smoke detection systems, watchman's supervisory systems, and combinations of these systems. (b) Automatic fire detecting systems. For the purpose of this subpart, automatic fire and smoke detecting...
Active Fire Mapping Program Current Large Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS Data Fire Data in Google Earth ...
46 CFR 108.405 - Fire detection system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Fire detection system. 108.405 Section 108.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and...
46 CFR 108.405 - Fire detection system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Fire detection system. 108.405 Section 108.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and...
46 CFR 108.405 - Fire detection system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Fire detection system. 108.405 Section 108.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and...
46 CFR 108.405 - Fire detection system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Fire detection system. 108.405 Section 108.405 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.405 Fire detection system. (a) Each fire detection system and...
46 CFR 108.404 - Selection of fire detection system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Selection of fire detection system. 108.404 Section 108... DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a... space. (b) The fire detection system must be designed to minimize false alarms. ...
46 CFR 108.413 - Fusible element fire detection system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Fusible element fire detection system. 108.413 Section... UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system. (a) A fusible element fire detection system may be installed. (b) The arrangements for the system...
46 CFR 71.25-20 - Fire-detecting and extinguishing equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Fire-detecting and extinguishing equipment. 71.25-20... INSPECTION AND CERTIFICATION Annual Inspection § 71.25-20 Fire-detecting and extinguishing equipment. (a) At... detecting and extinguishing equipment: (1) All hand portable fire extinguishers and semiportable fire...
Atwood, Elizabeth C.; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian
2016-01-01
Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2–3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future. PMID:27486664
Atwood, Elizabeth C; Englhart, Sandra; Lorenz, Eckehard; Halle, Winfried; Wiedemann, Werner; Siegert, Florian
2016-01-01
Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Niño-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future.
46 CFR 108.407 - Detectors for electric fire detection system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Detectors for electric fire detection system. 108.407... DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire detection system. (a) Each detector in an electric fire detection system must be located where— (1) No...
Fire Detection Using tin Oxide Gas Sensors Installed in an Indoor Space
NASA Astrophysics Data System (ADS)
Shibata, Shin-Ichi; Higashino, Tsubasa; Sawada, Ayako; Oyabu, Takashi; Takei, Yoshinori; Nanto, Hidehito; Toko, Kiyoshi
Many lives and facilities were lost by fire. Especially, there are many damages to elderly, toddlers and babies. In Japan, number of deaths over 65 years old reached to 53% in 2004. Number of over 81 years olds went to 20%. It takes for the elderly person more time to sense fire and also to evacuate to safe places. Although it is important to prevent the fire, it also needs to inform the fire breaking as early as possible. Human sense decreases with age and it is difficult to perceive the fire at an early stage. It is desired to develop a higher sensitive element for fire and its system which can detect fire at an early stage. In this experiment, tin oxide gas sensors were adopted to detect a smoldering fire at the early stage. Most common case of fire is the smoldering fire. The reliability of the sensor is higher and it is adopted in a gas alarm detector. The sensor can also detect slight amount of odor molecule. In our previous experiment, it became obvious that it was better to install the sensor to the ceiling to detect odor components generating from smoldering fire. Therefore, five sensors were installed in the ceiling away from each other and the method to detect the fire was examined. As a result, a characteristic was newly derived by adding the sensor outputs for one minute. The sensor output was input every 0.1s. The characteristic is called as the integrated characteristic. After that, the differential characteristic was derived using the integrated characteristic. The fire was determined using the differential characteristics. The materials causing a smoldering fire were woodchip, wallpaper and carpet as subjects. The system could detect the fire in several minutes for whole materials. The sensor is effective to detect the smoldering fire at an early stage. It is necessary to detect a cigarette smoke to distinguish as non fire. In this study, the discrimination was also examined using a quadratic function (ax2+b). The coefficients a and b were effective to identify smoldering fire and cigarette smoke. Principal component analysis for the arrival speed S which meant a kind of odor-speed was also useful to distinguish fire from non fire.
A Contextual Fire Detection Algorithm for Simulated HJ-1B Imagery.
Qian, Yonggang; Yan, Guangjian; Duan, Sibo; Kong, Xiangsheng
2009-01-01
The HJ-1B satellite, which was launched on September 6, 2008, is one of the small ones placed in the constellation for disaster prediction and monitoring. HJ-1B imagery was simulated in this paper, which contains fires of various sizes and temperatures in a wide range of terrestrial biomes and climates, including RED, NIR, MIR and TIR channels. Based on the MODIS version 4 contextual algorithm and the characteristics of HJ-1B sensor, a contextual fire detection algorithm was proposed and tested using simulated HJ-1B data. It was evaluated by the probability of fire detection and false alarm as functions of fire temperature and fire area. Results indicate that when the simulated fire area is larger than 45 m(2) and the simulated fire temperature is larger than 800 K, the algorithm has a higher probability of detection. But if the simulated fire area is smaller than 10 m(2), only when the simulated fire temperature is larger than 900 K, may the fire be detected. For fire areas about 100 m(2), the proposed algorithm has a higher detection probability than that of the MODIS product. Finally, the omission and commission error were evaluated which are important factors to affect the performance of this algorithm. It has been demonstrated that HJ-1B satellite data are much sensitive to smaller and cooler fires than MODIS or AVHRR data and the improved capabilities of HJ-1B data will offer a fine opportunity for the fire detection.
Improving Nocturnal Fire Detection with the VIIRS Day-Night Band
NASA Technical Reports Server (NTRS)
Polivka, Thomas N.; Wang, Jun; Ellison, Luke T.; Hyer, Edward J.; Ichoku, Charles M.
2016-01-01
Building on existing techniques for satellite remote sensing of fires, this paper takes advantage of the day-night band (DNB) aboard the Visible Infrared Imaging Radiometer Suite (VIIRS) to develop the Firelight Detection Algorithm (FILDA), which characterizes fire pixels based on both visible-light and infrared (IR) signatures at night. By adjusting fire pixel selection criteria to include visible-light signatures, FILDA allows for significantly improved detection of pixels with smaller and/or cooler subpixel hotspots than the operational Interface Data Processing System (IDPS) algorithm. VIIRS scenes with near-coincident Advanced Spaceborne Thermal Emission and Reflection (ASTER) overpasses are examined after applying the operational VIIRS fire product algorithm and including a modified "candidate fire pixel selection" approach from FILDA that lowers the 4-µm brightness temperature (BT) threshold but includes a minimum DNB radiance. FILDA is shown to be effective in detecting gas flares and characterizing fire lines during large forest fires (such as the Rim Fire in California and High Park fire in Colorado). Compared with the operational VIIRS fire algorithm for the study period, FILDA shows a large increase (up to 90%) in the number of detected fire pixels that can be verified with the finer resolution ASTER data (90 m). Part (30%) of this increase is likely due to a combined use of DNB and lower 4-µm BT thresholds for fire detection in FILDA. Although further studies are needed, quantitative use of the DNB to improve fire detection could lead to reduced response times to wildfires and better estimate of fire characteristics (smoldering and flaming) at night.
W. Wang; J.J. Qu; X. Hao; Y. Liu
2009-01-01
In the southeastern United States, most wildland fires are of low intensity. Asubstantial number of these fires cannot be detected by the MODIS contextual algorithm. Toimprove the accuracy of fire detection for this region, the remote-sensed characteristics ofthese fires have to be systematically...
A Contextual Fire Detection Algorithm for Simulated HJ-1B Imagery
Qian, Yonggang; Yan, Guangjian; Duan, Sibo; Kong, Xiangsheng
2009-01-01
The HJ-1B satellite, which was launched on September 6, 2008, is one of the small ones placed in the constellation for disaster prediction and monitoring. HJ-1B imagery was simulated in this paper, which contains fires of various sizes and temperatures in a wide range of terrestrial biomes and climates, including RED, NIR, MIR and TIR channels. Based on the MODIS version 4 contextual algorithm and the characteristics of HJ-1B sensor, a contextual fire detection algorithm was proposed and tested using simulated HJ-1B data. It was evaluated by the probability of fire detection and false alarm as functions of fire temperature and fire area. Results indicate that when the simulated fire area is larger than 45 m2 and the simulated fire temperature is larger than 800 K, the algorithm has a higher probability of detection. But if the simulated fire area is smaller than 10 m2, only when the simulated fire temperature is larger than 900 K, may the fire be detected. For fire areas about 100 m2, the proposed algorithm has a higher detection probability than that of the MODIS product. Finally, the omission and commission error were evaluated which are important factors to affect the performance of this algorithm. It has been demonstrated that HJ-1B satellite data are much sensitive to smaller and cooler fires than MODIS or AVHRR data and the improved capabilities of HJ-1B data will offer a fine opportunity for the fire detection. PMID:22399950
Development of gas fire detection system using tunable diode laser absorption spectroscopy
NASA Astrophysics Data System (ADS)
Jiang, Y. L.; Li, G.; Yang, T.; Wang, J. J.
2017-01-01
The conventional fire detection methods mainly produce an alarm through detecting the changes in smoke concentration, flame radiation, heat and other physical parameters in the environment, but are unable to provide an early warning of a fire emergency. We have designed a gas fire detection system with a high detection sensitivity and high selectivity using the tunable semiconductor diode laser as a light source and combining wavelength modulation and harmonic detection technology. This system can invert the second harmonic signal obtained to obtain the concentration of carbon monoxide gas (a fire characteristic gas) so as to provide an early warning of fire. We reduce the system offset noise and the background noise generated due to the laser interference by deducting the system background spectrum lines from the second harmonic signal. This can also eliminate the interference of other gas spectral lines to a large extent. We detected the concentration of the carbon monoxide gas generated in smoldering sandalwood fire and open beech wood fire with the homemade fire simulator, and tested the lowest detectable limit of system. The test results show that the lowest detectable limit can reach 5×10-6 the system can maintain stable operation for a long period of time and can automatically trigger a water mist fire extinguishing system, which can fully meet the needs of early fire warning.
14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cargo or baggage compartment smoke or fire... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the following...
14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cargo or baggage compartment smoke or fire... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the following...
14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Cargo or baggage compartment smoke or fire... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the following...
14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cargo or baggage compartment smoke or fire... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If certification with cargo or baggage compartment smoke or fire detection provisions is requested, the following...
Fire detection system using random forest classification for image sequences of complex background
NASA Astrophysics Data System (ADS)
Kim, Onecue; Kang, Dong-Joong
2013-06-01
We present a fire alarm system based on image processing that detects fire accidents in various environments. To reduce false alarms that frequently appeared in earlier systems, we combined image features including color, motion, and blinking information. We specifically define the color conditions of fires in hue, saturation and value, and RGB color space. Fire features are represented as intensity variation, color mean and variance, motion, and image differences. Moreover, blinking fire features are modeled by using crossing patches. We propose an algorithm that classifies patches into fire or nonfire areas by using random forest supervised learning. We design an embedded surveillance device made with acrylonitrile butadiene styrene housing for stable fire detection in outdoor environments. The experimental results show that our algorithm works robustly in complex environments and is able to detect fires in real time.
Application of data fusion technology based on D-S evidence theory in fire detection
NASA Astrophysics Data System (ADS)
Cai, Zhishan; Chen, Musheng
2015-12-01
Judgment and identification based on single fire characteristic parameter information in fire detection is subject to environmental disturbances, and accordingly its detection performance is limited with the increase of false positive rate and false negative rate. The compound fire detector employs information fusion technology to judge and identify multiple fire characteristic parameters in order to improve the reliability and accuracy of fire detection. The D-S evidence theory is applied to the multi-sensor data-fusion: first normalize the data from all sensors to obtain the normalized basic probability function of the fire occurrence; then conduct the fusion processing using the D-S evidence theory; finally give the judgment results. The results show that the method meets the goal of accurate fire signal identification and increases the accuracy of fire alarm, and therefore is simple and effective.
Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review.
Fonollosa, Jordi; Solórzano, Ana; Marco, Santiago
2018-02-11
Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative.
Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review
Fonollosa, Jordi
2018-01-01
Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative. PMID:29439490
33 CFR 149.414 - What are the requirements for a fire detection and alarm system?
Code of Federal Regulations, 2011 CFR
2011-07-01
... national consensus standard, as that term is defined in 29 CFR 1910.2, for fire detection and fire alarm... fire detection and alarm system? 149.414 Section 149.414 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Firefighting and Fire Protection Equipment Firefighting Requirements § 149.414 What are the...
33 CFR 149.414 - What are the requirements for a fire detection and alarm system?
Code of Federal Regulations, 2013 CFR
2013-07-01
... national consensus standard, as that term is defined in 29 CFR 1910.2, for fire detection and fire alarm... fire detection and alarm system? 149.414 Section 149.414 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Firefighting and Fire Protection Equipment Firefighting Requirements § 149.414 What are the...
33 CFR 149.414 - What are the requirements for a fire detection and alarm system?
Code of Federal Regulations, 2012 CFR
2012-07-01
... national consensus standard, as that term is defined in 29 CFR 1910.2, for fire detection and fire alarm... fire detection and alarm system? 149.414 Section 149.414 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Firefighting and Fire Protection Equipment Firefighting Requirements § 149.414 What are the...
33 CFR 149.414 - What are the requirements for a fire detection and alarm system?
Code of Federal Regulations, 2014 CFR
2014-07-01
... national consensus standard, as that term is defined in 29 CFR 1910.2, for fire detection and fire alarm... fire detection and alarm system? 149.414 Section 149.414 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Firefighting and Fire Protection Equipment Firefighting Requirements § 149.414 What are the...
W. Wang; J.J. Qu; X. Hao; Y. Liu
2009-01-01
In the southeastern United States, most wildland fires are of low intensity. A substantial number of these fires cannot be detected by the MODIS contextual algorithm. To improve the accuracy of fire detection for this region, the remote-sensed characteristics of these fires have to be...
46 CFR 27.203 - What are the requirements for fire detection on towing vessels?
Code of Federal Regulations, 2010 CFR
2010-10-01
... detection on towing vessels? You must have a fire-detection system installed on your vessel to detect engine... use an existing engine-room-monitoring system (with fire-detection capability) instead of a fire-detection system, if the monitoring system is operable and complies with this section. You must ensure that...
Detection, monitoring, and quantitative analysis of wildfires with the BIRD satellite
NASA Astrophysics Data System (ADS)
Oertel, Dieter A.; Briess, Klaus; Lorenz, Eckehard; Skrbek, Wolfgang; Zhukov, Boris
2004-02-01
Increasing concern about environment and interest to avoid losses led to growing demands on space borne fire detection, monitoring and quantitative parameter estimation of wildfires. The global change research community intends to quantify the amount of gaseous and particulate matter emitted from vegetation fires, peat fires and coal seam fires. The DLR Institute of Space Sensor Technology and Planetary Exploration (Berlin-Adlershof) developed a small satellite called BIRD (Bi-spectral Infrared Detection) which carries a sensor package specially designed for fire detection. BIRD was launched as a piggy-back satellite on October 22, 2001 with ISRO"s Polar Satellite Launch Vehicle (PSLV). It is circling the Earth on a polar and sun-synchronous orbit at an altitude of 572 km and it is providing unique data for detailed analysis of high temperature events on Earth surface. The BIRD sensor package is dedicated for high resolution and reliable fire recognition. Active fire analysis is possible in the sub-pixel domain. The leading channel for fire detection and monitoring is the MIR channel at 3.8 μm. The rejection of false alarms is based on procedures using MIR/NIR (Middle Infra Red/Near Infra Red) and MIR/TIR (Middle Infra Red/Thermal Infra Red) radiance ratio thresholds. Unique results of BIRD wildfire detection and analysis over fire prone regions in Australia and Asia will be presented. BIRD successfully demonstrates innovative fire recognition technology for small satellites which permit to retrieve quantitative characteristics of active burning wildfires, such as the equivalent fire temperature, fire area, radiative energy release, fire front length and fire front strength.
Research Plan for Fire Signatures and Detection
NASA Technical Reports Server (NTRS)
2004-01-01
Viewgraphs on the prevention, suppression, and detection of fires aboard a spacecraft is presented. The topics include: 1) Fire Prevention, Detection, and Suppression Sub-Element Products; 2) FPDS Organizing Questions; 3) FPDS Organizing Questions; 4) Signatures, Sensors, and Simulations; 5) Quantification of Fire and Pre-Fire Signatures; 6) Smoke; 7) DAFT Hardware; 8) Additional Benefits of DAFT; 9) Development and Characterization of Sensors 10) Simulation of the Transport of Smoke and Fire Precursors; and 11) FPDS Organizing Questions.
Colour based fire detection method with temporal intensity variation filtration
NASA Astrophysics Data System (ADS)
Trambitckii, K.; Anding, K.; Musalimov, V.; Linß, G.
2015-02-01
Development of video, computing technologies and computer vision gives a possibility of automatic fire detection on video information. Under that project different algorithms was implemented to find more efficient way of fire detection. In that article colour based fire detection algorithm is described. But it is not enough to use only colour information to detect fire properly. The main reason of this is that in the shooting conditions may be a lot of things having colour similar to fire. A temporary intensity variation of pixels is used to separate them from the fire. These variations are averaged over the series of several frames. This algorithm shows robust work and was realised as a computer program by using of the OpenCV library.
Fire detection and incidents localization based on public information channels and social media
NASA Astrophysics Data System (ADS)
Thanos, Konstantinos-Georgios; Skroumpelou, Katerina; Rizogiannis, Konstantinos; Kyriazanos, Dimitris M.; Astyakopoulos, Alkiviadis; Thomopoulos, Stelios C. A.
2017-05-01
In this paper a solution is presented aiming to assist the early detection and localization of a fire incident by exploiting crowdsourcing and unofficial civilian online reports. It consists of two components: (a) the potential fire incident detection and (b) the visualization component. The first component comprises two modules that run in parallel and aim to collect reports posted on public platforms and conclude to potential fire incident locations. It collects the public reports, distinguishes reports that refer to a potential fire incident and store the corresponding information in a structured way. The second module aggregates all these stored reports and conclude to a probable fire location, based on the amount of reports per area, the time and location of these reports. In further the result is entered to a fusion module which combines it with information collected by sensors if available in order to provide a more accurate fire event detection capability. The visualization component is a fully - operational public information channel which provides accurate and up-to-date information about active and past fires, raises awareness about forest fires and the relevant hazards among citizens. The channel has visualization capabilities for presenting in an efficient way information regarding detected fire incidents fire expansion areas, and relevant information such as detecting sensors and reporting origin. The paper concludes with insight to current CONOPS end user with regards to the inclusion of the proposed solution to the current CONOPS of fire detection.
Monitoring Fires from Space: a case study in transitioning from research to applications
NASA Astrophysics Data System (ADS)
Justice, C. O.; Giglio, L.; Vadrevu, K. P.; Csiszar, I. A.; Schroeder, W.; Davies, D.
2012-12-01
This paper discusses the heritage and relationships between science and applications in the context of global satellite-based fire monitoring. The development of algorithms for satellite-based fire detection has been supported primarily by NASA for the polar orbiters with a global focus, and initially by NOAA and more recently by EUMETSAT for the geostationary satellites, with a regional focus. As the feasibility and importance of space-based fire monitoring was recognized, satellite missions were designed to include fire detection capabilities. As a result, the algorithms and accuracy of the detections have improved. Due to the role of fire in the Earth System and its relevance to society, at each step in the development of the sensing capability the research has made a transition into fire-related applications to such an extent that there is now broad use of these data worldwide. The origin of the polar-orbiting satellite fire detection capability was with the AVHRR sensor beginning in the early 1980s, but was transformed with the launch of the EOS MODIS instruments, which included sensor characteristics specifically for fire detection. NASA gave considerable emphasis on the accuracy assessment of the fire detection and the development of fire characterization and burned area products from MODIS. Collaboration between the MODIS Fire Team and the RSAC USFS, initiated in the context of the Montana wildfires of 2001, prompted the development of a Rapid Response System for fire data and eventually led to operational use of MODIS data by the USFS for strategic fire monitoring. Building on this success, the Fire Information for Resource Management Systems (FIRMS) project was funded by NASA Applications to further develop products and services for the fire information community. The FIRMS was developed as a web-based geospatial tool, offering a range of geospatial data services, including SMS text messaging and is now widely used. This system, developed in the research domain, has now been successfully moved to an operational home at the UN FAO, as the Global Fire Information Management System (GFIMS). With a view to operational data continuity, the Suomi-NPP/JPSS VIIRS system was also designed with a fire detection capability, and is providing promising results for fire monitoring both from the standard operational production system and experimental product enhancements. International coordination on fire observations and outreach has been successfully developed under the GOFC GOLD program.
14 CFR 460.13 - Smoke detection and fire suppression.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew. ...
14 CFR 460.13 - Smoke detection and fire suppression.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew. ...
14 CFR 460.13 - Smoke detection and fire suppression.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew. ...
14 CFR 460.13 - Smoke detection and fire suppression.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew. ...
14 CFR 460.13 - Smoke detection and fire suppression.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Smoke detection and fire suppression. 460... Crew § 460.13 Smoke detection and fire suppression. An operator or crew must have the ability to detect smoke and suppress a cabin fire to prevent incapacitation of the flight crew. ...
46 CFR 161.002-9 - Automatic fire detecting system, power supply.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Automatic fire detecting system, power supply. 161.002-9 Section 161.002-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT...-9 Automatic fire detecting system, power supply. The power supply for an automatic fire detecting...
46 CFR 161.002-9 - Automatic fire detecting system, power supply.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Automatic fire detecting system, power supply. 161.002-9 Section 161.002-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT...-9 Automatic fire detecting system, power supply. The power supply for an automatic fire detecting...
NASA Technical Reports Server (NTRS)
TenHoeve, J. E.; Remer, L. A.; Jacobson, M. Z.
2010-01-01
This study analyzes changes in the number of fires detected on forest, grass, and transition lands during the 2002-2009 biomass burning seasons using fire detection data and co-located land cover classifications from the Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the total number of detected fires correlates well with MODIS mean aerosol optical depth (AOD) from year to year, in accord with other studies. However, we also show that the ratio of forest to savanna fires varies substantially from year to year. Forest fires have trended downward, on average, since the beginning of 2006 despite a modest increase in 2007. Our study suggests that high particulate matter loading detected in 2007 was likely due to a large number of savanna/agricultural fires that year. Finally, we illustrate that the correlation between annual Brazilian deforestation estimates and MODIS fires is considerably higher when fires are stratified by MODIS-derived land cover classifications.
The combined use of the RST-FIRES algorithm and geostationary satellite data to timely detect fires
NASA Astrophysics Data System (ADS)
Filizzola, Carolina; Corrado, Rosita; Marchese, Francesco; Mazzeo, Giuseppe; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio
2017-04-01
Timely detection of fires may enable a rapid contrast action before they become uncontrolled and wipe out entire forests. Remote sensing, especially based on geostationary satellite data, can be successfully used to this aim. Differently from sensors onboard polar orbiting platforms, instruments on geostationary satellites guarantee a very high temporal resolution (from 30 to 2,5 minutes) which may be usefully employed to carry out a "continuous" monitoring over large areas as well as to timely detect fires at their early stages. Together with adequate satellite data, an appropriate fire detection algorithm should be used. Over the last years, many fire detection algorithms have been just adapted from polar to geostationary sensors and, consequently, the very high temporal resolution of geostationary sensors is not exploited at all in tests for fire identification. In addition, even when specifically designed for geostationary satellite sensors, fire detection algorithms are frequently based on fixed thresholds tests which are generally set up in the most conservative way to avoid false alarm proliferation. The result is a low algorithm sensitivity which generally means that only large and/or extremely intense events are detected. This work describes the Robust Satellite Techniques for FIRES detection and monitoring (RST-FIRES) which is a multi-temporal change-detection technique trying to overcome the above mentioned issues. Its performance in terms of reliability and sensitivity was verified using data acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the Meteosat Second Generation (MSG) geostationary platform. More than 20,000 SEVIRI images, collected during a four-year-collaboration with the Regional Civil Protection Departments and Local Authorities of two Italian regions, were used. About 950 near real-time ground and aerial checks of the RST-FIRES detections were performed. This study also demonstrates the added value of the RST-FIRES technique to detect starting/small fires and its sensitivity from 3 to 70 times higher than any other similar SEVIRI-based products.
Forest Fire Advanced System Technology (FFAST): A Conceptual Design for Detection and Mapping
J. David Nichols; John R. Warren
1987-01-01
The Forest Fire Advanced System Technology (FFAST) project is developing a data system to provide near-real-time forest fire information to fire management at the fire Incident Command Post (ICP). The completed conceptual design defined an integrated forest fire detection and mapping system that is based upon technology available in the 1990's. System component...
46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... detection system. 108.409 Section 108.409 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... and spacing of tubing in pneumatic fire detection system. (a) All tubing in a pneumatic fire detection... exposed in the space. (c) A pneumatic fire detection system must be set to activate after approximately a...
An approach to the real time risk evaluation system of boreal forest fire
NASA Astrophysics Data System (ADS)
Nakau, K.; Fukuda, M.; Kimura, K.; Hayasaka, H.; Tani, H.; Kushida, K.
2005-12-01
Huge boreal forest fire may cause massive impacts not only on global warming gas emission but also local communities. Thus, it is important to control forest fire. We collected data about boreal forest fire as satellite imagery and fire observation simultaneously in Alaska and east Siberia in summer fire seasons for these three years. Fire observation data was collected from aircraft flying between Japan and Europe. Fire detection results were compared with observed data to evaluate the accuracy and earliness of automatic detection. NOAA and MODIS satellite images covering Alaska and East Siberia are collected. We are also developing fire expansion simulation model to forecast the possible fire expansion area. On the basis of fire expansion forecast, risk analysis of possible fire expansion for decision aid of fire-fighting activities will be analyzed. To identify the risk of boreal forest fire and public concern about forest fire, we collected local news paper in Fairbanks, AK and discuss the statistics of articles related to forest fire on the newspaper.
Microfabricated Chemical Sensors for Aerospace Fire Detection Applications
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Neudeck, Philip G.; Fralick, Gustave; Thomas, Valarie; Makel, D.; Liu, C. C.; Ward, B.; Wu, Q. H.
2001-01-01
The detection of fires on-board commercial aircraft is extremely important for safety reasons. Although dependable fire detection equipment presently exists within the cabin, detection of fire within the cargo hold has been less reliable and susceptible to false alarms. A second, independent method of fire detection to complement the conventional smoke detection techniques, such as the measurement of chemical species indicative of a fire, will help reduce false alarms and improve aircraft safety. Although many chemical species are indicative of a fire, two species of particular interest are CO and CO2. This paper discusses microfabricated chemical sensor development tailored to meet the needs of fire safety applications. This development is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. The individual sensor being developed and their level of maturity will be presented.
[Detecting fire smoke based on the multispectral image].
Wei, Ying-Zhuo; Zhang, Shao-Wu; Liu, Yan-Wei
2010-04-01
Smoke detection is very important for preventing forest-fire in the fire early process. Because the traditional technologies based on video and image processing are easily affected by the background dynamic information, three limitations exist in these technologies, i. e. lower anti-interference ability, higher false detection rate and the fire smoke and water fog being not easily distinguished. A novel detection method for detecting smoke based on the multispectral image was proposed in the present paper. Using the multispectral digital imaging technique, the multispectral image series of fire smoke and water fog were obtained in the band scope of 400 to 720 nm, and the images were divided into bins. The Euclidian distance among the bins was taken as a measurement for showing the difference of spectrogram. After obtaining the spectral feature vectors of dynamic region, the regions of fire smoke and water fog were extracted according to the spectrogram feature difference between target and background. The indoor and outdoor experiments show that the smoke detection method based on multispectral image can be applied to the smoke detection, which can effectively distinguish the fire smoke and water fog. Combined with video image processing method, the multispectral image detection method can also be applied to the forest fire surveillance, reducing the false alarm rate in forest fire detection.
NASA Technical Reports Server (NTRS)
Margle, Janice M. (Editor)
1987-01-01
Fire detection, fire standards and testing, fire extinguishment, inerting and atmospheres, fire-related medical science, aircraft fire safety, Space Station safety concerns, microgravity combustion, spacecraft material flammability testing, and metal combustion are among the topics considered.
The Detection Method of Fire Abnormal Based on Directional Drilling in Complex Conditions of Mine
NASA Astrophysics Data System (ADS)
Huijun, Duan; Shijun, Hao; Jie, Feng
2018-06-01
In the light of more and more urgent hidden fire abnormal detection problem in complex conditions of mine, a method which is used directional drilling technology is put forward. The method can avoid the obstacles in mine, and complete the fire abnormal detection. This paper based on analyzing the trajectory control of directional drilling, measurement while drilling and the characteristic of open branch process, the project of the directional drilling is formulated combination with a complex condition mine, and the detection of fire abnormal is implemented. This method can provide technical support for fire prevention, which also can provide a new way for fire anomaly detection in the similar mine.
36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?
Code of Federal Regulations, 2012 CFR
2012-07-01
... records storage facilities? (a) The fire detection and protection systems must be designed or reviewed by a licensed fire protection engineer. If the system was not designed by a licensed fire protection... engineer that describes the design intent of the fire detection and suppression system, detailing the...
36 CFR 1234.12 - What are the fire safety requirements that apply to records storage facilities?
Code of Federal Regulations, 2014 CFR
2014-07-01
... records storage facilities? (a) The fire detection and protection systems must be designed or reviewed by a licensed fire protection engineer. If the system was not designed by a licensed fire protection... engineer that describes the design intent of the fire detection and suppression system, detailing the...
46 CFR 108.404 - Selection of fire detection system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Selection of fire detection system. 108.404 Section 108.404 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a...
46 CFR 108.413 - Fusible element fire detection system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Fusible element fire detection system. 108.413 Section 108.413 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system...
46 CFR 108.413 - Fusible element fire detection system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Fusible element fire detection system. 108.413 Section 108.413 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system...
46 CFR 108.404 - Selection of fire detection system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Selection of fire detection system. 108.404 Section 108.404 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a...
46 CFR 108.413 - Fusible element fire detection system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Fusible element fire detection system. 108.413 Section 108.413 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system...
46 CFR 108.404 - Selection of fire detection system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Selection of fire detection system. 108.404 Section 108.404 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a...
46 CFR 108.404 - Selection of fire detection system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Selection of fire detection system. 108.404 Section 108.404 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.404 Selection of fire detection system. (a) If a...
46 CFR 108.413 - Fusible element fire detection system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Fusible element fire detection system. 108.413 Section 108.413 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.413 Fusible element fire detection system...
Assessing and validating RST-FIRES on MSG-SEVIRI data by means a Total Validation Approach (TVA).
NASA Astrophysics Data System (ADS)
Filizzola, Carolina; Corrado, Rosita; Marchese, Francesco; Mazzeo, %Giuseppe; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio
2015-04-01
Several fire detection methods have been developed through the years for detecting forest fires from space. These algorithms (which may be grouped in single channel, multichannel and contextual algorithms) are generally based on the use of fixed thresholds that, being intrinsically exposed to false alarm proliferation, are often used in a conservative way. As a consequence, most of satellite-based algorithms for fire detection show low sensitivity resulting not suitable in operational contexts. In this work, the RST-FIRES algorithm, which is based on an original multi-temporal scheme of satellite data analysis (RST-Robust Satellite Techniques), is presented. The implementation of RST-FIRES on data provided by Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG) that, offering the best revisit time (i.e. 15 minutes), can be successfully used for detecting fires at early stage, is described here. Moreover, results of a Total Validation Approach (TVA) experimented both in Northern and Southern Italy, in collaboration with local and regional civil protection agencies, are also reported. In particular, TVA allowed us to assess RST-FIRES detections by means of ground check and aerial surveys, demonstrating the good performances offered by RST-FIRES using MSG-SEVIRI data. Indeed, this algorithm was capable of detecting several fires that for their features (e.g., small size, short time duration) would not have appeared in the official reports, highlighting a significant improvement in terms of sensitivity in comparison with other established satellite-based fire detection techniques still preserving a high confidence level of detection.
Efficient video-equipped fire detection approach for automatic fire alarm systems
NASA Astrophysics Data System (ADS)
Kang, Myeongsu; Tung, Truong Xuan; Kim, Jong-Myon
2013-01-01
This paper proposes an efficient four-stage approach that automatically detects fire using video capabilities. In the first stage, an approximate median method is used to detect video frame regions involving motion. In the second stage, a fuzzy c-means-based clustering algorithm is employed to extract candidate regions of fire from all of the movement-containing regions. In the third stage, a gray level co-occurrence matrix is used to extract texture parameters by tracking red-colored objects in the candidate regions. These texture features are, subsequently, used as inputs of a back-propagation neural network to distinguish between fire and nonfire. Experimental results indicate that the proposed four-stage approach outperforms other fire detection algorithms in terms of consistently increasing the accuracy of fire detection in both indoor and outdoor test videos.
Fire monitoring capability of the joint Landsat and Sentinel 2 constellation
NASA Astrophysics Data System (ADS)
Murphy, S.; Wright, R.
2017-12-01
Fires are a global hazard. Landsat and Sentinel 2 can monitor the Earth's surface every 2 - 4 days. This provides an important opportunity to complement the operational (lower resolution) fire monitoring systems. Landsat-class sensors can detect small fires that would be missed by MODIS-classed sensors. All large fires start out as small fires. We analyze fire patterns in California from 1984 to 2017 and compare the performance of Landsat-type and MODIS-type sensors. Had an operational Landsat-Sentinel 2 fire detection system been in place at the time of the Soberanes fire last year (i.e. August 2016), the cost of suppressing of this fire event (US $236 million) could potentially have been reduced by an order of magnitude.
Fire protection for launch facilities using machine vision fire detection
NASA Astrophysics Data System (ADS)
Schwartz, Douglas B.
1993-02-01
Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.
Fire protection for launch facilities using machine vision fire detection
NASA Technical Reports Server (NTRS)
Schwartz, Douglas B.
1993-01-01
Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding.
Limitations imposed on fire PRA methods as the result of incomplete and uncertain fire event data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowlen, Steven Patrick; Hyslop, J. S.
2010-04-01
Fire probabilistic risk assessment (PRA) methods utilize data and insights gained from actual fire events in a variety of ways. For example, fire occurrence frequencies, manual fire fighting effectiveness and timing, and the distribution of fire events by fire source and plant location are all based directly on the historical experience base. Other factors are either derived indirectly or supported qualitatively based on insights from the event data. These factors include the general nature and intensity of plant fires, insights into operator performance, and insights into fire growth and damage behaviors. This paper will discuss the potential methodology improvements thatmore » could be realized if more complete fire event reporting information were available. Areas that could benefit from more complete event reporting that will be discussed in the paper include fire event frequency analysis, analysis of fire detection and suppression system performance including incipient detection systems, analysis of manual fire fighting performance, treatment of fire growth from incipient stages to fully-involved fires, operator response to fire events, the impact of smoke on plant operations and equipment, and the impact of fire-induced cable failures on plant electrical circuits.« less
36 CFR § 1234.12 - What are the fire safety requirements that apply to records storage facilities?
Code of Federal Regulations, 2013 CFR
2013-07-01
... records storage facilities? (a) The fire detection and protection systems must be designed or reviewed by a licensed fire protection engineer. If the system was not designed by a licensed fire protection... engineer that describes the design intent of the fire detection and suppression system, detailing the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 5 2014-01-01 2014-01-01 false Imported fire ant detection, control, exclusion, and..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Imported Fire Ant Quarantine and Regulations § 301.81-11 Imported fire ant detection, control, exclusion, and enforcement program for nurseries producing...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 5 2011-01-01 2011-01-01 false Imported fire ant detection, control, exclusion, and..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Imported Fire Ant Quarantine and Regulations § 301.81-11 Imported fire ant detection, control, exclusion, and enforcement program for nurseries producing...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 5 2012-01-01 2012-01-01 false Imported fire ant detection, control, exclusion, and..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Imported Fire Ant Quarantine and Regulations § 301.81-11 Imported fire ant detection, control, exclusion, and enforcement program for nurseries producing...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 5 2013-01-01 2013-01-01 false Imported fire ant detection, control, exclusion, and..., DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Imported Fire Ant Quarantine and Regulations § 301.81-11 Imported fire ant detection, control, exclusion, and enforcement program for nurseries producing...
Barrett, Kirsten; Kasischke, Eric S.
2013-01-01
Fire activity in the Alaskan boreal forest, though episodic at annual and intra-annual time scales, has experienced an increase over the last several decades. Increases in burned area and fire severity are not only releasing more carbon to the atmosphere, but likely shifting vegetation composition in the region towards greater deciduous dominance and a reduction in coniferous stands. While some recent studies have addressed qualitative differences between large and small fire years in the Alaskan boreal forest, the ecological effects of a greater proportion of burning occurring during large fire years and during late season fires have not yet been examined. Some characteristics of wildfires that can be detected remotely are related to fire severity and can provide new information on spatial and temporal patterns of burning. This analysis focused on boreal wildfire intensity (fire radiative power, or FRP) contained in the Moderate Resolution Imaging Spectroradiometer (MODIS) daily active fire product from 2003 to 2010. We found that differences in FRP resulted from seasonality and intra-annual variability in fire activity levels, vegetation composition, latitudinal variation, and fire spread behavior. Our studies determined two general categories of active fire detections: new detections associated with the spread of the fire front and residual pixels in areas that had already experienced front burning. Residual pixels had a lower average FRP than front pixels, but represented a high percentage of all pixels during periods of high fire activity (large fire years, late season burning, and seasonal periods of high fire activity). As a result, the FRP from periods of high fire activity was less intense than those from periods of low fire activity. Differences related to latitude were greater than expected, with higher latitudes burning later in the season and at a higher intensity than lower latitudes. Differences in vegetation type indicate that coniferous vegetation is the most fire prone, but deciduous vegetation is not particularly fire resistant, as the proportion of active fire detections in deciduous stands is roughly the same as the fraction of deciduous vegetation in the region. Qualitative differences between periods of high and low fire activity are likely to reflect important differences in fire severity. Large fire years are likely to be more severe, characterized by more late season fires and a greater proportion of residual burning. Given the potential for severe fires to effect changes in vegetation cover, the shift toward a greater proportion of area burning during large fire years may influence vegetation patterns in the region over the medium to long term.
NASA Astrophysics Data System (ADS)
Lisi, M.; Paciello, R.; Filizzola, C.; Corrado, R.; Marchese, F.; Mazzeo, G.; Pergola, N.; Tramutoli, V.
2016-12-01
Fire detection by sensors on-board polar orbiting platforms, due to their relatively low temporal resolution (hours), could results decidedly not adequate to detect short-living events or fires characterized by a strong diurnal cycle and rapid evolution times. The challenge is therefore to try to exploit the very high temporal resolution offered by the geostationary sensors (from 30 to 2,5 minutes) to guarantee a continuous monitoring. Over the last years, many algorithms have been adapted from polar to (or have been specifically designed for) geostationary sensors. Most of them are based on fixed thresholds tests which, to avoid false alarm proliferation, are generally set up in the most conservative way. The result is a low algorithm sensitivity (i.e. only large and/or extremely intense events are generally detected) which could drastically affect Global Fire Emission (GFE) estimate: small fires were recognized to contribute for more than 35% to the global biomass burning carbon emissions. This work describes the multi-temporal change-detection technique named RST-FIRES (Robust Satellite Techniques for FIRES detection and monitoring) which, try to overcome the above mentioned issues being, moreover, immediately exportable on different geographic area and sensors. Its performance in terms of reliability and sensitivity was verified by more than 20,000 SEVIRI images collected throughout the day during a four-year-collaboration with the Regional Civil Protection Departments and Local Authorities of two Italian regions which provided about 950 near real-time ground and aerial checks of the RST-FIRES detections. This study fully demonstrates the added value of the RST-FIRES technique for the detection of early/small fires and a sensitivity from 3 to 70 times higher than any other similar SEVIRI-based products.
[Research on early fire detection with CO-CO2 FTIR-spectroscopy].
Du, Jian-hua; Zhang, Ren-cheng; Huang, Xiang-ying; Gong, Xue; Zhang, Xiao-hua
2007-05-01
A new fire detection method is put forward based on the theory of FTIR spectroscopy through analyzing all kinds of detection methods, in which CO and CO2 are chosen as early fire detection objects, and an early fire experiment system has been set up. The concentration characters of CO and CO2 were obtained through early fire experiments including real alarm sources and nuisance alarm sources. In real alarm sources there are abundant CO and CO2 which change regularly. In nuisance alarm sources there is almost no CO. So it's feasible to reduce the false alarms and increase the sensitivity of early fire detectors through analyzing the concentration characters of CO and CO2.
Code of Federal Regulations, 2010 CFR
2010-07-01
... previously approved fire detection and alarm system on a deepwater port? 149.421 Section 149.421 Navigation... Requirements § 149.421 What is the requirement for a previously approved fire detection and alarm system on a deepwater port? An existing fire detection and alarm system on a deepwater port need not meet the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... previously approved fire detection and alarm system on a deepwater port? 149.421 Section 149.421 Navigation... Requirements § 149.421 What is the requirement for a previously approved fire detection and alarm system on a deepwater port? An existing fire detection and alarm system on a deepwater port need not meet the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... previously approved fire detection and alarm system on a deepwater port? 149.421 Section 149.421 Navigation... Requirements § 149.421 What is the requirement for a previously approved fire detection and alarm system on a deepwater port? An existing fire detection and alarm system on a deepwater port need not meet the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... previously approved fire detection and alarm system on a deepwater port? 149.421 Section 149.421 Navigation... Requirements § 149.421 What is the requirement for a previously approved fire detection and alarm system on a deepwater port? An existing fire detection and alarm system on a deepwater port need not meet the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... previously approved fire detection and alarm system on a deepwater port? 149.421 Section 149.421 Navigation... Requirements § 149.421 What is the requirement for a previously approved fire detection and alarm system on a deepwater port? An existing fire detection and alarm system on a deepwater port need not meet the...
Miettinen, Jukka; Shi, Chenghua; Liew, Soo Chin
2017-10-01
In this paper, we analyze the spatio-temporal distribution of vegetation fires in Peninsular Malaysia, Sumatra, and Borneo in the severe El Niño year of 2015, concentrating on the distribution of fires between mineral soils and peatland areas, and between land cover types in peatland areas. The results reveal that 53% of all Moderate Resolution Imaging Spectroradiometer (MODIS) fire detections were recorded in peatlands that cover only 12% of the study area. However, fire occurrence in the peatland areas was highly dependent on land cover type. Pristine peat swamp forests (PSF) experienced only marginal fire activity (30 fire detections per 1000 km 2 ) compared to deforested undeveloped peatlands (831-915 fire detections per 1000 km 2 ). Our results also highlight the extreme fire vulnerability of the southern Sumatran and Bornean peatlands under strong El Niño conditions: 71% of all peatland hotspots were detected in the provinces of South Sumatra and Central Kalimantan, which contain 29% of peatlands in the study area. Degraded PSF and all deforested peatland land cover types, including managed areas, in the two provinces were severely affected, demonstrating how difficult it is to protect even managed drained agricultural areas from unwanted fires during dry periods. Our results thereby advocate rewetting and rehabilitation as the primary management option for highly fire prone degraded undeveloped peatland areas, whenever feasible, as a means to reduce fire risk during future dry episodes.
NASA Astrophysics Data System (ADS)
Miettinen, Jukka; Shi, Chenghua; Liew, Soo Chin
2017-10-01
In this paper, we analyze the spatio-temporal distribution of vegetation fires in Peninsular Malaysia, Sumatra, and Borneo in the severe El Niño year of 2015, concentrating on the distribution of fires between mineral soils and peatland areas, and between land cover types in peatland areas. The results reveal that 53% of all Moderate Resolution Imaging Spectroradiometer (MODIS) fire detections were recorded in peatlands that cover only 12% of the study area. However, fire occurrence in the peatland areas was highly dependent on land cover type. Pristine peat swamp forests (PSF) experienced only marginal fire activity (30 fire detections per 1000 km2) compared to deforested undeveloped peatlands (831-915 fire detections per 1000 km2). Our results also highlight the extreme fire vulnerability of the southern Sumatran and Bornean peatlands under strong El Niño conditions: 71% of all peatland hotspots were detected in the provinces of South Sumatra and Central Kalimantan, which contain 29% of peatlands in the study area. Degraded PSF and all deforested peatland land cover types, including managed areas, in the two provinces were severely affected, demonstrating how difficult it is to protect even managed drained agricultural areas from unwanted fires during dry periods. Our results thereby advocate rewetting and rehabilitation as the primary management option for highly fire prone degraded undeveloped peatland areas, whenever feasible, as a means to reduce fire risk during future dry episodes.
NASA Technical Reports Server (NTRS)
Cleary, T.; Grosshandler, W.
1999-01-01
As part of the National Aeronautics and Space Administration (NASA) initiated program on global civil aviation, NIST is assisting Federal Aviation Administration in its research to improve fire detection in aircraft cargo compartments. Aircraft cargo compartment detection certification methods have been reviewed. The Fire Emulator-Detector Evaluator (FE/DE) has been designed to evaluate fire detection technologies such as new sensors, multi-element detectors, and detectors that employ complex algorithms. The FE/DE is a flow tunnel that can reproduce velocity, temperature, smoke, and Combustion gas levels to which a detector might be exposed during a fire. A scientific literature survey and patent search have been conducted relating to existing and emerging fire detection technologies, and the potential use of new fire detection strategies in cargo compartment areas has been assessed. In the near term, improved detector signal processing and multi-sensor detectors based on combinations of smoke measurements, combustion gases and temperature are envisioned as significantly impacting detector system performance.
Ultraviolet Source For Testing Hydrogen-Fire Detectors
NASA Technical Reports Server (NTRS)
Hall, Gregory A.; Larson, William E.; Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Stout, Stephen J.; Strobel, James P.
1995-01-01
Hand-held portable unit emits ultraviolet light similar to that emitted by hydrogen burning in air. Developed for use in testing optoelectronic hydrogen-fire detectors, which respond to ultraviolet light at wavelengths from 180 to 240 nanometers. Wavelength range unique in that within it, hydrogen fires emit small but detectable amounts of radiation, light from incandescent lamps and Sun almost completely absent, and air sufficiently transmissive to enable detection of hydrogen fire from distance. Consequently, this spectral region favorable for detecting hydrogen fires while minimizing false alarms.
46 CFR 95.05-1 - Fire detecting, manual alarm, and supervised patrol systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... provided a smoke detecting or other suitable type fire detecting system. (c) Enclosed spaces which are “specially suitable for vehicles” shall be fitted with an approved fire or smoke detecting system. [CGFR 66...
46 CFR 95.05-1 - Fire detecting, manual alarm, and supervised patrol systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... provided a smoke detecting or other suitable type fire detecting system. (c) Enclosed spaces which are “specially suitable for vehicles” shall be fitted with an approved fire or smoke detecting system. [CGFR 66...
NASA Astrophysics Data System (ADS)
Waigl, C. F.; Prakash, A.; Stuefer, M.; Ichoku, C. M.
2016-12-01
The aim of this work is to present and evaluate an algorithm that generates near real-time fire detections suitable for use by fire and related hazard management agencies in Alaska. Our scheme offers benefits over available global products and is sensitive to low-intensity residual burns while at the same time avoiding common sources of false detections as they are observed in the Alaskan boreal forest, such as refective river banks and old fire scars. The algorithm is based on I-band brightness temperature data form the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NOAA's NPP Suomi spacecraft. Using datasets covering the entire 2015 Alaska fire season, we first evaluate the performance of two global fire products: MOD14/MYD14, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the more recent global VIIRS I-band product. A comparison with the fire perimeter and properties data published by the Alaska Interagency Coordination Center (AICC) shows that both MODIS and VIIRS fire products successfully detect all fires larger than approx. 1000 hectares, with the VIIRS I-band product only moderately outperforming MOD14/MYD14. For smaller fires, the VIIRS I-band product offers higher detection likelihood, but still misses one fifth of the fire events overall. Furthermore, some daytime detections are missing, possibly due to processing difficulties or incomplete data transfer. Second, as an alternative, we present a simple algorithm that uses the normalized difference between the 3.74µm and 11.45 µm VIIRS-I band at-sensor brightness temperatures to map both low- and high-intensity burn areas. Such an approach has the advantage that it makes use of data that is available via the direct readout station operated by Geographic Information Network of Alaska (GINA). We apply this scheme to known Alaskan boreal forest fires and validate it using GIS data produced by fire management agencies, fire detections from near simultanous Landsat imagery, and sub-pixel analysis. We find that our VIIRS derived fire product more accurately captures the fire spread, can differentiate well between low- and high-intensity burn areas, and has fewer errors of omission compared to the MODIS and VIIRS global fire products.
Three-dimensional tracking for efficient fire fighting in complex situations
NASA Astrophysics Data System (ADS)
Akhloufi, Moulay; Rossi, Lucile
2009-05-01
Each year, hundred millions hectares of forests burn causing human and economic losses. For efficient fire fighting, the personnel in the ground need tools permitting the prediction of fire front propagation. In this work, we present a new technique for automatically tracking fire spread in three-dimensional space. The proposed approach uses a stereo system to extract a 3D shape from fire images. A new segmentation technique is proposed and permits the extraction of fire regions in complex unstructured scenes. It works in the visible spectrum and combines information extracted from YUV and RGB color spaces. Unlike other techniques, our algorithm does not require previous knowledge about the scene. The resulting fire regions are classified into different homogenous zones using clustering techniques. Contours are then extracted and a feature detection algorithm is used to detect interest points like local maxima and corners. Extracted points from stereo images are then used to compute the 3D shape of the fire front. The resulting data permits to build the fire volume. The final model is used to compute important spatial and temporal fire characteristics like: spread dynamics, local orientation, heading direction, etc. Tests conducted on the ground show the efficiency of the proposed scheme. This scheme is being integrated with a fire spread mathematical model in order to predict and anticipate the fire behaviour during fire fighting. Also of interest to fire-fighters, is the proposed automatic segmentation technique that can be used in early detection of fire in complex scenes.
Early Forest Fire Detection Using Radio-Acoustic Sounding System
Sahin, Yasar Guneri; Ince, Turker
2009-01-01
Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967
Progress in Fire Detection and Suppression Technology for Future Space Missions
NASA Technical Reports Server (NTRS)
Friedman, Robert; Urban, David L.
2000-01-01
Fire intervention technology (detection and suppression) is a critical part of the strategy of spacecraft fire safety. This paper reviews the status, trends, and issues in fire intervention, particularly the technology applied to the protection of the International Space Station and future missions beyond Earth orbit. An important contribution to improvements in spacecraft fire safety is the understanding of the behavior of fires in the non-convective (microgravity) environment of Earth-orbiting and planetary-transit spacecraft. A key finding is the strong influence of ventilation flow on flame characteristics, flammability limits and flame suppression in microgravity. Knowledge of these flow effects will aid the development of effective processes for fire response and technology for fire suppression.
33 CFR 149.414 - What are the requirements for a fire detection and alarm system?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What are the requirements for a fire detection and alarm system? 149.414 Section 149.414 Navigation and Navigable Waters COAST GUARD... national consensus standard, as that term is defined in 29 CFR 1910.2, for fire detection and fire alarm...
GIS applied to location of fires detection towers in domain area of tropical forest.
Eugenio, Fernando Coelho; Rosa Dos Santos, Alexandre; Fiedler, Nilton Cesar; Ribeiro, Guido Assunção; da Silva, Aderbal Gomes; Juvanhol, Ronie Silva; Schettino, Vitor Roberto; Marcatti, Gustavo Eduardo; Domingues, Getúlio Fonseca; Alves Dos Santos, Gleissy Mary Amaral Dino; Pezzopane, José Eduardo Macedo; Pedra, Beatriz Duguy; Banhos, Aureo; Martins, Lima Deleon
2016-08-15
In most countries, the loss of biodiversity caused by the fires is worrying. In this sense, the fires detection towers are crucial for rapid identification of fire outbreaks and can also be used in environmental inspection, biodiversity monitoring, telecommunications mechanisms, telemetry and others. Currently the methodologies for allocating fire detection towers over large areas are numerous, complex and non-standardized by government supervisory agencies. Therefore, this study proposes and evaluates different methodologies to best location of points to install fire detection towers considering the topography, risk areas, conservation units and heat spots. Were used Geographic Information Systems (GIS) techniques and unaligned stratified systematic sampling for implementing and evaluating 9 methods for allocating fire detection towers. Among the methods evaluated, the C3 method was chosen, represented by 140 fire detection towers, with coverage of: a) 67% of the study area, b) 73.97% of the areas with high risk, c) 70.41% of the areas with very high risk, d) 70.42% of the conservation units and e) 84.95% of the heat spots in 2014. The proposed methodology can be adapted to areas of other countries. Copyright © 2016 Elsevier B.V. All rights reserved.
Monitoring Of Air Quality Parameters For Construction Of Fire Risk Detection Systems
NASA Astrophysics Data System (ADS)
Romancov, I. I.; Dashkovky, A. G.; Panin, V. F.; Melkov, D. N.
2017-01-01
The analysis of fire developmental process is given, which showed that there are seven stages of fire development, a set of phenomena (factors, signs) of fire risk condition, characterized by a set of defined parameters, corresponds to each stage. Observed that the registration of high staging factors (high ambient temperature, content of CO2, etc.) means the registration of actual low staging fire (thermal destruction of materials gases, fumes, etc.) - fire risk situation. It is shown that the decrease of registered factor staging leads to construction of fire preventive and diagnostic systems as the lower is registered stage, the more uncertain is connection between the fact of its detection and a fire. It is indicated that with development of electronic equipment the staging of fire situations factors used for detection is reducing in whole, and also it is noted that for each control object it is necessary to choose (identify) the optimal factor, in particular, in many ways the optimal factor for aircrafts are smokes and their TV image.
Non-supervised method for early forest fire detection and rapid mapping
NASA Astrophysics Data System (ADS)
Artés, Tomás; Boca, Roberto; Liberta, Giorgio; San-Miguel, Jesús
2017-09-01
Natural hazards are a challenge for the society. Scientific community efforts have been severely increased assessing tasks about prevention and damage mitigation. The most important points to minimize natural hazard damages are monitoring and prevention. This work focuses particularly on forest fires. This phenomenon depends on small-scale factors and fire behavior is strongly related to the local weather. Forest fire spread forecast is a complex task because of the scale of the phenomena, the input data uncertainty and time constraints in forest fire monitoring. Forest fire simulators have been improved, including some calibration techniques avoiding data uncertainty and taking into account complex factors as the atmosphere. Such techniques increase dramatically the computational cost in a context where the available time to provide a forecast is a hard constraint. Furthermore, an early mapping of the fire becomes crucial to assess it. In this work, a non-supervised method for forest fire early detection and mapping is proposed. As main sources, the method uses daily thermal anomalies from MODIS and VIIRS combined with land cover map to identify and monitor forest fires with very few resources. This method relies on a clustering technique (DBSCAN algorithm) and on filtering thermal anomalies to detect the forest fires. In addition, a concave hull (alpha shape algorithm) is applied to obtain rapid mapping of the fire area (very coarse accuracy mapping). Therefore, the method leads to a potential use for high-resolution forest fire rapid mapping based on satellite imagery using the extent of each early fire detection. It shows the way to an automatic rapid mapping of the fire at high resolution processing as few data as possible.
46 CFR 108.407 - Detectors for electric fire detection system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Detectors for electric fire detection system. 108.407 Section 108.407 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire...
46 CFR 108.407 - Detectors for electric fire detection system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Detectors for electric fire detection system. 108.407 Section 108.407 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire...
46 CFR 108.407 - Detectors for electric fire detection system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Detectors for electric fire detection system. 108.407 Section 108.407 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire...
46 CFR 108.407 - Detectors for electric fire detection system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Detectors for electric fire detection system. 108.407 Section 108.407 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.407 Detectors for electric fire...
29 CFR 1910.164 - Fire detection systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fire detectors and fire detection systems are tested and adjusted as often as needed to maintain proper reliability and operating condition except that factory calibrated detectors need not be adjusted after...) The employer shall also assure that fire detectors that need to be cleaned of dirt, dust, or other...
29 CFR 1910.164 - Fire detection systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fire detectors and fire detection systems are tested and adjusted as often as needed to maintain proper reliability and operating condition except that factory calibrated detectors need not be adjusted after...) The employer shall also assure that fire detectors that need to be cleaned of dirt, dust, or other...
29 CFR 1910.164 - Fire detection systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fire detectors and fire detection systems are tested and adjusted as often as needed to maintain proper reliability and operating condition except that factory calibrated detectors need not be adjusted after...) The employer shall also assure that fire detectors that need to be cleaned of dirt, dust, or other...
29 CFR 1910.164 - Fire detection systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fire detectors and fire detection systems are tested and adjusted as often as needed to maintain proper reliability and operating condition except that factory calibrated detectors need not be adjusted after...) The employer shall also assure that fire detectors that need to be cleaned of dirt, dust, or other...
29 CFR 1910.164 - Fire detection systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fire detectors and fire detection systems are tested and adjusted as often as needed to maintain proper reliability and operating condition except that factory calibrated detectors need not be adjusted after...) The employer shall also assure that fire detectors that need to be cleaned of dirt, dust, or other...
NASA Astrophysics Data System (ADS)
Hyer, Edward J.; Reid, Jeffrey S.; Prins, Elaine M.; Hoffman, Jay P.; Schmidt, Christopher C.; Miettinen, Jukka I.; Giglio, Louis
2013-03-01
Biomass burning patterns over the Maritime Continent of Southeast Asia are examined using a new active fire detection product based on application of the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) to data from the imagers on the MTSAT geostationary satellites operated by the Japanese space agency JAXA. Data from MTSAT-1R and MTSAT-2 covering 34 months from September 2008 to July 2011 are examined for a study region consisting of Indonesia, Malaysia, and nearby environs. The spatial and temporal distributions of fires detected in the MTSAT WF_ABBA product are described and compared with active fire observations from MODIS MOD14 data. Land cover distributions for the two instruments are examined using a new 250 m land cover product from the National University of Singapore. The two products show broadly similar patterns of fire activity, land cover distribution of fires, and pixel fire radiative power (FRP). However, the MTSAT WF_ABBA data differ from MOD14 in important ways. Relative to MODIS, the MTSAT WF_ABBA product has lower overall detection efficiency, but more fires detected due to more frequent looks, a greater relative fraction of fires in forest and a lower relative fraction of fires in open areas, and significantly higher single-pixel retrieved FRP. The differences in land cover distribution and FRP between the MTSAT and MODIS products are shown to be qualitatively consistent with expectations based on pixel size and diurnal sampling. The MTSAT WF_ABBA data are used to calculate coverage-corrected diurnal cycles of fire for different regions within the study area. These diurnal cycles are preliminary but demonstrate that the fraction of diurnal fire activity sampled by the two MODIS sensors varies significantly by region and vegetation type. Based on the results from comparison of the two fire products, a series of steps is outlined to account for some of the systematic biases in each of these satellite products in order to produce a successful merged fire detection product.
NASA Technical Reports Server (NTRS)
1990-01-01
The Fire Logistics Airborne Mapping Equipment (FLAME) system, mounted in a twin-engine and airplane operated by the U.S. Forest Service (USFS) of the U.S. Department of Agriculture (USDA), is an airborne instrument for detecting and pinpointing forest fires that might escape ground detection. The FLAME equipment rack includes the operator interface, a video monitor, the system's control panel and film output. FLAME's fire detection sensor is an infrared line scanner system that identifies fire boundaries. Sensor's information is correlated with the aircraft's position and altitude at the time the infrared imagery is acquired to fix the fire's location on a map. System can be sent to a fire locale anywhere in the U.S. at the request of a regional forester. USFS felt a need for a more advanced system to deliver timely fire information to fire management personnel in the decade of the 1990s. The Jet Propulsion Laboratory (JPL) conducted a study, jointly sponsored by NASA and USDA, on what advanced technologies might be employed to produce an end-to-end thermal infrared fire detection and mapping system. That led to initiation of the Firefly system, currently in development at JPL and targeted for operational service beginning in 1992. Firefly will employ satellite-reference position fixing and provide performance superior to FLAME.
Visibility analysis of fire lookout towers in the Boyabat State Forest Enterprise in Turkey.
Kucuk, Omer; Topaloglu, Ozer; Altunel, Arif Oguz; Cetin, Mehmet
2017-07-01
For a successful fire suppression, it is essential to detect and intervene forest fires as early as possible. Fire lookout towers are crucial assets in detecting forest fires, in addition to other technological advancements. In this study, we performed a visibility analysis on a network of fire lookout towers currently operating in a relatively fire-prone region in Turkey's Western Black Sea region. Some of these towers had not been functioning properly; it was proposed that these be taken out of the grid and replaced with new ones. The percentage of visible areas under the current network of fire lookout towers was 73%; it could rise to 81% with the addition of newly proposed towers. This study was the first research to conduct a visibility analysis of current and newly proposed fire lookout towers in the Western Black Sea region and focus on its forest fire problem.
Fire protection for a Martian colony
NASA Astrophysics Data System (ADS)
Beattie, Robert M., Jr.
The fire prevention failures that occurred in Apollo 1 and Challenger accidents are reviewed and used to discuss fire protection measures that should be taken in a Martian colony. Fire detection systems, classes of fire, and suppression agents are described. The organization of fire fighting personnel appropriate for Mars is addressed.
Comparison of Available Technologies for Fire Spots Detection via Linear Heat Detector
NASA Astrophysics Data System (ADS)
Miksa, František; Nemlaha, Eduard
2016-12-01
It is very demanding to detect fire spots under difficult conditions with high occurrence of interfering external factors such as large distances, airflow difficultly, high dustiness, high humidity, etc. Spot fire sensors do not meet the requirements due to the aforementioned conditions as well as large distances. Therefore, the detection of a fire spot via linear heat sensing cables is utilized.
Detection and analysis of high-temperature events in the BIRD mission
NASA Astrophysics Data System (ADS)
Zhukov, Boris; Briess, Klaus; Lorenz, Eckehard; Oertel, Dieter; Skrbek, Wolfgang
2005-01-01
The primary mission objective of a new small Bi-spectral InfraRed Detection (BIRD) satellite is detection and quantitative analysis of high-temperature events like fires and volcanoes. An absence of saturation in the BIRD infrared channels makes it possible to improve false alarm rejection as well as to retrieve quantitative characteristics of hot targets, including their effective fire temperature, area and the radiative energy release. Examples are given of detection and analysis of wild and coal seam fires, of volcanic activity as well as of oil fires in Iraq. The smallest fires detected by BIRD, which were verified on ground, had an area of 12m2 at daytime and 4m2 at night.
NASA Astrophysics Data System (ADS)
Zhang, Tianran; Wooster, Martin
2016-04-01
Until recently, crop residues have been the second largest industrial waste product produced in China and field-based burning of crop residues is considered to remain extremely widespread, with impacts on air quality and potential negative effects on health, public transportation. However, due to the small size and perhaps short-lived nature of the individual burns, the extent of the activity and its spatial variability remains somewhat unclear. Satellite EO data has been used to gauge the timing and magnitude of Chinese crop burning, but current approaches very likely miss significant amounts of the activity because the individual burned areas are either too small to detect with frequently acquired moderate spatial resolution data such as MODIS. The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board Suomi-NPP (National Polar-orbiting Partnership) satellite launched on October, 2011 has one set of multi-spectral channels providing full global coverage at 375 m nadir spatial resolutions. It is expected that the 375 m spatial resolution "I-band" imagery provided by VIIRS will allow active fires to be detected that are ~ 10× smaller than those that can be detected by MODIS. In this study the new small fire detection algorithm is built based on VIIRS-I band global fire detection algorithm and hot spot detection algorithm for the BIRD satellite mission. VIIRS-I band imagery data will be used to identify agricultural fire activity across Eastern China. A 30 m spatial resolution global land cover data map is used for false alarm masking. The ground-based validation is performed using images taken from UAV. The fire detection result is been compared with active fire product from the long-standing MODIS sensor onboard the TERRA and AQUA satellites, which shows small fires missed from traditional MODIS fire product may count for over 1/3 of total fire energy in Eastern China.
Dymond, Caren C; Field, Robert D; Roswintiarti, Orbita; Guswanto
2005-04-01
Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and Indonesia have two new sources of information to initiate fire prevention and suppression activities.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...
Code of Federal Regulations, 2012 CFR
2012-10-01
..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...
Code of Federal Regulations, 2014 CFR
2014-10-01
..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...
Code of Federal Regulations, 2013 CFR
2013-10-01
..., and smoke detecting alarm bells. 78.47-13 Section 78.47-13 Shipping COAST GUARD, DEPARTMENT OF.... § 78.47-13 Fire detecting and manual alarm, automatic sprinkler, and smoke detecting alarm bells. (a) The fire detecting and manual alarm automatic sprinklers, and smoke detecting alarm bells in the...
Fire behavior and risk analysis in spacecraft
NASA Technical Reports Server (NTRS)
Friedman, Robert; Sacksteder, Kurt R.
1988-01-01
Practical risk management for present and future spacecraft, including space stations, involves the optimization of residual risks balanced by the spacecraft operational, technological, and economic limitations. Spacecraft fire safety is approached through three strategies, in order of risk: (1) control of fire-causing elements, through exclusion of flammable materials for example; (2) response to incipient fires through detection and alarm; and (3) recovery of normal conditions through extinguishment and cleanup. Present understanding of combustion in low gravity is that, compared to normal gravity behavior, fire hazards may be reduced by the absence of buoyant gas flows yet at the same time increased by ventilation flows and hot particle expulsion. This paper discusses the application of low-gravity combustion knowledge and appropriate aircraft analogies to fire detection, fire fighting, and fire-safety decisions for eventual fire-risk management and optimization in spacecraft.
Recent Developments for Satellite-Based Fire Monitoring in Canada
NASA Astrophysics Data System (ADS)
Abuelgasim, A.; Fraser, R.
2002-05-01
Wildfires in Canadian forests are a major source of natural disturbance. These fires have a tremendous impact on the local environment, humans and wildlife, ecosystem function, weather, and climate. Approximately 9000 fires burn 3 million hectares per year in Canada (based on a 10-year average). While only 2 to 3 percent of these wildfires grow larger than 200 hectares in size, they account for almost 97 percent of the annual area burned. This provides an excellent opportunity to monitor active fires using a combination of low and high resolution sensors for the purpose of determining fire location and burned areas. Given the size of Canada, the use of remote sensing data is a cost-effective way to achieve a synoptic overview of large forest fire activity in near-real time. In 1998 the Canada Centre for Remote Sensing (CCRS) and the Canadian Forest Service (CFS) developed a system for Fire Monitoring, Mapping and Modelling (Fire M3;http://fms.nofc.cfs.nrcan.gc.ca/FireM3/). Fire M3 automatically identifies, monitors, and maps large forest fires on a daily basis using NOAA AVHRR data. These data are processed daily using the GEOCOMP-N satellite image processing system. This presentation will describe recent developments to Fire M3, included the addition of a set of algorithms tailored for NOAA-16 (N-16) data. The two fire detection algorithms are developed for N-16 day and night-time daily data collection. The algorithms exploit both the multi-spectral and thermal information from the AVHRR daily images. The set of N-16 day and night algorithms was used to generate daily active fire maps across North America for the 2001 fire season. Such a combined approach for fire detection leads to an improved detection rate, although day-time detection based on the new 1.6 um channel was much less effective (note - given the low detection rate with day time imagery, I don't think we can make the statement about capturing the diurnal cycle). Selected validation sites in western Canada and the United States showed reasonable correspondence with the location of fires mapped by CFS and those mapped by the USDA Forest Service using conventional means.
Evaluation and Testing of Rail Transit Undercar Fire Detection and Suppression Systems
DOT National Transportation Integrated Search
1989-08-01
This document presents the results of a comprehensive review and evaluation of transit undercar fire detection and suppression methods. The evaluation of fire detection method resulted in a recommendation that continuous wire type linear thermal dete...
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Shen, Suhung; Csiszar, Ivan; Romanov, Peter; Loboda, Tatiana; Gerasimov, Irina
2008-01-01
A large number of fires detected in July of 2003 - a nearly 200-time increase in fire detections compared to other years during 2001-2006. despite the summer monsoon suppression of large fire occurrence. Traditional vegetation indices (NDVI and EVI) included in operational fire danger assessment provide little information on the fuel state in this ecosystem pre- or post-fire. No considerable differences in surface temperature and soil moisture in July were observed between the catastrophic year of 2003 and the two subsequent years of low summer fire occurrence of 2004 and 2005. However, the temporal analysis indicates that dry spring conditions in 2003 (detected through low soil moisture measurements in April and May) may have led to a stressed vegetative state and created conditions conducive to catastrophic fire occurrence.
46 CFR 161.002-2 - Types of fire-protective systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., but not be limited to, automatic fire and smoke detecting systems, manual fire alarm systems, sample... unit, fire detectors, smoke detectors, and audible and visual alarms distinct in both respects from the alarms of any other system not indicating fire. (c) Manual fire alarm systems. For the purpose of this...
Overview of ISS U.S. Fire Detection and Suppression System
NASA Technical Reports Server (NTRS)
Whitaker, Alana
2003-01-01
This paper presents a general overview of the International Space Station's Fire Detection and Suppression System. The topics include: 1) Introduction to Fire Detection and Suppression (FDS); 2) Description of (FDS) Subsystems; 3) FDS System Component Location and Status; 4) FDS System Capabilities; 5) FDS Automatic and Manual Response; 6) Post Fire Atmosphere Restoration and Air Quality Assessment; and 7) FDS Research Needs. This paper is in viewgraph form.
Sensor data monitoring and decision level fusion scheme for early fire detection
NASA Astrophysics Data System (ADS)
Rizogiannis, Constantinos; Thanos, Konstantinos Georgios; Astyakopoulos, Alkiviadis; Kyriazanos, Dimitris M.; Thomopoulos, Stelios C. A.
2017-05-01
The aim of this paper is to present the sensor monitoring and decision level fusion scheme for early fire detection which has been developed in the context of the AF3 Advanced Forest Fire Fighting European FP7 research project, adopted specifically in the OCULUS-Fire control and command system and tested during a firefighting field test in Greece with prescribed real fire, generating early-warning detection alerts and notifications. For this purpose and in order to improve the reliability of the fire detection system, a two-level fusion scheme is developed exploiting a variety of observation solutions from air e.g. UAV infrared cameras, ground e.g. meteorological and atmospheric sensors and ancillary sources e.g. public information channels, citizens smartphone applications and social media. In the first level, a change point detection technique is applied to detect changes in the mean value of each measured parameter by the ground sensors such as temperature, humidity and CO2 and then the Rate-of-Rise of each changed parameter is calculated. In the second level the fire event Basic Probability Assignment (BPA) function is determined for each ground sensor using Fuzzy-logic theory and then the corresponding mass values are combined in a decision level fusion process using Evidential Reasoning theory to estimate the final fire event probability.
Schmitz, Helmut; Bousack, Herbert
2012-01-01
Pyrophilous jewel beetles of the genus Melanophila approach forest fires and there is considerable evidence that these beetles can detect fires from great distances of more than 60 km. Because Melanophila beetles are equipped with infrared receptors and are also attracted by hot surfaces it can be concluded that these infrared receptors are used for fire detection.The sensitivity of the IR receptors is still unknown. The lowest threshold published so far is 0.6 W/m(2) which, however, cannot explain the detection of forest fires by IR radiation from distances larger than approximately 10 km. To investigate the possible sensitivity of the IR receptors we assumed that beetles use IR radiation for remote fire detection and we made use of a historic report about a big oil-tank fire in Coalinga, California, in 1924. IR emission of an oil-tank fire can be calculated by "pool fire" simulations which now are used for fire safety and risk analysis. Assuming that beetles were lured to the fire from the nearest forests 25 and 130 km away, our results show that detection from a distance of 25 km requires a threshold of the IR receptors of at least 3×10(-2) W/m(2). According to our investigations most beetles became aware of the fire from a distance of 130 km. In this case the threshold has to be 1.3×10(-4) W/m(2). Because such low IR intensities are buried in thermal noise we suggest that the infrared sensory system of Melanophila beetles utilizes stochastic resonance for the detection of weak IR radiation. Our simulations also suggest that the biological IR receptors might be even more sensitive than uncooled technical IR sensors. Thus a closer look into the mode of operation of the Melanophila IR receptors seems promising for the development of novel IR sensors.
Remote sensing techniques in monitoring areas affected by forest fire
NASA Astrophysics Data System (ADS)
Karagianni, Aikaterini Ch.; Lazaridou, Maria A.
2017-09-01
Forest fire is a part of nature playing a key role in shaping ecosystems. However, fire's environmental impacts can be significant, affecting wildlife habitat and timber, human settlements, man-made technical constructions and various networks (road, power networks) and polluting the air with emissions harmful to human health. Furthermore, fire's effect on the landscape may be long-lasting. Monitoring the development of a fire occurs as an important aspect at the management of natural hazards in general. Among the used methods for monitoring, satellite data and remote sensing techniques can be proven of particular importance. Satellite remote sensing offers a useful tool for forest fire detection, monitoring, management and damage assessment. Especially for fire scars detection and monitoring, satellite data derived from Landsat 8 can be a useful research tool. This paper includes critical considerations of the above and concerns in particular an example of the Greek area (Thasos Island). This specific area was hit by fires several times in the past and recently as well (September 2016). Landsat 8 satellite data are being used (pre and post fire imagery) and digital image processing techniques are applied (enhancement techniques, calculation of various indices) for fire scars detection. Visual interpretation of the example area affected by the fires is also being done, contributing to the overall study.
NASA Astrophysics Data System (ADS)
Semenova, O. M.; Lebedeva, L. S.; Nesterova, N. V.; Vinogradova, T. A.
2015-06-01
Twelve mountainous basins of the Vitim Plateau (Eastern Siberia, Russia) with areas ranging from 967 to 18 200 km2 affected by extensive fires in 2003 (from 13 to 78% of burnt area) were delineated based on MODIS Burned Area Product. The studied area is characterized by scarcity of hydrometeorological observations and complex hydrological processes. Combined analysis of monthly series of flow and precipitation was conducted to detect short-term fire impact on hydrological response of the basins. The idea of basin-analogues which have significant correlation of flow with "burnt" watersheds in stationary (pre-fire) period with the assumption that fire impact produced an outlier of established dependence was applied. Available data allowed for qualitative detection of fire-induced changes at two basins from twelve studied. Summer flow at the Amalat and Vitimkan Rivers (22 and 78% proportion of burnt area in 2003, respectively) increased by 40-50% following the fire.The impact of fire on flow from the other basins was not detectable.The hydrological model Hydrograph was applied to simulate runoff formation processes for stationary pre-fire and non-stationary post-fire conditions. It was assumed that landscape properties changed after the fire suggest a flow increase. These changes were used to assess the model parameters which allowed for better model performance in the post-fire period.
2013-09-30
fire sprinkler system during the initial construction of the RSOI facilities. The construction contract to build the RSOI...International Building Code. Compliant manual and automatic fire alarm and notification systems , portable fire extinguishers, fire sprinkler systems ...automatic fire sprinkler system that was not operational, a fire department connection that was obstructed, and a fire detection system
ESA fire_cci product assessment
NASA Astrophysics Data System (ADS)
Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Ramo Sanchez, Ruben; Kaiser, Johannes W.
2017-04-01
Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project has computed a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the ENVISAT-MERIS archive. The algorithm relies on MODIS active fire information as "seed". It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.25 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64 Collection 6, MCD45, GFED4, GFED4s and GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2005-2011 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to the increased spatial resolution of the MERIS sensor (333 m compared to 500 in MODIS). This is illustrated in detail using the example of the extreme 2006 spring fires in Eastern Europe.
Lin, Hsiao-Wen; McCarty, Jessica L; Wang, Dongdong; Rogers, Brendan M; Morton, Douglas C; Collatz, G James; Jin, Yufang; Randerson, James T
2014-01-01
Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001–2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001–2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems. Key Points Wildland, cropland, and prescribed fires had different trends and patterns Sensitivity to climate varied with fire type Intensity of air quality regulation influenced cropland burning trends PMID:26213662
Lin, Hsiao-Wen; McCarty, Jessica L; Wang, Dongdong; Rogers, Brendan M; Morton, Douglas C; Collatz, G James; Jin, Yufang; Randerson, James T
2014-04-01
Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001-2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems. Wildland, cropland, and prescribed fires had different trends and patternsSensitivity to climate varied with fire typeIntensity of air quality regulation influenced cropland burning trends.
Cable tunnel fire experiment study based on linear optical fiber fire detectors
NASA Astrophysics Data System (ADS)
Fan, Dian; Ding, Hongjun
2013-09-01
Aiming at exiting linear temperature fire detection technology including temperature sensing cable, fiber Raman scattering, fiber Bragg grating, this paper establish an experimental platform in cable tunnel, set two different experimental scenes of the fire and record temperature variation and fire detector response time in the processing of fire simulation. Since a small amount of thermal radiation and no flame for the beginning of the small-scale fire, only directly contacting heat detectors can make alarm response and the rest of other non- contact detectors are unable to respond. In large-scale fire, the alarm response time of the fiber Raman temperature sensing fire detector and fiber Bragg grating temperature sensing fire detector is about 30 seconds, and depending on the thermocouples' record the temperature over the fire is less than 35° in first 60 seconds of large-scale fire, while the temperature rising is more than 5°/min within the range of +/- 3m. According to the technical characteristics of the three detectors, the engineering suitability of the typical linear heat detectors in cable tunnels early fire detection is analyzed, which provide technical support for the preparation of norms.
NASA Technical Reports Server (NTRS)
Ruff, Gary A.
2011-01-01
The Fire Prevention, Detection, and Suppression (FPDS) project is a technology development effort within the Exploration Technology Development Program of the Exploration System Missions Directorate (ESMD) that addresses all aspects of fire safety aboard manned exploration systems. The overarching goal for work in the FPDS area is to develop technologies that will ensure crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the crew, mission, or system. This is accomplished by addressing the areas of (1) fire prevention and material flammability, (2) fire signatures and detection, and (3) fire suppression and response. This report describes the outcomes of this project from the formation of the Exploration Technology Development Program (ETDP) in October 2005 to September 31, 2010 when the Exploration Technology Development Program was replaced by the Enabling Technology Development and Demonstration Program. NASA s fire safety work will continue under this new program and will build upon the accomplishments described herein.
Glare-reducing goggles for lookouts.
Richard E. McArdle; William G. Morris; Thornton T. Munger
1936-01-01
Detection of forest fires while they are still small is so important in forest protection that studies of the visibility of forest fire smokes from lookout points has been one of the principal phases of the fire studies program of the Pacific Northwest Forest Experiment Station. One phase of fire detection is the personal efficiency of the lookout. The Station has...
Computer evaluation of existing and proposed fire lookouts
Romain M. Mees
1976-01-01
A computer simulation model has been developed for evaluating the fire detection capabilities of existing and proposed lookout stations. The model uses coordinate location of fires and lookouts, tower elevation, and topographic data to judge location of stations, and to determine where a fire can be seen. The model was tested by comparing it with manual detection on a...
The investigation of identifying method on grass fire by FY-3 VIRR images
NASA Astrophysics Data System (ADS)
Jiang, Youyan; Han, Tao; Wang, Dawei
2018-03-01
Grassland fire has the characteristics of fierce fire and rapid spreading, and many fires occur in sparsely populated places. Satellite remote sensing has the characteristics of fast imaging period and wide coverage, and plays an important role in the rapid monitoring and evaluation of grassland fire. FY-3 satellite has been widely used since its launch in September 2008, and this paper uses the fire information of Gansu grassland from 2011 to 2016, based on the more mature MODIS and NOAA-AVHRR fire identification method. The results show that the accuracy of FY-3/VIRR satellite data fire detection are higher than that of NOAA-AVHRR satellite, and the accuracy of FY-3/VIRR satellite data is described. There is a greater improvement, the ability to identify slightly worse than the MODIS satellite, the region is relatively large fire detection accuracy is higher.
Risks and issues in fire safety on the Space Station
NASA Technical Reports Server (NTRS)
Friedman, Robert
1993-01-01
A fire in the inhabited portion of a spacecraft is a greatly feared hazard, but fire protection in space operations is complicated by two factors. First, the spacecraft cabin is an enclosed volume, which limits the resources for fire fighting and the options for crew escape. Second, an orbiting spacecraft experiences a balance of forces, creating a near-zero-gravity (microgravity) environment that profoundly affects the characteristics of fire initiation, spread, and suppression. The current Shuttle Orbiter is protected by a fire-detection and suppression system whose requirements are derived of necessity from accepted terrestrial and aircraft standards. While experience has shown that Shuttle fire safety is adequate, designers recognize that improved systems to respond specifically to microgravity fire characteristics are highly desirable. Innovative technology is particularly advisable for the Space Station, a forthcoming space community with a complex configuration and long-duration orbital missions, in which the effectiveness of current fire-protection systems is unpredictable. The development of risk assessments to evaluate the probabilities and consequences of fire incidents in spacecraft are briefly reviewed. It further discusses the important unresolved issues and needs for improved fire safety in the Space Station, including those of material selection, spacecraft atmospheres, fire detection, fire suppression, and post-fire restoration.
Utilizing multi-sensor fire detections to map fires in the United States
Howard, Stephen M.; Picotte, Joshua J.; Coan, Michael
2014-01-01
In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 “unknown” or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.
Utilizing Multi-Sensor Fire Detections to Map Fires in the United States
NASA Astrophysics Data System (ADS)
Howard, S. M.; Picotte, J. J.; Coan, M. J.
2014-11-01
In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 "unknown" or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.
14 CFR 25.858 - Cargo or baggage compartment smoke or fire detection systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... detection systems. 25.858 Section 25.858 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Construction Fire Protection § 25.858 Cargo or baggage compartment smoke or fire detection systems. If... must be met for each cargo or baggage compartment with those provisions: (a) The detection system must...
Analysis of toxic effluents released from PVC carpet under different fire conditions.
Stec, A A; Readman, J; Blomqvist, P; Gylestam, D; Karlsson, D; Wojtalewicz, D; Dlugogorski, B Z
2013-01-01
A large number of investigations have been reported on minimising the PAH and PCDD/F yields during controlled combustion, such as incineration. This study is an attempt to quantify acute and chronic toxicants including PAH and PCDD/F in conditions relating to unwanted fires. This paper investigates distribution patterns of fire effluents between gas and aerosol phase, and the different particle size-ranges produced under different fire conditions. PVC carpet was selected as the fuel as a precursor for both PAH and PCDD/F. In order to generate fire effluents under controlled fire conditions, the steady-state tube furnace, was chosen as the physical fire model. Fire scenarios included oxidative pyrolysis, well-ventilated and under-ventilated fires. Fire effluent measurements included: carbon monoxide, carbon dioxide, hydrogen chloride, polycyclic aromatic hydrocarbons, chlorinated dibenzo-dioxins and furans and soot. The distribution patterns between gas and particle phase, and the size-ranges of the particles produced in these fires together with their chemical composition is also reported. Significant quantities of respirable submicron particles were detected, together with a range of PAHs. Lower levels of halogenated dioxins were detected in the fire residue compared with those found in other studies. Nevertheless, the findings do have implications for the health and safety of fire and rescue personnel, fire investigators, and other individuals exposed to the residue from unwanted fires. Copyright © 2012 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the system at the base of the main sprinkler riser. l. Fire hydrants must be located within 250 feet... Suppression System(s) 1. General. This Appendix B contains information on the Fire-safety Detection and Suppression System(s) tested by NARA through independent live fire testing that are certified to meet the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the system at the base of the main sprinkler riser. l. Fire hydrants must be located within 250 feet... Suppression System(s) 1. General. This Appendix B contains information on the Fire-safety Detection and Suppression System(s) tested by NARA through independent live fire testing that are certified to meet the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... the system at the base of the main sprinkler riser. l. Fire hydrants must be located within 250 feet... Suppression System(s) 1. General. This Appendix B contains information on the Fire-safety Detection and Suppression System(s) tested by NARA through independent live fire testing that are certified to meet the...
Sprinklers/Standpipes/Detection Systems. Fire Service Certification Series. Unit FSCS-FF-11-80.
ERIC Educational Resources Information Center
Pribyl, Paul F.
This training unit on sprinklers, standpipes, and detection systems is part of a 17-unit course package written to aid instructors in the development, teaching, and evaluation of fire fighters in the Wisconsin Fire Service Certification Series. The purpose stated for the 6-hour unit is to provide the fire fighter with an understanding of the…
An improved algorithm for wildfire detection
NASA Astrophysics Data System (ADS)
Nakau, K.
2010-12-01
Satellite information of wild fire location has strong demands from society. Therefore, Understanding such demands is quite important to consider what to improve the wild fire detection algorithm. Interviews and considerations imply that the most important improvements are geographical resolution of the wildfire product and classification of fire; smoldering or flaming. Discussion with fire service agencies are performed with fire service agencies in Alaska and fire service volunteer groups in Indonesia. Alaska Fire Service (AFS) makes 3D-map overlaid by fire location every morning. Then, this 3D-map is examined by leaders of fire service teams to decide their strategy to fighting against wild fire. Especially, firefighters of both agencies seek the best walk path to approach the fire. Because of mountainous landscape, geospatial resolution is quite important for them. For example, walking in bush for 1km, as same as one pixel of fire product, is very tough for firefighters. Also, in case of remote wild fire, fire service agencies utilize satellite information to decide when to have a flight observation to confirm the status; expanding, flaming, smoldering or out. Therefore, it is also quite important to provide the classification of fire; flaming or smoldering. Not only the aspect of disaster management, wildfire emits huge amount of carbon into atmosphere as much as one quarter to one half of CO2 by fuel combustion (IPCC AR4). Reduction of the CO2 emission by human caused wildfire is important. To estimate carbon emission from wildfire, special resolution is quite important. To improve sensitivity of wild fire detection, author adopts radiance based wildfire detection. Different from the existing brightness temperature approach, we can easily consider reflectance of background land coverage. Especially for GCOM-C1/SGLI, band to detect fire with 250m resolution is 1.6μm wavelength. In this band, we have much more sunlight reflection. Therefore, we need to consider the way to cancel sunlight reflection. In this study, author utilizes simple linear correction for estimation of infrared emission considering sunlight reflection. As well as bran new core part of wildfire algorithm, we need to eliminate bright reflectance matters, including cloud, desert and sun glint. Also, we need to eliminate the false alarms at coastal area for difference of surface temperature between land and ocean. An existing algorithm MOD14 has same procedure, however, some of these ancillary parts are newly introduced or improved. Snow mask is newly introduced to reduce a bright reflectance with snow and ice covered area. Also, the improved ancillary parts include candidate selection of fire pixel, cloud mask, water body mask. With these improvements, wildfire with dense smoke or wildfire under thin cloud could be detected by this algorithm. This wild fire product is not validated by ground observations yet. However, distribution is well corresponded with wildfire location in same periods. Unfortunately, this algorithm also detects false alarm in urban area same as existing one. This should be corrected adopting other bands. Current algorithm will be performed in JASMES website.
ERIC Educational Resources Information Center
Texas State Commission on Fire Protection, Austin.
This booklet comprises the eighth grade component of a series of curriculum guides on fire and burn prevention. Designed to meet the age-specific needs of eighth grade students, its objectives include: (1) focusing on technical aspects of fire hazards and detection, and (2) exploring fire hazards outside the home. Texas essential elements of…
Space station internal environmental and safety concerns
NASA Technical Reports Server (NTRS)
Cole, Matthew B.
1987-01-01
Space station environmental and safety concerns, especially those involving fires, are discussed. Several types of space station modules and the particular hazards associated with each are briefly surveyed. A brief history of fire detection and suppression aboard spacecraft is given. Microgravity fire behavior, spacecraft fire detector systems, space station fire suppression equipment and procedures, and fire safety in hyperbaric chambers are discussed.
NASA Technical Reports Server (NTRS)
Youngblood, Wallace W.
1990-01-01
Viewgraphs of increased fire and toxic contaminant detection responsivity by use of distributed, aspirating sensors for space station are presented. Objectives of the concept described are (1) to enhance fire and toxic contaminant detection responsivity in habitable regions of space station; (2) to reduce system weight and complexity through centralized detector/monitor systems; (3) to increase fire signature information from selected locations in a space station module; and (4) to reduce false alarms.
Fail-safe fire detection system
NASA Technical Reports Server (NTRS)
Bloam, E. T.
1974-01-01
Fire detection control system continually monitors its own integrity, automatically signals any malfunction, and separately signals fire in any zone being monitored. Should be of interest in fields of chemical and petroleum processing, power generation, equipment testing, and building protection.
Schmitz, Helmut; Bousack, Herbert
2012-01-01
Pyrophilous jewel beetles of the genus Melanophila approach forest fires and there is considerable evidence that these beetles can detect fires from great distances of more than 60 km. Because Melanophila beetles are equipped with infrared receptors and are also attracted by hot surfaces it can be concluded that these infrared receptors are used for fire detection. The sensitivity of the IR receptors is still unknown. The lowest threshold published so far is 0.6 W/m2 which, however, cannot explain the detection of forest fires by IR radiation from distances larger than approximately 10 km. To investigate the possible sensitivity of the IR receptors we assumed that beetles use IR radiation for remote fire detection and we made use of a historic report about a big oil-tank fire in Coalinga, California, in 1924. IR emission of an oil-tank fire can be calculated by “pool fire” simulations which now are used for fire safety and risk analysis. Assuming that beetles were lured to the fire from the nearest forests 25 and 130 km away, our results show that detection from a distance of 25 km requires a threshold of the IR receptors of at least 3×10−2 W/m2. According to our investigations most beetles became aware of the fire from a distance of 130 km. In this case the threshold has to be 1.3×10−4 W/m2. Because such low IR intensities are buried in thermal noise we suggest that the infrared sensory system of Melanophila beetles utilizes stochastic resonance for the detection of weak IR radiation. Our simulations also suggest that the biological IR receptors might be even more sensitive than uncooled technical IR sensors. Thus a closer look into the mode of operation of the Melanophila IR receptors seems promising for the development of novel IR sensors. PMID:22629433
NASA Astrophysics Data System (ADS)
Park, S. H.; Park, W.; Jung, H. S.
2018-04-01
Forest fires are a major natural disaster that destroys a forest area and a natural environment. In order to minimize the damage caused by the forest fire, it is necessary to know the location and the time of day and continuous monitoring is required until fire is fully put out. We have tried to improve the forest fire detection algorithm by using a method to reduce the variability of surrounding pixels. We focused that forest areas of East Asia, part of the Himawari-8 AHI coverage, are mostly located in mountainous areas. The proposed method was applied to the forest fire detection in Samcheok city, Korea on May 6 to 10, 2017.
30 CFR 250.1629 - Additional production and fuel gas system requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed... explosive limit. One approved method of providing adequate ventilation is a change of air volume each 5... detection systems shall be capable of continuous monitoring. Fire-detection systems and portions of...
30 CFR 250.1629 - Additional production and fuel gas system requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed... explosive limit. One approved method of providing adequate ventilation is a change of air volume each 5... detection systems shall be capable of continuous monitoring. Fire-detection systems and portions of...
46 CFR 28.155 - Excess fire detection and protection equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Excess fire detection and protection equipment. 28.155... protection equipment. Installation of fire detection and protection equipment in excess of that required by the regulations in this subchapter is permitted provided that the excess equipment does not endanger...
"Smoke": Characterization Of Smoke Particulate For Spacecraft Fire Detection
NASA Technical Reports Server (NTRS)
Urban, David L.; Mulholland, George W.; Yang, Jiann; Cleary, Thomas G.; Yuan, Zeng-Guang
2003-01-01
The "Smoke" experiment is a flight definition investigation that seeks to increase our understanding of spacecraft fire detection through measurements of particulate size distributions of preignition smokes from typical spacecraft materials. Owing to the catastrophic risk posed by even a very small fire in a spacecraft, the design goal for spacecraft fire detection is to detect the fire as quickly as possible, preferably in the preignition phase before a real flaming fire has developed. Consequently the target smoke for detection is typically not soot (typical of established hydrocarbon fires) but instead, pyrolysis products, and recondensed polymer particles. At the same time, false alarms are extremely costly as the crew and the ground team must respond quickly to every alarm. The U.S. Space Shuttle (STS: Space Transportation System) and the International Space Station (ISS) both use smoke detection as the primary means of fire detection. These two systems were designed in the absence of any data concerning low-gravity smoke particle (and background dust) size distributions. The STS system uses an ionization detector coupled with a sampling pump and the ISS system is a forward light scattering detector operating in the near IR. These two systems have significantly different sensitivities with the ionization detector being most sensitive (on a mass concentration basis) to smaller particulate and the light scattering detector being most sensitive to particulate that is larger than 1 micron. Since any smoke detection system has inherent size sensitivity characteristics, proper design of future smoke detection systems will require an understanding of the background and alarm particle size distributions that can be expected in a space environment.
NASA Astrophysics Data System (ADS)
Roy, Priyom; Guha, Arindam; Kumar, K. Vinod
2015-07-01
Radiant temperature images from thermal remote sensing sensors are used to delineate surface coal fires, by deriving a cut-off temperature to separate coal-fire from non-fire pixels. Temperature contrast of coal fire and background elements (rocks and vegetation etc.) controls this cut-off temperature. This contrast varies across the coal field, as it is influenced by variability of associated rock types, proportion of vegetation cover and intensity of coal fires etc. We have delineated coal fires from background, based on separation in data clusters in maximum v/s mean radiant temperature (13th band of ASTER and 10th band of Landsat-8) scatter-plot, derived using randomly distributed homogeneous pixel-blocks (9 × 9 pixels for ASTER and 27 × 27 pixels for Landsat-8), covering the entire coal bearing geological formation. It is seen that, for both the datasets, overall temperature variability of background and fires can be addressed using this regional cut-off. However, the summer time ASTER data could not delineate fire pixels for one specific mine (Bhulanbararee) as opposed to the winter time Landsat-8 data. The contrast of radiant temperature of fire and background terrain elements, specific to this mine, is different from the regional contrast of fire and background, during summer. This is due to the higher solar heating of background rocky outcrops, thus, reducing their temperature contrast with fire. The specific cut-off temperature determined for this mine, to extract this fire, differs from the regional cut-off. This is derived by reducing the pixel-block size of the temperature data. It is seen that, summer-time ASTER image is useful for fire detection but required additional processing to determine a local threshold, along with the regional threshold to capture all the fires. However, the winter Landsat-8 data was better for fire detection with a regional threshold.
ESA Fire CCI product assessment
NASA Astrophysics Data System (ADS)
Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Kaiser, Johannes
2016-04-01
Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project is currently computing a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the full ENVISAT-MERIS archive (2002 to 2012). The algorithm relies on MODIS active fire information as "seed". A first, formally validated version has been released for the period 2006 to 2008. It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.5 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64, GFED4(s), GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). Output from the ongoing processing of the full MERIS timeseries will be incorporated into the study, as far as available. The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2006-2008 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to the increased spatial resolution of the MERIS sensor (333 m compared to 500 in MODIS). This is illustrated in detail using the example of the extreme 2006 spring fires in Eastern Europe.
Summaries of BFRL fire research in-house projects and grants, 1993
NASA Astrophysics Data System (ADS)
Jason, Nora H.
1993-09-01
The report describes the fire research projects performed in the Building and Fire Research Laboratory (BFRL) and under its extramural grants program during fiscal year 1993. The BFRL Fire Research Program has directed its efforts under three program thrusts. The in-house priority projects, grants, and externally-funded efforts thus form an integrated, focussed ensemble. The publication is organized along those lines: fire risk and hazard prediction - carbon monoxide prediction, turbulent combustion, soot, engineering analysis, fire hazard assessment, and large fires; fire safety of products and materials - materials combustion, furniture flammability, and wall and ceiling fires; and advanced technologies for fire sensing and control - fire detection and fire suppression. For the convenience of the reader, an alphabetical listing of all grants is contained in Part 2.0.
46 CFR 28.825 - Excess fire detection and protection equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Excess fire detection and protection equipment. 28.825... equipment. Instead of meeting the requirements of § 28.155, each vessel to which this subpart applies must meet the following requirements: (a) Installation of fire detection and protection equipment in excess...
Experimental research on the infrared gas fire detection system
NASA Astrophysics Data System (ADS)
Jiang, Yalong; Liu, Yangyang
2018-02-01
Open fires and smoldering fires were differentiated using five experiments: wood pyrolysis, polyurethane smoldering, wood fire, polyurethane fire and cotton rope smoldering. At the same time, the distribution of CO2 and CO concentration in combustion products at different heights was studied. Real fire and environmental interference were distinguished using burning cigarettes and sandalwood. The results showed that open fires and smoldering fires produced significantly different ratios of CO2 and CO concentrations. By judging the order of magnitudes of the ratio CO2 and CO concentrations in the combustion products, open fire and smoldering fire could be effectively distinguished. At the same time, the comparison experiment showed that the rate of increase of the concentration of CO in the smoldering fire was higher than that under non-fire conditions. With the criterion of the rate of increase of CO concentration, smoldering fire and non-fire could be distinguished.
An Enhanced Smoke Detection Using MODIS Measurements
NASA Astrophysics Data System (ADS)
Xie, Y.; Qu, J.; Xiong, X.; Hao, X.; Wang, W.; Wang, L.
2005-12-01
Smoke emitted from wildfire fires or prescribed fires is one of the major pollutions that pose a risk to human health and affect the air quality significantly. The remote sensing technique has been demonstrated as an efficient approach for detecting and tracing smoke plume. As a mixture pollutant, smoke does not have stable spectral signature because of diversified component mixing levels in different situation, but it has some particular characteristics different from others such as cloud, soil, water and so on. In earlier studies, we have already developed a multi-threshold algorithm to detect smoke in the eastern United States by combining both MODIS reflective solar bands and thermal emissive bands measurements. In order to apply out approach to global scale, we have enhanced the smoke detection algorithm by taking the land surface type into account. Smoke pixels will be output as well as the confidence in the quality of product in final result. In addition, smoke detection is also helpful to fire detection. With current fire detection algorithm, some small and cool fires can not be detected. However, understanding the features and spread direction of smoke can provide us a potential way to identify these fires.
Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K.
2011-01-01
Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status. PMID:21909297
Zhang, Jia-Hua; Yao, Feng-Mei; Liu, Cheng; Yang, Li-Min; Boken, Vijendra K
2011-08-01
Forest fires have major impact on ecosystems and greatly impact the amount of greenhouse gases and aerosols in the atmosphere. This paper presents an overview in the forest fire detection, emission estimation, and fire risk prediction in China using satellite imagery, climate data, and various simulation models over the past three decades. Since the 1980s, remotely-sensed data acquired by many satellites, such as NOAA/AVHRR, FY-series, MODIS, CBERS, and ENVISAT, have been widely utilized for detecting forest fire hot spots and burned areas in China. Some developed algorithms have been utilized for detecting the forest fire hot spots at a sub-pixel level. With respect to modeling the forest burning emission, a remote sensing data-driven Net Primary productivity (NPP) estimation model was developed for estimating forest biomass and fuel. In order to improve the forest fire risk modeling in China, real-time meteorological data, such as surface temperature, relative humidity, wind speed and direction, have been used as the model input for improving prediction of forest fire occurrence and its behavior. Shortwave infrared (SWIR) and near infrared (NIR) channels of satellite sensors have been employed for detecting live fuel moisture content (FMC), and the Normalized Difference Water Index (NDWI) was used for evaluating the forest vegetation condition and its moisture status.
A Novel Arc Fault Detector for Early Detection of Electrical Fires
Yang, Kai; Zhang, Rencheng; Yang, Jianhong; Liu, Canhua; Chen, Shouhong; Zhang, Fujiang
2016-01-01
Arc faults can produce very high temperatures and can easily ignite combustible materials; thus, they represent one of the most important causes of electrical fires. The application of arc fault detection, as an emerging early fire detection technology, is required by the National Electrical Code to reduce the occurrence of electrical fires. However, the concealment, randomness and diversity of arc faults make them difficult to detect. To improve the accuracy of arc fault detection, a novel arc fault detector (AFD) is developed in this study. First, an experimental arc fault platform is built to study electrical fires. A high-frequency transducer and a current transducer are used to measure typical load signals of arc faults and normal states. After the common features of these signals are studied, high-frequency energy and current variations are extracted as an input eigenvector for use by an arc fault detection algorithm. Then, the detection algorithm based on a weighted least squares support vector machine is designed and successfully applied in a microprocessor. Finally, an AFD is developed. The test results show that the AFD can detect arc faults in a timely manner and interrupt the circuit power supply before electrical fires can occur. The AFD is not influenced by cross talk or transient processes, and the detection accuracy is very high. Hence, the AFD can be installed in low-voltage circuits to monitor circuit states in real-time to facilitate the early detection of electrical fires. PMID:27070618
NASA Astrophysics Data System (ADS)
Osumi, Ayumu; Ito, Youichi
2012-05-01
A fire site holds important information about the cause of fire outbreak; for instance, a concrete wall can provide a wealth of information and the distribution of fire damage of the wall is particularly valuable. If the distribution of fire damage on concrete walls can be used to trace the flow of fire, it would be possible to identify the fire origin and to clarify the cause of fire outbreak. In this study, we considered a new method based on aerial ultrasonic waves and developed a system that adopts this method for detecting fire damage of concrete walls at fire sites.
Application of a CO2 dial system for infrared detection of forest fire and reduction of false alarm
NASA Astrophysics Data System (ADS)
Bellecci, C.; Francucci, M.; Gaudio, P.; Gelfusa, M.; Martellucci, S.; Richetta, M.; Lo Feudo, T.
2007-04-01
Forest fires can be the cause of serious environmental and economic damages. For this reason considerable effort has been directed toward forest protection and fire fighting. The means traditionally used for early fire detection mainly consist in human observers dispersed over forest regions. A significant improvement in early warning capabilities could be obtained by using automatic detection apparatus. In order to early detect small forest fires and minimize false alarms, the use of a lidar system and dial technique will be considered. A first evaluation of the lowest detectable concentration will be estimated by numerical simulation. The theoretical model will also be used to get the capability of the dial system to control wooded areas. Fixing the burning rate for several fuels, the maximum range of detection will be evaluated. Finally results of simulations will be reported.
Development of Fire Detection Algorithm at Its Early Stage Using Fire Colour and Shape Information
NASA Astrophysics Data System (ADS)
Suleiman Abdullahi, Zainab; Hamisu Dalhatu, Shehu; Hassan Abdullahi, Zakariyya
2018-04-01
Fire can be defined as a state in which substances combined chemically with oxygen from the air and give out heat, smoke and flame. Most of the conventional fire detection techniques such as smoke, fire and heat detectors respectively have a problem of travelling delay and also give a high false alarm. The algorithm begins by loading the selected video clip from the database developed to identify the present or absence of fire in a frame. In this approach, background subtraction was employed. If the result of subtraction is less than the set threshold, the difference is ignored and the next frame is taken. However, if the difference is equal to or greater than the set threshold then it subjected to colour and shape test. This is done by using combined RGB colour model and shape signature. The proposed technique was very effective in detecting fire compared to those technique using only motion or colour clues.
Fire Safety in Extraterrestrial Environments
NASA Technical Reports Server (NTRS)
Friedman, Robert
1998-01-01
Despite rigorous fire-safety policies and practices, fire incidents are possible during lunar and Martian missions. Fire behavior and hence preventive and responsive safety actions in the missions are strongly influenced by the low-gravity environments in flight and on the planetary surfaces. This paper reviews the understanding and key issues of fire safety in the missions, stressing flame spread, fire detection, suppression, and combustion performance of propellants produced from Martian resources.
HOW TO PROVIDE AUTOMATIC FIRE PROTECTION FOR YOUR BUILDING.
ERIC Educational Resources Information Center
Honeywell, Inc., Minneapolis, Minn.
THE ADVANTAGES OF PROMPT FIRE DETECTION IS DISCUSSED WITH RESPECT TO THE NATURE AND COST OF FIRES. EQUIPMENT IS DESCRIBED, AND DIAGRAMS OF INSTALLATIONS OF DETECTION AND ALARM SYSTEMS ARE GIVEN FOR SCHOOLS, HOSPITALS, COMMERICAL BUILDINGS, INDUSTRIAL PLANTS, AND CAMPUSES. (JT)
Detecting the Onset of Fire in an Aircraft by Employing Correlation Spectroscopy
NASA Technical Reports Server (NTRS)
Goswami, Kisholoy; Saxena, Indu; Egalon, Claudio; Mendoza, Edgar; Lieberman, Robert; Piltch, Nancy D.
1999-01-01
The cause of aircraft fire and locations of the fires are numerous. Worldwide, numerous in-flight fires have been passenger initiated, the prime location being the lavatory areas. Most in-flight fires in commercial carriers are of electrical origin and cigarettes. A cargo bay fire can be caused by a variety of reasons. The sheer number of different types of cargo makes it difficult to identify the origin, especially when the fire reaches the catastrophic level. The damage can be minimized, and fire can be suppressed effectively if a warning system for the onset of fire is available for onboard monitoring.
Spacecraft Fire Safety Research at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Meyer, Marit
2016-01-01
Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected results focusing on realistic fuel preparations and heating profiles with regards to early detection of smoke. SAFFIRE is the upcoming large-scale fire experiment which will be executed in a Cygnus vehicle after it undocks from the ISS.
NASA Astrophysics Data System (ADS)
Laneve, Giovanni
2010-05-01
The remote sensing sensors on board of geostationary satellite, as consequence of the high frequency of the observations, allow, in principle, the monitoring of these phenomena characterized by a fast dynamics. The only condition for is that the events to be monitored should be enough strong to be recognizable notwithstanding the low spatial resolution of the present geostationary systems (MSG/SEVIRI, GOES Imager, MTSAT). Apart from meteorological phenomena other events, like those associated with forest fires and/or volcanic eruption, are characterized by a very fast dynamics. These events are also associated with a very strong signal that make them observable by geostationary satellite in a quasi-continuous way. However, in order to make possible the detection of small fires by using the low resolution multi-spectral imagery provided by geostationary sensor like SEVIRI (3x3 km2 at the equator) new algorithms, capable to exploit it high observation frequency, has been developed. This paper is devoted to show the results obtained by comparing some of these algorithms trying to highlight their advantages and limits. The algorithms herein considered are these developed by CRPSM (SFIDE®), UNIBAS/CNR (RST-FIRES) and ESA-ESRIN (MDIFRM). In general, the new approaches proposed by each one of them are capable to promptly detect small fires making possible an operational utilization of the satellite based fire detection system in the fire fighting phases. In fact, these algorithms are quite different from these introduced in the past and specifically devoted to fire detection using low resolution multi-spectral imagery on LEO (Low Earth Orbit) satellite. Thanks to these differences they are capable of detecting sub-hectare (0.2 ha) forest fires providing an useful instrument for monitoring quasi-continuously forest fires, estimating the FRP (Fire Radiative Power), evaluating the burned biomass, retrieving the emission in the atmosphere.
Detecting post-fire salvage logging with Landsat change maps and national fire survey data
Todd A. Schroeder; Michael A. Wulder; Sean P. Healey; Gretchen G. Moisen
2012-01-01
In Canadian boreal forests, wildfire is the predominant agent of natural disturbance often with millions of hectares burning annually. In addition to fire, nearly one quarter of Canada's boreal forest is also managed for industrial wood production. Post-fire logging (or salvage harvesting) is increasingly used to minimize economic losses from fire, notwithstanding...
46 CFR 161.002-12 - Manual fire alarm systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (a) General. A manual fire alarm system shall consist of a power supply, a control unit on which are... using manually operated fire alarm boxes. (3) Other types as may be developed. (c) Power supply. The power supply shall be as specified for automatic fire detecting system by § 161.002-9. (d) Manual fire...
46 CFR 161.002-12 - Manual fire alarm systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (a) General. A manual fire alarm system shall consist of a power supply, a control unit on which are... using manually operated fire alarm boxes. (3) Other types as may be developed. (c) Power supply. The power supply shall be as specified for automatic fire detecting system by § 161.002-9. (d) Manual fire...
46 CFR 78.45-1 - When required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the following plans: (1) General arrangement plans showing for each deck the fire control stations, the various sections enclosed by fire-resisting bulkheads, together with particulars of the fire alarms, detecting systems, the sprinkler installation (if any), the fire extinguishing appliances, means...
46 CFR 78.45-1 - When required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the following plans: (1) General arrangement plans showing for each deck the fire control stations, the various sections enclosed by fire-resisting bulkheads, together with particulars of the fire alarms, detecting systems, the sprinkler installation (if any), the fire extinguishing appliances, means...
46 CFR 78.45-1 - When required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the following plans: (1) General arrangement plans showing for each deck the fire control stations, the various sections enclosed by fire-resisting bulkheads, together with particulars of the fire alarms, detecting systems, the sprinkler installation (if any), the fire extinguishing appliances, means...
46 CFR 78.45-1 - When required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the following plans: (1) General arrangement plans showing for each deck the fire control stations, the various sections enclosed by fire-resisting bulkheads, together with particulars of the fire alarms, detecting systems, the sprinkler installation (if any), the fire extinguishing appliances, means...
46 CFR 78.45-1 - When required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the following plans: (1) General arrangement plans showing for each deck the fire control stations, the various sections enclosed by fire-resisting bulkheads, together with particulars of the fire alarms, detecting systems, the sprinkler installation (if any), the fire extinguishing appliances, means...
Aviation Engine Test Facilities (AETF) fire protection study
NASA Astrophysics Data System (ADS)
Beller, R. C.; Burns, R. E.; Leonard, J. T.
1989-07-01
An analysis is presented to the effectiveness of various types of fire fighting agents in extinguishing the kinds of fires anticipated in Aviation Engine Test Facilities (AETF), otherwise known as Hush Houses. The agents considered include Aqueous Film-Forming Foam, Halon 1301, Halon 1211 and water. Previous test work has shown the rapidity with which aircraft, especially high performance aircraft, can be damaged by fire. Based on this, tentative criteria for this evaluation included a maximum time of 20 s from fire detection to extinguishment and a period of 30 min in which the agent would prevent reignition. Other issues examined included: toxicity, corrosivity, ease of personnel egress, system reliability, and cost effectiveness. The agents were evaluated for their performance in several fire scenarios, including: under frame fire, major engine fire, engine disintegration fire, high-volume pool fire with simultaneous spill fire, internal electrical fire, and runaway engine fire.
Assessing the influence of small fires on trends in fire regime features at mainland Spain
NASA Astrophysics Data System (ADS)
Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan
2017-04-01
Small fires, i.e. fires smaller than 1 Ha, represent a huge proportion of total wildfire occurrence in the Mediterranean region. In the case of Spain, around 53% of fires in the period 1988-2013 fall into this category according to the Spanish EGIF statistics. However, the proportion of small fires is not stationary over time. Small fires are usually excluded from most analysis, given the chance of introducing or falling into temporal bias, being almost mandatory in those assessments using data before the 90s. Inconsistences and inhomogeneity problems related to the diversity of criteria and/or registration procedures among Autonomous Regions are found before that date, although it is widely agreed that small fires are consistently registered starting from 1988. Nevertheless, in terms of fire regimen characterization it is important to know to what extent small fires contribute to the overall fire behaviour. The aim of this study is to analyse spatial-temporal trends of several fire features such as total number of fires and burned area, number and burned area of natural and human fires, and the proportion of natural/human cause in the period 1988-2013 at province level (NUTS3). The analysis is conducted at the mainland Spain at annual and seasonal time scales. We are mainly interested in exploring differences in spatial-temporal trends including or excluding small fires and dealing with them separately as well. This allows determining the extent to which small fires may affect fire regime characterization. We employed a Mann-Kendall test for trend detection and Sen's slope to evaluate the magnitude of the change. Both tests were applied for each fire feature aggregated at NUTS3 level for both autumn-winter and spring-summer seasons. Our results show significant changes in the evolution of annual wildfire frequency; especially strong when small fires are accounted for. A similar outcome was observed in natural and human number fires during the spring-summer season. The increase in number of fires seems to be reversed during autumn-winter. At seasonal scale, the inclusion of small fires allows to detect significant trends in all of fire frequency features, except natural fires. In turn, neither burned area features do not significantly affect the trends through incorporating small fires. Therefore, the inclusion/exclusion of small fires do influence observed trends mostly in terms of fire frequency.
The analysis of a complex fire event using multispaceborne observations
NASA Astrophysics Data System (ADS)
Andrei, Simona; Carstea, Emil; Marmureanu, Luminita; Ene, Dragos; Binietoglou, Ioannis; Nicolae, Doina; Konsta, Dimitra; Amiridis, Vassilis; Proestakis, Emmanouil
2018-04-01
This study documents a complex fire event that occurred on October 2016, in Middle East belligerent area. Two fire outbreaks were detected by different spacecraft monitoring instruments on board of TERRA, CALIPSO and AURA Earth Observation missions. Link with local weather conditions was examined using ERA Interim Reanalysis and CAMS datasets. The detection of the event by multiple sensors enabled a detailed characterization of fires and the comparison with different observational data.
Systems Engineering Approach To Ground Combat Vehicle Survivability In Urban Operations
2016-09-01
extinguishing system (AFES), which uses fire wires to detect the presence of fires. The detection of fire automatically triggers the activation of the fire...corresponding wires and connection points also means that it can be more difficult for engineers to integrate distributed architecture systems onto...command signals to the missile via wires trailing behind the missile or via RF signals. See Figure 29 for an illustration of CLOS guidance. Since CLOS
46 CFR 97.36-1 - When required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the vessel the following plans: (a) General arrangement plans showing for each deck the fire control stations, the various sections enclosed by fire-resisting bulkheads, together with particulars of the fire alarms, detecting systems, the sprinkler installation (if any), the fire extinguishing appliances, means...
46 CFR 97.36-1 - When required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the vessel the following plans: (a) General arrangement plans showing for each deck the fire control stations, the various sections enclosed by fire-resisting bulkheads, together with particulars of the fire alarms, detecting systems, the sprinkler installation (if any), the fire extinguishing appliances, means...
46 CFR 97.36-1 - When required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the vessel the following plans: (a) General arrangement plans showing for each deck the fire control stations, the various sections enclosed by fire-resisting bulkheads, together with particulars of the fire alarms, detecting systems, the sprinkler installation (if any), the fire extinguishing appliances, means...
Fire Won't Wait--Plan Your Escape!
ERIC Educational Resources Information Center
PTA Today, 1991
1991-01-01
Discusses the importance of home fire escape drills, detailing fire safety plans. Early detection and warning (smoke detectors) coupled with well-rehearsed escape plans help prevent serious injury. Children need to be taught about fire safety beginning at a very early age. (SM)
White, Angela M.; Manley, Patricia N.; Tarbill, Gina; Richardson, T.L.; Russell, Robin E.; Safford, Hugh D.; Dobrowski, Solomon Z.
2015-01-01
Fire is a natural process and the dominant disturbance shaping plant and animal communities in many coniferous forests of the western US. Given that fire size and severity are predicted to increase in the future, it has become increasingly important to understand how wildlife responds to fire and post-fire management. The Angora Fire burned 1243 hectares of mixed conifer forest in South Lake Tahoe, California. We conducted avian point counts for the first 3 years following the fire in burned and unburned areas to investigate which habitat characteristics are most important for re-establishing or maintaining the native avian community in post-fire landscapes. We used a multi-species occurrence model to estimate how avian species are influenced by the density of live and dead trees and shrub cover. While accounting for variations in the detectability of species, our approach estimated the occurrence probabilities of all species detected including those that were rare or observed infrequently. Although all species encountered in this study were detected in burned areas, species-specific modeling results predicted that some species were strongly associated with specific post-fire conditions, such as a high density of dead trees, open-canopy conditions or high levels of shrub cover that occur at particular burn severities or at a particular time following fire. These results indicate that prescribed fire or managed wildfire which burns at low to moderate severity without at least some high-severity effects is both unlikely to result in the species assemblages that are unique to post-fire areas or to provide habitat for burn specialists. Additionally, the probability of occurrence for many species was associated with high levels of standing dead trees indicating that intensive post-fire harvest of these structures could negatively impact habitat of a considerable proportion of the avian community.
NASA Astrophysics Data System (ADS)
Williamson, Grant J.; Prior, Lynda D.; Jolly, W. Matt; Cochrane, Mark A.; Murphy, Brett P.; Bowman, David M. J. S.
2016-03-01
Climate dynamics at diurnal, seasonal and inter-annual scales shape global fire activity, although difficulties of assembling reliable fire and meteorological data with sufficient spatio-temporal resolution have frustrated quantification of this variability. Using Australia as a case study, we combine data from 4760 meteorological stations with 12 years of satellite-derived active fire detections to determine day and night time fire activity, fire season start and end dates, and inter-annual variability, across 61 objectively defined climate regions in three climate zones (monsoon tropics, arid and temperate). We show that geographic patterns of landscape burning (onset and duration) are related to fire weather, resulting in a latitudinal gradient from the monsoon tropics in winter, through the arid zone in all seasons except winter, and then to the temperate zone in summer and autumn. Peak fire activity precedes maximum lightning activity by several months in all regions, signalling the importance of human ignitions in shaping fire seasons. We determined median daily McArthur forest fire danger index (FFDI50) for days and nights when fires were detected: FFDI50 varied substantially between climate zones, reflecting effects of fire management in the temperate zone, fuel limitation in the arid zone and abundance of flammable grasses in the monsoon tropical zone. We found correlations between the proportion of days when FFDI exceeds FFDI50 and the Southern Oscillation index across the arid zone during spring and summer, and Indian Ocean dipole mode index across south-eastern Australia during summer. Our study demonstrates that Australia has a long fire weather season with high inter-annual variability relative to all other continents, making it difficult to detect long term trends. It also provides a way of establishing robust baselines to track changes to fire seasons, and supports a previous conceptual model highlighting multi-temporal scale effects of climate in shaping continental-scale pyrogeography.
Evaluation of detection and response times of fire sensors using an atmospheric monitoring system
Rowland, J.H.; Litton, C.D.; Thomas, R.A.
2017-01-01
Atmospheric monitoring systems (AMS) are required when using air from conveyor belt entries to ventilate working sections in U.S. underground coal mines. AMS technology has the potential to increase fire safety mine-wide, but research is needed to determine the detection and response times for fires of a variety of combustible materials. To evaluate the potential of an AMS for fire detection in other areas of a coal mine, a series of full-scale fire experiments were conducted to determine detection and response times from fires of different combustible materials that are found in U.S. underground coal mines, including high- and low-volatility coals, conveyor belts, brattice materials, different types of wood, diesel fuel, and a foam sealant. These experiments were conducted in the Safety Research Coal Mine (SRCM) of the U.S. National Institute for Occupational Safety and Health (NIOSH) located in Pittsburgh, PA, using a commercially available AMS that is typical of current technology. The results showed that through proper selection of sensors and their locations, a mine-wide AMS can provide sufficient early fire warning times and improve the health and safety of miners. PMID:28529442
Evaluation of detection and response times of fire sensors using an atmospheric monitoring system.
Rowland, J H; Litton, C D; Thomas, R A
2016-01-01
Atmospheric monitoring systems (AMS) are required when using air from conveyor belt entries to ventilate working sections in U.S. underground coal mines. AMS technology has the potential to increase fire safety mine-wide, but research is needed to determine the detection and response times for fires of a variety of combustible materials. To evaluate the potential of an AMS for fire detection in other areas of a coal mine, a series of full-scale fire experiments were conducted to determine detection and response times from fires of different combustible materials that are found in U.S. underground coal mines, including high- and low-volatility coals, conveyor belts, brattice materials, different types of wood, diesel fuel, and a foam sealant. These experiments were conducted in the Safety Research Coal Mine (SRCM) of the U.S. National Institute for Occupational Safety and Health (NIOSH) located in Pittsburgh, PA, using a commercially available AMS that is typical of current technology. The results showed that through proper selection of sensors and their locations, a mine-wide AMS can provide sufficient early fire warning times and improve the health and safety of miners.
Fire history in interior ponderosa pine communities of the Black Hills, South Dakota, USA
Peter M. Brown; Carolyn Hull Sieg
1996-01-01
Chronologies of fire events were reconstructed from crossdated fire-scarred ponderosa pine trees for four sites in the south-central Black Hills. Compared to other ponderosa pine forests in the southwest US or southern Rocky Mountains, these communities burned less frequently. For all sites combined, and using all fires detected, the mean fire interval (MFI), or number...
NASA Astrophysics Data System (ADS)
Kim, Goo; Kim, Dae Sun; Lee, Yang-Won
2013-10-01
The forest fires do much damage to our life in ecological and economic aspects. South Korea is probably more liable to suffer from the forest fire because mountain area occupies more than half of land in South Korea. They have recently launched the COMS(Communication Ocean and Meteorological Satellite) which is a geostationary satellite. In this paper, we developed forest fire detection algorithm using COMS data. Generally, forest fire detection algorithm uses characteristics of 4 and 11 micrometer brightness temperature. Our algorithm additionally uses LST(Land Surface Temperature). We confirmed the result of our fire detection algorithm using statistical data of Korea Forest Service and ASTER(Advanced Spaceborne Thermal Emission and Reflection Radiometer) images. We used the data in South Korea On April 1 and 2, 2011 because there are small and big forest fires at that time. The detection rate was 80% in terms of the frequency of the forest fires and was 99% in terms of the damaged area. Considering the number of COMS's channels and its low resolution, this result is a remarkable outcome. To provide users with the result of our algorithm, we developed a smartphone application for users JSP(Java Server Page). This application can work regardless of the smartphone's operating system. This study can be unsuitable for other areas and days because we used just two days data. To improve the accuracy of our algorithm, we need analysis using long-term data as future work.
Characterization of a mine fire using atmospheric monitoring system sensor data.
Yuan, L; Thomas, R A; Zhou, L
2017-06-01
Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth - in terms of heat release rate - and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division's Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy.
NASA Technical Reports Server (NTRS)
Wightman, J. M.
1973-01-01
Sequential band-6 imagery of the Zambesi Basin of southern Africa recorded substantial changes in burn patterns resulting from late dry season grass fires. One example from northern Botswana, indicates that a fire consumed approximately 70 square miles of grassland over a 24-hour period. Another example from western Zambia indicates increased fire activity over a 19-day period. Other examples clearly define the area of widespread grass fires in Angola, Botswana, Rhodesia and Zambia. From the fire patterns visible on the sequential portions of the imagery, and the time intervals involved, the rates of spread of the fires are estimated and compared with estimates derived from experimental burning plots in Zambia and Canada. It is concluded that sequential ERTS-1 imagery, of the quality studied, clearly provides the information needed to detect and map grass fires and to monitor their rates of spread in this region during the late dry season.
Improved estimates of biomass burning emissions in the southeast United States
NASA Astrophysics Data System (ADS)
Nowell, H.; Holmes, C.; Elsner, J.; Hiers, J. K.; Robertson, K.
2017-12-01
Biomass burning is a major source of gas and particle emissions that affects air quality, human health, and climate. Prescribed burns in the southeastern United States consume more biomass and cover a larger area than fires in the rest of the United States combined. Although fires can be detected remotely from thermal infrared emission and changes to surface reflectance, there are multiple issues that make satellite detections difficult in the eastern United States. These include small fire sizes, short duration, low intensity, canopy coverage, and rapid vegetation regrowth. Some attempts have been made to compensate for this bias, for example the small fire product in the Global Fire Emission Database (GFED4.1s) product. The accuracy of GFED and other remotely sensed global fire emission inventories are largely unknown, outside of a few field studies, mainly because there are few independent datasets of fire extent. The Florida Forest Service (FFS) has extensive records on fire type, size, location, and time for both prescribed and wild fires, which have not previously been used to evaluate fire area and emissions. For our study period of 2004 to 2016, we compared FFS burn authorization data against GFED4.1s burned area. When averaged across the state of Florida, there is 4 times more land burned than detected from satellite sensors. When comparing FFS data against high quality records from Apalachicola National Forest, Avon Park Air Force Range, Eglin Air Force Base, Tall Timbers Research Station, and Tyndall Air Force base, the areal discrepancy between these records and FFS reports are +/- 15%, well below the 4 times detection discrepancy between satellites and FFS reports. We have developed a method to statistically correct this satellite bias in fire detections. Treating the FFS burn authorizations as accurate, we have found this bias ratio can be predicted from fire size, land cover type, leaf area, and month. The regression model incorporating these factors can predict greater than 80% of variance in bias ratio across Florida during the summer months with correlations around 0.6 on average. This improved estimate of burned area in Florida will be used in global circulation models to determine the true contribution of prescribed wild fires in the southeast United States to gas and particle emissions.
Infrared-enhanced TV for fire detection
NASA Technical Reports Server (NTRS)
Hall, J. R.
1978-01-01
Closed-circuit television is superior to conventional smoke or heat sensors for detecting fires in large open spaces. Single TV camera scans entire area, whereas many conventional sensors and maze of interconnecting wiring might be required to get same coverage. Camera is monitored by person who would trip alarm if fire were detected, or electronic circuitry could process camera signal for fully-automatic alarm system.
Wanting Wang; John J. Qu; Xianjun Hao; Yongqiang Liu; William T. Sommers
2006-01-01
Traditional fire detection algorithms mainly rely on hot spot detection using thermal infrared (TIR) channels with fixed or contextual thresholds. Three solar reflectance channels (0.65 μm, 0.86 μm, and 2.1 μm) were recently adopted into the MODIS version 4 contextual algorithm to improve the active fire detection. In the southeastern United...
Color model and method for video fire flame and smoke detection using Fisher linear discriminant
NASA Astrophysics Data System (ADS)
Wei, Yuan; Jie, Li; Jun, Fang; Yongming, Zhang
2013-02-01
Video fire detection is playing an increasingly important role in our life. But recent research is often based on a traditional RGB color model used to analyze the flame, which may be not the optimal color space for fire recognition. It is worse when we research smoke simply using gray images instead of color ones. We clarify the importance of color information for fire detection. We present a fire discriminant color (FDC) model for flame or smoke recognition based on color images. The FDC models aim to unify fire color image representation and fire recognition task into one framework. With the definition of between-class scatter matrices and within-class scatter matrices of Fisher linear discriminant, the proposed models seek to obtain one color-space-transform matrix and a discriminate projection basis vector by maximizing the ratio of these two scatter matrices. First, an iterative basic algorithm is designed to get one-component color space transformed from RGB. Then, a general algorithm is extended to generate three-component color space for further improvement. Moreover, we propose a method for video fire detection based on the models using the kNN classifier. To evaluate the recognition performance, we create a database including flame, smoke, and nonfire images for training and testing. The test experiments show that the proposed model achieves a flame verification rate receiver operating characteristic (ROC I) of 97.5% at a false alarm rate (FAR) of 1.06% and a smoke verification rate (ROC II) of 91.5% at a FAR of 1.2%, and lots of fire video experiments demonstrate that our method reaches a high accuracy for fire recognition.
Combustion and fires in low gravity
NASA Technical Reports Server (NTRS)
Friedman, Robert
1994-01-01
Fire safety always receives priority attention in NASA mission designs and operations, with emphasis on fire prevention and material acceptance standards. Recently, interest in spacecraft fire-safety research and development has increased because improved understanding of the significant differences between low-gravity and normal-gravity combustion suggests that present fire-safety techniques may be inadequate or, at best, non-optimal; and the complex and permanent orbital operations in Space Station Freedom demand a higher level of safety standards and practices. This presentation outlines current practices and problems in fire prevention and detection for spacecraft, specifically the Space Station Freedom's fire protection. Also addressed are current practices and problems in fire extinguishment for spacecraft.
Forest Fire Finder - DOAS application to long-range forest fire detection
NASA Astrophysics Data System (ADS)
Valente de Almeida, Rui; Vieira, Pedro
2017-06-01
Fires are an important factor in shaping Earth's ecosystems. Plant and animal life, in almost every land habitat, are at least partially dependent on the effects of fire. However, their destructive force, which has often proven uncontrollable, is one of our greatest concerns, effectively resulting in several policies in the most important industrialised regions of the globe. This paper aims to comprehensively characterise the Forest Fire Finder (FFF), a forest fire detection system based mainly upon a spectroscopic technique called differential optical absorption spectroscopy (DOAS). The system is designed and configured with the goal of detecting higher-than-the-horizon smoke columns by measuring and comparing scattered sunlight spectra. The article covers hardware and software, as well as their interactions and specific algorithms for day mode operation. An analysis of data retrieved from several installations deployed in the course of the last 5 years is also presented. Finally, this paper features a discussion on the most prominent future improvements planned for the system, as well as its ramifications and adaptations, such as a thermal imaging system for short-range fire seeking or environmental quality control.
46 CFR 115.810 - Fire protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... extinguisher, semiportable fire extinguisher, and fixed gas fire extinguishing system to check for excessive... testing of alarms and ventilation shutdowns, for each fixed gas fire extinguishing system and detecting... gas to ensure it has been tested and marked in accordance with § 147.60 in subchapter N of this...
46 CFR 115.810 - Fire protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... extinguisher, semiportable fire extinguisher, and fixed gas fire extinguishing system to check for excessive... testing of alarms and ventilation shutdowns, for each fixed gas fire extinguishing system and detecting... gas to ensure it has been tested and marked in accordance with § 147.60 in subchapter N of this...
Spacecraft Fire Safety: A Human Space Flight Program Perspective
NASA Technical Reports Server (NTRS)
Pedley, Michael D.
2003-01-01
This paper presents viewgraphs on the International Space Station's fire safety program from a human space flight perspective. The topics include: 1) Typical Manned Spacecraft Materials; 2) Typical Flammable Hardware Protection; 3) Materials Flammability; 4) Fire Retardants; 5) Nonflammable Foam Cushion Material; 6) Electrical Wire and Cable; 7) Russian Solid-Fuel Oxygen Generator (SFOG); 8) GOX Ignition Mechanisms; 9) Fire Detection; and 10) Fire Suppression.
NASA Astrophysics Data System (ADS)
Schroeder, W.; Coen, J.; Oliva, P.
2013-12-01
Availability of spatially refined satellite active fire detection data is gradually increasing. For example, the new 375 m Visible Infrared Imaging Radiometer Suite (VIIRS) data show improved active fire detection performance for both small and large size fires. The VIIRS data have proved superior to MODIS for mapping of wildfires events spanning several days to weeks of either continued or intermittent activity, delivering 12-h active fire data of improved spatial fidelity. The VIIRS active fire data are complemented by other satellite active fire data sets of similar or higher spatial resolution, including the new 30 m Landsat-8. Additional assets should include the upcoming 20 m Sentinel-2 Landsat-class satellite program by the European Space Agency to be launched in 2014-15. These improved active fire data sets are fostering new applications that rely on higher resolution input fire data. In this study, we describe the characteristics of the new VIIRS and Landsat-8 data and demonstrate one such new application of satellite active fire data in support of fire behavior modeling. We present results for a wildfire observed in June 2012 in New Mexico using an innovative approach to improving the simulation of large, long-duration wildfires, either for retrospective studies or forecasting in a number of geophysical applications. The approach uses (1) the Coupled Atmosphere-Wildland Fire Environment (CAWFE) Model, a numerical weather prediction model two-way coupled with a module representing the rate of spread of a wildfire's flaming front, its rate of consumption of different wildland fuels, and the feedback of this heat release upon the atmosphere - i.e. 'how a fire creates its own weather', combined with (2) spatially refined 375 m VIIRS active fire data, which is used for initialization of a wildfire already in progress in the model and evaluation of its simulated progression at the time of the next pass. Results show that initializing a fire that is 'in progress' with VIIRS data and a weather simulation based on more recent atmospheric analyses can overcome several issues and improve the simulation of late-developing fires and of later periods (particularly those with growth periods separated by lulls) in a long-lived fire.
NASA Astrophysics Data System (ADS)
Filizzola, Carolina; Belloni, Antonella; Benigno, Giuseppe; Biancardi, Alberto; Corrado, Rosita; Coviello, Irina; De Costanzo, Giovanni; Genzano, Nicola; Lacava, Teodosio; Lisi, Mariano; Marchese, Francesco; Mazzeo, Giuseppe; Merzagora, Cinzio; Paciello, Rossana; Pergola, Nicola; Sannazzaro, Filomena; Serio, Salvatore; Tramutoli, Valerio
2013-04-01
Every year, hundreds of thousands of hectares of European forests are destroyed by fires. Due to the particular topography, landscape and demographic distribution in Europe (very different from typical scenarios of China, USA, Canada and Australia), rapidity in fire sighting is still the determining factor in limiting damages to people and goods. Moreover, the possibility of early fire detection means also potentially to reduce the size of the event to be faced, the necessary fire fighting resources and, therefore, even the reaction times. In such a context, integration of satellite technologies (mainly high temporal resolution data) and traditional surveillance systems within the fire fighting procedures seems to positively impact on the effectiveness of active fire fighting as demonstrated by recent experiences over Italian territory jointly performed by University of Basilicata, IMAA-CNR and Local Authorities. Real time implementation was performed since 2007, during fire seasons, over several Italian regions with different fire regimes and features, in order to assess the actual potential of different satellite-based fire detection products to support regional and local authorities in efficiently fighting fires and better mitigating their negative effects. Real-time campaigns were carried out in strict collaboration with end-users within the framework of specific projects (i.e. the AVVISA, AVVISTA and AVVISA-Basilicata projects) funded by Civil Protection offices of Regione Lombardia, Provincia Regionale di Palermo and Regione Basilicata in charge of fire risk management and mitigation. A tailored training program was dedicated to the personnel of Regional Civil Protection offices in order to ensure the full understanding and the better integration of satellite based products and tools within the existing fire fighting protocols. In this work, outcomes of these practices are shown and discussed, especially highlighting the impact that a real time satellite system may have in assisting and complementing traditional surveillance systems to mitigate damages due to fires. In particular, the usefulness of satellite technology in an operational context was demonstrated mainly in reference to: i) the possibility of identifying fires at an early stage (so avoiding that small hotbeds could extend and become dangerous for citizens and destructive for environmental protected areas) as well as ii) the possibility to have an effective territorial control (e.g. discovering illegal burning fires such as unauthorized cleaning fires, and permitting local authorities to rapidly intervene and catch red-handed pyromaniacs).
An evaluation of image based techniques for wildfire detection and fuel mapping
NASA Astrophysics Data System (ADS)
Gabbert, Dustin W.
Few events can cause the catastrophic impact to ecology, infrastructure, and human safety of a wildland fire along the wildland urban interface. The suppression of natural wildland fires over the past decade has caused a buildup of dry, dead surface fuels: a condition that, coupled with the right weather conditions, can cause large destructive wildfires that are capable of threatening both ancient tree stands and manmade infrastructure. Firefighters use fire danger models to determine staffing needs on high fire risk days; however models are only as effective as the spatial and temporal density of their observations. OKFIRE, an Oklahoma initiative created by a partnership between Oklahoma State University and the University of Oklahoma, has proven that fire danger assessments close to the fire - both geographically and temporally - can give firefighters a significant increase in their situational awareness while fighting a wildland fire. This paper investigates several possible solutions for a small Unmanned Aerial System (UAS) which could gather information useful for detecting ground fires and constructing fire danger maps. Multiple fire detection and fuel mapping programs utilize satellites, manned aircraft, and large UAS equipped with hyperspectral sensors to gather useful information. Their success provides convincing proof of the utility that could be gained from low-altitude UAS gathering information at the exact time and place firefighters and land managers are interested in. Close proximity, both geographically and operationally, to the end can reduce latency times below what could ever be possible with satellite observation. This paper expands on recent advances in computer vision, photogrammetry, and infrared and color imagery to develop a framework for a next-generation UAS which can assess fire danger and aid firefighters in real time as they observe, contain, or extinguish wildland fires. It also investigates the impact information gained by this system could have on pre-fire risk assessments through the development of very high resolution fuel maps.
An Evaluation of Image Based Techniques for Early Wildfire Detection and Fuel Mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabbert, Dustin W.
Few events can cause the catastrophic impact to ecology, infrastructure, and human safety of a wildland fire along the wildland urban interface. The suppression of natural wildland fires over the past decade has caused a buildup of dry, dead surface fuels: a condition that, coupled with the right weather conditions, can cause large destructive wildfires that are capable of threatening both ancient tree stands and manmade infrastructure. Firefighters use fire danger models to determine staffing needs on high fire risk days; however models are only as effective as the spatial and temporal density of their observations. OKFIRE, an Oklahoma initiativemore » created by a partnership between Oklahoma State University and the University of Oklahoma, has proven that fire danger assessments close to the fire – both geographically and temporally – can give firefighters a significant increase in their situational awareness while fighting a wildland fire. This paper investigates several possible solutions for a small Unmanned Aerial System (UAS) which could gather information useful for detecting ground fires and constructing fire danger maps. Multiple fire detection and fuel mapping programs utilize satellites, manned aircraft, and large UAS equipped with hyperspectral sensors to gather useful information. Their success provides convincing proof of the utility that could be gained from low-altitude UAS gathering information at the exact time and place firefighters and land managers are interested in. Close proximity, both geographically and operationally, to the end can reduce latency times below what could ever be possible with satellite observation. This paper expands on recent advances in computer vision, photogrammetry, and infrared and color imagery to develop a framework for a next-generation UAS which can assess fire danger and aid firefighters in real time as they observe, contain, or extinguish wildland fires. It also investigates the impact information gained by this system could have on pre-fire risk assessments through the development of very high resolution fuel maps.« less
Poverty and corruption compromise tropical forest reserves.
Wright, S Joseph; Sanchez-Azofeifa, G Arturo; Portillo-Quintero, Carlos; Davies, Diane
2007-07-01
We used the global fire detection record provided by the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to determine the number of fires detected inside 823 tropical and subtropical moist forest reserves and for contiguous buffer areas 5, 10, and 15 km wide. The ratio of fire detection densities (detections per square kilometer) inside reserves to their contiguous buffer areas provided an index of reserve effectiveness. Fire detection density was significantly lower inside reserves than in paired, contiguous buffer areas but varied by five orders of magnitude among reserves. The buffer: reserve detection ratio varied by up to four orders of magnitude among reserves within a single country, and median values varied by three orders of magnitude among countries. Reserves tended to be least effective at reducing fire frequency in many poorer countries and in countries beset by corruption. Countries with the most successful reserves include Costa Rica, Jamaica, Malaysia, and Taiwan and the Indonesian island of Java. Countries with the most problematic reserves include Cambodia, Guatemala, Paraguay, and Sierra Leone and the Indonesian portion of Borneo. We provide fire detection density for 3964 tropical and subtropical reserves and their buffer areas in the hope that these data will expedite further analyses that might lead to improved management of tropical reserves.
Wildland fire in ecosystems: fire and nonnative invasive plants
Kristin Zouhar; Jane Kapler Smith; Steve Sutherland; Matthew L. Brooks
2008-01-01
This state-of-knowledge review of information on relationships between wildland fire and nonnative invasive plants can assist fire managers and other land managers concerned with prevention, detection, and eradication or control of nonnative invasive plants. The 16 chapters in this volume synthesize ecological and botanical principles regarding relationships between...
Atmospheric Science Data Center
2014-05-15
article title: Smoke Signals from the Alaska and Yukon Fires ... the Yukon Territory from mid-June to mid-July, 2004. Thick smoke particles filled the air during these fires, prompting Alaskan officials to issue air quality warnings. Some of the smoke from these fires was detected as far away as New Hampshire. These ...
Is Your School Truly Fire-Safe?
ERIC Educational Resources Information Center
Saunders, Carol Silverman
1995-01-01
Though most people assume that their schools are protected by smoke alarms and sprinkler systems, many are not. Older schools can fall through fire-code loopholes. Some schools have insufficient fire detection systems. Sprinkler systems can be too expensive for schools. Parents should educate themselves and insist on fire safety. (SM)
ERIC Educational Resources Information Center
Kroll, Karen
2003-01-01
Discusses whether U.S. schools equipped with fire sprinklers and fire detection and intercom systems should be able to use a delayed evacuation policy when it comes to fire drills or actual fires. A controversial project in Minnesota is examining that question. The paper discusses concerns about delayed evacuation, the impact of delayed evacuation…
49 CFR 176.69 - General stowage requirements for hazardous materials.
Code of Federal Regulations, 2010 CFR
2010-10-01
... equipped with a fixed fire extinguishing and fire detection system, the freight containers or barges need... by paragraph (a) of this section if fire fighting equipment capable of reaching and piercing the..., their removal from a potentially dangerous situation, and the removal of packages in case of fire. (b...
NASA Astrophysics Data System (ADS)
Tickle, Andrew J.; Singh, Harjap; Grindley, Josef E.
2013-06-01
Morphological Scene Change Detection (MSCD) is a process typically tasked at detecting relevant changes in a guarded environment for security applications. This can be implemented on a Field Programmable Gate Array (FPGA) by a combination of binary differences based around exclusive-OR (XOR) gates, mathematical morphology and a crucial threshold setting. This is a robust technique and can be applied many areas from leak detection to movement tracking, and further augmented to perform additional functions such as watermarking and facial detection. Fire is a severe problem, and in areas where traditional fire alarm systems are not installed or feasible, it may not be detected until it is too late. Shown here is a way of adapting the traditional Morphological Scene Change Detector (MSCD) with a temperature sensor so if both the temperature sensor and scene change detector are triggered, there is a high likelihood of fire present. Such a system would allow integration into autonomous mobile robots so that not only security patrols could be undertaken, but also fire detection.
Monitoring system of multiple fire fighting based on computer vision
NASA Astrophysics Data System (ADS)
Li, Jinlong; Wang, Li; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke
2010-10-01
With the high demand of fire control in spacious buildings, computer vision is playing a more and more important role. This paper presents a new monitoring system of multiple fire fighting based on computer vision and color detection. This system can adjust to the fire position and then extinguish the fire by itself. In this paper, the system structure, working principle, fire orientation, hydrant's angle adjusting and system calibration are described in detail; also the design of relevant hardware and software is introduced. At the same time, the principle and process of color detection and image processing are given as well. The system runs well in the test, and it has high reliability, low cost, and easy nodeexpanding, which has a bright prospect of application and popularization.
Fire protection review revisit no. 2, Argonne National Laboratory, Argonne, Illinois
NASA Astrophysics Data System (ADS)
Dobson, P. H.; Earley, M. W.; Mattern, L. J.
1985-05-01
A fire protection survey was conducted at Argonne National Laboratory on April 1-5, 8-12, and April 29-May 2, 1985. The purpose was to review the facility fire protection program and to make recommendations or identify areas according to criteria established by the Department of Energy. There has been a substantial improvement in fire protection at this laboratory since the 1977 audit. Numerous areas which were previously provided with detection systems only have since been provided with automatic sprinkler protection. The following basic fire protection features are not properly controlled: (1) resealing wall and floor penetrations between fire areas after installation of services; (2) cutting and welding; and (3) housekeeping. The present Fire Department manpower level appears adequate to control a route fire. Their ability to adequately handle a high-challenge fire, or one involving injuries to personnel, or fire spread beyond the initial fire area is doubtful.
Directory of workers in the fire field
NASA Technical Reports Server (NTRS)
Kuvshinoff, B. W.; Mcleod, S. B.; Katz, R. G.
1973-01-01
A directory was compiled to provide a list of workers engaged in fire research, their addresses and affiliations, and their principal fields of activity. The initial criteria for the selection of names for the directory are recent contributions to fire literature, teaching of subjects relevant to fire science, or participation in or support of fire research programs. With some exceptions, fire service personnel and fire protection engineers were excluded because directories already exist for these professionals. Also excluded are investigators engaged principally in studies of propulsion, combustion, and explosion phenomena, because these areas of study are somewhat aside from the main focus of fire research. For purposes of the directory, fire science is taken to be the body of knowledge, art, and skill related to the investigation, analysis, and interpretation of the phenomena of unwanted fires and the evaluation of materials methods, systems, and equipment related to fire safety, prevention, detection, and suppression.
Wu, Qian; Gong, Li-Xiu; Li, Yang; Cao, Cheng-Fei; Tang, Long-Cheng; Wu, Lianbin; Zhao, Li; Zhang, Guo-Dong; Li, Shi-Neng; Gao, Jiefeng; Li, Yongjin; Mai, Yiu-Wing
2018-01-23
Design and development of smart sensors for rapid flame detection in postcombustion and early fire warning in precombustion situations are critically needed to improve the fire safety of combustible materials in many applications. Herein, we describe the fabrication of hierarchical coatings created by assembling a multilayered graphene oxide (GO)/silicone structure onto different combustible substrate materials. The resulting coatings exhibit distinct temperature-responsive electrical resistance change as efficient early warning sensors for detecting abnormal high environmental temperature, thus enabling fire prevention below the ignition temperature of combustible materials. After encountering a flame attack, we demonstrate extremely rapid flame detection response in 2-3 s and excellent flame self-extinguishing retardancy for the multilayered GO/silicone structure that can be synergistically transformed to a multiscale graphene/nanosilica protection layer. The hierarchical coatings developed are promising for fire prevention and protection applications in various critical fire risk and related perilous circumstances.
46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Location and spacing of tubing in pneumatic fire detection system. 108.409 Section 108.409 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.409 Location...
46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Location and spacing of tubing in pneumatic fire detection system. 108.409 Section 108.409 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.409 Location...
46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Location and spacing of tubing in pneumatic fire detection system. 108.409 Section 108.409 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.409 Location...
46 CFR 108.409 - Location and spacing of tubing in pneumatic fire detection system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Location and spacing of tubing in pneumatic fire detection system. 108.409 Section 108.409 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems § 108.409 Location...
46 CFR 161.002-9 - Automatic fire detecting system, power supply.
Code of Federal Regulations, 2013 CFR
2013-10-01
... system must meet the requirements of § 113.10-9 of subchapter J (Electrical Engineering Regulations) of... 46 Shipping 6 2013-10-01 2013-10-01 false Automatic fire detecting system, power supply. 161.002-9..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Fire-Protective Systems § 161.002...
46 CFR 161.002-9 - Automatic fire detecting system, power supply.
Code of Federal Regulations, 2014 CFR
2014-10-01
... system must meet the requirements of § 113.10-9 of subchapter J (Electrical Engineering Regulations) of... 46 Shipping 6 2014-10-01 2014-10-01 false Automatic fire detecting system, power supply. 161.002-9..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Fire-Protective Systems § 161.002...
46 CFR 161.002-9 - Automatic fire detecting system, power supply.
Code of Federal Regulations, 2012 CFR
2012-10-01
... system must meet the requirements of § 113.10-9 of subchapter J (Electrical Engineering Regulations) of... 46 Shipping 6 2012-10-01 2012-10-01 false Automatic fire detecting system, power supply. 161.002-9..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Fire-Protective Systems § 161.002...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
.../Electronic Equipment Bay Fire Detection and Smoke Penetration AGENCY: Federal Aviation Administration (FAA... where the flightcrew could determine the origin of smoke or fire by a straightforward airplane flight.... The FAA has no requirement for smoke and/or fire detection in the electrical/electronic equipment bays...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-04
...; Electrical/Electronic Equipment Bay Fire Detection and Smoke Penetration AGENCY: Federal Aviation... where the flight crew could determine the origin of smoke or fire by a straightforward airplane flight.... The FAA has no requirement for smoke and/or fire detection in the electrical/electronic equipment bays...
Picotte, Joshua J.; Coan, Michael; Howard, Stephen M.
2014-01-01
The effort to utilize satellite-based MODIS, AVHRR, and GOES fire detections from the Hazard Monitoring System (HMS) to identify undocumented fires in Florida and improve the Monitoring Trends in Burn Severity (MTBS) mapping process has yielded promising results. This method was augmented using regression tree models to identify burned/not-burned pixels (BnB) in every Landsat scene (1984–2012) in Worldwide Referencing System 2 Path/Rows 16/40, 17/39, and 1839. The burned area delineations were combined with the HMS detections to create burned area polygons attributed with their date of fire detection. Within our study area, we processed 88,000 HMS points (2003–2012) and 1,800 Landsat scenes to identify approximately 300,000 burned area polygons. Six percent of these burned area polygons were larger than the 500-acre MTBS minimum size threshold. From this study, we conclude that the process can significantly improve understanding of fire occurrence and improve the efficiency and timeliness of assessing its impacts upon the landscape.
Multiple-Parameter, Low-False-Alarm Fire-Detection Systems
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Greensburg, Paul; McKnight, Robert; Xu, Jennifer C.; Liu, C. C.; Dutta, Prabir; Makel, Darby; Blake, D.; Sue-Antillio, Jill
2007-01-01
Fire-detection systems incorporating multiple sensors that measure multiple parameters are being developed for use in storage depots, cargo bays of ships and aircraft, and other locations not amenable to frequent, direct visual inspection. These systems are intended to improve upon conventional smoke detectors, now used in such locations, that reliably detect fires but also frequently generate false alarms: for example, conventional smoke detectors based on the blockage of light by smoke particles are also affected by dust particles and water droplets and, thus, are often susceptible to false alarms. In contrast, by utilizing multiple parameters associated with fires, i.e. not only obscuration by smoke particles but also concentrations of multiple chemical species that are commonly generated in combustion, false alarms can be significantly decreased while still detecting fires as reliably as older smoke-detector systems do. The present development includes fabrication of sensors that have, variously, micrometer- or nanometer-sized features so that such multiple sensors can be integrated into arrays that have sizes, weights, and power demands smaller than those of older macroscopic sensors. The sensors include resistors, electrochemical cells, and Schottky diodes that exhibit different sensitivities to the various airborne chemicals of interest. In a system of this type, the sensor readings are digitized and processed by advanced signal-processing hardware and software to extract such chemical indications of fires as abnormally high concentrations of CO and CO2, possibly in combination with H2 and/or hydrocarbons. The system also includes a microelectromechanical systems (MEMS)-based particle detector and classifier device to increase the reliability of measurements of chemical species and particulates. In parallel research, software for modeling the evolution of a fire within an aircraft cargo bay has been developed. The model implemented in the software can describe the concentrations of chemical species and of particulate matter as functions of time. A system of the present developmental type and a conventional fire detector were tested under both fire and false-alarm conditions in a Federal Aviation Administration cargo-compartment- testing facility. Both systems consistently detected fires. However, the conventional fire detector consistently generated false alarms, whereas the developmental system did not generate any false alarms.
Burning in Banksia Woodlands: How Does the Fire-Free Period Influence Reptile Communities?
Valentine, Leonie E.; Reaveley, Alice; Johnson, Brent; Fisher, Rebecca; Wilson, Barbara A.
2012-01-01
Fire is an important management tool for both hazard reduction burning and maintenance of biodiversity. The impact of time since last fire on fauna is an important factor to understand as land managers often aim for prescribed burning regimes with specific fire-free intervals. However, our current understanding of the impact of time since last fire on fauna is largely unknown and likely dependent on vegetation type. We examined the responses of reptiles to fire age in banksia woodlands, and the interspersed melaleuca damplands among them, north of Perth, Western Australia, where the current prescribed burning regime is targeting a fire-free period of 8–12 years. The response of reptiles to fire was dependent on vegetation type. Reptiles were generally more abundant (e.g. Lerista elegans and Ctenophorus adelaidensis) and specious in banksia sites. Several species (e.g. Menetia greyii, Cryptoblepharus buchananii) preferred long unburnt melaleuca sites (>16 years since last fire, YSLF) compared to recently burnt sites (<12 YSLF). Several of the small elapids (e.g. the WA priority listed species Neelaps calonotus) were only detected in older-aged banksia sites (>16 YSLF). The terrestrial dragon C. adelaidensis and the skink Morethia obscura displayed a strong response to fire in banksia woodlands only. Highest abundances of the dragon were detected in the recently burnt (<7 YSLF) and long unburnt (>35 YSLF) banksia woodlands, while the skink was more abundant in older sites. Habitats from a range of fire ages are required to support the reptiles we detected, especially the longer unburnt (>16 YSLF) melaleuca habitat. Current burning prescriptions are reducing the availability of these older habitats. PMID:22496806
Burning in banksia woodlands: how does the fire-free period influence reptile communities?
Valentine, Leonie E; Reaveley, Alice; Johnson, Brent; Fisher, Rebecca; Wilson, Barbara A
2012-01-01
Fire is an important management tool for both hazard reduction burning and maintenance of biodiversity. The impact of time since last fire on fauna is an important factor to understand as land managers often aim for prescribed burning regimes with specific fire-free intervals. However, our current understanding of the impact of time since last fire on fauna is largely unknown and likely dependent on vegetation type. We examined the responses of reptiles to fire age in banksia woodlands, and the interspersed melaleuca damplands among them, north of Perth, Western Australia, where the current prescribed burning regime is targeting a fire-free period of 8-12 years. The response of reptiles to fire was dependent on vegetation type. Reptiles were generally more abundant (e.g. Lerista elegans and Ctenophorus adelaidensis) and specious in banksia sites. Several species (e.g. Menetia greyii, Cryptoblepharus buchananii) preferred long unburnt melaleuca sites (>16 years since last fire, YSLF) compared to recently burnt sites (<12 YSLF). Several of the small elapids (e.g. the WA priority listed species Neelaps calonotus) were only detected in older-aged banksia sites (>16 YSLF). The terrestrial dragon C. adelaidensis and the skink Morethia obscura displayed a strong response to fire in banksia woodlands only. Highest abundances of the dragon were detected in the recently burnt (<7 YSLF) and long unburnt (>35 YSLF) banksia woodlands, while the skink was more abundant in older sites. Habitats from a range of fire ages are required to support the reptiles we detected, especially the longer unburnt (>16 YSLF) melaleuca habitat. Current burning prescriptions are reducing the availability of these older habitats.
The Hazard Mapping System (HMS)-a Multiplatform Remote Sensing Approach to Fire and Smoke Detection
NASA Astrophysics Data System (ADS)
Kibler, J.; Ruminski, M. G.
2003-12-01
The HMS is a multiplatform remote sensing approach to detecting fires and smoke over the US and adjacent areas of Canada and Mexico that has been in place since June 2002. This system is an integral part of the National Environmental Satellite and Data Information Service (NESDIS) near realtime hazard detection and mitigation efforts. The system utilizes NOAA's Geostationary Operational Environmental Satellites (GOES), Polar Operational Environmental Satellites (POES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Terra and Aqua spacecraft. Automated detection algorithms are employed for each of the satellites for the fire detects while smoke is added by a satellite image analyst. In June 2003 the HMS underwent an upgrade. A number of features were added for users of the products generated on the HMS. Sectors covering Alaska and Hawaii were added. The use of Geographic Information System (GIS) shape files for smoke analysis is a new feature. Shape files show the progression and time of a single smoke plume as each analysis is drawn and then updated. The analyst now has the ability to view GOES, POES, and MODIS data in a single loop. This allows the fire analyst the ability to easily confirm a fire in three different data sets. The upgraded HMS has faster satellite looping and gives the analyst the ability to design a false color image for a particular region. The GOES satellites provide a relatively coarse 4 km infrared resolution at satellite subpoint for thermal fire detection but provide the advantage of a rapid update cycle. GOES imagery is updated every 15 minutes utilizing both GOES-10 and GOES-12. POES imagery from NOAA-15, NOAA-16 and NOAA-17 and MODIS from Terra and Aqua are employed with each satellite providing twice per day coverage (more frequent over Alaska). While the frequency of imagery is much less than with GOES the higher resolution of these satellites (1 km along the suborbital track) allows for detection of smaller and/or cooler burning fires. Each of the algorithms utilizes a number of temporal, thermal and contextual filters in an attempt to screen out false detects. However, false detects do get processed by the algorithms to varying degrees. Therefore, the automated fire detects from each algorithm are quality controlled by an analyst who scans the imagery and may either accept or delete fire points. The analyst also has the ability to manually add additional fire points based on the imagery. Smoke is outlined by the analyst using visible imagery, primarily GOES which provides 1 km resolution. Occasionally a smoke plume seen in visible imagery is the only indicator of a fire and would be manually added to the fire detect file. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) is a forecast model that projects the trajectory and dispersion of a smoke plume over a period of time. The HYSPLIT is run for fires that are selected by the analyst that are seen to be producing a significant smoke plume. The analyst defines a smoke producing area commensurate with the size of the fire and amount of smoke detected. The output is hosted on an Air Resources Lab (ARL) web site which can be accessed from the web site listed below. All of the information is posted to the web page noted below. Besides the interactive GIS presentation users can view the product in graphical jpg format. The analyst edited points as well as the unedited automated fire detects are available for users to view directly on the web page or to download. All of the data is also archived and accessed via ftp.
Estimation of carbon emissions from wildfires in Alaskan boreal forests using AVHRR data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasischke, E.S.; French, N.H.F.; Bourgeau-Chavez, L.L
1993-06-01
The objectives of this research study were to evaluate the utility of using AVHRR data for locating and measuring the areal extent of wildfires in the boreal forests of Alaska and to estimate the amount of carbon being released during these fires. Techniques were developed to using the normalized difference vegetation signature derived from AVHRR data to detect and measure the area of fires in Alaska. A model was developed to estimate the amount of biomass/carbon being stored in Alaskan boreal forests, and the amount of carbon released during fires. The AVHRR analysis resulted in detection of > 83% ofmore » all forest fires greater than 2,000 ha in size in the years 1990 and 1991. The areal estimate derived from AVHRR data were 75% of the area mapped by the Alaska Fire Service for these years. Using fire areas and locations for 1954 through 1992, it was determined that on average, 13.0 gm-C-m-2 of boreal forest area is released during fires every year. This estimate is two to six times greater than previous reported estimates. Our conclusions are that the analysis of AVHRR data represents a viable means for detecting and mapping fires in boreal regions on a global basis.« less
Grabowska, Teresa; Skowronek, Rafał; Nowicka, Joanna; Sybirska, Halina
2012-09-01
Hydrogen cyanide (HCN) is one of the most toxic components of fire smoke, but insufficient attention is paid to its potential role as a cause of injury or death in victims (alive or dead) of enclosed-space fires. To analyse the prevalence of toxic HCN exposure in fire victims and factors that may influence its toxicity, particularly the co-presence of carbon monoxide (CO) and ethanol. Blood samples from fire victims and persons rescued from fires were analysed. A positive result for HCN (mean concentration 16.83 mg/l) was detected in blood samples from 169 of 285 fire-related deaths (59%). Ethanol was present in 91 (65%) of 139 samples with coincident presence of HCN and carboxyhaemoglobin (COHb). HCN (mean 4.0 mg/l) was also detected in 20 of 40 (50%) fire survivors. The high prevalence of coincident CO and HCN in enclosed-space, fire-related deaths should alert clinicians to suspect toxic HCN exposure in all persons rescued from fire with signs and symptoms of respiratory distress. Medical procedures in persons rescued from enclosed-space fires, especially in the pre-hospital setting, should be augmented to cover the possibility of toxic HCN exposure, particularly in individuals who do not respond to standard supportive therapy. Likewise, post-mortem investigations should routinely include assays for HCN when determining probable cause of death.
Characterization of a mine fire using atmospheric monitoring system sensor data
Yuan, L.; Thomas, R.A.; Zhou, L.
2017-01-01
Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth — in terms of heat release rate — and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division’s Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy. PMID:28845058
Kristen L. Shive; Amanda M. Kuenzi; Carolyn H. Sieg; Peter Z. Fule
2013-01-01
We used a multi-year data set from the 2002 Rodeo-Chediski Fire to detect post-fire trends in plant community response in burned ponderosa pine forests. Within the burn perimeter, we examined the effects of pre-fire fuels treatments on post-fire vegetation by comparing paired treated and untreated sites on the Apache-Sitgreaves National Forest.We sampled these paired...
NASA Astrophysics Data System (ADS)
Hyer, E. J.; Reid, J. S.; Schmidt, C. C.; Giglio, L.; Prins, E.
2009-12-01
The diurnal cycle of fire activity is crucial for accurate simulation of atmospheric effects of fire emissions, especially at finer spatial and temporal scales. Estimating diurnal variability in emissions is also a critical problem for construction of emissions estimates from multiple sensors with variable coverage patterns. An optimal diurnal emissions estimate will use as much information as possible from satellite fire observations, compensate known biases in those observations, and use detailed theoretical models of the diurnal cycle to fill in missing information. As part of ongoing improvements to the Fire Location and Monitoring of Burning Emissions (FLAMBE) fire monitoring system, we evaluated several different methods of integrating observations with different temporal sampling. We used geostationary fire detections from WF_ABBA, fire detection data from MODIS, empirical diurnal cycles from TRMM, and simple theoretical diurnal curves based on surface heating. Our experiments integrated these data in different combinations to estimate the diurnal cycles of emissions for each location and time. Hourly emissions estimates derived using these methods were tested using an aerosol transport model. We present results of this comparison, and discuss the implications of our results for the broader problem of multi-sensor data fusion in fire emissions modeling.
NASA Astrophysics Data System (ADS)
Cattau, Megan E.; Marlier, Miriam E.; DeFries, Ruth
2016-10-01
Fire is a common tool for land conversion and management associated with oil palm production. Fires can cause biodiversity and carbon losses, emit pollutants that deteriorate air quality and harm human health, and damage property. The Roundtable on Sustainable Palm Oil (RSPO) prohibits the use of fire on certified concessions. However, efforts to suppress fires are more difficult during El Niño conditions and on peatlands. In this paper, we address the following questions for oil palm concessions developed prior to 2012 in Sumatra and Kalimantan, the leading producers of oil palm both within Indonesia and globally: (1) for the period 2012-2015, did RSPO-certified concessions have a lower density of fire detections, fire ignitions, or ‘escaped’ fires compared with those concessions that are not certified? and (2) did this pattern change with increasing likelihood of fires in concessions located on peatland and in dry years? These questions are particularly critical in fuel-rich peatlands, of which approximately 46% of the area was designated as oil palm concession as of 2010. We conducted propensity scoring to balance covariate distributions between certified and non-certified concessions, and we compare the density of fires in certified and non-certified concessions using Kolmogorov-Smirnov tests based on moderate resolution imaging spectroradiometer Active Fire Detections from 2012-2015 clustered into unique fire events. We find that fire activity is significantly lower on RSPO certified concessions than non-RSPO certified concessions when the likelihood of fire is low (i.e., on non-peatlands in wetter years), but not when the likelihood of fire is high (i.e., on non-peatlands in dry years or on peatlands). Our results provide evidence that RSPO has the potential to reduce fires, though it is currently only effective when fire likelihood is relatively low. These results imply that, in order for this mechanism to reduce fire, additional strategies will be needed to control fires in oil palm plantations in dry years and on peatlands.
Precipitation-fire linkages in Indonesia (1997-2015)
NASA Astrophysics Data System (ADS)
Fanin, Thierry; van der Werf, Guido R.
2017-09-01
Over the past decades, fires have burned annually in Indonesia, yet the strength of the fire season is for a large part modulated by the El Niño Southern Oscillation (ENSO). The two most recent very strong El Niño years were 2015 and 1997. Both years involved high incidences of fire in Indonesia. At present, there is no consistent satellite data stream spanning the full 19-year record, thereby complicating a comparison between these two fire seasons. We have investigated how various fire and precipitation datasets can be merged to better compare the fire dynamics in 1997 and 2015 as well as in intermediary years. We combined nighttime active fire detections from the Along Track Scanning Radiometer (ATSR) World Fire Atlas (WFA) available from 1997 until 2012 and the nighttime subset of the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor from 2001 until now. For the overlapping period, MODIS detected about 4 times more fires than ATSR, but this ratio varied spatially. Although the reasons behind this spatial variability remain unclear, the coefficient of determination for the overlapping period was high (R2 = 0. 97, based on monthly data) and allowed for a consistent time series. We then constructed a rainfall time series based on the Global Precipitation Climatology Project (GPCP, 1997-2015) and the Tropical Rainfall Measurement Mission Project (TRMM, 1998-2015). Relations between antecedent rainfall and fire activity were not uniform in Indonesia. In southern Sumatra and Kalimantan, we found that 120 days of rainfall accumulation had the highest coefficient of determination with annual fire intensity. In northern Sumatra, this period was only 30 days. Thresholds of 200 and 305 mm average rainfall accumulation before each active fire were identified to generate a high-incidence fire year in southern Sumatra and southern Kalimantan, respectively. The number of active fires detected in 1997 was 2.2 times higher than in 2015. Assuming the ratio between nighttime and total active fires did not change, the 1997 season was thus about twice as severe as the one in 2015. Although large, the difference is smaller than found in fire emission estimates from the Global Fire Emissions Database (GFED). Besides different rainfall amounts and patterns, the two-fold difference between 1997 and 2015 may be attributed to a weaker El Niño and neutral Indian Ocean Dipole (IOD) conditions in the later year. The fraction of fires burning in peatlands was higher in 2015 compared to 1997 (61 and 45 %, respectively). Finally, we found that the non-linearity between rainfall and fire in Indonesia stems from longer periods without rain in extremely dry years.
Field test of optical and electrical fire detectors in simulated fire scenes in a cable tunnel
NASA Astrophysics Data System (ADS)
Fan, Dian; Ding, Hongjun; Wang, Dorothy Y.; Jiang, Desheng
2014-06-01
This paper presents the testing results of three types of fire detectors: electrical heat sensing cable, optical fiber Raman temperature sensing detector, and optical fiber Bragg grating (FBG) temperature sensing detector, in two simulated fire scenes in a cable tunnel. In the small-scale fire with limited thermal radiation and no flame, the fire alarm only comes from the heat sensors which directly contact with the heat source. In the large-scale fire with about 5 °C/min temperature rising speed within a 3-m span, the fire alarm response time of the fiber Raman sensor and FBG sensors was about 30 seconds. The test results can be further used for formulating regulation for early fire detection in cable tunnels.
NASA Technical Reports Server (NTRS)
1978-01-01
An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.
10 CFR 36.27 - Fire protection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Fire protection. 36.27 Section 36.27 Energy NUCLEAR... Requirements for Irradiators § 36.27 Fire protection. (a) The radiation room at a panoramic irradiator must... become fully shielded if a fire is detected. (b) The radiation room at a panoramic irradiator must be...
Recent Arctic tundra fire initiates widespread thermokarst development.
Jones, Benjamin M; Grosse, Guido; Arp, Christopher D; Miller, Eric; Liu, Lin; Hayes, Daniel J; Larsen, Christopher F
2015-10-29
Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.
Recent Arctic tundra fire initiates widespread thermokarst development
Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; Miller, Eric; Liu, Lin; Hayes, Daniel J.; Larsen, Christopher F.
2015-01-01
Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions. PMID:26511650
Recent Arctic tundra fire initiates widespread thermokarst development
Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; ...
2015-10-29
Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burnmore » severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for -50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.« less
Recent Arctic tundra fire initiates widespread thermokarst development
Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; Miller, Eric K.; Liu, Lingli; Hayes, Daniel J.; Larsen, Christopher F.
2015-01-01
Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.
NASA Astrophysics Data System (ADS)
Tonbul, H.; Kavzoglu, T.
2017-12-01
Forest fires are among the most important natural disasters with the damage to the natural habitat and human-life. Mapping damaged forest fires is crucial for assessing ecological effects caused by fire, monitoring land cover changes and modeling atmospheric and climatic effects of fire. In this context, satellite data provides a great advantage to users by providing a rapid process of detecting burning areas and determining the severity of fire damage. Especially, Mediterranean ecosystems countries sets the suitable conditions for the forest fires. In this study, the determination of burnt areas of forest fire in Pedrógão Grande region of Portugal occurred in June 2017 was carried out using Landsat 8 OLI and Sentinel-2A satellite images. The Pedrógão Grande fire was one of the largest fires in Portugal, more than 60 people was killed and thousands of hectares were ravaged. In this study, four pairs of pre-fire and post-fire top of atmosphere (TOA) and atmospherically corrected images were utilized. The red and near infrared (NIR) spectral bands of pre-fire and post-fire images were stacked and multiresolution segmentation algorithm was applied. In the segmentation processes, the image objects were generated with estimated optimum homogeneity criteria. Using eCognition software, rule sets have been created to distinguish unburned areas from burned areas. In constructing the rule sets, NDVI threshold values were determined pre- and post-fire and areas where vegetation loss was detected using the NDVI difference image. The results showed that both satellite images yielded successful results for burned area discrimination with a very high degree of consistency in terms of spatial overlap and total burned area (over 93%). Object based image analysis (OBIA) was found highly effective in delineation of burnt areas.
Analysing Forst Fores in China
NASA Astrophysics Data System (ADS)
Casanova, Jose-Luis; Sanz, Julia; Garcia, Miguel; Salvador, Pablo; Quin, Xianlin; Li, Zengyuan; Yin, Lingyu; Sun, Guifen; Goldammer, Johann
2016-08-01
Forest fires are a major concern in China because of the economical and biodiversity looses and because the emission of trace gases into the atmosphere. During 12 years LATUV has been working in the development of forest fires products, especially in North China. A catalogue of products has been generated like: forest fire detection, burnt area mapping, gas emissions, severity and burnt biomass.Forest fires can be detected by different platforms and sensor but the rate of false alarms is high because of industrial activity. The gas emissions are important, because of the forest fires inside China and because the forest fires between China and Russia that have a considerable impact in the atmosphere composition in China.The availability of new sensors on board sentinel 2 and sentinel 3 platforms will increase the product catalogue with new products more accurate and increasing the periodicity information.
Fire safety applications for spacecraft
NASA Technical Reports Server (NTRS)
Friedman, Robert; Olson, Sandra L.
1989-01-01
Fire safety for spacecraft is reviewed by first describing current practices, many of which are adapted directly from aircraft. Then, current analyses and experimental knowledge in low-gravity combustion, with implications for fire safety are discussed. In orbiting spacecraft, the detection and suppression of flames are strongly affected by the large reduction in buoyant flows under low gravity. Generally, combustion intensity is reduced in low gravity. There are some notable exceptions, however, one example being the strong enhancement of flames by low-velocity ventilation flows in space. Finally, the future requirements in fire safety, particularly the needs of long-duration space stations in fire prevention, detection, extinguishment, and atmospheric control are examined. The goal of spacecraft fire-safety investigations is the establishment of trade-offs that promote maximum safety without hampering the useful human and scientific activities in space.
The double slit experiment and the time reversed fire alarm
NASA Astrophysics Data System (ADS)
Halabi, Tarek
2011-03-01
When both slits of the double slit experiment are open, closing one paradoxically increases the detection rate at some points on the detection screen. Feynman famously warned that temptation to "understand" such a puzzling feature only draws us into blind alleys. Nevertheless, we gain insight into this feature by drawing an analogy between the double slit experiment and a time reversed fire alarm. Much as closing the slit increases probability of a future detection, ruling out fire drill scenarios, having heard the fire alarm, increases probability of a past fire (using Bayesian inference). Classically, Bayesian inference is associated with computing probabilities of past events. We therefore identify this feature of the double slit experiment with a time reversed thermodynamic arrow. We believe that much of the enigma of quantum mechanics is simply due to some variation of time's arrow.
Optical Flow Estimation for Flame Detection in Videos
Mueller, Martin; Karasev, Peter; Kolesov, Ivan; Tannenbaum, Allen
2014-01-01
Computational vision-based flame detection has drawn significant attention in the past decade with camera surveillance systems becoming ubiquitous. Whereas many discriminating features, such as color, shape, texture, etc., have been employed in the literature, this paper proposes a set of motion features based on motion estimators. The key idea consists of exploiting the difference between the turbulent, fast, fire motion, and the structured, rigid motion of other objects. Since classical optical flow methods do not model the characteristics of fire motion (e.g., non-smoothness of motion, non-constancy of intensity), two optical flow methods are specifically designed for the fire detection task: optimal mass transport models fire with dynamic texture, while a data-driven optical flow scheme models saturated flames. Then, characteristic features related to the flow magnitudes and directions are computed from the flow fields to discriminate between fire and non-fire motion. The proposed features are tested on a large video database to demonstrate their practical usefulness. Moreover, a novel evaluation method is proposed by fire simulations that allow for a controlled environment to analyze parameter influences, such as flame saturation, spatial resolution, frame rate, and random noise. PMID:23613042
Network-Based Real-time Integrated Fire Detection and Alarm (FDA) System with Building Automation
NASA Astrophysics Data System (ADS)
Anwar, F.; Boby, R. I.; Rashid, M. M.; Alam, M. M.; Shaikh, Z.
2017-11-01
Fire alarm systems have become increasingly an important lifesaving technology in many aspects, such as applications to detect, monitor and control any fire hazard. A large sum of money is being spent annually to install and maintain the fire alarm systems in buildings to protect property and lives from the unexpected spread of fire. Several methods are already developed and it is improving on a daily basis to reduce the cost as well as increase quality. An integrated Fire Detection and Alarm (FDA) systems with building automation was studied, to reduce cost and improve their reliability by preventing false alarm. This work proposes an improved framework for FDA system to ensure a robust intelligent network of FDA control panels in real-time. A shortest path algorithmic was chosen for series of buildings connected by fiber optic network. The framework shares information and communicates with each fire alarm panels connected in peer to peer configuration and declare the network state using network address declaration from any building connected in network. The fiber-optic connection was proposed to reduce signal noises, thus increasing large area coverage, real-time communication and long-term safety. Based on this proposed method an experimental setup was designed and a prototype system was developed to validate the performance in practice. Also, the distributed network system was proposed to connect with an optional remote monitoring terminal panel to validate proposed network performance and ensure fire survivability where the information is sequentially transmitted. The proposed FDA system is different from traditional fire alarm and detection system in terms of topology as it manages group of buildings in an optimal and efficient manner.Introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.
Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burnmore » severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for -50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.« less
Fire Detection Tradeoffs as a Function of Vehicle Parameters
NASA Technical Reports Server (NTRS)
Urban, David L.; Dietrich, Daniel L.; Brooker, John E.; Meyer, Marit E.; Ruff, Gary A.
2016-01-01
Fire survivability depends on the detection of and response to a fire before it has produced an unacceptable environment in the vehicle. This detection time is the result of interplay between the fire burning and growth rates; the vehicle size; the detection system design; the transport time to the detector (controlled by the level of mixing in the vehicle); and the rate at which the life support system filters the atmosphere, potentially removing the detected species or particles. Given the large differences in critical vehicle parameters (volume, mixing rate and filtration rate) the detection approach that works for a large vehicle (e.g. the ISS) may not be the best choice for a smaller crew capsule. This paper examines the impact of vehicle size and environmental control and life support system parameters on the detectability of fires in comparison to the hazard they present. A lumped element model was developed that considers smoke, heat, and toxic product release rates in comparison to mixing and filtration rates in the vehicle. Recent work has quantified the production rate of smoke and several hazardous species from overheated spacecraft polymers. These results are used as the input data set in the lumped element model in combination with the transport behavior of major toxic products released by overheating spacecraft materials to evaluate the necessary alarm thresholds to enable appropriate response to the fire hazard.
46 CFR 161.002-2 - Types of fire-protective systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... systems will be considered to consist of normal and emergency power supplies, a fire detecting control... subpart, manual fire alarm systems will be considered to consist of normal and emergency power supplies, a...
46 CFR 161.002-2 - Types of fire-protective systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... systems will be considered to consist of normal and emergency power supplies, a fire detecting control... subpart, manual fire alarm systems will be considered to consist of normal and emergency power supplies, a...
Smoke Detection: Critical Element of a University Residential Fire Safety Program.
ERIC Educational Resources Information Center
Robinson, Donald A.
1979-01-01
A program at the University of Massachusetts/Amherst to assess the fire protection needs of its residential system is described. The study culminated in a multiphase fire safety improvement plan. (JMF)
Prototype of microbolometer thermal infrared camera for forest fire detection from space
NASA Astrophysics Data System (ADS)
Guerin, Francois; Dantes, Didier; Bouzou, Nathalie; Chorier, Philippe; Bouchardy, Anne-Marie; Rollin, Joël.
2017-11-01
The contribution of the thermal infrared (TIR) camera to the Earth observation FUEGO mission is to participate; to discriminate the clouds and smoke; to detect the false alarms of forest fires; to monitor the forest fires. Consequently, the camera needs a large dynamic range of detectable radiances. A small volume, low mass and power are required by the small FUEGO payload. These specifications can be attractive for other similar missions.
Near real-time estimation of burned area using VIIRS 375 m active fire product
NASA Astrophysics Data System (ADS)
Oliva, P.; Schroeder, W.
2016-12-01
Every year, more than 300 million hectares of land burn globally, causing significant ecological and economic consequences, and associated climatological effects as a result of fire emissions. In recent decades, burned area estimates generated from satellite data have provided systematic global information for ecological analysis of fire impacts, climate and carbon cycle models, and fire regimes studies, among many others. However, there is still need of near real-time burned area estimations in order to assess the impacts of fire and estimate smoke and emissions. The enhanced characteristics of the Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m channels on board the Suomi National Polar-orbiting Partnesship (S-NPP) make possible the use of near real-time active fire detection data for burned area estimation. In this study, consecutive VIIRS 375 m active fire detections were aggregated to produce the VIIRS 375 m burned area (BA) estimation over ten ecologically diverse study areas. The accuracy of the BA estimations was assessed by comparison with Landsat-8 supervised burned area classification. The performance of the VIIRS 375 m BA estimates was dependent on the ecosystem characteristics and fire behavior. Higher accuracy was observed in forested areas characterized by large long-duration fires, while grasslands, savannas and agricultural areas showed the highest omission and commission errors. Complementing those analyses, we performed the burned area estimation of the largest fires in Oregon and Washington states during 2015 and the Fort McMurray fire in Canada 2016. The results showed good agreement with NIROPs airborne fire perimeters proving that the VIIRS 375 m BA estimations can be used for near real-time assessments of fire effects.
Farris, Calvin A; Baisan, Christopher H; Falk, Donald A; Yool, Stephen R; Swetnam, Thomas W
2010-09-01
Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire-scar fire history reconstructions has been hampered due to a lack of empirical comparisons with independent fire history data sources. We carried out such a comparison in a 2780-ha ponderosa pine forest on Mica Mountain in southern Arizona (USA) for the time period 1937-2000. Using documentary records of fire perimeter maps and ignition locations, we compared reconstructions of key spatial and temporal fire regime parameters developed from documentary fire maps and independently collected fire-scar data (n = 60 plots). We found that fire-scar data provided spatially representative and complete inventories of all major fire years (> 100 ha) in the study area but failed to detect most small fires. There was a strong linear relationship between the percentage of samples recording fire scars in a given year (i.e., fire-scar synchrony) and total area burned for that year (y = 0.0003x + 0.0087, r2 = 0.96). There was also strong spatial coherence between cumulative fire frequency maps interpolated from fire-scar data and ground-mapped fire perimeters. Widely reported fire frequency summary statistics varied little between fire history data sets: fire-scar natural fire rotations (NFR) differed by < 3 yr from documentary records (29.6 yr); mean fire return intervals (MFI) for large-fire years (i.e., > or = 25% of study area burned) were identical between data sets (25.5 yr); fire-scar MFIs for all fire years differed by 1.2 yr from documentary records. The known seasonal timing of past fires based on documentary records was furthermore reconstructed accurately by observing intra-annual ring position of fire scars and using knowledge of tree-ring growth phenology in the Southwest. Our results demonstrate clearly that representative landscape-scale fire histories can be reconstructed accurately from spatially distributed fire-scar samples.
New global fire emission estimates and evaluation of volatile organic compounds
C. Wiedinmyer; L. K. Emmons; S. K. Akagi; R. J. Yokelson; J. J. Orlando; J. A. Al-Saadi; A. J. Soja
2010-01-01
A daily, high-resolution, global fire emissions model has been built to estimate emissions from open burning for air quality modeling applications: The Fire INventory from NCAR (FINN version 1). The model framework uses daily fire detections from the MODIS instruments and updated emission factors, specifically for speciated non-methane organic compounds (NMOC). Global...
Counting the cost of false alarms.
2013-05-01
While fire and rescue service personnel, the Government, those responsible for fire safety in the healthcare sector, the Health and Safety Executive, fire and rescue services, and indeed fire alarm and detection equipment manufacturers, must be pleased that the number of false fire alarms continues to fall, fire services still attended just under 585,000 fires or false alarm incidents across Great Britain in 2011/12. Of this total, 272,000 were actual fires, of which around 24,000 were in premises classified by the Department for Communities and Local Government (DCLG) as 'other buildings', i.e. not 'dwellings', a category that includes healthcare facilities (representing a 4% fall on 2010-2011). HEJ looks behind the statistics, and at the possibility that some fire services could, in future, charge healthcare providers that persistently report incidents that turn out to be false alarms.
NASA Astrophysics Data System (ADS)
Snarski, Steve; Menozzi, Alberico; Sherrill, Todd; Volpe, Chris; Wille, Mark
2010-04-01
This paper describes experimental results from recent live-fire data collects that demonstrate the capability of a prototype system for projectile detection and tracking. This system, which is being developed at Applied Research Associates, Inc., under the FightSight program, consists of a high-speed thermal camera and sophisticated image processing algorithms to detect and track projectiles. The FightSight operational vision is automated situational intelligence to detect, track, and graphically map large-scale firefights and individual shooting events onto command and control (C2) systems in real time (shot location and direction, weapon ID, movements and trends). Gaining information on enemy-fire trajectories allows educated inferences on the enemy's intent, disposition, and strength. Our prototype projectile detection and tracking system has been tested at the Joint Readiness Training Center (Ft Polk, LA) during live-fire convoy and mortar registration exercises, in the summer of 2009. It was also tested during staged military-operations- on-urban-terrain (MOUT) firefight events at Aberdeen Test Center (Aberdeen, MD) under the Hostile Fire Defeat Army Technology Objective midterm experiment, also in the summer of 2009, where we introduced fusion with acoustic and EO sensors to provide 3D localization and near-real time display of firing events. Results are presented in this paper that demonstrate effective and accurate detection and localization of weapon fire (5.56mm, 7.62mm, .50cal, 81/120mm mortars, 40mm) in diverse and challenging environments (dust, heat, day and night, rain, arid open terrain, urban clutter). FightSight's operational capabilities demonstrated under these live-fire data collects can support closecombat scenarios. As development continues, FightSight will be able to feed C2 systems with a symbolic map of enemy actions.
A wireless sensor network deployment for rural and forest fire detection and verification.
Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra
2009-01-01
Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world.
A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification
Lloret, Jaime; Garcia, Miguel; Bri, Diana; Sendra, Sandra
2009-01-01
Forest and rural fires are one of the main causes of environmental degradation in Mediterranean countries. Existing fire detection systems only focus on detection, but not on the verification of the fire. However, almost all of them are just simulations, and very few implementations can be found. Besides, the systems in the literature lack scalability. In this paper we show all the steps followed to perform the design, research and development of a wireless multisensor network which mixes sensors with IP cameras in a wireless network in order to detect and verify fire in rural and forest areas of Spain. We have studied how many cameras, sensors and access points are needed to cover a rural or forest area, and the scalability of the system. We have developed a multisensor and when it detects a fire, it sends a sensor alarm through the wireless network to a central server. The central server selects the closest wireless cameras to the multisensor, based on a software application, which are rotated to the sensor that raised the alarm, and sends them a message in order to receive real-time images from the zone. The camera lets the fire fighters corroborate the existence of a fire and avoid false alarms. In this paper, we show the test performance given by a test bench formed by four wireless IP cameras in several situations and the energy consumed when they are transmitting. Moreover, we study the energy consumed by each device when the system is set up. The wireless sensor network could be connected to Internet through a gateway and the images of the cameras could be seen from any part of the world. PMID:22291533
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Kaufman, Yoram J.
2003-01-01
Biomass burning is the main source of smoke aerosols and certain trace gases in the atmosphere. However, estimates of the rates of biomass consumption and emission of aerosols and trace gases from fires have not attained adequate reliability thus far. Traditional methods for deriving emission rates employ the use of emission factors e(sub x), (in g of species x per kg of biomass burned), which are difficult to measure from satellites. In this era of environmental monitoring from space, fire characterization was not a major consideration in the design of the early satellite-borne remote sensing instruments, such as AVHRR. Therefore, although they are able to provide fire location information, they were not adequately sensitive to variations in fire strength or size, because their thermal bands used for fire detection saturated at the lower end of fire radiative temperature range. As such, hitherto, satellite-based emission estimates employ proxy techniques using satellite derived fire pixel counts (which do not express the fire strength or rate of biomass consumption) or burned areas (which can only be obtained after the fire is over). The MODIS sensor, recently launched into orbit aboard EOS Terra (1999) and Aqua (2002) satellites, have a much higher saturation level and can, not only detect the fire locations 4 times daily, but also measures the at-satellite fire radiative energy (which is a measure of the fire strength) based on its 4 micron channel temperature. Also, MODIS measures the optical thickness of smoke and other aerosols. Preliminary analysis shows appreciable correlation between the MODIS-derived rates of emission of fire radiative energy and smoke over different regions across the globe. These relationships hold great promise for deriving emission coefficients, which can be used for estimating smoke aerosol emissions from MODIS active fire products. This procedure has the potential to provide more accurate emission estimates in near real-time, providing opportunities for various disaster management applications such as alerts, evacuation and, smoke dispersion forecasting.
Rickbeil, Gregory J M; Hermosilla, Txomin; Coops, Nicholas C; White, Joanne C; Wulder, Michael A
2017-03-01
Fire regimes are changing throughout the North American boreal forest in complex ways. Fire is also a major factor governing access to high-quality forage such as terricholous lichens for barren-ground caribou (Rangifer tarandus groenlandicus). Additionally, fire alters forest structure which can affect barren-ground caribou's ability to navigate in a landscape. Here, we characterize how the size and severity of fires are changing across five barren-ground caribou herd ranges in the Northwest Territories and Nunavut, Canada. Additionally, we demonstrate how time since fire, fire severity, and season result in complex changes in caribou behavioural metrics estimated using telemetry data. Fire disturbances were identified using novel gap-free Landsat surface reflectance composites from 1985 to 2011 across all herd ranges. Burn severity was estimated using the differenced normalized burn ratio. Annual area burned and burn severity were assessed through time for each herd and related to two behavioural metrics: velocity and relative turning angle. Neither annual area burned nor burn severity displayed any temporal trend within the study period. However, certain herds, such as the Ahiak/Beverly, have more exposure to fire than other herds (i.e. Cape Bathurst had a maximum forested area burned of less than 4 km 2 ). Time since fire and burn severity both significantly affected velocity and relative turning angles. During fall, winter, and spring, fire virtually eliminated foraging-focused behaviour for all 26 years of analysis while more severe fires resulted in a marked increase in movement-focused behaviour compared to unburnt patches. Between seasons, caribou used burned areas as early as 1-year postfire, demonstrating complex, nonlinear reactions to time since fire, fire severity, and season. In all cases, increases in movement-focused behaviour were detected postfire. We conclude that changes in caribou behaviour immediately postfire are primarily driven by changes in forest structure rather than changes in terricholous lichen availability. © 2016 John Wiley & Sons Ltd.
Automated Wildfire Detection Through Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen
2005-01-01
Wildfires have a profound impact upon the biosphere and our society in general. They cause loss of life, destruction of personal property and natural resources and alter the chemistry of the atmosphere. In response to the concern over the consequences of wildland fire and to support the fire management community, the National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data and Information Service (NESDIS) located in Camp Springs, Maryland gradually developed an operational system to routinely monitor wildland fire by satellite observations. The Hazard Mapping System, as it is known today, allows a team of trained fire analysts to examine and integrate, on a daily basis, remote sensing data from Geostationary Operational Environmental Satellite (GOES), Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors and generate a 24 hour fire product for the conterminous United States. Although assisted by automated fire detection algorithms, N O M has not been able to eliminate the human element from their fire detection procedures. As a consequence, the manually intensive effort has prevented NOAA from transitioning to a global fire product as urged particularly by climate modelers. NASA at Goddard Space Flight Center in Greenbelt, Maryland is helping N O M more fully automate the Hazard Mapping System by training neural networks to mimic the decision-making process of the frre analyst team as well as the automated algorithms.
NASA Astrophysics Data System (ADS)
Bellecci, C.; De Leo, L.; Gaudio, P.; Gelfusa, M.; Lo Feudo, T.; Martellucci, S.; Richetta, M.
2006-09-01
Forest fires can be the cause of serious environmental and economic damages. For this reason a considerable effort has been directed toward the forest protection and fire fighting. In the early forest fire detection, Lidar technique present considerable advantages compared to the passive detection methods based on infrared cameras currently in common use, due its higher sensitivity and ability to accurately locate the fire. The combustion phase of the vegetable matter causes a great amount of water vapour emission, thus the water molecule behaviour will be studied to obtain a fire detection system ready and efficient also before the flame propagation. A first evaluation of increment of the water vapour concentration compared to standard one will be estimated by a numerical simulation. These results will be compared with the experimental measurements carried out into a cell with a CO II Dial system, burning different kinds of vegetable fuel. Our results and their comparison will be reported in this paper.
Fire safety concerns in space operations
NASA Technical Reports Server (NTRS)
Friedman, Robert
1987-01-01
This paper reviews the state-of-the-art in fire control techniques and identifies important issues for continuing research, technology, and standards. For the future permanent orbiting facility, the space station, fire prevention and control calls for not only more stringent fire safety due to the long-term and complex missions, but also for simplified and flexible safety rules to accommodate the variety of users. Future research must address a better understanding of the microgravity space environment as it influences fire propagation and extinction and the application of the technology of fire detection, extinguishment, and material assessment. Spacecraft fire safety should also consider the adaptation of methods and concepts derived from aircraft and undersea experience.
Fallows, Eric A; Cleary, Thomas G; Miller, J Houston
2009-02-01
A portable cavity ringdown spectroscopy (CRDS) apparatus was used to detect effluents from small test fires in the Fire Emulator/Detector Evaluator (FE/DE) and a small room in the Building Fire and Research Laboratory at the National Institute of Standards and Technology (NIST). The output from two lasers is combined to detect four combustion gases, CO, CO(2), HCN, and C(2)H(2), near simultaneously using CRDS. The goal of this work was to demonstrate the feasibility of using a CRDS sensor as a fire detector. Fire effluents were extracted from several test facilities and measurements of CO, CO(2), HCN, and C(2)H(2) were obtained every 25-30 s. In the FE/DE test, peak concentrations of the gases from smoldering paper were 420 parts in 10(6) (ppm) CO, 1600 ppm CO(2), 530 parts in 10(9) (ppb) HCN, and 440 ppb C(2)H(2). Peak gas concentrations from the small room were 270 ppm CO, 2100 ppm CO(2), and 310 ppb C(2)H(2).
46 CFR 27.203 - What are the requirements for fire detection on towing vessels?
Code of Federal Regulations, 2014 CFR
2014-10-01
...— (a) Each detector, each control panel, and each fire alarm are approved under 46 CFR subpart 161.002...; (c) The system is arranged and installed so a fire in the engine room automatically sets off alarms... light; (2) Both an audible alarm to notify crew at the operating station of fire and visible alarms to...
46 CFR 27.203 - What are the requirements for fire detection on towing vessels?
Code of Federal Regulations, 2013 CFR
2013-10-01
...— (a) Each detector, each control panel, and each fire alarm are approved under 46 CFR subpart 161.002...; (c) The system is arranged and installed so a fire in the engine room automatically sets off alarms... light; (2) Both an audible alarm to notify crew at the operating station of fire and visible alarms to...
46 CFR 27.203 - What are the requirements for fire detection on towing vessels?
Code of Federal Regulations, 2011 CFR
2011-10-01
...— (a) Each detector, each control panel, and each fire alarm are approved under 46 CFR subpart 161.002...; (c) The system is arranged and installed so a fire in the engine room automatically sets off alarms... light; (2) Both an audible alarm to notify crew at the operating station of fire and visible alarms to...
46 CFR 27.203 - What are the requirements for fire detection on towing vessels?
Code of Federal Regulations, 2012 CFR
2012-10-01
...— (a) Each detector, each control panel, and each fire alarm are approved under 46 CFR subpart 161.002...; (c) The system is arranged and installed so a fire in the engine room automatically sets off alarms... light; (2) Both an audible alarm to notify crew at the operating station of fire and visible alarms to...
Thermal remote sensing of active vegetation fires and biomass burning events [Chapter 18
Martin J. Wooster; Gareth Roberts; Alistair M.S. Smith; Joshua Johnston; Patrick Freeborn; Stefania Amici; Andrew T. Hudak
2013-01-01
Thermal remote sensing is widely used in the detection, study, and management of biomass burning occurring in open vegetation fires. Such fires may be planned for land management purposes, may occur as a result of a malicious or accidental ignition by humans, or may result from lightning or other natural phenomena. Under suitable conditions, fires may spread rapidly...
Mapping day-of-burning with coarse-resolution satellite fire-detection data
Sean A. Parks
2014-01-01
Evaluating the influence of observed daily weather on observed fire-related effects (e.g. smoke production, carbon emissions and burn severity) often involves knowing exactly what day any given area has burned. As such, several studies have used fire progression maps  in which the perimeter of an actively burning fire is mapped at a fairly high temporal resolution -...
NASA Astrophysics Data System (ADS)
White, Joseph D.; Swint, Pamela
2014-01-01
Fire effects on desert ecosystems may be long-lasting based on ecological impact of fire in these environments which potentially is detected from multispectral sensors. To assess this, we analyzed changes in spectral characteristics from 1986 to 2010 of pixels associated with the location of fires that occurred between 1986 and 1999 in Big Bend National Park, USA, located in the northern Chihuahuan Desert. Using Landsat-5 Thematic Mapper (TM) data, we derived spectral indices including the simple ratio (SR), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and normalized burn ratio (NBR) from 1989, 1999, and 2010 from the TM data and compared changes in spectral index values for sites with and without observed fire. We found that the NDVI and SAVI had significantly different values over the time for burned sites of different fire sizes. When differences of the spectral indices were calculated from each time period, time since fire was correlated with the SR and NBR indices. These results showed that large fires potentially had a persistent and long-term change in vegetation cover and soil characteristics which were detected by the extraordinary long-data collection period of the Landsat-5 TM sensor.
Fires and Smoke in Central Africa
NASA Technical Reports Server (NTRS)
2002-01-01
This year's fire season in central Africa may have been the most severe ever. This true-color image also shows the location of fires (red dots) in the Democratic Republic of the Congo, Angola, and Zambia. The image was taken by the Moderate-Resolution Imaging Spectroradiometer (MODIS) aboard NASA 's Terra spacecraft on August 23, 2000, and was produced using the MODIS Active Fire Detection product. NASA scientists studied these fires during the SAFARI 2000 field campaign. Image By Jacques Descloitres, MODIS Land Team
Projected changes in daily fire spread across Canada over the next century
NASA Astrophysics Data System (ADS)
Wang, Xianli; Parisien, Marc-André; Taylor, Steve W.; Candau, Jean-Noël; Stralberg, Diana; Marshall, Ginny A.; Little, John M.; Flannigan, Mike D.
2017-02-01
In the face of climate change, predicting and understanding future fire regimes across Canada is a high priority for wildland fire research and management. Due in large part to the difficulties in obtaining future daily fire weather projections, one of the major challenges in predicting future fire activity is to estimate how much of the change in weather potential could translate into on-the-ground fire spread. As a result, past studies have used monthly, annual, or multi-decadal weather projections to predict future fires, thereby sacrificing information relevant to day-to-day fire spread. Using climate projections from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), historical weather observations, MODIS fire detection data, and the national fire database of Canada, this study investigated potential changes in the number of active burning days of wildfires by relating ‘spread days’ to patterns of daily fire-conducive weather. Results suggest that climate change over the next century may have significant impacts on fire spread days in almost all parts of Canada’s forested landmass; the number of fire spread days could experience a 2-to-3-fold increase under a high CO2 forcing scenario in eastern Canada, and a greater than 50% increase in western Canada, where the fire potential is already high. The change in future fire spread is critical in understanding fire regime changes, but is also imminently relevant to fire management operations and in fire risk mitigation.
A Forest Fire Sensor Web Concept with UAVSAR
NASA Astrophysics Data System (ADS)
Lou, Y.; Chien, S.; Clark, D.; Doubleday, J.; Muellerschoen, R.; Zheng, Y.
2008-12-01
We developed a forest fire sensor web concept with a UAVSAR-based smart sensor and onboard automated response capability that will allow us to monitor fire progression based on coarse initial information provided by an external source. This autonomous disturbance detection and monitoring system combines the unique capabilities of imaging radar with high throughput onboard processing technology and onboard automated response capability based on specific science algorithms. In this forest fire sensor web scenario, a fire is initially located by MODIS/RapidFire or a ground-based fire observer. This information is transmitted to the UAVSAR onboard automated response system (CASPER). CASPER generates a flight plan to cover the alerted fire area and executes the flight plan. The onboard processor generates the fuel load map from raw radar data, used with wind and elevation information, predicts the likely fire progression. CASPER then autonomously alters the flight plan to track the fire progression, providing this information to the fire fighting team on the ground. We can also relay the precise fire location to other remote sensing assets with autonomous response capability such as Earth Observation-1 (EO-1)'s hyper-spectral imager to acquire the fire data.
Suomi NPP VIIRS active fire product status
NASA Astrophysics Data System (ADS)
Ellicott, E. A.; Csiszar, I. A.; Schroeder, W.; Giglio, L.; Wind, B.; Justice, C. O.
2012-12-01
We provide an overview of the evaluation and development of the Active Fires product derived from the Visible Infrared Imager Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (SNPP) satellite during the first year of on-orbit data. Results from the initial evaluation of the standard SNPP Active Fires product, generated by the SNPP Interface Data Processing System (IDPS), supported the stabilization of the VIIRS Sensor Data Record (SDR) product. This activity focused in particular on the processing of the dual-gain 4 micron VIIRS M13 radiometric measurements into 750m aggregated data, which are fundamental for active fire detection. Following the VIIRS SDR product's Beta maturity status in April 2012, correlative analysis between VIIRS and near-simultaneous fire detections from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the NASA Earth Observing System Aqua satellite confirmed the expected relative detection rates driven primarily by sensor differences. The VIIRS Active Fires Product Development and Validation Team also developed a science code that is based on the latest MODIS Collection 6 algorithm and provides a full spatially explicit fire mask to replace the sparse array output of fire locations from a MODIS Collection 4 equivalent algorithm in the current IDPS product. The Algorithm Development Library (ADL) was used to support the planning for the transition of the science code into IDPS operations in the future. Product evaluation and user outreach was facilitated by a product website that provided end user access to fire data in user-friendly format over North America as well as examples of VIIRS-MODIS comparisons. The VIIRS fire team also developed an experimental product based on 375m VIIRS Imagery band measurements and provided high quality imagery of major fire events in US. By August 2012 the IDPS product achieved Beta maturity, with some known and documented shortfalls related to the processing of incorrect SDR input data and to apparent algorithm deficiencies in select observing and environmental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gueyagueler, T.; Karaman, H.
1995-12-31
In this paper fires due to spontaneous combustion in Middle Anatolian Lignite mine (OAL) which is the first fully mechanized underground lignite mine in Turkey, are studied. Since the installation of mechanization, due to spontaneous heating, four panel fires namely, AO1, AO2, AO3 and AO4 have broken out. During these fires, the concentrations of carbon monoxide, methane and the velocity of air are measured continuously by the Micro Minos Environmental monitoring system. For each fire, the environment where fire has started is examined and the possible causes of the fire are investigated. Also the precautions taken to extinguish the firemore » at different stages are described and the importance of the early detection of mine fire are discussed together with the limitations of the monitoring system the practical difficulties observed during the fire.« less
Code of Federal Regulations, 2011 CFR
2011-04-01
... MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.201 Scope. The purpose of this subpart is to set forth requirements that will assure reasonable fire safety to the occupants by reducing fire hazards and by providing measures for early detection. ...
Code of Federal Regulations, 2013 CFR
2013-04-01
... MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.201 Scope. The purpose of this subpart is to set forth requirements that will assure reasonable fire safety to the occupants by reducing fire hazards and by providing measures for early detection. ...
Code of Federal Regulations, 2010 CFR
2010-04-01
... MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.201 Scope. The purpose of this subpart is to set forth requirements that will assure reasonable fire safety to the occupants by reducing fire hazards and by providing measures for early detection. ...
Code of Federal Regulations, 2012 CFR
2012-04-01
... MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.201 Scope. The purpose of this subpart is to set forth requirements that will assure reasonable fire safety to the occupants by reducing fire hazards and by providing measures for early detection. ...
Code of Federal Regulations, 2014 CFR
2014-04-01
... MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Fire Safety § 3280.201 Scope. The purpose of this subpart is to set forth requirements that will assure reasonable fire safety to the occupants by reducing fire hazards and by providing measures for early detection. ...
Global Burned Area and Biomass Burning Emissions from Small Fires
NASA Technical Reports Server (NTRS)
Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.
2012-01-01
In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity analyses of key model parameters caused estimates of global burned area increases from small fires to vary between 24% and 54%. Biomass burning carbon emissions increased by 35% at a global scale when small fires were included in GFED3, from 1.9 Pg C/yr to 2.5 Pg C/yr. The contribution of tropical forest fires to year-to-year variability in carbon fluxes increased because small fires amplified emissions from Central America, South America and Southeast Asia-regions where drought stress and burned area varied considerably from year to year in response to El Nino-Southern Oscillation and other climate modes.
NASA Astrophysics Data System (ADS)
Gouverneur, B.; Verstockt, S.; Pauwels, E.; Han, J.; de Zeeuw, P. M.; Vermeiren, J.
2012-10-01
Various visible and infrared cameras have been tested for the early detection of wildfires to protect archeological treasures. This analysis was possible thanks to the EU Firesense project (FP7-244088). Although visible cameras are low cost and give good results during daytime for smoke detection, they fall short under bad visibility conditions. In order to improve the fire detection probability and reduce the false alarms, several infrared bands are tested ranging from the NIR to the LWIR. The SWIR and the LWIR band are helpful to locate the fire through smoke if there is a direct Line Of Sight. The Emphasis is also put on the physical and the electro-optical system modeling for forest fire detection at short and longer ranges. The fusion in three bands (Visible, SWIR, LWIR) is discussed at the pixel level for image enhancement and for fire detection.
NASA Astrophysics Data System (ADS)
Noojipady, Praveen; Morton, Douglas C.; Schroeder, Wilfrid; Carlson, Kimberly M.; Huang, Chengquan; Gibbs, Holly K.; Burns, David; Walker, Nathalie F.; Prince, Stephen D.
2017-08-01
Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce sustainable
palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO), include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance is unclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009, forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident active fire detections. Interannual variability in fire detections was strongly influenced by El Niño and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Niño events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75 % and 66 % lower on certified plantations than noncertified plantations during the 2009 and 2015 El Niño events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However, aligning certification standards with satellite monitoring capabilities will be critical to realize sustainable palm oil production and meet industry commitments to zero deforestation.
Parente, Joana; Pereira, Mário G; Tonini, Marj
2016-07-15
The present study focuses on the dependence of the space-time permutation scan statistics (STPSS) (1) on the input database's characteristics and (2) on the use of this methodology to assess changes on the fire regime due to different type of climate and fire management activities. Based on the very strong relationship between weather and the fire incidence in Portugal, the detected clusters will be interpreted in terms of the atmospheric conditions. Apart from being the country most affected by the fires in the European context, Portugal meets all the conditions required to carry out this study, namely: (i) two long and comprehensive official datasets, i.e. the Portuguese Rural Fire Database (PRFD) and the National Mapping Burnt Areas (NMBA), respectively based on ground and satellite measurements; (ii) the two types of climate (Csb in the north and Csa in the south) that characterizes the Mediterranean basin regions most affected by the fires also divide the mainland Portuguese area; and, (iii) the national plan for the defence of forest against fires was approved a decade ago and it is now reasonable to assess its impacts. Results confirmed (1) the influence of the dataset's characteristics on the detected clusters, (2) the existence of two different fire regimes in the country promoted by the different types of climate, (3) the positive impacts of the fire prevention policy decisions and (4) the ability of the STPSS to correctly identify clusters, regarding their number, location, and space-time size in spite of eventual space and/or time splits of the datasets. Finally, the role of the weather on days when clustered fires were active was confirmed for the classes of small, medium and large fires. Copyright © 2016 Elsevier B.V. All rights reserved.
The use of computer models to predict temperature and smoke movement in high bay spaces
NASA Technical Reports Server (NTRS)
Notarianni, Kathy A.; Davis, William D.
1993-01-01
The Building and Fire Research Laboratory (BFRL) was given the opportunity to make measurements during fire calibration tests of the heat detection system in an aircraft hangar with a nominal 30.4 (100 ft) ceiling height near Dallas, TX. Fire gas temperatures resulting from an approximately 8250 kW isopropyl alcohol pool fire were measured above the fire and along the ceiling. The results of the experiments were then compared to predictions from the computer fire models DETACT-QS, FPETOOL, and LAVENT. In section A of the analysis conducted, DETACT-QS AND FPETOOL significantly underpredicted the gas temperature. LAVENT at the position below the ceiling corresponding to maximum temperature and velocity provided better agreement with the data. For large spaces, hot gas transport time and an improved fire plume dynamics model should be incorporated into the computer fire model activation routines. A computational fluid dynamics (CFD) model, HARWELL FLOW3D, was then used to model the hot gas movement in the space. Reasonable agreement was found between the temperatures predicted from the CFD calculations and the temperatures measured in the aircraft hangar. In section B, an existing NASA high bay space was modeled using the CFD model. The NASA space was a clean room, 27.4 m (90 ft) high with forced horizontal laminar flow. The purpose of this analysis is to determine how the existing fire detection devices would respond to various size fires in the space. The analysis was conducted for 32 MW, 400 kW, and 40 kW fires.
Wildfire Detection using by Multi Dimensional Histogram in Boreal Forest
NASA Astrophysics Data System (ADS)
Honda, K.; Kimura, K.; Honma, T.
2008-12-01
Early detection of wildfires is an issue for reduction of damage to environment and human. There are some attempts to detect wildfires by using satellite imagery, which are mainly classified into three methods: Dozier Method(1981-), Threshold Method(1986-) and Contextual Method(1994-). However, the accuracy of these methods is not enough: some commission and omission errors are included in the detected results. In addition, it is not so easy to analyze satellite imagery with high accuracy because of insufficient ground truth data. Kudoh and Hosoi (2003) developed the detection method by using three-dimensional (3D) histogram from past fire data with the NOAA-AVHRR imagery. But their method is impractical because their method depends on their handworks to pick up past fire data from huge data. Therefore, the purpose of this study is to collect fire points as hot spots efficiently from satellite imagery and to improve the method to detect wildfires with the collected data. As our method, we collect past fire data with the Alaska Fire History data obtained by the Alaska Fire Service (AFS). We select points that are expected to be wildfires, and pick up the points inside the fire area of the AFS data. Next, we make 3D histogram with the past fire data. In this study, we use Bands 1, 21 and 32 of MODIS. We calculate the likelihood to detect wildfires with the three-dimensional histogram. As our result, we select wildfires with the 3D histogram effectively. We can detect the troidally spreading wildfire. This result shows the evidence of good wildfire detection. However, the area surrounding glacier tends to rise brightness temperature. It is a false alarm. Burnt area and bare ground are sometimes indicated as false alarms, so that it is necessary to improve this method. Additionally, we are trying various combinations of MODIS bands as the better method to detect wildfire effectively. So as to adjust our method in another area, we are applying our method to tropical forest in Kalimantan, Indonesia and around Chiang Mai, Thailand. But the ground truth data in these areas is lesser than the one in Alaska. Our method needs lots of accurate observed data to make multi-dimensional histogram in the same area. In this study, we can show the system to select wildfire data efficiently from satellite imagery. Furthermore, the development of multi-dimensional histogram from past fire data makes it possible to detect wildfires accurately.
Bispectral infrared forest fire detection and analysis using classification techniques
NASA Astrophysics Data System (ADS)
Aranda, Jose M.; Melendez, Juan; de Castro, Antonio J.; Lopez, Fernando
2004-01-01
Infrared cameras are well established as a useful tool for fire detection, but their use for quantitative forest fire measurements faces difficulties, due to the complex spatial and spectral structure of fires. In this work it is shown that some of these difficulties can be overcome by applying classification techniques, a standard tool for the analysis of satellite multispectral images, to bi-spectral images of fires. Images were acquired by two cameras that operate in the medium infrared (MIR) and thermal infrared (TIR) bands. They provide simultaneous and co-registered images, calibrated in brightness temperatures. The MIR-TIR scatterplot of these images can be used to classify the scene into different fire regions (background, ashes, and several ember and flame regions). It is shown that classification makes possible to obtain quantitative measurements of physical fire parameters like rate of spread, embers temperature, and radiated power in the MIR and TIR bands. An estimation of total radiated power and heat release per unit area is also made and compared with values derived from heat of combustion and fuel consumption.
A Global Classification of Contemporary Fire Regimes
NASA Astrophysics Data System (ADS)
Norman, S. P.; Kumar, J.; Hargrove, W. W.; Hoffman, F. M.
2014-12-01
Fire regimes provide a sensitive indicator of changes in climate and human use as the concept includes fire extent, season, frequency, and intensity. Fires that occur outside the distribution of one or more aspects of a fire regime may affect ecosystem resilience. However, global scale data related to these varied aspects of fire regimes are highly inconsistent due to incomplete or inconsistent reporting. In this study, we derive a globally applicable approach to characterizing similar fire regimes using long geophysical time series, namely MODIS hotspots since 2000. K-means non-hierarchical clustering was used to generate empirically based groups that minimized within-cluster variability. Satellite-based fire detections are known to have shortcomings, including under-detection from obscuring smoke, clouds or dense canopy cover and rapid spread rates, as often occurs with flashy fuels or during extreme weather. Such regions are free from preconceptions, and the empirical, data-mining approach used on this relatively uniform data source allows the region structures to emerge from the data themselves. Comparing such an empirical classification to expectations from climate, phenology, land use or development-based models can help us interpret the similarities and differences among places and how they provide different indicators of changes of concern. Classifications can help identify where large infrequent mega-fires are likely to occur ahead of time such as in the boreal forest and portions of the Interior US West, and where fire reports are incomplete such as in less industrial countries.
Early forest fire detection using principal component analysis of infrared video
NASA Astrophysics Data System (ADS)
Saghri, John A.; Radjabi, Ryan; Jacobs, John T.
2011-09-01
A land-based early forest fire detection scheme which exploits the infrared (IR) temporal signature of fire plume is described. Unlike common land-based and/or satellite-based techniques which rely on measurement and discrimination of fire plume directly from its infrared and/or visible reflectance imagery, this scheme is based on exploitation of fire plume temporal signature, i.e., temperature fluctuations over the observation period. The method is simple and relatively inexpensive to implement. The false alarm rate is expected to be lower that of the existing methods. Land-based infrared (IR) cameras are installed in a step-stare-mode configuration in potential fire-prone areas. The sequence of IR video frames from each camera is digitally processed to determine if there is a fire within camera's field of view (FOV). The process involves applying a principal component transformation (PCT) to each nonoverlapping sequence of video frames from the camera to produce a corresponding sequence of temporally-uncorrelated principal component (PC) images. Since pixels that form a fire plume exhibit statistically similar temporal variation (i.e., have a unique temporal signature), PCT conveniently renders the footprint/trace of the fire plume in low-order PC images. The PC image which best reveals the trace of the fire plume is then selected and spatially filtered via simple threshold and median filter operations to remove the background clutter, such as traces of moving tree branches due to wind.
NASA Astrophysics Data System (ADS)
Ogungbuyi, M. G.; Eckardt, F. D.; Martinez, P.
2016-12-01
Nigeria, the largest producer of crude oil in Africa occupies sixth position in the world. Despite such huge oil revenue potentials, its pipeline network system is consistently susceptible to leaks causing oil spills. We investigate ground based spill events which are caused by operational error, equipment failure and most importantly by deliberate attacks along the major pipeline transport system. Sometimes, these spills are accompanied with fire explosion caused by accidental discharge, natural or illegal refineries in the creeds, etc. MODIS satellites fires data corresponding to the times and spill events (i.e. ground based data) of the Area of Interest (AOI) show significant correlation. The open source Quantum Geographical Information System (QGIS) was used to validate the dataset and the spatiotemporal analyses of the oil spill fires were expressed. We demonstrate that through QGIS and Google Earth (using the time sliders), we can identify and monitor oil spills when they are attended with fire events along the pipeline transport system accordingly. This is shown through the spatiotemporal images of the fires. Evidence of such fire cases resulting from bunt vegetation as different from industrial and domestic fire is also presented. Detecting oil spill fires in the study location may not require an enormous terabyte of image processing: we can however rely on a near-real-time (NRT) MODIS data that is readily available twice daily to detect oil spill fire as early warning signal for those hotspots areas where cases of oil seepage is significant in Nigeria.
NASA Astrophysics Data System (ADS)
Choi, Soojin; Yoh, Jack J.
2017-08-01
The possibility verification of the first attempt to apply LIBS to arson investigation was performed. LIBS has capabilities for real time in-situ analysis and depth profiling. It can provide valuable information about the fire debris that are complementary to the classification of original sample components and combustion residues. In this study, fire debris was analyzed to determine the ignition source and existence of a fire accelerant using LIBS spectra and depth profiling analysis. Fire debris chemical composition and carbon layer thickness determines the possible ignition source while the carbon layer thickness of combusted samples represents the degree of sample carbonization. When a sample is combusted with fire accelerants, a thicker carbon layer is formed because the burning rate is increased. Therefore, depth profiling can confirm the existence of combustion accelerants, which is evidence of arson. Also investigation of fire debris by depth profiling is still possible when a fire is extinguished with water from fire hose. Such data analysis and in-situ detection of forensic signals via the LIBS may assist fire investigation at crime scenes.
Wei Min Hao; Narasimhan K. Larkin
2014-01-01
Biomass burning is a major source of greenhouse gases, aerosols, black carbon, and atmospheric pollutants that affects regional and global climate and air quality. The spatial and temporal extent of fires and the size of burned areas are critical parameters in the estimation of fire emissions. Tremendous efforts have been made in the past 12 years to characterize the...
Engineering and Development Program Plan, Aircraft Cabin Fire Safety.
1980-06-01
relative to a postcrash fuel fire, or whether advanced materials provide a significant safety benefit in comparison to inservice materials. if either...have always been controlled by early detection and prompt extinguishment action by effectively trained crew members. In addition, the fire resistant...occupants. g. Develop a computer fire test data bank with broad user availability for inservice and candidate cabin interior materials. h. Identify
K.E. Fujimura; J.E. Smith; T.R. Horton; N.S. Weber; J.W. Spatafora
2005-01-01
Post-fire Pezizales fruit commonly in many forest types after fire. The objectives of this study were to determine which Pezizales appeared as sporocarps after a prescribed fire in the Blue Mountains of eastern Oregon, and whether species of Pezizales formed mycorrhizas on ponderosa pine, whether or not they were detected from sporocarps. Forty-two sporocarp...
Soil shapes community structure through fire.
Ojeda, Fernando; Pausas, Juli G; Verdú, Miguel
2010-07-01
Recurrent wildfires constitute a major selecting force in shaping the structure of plant communities. At the regional scale, fire favours phenotypic and phylogenetic clustering in Mediterranean woody plant communities. Nevertheless, the incidence of fire within a fire-prone region may present strong variations at the local, landscape scale. This study tests the prediction that woody communities on acid, nutrient-poor soils should exhibit more pronounced phenotypic and phylogenetic clustering patterns than woody communities on fertile soils, as a consequence of their higher flammability and, hence, presumably higher propensity to recurrent fire. Results confirm the predictions and show that habitat filtering driven by fire may be detected even in local communities from an already fire-filtered regional flora. They also provide a new perspective from which to consider a preponderant role of fire as a key evolutionary force in acid, infertile Mediterranean heathlands.
[Relationships of forest fire with lightning in Daxing' anling Mountains, Northeast China].
Lei, Xiao-Li; Zhou, Guang-Sheng; Jia, Bing-Rui; Li, Shuai
2012-07-01
Forest fire is an important factor affecting forest ecosystem succession. Recently, forest fire, especially forest lightning fire, shows an increasing trend under global warming. To study the relationships of forest fire with lightning is essential to accurately predict the forest fire in time. Daxing' anling Mountains is a region with high frequency of forest lightning fire in China, and an important experiment site to study the relationships of forest fire with lightning. Based on the forest fire records and the corresponding lightning and meteorological observation data in the Mountains from 1966 to 2007, this paper analyzed the relationships of forest fire with lightning in this region. In the period of 1966-2007, both the lightning fire number and the fired forest area in this region increased significantly. The meteorological factors affecting the forest lighting fire were related to temporal scales. At yearly scale, the forest lightning fire was significantly correlated with precipitation, with a correlation coefficient of -0.489; at monthly scale, it had a significant correlation with air temperature, the correlation coefficient being 0.18. The relationship of the forest lightning fire with lightning was also related to temporal scales. At yearly scale, there was no significant correlation between them; at monthly scale, the forest lightning fire was strongly correlated with lightning and affected by precipitation; at daily scale, a positive correlation was observed between forest lightning fire and lightning when the precipitation was less than 5 mm. According to these findings, a fire danger index based on ADTD lightning detection data was established, and a forest lightning fire forecast model was developed. The prediction accuracy of this model for the forest lightning fire in Daxing' anling Mountains in 2005-2007 was > 80%.
Rose, Eli T.; Simons, Theodore R.
2016-01-01
Fire suppression in southern Appalachian pine–oak forests during the past century dramatically altered the bird community. Fire return intervals decreased, resulting in local extirpation or population declines of many bird species adapted to post-fire plant communities. Within Great Smoky Mountains National Park, declines have been strongest for birds inhabiting xeric pine–oak forests that depend on frequent fire. The buildup of fuels after decades of fire suppression led to changes in the 1996 Great Smoky Mountains Fire Management Plan. Although fire return intervals remain well below historic levels, management changes have helped increase the amount of fire within the park over the past 20 years, providing an opportunity to study patterns of fire severity, time since burn, and bird occurrence. We combined avian point counts in burned and unburned areas with remote sensing indices of fire severity to infer temporal changes in bird occurrence for up to 28 years following fire. Using hierarchical linear models that account for the possibility of a species presence at a site when no individuals are detected, we developed occurrence models for 24 species: 13 occurred more frequently in burned areas, 2 occurred less frequently, and 9 showed no significant difference between burned and unburned areas. Within burned areas, the top models for each species included fire severity, time since burn, or both, suggesting that fire influenced patterns of species occurrence for all 24 species. Our findings suggest that no single fire management strategy will suit all species. To capture peak occupancy for the entire bird community within xeric pine–oak forests, at least 3 fire regimes may be necessary; one applying frequent low severity fire, another using infrequent low severity fire, and a third using infrequently applied high severity fire.
Comparing the performance of residential fire sprinklers with other life-safety technologies.
Butry, David T
2012-09-01
Residential fire sprinklers have long proven themselves as life-safety technologies to the fire service community. Yet, about 1% of all one- and two-family dwelling fires occur in homes protected by sprinklers. It has been argued that measured sprinkler performance has ignored factors confounding the relationship between sprinkler use and performance. In this analysis, sprinkler performance is measured by comparing 'like' structure fires, while conditioning on smoke detection technology and neighborhood housing and socioeconomic conditions, using propensity score matching. Results show that residential fire sprinklers protect occupant and firefighter health and safety, and are comparable to other life-safety technologies. Published by Elsevier Ltd.
46 CFR 62.35-50 - Tabulated monitoring and safety control requirements for specific systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) (9) Remote/auto fill level High Auto trip or overflow arrangement Hi. press. leakage level High Bilge... CL.3 W.T. doors Open/closed Fire detection Machinery spaces Space on fire (9) Fire main Pressure Low...
46 CFR 28.825 - Excess fire detection and protection equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
...” “CARBON DIOXIDE FIRE SYSTEM” or “FOAM FIRE SYSTEM”, as the case may be; (v) Instructions for the operation... be locked, a key to the space or enclosure shall be in a break-glass-type box conspicuously located...
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (j) Fire-detecting and fire-extinguishing equipment. (k) Pollution-prevention equipment. (l) Sanitary condition. (m) Fire hazards. (n) Verification of validity of certificates required and issued by the Federal Communications Commission. (o) Lights and signals as required by the applicable navigational rules. (p) Tests and...
NASA Astrophysics Data System (ADS)
Hyer, E. J.; Peterson, D. A.; Curtis, C. A.; Schmidt, C. C.; Hoffman, J.; Prins, E. M.
2014-12-01
The Fire Locating and Monitoring of Burning Emissions (FLAMBE) system converts satellite observations of thermally anomalous pixels into spatially and temporally continuous estimates of smoke release from open biomass burning. This system currently processes data from a constellation of 5 geostationary and 2 polar-orbiting sensors. Additional sensors, including NPP VIIRS and the imager on the Korea COMS-1 geostationary satellite, will soon be added. This constellation experiences schedule changes and outages of various durations, making the set of available scenes for fire detection highly variable on an hourly and daily basis. Adding to the complexity, the latency of the satellite data is variable between and within sensors. FLAMBE shares with many fire detection systems the goal of detecting as many fires as possible as early as possible, but the FLAMBE system must also produce a consistent estimate of smoke production with minimal artifacts from the changing constellation. To achieve this, NRL has developed a system of asynchronous processing and cross-calibration that permits satellite data to be used as it arrives, while preserving the consistency of the smoke emission estimates. This talk describes the asynchronous data ingest methodology, including latency statistics for the constellation. We also provide an overview and show results from the system we have developed to normalize multi-sensor fire detection for consistency.
Configuration of electro-optic fire source detection system
NASA Astrophysics Data System (ADS)
Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir
2007-04-01
The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.
Evaluation of Criteria for the Detection of Fires in Underground Conveyor Belt Haulageways.
Litton, Charles D; Perera, Inoka Eranda
2012-07-01
Large-scale experiments were conducted in an above-ground gallery to simulate typical fires that develop along conveyor belt transport systems within underground coal mines. In the experiments, electrical strip heaters, imbedded ~5 cm below the top surface of a large mass of coal rubble, were used to ignite the coal, producing an open flame. The flaming coal mass subsequently ignited 1.83-meter-wide conveyor belts located approximately 0.30 m above the coal surface. Gas samples were drawn through an averaging probe located approximately 20 m downstream of the coal for continuous measurement of CO, CO 2 , and O 2 as the fire progressed through the stages of smoldering coal, flaming coal, and flaming conveyor belt. Also located approximately 20 m from the fire origin and approximately 0.5 m below the roof of the gallery were two commercially available smoke detectors, a light obscuration meter, and a sampling probe for measurement of total mass concentration of smoke particles. Located upstream of the fire origin and also along the wall of the gallery at approximately 14 m and 5 m upstream were two video cameras capable of both smoke and flame detection. During the experiments, alarm times of the smoke detectors and video cameras were measured while the smoke obscuration and total smoke mass were continually measured. Twelve large-scale experiments were conducted using three different types of fire-resistant conveyor belts and four air velocities for each belt. The air velocities spanned the range from 1.0 m/s to 6.9 m/s. The results of these experiments are compared to previous large-scale results obtained using a smaller fire gallery and much narrower (1.07-m) conveyor belts to determine if the fire detection criteria previously developed (1) remained valid for the wider conveyor belts. Although some differences between these and the previous experiments did occur, the results, in general, compare very favorably. Differences are duly noted and their impact on fire detection discussed.
Bird, Douglas W.; Codding, Brian F.
2016-01-01
While evidence mounts that indigenous burning has a significant role in shaping pyrodiversity, the processes explaining its variation across local and external biophysical systems remain limited. This is especially the case with studies of climate–fire interactions, which only recognize an effect of humans on the fire regime when they act independently of climate. In this paper, we test the hypothesis that an anthropogenic fire regime (fire incidence, size and extent) does not covary with climate. In the lightning regime, positive El Niño southern oscillation (ENSO) values increase lightning fire incidence, whereas La Niña (and associated increases in prior rainfall) increase fire size. ENSO has the opposite effect in the Martu regime, decreasing ignitions in El Niño conditions without affecting fire size. Anthropogenic ignition rates covary positively with high antecedent rainfall, whereas fire size varies only with high temperatures and unpredictable winds, which may reduce control over fire spread. However, total area burned is similarly predicted by antecedent rainfall in both regimes, but is driven by increases in fire size in the lightning regime, and fire number in the anthropogenic regime. We conclude that anthropogenic regimes covary with climatic variation, but detecting the human–climate–fire interaction requires multiple measures of both fire regime and climate. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216513
NASA Technical Reports Server (NTRS)
Noojipady, Praveen; Morton, Douglas C.; Schroeder, Wilfrid; Carlson, Kimberly M.; Huang, Chengquan; Gibbs, Holly K.; Burns, David; Walker, Nathalie F.; Prince, Stephen D.
2017-01-01
Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce "sustainable" palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO), include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance isunclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009,forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident activefire detections. Interannual variability in fire detections was strongly influenced by El Nino and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Nino events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75% and 66% lower on certified plantations than noncertified plantations during the 2009 and 2015 El Nino events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However, aligning certification standards with satellite monitoring capabilities will be critical to realize sustainable palm oil production and meet industry commitments to zero forestation.
Series of Wildfires in Northern California Continue Blazing
2015-08-06
California has been hit hard the past few weeks with storms. Storms bring lightning and lightning strikes cause wildfires. Currently there are at least five fire complexes in the area including River, Fork, South, Route and Mad River. The Mad River complex is a series of seven lightning fires that started on July 30th, 2015 after a lightning storm moved through Northern California. After initial firefighters responded, 25 fires were reported and most of the fires were contained. Some additional fires might be detected from the original lightning storms in the upcoming days and will be attacked once they are found. Damage assessment is ongoing and crews will determine the extent of structures and equipment damaged or destroyed. The River Complex is managing a total of 5 fires due to fires merging together on the Shasta-Trinity and the Six Rivers National Forests. Winds from the west are expected to lift the inversion today resulting in active fire behavior. The Fork Complex consists of over 40 fires, all of which were ignited by lightning between July 29 and 31, 2015. These fires are still being identified, assessed, and prioritized. Updated acreage and information about specific fires will be published as it is known. Fire activity moderated throughout last night (8/4) with the smoke inversion layer remaining in place today. Hopefully this will create favorable conditions for fire crews to take direct fire attack on the fires edge, construct dozer line and scout for best firefighting locations on all fires in the complex. The South Complex consists of approximately nine known fires, five of which are currently over 100 acres. The fires are active and defense of structures and point protection are in progress. The weather is trapping smoke in the valley causing very poor air quality. As the smoke lifts the fire activity increases. Firefighters will continue to provide point protection on structures and to look for opportunities to build direct and indirect containment lines. The Route Complex currently stands at 12,164 acres from seven separate fires and is at 2% containment. The overall acreage has been reduced because the South Fire on the nearby South Complex is merging with the Johnson Fire in the Route Complex resulting in decreased and revised fire perimeter acreage. This natural-color satellite image collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite shows smoke rising and drifting northwest from the various fire complexes. It was captured on August 04, 2015. Actively burning areas, detected by MODIS’s thermal bands, are outlined in red. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Alvarado, Swanni T; Silva, Thiago Sanna Freire; Archibald, Sally
2018-07-15
Humans can alter fire dynamics in grassland systems by changing fire frequency, fire seasonality and fuel conditions. These changes have effects on vegetation structure and recovery, species composition, and ecosystem function. Understanding how human management can affect fire regimes is vital to detect potential changes in the resilience of plant communities, and to predict vegetation responses to human interventions. We evaluated the fire regimes of two recently protected areas in Madagascar (Ibity and Itremo NPA) and one in Brazil (Serra do Cipó NP) before and after livestock exclusion and fire suppression policies. We compare the pre- and post-management fire history in these areas and analyze differences in terms of total annual burned area, density of ignitions, burn scar size distribution, fire return period and seasonal fire distribution. More than 90% of total park areas were burned at least once during the studied period, for all parks. We observed a significant reduction in the number of ignitions for Ibity NPA and Serra do Cipó NP after livestock exclusion and active fire suppression, but no significant change in total burned area for each protected area. We also observed a seasonal shift in burning, with fires happening later in the fire season (October-November) after management intervention. However, the protected areas in Madagascar had shorter fire return intervals (3.23 and 1.82 years) than those in Brazil (7.91 years). Our results demonstrate that fire exclusion is unattainable, and probably unwarranted in tropical grassland conservation areas, but show how human intervention in fire and vegetation patterns can alter various aspects of the fire regimes. This information can help with formulating realistic and effective fire management policies in these valuable conservation areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
Allgöwer, Britta; Carlson, J.D.; Van Wagtendonk, Jan W.; Chuvieco, Emilio
2003-01-01
While ‘Fire Danger’ per se cannot be measured, the physical properties of the biotic and abiotic world that relate to fire occurrence and fire behavior can. Today, increasingly sophisticated Remote Sensing methods are being developed to more accurately detect fuel properties such as species composition (fuel types), vegetation structure or plant water content - to name a few. Based on meteorological input data and physical, semi-physical or empirical model calculations, Wildland Fire Danger Rating Systems provide ‘indirect values’ - numerical indices - at different temporal scales (e.g., daily, weekly, monthly) denoting the physical conditions that may lead to fire ignition and support fire propagation. The results can be expressed as fire danger levels, ranging from ‘low’ to ‘very high’, and are commonly used in operational wildland fire management (e.g., the Canadian Fire Weather Index [FWI] System, the Russian Nesterov Index, or the U.S. National Fire Danger Rating System [NFDRS]). Today, fire danger levels are often turned into broad scale maps with the help of Geographical Information Systems (GIS) showing the areas with the different fire danger levels, and are distributed via the World Wide Web.In this chapter we will outline some key issues dealing with Remote Sensing and GIS techniques that are covered in the following chapters, and elaborate how the Fire Danger Rating concepts could be integrated into a framework that enables comprehensive and sustainable wildland fire risk assessment. To do so, we will first raise some general thoughts about wildland fires and suggest how to approach this extremely complex phenomenon. Second, we will outline a possible fire risk analysis framework and third we will give a short overview on existing Fire Danger Rating Systems and the principles behind them.
Human and biophysical influences on fire occurrence in the United States
Hawbaker, Todd J.; Radeloff, Volker C.; Stewart, Susan I.; Hammer, Roger B.; Keuler, Nicholas S.; Clayton, Murray K.
2013-01-01
National-scale analyses of fire occurrence are needed to prioritize fire policy and management activities across the United States. However, the drivers of national-scale patterns of fire occurrence are not well understood, and how the relative importance of human or biophysical factors varies across the country is unclear. Our research goal was to model the drivers of fire occurrence within ecoregions across the conterminous United States. We used generalized linear models to compare the relative influence of human, vegetation, climate, and topographic variables on fire occurrence in the United States, as measured by MODIS active fire detections collected between 2000 and 2006. We constructed models for all fires and for large fires only and generated predictive maps to quantify fire occurrence probabilities. Areas with high fire occurrence probabilities were widespread in the Southeast, and localized in the Mountain West, particularly in southern California, Arizona, and New Mexico. Probabilities for large-fire occurrence were generally lower, but hot spots existed in the western and south-central United States The probability of fire occurrence is a critical component of fire risk assessments, in addition to vegetation type, fire behavior, and the values at risk. Many of the hot spots we identified have extensive development in the wildland–urban interface and are near large metropolitan areas. Our results demonstrated that human variables were important predictors of both all fires and large fires and frequently exhibited nonlinear relationships. However, vegetation, climate, and topography were also significant variables in most ecoregions. If recent housing growth trends and fire occurrence patterns continue, these areas will continue to challenge policies and management efforts seeking to balance the risks generated by wildfires with the ecological benefits of fire.
Using prescribed fire to reduce the risk of large wildfires: A break-even analysis
James M. Saveland
1987-01-01
Nearly all wildfires are extinguished when they are still small. The 3-5% that get out of control cause 95% of all wildfire-related costs and damages (Dodge 1972, Wilson 1985). There are two ways to deal with these problem fires. One practice is to limit fire by suppressing fires as soon as possible after they are detected. Increasing the capability of suppression...
Bibliography on aircraft fire hazards and safety. Volume 2: Safety. Part 1: Key numbers 1 to 524
NASA Technical Reports Server (NTRS)
Pelouch, J. J., Jr. (Compiler); Hacker, P. T. (Compiler)
1974-01-01
Bibliographic citations are presented to describe and define aircraft safety methods, equipment, and criteria. Some of the subjects discussed are: (1) fire and explosion suppression using whiffle balls, (2) ultraviolet flame detecting sensors, (3) evaluation of flame arrestor materials for aircraft fuel systems, (4) crash fire prevention system for supersonic commercial aircraft, and (5) fire suppression for aerospace vehicles.
Remote sensing of fire and deforestation in the tropics from the International Space Station
NASA Astrophysics Data System (ADS)
Hoffman, James W.; Riggan, Philip J.; Brass, James A.
2000-01-01
In August of 1999 over 30,000 fire counts were registered by the Advanced Very High Resolution Radiometer aboard NOAA satellites over central Brazil, and an extensive smoke pall produced a health hazard and hindered commercial aviation across large portions of the states of Mato Grosso and Mato Grosso do Sul. Clearly fire was an important part of the Brazilian environment, but limitations in satellite and airborne remote sensing prevented a clear picture of what was burning, how much biomass was consumed, where the most critical resources were threatened, or exactly what was the global environmental impact. Another important problem that must be addressed is the deforestation of the rain forest by unauthorized logging operations. To detect these illegal clear cutting activities, continuous, high resolution monitoring must be initiated. The low altitude Space Station offers an ideal platform from which to monitor the tropical regions for both fires and deforestation from an equatorial orbit. A new micro-bolometer-based thermal imager, the FireMapper, has been designed to provide a solution for these problems in fire and resource monitoring. In this paper we describe potential applications of the FireMapper aboard the International Space Station for demonstration of space-borne fire detection and measurement. .
NASA Astrophysics Data System (ADS)
Ruecker, Gernot; Schroeder, Wilfrid; Lorenz, Eckehard; Kaiser, Johannes; Caseiro, Alexandre
2016-04-01
According to recent research, black carbon has the second strongest effect on the earth climate system after carbon dioxide. In high Northern latitudes, industrial gas flares are an important source of black carbon, especially in winter. This fact is particularly relevant for the relatively fast observed climate change in the Arctic since deposition of black carbon changes the albedo of snow and ice, thus leading to a positive feedback cycle. Here we explore gas flare detection and Fire Radiative Power (FRP) retrievals of the German FireBird TET-1 and BIRD Hotspot Recognition Systems (HSRS), the VIIRS sensor on board of the S-NPP satellite, and the MODIS sensor using temporally close to near coincident data acquisitions. Comparison is based on level 2 products developed for fire detection for the different sensors; in the case of S-NPP VIIRS we use two products: the new VIIRS 750m algorithm based on MODIS collection 6, and the 350 m algorithm based on the VIIRS mid-infrared I (Imaging) band, which offers high resolution, but no FRP retrievals. Results indicate that the highest resolution FireBird sensors offer the best detection capacities, though the level two product shows false alarms, followed by the VIIRS 350 m and 750 m algorithms. MODIS has the lowest detection rate. Preliminary results of FRP retrievals show that FireBird and VIIRS algorithms have a good agreement. Given the fact that most gas flaring is at the detection limit for medium to coarse resolution space borne sensors - and hence measurement errors may be high - our results indicates that a quantitative evaluation of gas flaring using these sensors is feasible. Results shall be used to develop a gas flare detection algorithm for Sentinel-3, and a similar methodology will be employed to validate the capacity of Sentinel 3 to detect and characterize small high temperature sources such as gas flares.
Fettig, Ina; Krüger, Simone; Deubel, Jan H; Werrel, Martin; Raspe, Tina; Piechotta, Christian
2014-05-01
The chemical analysis of fire debris represents a crucial part in fire investigations to determine the cause of a fire. A headspace solid-phase microextraction (HS-SPME) procedure for the detection of ignitable liquids in fire debris using a fiber coated with a mixture of three different sorbent materials (Divinylbenzene/Carboxen/Polydimethylsiloxane, DVB/CAR/PDMS) is described. Gasoline and diesel fuel were spiked upon a preburnt matrix (wood charcoal), extracted and concentrated with HS-SPME and then analyzed with gas chromatography/mass spectrometry (GC/MS). The experimental conditions--extraction temperature, incubation and exposure time--were optimized. To assess the applicability of the method, fire debris samples were prepared in the smoke density chamber (SDC) and a controlled-atmosphere cone calorimeter. The developed methods were successfully applied to burnt particleboard and carpet samples. The results demonstrate that the procedure that has been developed here is suitable for detecting these ignitable liquids in highly burnt debris. © 2013 American Academy of Forensic Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De-Cheng, Chen; Chung-Kung, Lo; Tsu-Jen, Lin
2004-07-01
The living fire probabilistic risk assessment (PRA) models for all three operating nuclear power plants (NPPs) in Taiwan had been established in December 2000. In that study, a scenario-based PRA approach was adopted to systematically evaluate the fire and smoke hazards and associated risks. Using these fire PRA models developed, a risk-informed application project had also been completed in December 2002 for the evaluation of cable-tray fire-barrier wrapping exemption. This paper presents a new application of the fire PRA models to fire protection issues using the fire protection significance determination process (FP SDP). The fire protection issues studied may involvemore » the selection of appropriate compensatory measures during the period when an automatic fire detection or suppression system in a safety-related fire zone becomes inoperable. The compensatory measure can either be a 24-hour fire watch or an hourly fire patrol. The living fire PRA models were used to estimate the increase in risk associated with the fire protection issue in terms of changes in core damage frequency (CDF) and large early release frequency (LERF). In compliance with SDP at-power and the acceptance guidelines specified in RG 1.174, the fire protection issues in question can be grouped into four categories; red, yellow, white and green, in accordance with the guidelines developed for FD SDP. A 24-hour fire watch is suggested only required for the yellow condition, while an hourly fire patrol may be adopted for the white condition. More limiting requirement is suggested for the red condition, but no special consideration is needed for the green condition. For the calculation of risk measures, risk impacts from any additional fire scenarios that may have been introduced, as well as more severe initiating events and fire damages that may accompany the fire protection issue should be considered carefully. Examples are presented in this paper to illustrate the evaluation process. (authors)« less
Do multiple fires interact to affect vegetation structure in temperate eucalypt forests?
Haslem, Angie; Leonard, Steve W J; Bruce, Matthew J; Christie, Fiona; Holland, Greg J; Kelly, Luke T; MacHunter, Josephine; Bennett, Andrew F; Clarke, Michael F; York, Alan
2016-12-01
Fire plays an important role in structuring vegetation in fire-prone regions worldwide. Progress has been made towards documenting the effects of individual fire events and fire regimes on vegetation structure; less is known of how different fire history attributes (e.g., time since fire, fire frequency) interact to affect vegetation. Using the temperate eucalypt foothill forests of southeastern Australia as a case study system, we examine two hypotheses about such interactions: (1) post-fire vegetation succession (e.g., time-since-fire effects) is influenced by other fire regime attributes and (2) the severity of the most recent fire overrides the effect of preceding fires on vegetation structure. Empirical data on vegetation structure were collected from 540 sites distributed across central and eastern Victoria, Australia. Linear mixed models were used to examine these hypotheses and determine the relative influence of fire and environmental attributes on vegetation structure. Fire history measures, particularly time since fire, affected several vegetation attributes including ground and canopy strata; others such as low and sub-canopy vegetation were more strongly influenced by environmental characteristics like rainfall. There was little support for the hypothesis that post-fire succession is influenced by fire history attributes other than time since fire; only canopy regeneration was influenced by another variable (fire type, representing severity). Our capacity to detect an overriding effect of the severity of the most recent fire was limited by a consistently weak effect of preceding fires on vegetation structure. Overall, results suggest the primary way that fire affects vegetation structure in foothill forests is via attributes of the most recent fire, both its severity and time since its occurrence; other attributes of fire regimes (e.g., fire interval, frequency) have less influence. The strong effect of environmental drivers, such as rainfall and topography, on many structural features show that foothill forest vegetation is also influenced by factors outside human control. While fire is amenable to human management, results suggest that at broad scales, structural attributes of these forests are relatively resilient to the effects of current fire regimes. Nonetheless, the potential for more frequent severe fires at short intervals, associated with a changing climate and/or fire management, warrant further consideration. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
van der Werf, G. R.; Randerson, J. T.; Giglio, L.; Collatz, G. J.; Mu, M.; Kasibhatla, P. S.; Morton, D. C.; Defries, R. S.; Jin, Y.; van Leeuwen, T. T.
2010-12-01
New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 Pg C year-1 with significant interannual variability during 1997-2001 (2.8 Pg C year-1 in 1998 and 1.6 Pg C year-1 in 2001). Globally, emissions during 2002-2007 were relatively constant (around 2.1 Pg C year-1) before declining in 2008 (1.7 Pg C year-1) and 2009 (1.5 Pg C year-1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 Pg C year-1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series.
Tsiourlis, Georgios; Andreadakis, Stamatis; Konstantinidis, Pavlos
2009-01-01
The SITHON system, a fully wireless optical imaging system, integrating a network of in-situ optical cameras linking to a multi-layer GIS database operated by Control Operating Centres, has been developed in response to the need for early detection, notification and monitoring of forest fires. This article presents in detail the architecture and the components of SITHON, and demonstrates the first encouraging results of an experimental test with small controlled fires over Sithonia Peninsula in Northern Greece. The system has already been scheduled to be installed in some fire prone areas of Greece. PMID:22408536
Performance of a fire detector based on a compact laser spectroscopic carbon monoxide sensor.
Hangauer, A; Chen, J; Strzoda, R; Fleischer, M; Amann, M-C
2014-06-02
In this paper we show the suitability of a miniaturized tunable diode laser spectroscopy (TDLS)-based carbon-monoxide (CO) sensor for fire detection applications. The sensor utilizes a vertical-cavity surface-emitting laser (VCSEL) and inherent calibration scheme with reference gas filled in the photodetector housing. The fire-detection experiments are carried out under realistic conditions as described in the European standard EN54. The CO generation of all class C fires (according to EN54) could be well resolved. The cross-sensitivity to other substances was found to be very low: the maximum CO false response from cigarette smoke, hairspray and general aerosols reaches a low value of a few μL/L and only if the substance is directly applied into the sensor gas inlet. Therefore this sensor overcomes the disadvantage of high false alarm rate given by smoke detectors and is also in small size which is suitable for household and industrial applications. Hence, the VCSEL-based TDLS sensor is shown to have sufficient performance for fire-detection. It has advantages such as capability for fail-safe operation and, low cross-sensitivities as compared to existing point fire detector technology which is presently limited by these factors.
What can be done to reduce false alarms?
Baillie, Jonathan
2013-05-01
Although (the Department for Communities and Local Government's 'Fire statistics' reveal) the number of such incidents has fallen every year since 2006/07, UK fire and rescue services still attended over 312,400 'false fire alarms,' i.e. instances where, on arriving at a site, they found no fire, in 2011/12. Such incidents have been a significant concern for healthcare facilities teams, and for the fire and rescue services serving them, for many years, and, although the past decade has seen determined efforts to substantially reduce the number bearing fruit, many believe far too many still occur. HEJ editor, Jonathan Baillie, reports on a recent London roundtable discussion staged by two leading fire detection and alarm equipment specialists, Apollo Fire Detectors, and Static Systems Group, with IHEEM, which brought together experts to discuss what more can be done to minimise false fire alarms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingham, Jeremy P., E-mail: inghamjp@halcrow.com
The number of building fires has doubled over the last 50 years. There has never been a greater need for structures to be assessed for fire damage to ensure safety and enable appropriate repairs to be planned. Fortunately, even after a severe fire, concrete and masonry structures are generally capable of being repaired rather than demolished. By allowing direct examination of microcracking and mineralogical changes, petrographic examination has become widely used to determine the depth of fire damage for reinforced concrete elements. Petrographic examination can also be applied to fire-damaged masonry structures built of materials such as stone, brick andmore » mortar. Petrography can ensure accurate detection of damaged geomaterials, which provides cost savings during building repair and increased safety reassurance. This paper comprises a review of the role of petrography in fire damage assessments, drawing on a range of actual fire damage investigations.« less
NASA Astrophysics Data System (ADS)
Sharma, A.; Wang, J.
2014-12-01
Gas flaring is a global environmental hazard severely impacting climate, economy and public health. The associated emissions are frequently unreported and have large uncertainties. Prior studies have established a direct relationship between radiative energy released from fires and the biomass burned, making fire radiative power (FRP), i.e., the rate of radiative energy release, an important proxy to characterize emissions. In this study fire properties from four different satellite products were obtained over a 10⁰ x 10⁰ gas flaring region in Russia for all days of May 2013. The target area is part of Russia's biggest gas flaring region, Khanty-Mansiysk autonomous okrug. The objective of the study is to investigate the consistency of fire detections, FRP retrievals and effects of gridding FRP data from the region on a uniform grid. The four products used were: MODIS Terra level2 thermal anomalies (MOD14), MODIS Aqua level2 thermal anomalies (MYD14), VIIRS Active fire product and a recent NOAA Nightfire product. 1 km nominal resolution FRP from MOD14 AND MYD14, subpixel radiant heat (RH) from NOAA Nightfire product and fire detections from all four products were recorded on a 0.25⁰ x 0.25⁰ grid on a daily basis. Results revealed the Nightfire product had maximum detections, almost six times the number of detections by other products, mainly because of the use of M10 (1.6 µm) band as their primary detection band. The M10 band is highly efficient in identifying radiant emissions from hot sources during night-time. The correlation (after omitting outliers) between gridded NOAA Nightfire RH and corresponding MOD14 FRP and MYD14 FRP gave a moderate regression value, with MODIS FRP being mostly higher than RH. As an extension to this work, a comprehensive study for a larger temporal domain also incorporating viewing geometries and cloud cover would advance our understanding of flare detections and associated FRP retrievals not just for the target region but also gas flaring regions globally.
Geology of coal fires: case studies from around the world
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenn B. Stracher
2008-01-15
Coal fires are preserved globally in the rock record as burnt and volume-reduced coal seams and by pyrometamorphic rocks, explosion breccias, clinker, gas-vent-mineral assemblages, fire-induced faulting, ground fissures, slump blocks, and sinkholes. Coal fires are responsible for coronary and respiratory diseases and fatalities in humans, as well as arsenic and fluorine poisoning. Their heat energy, toxic fumes, and solid by-products of combustion destroy floral and faunal habitats while polluting the air, water, and soil. This volume includes chapters devoted to spontaneous combustion and greenhouse gases, gas-vent mineralogy and petrology, paralavas and combustion metamorphic rocks, geochronology and landforms, magnetic signatures andmore » geophysical modeling, remote-sensing detection and fire-depth estimation of concealed fires, and coal fires and public policy.« less
The Safety Analysis of Shipborne Ammunition in Fire Environment
NASA Astrophysics Data System (ADS)
Ren, Junpeng; Wang, Xudong; Yue, Pengfei
2017-12-01
The safety of Ammunition has always been the focus of national military science and technology issues. And fire is one of the major safety threats to the ship’s ammunition storage environment, In this paper, Mk-82 shipborne aviation bomb has been taken as the study object, simulated the whole process of fire by using the FDS (Fire Detection System) software. According to the simulation results of FDS, ANSYS software was used to simulate the temperature field of Mk-82 carrier-based aviation bomb under fire environment, and the safety of aviation bomb in fire environment was analyzed. The result shows that the aviation bombs under the fire environment can occur the combustion or explosion after 70s constant cook-off, and it was a huge threat to the ship security.
NASA Astrophysics Data System (ADS)
Trinh, Le Hung; Zablotskii, V. R.
2017-12-01
The Khanh Hoa coal mine is a surface coal mine in the Thai Nguyen province, which is one of the largest deposits of coal in the Vietnam. Numerous reasons such as improper mining techniques and policy, as well as unauthorized mining caused surface and subsurface coal fire in this area. Coal fire is a dangerous phenomenon which affects the environment seriously by releasing toxic fumes which causes forest fires, and subsidence of infrastructure surface. This article presents study on the application of LANDSAT multi-temporal thermal infrared images, which help to detect coal fire. The results obtained in this study can be used to monitor fire zones so as to give warnings and solutions to prevent coal fire.
Chen, Xuexia; Vogelmann, James E.; Rollins, Matt; Ohlen, Donald; Key, Carl H.; Yang, Limin; Huang, Chengquan; Shi, Hua
2011-01-01
It is challenging to detect burn severity and vegetation recovery because of the relatively long time period required to capture the ecosystem characteristics. Multitemporal remote sensing data can providemultitemporal observations before, during and after a wildfire, and can improve the change detection accuracy. The goal of this study is to examine the correlations between multitemporal spectral indices and field-observed burn severity, and to provide a practical method to estimate burn severity and vegetation recovery. The study site is the Jasper Fire area in the Black Hills National Forest, South Dakota, that burned during August and September 2000. Six multitemporal Landsat images acquired from 2000 (pre-fire), 2001 (post-fire), 2002, 2003, 2005 and 2007 were used to assess burn severity. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized burn ratio (NBR), integrated forest index (IFI) and the differences of these indices between the pre-fire and post-fire years were computed and analysed with 66 field-based composite burn index (CBI) plots collected in 2002. Results showed that differences of NDVI and differences of EVI between the pre-fire year and the first two years post-fire were highly correlated with the CBI scores. The correlations were low beyond the second year post-fire. Differences of NBR had good correlation with CBI scores in all study years. Differences of IFI had low correlation with CBI in the first year post-fire and had good correlation in later years. A CBI map of the burnt area was produced using regression tree models and the multitemporal images. The dynamics of four spectral indices from 2000 to 2007 indicated that both NBR and IFI are valuable for monitoring long-term vegetation recovery. The high burn severity areas had a much slower recovery than the moderate and low burn areas.
Ecological and sampling constraints on defining landscape fire severity
Key, C.H.
2006-01-01
Ecological definition and detection of fire severity are influenced by factors of spatial resolution and timing. Resolution determines the aggregation of effects within a sampling unit or pixel (alpha variation), hence limiting the discernible ecological responses, and controlling the spatial patchiness of responses distributed throughout a burn (beta variation). As resolution decreases, alpha variation increases, extracting beta variation and complexity from the spatial model of the whole burn. Seasonal timing impacts the quality of radiometric data in terms of transmittance, sun angle, and potential contrast between responses within burns. Detection sensitivity candegrade toward the end of many fire seasons when low sun angles, vegetation senescence, incomplete burning, hazy conditions, or snow are common. Thus, a need exists to supersede many rapid response applications when remote sensing conditions improve. Lag timing, or timesince fire, notably shapes the ecological character of severity through first-order effects that only emerge with time after fire, including delayed survivorship and mortality. Survivorship diminishes the detected magnitude of severity, as burned vegetation remains viable and resprouts, though at first it may appear completely charred or consumed above ground. Conversely, delayed mortality increases the severity estimate when apparently healthy vegetation is in fact damaged by heat to the extent that it dies over time. Both responses dependon fire behavior and various species-specific adaptations to fire that are unique to the pre-firecomposition of each burned area. Both responses can lead initially to either over- or underestimating severity. Based on such implications, three sampling intervals for short-term burn severity are identified; rapid, initial, and extended assessment, sampled within about two weeks, two months, and depending on the ecotype, from three months to one year after fire, respectively. Spatial and temporal conditions of sampling strategies constrain data quality and ecological information obtained about fire severity. Though commonly overlooked, such considerations determine the objectives and hypotheses that are appropriate for each application, and are especially important when building comparative studies or long-term reference databases on fire severity.
NASA Astrophysics Data System (ADS)
Hyer, E. J.; Schmidt, C. C.; Hoffman, J.; Giglio, L.; Peterson, D. A.
2013-12-01
Polar and geostationary satellites are used operationally for fire detection and smoke source estimation by many near-real-time operational users, including operational forecast centers around the globe. The input satellite radiance data are processed by data providers to produce Level-2 and Level -3 fire detection products, but processing these data into spatially and temporally consistent estimates of fire activity requires a substantial amount of additional processing. The most significant processing steps are correction for variable coverage of the satellite observations, and correction for conditions that affect the detection efficiency of the satellite sensors. We describe a system developed by the Naval Research Laboratory (NRL) that uses the full raster information from the entire constellation to diagnose detection opportunities, calculate corrections for factors such as angular dependence of detection efficiency, and generate global estimates of fire activity at spatial and temporal scales suitable for atmospheric modeling. By incorporating these improved fire observations, smoke emissions products, such as NRL's FLAMBE, are able to produce improved estimates of global emissions. This talk provides an overview of the system, demonstrates the achievable improvement over older methods, and describes challenges for near-real-time implementation.
Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic
2009-01-01
The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m2. PMID:22454563
Antoine-Santoni, Thierry; Santucci, Jean-François; de Gentili, Emmanuelle; Silvani, Xavier; Morandini, Frederic
2009-01-01
The paper deals with a Wireless Sensor Network (WSN) as a reliable solution for capturing the kinematics of a fire front spreading over a fuel bed. To provide reliable information in fire studies and support fire fighting strategies, a Wireless Sensor Network must be able to perform three sequential actions: 1) sensing thermal data in the open as the gas temperature; 2) detecting a fire i.e., the spatial position of a flame; 3) tracking the fire spread during its spatial and temporal evolution. One of the great challenges in performing fire front tracking with a WSN is to avoid the destruction of motes by the fire. This paper therefore shows the performance of Wireless Sensor Network when the motes are protected with a thermal insulation dedicated to track a fire spreading across vegetative fuels on a field scale. The resulting experimental WSN is then used in series of wildfire experiments performed in the open in vegetation areas ranging in size from 50 to 1,000 m(2).
NASA Astrophysics Data System (ADS)
Koltunov, A.; Quayle, B.; Prins, E. M.; Ambrosia, V. G.; Ustin, S.
2014-12-01
Fire managers at various levels require near-real-time, low-cost, systematic, and reliable early detection capabilities with minimal latency to effectively respond to wildfire ignitions and minimize the risk of catastrophic development. The GOES satellite images collected for vast territories at high temporal frequencies provide a consistent and reliable source for operational active fire mapping realized by the WF-ABBA algorithm. However, their potential to provide early warning or rapid confirmation of initial fire ignition reports from conventional sources remains underutilized, partly because the operational wildfire detection has been successfully optimized for users and applications for which timeliness of initial detection is a low priority, contrasting to the needs of first responders. We present our progress in developing the GOES Early Fire Detection (GOES-EFD) system, a collaborative effort led by University of California-Davis and USDA Forest Service. The GOES-EFD specifically focuses on first detection timeliness for wildfire incidents. It is automatically trained for a monitored scene and capitalizes on multiyear cross-disciplinary algorithm research. Initial retrospective tests in Western US demonstrate significantly earlier identification detection of new ignitions than existing operational capabilities and a further improvement prospect. The GOES-EFD-β prototype will be initially deployed for the Western US region to process imagery from GOES-NOP and the rapid and 4 times higher spatial resolution imagery from GOES-R — the upcoming next generation of GOES satellites. These and other enhanced capabilities of GOES-R are expected to significantly improve the timeliness of fire ignition information from GOES-EFD.
46 CFR 28.325 - Fire detection systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... space must be equipped with an independent modular smoke detector or a smoke actuated fire detecting... detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also suitable for use in...
46 CFR 28.325 - Fire detection systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... space must be equipped with an independent modular smoke detector or a smoke actuated fire detecting... detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also suitable for use in...
46 CFR 28.325 - Fire detection systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... space must be equipped with an independent modular smoke detector or a smoke actuated fire detecting... detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also suitable for use in...
46 CFR 28.325 - Fire detection systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... space must be equipped with an independent modular smoke detector or a smoke actuated fire detecting... detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also suitable for use in...
46 CFR 28.325 - Fire detection systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... space must be equipped with an independent modular smoke detector or a smoke actuated fire detecting... detector must meet UL 217 and be listed as a “Single Station Smoke Detector—Also suitable for use in...
Demonstration of Spacecraft Fire Safety Technology
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Urban, David L.
2012-01-01
During the Constellation Program, the development of spacecraft fire safety technologies were focused on the immediate questions related to the atmosphere of the habitable volume and implementation of fire detection, suppression, and postfire clean-up systems into the vehicle architectures. One of the difficulties encountered during the trade studies for these systems was the frequent lack of data regarding the performance of a technology, such as a water mist fire suppression system or an optically-based combustion product monitor. Even though a spacecraft fire safety technology development project was being funded, there was insufficient time and funding to address all the issues as they were identified. At the conclusion of the Constellation Program, these knowledge gaps formed the basis for a project proposed to the Advanced Exploration Systems (AES) Program. This project, subsequently funded by the AES Program and in operation since October 2011, has as its cornerstone the development of an experiment to be conducted on an ISS resupply vehicle, such as the European Space Agency (ESA) Automated Transfer Vehicle (ATV) or Orbital Science s Cygnus vehicle after it leaves the ISS and before it enters the atmosphere. The technology development efforts being conducted in this project include continued quantification of low- and partial-gravity maximum oxygen concentrations of spacecraft-relevant materials, development and verification of sensors for fire detection and post-fire monitoring, development of standards for sizing and selecting spacecraft fire suppression systems, and demonstration of post-fire cleanup strategies. The major technology development efforts are identified in this paper but its primary purpose is to describe the spacecraft fire safety demonstration being planned for the reentry vehicle.
Contributions of microgravity test results to the design of spacecraft fire-safety systems
NASA Technical Reports Server (NTRS)
Friedman, Robert; Urban, David L.
1993-01-01
Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.
NASA Technical Reports Server (NTRS)
Sechen, C. M.; Senturia, S. D.
1977-01-01
The charge-flow transistor (CFT) and its applications for fire detection and gas sensing were investigated. The utility of various thin film polymers as possible sensing materials was determined. One polymer, PAPA, showed promise as a relative humidity sensor; two others, PFI and PSB, were found to be particularly suitable for fire detection. The behavior of the charge-flow capacitor, which is basically a parallel-plate capacitor with a polymer-filled gap in the metallic tip electrode, was successfully modeled as an RC transmission line. Prototype charge-flow transistors were fabricated and tested. The effective threshold voltage of this metal oxide semiconductor was found to be dependent on whether surface or bulk conduction in the thin film was dominant. Fire tests with a PFI-coated CFT indicate good sensitivity to smouldering fires.
A Validation of Remotely Sensed Fires Using Ground Reports
NASA Astrophysics Data System (ADS)
Ruminski, M. G.; Hanna, J.
2007-12-01
A satellite based analysis of fire detections and smoke emissions for North America is produced daily by NOAA/NESDIS. The analysis incorporates data from the MODIS (Terra and Aqua) and AVHRR (NOAA-15/16/17) polar orbiting instruments and GOES East and West geostationary spacecraft with nominal resolutions of 1km and 4 km for the polar and geostationary platforms respectively. Automated fire detection algorithms are utilized for each of the sensors. Analysts perform a quality control procedure on the automated detects by deleting points that are deemed to be false detects and adding points that the algorithms did not detect. A limited validation of the final quality controlled product was performed using high resolution (30 m) ASTER data in the summer of 2006. Some limitations in using ASTER data are that each scene is only approximately 3600 square km, the data acquisition time is relatively constant at around 1030 local solar time and ASTER is another remotely sensed data source. This study expands on the ASTER validation by using ground reports of prescribed burns in Montana and Idaho for 2003 and 2004. It provides a non-remote sensing data source for comparison. While the ground data do not have the limitations noted above for ASTER there are still limitations. For example, even though the data set covers a much larger area (nearly 600,000 square km) than even several ASTER scenes, it still represents a single region of North America. And while the ground data are not restricted to a narrow time window, only a date is provided with each report, limiting the ability to make detailed conclusions about the detection capabilities for specific instruments, especially for the less temporally frequent polar orbiting MODIS and AVHRR sensors. Comparison of the ground data reports to the quality controlled fire analysis revealed a low rate of overall detection of 23.00% over the entire study period. Examination of the daily detection rates revealed a wide variation, with some days resulting in as little as 5 detects out of 107 reported fires while other days had as many as 84 detections out of 160 reports. Inspection of the satellite imagery from the days with very low detection rates revealed that extensive cloud cover prohibited satellite fire detection. On days when cloud cover was at a minimum, detection rates were substantially higher. An estimate of the fire size was also provided with the ground data set. Statistics will be presented for days with minimal cloud cover which will indicate the probability of detection for fires of various sizes.
NASA Astrophysics Data System (ADS)
McRae, D. J.; Conard, S. G.; Ivanova, G. A.; Sukhinin, A. I.; Hao, W. M.; Koutzenogii, K. P.; Prins, E. M.; Schmidt, C. C.; Feltz, J. M.
2002-05-01
Over the past twenty years the international scientific research and environmental monitoring communities have recognized the vital role environmental satellites can play in detecting and monitoring active fires both regionally and around the globe for hazards applications and to better understand the extent and impact of biomass burning on the global environment. Both groups have stressed the importance of utilizing operational satellites to produce routine fire products and to ensure long-term stable records of fire activity for applications such as land-use/land cover change analyses and global climate change research. The current NOAA GOES system provides the unique opportunity to detect fires throughout the Western Hemisphere every half-hour from a series of nearly identical satellites for a period of 15+ years. This presentation will provide an overview of the GOES biomass burning monitoring program at UW-Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS) with an emphasis on recent applications of the new GOES Wildfire Automated Biomass Burning Algorithm (WF_ABBA). For the past 8 years, CIMSS has utilized the GOES-8 imager to monitor biomass burning trends in South America. Since September 2000, CIMSS has been producing half-hourly fire products in real-time for most of the Western Hemisphere. The WF_ABBA half-hourly fire product is providing new insights into diurnal, spatial, seasonal and interannual fire dynamics in North, Central, and South America. In North America these products are utilized to detect and monitor wildfires in northerly and remote locations. In South America the diurnal GOES fire product is being used as an indicator of land-use and land-cover change and carbon dynamics along the borders between Brazil, Peru, and Bolivia. The Navy is assimilating the Wildfire ABBA fire product into the Navy Aerosol Analysis and Prediction System (NAAPS) to analyze and predict aerosol loading and transport as part of the NASA-ESE Fire Locating And Mapping of Burning Emissions (FLAMBE) project. Furthermore, the dissemination and use of geostationary imagery and derived fire products in the Western Hemisphere provide a glimpse of future global geostationary fire monitoring capabilities. Global geostationary active fire monitoring will be possible with the launch of the European METEOSAT (METEOrological SATellite) Second Generation (MSG) and the replacement Japanese Multi-functional Transport Satellite (MTSAT-1R) over the next two years. This global network of geostationary satellites will complement the U.S. and international suite of environmental polar-orbiting satellites.
Geomorphology of coal seam fires
NASA Astrophysics Data System (ADS)
Kuenzer, Claudia; Stracher, Glenn B.
2012-02-01
Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires. Finally, coal fire geomorphology helps to explain landscape features whose occurrence would otherwise not be understood. Although coal fire-induced thermal anomalies and gas release are also indications of coal fire activity, as addressed by many investigators, no assessment is complete without sound geomorphologic mapping of the fire-induced geomorphologic features.
NASA Technical Reports Server (NTRS)
Bukowski, Richard W.
1987-01-01
An overview is given of the basis for an analysis of combustable materials and potential ignition sources in a spacecraft. First, the burning process is discussed in terms of the production of the fire signatures normally associated with detection devices. These include convected and radiated thermal energy, particulates, and gases. Second, the transport processes associated with the movement of these from the fire to the detector, along with the important phenomena which cause the level of these signatures to be reduced, are described. Third, the operating characteristics of the individual types of detectors which influence their response to signals, are presented. Finally, vulnerability analysis using predictive fire modeling techniques is discussed as a means to establish the necessary response of the detection system to provide the level of protection required in the application.
Hydrogen Fire Spectroscopy Issues Project
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Compiler)
2014-01-01
The detection of hydrogen fires is important to the aerospace community. The National Aeronautics and Space Administration (NASA) has devoted significant effort to the development, testing, and installation of hydrogen fire detectors based on ultraviolet, near-infrared, mid-infrared, andor far-infrared flame emission bands. Yet, there is no intensity calibrated hydrogen-air flame spectrum over this range in the literature and consequently, it can be difficult to compare the merits of different radiation-based hydrogen fire detectors.
Monitoring of wildfires in boreal forests using large area AVHRR NDVI composite image data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasischke, E.S.; French, N.H.F.; Harrell, P.
1993-06-01
Normalized difference vegetation index (NDVI) composite image data, produced from AVHRR data collected in 1990, were evaluated for locating and mapping the areal extent of wildfires in the boreal forests of Alaska during that year. A technique was developed to map forest fire boundaries by subtracting a late-summer AVHRR NDVI image from an early summer scene. The locations and boundaries of wildfires within the interior region of Alaska were obtained from the Alaska Fire Service, and compared to the AVHRR-derived fire-boundary map. It was found that AVHRR detected 89.5% of all fires with sizes greater than 2,000ha with no falsemore » alarms and that, for most cases, the general shape of the fire boundary detected by AVHRR matched those mapped by field observers. However, the total area contained within the fire boundaries mapped by AVHRR were only 61% of those mapped by the field observers. However, the AVHRR data used in this study did not span the entire time period during which fires occurred, and it is believed the areal estimates could be improved significantly if an expanded AVHRR data set were used.« less
Monitoring of wildfires in boreal forests using large area AVHRR NDVI composite image data
NASA Technical Reports Server (NTRS)
Kasischke, Eric S.; French, Nancy H. F.; Harrell, Peter; Christensen, Norman L., Jr.; Ustin, Susan L.; Barry, Donald
1993-01-01
Normalized difference vegetation index (NDVI) composite image data, produced from AVHRR data collected in 1990, were evaluated for locating and mapping the areal extent of wildfires in the boreal forests of Alaska during that year. A technique was developed to map forest fire boundaries by subtracting a late-summer AVHRR NDVI image from an early summer scene. The locations and boundaries of wildfires within the interior region of Alaska were obtained from the Alaska Fire Service, and compared to the AVHRR-derived fire-boundary map. It was found that AVHRR detected 89.5 percent of all fires with sizes greater than 2000 ha with no false alarms and that, for most cases, the general shape of the fire boundary detected by AVHRR matched those mapped by field observers. However, the total area contained within the fire boundaries mapped by AVHRR were only 61 percent of those mapped by the field observers. However, the AVHRR data used in this study did not span the entire time period during which fires occurred, and it is believed the areal estimates could be improved significantly if an expanded AVHRR data set were used.
46 CFR 131.945 - Display of plans.
Code of Federal Regulations, 2010 CFR
2010-10-01
... bulkheads together with particulars of the— (a) Fire-detection systems; (b) Manual-alarm systems; (c) Fire-extinguishing systems; (d) Fire doors; (e) Means of ingress to the different compartments; and (f) Ventilating-systems, including the— (1) Positions of the dampers; (2) Site of the remote means of stopping the fans...
We compare biomass burning emissions estimates from four different techniques that use satellite based fire products to determine area burned over regional to global domains. Three of the techniques use active fire detections from polar-orbiting MODIS sensors and one uses detec...
46 CFR 196.36-1 - When required.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Plans § 196.36-1 When required. (a) All manned vessels shall have permanently exhibited for the guidance of the officer in charge of the vessel, general arrangement plans showing for each deck the various fire retardant bulkheads together with particulars of the fire-detecting, manual alarm and fire...
46 CFR 196.36-1 - When required.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Plans § 196.36-1 When required. (a) All manned vessels shall have permanently exhibited for the guidance of the officer in charge of the vessel, general arrangement plans showing for each deck the various fire retardant bulkheads together with particulars of the fire-detecting, manual alarm and fire...
46 CFR 196.36-1 - When required.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Plans § 196.36-1 When required. (a) All manned vessels shall have permanently exhibited for the guidance of the officer in charge of the vessel, general arrangement plans showing for each deck the various fire retardant bulkheads together with particulars of the fire-detecting, manual alarm and fire...
46 CFR 196.36-1 - When required.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Plans § 196.36-1 When required. (a) All manned vessels shall have permanently exhibited for the guidance of the officer in charge of the vessel, general arrangement plans showing for each deck the various fire retardant bulkheads together with particulars of the fire-detecting, manual alarm and fire...
46 CFR 196.36-1 - When required.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Plans § 196.36-1 When required. (a) All manned vessels shall have permanently exhibited for the guidance of the officer in charge of the vessel, general arrangement plans showing for each deck the various fire retardant bulkheads together with particulars of the fire-detecting, manual alarm and fire...
Influence of the input database in detecting fire space-time clusters
NASA Astrophysics Data System (ADS)
Pereira, Mário; Costa, Ricardo; Tonini, Marj; Vega Orozco, Carmen; Parente, Joana
2015-04-01
Fire incidence variability is influenced by local environmental variables such as topography, land use, vegetation and weather conditions. These induce a cluster pattern of the fire events distribution. The space-time permutation scan statistics (STPSS) method developed by Kulldorff et al. (2005) and implemented in the SaTScanTM software (http://www.satscan.org/) proves to be able to detect space-time clusters in many different fields, even when using incomplete and/or inaccurate input data. Nevertheless, the dependence of the STPSS method on the different characteristics of different datasets describing the same environmental phenomenon has not been studied yet. In this sense, the objective of this study is to assess the robustness of the STPSS for detecting real clusters using different input datasets and to justify the obtained results. This study takes advantage of the existence of two very different official fire datasets currently available for Portugal, both provided by the Institute for the Conservation of Nature and Forests. The first one is the aggregated Portuguese Rural Fire Database PRFD (Pereira et al., 2011), which is based on ground measurements and provides detailed information about the ignition and extinction date/time and the area burnt by each fire in forest, scrubs and agricultural areas. However, in the PRFD, the fire location of each fire is indicated by the name of smallest administrative unit (the parish) where the ignition occurred. Consequently, since the application of the STPSS requires the geographic coordinates of the events, the centroid of the parishes was considered. The second fire dataset is the national mapping burnt areas (NMBA), which is based on satellite measurements and delivered in shape file format. The NMBA provides a detailed spatial information (shape and size of each fire) but the temporal information is restricted to the year of occurrence. Besides these differences, the two datasets cover different periods, they comprises a quite different number of fire records and lower fire size threshold. Therefore, it was necessary to restrict both databases to a common period and fire size range. In addition, the weather conditions during the temporal dimension of the most important detected clusters were investigated since they are often very well correlated with the fire incidence. Composite analysis was used to identify and characterize the synoptic patterns of large scale climatic and dynamical meteorological fields at different levels of the atmosphere. Kulldorff, M., Heffernan, R., Hartman, J., Assunção, R., Mostashari, F., 2005. A Space-Time Permutation Scan Statistic for Disease Outbreak Detection. PLoS medicine. 2(3), 216-224. http://dx.doi.org/10.1371/journal.pmed.0020059. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I., 2011. The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, http://dx.doi.org/10.5194/nhess-11-3343-2011. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by the project SUSTAINSYS: Environmental Sustainable Agro-Forestry Systems (NORTE-07-0124-FEDER-000044), financed by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), as well as by National Funds (PIDDAC) through the Portuguese Foundation for Science and Technology (FCT/MEC).
Li, Yiping; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong
2017-02-23
Grassland, as one of the most important ecosystems on Earth, experiences fires that affect the local ecology, economy and society. Notably, grassland fires occur frequently each year in northeastern China. Fire occurrence is a complex problem with multiple causes, such as natural factors, human activities and land use. This paper investigates the disruptive effects of grassland fire in the northeastern Inner Mongolia Autonomous Region of China. In this study, we relied on thermal anomaly detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to identify fire occurrences, and land use data were acquired by Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM). We discussed the relationship between land use and the spatial distribution of grassland fires. The results showed that the impact of land use on grassland fires was significant. Spatially, approximately 80% of grassland fires were clustered within 10 km of cultivated land, and grassland fires generally occurred in areas of intense human activity. The correlation between the spatial distribution of grassland fires and the land use degree in 2000, 2005 and 2010 was high, with R² values of 0.686, 0.716, 0.633, respectively ( p < 0.01). These results highlight the importance of the relationship between land use and grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region. This study provides significance for local fire management and prevention.
Li, Yiping; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong
2017-01-01
Grassland, as one of the most important ecosystems on Earth, experiences fires that affect the local ecology, economy and society. Notably, grassland fires occur frequently each year in northeastern China. Fire occurrence is a complex problem with multiple causes, such as natural factors, human activities and land use. This paper investigates the disruptive effects of grassland fire in the northeastern Inner Mongolia Autonomous Region of China. In this study, we relied on thermal anomaly detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to identify fire occurrences, and land use data were acquired by Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM). We discussed the relationship between land use and the spatial distribution of grassland fires. The results showed that the impact of land use on grassland fires was significant. Spatially, approximately 80% of grassland fires were clustered within 10 km of cultivated land, and grassland fires generally occurred in areas of intense human activity. The correlation between the spatial distribution of grassland fires and the land use degree in 2000, 2005 and 2010 was high, with R2 values of 0.686, 0.716, 0.633, respectively (p < 0.01). These results highlight the importance of the relationship between land use and grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region. This study provides significance for local fire management and prevention. PMID:28241476
Synchronization of two coupled turbulent fires
NASA Astrophysics Data System (ADS)
Takagi, Kazushi; Gotoda, Hiroshi; Miyano, Takaya; Murayama, Shogo; Tokuda, Isao T.
2018-04-01
We numerically study the scale-free nature of a buoyancy-induced turbulent fire and synchronization of two coupled turbulent fires. A scale-free structure is detected in weighted networks between vortices, while its lifetime obeys a clear power law, indicating intermittent appearances, disappearances, and reappearances of the scale-free property. A significant decrease in the distance between the two fire sources gives rise to a synchronized state in the near field dominated by the unstable motion of large-scale of transverse vortex rings. The synchronized state vanishes in the far field forming well-developed turbulent plumes, regardless of the distance between the two fire sources.
Algorithm and assessment work of active fire detection based on FengYun-3C/VIRR
NASA Astrophysics Data System (ADS)
Lin, Z.; Chen, F.
2017-12-01
The wildfire is one of the most destructive and uncontrollable disasters and causes huge environmental, ecological, social effects. To better serve scientific research and practical fire management, an algorithm and corresponding validation work of active fire detection based on FengYun-3C/VIRR data, which is an optical sensor onboard the Chinese polar-orbiting meteorological sun-synchronous satellite, is hereby introduced. While the main structure heritages the `contextual algorithm', some new concepts including `infrared channel slope' are introduced for better adaptions to different situations. The validation work contains three parts: 1) comparing with the current FengYun-3C fire product GFR; 2) comparing with MODIS fire products; 3) comparing with Landsat series data. Study areas are selected from different places all over the world from 2014 to 2016. The results showed great improvement on GFR files on accuracy of both positioning and detection rate. In most study areas, the results match well with MODIS products and Landsat series data (with over 85% match degree) despite the differences in imaging time. However, detection rates and match degrees in Africa and South-east Asia are not satisfied (around 70%), where the occurrences of numerous small fire events and corresponding smokes may strongly affect the results of the algorithm. This is our future research direction and one of the main improvements requires achieving.
[The "Mining Rescue System and Mine Fires" Working Group. Tasks, results, future activities].
Coenders, A
1983-01-01
The president of the working party presents details of its principal tasks in the past and in the present time. These can be summed up in a study of the problems mentioned below and the subsequent elaboration of recommendations for the benefit of the governments, guidelines, information reports and research proposals. The principal problems that were or are still under study are: --prevention of fires: shaft equipment, hydraulic fluids, belt conveyors, . . .; --detection of mine fires and spontaneous combustion; --fighting of mine fires: shaft fires, construction of stoppings, openings and recovering of fire zones, . . .; --coordination and rescue equipment: escape and rescue breathing apparatus, flameproof clothing, rescue of trapped miners; --stabilization of ventilation in the event of fire, . . . The speaker stresses the importance of the information exchange and the atmosphere of fellowship and solidarity that prevails in the working party.
Colleges Fight Fire With Electronics.
ERIC Educational Resources Information Center
College & University Business, 1968
1968-01-01
Description of various electronic fire detection and alarm systems is presented. Explanation of detective systems includes--(1) fixed-temperature and rate-of-rise heat sensitive devices, (2) smoke detective devices, (3) ionization systems, and (4) infrared and ultraviolet radiation devices. Each system type is evaluated in terms of operation,…
NASA Astrophysics Data System (ADS)
Wooster, M. J.; Roberts, G.; Freeborn, P. H.; Xu, W.; Govaerts, Y.; Beeby, R.; He, J.; Lattanzio, A.; Mullen, R.
2015-06-01
Characterising changes in landscape scale fire activity at very high temporal resolution is best achieved using thermal observations of actively burning fires made from geostationary Earth observation (EO) satellites. Over the last decade or more, a series of research and/or operational "active fire" products have been developed from these types of geostationary observations, often with the aim of supporting the generation of data related to biomass burning fuel consumption and trace gas and aerosol emission fields. The Fire Radiative Power (FRP) products generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from data collected by the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) are one such set of products, and are freely available in both near real-time and archived form. Every 15 min, the algorithms used to generate these products identify and map the location of new SEVIRI observations containing actively burning fires, and characterise their individual rates of radiative energy release (fire radiative power; FRP) that is believed proportional to rates of biomass consumption and smoke emission. The FRP-PIXEL product contains the highest spatial resolution FRP dataset, delivered for all of Europe, northern and southern Africa, and part of South America at a spatial resolution of 3 km (decreasing away from the west African sub-satellite point) at the full 15 min temporal resolution. The FRP-GRID product is an hourly summary of the FRP-PIXEL data, produced at a 5° grid cell size and including simple bias adjustments for meteorological cloud cover and for the regional underestimation of FRP caused, primarily, by the non-detection of low FRP fire pixels at SEVIRI's relatively coarse pixel size. Here we describe the enhanced geostationary Fire Thermal Anomaly (FTA) algorithm used to detect the SEVIRI active fire pixels, and detail methods used to deliver atmospherically corrected FRP information together with the per-pixel uncertainty metrics. Using scene simulations and analysis of real SEVIRI data, including from a period of Meteosat-8 "special operations", we describe some of the sensor and data pre-processing characteristics influencing fire detection and FRP uncertainty. We show that the FTA algorithm is able to discriminate actively burning fires covering down to 10-4 of a pixel, and is more sensitive to fire than algorithms used within many other widely exploited active fire products. We also find that artefacts arising from the digital filtering and geometric resampling strategies used to generate level 1.5 SEVIRI data can significantly increase FRP uncertainties in the SEVIRI active fire products, and recommend that the processing chains used for the forthcoming Meteosat Third Generation attempt to minimise the impact of these types of operations. Finally, we illustrate the information contained within the current Meteosat FRP-PIXEL and FRP-GRID products, providing example analyses for both individual fires and multi-year regional-scale fire activity. A companion paper (Roberts et al., 2015) provides a full product performance evaluation for both products, along with examples of their use for prescribing fire smoke emissions within atmospheric modelling components of the Copernicus Atmosphere Monitoring Service (CAMS).
Expert systems applied to spacecraft fire safety
NASA Technical Reports Server (NTRS)
Smith, Richard L.; Kashiwagi, Takashi
1989-01-01
Expert systems are problem-solving programs that combine a knowledge base and a reasoning mechanism to simulate a human expert. The development of an expert system to manage fire safety in spacecraft, in particular the NASA Space Station Freedom, is difficult but clearly advantageous in the long-term. Some needs in low-gravity flammability characteristics, ventilating-flow effects, fire detection, fire extinguishment, and decision models, all necessary to establish the knowledge base for an expert system, are discussed.
Contributions of Microgravity Test Results to the Design of Spacecraft Fire Safety Systems
NASA Technical Reports Server (NTRS)
Friedman, Robert; Urban, David L.
1993-01-01
Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) as compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.
InSAR detects increase in surface subsidence caused by an Arctic tundra fire
Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun
2014-01-01
Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.
Engineering Software for Interoperability through Use of Enterprise Architecture Techniques
2003-03-01
Response Home/ Business Security . To detect flood conditions (i.e. excess water levels) within the monitored area and alert authorities, as necessary...Response; Fire Detection & Response; and Flood Detection & Response. Functional Area Description Intruder Detection & Response Home/ Business ... Security . To monitor and detect unauthorized entry into the secured area and sound alarms/alert authorities, as necessary. Fire Detection
NASA Astrophysics Data System (ADS)
Waigl, C.; Stuefer, M.; Prakash, A.
2013-12-01
Wildfire is the main disturbance regime of the boreal forest ecosystem, a region acutely sensitive to climate change. Large fires impact the carbon cycle, permafrost, and air quality on a regional and even hemispheric scale. Because of their significance as a hazard to human health and economic activity, monitoring wildfires is relevant not only to science but also to government agencies. The goal of this study is to develop pathways towards a near real-time assessment of fire characteristics in the boreal zones of Alaska based on satellite remote sensing data. We map the location of active burn areas and derive fire parameters such as fire temperature, intensity, stage (smoldering or flaming), emission injection points, carbon consumed, and energy released. For monitoring wildfires in the sub-arctic region, we benefit from the high temporal resolution of data (as high as 8 images a day) from MODIS on the Aqua and Terra platforms and VIIRS on NPP/Suomi, downlinked and processed to level 1 by the Geographic Information Network of Alaska at the University of Alaska Fairbanks. To transcend the low spatial resolution of these sensors, a sub-pixel analysis is carried out. By applying techniques from Bayesian inverse modeling to Dozier's two-component approach, uncertainties and sensitivity of the retrieved fire temperatures and fractional pixel areas to background temperature and atmospheric factors are assessed. A set of test cases - large fires from the 2004 to 2013 fire seasons complemented by a selection of smaller burns at the lower end of the MODIS detection threshold - is used to evaluate the methodology. While the VIIRS principal fire detection band M13 (centered at 4.05 μm, similar to MODIS bands 21 and 22 at 3.959 μm) does not usually saturate for Alaskan wildfire areas, the thermal IR band M15 (10.763 μm, comparable to MODIS band 31 at 11.03 μm) indeed saturates for a percentage, though not all, of the fire pixels of intense burns. As this limits the application of the classical version of Dozier's model for this particular combination to lower intensity and smaller fires, or smaller fractional fire areas, other VIIRS band combinations are evaluated as well. Furthermore, the higher spatial resolution of the VIIRS sensor compared to MODIS and its constant along-scan resolution DNB (day/night band) dataset provide additional options for fire mapping, detection and quantification. Higher spatial resolution satellite-borne remote sensing data is used to validate the pixel and sub-pixel level analysis and to assess lower detection thresholds. For each sample fire, moderate-resolution imagery is paired with data from the ASTER instrument (simultaneous with MODIS data on the Terra platform) and/or Landsat scenes acquired in close temporal proximity. To complement the satellite-borne imagery, aerial surveys using a FLIR thermal imaging camera with a broadband TIR sensor provide additional ground truthing and a validation of fire location and background temperature.
Experiments with the Skylab fire detectors in zero gravity
NASA Technical Reports Server (NTRS)
Linford, R. M. F.
1972-01-01
The Skylab fire detector was evaluated in a zero gravity environment. To conduct the test, small samples of spacecraft materials were ignited in a 5 psi oxygen-rich atmosphere inside a combustion chamber. The chamber free-floated in the cabin of a C-135 aircraft, as the aircraft executed a Keplerian parabola. Up to 10 seconds of zero-gravity combustion were achieved. The Skylab fire-detector tubes viewed the flames from a simulated distance of 3m, and color movies were taken to record the nature of the fire. The experiments established the unique form of zero-gravity fires for a wide range of materials. From the tube-output data, the alarm threshold and detector time constant were verified for the Skylab Fire Detection System.
Spacecraft Fire Safety and Microgravity Combustion Research
NASA Technical Reports Server (NTRS)
Tien, James S.; Ferkul, Paul (Technical Monitor)
2001-01-01
Fire safety is an important concern in our daily lives and it plays a special role in the human presence in space. In a spacecraft, the outside environment is hostile and the opportunity to escape is small. Rescue missions are difficult and time consuming. As a result, we should avoid the occurrence of fires in spacecraft as much as possible. If a fire occurs, we need to keep it small and under control. This implies that the materials used on board the spacecraft should be screened carefully, all the machines and devices need to be operated without accident, and fire detectors have to function properly. Once a fire is detected, it can be extinguished quickly and the cabin can be cleaned up to restore operation and sustain life.
NASA Astrophysics Data System (ADS)
Armenteras, Dolors; Barreto, Joan Sebastian; Tabor, Karyn; Molowny-Horas, Roberto; Retana, Javier
2017-06-01
Tropical forests in NW Amazonia are highly threatened by the expansion of the agricultural frontier and subsequent deforestation. Fire is used, both directly and indirectly, in Brazilian Amazonia to propagate deforestation and increase forest accessibility. Forest fragmentation, a measure of forest degradation, is also attributed to fire occurrence in the tropics. However, outside the Brazilian Legal Amazonia the role of fire in increasing accessibility and forest fragmentation is less explored. In this study, we compared fire regimes in five countries that share this tropical biome in the most north-westerly part of the Amazon Basin (Venezuela, Colombia, Ecuador, Peru and Brazil). We analysed spatial differences in the timing of peak fire activity and in relation to proximity to roads and rivers using 12 years of MODIS active fire detections. We also distinguished patterns of fire in relation to forest fragmentation by analysing fire distance to the forest edge as a measure of fragmentation for each country. We found significant hemispheric differences in peak fire occurrence with the highest number of fires in the south in 2005 vs. 2007 in the north. Despite this, both hemispheres are equally affected by fire. We also found difference in peak fire occurrence by country. Fire peaked in February in Colombia and Venezuela, whereas it peaked in September in Brazil and Peru, and finally Ecuador presented two fire peaks in January and October. We confirmed the relationship between fires and forest fragmentation for all countries and also found significant differences in the distance between the fire and the forest edge for each country. Fires were associated with roads and rivers in most countries. These results can inform land use planning at the regional, national and subnational scales to minimize the contribution of road expansion and subsequent access to the Amazonian natural resources to fire occurrence and the associated deforestation and carbon emissions.
NASA Astrophysics Data System (ADS)
Ruminski, M.; Cheng, Z.; Salemi, T.
2016-12-01
The HMS incorporates a wide variety of satellite data for use in fire and smoke detection, including 30 minute interval GOES-East and GOES-West, five AVHRR satellites (NOAA and METOP) and MODIS Aqua/Terra. NESDIS' Satellite Analysis Branch (SAB) analysts utilize the HMS to analyze and quality control the automated fire detections from each of the sensors and create the fire/smoke products to enable the users to mitigate disasters and environmental hazards. The new HMS design eliminates the inefficiencies and increases the accuracy of the fire/smoke analysis. The new system has the capability to display higher resolution data available from VIIRS while maintaining individual pixel integrity which improves the representation of fire size. This will benefit the input to smoke forecast models and may possibly be useful as input for fire spread models. An analysis of all VIIRS Active Fire (AF) locations compared to the operational HMS fire analysis for all of 2015 over North America will be presented that will provide an estimate of the impact of this new data set. Results will be presented for regional and seasonal impact. The new system also provides greater analysis control of layers and display properties and will allow for the display of all GOES images, even when in Rapid Scan Operations (RSO) mode. To enhance the efficiency and improve the accuracy of the fire and smoke product, the display of the new HMS eliminates the sector boundaries to display full analysis domain (North and Central America, Caribbean and Hawaii) and has functionality to edit plumes on a finer scale. In the presentation we will highlight the new features of the updated HMS.
Smouldering Fires in the Earth System
NASA Astrophysics Data System (ADS)
Rein, G.
2012-04-01
Smouldering fires, the slow, low-temperature, flameless burning, represent the most persistent type of combustion phenomena and the longest continuously fires on Earth system. Indeed, smouldering mega-fires of peatlands occur with some frequency during the dry session in, for example, Indonesia, Canada, Russia, UK and USA. Smouldering fires propagate slowly through organic layers of the ground and can reach depth >5 m if large cracks, natural piping or channel systems exist. It threatens to release sequestered carbon deep into the soil. Once ignited, they are particularly difficult to extinguish despite extensive rains, weather changes or fire-fighting attempts, and can persist for long periods of time (months, years) spreading deep and over extensive areas. Recent figures at the global scale estimate that average annual greenhouse gas emissions from smouldering fires are equivalent to 15% of man-made emissions. These fires are difficult or impossible to detect with current remote sensing methods because the chemistry is significantly different, their thermal radiation signature is much smaller, and the plume is much less buoyant. These wildfires burn fossil fuels and thus are a carbon-positive fire phenomena. This creates feedbacks in the climate system because soil moisture deficit and self-heating are enchanted under warmer climate scenarios and lead to more frequent fires. Warmer temperatures at high latitudes are resulting in more frequent Artic fires. Unprecedented permafrost thaw is leaving large soil carbon pools exposed to smouldering fires for the fist time since millennia. Although interactions between flaming fires and the Earth system have been a central focus, smouldering fires are as important but have received very little attention. DBut differences with flaming fires are important. This paper reviews the current knowledge on smouldering fires in the Earth system regarding combustion dynamics, damage to the soil, emissions, remote sensing and feedbacks in the climate system.
Fires in Southeast United States Both Wild and Prescribed
2017-12-08
Fires both wild and prescribed dot the landscape of the southeastern portion of the United States. Wildfires are those that occur naturally with lightning strikes or are set by careless humans. Prescribed fires are those deliberately set by land management authorities to take out underlying brush and dead grass so that in the event of a wildfire there is not sufficient fuel for that fire to spread too far. The Southern Area Coordination Center for fire management has this information on its report for February 21, 2017. • Fires that have broken out recently (known as Initial Attack Activity): 198 fires for 2,292 acres • Ongoing Uncontained Large Fires: 3 fires for 5,947 acres • Other Fires reported through alternate channels: 56 fires for 1,400 acres • Prescribed Fire Activity: State and/or Federal Lands – 1,974 prescribed fires for 38,533 acres in AL, FL & GA The bulk of the fires seen in the image taken by the Aqua satellite using the onboard MODIS (Moderate Resolution Imaging Spectroradiometer) instrument on February 16, 2017 appear to be prescribed fires. Actively burning areas, detected by MODIS’s thermal bands, are outlined in red and when combined with smoke are indicative of fire. NASA image courtesy Jeff Schmaltz LANCE/EOSDIS MODIS Rapid Response Team, GSFC. Caption by Lynn Jenner with information from the Southern Area Coordination Center. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Exploring spatial-temporal dynamics of fire regime features in mainland Spain
NASA Astrophysics Data System (ADS)
Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan
2017-10-01
This paper explores spatial-temporal dynamics in fire regime features, such as fire frequency, burnt area, large fires and natural- and human-caused fires, as an essential part of fire regime characterization. Changes in fire features are analysed at different spatial - regional and provincial/NUTS3 - levels, together with summer and winter temporal scales, using historical fire data from Spain for the period 1974-2013. Temporal shifts in fire features are investigated by means of change point detection procedures - Pettitt test, AMOC (at most one change), PELT (pruned exact linear time) and BinSeg (binary segmentation) - at a regional level to identify changes in the time series of the features. A trend analysis was conducted using the Mann-Kendall and Sen's slope tests at both the regional and NUTS3 level. Finally, we applied a principal component analysis (PCA) and varimax rotation to trend outputs - mainly Sen's slope values - to summarize overall temporal behaviour and to explore potential links in the evolution of fire features. Our results suggest that most fire features show remarkable shifts between the late 1980s and the first half of the 1990s. Mann-Kendall outputs revealed negative trends in the Mediterranean region. Results from Sen's slope suggest high spatial and intra-annual variability across the study area. Fire activity related to human sources seems to be experiencing an overall decrease in the northwestern provinces, particularly pronounced during summer. Similarly, the Hinterland and the Mediterranean coast are gradually becoming less fire affected. Finally, PCA enabled trends to be synthesized into four main components: winter fire frequency (PC1), summer burnt area (PC2), large fires (PC3) and natural fires (PC4).
Repetitive deliberate fires: Development and validation of a methodology to detect series.
Bruenisholz, Eva; Delémont, Olivier; Ribaux, Olivier; Wilson-Wilde, Linzi
2017-08-01
The detection of repetitive deliberate fire events is challenging and still often ineffective due to a case-by-case approach. A previous study provided a critical review of the situation and analysis of the main challenges. This study suggested that the intelligence process, integrating forensic data, could be a valid framework to provide a follow-up and systematic analysis provided it is adapted to the specificities of repetitive deliberate fires. In this current manuscript, a specific methodology to detect deliberate fires series, i.e. set by the same perpetrators, is presented and validated. It is based on case profiles relying on specific elements previously identified. The method was validated using a dataset of approximately 8000 deliberate fire events collected over 12 years in a Swiss state. Twenty possible series were detected, including 6 of 9 known series. These results are very promising and lead the way to a systematic implementation of this methodology in an intelligence framework, whilst demonstrating the need and benefit of increasing the collection of forensic specific information to strengthen the value of links between cases. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Use of a Small Unmanned Aircraft System for Autonomous Fire Spotting at the Great Dismal Swamp
NASA Technical Reports Server (NTRS)
Logan, Michael J.; Glaab, Louis J.; Craig, Timothy
2016-01-01
This paper describes the results of a set of experiments and analyses conducted to evaluate the capability of small unmanned aircraft systems (sUAS) to spot nascent fires in the Great Dismal Swamp (GDS) National Wildlife Refuge. This work is the result of a partnership between the National Aeronautics and Space Administration and the US Fish and Wildlife service specifically to investigate sUAS usage for fire-spotting. The objectives of the current effort were to: 1) Determine suitability and utility of low-cost Small Unmanned Aircraft Systems (sUAS) to detect nascent fires at GDS; 2) Identify and assess the necessary National Airspace System (NAS) integration issues; and 3) Provide information to GDS and the community on system requirements and concepts-of-operation (CONOPS) for conducting fire detection/support mission in the National Airspace and (4) Identify potential applications of intelligent autonomy that would enable or benefit this high-value mission. In addition, data on the ability of various low-cost sensors to detect smoke plumes and fire hot spots was generated during the experiments as well as identifying a path towards a future practical mission utility by using sUAS in beyond visual-line-of-sight operation in the National Airspace System (NAS).
Fire and Smoke Monitoring at NOAA' Satellite Service; Applications to Smoke Forecasting
NASA Astrophysics Data System (ADS)
Stephens, G.; Ruminski, M.
2005-12-01
The Hazard Mapping System (HMS), developed and run operationally by NOAA's Satellite Services Division (SSD), is a multiplatform remote sensing approach to detecting fires and smoke over the US and adjacent areas of Canada and Mexico. The system utilizes sensors on 7 different NOAA and NASA satellites. Automated detection algorithms are employed for each of the satellites for the fire detects while smoke is delineated by an image analyst. Analyses are quality control by an analyst who inspects all available imagery and automated fire detects, deleting suspected false detects and adding fires that the automated routines miss. Graphical, text, and GIS compatible analyses are posted to a web site as soon as updates are performed, and a final product for a given day is posted early the following morning. All products are archived at NOAA's National Geophysical Data Center. Areal extent of detectable smoke is outlined using animated visible imagery, for input to a dispersion and transport model, the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), developed by NOAA's Air Resources Laboratory (ARL). Resulting smoke forecasts will soon be used as input to NOAA's Air Quality forecasts. The GOES Aerosol and Smoke Product (GASP) is an experimental GOES imagery based aerosol optical depth (AOD) product developed by the NESDIS Office of Research and Applications, being implemented for evaluation by the NESDIS Satellite Analysis Branch for use in smoke and volcanic ash monitoring. Currently, research is underway in NESDIS' Office of Research and Applications to objectivize smoke delineation using GASP and MODIS AOD retrievals. NOAA's Operational Significant Event Imagery (OSEI) program processes satellite imagery of environmentally significant events, including fire, smoke and volcanic ash, visible in operational satellite data. This imagery is often referred to by fire managers and air quality agencies. Future plans include the integration of high resolution global data from the European Space Agency's MetOp satellite and global geostationary satellites.
Remote sensing sensitivity to fire severity and fire recovery
Key, C.H.
2005-01-01
The paper examines fundamental ways that geospatial data on fire severity and recovery are influenced by conditions of the remote sensing. Remote sensing sensitivities are spatial, temporal and radiometric in origin. Those discussed include spatial resolution, the sampling time of year, and time since fire. For standard reference, sensitivities are demonstrated with examples drawn from an archive of burn assessments based on one radiometric index, the differenced Normalized Burn Ratio. Resolution determines the aggregation of fire effects within a pixel (alpha variation), hence defining the detected ecological response, and controlling the ability to determine patchiness and spatial distribution of responses throughout a burn (beta variation). As resolution decreases, alpha variation increases, extracting beta variation from the complexity of the whole burn. Seasonal timing impacts the radiometric quality of data in terms of transmittance, sun angle, and potential for enhanced contrast between responses within burns. Remote sensing sensitivity can degrade during many fire seasons when snow, incomplete burning, hazy conditions, low sun angles, or extended drought are common. Time since fire (lag timing) most notably shapes severity detection through the first-order fire effects evident in survivorship and delayed mortality that emerge by the growth period after fire. The former effects appear overly severe at first, but diminish, as burned vegetation remains viable. Conversely, the latter signals vegetation that appears healthy at first, but is damaged by heat to the extent that it soon dies. Both responses can lead to either over- or under-estimating severity, respectively, depending on fire behavior and pre-fire composition unique to each burned area. Based on implications of such sensitivities, three sampling intervals for short-term burn severity are identified; rapid, initial, and extended assessment, sampled within ca. two weeks, two months, and depending on the ecotype, from three months to one year after fire, respectively. Jointly, remote sensing conditions and the way burns are studied yield different tendencies for data quality and information content that impact the objectives and hypotheses that can be studied. Such considerations can be commonly overlooked, but need to be incorporated especially in comparative studies, and to build long-term reference databases on fire severity and recovery.
Mortality trends and traits of hardwood advance regeneration following seasonal prescribed fires
Patrick Brose; David Van Lear
2003-01-01
Fire ecology studies in eastern hardwood forests generally use traditional, plot-based inventory methods and focus on sprouting stems to detect changes in vegetative composition and structure. Fire intensity often is not quantified or even subjectively classified and, if quantified, is not used in subsequent analysis. Consequently, reported responses of hardwood...
1983-12-01
carbon dioxide scrubbers , air conditioning, communications, lighting, and fire detecting and fire extinguishing systems. Medical support equipment was...10 14 Humidity...............................11 5. Hydrocarb on...........................11 B. Carbon Dioxide Scrubbers .....................11 C...and ancillary equipment included gas/vapor monitoring equipment, carbon dioxide scrubbers , air conditioning, communications, lighting, and fire
Fire prevention in the California Division of Forestry. . .personnel and practices
Adam Sarapata; William S. Folkman
1970-01-01
A sample of California Division of Forestry employees whose jobs include some contact with the public were queried about job satisfaction and employee motivations, and their responses were related to the Division's fire prevention program. Most respondents felt that Division management considered the program less important than fire suppression and detection. They...
Airborne asbestos exposures associated with work on asbestos fire sleeve materials.
Blake, Charles L; Harbison, Stephen C; Johnson, Giffe T; Harbison, Raymond D
2011-11-01
Asbestos-containing fire sleeves have been used as a fire protection measure for aircraft fluid hoses. This investigation was conducted to determine the level of airborne asbestos fiber exposure experienced by mechanics who work with fire sleeve protected hoses. Duplicate testing was performed inside a small, enclosed workroom during the fabrication of hose assemblies. Personal air samples taken during this work showed detectable, but low airborne asbestos fiber exposures. Analysis of personal samples (n=9) using phrase contract microscopy (PCM) indicated task duration airborne fiber concentrations ranging from 0.017 to 0.063 fibers per milliliter (f/ml) for sampling durations of 167-198 min, and 0.022-0.14 f/ml for 30 min samples. Airborne chrysotile fibers were detected for four of these nine personal samples, and the resulting asbestos adjusted airborne fiber concentrations ranged from 0.014 to 0.025 f/ml. These results indicate that work with asbestos fire sleeve and fire sleeve protected hose assemblies, does not produce regulatory noncompliant levels of asbestos exposure for persons who handle, cut and fit these asbestos-containing materials. Copyright © 2011 Elsevier Inc. All rights reserved.
Mutagenicity in emissions from coal- and oil-fired boilers.
Alfheim, I; Bergström, J G; Jenssen, D; Møller, M
1983-01-01
The mutagenicity of emission samples from three oil-fired and four coal-fired boilers have been compared by using the Salmonella/microsome assay. Very little or no mutagenic activity was observed in samples from five of these boilers. The sample from one oil-fired boiler showed mutagenic activity of about 500 revertants/MJ, and the sample from a coal-fired fluidized bed combustor had an activity of 58,000 revertants/MJ measured with strain TA 98 in the absence of metabolic activation. All samples contained substances that were cytotoxic to the test bacteria, thus making it difficult to obtain linear dose-response curves. Mutagenic activity at low levels may remain undetected due to this toxicity of the samples. Samples with mutagenic activity below the detection limit in the Salmonella test have also been tested for forward mutations at the HGPRT locus in V79 hamster cells. Weak mutagenic effects were detected in two of the samples, whereas the sample from one oil-fired boiler remained negative. In this test, as well as in the Salmonella test, a strong cytotoxic effect could be observed with all samples. PMID:6825617
NASA Astrophysics Data System (ADS)
Chen, Yang; Randerson, James T.; Morton, Douglas C.
2015-08-01
We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.
Science and technology issues in spacecraft fire safety
NASA Technical Reports Server (NTRS)
Friedman, Robert; Sacksteder, Kurt R.
1987-01-01
The space station, a permanently-inhabited orbiting laboratory, places new demands on spacecraft fire safety. Long-duration missions may call for more-constrained fire controls, but the accessibility of the space station to a variety of users may call for less-restrictive measures. This paper discusses fire safety issues through a review of the state of the art and a presentation of key findings from a recent NASA Lewis Research Center Workshop. The subjects covered are the fundamental science of low-gravity combustion and the technology advances in fire detection, extinguishment, materials assessment, and atmosphere selection. Key concerns are for the adoption of a fire-safe atmosphere and the substitution for the effective but toxic extinguishant, halon 1301. The fire safety studies and reviews provide several recommendations for further action. One is the expanded research in combustion, sensors, and materials in the low-gravity environment of space. Another is the development of generalized fire-safety standards for spacecraft through cooperative endeavors with aerospace and outside Government and industry sources.
Evaluation of Criteria for the Detection of Fires in Underground Conveyor Belt Haulageways
Litton, Charles D.; Perera, Inoka Eranda
2015-01-01
Large-scale experiments were conducted in an above-ground gallery to simulate typical fires that develop along conveyor belt transport systems within underground coal mines. In the experiments, electrical strip heaters, imbedded ~5 cm below the top surface of a large mass of coal rubble, were used to ignite the coal, producing an open flame. The flaming coal mass subsequently ignited 1.83-meter-wide conveyor belts located approximately 0.30 m above the coal surface. Gas samples were drawn through an averaging probe located approximately 20 m downstream of the coal for continuous measurement of CO, CO2, and O2 as the fire progressed through the stages of smoldering coal, flaming coal, and flaming conveyor belt. Also located approximately 20 m from the fire origin and approximately 0.5 m below the roof of the gallery were two commercially available smoke detectors, a light obscuration meter, and a sampling probe for measurement of total mass concentration of smoke particles. Located upstream of the fire origin and also along the wall of the gallery at approximately 14 m and 5 m upstream were two video cameras capable of both smoke and flame detection. During the experiments, alarm times of the smoke detectors and video cameras were measured while the smoke obscuration and total smoke mass were continually measured. Twelve large-scale experiments were conducted using three different types of fire-resistant conveyor belts and four air velocities for each belt. The air velocities spanned the range from 1.0 m/s to 6.9 m/s. The results of these experiments are compared to previous large-scale results obtained using a smaller fire gallery and much narrower (1.07-m) conveyor belts to determine if the fire detection criteria previously developed (1) remained valid for the wider conveyor belts. Although some differences between these and the previous experiments did occur, the results, in general, compare very favorably. Differences are duly noted and their impact on fire detection discussed. PMID:26566298
Defining pyromes and global syndromes of fire regimes.
Archibald, Sally; Lehmann, Caroline E R; Gómez-Dans, Jose L; Bradstock, Ross A
2013-04-16
Fire is a ubiquitous component of the Earth system that is poorly understood. To date, a global-scale understanding of fire is largely limited to the annual extent of burning as detected by satellites. This is problematic because fire is multidimensional, and focus on a single metric belies its complexity and importance within the Earth system. To address this, we identified five key characteristics of fire regimes--size, frequency, intensity, season, and extent--and combined new and existing global datasets to represent each. We assessed how these global fire regime characteristics are related to patterns of climate, vegetation (biomes), and human activity. Cross-correlations demonstrate that only certain combinations of fire characteristics are possible, reflecting fundamental constraints in the types of fire regimes that can exist. A Bayesian clustering algorithm identified five global syndromes of fire regimes, or pyromes. Four pyromes represent distinctions between crown, litter, and grass-fueled fires, and the relationship of these to biomes and climate are not deterministic. Pyromes were partially discriminated on the basis of available moisture and rainfall seasonality. Human impacts also affected pyromes and are globally apparent as the driver of a fifth and unique pyrome that represents human-engineered modifications to fire characteristics. Differing biomes and climates may be represented within the same pyrome, implying that pathways of change in future fire regimes in response to changes in climate and human activity may be difficult to predict.
NASA Astrophysics Data System (ADS)
Henry, Mary Catherine
The use of active and passive remote sensing systems for relating forest spatial patterns to fire history was tested over one of the Arizona Sky Islands. Using Landsat Thematic Mapper (TM), Shuttle Imaging Radar (SIR-C), and data fusion I examined the relationship between landscape metrics and a range of fire history characteristics. Each data type (TM, SIR-C, and fused) was processed in the following manner: each band, channel, or derived feature was simplified to a thematic layer and landscape statistics were calculated for plots with known fire history. These landscape metrics were then correlated with fire history characteristics, including number of fire-free years in a given time period, mean fire-free interval, and time since fire. Results from all three case studies showed significant relationships between fire history and forest spatial patterns. Data fusion performed as well or better than Landsat TM alone, and better than SIR-C alone. These comparisons were based on number and strength of significant correlations each method achieved. The landscape metric that was most consistent and obtained the greatest number of significant correlations was Shannon's Diversity Index. Results also agreed with field-based research that has linked higher fire frequency to increased landscape diversity and patchiness. An additional finding was that the fused data seem to detect fire-related spatial patterns over a range of scales.
Defining pyromes and global syndromes of fire regimes
Archibald, Sally; Lehmann, Caroline E. R.; Gómez-Dans, Jose L.; Bradstock, Ross A.
2013-01-01
Fire is a ubiquitous component of the Earth system that is poorly understood. To date, a global-scale understanding of fire is largely limited to the annual extent of burning as detected by satellites. This is problematic because fire is multidimensional, and focus on a single metric belies its complexity and importance within the Earth system. To address this, we identified five key characteristics of fire regimes—size, frequency, intensity, season, and extent—and combined new and existing global datasets to represent each. We assessed how these global fire regime characteristics are related to patterns of climate, vegetation (biomes), and human activity. Cross-correlations demonstrate that only certain combinations of fire characteristics are possible, reflecting fundamental constraints in the types of fire regimes that can exist. A Bayesian clustering algorithm identified five global syndromes of fire regimes, or pyromes. Four pyromes represent distinctions between crown, litter, and grass-fueled fires, and the relationship of these to biomes and climate are not deterministic. Pyromes were partially discriminated on the basis of available moisture and rainfall seasonality. Human impacts also affected pyromes and are globally apparent as the driver of a fifth and unique pyrome that represents human-engineered modifications to fire characteristics. Differing biomes and climates may be represented within the same pyrome, implying that pathways of change in future fire regimes in response to changes in climate and human activity may be difficult to predict. PMID:23559374
NASA Astrophysics Data System (ADS)
Miller, V. V.; Kochanski, A.; Mandel, J.; Herr, V.; Schranz, S.
2016-12-01
This presentation will discuss the fire simulation system based on WRF-SFIRE and assimilation of satellite Active Fires detection to estimate the socio-economic impact of Earth observations and fire behavior modeling for the 2011 Las Conchas fire in New Mexico. Multiple scenarios will be developed with the WRF-SFIRE simulation based on value of information (VOI) provided by retired incident commanders, whose decision inputs will steer scenario development and simulation. The scenarios will differ according to the Earth observations available through NASA and then deemed useful to incident commanders. Each scenario will be evaluated in terms of its socio-economic impact as specified by NASA (2012) for its wildland fire program. This presentation is a proposed supplement to NASA grant NNX13AH59G Wildland Fire Behavior and Risk Forecasting, Sher Schranz, PI.
Prescribed fires as ecological surrogates for wildfires: A stream and riparian perspective
Arkle, R.S.; Pilliod, D.S.
2010-01-01
Forest managers use prescribed fire to reduce wildfire risk and to provide resource benefits, yet little information is available on whether prescribed fires can function as ecological surrogates for wildfire in fire-prone landscapes. Information on impacts and benefits of this management tool on stream and riparian ecosystems is particularly lacking. We used a beyond-BACI (Before, After, Control, Impact) design to investigate the effects of a prescribed fire on a stream ecosystem and compared these findings to similar data collected after wildfire. For 3 years after prescribed fire treatment, we found no detectable changes in periphyton, macroinvertebrates, amphibians, fish, and riparian and stream habitats compared to data collected over the same time period in four unburned reference streams. Based on changes in fuels, plant and litter cover, and tree scorching, this prescribed fire was typical of those being implemented in ponderosa pine forests throughout the western U.S. However, we found that the extent and severity of riparian vegetation burned was substantially lower after prescribed fire compared to nearby wildfires. The early-season prescribed fire did not mimic the riparian or in-stream ecological effects observed following a nearby wildfire, even in catchments with burn extents similar to the prescribed fire. Little information exists on the effects of long-term fire exclusion from riparian forests, but a "prescribed fire regime" of repeatedly burning upland forests while excluding fire in adjacent riparian forests may eliminate an important natural disturbance from riparian and stream habitats.
Impacts of Wildfires on Long-term Land Surface Phenology
NASA Astrophysics Data System (ADS)
Wang, J.; Zhang, X.
2016-12-01
Land surface phenology (LSP) detected from satellite data characterizes seasonal dynamics of vegetation communities within a moderate or coarse resolution pixel. Its long-term variation has been widely used to indicate the biological responses to climate changes. However, few studies have focused on the influence of land disturbance on LSP variations. The wildfire is one of the most important drivers of land disturbances across the world, which shows an increasing trend during past decades. To explore the wildfire impacts on LSP, we analyzed post-fire and pre-fire LSP in two forest fire events that are Hayman Fire occurred in 2002 and Mason Fire occurred in 2005 in Colorado. Specifically, we first generated a two band enhanced vegetation index (EVI2) from MODIS daily surface reflectance product (MOD09GQ) at a spatial resolution of 250 m from 2001-2014. The time series of daily EVI2 was then used to detect the start of growing season (SOS) by applying the LSP detection algorithm based on a hybrid piecewise logistic model (HPLM-LSPD). The SOS was further separated for four levels of burn severity obtained from Monitoring Trends in Burn Severity (MTBS) maps for each fire event. The long-term SOS in the burn scars was finally deviated from surrounding areas based on land cover types. Results show that forests were mainly converted to shrubs in both fire events with some grasslands in Hayman. On average, SOS in Hayman burn scar area was advanced 11 days relative to surrounding region while it was delayed 9 days in Mason fire. The deviation also varied with the burn severity spatially. Moreover, the long-term SOS trend in the local area from 2001-2014 was significantly different with and without considerations of the fire influences. This study demonstrates that the long-term LSP SOS trend is significantly influenced by land disturbances in a local and regional scales.
Meng, Ran; Wu, Jin; Zhao, Feng; ...
2018-06-01
Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Ran; Wu, Jin; Zhao, Feng
Understanding post-fire forest recovery is pivotal to the study of forest dynamics and global carbon cycle. Field-based studies indicated a convex response of forest recovery rate to burn severity at the individual tree level, related with fire-induced tree mortality; however, these findings were constrained in spatial/temporal extents, while not detectable by traditional optical remote sensing studies, largely attributing to the contaminated effect from understory recovery. For this work, we examined whether the combined use of multi-sensor remote sensing techniques (i.e., 1m simultaneous airborne imaging spectroscopy and LiDAR and 2m satellite multi-spectral imagery) to separate canopy recovery from understory recovery wouldmore » enable to quantify post-fire forest recovery rate spanning a large gradient in burn severity over large-scales. Our study was conducted in a mixed pine-oak forest in Long Island, NY, three years after a top-killing fire. Our studies remotely detected an initial increase and then decline of forest recovery rate to burn severity across the burned area, with a maximum canopy area-based recovery rate of 10% per year at moderate forest burn severity class. More intriguingly, such remotely detected convex relationships also held at species level, with pine trees being more resilient to high burn severity and having a higher maximum recovery rate (12% per year) than oak trees (4% per year). These results are one of the first quantitative evidences showing the effects of fire adaptive strategies on post-fire forest recovery, derived from relatively large spatial-temporal domains. Our study thus provides the methodological advance to link multi-sensor remote sensing techniques to monitor forest dynamics in a spatially explicit manner over large-scales, with important implications for fire-related forest management, and for constraining/benchmarking fire effect schemes in ecological process models.« less
Pipeline oil fire detection with MODIS active fire products
NASA Astrophysics Data System (ADS)
Ogungbuyi, M. G.; Martinez, P.; Eckardt, F. D.
2017-12-01
We investigate 85 129 MODIS satellite active fire events from 2007 to 2015 in the Niger Delta of Nigeria. The region is the oil base for Nigerian economy and the hub of oil exploration where oil facilities (i.e. flowlines, flow stations, trunklines, oil wells and oil fields) are domiciled, and from where crude oil and refined products are transported to different Nigerian locations through a network of pipeline systems. Pipeline and other oil facilities are consistently susceptible to oil leaks due to operational or maintenance error, and by acts of deliberate sabotage of the pipeline equipment which often result in explosions and fire outbreaks. We used ground oil spill reports obtained from the National Oil Spill Detection and Response Agency (NOSDRA) database (see www.oilspillmonitor.ng) to validate MODIS satellite data. NOSDRA database shows an estimate of 10 000 spill events from 2007 - 2015. The spill events were filtered to include largest spills by volume and events occurring only in the Niger Delta (i.e. 386 spills). By projecting both MODIS fire and spill as `input vector' layers with `Points' geometry, and the Nigerian pipeline networks as `from vector' layers with `LineString' geometry in a geographical information system, we extracted the nearest MODIS events (i.e. 2192) closed to the pipelines by 1000m distance in spatial vector analysis. The extraction process that defined the nearest distance to the pipelines is based on the global practices of the Right of Way (ROW) in pipeline management that earmarked 30m strip of land to the pipeline. The KML files of the extracted fires in a Google map validated their source origin to be from oil facilities. Land cover mapping confirmed fire anomalies. The aim of the study is to propose a near-real-time monitoring of spill events along pipeline routes using 250 m spatial resolution of MODIS active fire detection sensor when such spills are accompanied by fire events in the study location.
Bugaboo Fire Rages in Georgia and Florida
NASA Technical Reports Server (NTRS)
2007-01-01
Subtropical Storm Andrea apparently did little to quench numerous large wildfires burning in the U.S. Southeast in early May 2007. On May 11, 2007, when the Moderate Resolution Imaging Spectroradiometer Terra satellite captured this image, the remnants of the storm had dwindled to a small ball of clouds in the Atlantic Ocean, and huge plumes of smoke snaked across Georgia, Florida, and the Gulf of Mexico. Areas where MODIS detected actively burning fires are outlined in red. A huge fire is burning in and near the Okefenokee Swamp, which straddles the state line between Georgia and Florida. For logistical purposes, fire officials are calling the part of the fire in Florida the Florida Bugaboo Fire and the part in Georgia the Bugaboo Scrub Fire. The distinction is simply administrative, however; in reality, it is single, continuous swath of burning timber, swamp land, grass, and scrubland. The blaze was more than 133,000 thousand acres as of May 11, and it appeared to be spreading on virtually all perimeters at the time of the image, with active fire locations detected in a circle that surrounds an already burned (or partially burned) area. According to reports form the Southern Area Coordination Center, the fire grew by at least 20,000 acres on May 10. Numerous communities were threatened and hundreds of people were evacuated, while parts of Interstate 10 were closed to all but emergency vehicles. To the northeast of the Bugaboo Fire, other large wildfires were burning in Georgia as well. The Floyds Prairie Fire, to the immediate north, was threatening endangered species and their habitat, while farther north the 116,000-plus-acre Sweat Farm Road/Big Turnaround Complex Fire was still burning in the area south of the city of Waycross, nearly a month after the fires first started in mid-April. Southern Georgia and Florida are in the grip of moderate to extreme drought. The state line area where the Bugaboo Fire is burning is one of the areas in extreme drought. The extremely dry fuels, including easily flammable pine forests and plantations, and the rugged, isolated stretches of terrain, make fire officials think that these fires will continue to burn for a long time. Although extreme fire behavior may decline, smoldering and creeping fire will probably continue until heavy rain - possibly a hurricane - drenches the area. The large image provided above has a spatial resolution (level of detail) of 250 meters per pixel. The MODIS Rapid Response Team provides the image in additional resolutions. The group also provides twice-daily subset images of the United States in a variety of resolutions and formats, including and infrared-enhanced version that emphasizes the burn scars.
NASA Astrophysics Data System (ADS)
Wang, Jun; Yue, Yun; Wang, Yi; Ichoku, Charles; Ellison, Luke; Zeng, Jing
2018-01-01
Largely used in several independent estimates of fire emissions, fire products based on MODIS sensors aboard the Terra and Aqua polar-orbiting satellites have a number of inherent limitations, including (a) inability to detect fires below clouds, (b) significant decrease of detection sensitivity at the edge of scan where pixel sizes are much larger than at nadir, and (c) gaps between adjacent swaths in tropical regions. To remedy these limitations, an empirical method is developed here and applied to correct fire emission estimates based on MODIS pixel level fire radiative power measurements and emission coefficients from the Fire Energetics and Emissions Research (FEER) biomass burning emission inventory. The analysis was performed for January 2010 over the northern sub-Saharan African region. Simulations from WRF-Chem model using original and adjusted emissions are compared with the aerosol optical depth (AOD) products from MODIS and AERONET as well as aerosol vertical profile from CALIOP data. The comparison confirmed an 30-50% improvement in the model simulation performance (in terms of correlation, bias, and spatial pattern of AOD with respect to observations) by the adjusted emissions that not only increases the original emission amount by a factor of two but also results in the spatially continuous estimates of instantaneous fire emissions at daily time scales. Such improvement cannot be achieved by simply scaling the original emission across the study domain. Even with this improvement, a factor of two underestimations still exists in the modeled AOD, which is within the current global fire emissions uncertainty envelope.
The Global Geostationary Wildfire ABBA: Current Implementation and Future Plans
NASA Astrophysics Data System (ADS)
Prins, E.; Schmidt, C. C.; Hoffman, J.; Brunner, J.; Hyer, E. J.; Reid, J. S.
2012-12-01
The Wild Fire Automated Biomass Burning Algorithm (WF_ABBA), developed at the Cooperative Institute for Meteorological Satellite Studies (CIMSS), has a long legacy of operational near real-time wildfire detection and characterization in the Western Hemisphere. The first phase of the global geostationary WF_ABBA was made operational at NOAA NESDIS in 2009 and currently includes diurnal active fire monitoring from GOES-East, GOES-South America, GOES-West, Meteosat-9 and MTSAT-1R/-2. This allows for near global active fire monitoring with coverage of Europe, Africa, Southeast Asia and the Western Pacific utilizing distinct geostationary sensors and a consistent algorithm. Version 6.5.006 of the WF_ABBA was specifically designed to address the capabilities and limitations of diverse geostationary sensors and requests from the global fire monitoring and user community. This presentation will provide an overview of version 6.5.006 of the global WF_ABBA fire product including the new fire and opaque cloud mask and associated metadata. We will demonstrate the WF_ABBA showing examples from around the globe with a focus on the capabilities and plans for integrating new geostationary platforms with coverage of Eastern Europe and Asia (INSAT-3D, Korean COMS, Russian GOMS Elektro-L MSU-GS). We are also preparing for future fire monitoring in the Western Hemisphere, Europe, and Africa utilizing the next generation GOES-R Imager and Meteosat Third Generation Flexible Combined Imager (MTG - FCI). The goal is to create a globally consistent long-term fire product utilizing the capabilities of each of these unique operational systems and a common fire detection algorithm. On an international level, development of a global geostationary fire monitoring system is supported by the IGOS GOFC/GOLD Fire Implementation Team. This work also generally supports Committee on Earth Observation Satellites (CEOS) activities and the Group on Earth Observations (GEO).
46 CFR 91.20-15 - Scope of inspection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... appliances, fire-detecting and extinguishing equipment, pilot boarding equipment, pollution prevention... accordance with approved plans, and determine that the vessel is in possession of a valid certificate issued... applicable regulations in subchapter H (Passenger Vessels) of this chapter. For example, fire-detecting...
46 CFR 91.20-15 - Scope of inspection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... appliances, fire-detecting and extinguishing equipment, pilot boarding equipment, pollution prevention... accordance with approved plans, and determine that the vessel is in possession of a valid certificate issued... applicable regulations in subchapter H (Passenger Vessels) of this chapter. For example, fire-detecting...
46 CFR 91.20-15 - Scope of inspection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... appliances, fire-detecting and extinguishing equipment, pilot boarding equipment, pollution prevention... accordance with approved plans, and determine that the vessel is in possession of a valid certificate issued... applicable regulations in subchapter H (Passenger Vessels) of this chapter. For example, fire-detecting...
46 CFR 91.20-15 - Scope of inspection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... appliances, fire-detecting and extinguishing equipment, pilot boarding equipment, pollution prevention... accordance with approved plans, and determine that the vessel is in possession of a valid certificate issued... applicable regulations in subchapter H (Passenger Vessels) of this chapter. For example, fire-detecting...
46 CFR 91.20-15 - Scope of inspection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... appliances, fire-detecting and extinguishing equipment, pilot boarding equipment, pollution prevention... accordance with approved plans, and determine that the vessel is in possession of a valid certificate issued... applicable regulations in subchapter H (Passenger Vessels) of this chapter. For example, fire-detecting...
Infrared Instrument for Detecting Hydrogen Fires
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Ihlefeld, Curtis; Immer, Christopher; Oostdyk, Rebecca; Cox, Robert; Taylor, John
2006-01-01
The figure shows an instrument incorporating an infrared camera for detecting small hydrogen fires. The instrument has been developed as an improved replacement for prior infrared and ultraviolet instruments used to detect hydrogen fires. The need for this or any such instrument arises because hydrogen fires (e.g., those associated with leaks from tanks, valves, and ducts) pose a great danger, yet they emit so little visible light that they are mostly undetectable by the unaided human eye. The main performance advantage offered by the present instrument over prior hydrogen-fire-detecting instruments lies in its greater ability to avoid false alarms by discriminating against reflected infrared light, including that originating in (1) the Sun, (2) welding torches, and (3) deliberately ignited hydrogen flames (e.g., ullage-burn-off flames) that are nearby but outside the field of view intended to be monitored by the instrument. Like prior such instruments, this instrument is based mostly on the principle of detecting infrared emission above a threshold level. However, in addition, this instrument utilizes information on the spatial distribution of infrared light from a source that it detects. Because the combination of spatial and threshold information about a flame tends to constitute a unique signature that differs from that of reflected infrared light originating in a source not in the field of view, the incidence of false alarms is reduced substantially below that of related prior threshold- based instruments.
Radford, Ian J; Gibson, Lesley A; Corey, Ben; Carnes, Karin; Fairman, Richard
2015-01-01
Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories ('pyrodiversity'), has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg) in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat) and structural habitat attributes (including an index of cattle disturbance) to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age <1 year within 3 km radius) and level of cattle disturbance were observed. Shrub cover was positively related to both mammal abundance and richness, and availability of rock crevices, ground vegetation cover and spatial extent of ≥4 years unburnt habitat were all positively associated with at least some of the mammal species modelled. We found little support for diversity of post-fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to mammals in the north Kimberley. A managed fire mosaic that reduces large scale and intense fires, including the retention of ≥4 years unburnt patches, will clearly benefit savanna mammals. We also highlighted the importance of fire mosaics that retain sufficient shelter for mammals. Along with fire, it is clear that grazing by introduced herbivores also needs to be reduced so that habitat quality is maintained.
An algorithm to detect fire activity using Meteosat: fine tuning and quality assesment
NASA Astrophysics Data System (ADS)
Amraoui, M.; DaCamara, C. C.; Ermida, S. L.
2012-04-01
Hot spot detection by means of sensors on-board geostationary satellites allows studying wildfire activity at hourly and even sub-hourly intervals, an advantage that cannot be met by polar orbiters. Since 1997, the Satellite Application Facility for Land Surface Analysis has been running an operational procedure that allows detecting active fires based on information from Meteosat-8/SEVIRI. This is the so-called Fire Detection and Monitoring (FD&M) product and the procedure takes advantage of the temporal resolution of SEVIRI (one image every 15 min), and relies on information from SEVIRI channels (namely 0.6, 0.8, 3.9, 10.8 and 12.0 μm) together with information on illumination angles. The method is based on heritage from contextual algorithms designed for polar, sun-synchronous instruments, namely NOAA/AVHRR and MODIS/TERRAAQUA. A potential fire pixel is compared with the neighboring ones and the decision is made based on relative thresholds as derived from the pixels in the neighborhood. Generally speaking, the observed fire incidence compares well against hot spots extracted from the global daily active fire product developed by the MODIS Fire Team. However, values of probability of detection (POD) tend to be quite low, a result that may be partially expected by the finer resolution of MODIS. The aim of the present study is to make a systematic assessment of the impacts on POD and False Alarm Ratio (FAR) of the several parameters that are set in the algorithms. Such parameters range from the threshold values of brightness temperature in the IR3.9 and 10.8 channels that are used to select potential fire pixels up to the extent of the background grid and thresholds used to statistically characterize the radiometric departures of a potential pixel from the respective background. The impact of different criteria to identify pixels contaminated by clouds, smoke and sun glint is also evaluated. Finally, the advantages that may be brought to the algorithm by adding contextual tests in the time domain are discussed. The study lays the grounds to the development of improved quality flags that will be integrated in the FD&M product in the nearby future.
Spacecraft Fire Detection and Extinguishment: A Bibliography
NASA Technical Reports Server (NTRS)
Jason, Nora H.
1988-01-01
Pertinent fire detection and extinguishment references have been identified to further the knowledge of spacecraft fire safety. To broaden the scope of the bibliography, other unusual environments, e.g., aircraft, submarine, ship, have been included. In addition, for a more comprehensive view of the spacecraft fire safety problem, selected subjects are included, e.g., materials flammability, smoke, human behavior. The references will provide the researcher with access to state-of-the-art and historic works. Selected references from the 1960's have been included, but the emphasis is on references published from 1975 to 1987. The references are arranged by very broad categories. Often a paper will cover more than one topic, but for the purposes of this bibliography it will be cited only once.
The potential for LiDAR technology to map fire fuel hazard over large areas of Australian forest.
Price, Owen F; Gordon, Christopher E
2016-10-01
Fuel load is a primary determinant of fire spread in Australian forests. In east Australian forests, litter and canopy fuel loads and hence fire hazard are thought to be highest at and beyond steady-state fuel loads 15-20 years post-fire. Current methods used to predict fuel loads often rely on course-scale vegetation maps and simple time-since-fire relationships which mask fine-scale processes influencing fuel loads. Here we use Light Detecting and Remote Sensing technology (LiDAR) and field surveys to quantify post-fire mid-story and crown canopy fuel accumulation and fire hazard in Dry Sclerophyll Forests of the Sydney Basin (Australia) at fine spatial-scales (20 × 20 m cell resolution). Fuel cover was quantified in three strata important for crown fire propagation (0.5-4 m, 4-15 m, >15 m) over a 144 km(2) area subject to varying fire fuel ages. Our results show that 1) LiDAR provided a precise measurement of fuel cover in each strata and a less precise but still useful predictor of surface fuels, 2) cover varied greatly within a mapped vegetation class of the same fuel age, particularly for elevated fuel, 3) time-since-fire was a poor predictor of fuel cover and crown fire hazard because fuel loads important for crown fire propagation were variable over a range of fire fuel ages between 2 and 38 years post-fire, and 4) fuel loads and fire hazard can be high in the years immediately following fire. Our results show the benefits of spatially and temporally specific in situ fuel sampling methods such as LiDAR, and are widely applicable for fire management actions which aim to decrease human and environmental losses due to wildfire. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Redesigned Hazard Mapping System (HMS) for Fire and Smoke Analysis
NASA Astrophysics Data System (ADS)
Ruminski, M.; Cheng, Z.; Salemi, T.
2017-12-01
The HMS thru November 2016 incorporated a wide variety of satellite data for use in fire and smoke detection, including 30 minute interval GOES-East and GOES-West, five AVHRR satellites (NOAA and METOP) and MODIS Aqua/Terra. NESDIS' Satellite Analysis Branch (SAB) analysts utilize the HMS to analyze and quality control the automated fire detections from each of the sensors and create the fire/smoke products to enable the users to mitigate disasters and environmental hazards. The new HMS design eliminates the inefficiencies and increases the accuracy of the fire/smoke analysis. The new system has the capability to display higher resolution data available from VIIRS and other future sensors while maintaining individual pixel integrity which improves the representation of fire size. This benefits the input to smoke forecast models and may possibly be useful as input for fire spread models. The new system also provides greater analysis control of layers and display properties and allows for the display of all GOES images, even when in Rapid Scan Operations (RSO) mode. To enhance the efficiency and improve the accuracy of the fire and smoke product, the new HMS eliminates the sector boundaries that the old HMS used as part of the GUI and now displays the full analysis domain (North and Central America, Caribbean and Hawaii). There is also now the functionality to edit smoke plumes on a finer scale. In the presentation we will highlight the new features of the updated HMS.
Saliency Detection and Deep Learning-Based Wildfire Identification in UAV Imagery.
Zhao, Yi; Ma, Jiale; Li, Xiaohui; Zhang, Jie
2018-02-27
An unmanned aerial vehicle (UAV) equipped with global positioning systems (GPS) can provide direct georeferenced imagery, mapping an area with high resolution. So far, the major difficulty in wildfire image classification is the lack of unified identification marks, the fire features of color, shape, texture (smoke, flame, or both) and background can vary significantly from one scene to another. Deep learning (e.g., DCNN for Deep Convolutional Neural Network) is very effective in high-level feature learning, however, a substantial amount of training images dataset is obligatory in optimizing its weights value and coefficients. In this work, we proposed a new saliency detection algorithm for fast location and segmentation of core fire area in aerial images. As the proposed method can effectively avoid feature loss caused by direct resizing; it is used in data augmentation and formation of a standard fire image dataset 'UAV_Fire'. A 15-layered self-learning DCNN architecture named 'Fire_Net' is then presented as a self-learning fire feature exactor and classifier. We evaluated different architectures and several key parameters (drop out ratio, batch size, etc.) of the DCNN model regarding its validation accuracy. The proposed architecture outperformed previous methods by achieving an overall accuracy of 98%. Furthermore, 'Fire_Net' guarantied an average processing speed of 41.5 ms per image for real-time wildfire inspection. To demonstrate its practical utility, Fire_Net is tested on 40 sampled images in wildfire news reports and all of them have been accurately identified.
Lidar Technique for Early Forest Fire Detection : Design and Development Aspects
NASA Astrophysics Data System (ADS)
Traïche, M.; Bourai, K.; Moussaoui, N.; Beggar, R.; Almabouada, F.; Louhibi, D.
2008-09-01
Many countries suffer from forest fires every summer, a phenomenon which wreaks havoc on both local and global environment. As well, it causes enormous damage to public health especially for people living in surrounding areas. For fighting against forest fires, ocular surveillance, in spite of its wide use, is not efficient owing to the costly mobilization of a great number of forest agents and to the fact that most of forest regions are not accessible. Other passive techniques such as infrared camera remote sensing are neither efficient under unfavorable weather conditions. An efficient way to early detect forest fires even under worse environmental conditions and in inaccessible mountainous regions uses the backscattering Lidar technique. This consists of the emission of monowavelength laser pulses spanning azimuthally the entire region subject to surveillance and the detection of the backscattered signal. The detection parameter is the signal to noise ration SNR. In this contribution, we will deal with approach and design aspects inherent to the development task of such a Lidar.
NASA Astrophysics Data System (ADS)
Lasaponara, R.
2009-04-01
Remotely sensed (RS) data can fruitfully support both research activities and operative monitoring of fire at different temporal and spatial scales with a synoptic view and cost effective technologies. "The contribution of remote sensing (RS) to forest fires may be grouped in three categories, according to the three phases of fire management: (i) risk estimation (before fire), (ii) detection (during fire) and (iii) assessment (after fire)" Chuvieco (2006). Relating each phase, wide research activities have been conducted over the years. (i) Risk estimation (before fire) has been mainly based on the use of RS data for (i) monitoring vegetation stress and assessing variations in vegetation moisture content, (ii) fuel type mapping, at different temporal and spatial scales from global, regional down to a local scale (using AVHRR, MODIS, TM, ASTER, Quickbird images and airborne hyperspectral and LIDAR data). Danger estimation has been mainly based on the use of AVHRR (onborad NOAA), MODIS (onboard TERRA and AQUA), VEGETATION (onboard SPOT) due to the technical characteristics (i.e. spectral, spatial and temporal resolution). Nevertheless microwave data have been also used for vegetation monitoring. (ii) Detection: identification of active fires, estimation of fire radiative energy and fire emission. AVHRR was one of the first satellite sensors used for setting up fire detection algorithms. The availbility of MODIS allowed us to obtain global fire products free downloaded from NASA web site. Sensors onboard geostationary satellite platforms, such as GOES, SEVIRI, have been used for fire detection, to obtain a high temporal resolution (at around 15 minutes) monitoring of active fires. (iii) Post fire damage assessment includes: burnt area mapping, fire emission, fire severity, vegetation recovery, fire resilience estimation, and, more recently, fire regime characterization. Chuvieco E. L. Giglio, C. Justice, 2008 Global charactrerization of fire activity: toward defining fire regimes from Earth observation data Global Change Biology vo. 14. doi: 10.1111/j.1365-2486.2008.01585.x 1-15, Chuvieco E., P. Englefield, Alexander P. Trishchenko, Yi Luo Generation of long time series of burn area maps of the boreal forest from NOAA-AVHRR composite data. Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2381-2396 Chuvieco Emilio 2006, Remote Sensing of Forest Fires: Current limitations and future prospects in Observing Land from Space: Science, Customers and Technology, Advances in Global Change Research Vol. 4 pp 47-51 De Santis A., E. Chuvieco Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models, Remote Sensing of Environment, Volume 108, Issue 4, 29 June 2007, Pages 422-435. De Santis A., E. Chuvieco, Patrick J. Vaughan, Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models, Remote Sensing of Environment, Volume 113, Issue 1, 15 January 2009, Pages 126-136 García M., E. Chuvieco, H. Nieto, I. Aguado Combining AVHRR and meteorological data for estimating live fuel moisture content Remote Sensing of Environment, Volume 112, Issue 9, 15 September 2008, Pages 3618-3627 Ichoku C., L. Giglio, M. J. Wooster, L. A. Remer Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2950-2962. Lasaponara R. and Lanorte, On the capability of satellite VHR QuickBird data for fuel type characterization in fragmented landscape Ecological Modelling Volume 204, Issues 1-2, 24 May 2007, Pages 79-84 Lasaponara R., A. Lanorte, S. Pignatti,2006 Multiscale fuel type mapping in fragmented ecosystems: preliminary results from Hyperspectral MIVIS and Multispectral Landsat TM data, Int. J. Remote Sens., vol. 27 (3) pp. 587-593. Lasaponara R., V. Cuomo, M. F. Macchiato, and T. Simoniello, 2003 .A self-adaptive algorithm based on AVHRR multitemporal data analysis for small active fire detection.n International Journal of Remote Sensing, vol. 24, No 8, 1723-1749. Minchella A., F. Del Frate, F. Capogna, S. Anselmi, F. Manes Use of multitemporal SAR data for monitoring vegetation recovery of Mediterranean burned areas Remote Sensing of Environment, In Press Næsset E., T. Gobakken Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 3079-3090 Peterson S. H, Dar A. Roberts, Philip E. Dennison Mapping live fuel moisture with MODIS data: A multiple regression approach, Remote Sensing of Environment, Volume 112, Issue 12, 15 December 2008, Pages 4272-4284. Schroeder Wilfrid, Elaine Prins, Louis Giglio, Ivan Csiszar, Christopher Schmidt, Jeffrey Morisette, Douglas Morton Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2711-2726 Shi J., T. Jackson, J. Tao, J. Du, R. Bindlish, L. Lu, K.S. Chen Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E Remote Sensing of Environment, Volume 112, Issue 12, 15 December 2008, Pages 4285-4300 Tansey, K., Grégoire, J-M., Defourny, P., Leigh, R., Pekel, J-F., van Bogaert, E. and Bartholomé, E., 2008 A New, Global, Multi-Annual (2000-2007) Burnt Area Product at 1 km Resolution and Daily Intervals Geophysical Research Letters, VOL. 35, L01401, doi:10.1029/2007GL031567, 2008. Telesca L. and Lasaponara R., 2006; "Pre-and Post- fire Behaviural trends revealed in satellite NDVI time series" Geophysical Research Letters,., 33, L14401, doi:10.1029/2006GL026630 Telesca L. and Lasaponara R 2005 Discriminating Dynamical Patterns in Burned and Unburned Vegetational Covers by Using SPOT-VGT NDVI Data. Geophysical Research Letters,, 32, L21401, doi:10.1029/2005GL024391. Telesca L. and Lasaponara R. Investigating fire-induced behavioural trends in vegetation covers , Communications in Nonlinear Science and Numerical Simulation, 13, 2018-2023, 2008 Telesca L., A. Lanorte and R. Lasaponara, 2007. Investigating dynamical trends in burned and unburned vegetation covers by using SPOT-VGT NDVI data. Journal of Geophysics and Engineering, Vol. 4, pp. 128-138, 2007 Telesca L., R. Lasaponara, and A. Lanorte, Intra-annual dynamical persistent mechanisms in Mediterranean ecosystems revealed SPOT-VEGETATION Time Series, Ecological Complexity, 5, 151-156, 2008 Verbesselt, J., Somers, B., Lhermitte, S., Jonckheere, I., van Aardt, J., and Coppin, P. (2007) Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems. Remote Sensing of Environment 108: 357-368. Zhang X., S. Kondragunta Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2886-2897 Zhang X., Shobha Kondragunta Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2886-2897
Responses of pond-breeding amphibians to wildfire: Short-term patterns in occupancy and colonization
Hossack, B.R.; Corn, P.S.
2007-01-01
Wildland fires are expected to become more frequent and severe in many ecosystems, potentially posing a threat to many sensitive species. We evaluated the effects of a large, stand-replacement wildfire on three species of pond-breeding amphibians by estimating changes in occupancy of breeding sites during the three years before and after the fire burned 42 of 83 previously surveyed wetlands. Annual occupancy and colonization for each species was estimated using recently developed models that incorporate detection probabilities to provide unbiased parameter estimates. We did not find negative effects of the fire on the occupancy or colonization rates of the long-toed salamander (Ambystoma macrodactylum). Instead, its occupancy was higher across the study area after the fire, possibly in response to a large snowpack that may have facilitated colonization of unoccupied wetlands. Naïve data (uncorrected for detection probability) for the Columbia spotted frog (Rana luteiventris) initially led to the conclusion of increased occupancy and colonization in wetlands that burned. After accounting for temporal and spatial variation in detection probabilities, however, it was evident that these parameters were relatively stable in both areas before and after the fire. We found a similar discrepancy between naïve and estimated occupancy of A. macrodactylum that resulted from different detection probabilities in burned and control wetlands. The boreal toad (Bufo boreas) was not found breeding in the area prior to the fire but colonized several wetlands the year after they burned. Occupancy by B. boreas then declined during years 2 and 3 following the fire. Our study suggests that the amphibian populations we studied are resistant to wildfire and that B. boreas may experience short-term benefits from wildfire. Our data also illustrate how naïve presence–non-detection data can provide misleading results.
A Total Validation Approach for assessing the RST technique in forest fire detection and monitoring
NASA Astrophysics Data System (ADS)
Mazzeo, Giuseppe; Baldassarre, Giuseppe; Corrado, Rosita; Filizzola, Carolina; Genzano, Nicola; Marchese, Francesco; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio
2010-05-01
Several studies have shown that high temporal resolution sensors such as AVHRR (Advanced Very High Resolution Radiometer) aboard NOAA (National Oceanic and Atmospheric Administration) satellites, MODIS (Moderate Resolution Imaging Spectroradiometer) aboard EOS (Earth Observing System) satellites and, more recently, SEVIRI (Spinning Enhanced Visible and Infrared Imager) aboard MSG (Meteosat Second Generation) platforms, are suitable for detecting and monitoring forest fires. At the same time, many satellite-based techniques have been proposed for fire detection, but most of them, based on single image fixed-thresholds, often generate false alarms mainly due to the contribution of the reflected solar radiation in daytime, atmospheric effects, etc., so that they result to have scarce reliability when applied in an operational scenario. Other algorithms, which are quite reliable thanks to their multitemporal and/or contextual nature, may turn out to be hardly applicable so that they cannot be inserted in whatever operative schemes. An innovative approach, named RST - Robust Satellite Technique, already applied for the monitoring of major natural and environmental risks has been recently used for fire detection and monitoring. The RST approach is based on local (in space and time) thresholds which are automatically computed on the basis of long temporal series of satellite data. It demonstrated already good performances in many cases of applications, but recently for the first time a total validation approach (TVA) was experimented in collaboration with administrators, decision makers and local agencies, in order to evaluate the actual reliability and sensitivity of RST in a pre-operational context. TVA, based on a systematic study of the origin of each hot spot identified by RST, allowed us to recognize most of them as actual thermal anomalies (associated to small fires, to variations of thermal emission in industrial plants, etc.) and not as false alarms simply because not associated to officially documented forest fires. Some results of recent campaigns both of winter and summer fire detection and monitoring in Italy will be shown and discussed.
Torres, Iván; Parra, Antonio; Moreno, José M; Durka, Walter
2018-01-01
In Mediterranean ecosystems, climate change is projected to increase fire danger and summer drought, thus reducing post-fire recruitment of obligate seeder species, and possibly affecting the population genetic structure. We performed a genome-wide genetic marker study, using AFLP markers, on individuals from one Central Spain population of the obligate post-fire seeder Cistus ladanifer L. that established after experimental fire and survived during four subsequent years under simulated drought implemented with a rainout shelter system. We explored the effects of the treatments on marker diversity, spatial genetic structure and presence of outlier loci suggestive of selection. We found no effect of fire or drought on any of the genetic diversity metrics. Analysis of Molecular Variance showed very low genetic differentiation among treatments. Neither fire nor drought altered the small-scale spatial genetic structure of the population. Only one locus was significantly associated with the fire treatment, but inconsistently across outlier detection methods. Neither fire nor drought are likely to affect the genetic makeup of emerging C. ladanifer, despite reduced recruitment caused by drought. The lack of genetic change suggests that reduced recruitment is a random, non-selective process with no genome-wide consequences on this keystone, drought- and fire tolerant Mediterranean species.
Twenty Years After the 1988 Yellowstone Fires: Lessons About Disturbance and Ecosystems
Romme, W.H.; Boyce, M.S.; Gresswell, R.; Merrill, E.H.; Minshall, G.W.; Whitlock, C.; Turner, M.G.
2011-01-01
The 1988 Yellowstone fires were among the first in what has proven to be an upsurge in large severe fires in the western USA during the past 20 years. At the time of the fires, little was known about the impacts of such a large severe disturbance because scientists had had few previous opportunities to study such an event. Ecologists predicted short- and long-term effects of the 1988 fires on vegetation, biogeochemistry, primary productivity, wildlife, and aquatic ecosystems based on scientific understanding of the time. Twenty-plus years of subsequent study allow these early predictions to be evaluated. Most of the original predictions were at least partially supported, but some predictions were refuted, others nuanced, and a few postfire phenomena were entirely unexpected. Post-1988 Yellowstone studies catalyzed advances in ecology focused on the importance of spatial and temporal heterogeneity, contingent influences, and multiple interacting drivers. Post-1988 research in Yellowstone also has changed public perceptions of fire as an ecological process and attitudes towards fire management. Looking ahead to projected climate change and more frequent large fires, the well-documented ecological responses to the 1988 Yellowstone fires provide a foundation for detecting and evaluating potential changes in fire regimes of temperate mountainous regions. ?? 2011 Springer Science+Business Media, LLC.
Smouldering Subsurface Fires in the Earth System
NASA Astrophysics Data System (ADS)
Rein, Guillermo
2010-05-01
Smouldering fires, the slow, low-temperature, flameless form of combustion, are an important phenomena in the Earth system. These fires propagate slowly through organic layers of the forest ground and are responsible for 50% or more of the total biomass consumed during wildfires. Only after the 2002 study of the 1997 extreme haze event in South-East Asia, the scientific community recognised the environmental and economic threats posed by subsurface fires. This was caused by the spread of vast biomass fires in Indonesia, burning below the surface for months during the El Niño climate event. It has been calculated that these fires released between 0.81 and 2.57 Gton of carbon gases (13-40% of global emissions). Large smouldering fires are rare events at the local scale but occur regularly at a global scale. Once ignited, they are particularly difficult to extinguish despite extensive rains or fire-fighting attempts and can persist for long periods of time (months, years) spreading over very extensive areas of forest and deep into the soil. Indeed, these are the oldest continuously burning fires on Earth. Earth scientists are interested in smouldering fires because they destroy large amounts of biomass and cause greater damage to the soil ecosystem than flaming fires do. Moreover, these fires cannot be detected with current satellite remote sensing technologies causing inconsistencies between emission inventories and model predictions. Organic soils sustain smouldering fire (hummus, duff, peat and coal) which total carbon pool exceeds that of the world's forests or the atmosphere. This have important implications for climate change. Warmer temperatures at high latitudes are resulting in unprecedented permafrost thaw that is leaving large soil carbon pools exposed to fires. Because the CO2 flux from peat fires has been measured to be about 3000 times larger that the natural degradation flux, permafrost thaw is a risk for greater carbon release by fire and subsequently influence carbon-climate feedbacks. This presentation will revise the current knowledge on smouldering fires in the Earth system regarding ignition, spread patterns and emissions. It will explain the key differences between shallow and deep fires, and flaming fires.
Tabor, Karyn; Jones, Kelly W; Hewson, Jennifer; Rasolohery, Andriambolantsoa; Rambeloson, Andoniaina; Andrianjohaninarivo, Tokihenintsoa; Harvey, Celia A
2017-01-01
Forest conservation and REDD+ projects invest millions of dollars each year to reduce local communities' dependence on forests and prevent forest loss and degradation. However, to date, there is limited evidence on whether these investments are effective at delivering conservation outcomes. We explored the relationships between 600+ small-scale conservation and development investments that occurred from 2007 to 2014 and conservation outcomes (deforestation rates and fire detections) within Ankeniheny-Zahamena Corridor in Madagascar using linear fixed effects panel regressions. We derived annual changes in forest cover and fires from satellite remote sensing. We found a statistically significant correlation between presence of any investment and reduced deforestation rates in 2010 and 2011 -years with accelerated deforestation elsewhere in the study area. This result indicated investments abated deforestation rates during times of political instability and lack of governance following a 2009 coup in Madagascar. We also found a statistically significant relationship between presence of any investment and reduced fire detections in the study area, suggesting investments had an impact on reducing burning of forest for agriculture. For both outcomes (i.e., deforestation rates and fire detections), we found that more dollars invested led to greater conservation outcomes (i.e. fewer fires or less deforestation), particularly when funding was sustained for one to two years. Our findings suggest that conservation and development investments can reduce deforestation and fire incidence, but also highlight the many challenges and complexities in assessing relationships between investments and conservation outcomes in a dynamic landscape and a volatile political context.
Jones, Kelly W.; Hewson, Jennifer; Rasolohery, Andriambolantsoa; Rambeloson, Andoniaina; Andrianjohaninarivo, Tokihenintsoa; Harvey, Celia A.
2017-01-01
Forest conservation and REDD+ projects invest millions of dollars each year to reduce local communities’ dependence on forests and prevent forest loss and degradation. However, to date, there is limited evidence on whether these investments are effective at delivering conservation outcomes. We explored the relationships between 600+ small-scale conservation and development investments that occurred from 2007 to 2014 and conservation outcomes (deforestation rates and fire detections) within Ankeniheny-Zahamena Corridor in Madagascar using linear fixed effects panel regressions. We derived annual changes in forest cover and fires from satellite remote sensing. We found a statistically significant correlation between presence of any investment and reduced deforestation rates in 2010 and 2011 –years with accelerated deforestation elsewhere in the study area. This result indicated investments abated deforestation rates during times of political instability and lack of governance following a 2009 coup in Madagascar. We also found a statistically significant relationship between presence of any investment and reduced fire detections in the study area, suggesting investments had an impact on reducing burning of forest for agriculture. For both outcomes (i.e., deforestation rates and fire detections), we found that more dollars invested led to greater conservation outcomes (i.e. fewer fires or less deforestation), particularly when funding was sustained for one to two years. Our findings suggest that conservation and development investments can reduce deforestation and fire incidence, but also highlight the many challenges and complexities in assessing relationships between investments and conservation outcomes in a dynamic landscape and a volatile political context. PMID:29267356
Highly Sensitive Sensors Based on Metal-Oxide Nanocolumns for Fire Detection.
Lee, Kwangjae; Shim, Young-Seok; Song, Young Geun; Han, Soo Deok; Lee, Youn-Sung; Kang, Chong-Yun
2017-02-07
A fire detector is the most important component in a fire alarm system. Herein, we present the feasibility of a highly sensitive and rapid response gas sensor based on metal oxides as a high performance fire detector. The glancing angle deposition (GLAD) technique is used to make the highly porous structure such as nanocolumns (NCs) of various metal oxides for enhancing the gas-sensing performance. To measure the fire detection, the interface circuitry for our sensors (NiO, SnO₂, WO₃ and In₂O₃ NCs) is designed. When all the sensors with various metal-oxide NCs are exposed to fire environment, they entirely react with the target gases emitted from Poly(vinyl chlorides) (PVC) decomposed at high temperature. Before the emission of smoke from the PVC (a hot-plate temperature of 200 °C), the resistances of the metal-oxide NCs are abruptly changed and SnO₂ NCs show the highest response of 2.1. However, a commercial smoke detector did not inform any warning. Interestingly, although the NiO NCs are a p -type semiconductor, they show the highest response of 577.1 after the emission of smoke from the PVC (a hot-plate temperature of 350 °C). The response time of SnO₂ NCs is much faster than that of a commercial smoke detector at the hot-plate temperature of 350 °C. In addition, we investigated the selectivity of our sensors by analyzing the responses of all sensors. Our results show the high potential of a gas sensor based on metal-oxide NCs for early fire detection.
McCarley, T. Ryan; Kolden, Crystal A.; Vaillant, Nicole M.; Hudak, Andrew T.; Smith, Alistair M.S.; Kreitler, Jason R.
2017-01-01
Across the western United States, the three primary drivers of tree mortality and carbon balance are bark beetles, timber harvest, and wildfire. While these agents of forest change frequently overlap, uncertainty remains regarding their interactions and influence on specific subsequent fire effects such as change in canopy cover. Acquisition of pre- and post-fire Light Detection and Ranging (LiDAR) data on the 2012 Pole Creek Fire in central Oregon provided an opportunity to isolate and quantify fire effects coincident with specific agents of change. This study characterizes the influence of pre-fire mountain pine beetle (MPB; Dendroctonus ponderosae) and timber harvest disturbances on LiDAR-estimated change in canopy cover. Observed canopy loss from fire was greater (higher severity) in areas experiencing pre-fire MPB (Δ 18.8%CC) than fire-only (Δ 11.1%CC). Additionally, increasing MPB intensity was directly related to greater canopy loss. Canopy loss was lower for all areas of pre-fire timber harvest (Δ 3.9%CC) than for fire-only, but among harvested areas, the greatest change was observed in the oldest treatments and the most intensive treatments [i.e., stand clearcut (Δ 5.0%CC) and combination of shelterwood establishment cuts and shelterwood removal cuts (Δ 7.7%CC)]. These results highlight the importance of accounting for and understanding the impact of pre-fire agents of change such as MPB and timber harvest on subsequent fire effects in land management planning. This work also demonstrates the utility of multi-temporal LiDAR as a tool for quantifying these landscape-scale interactions.
NASA Astrophysics Data System (ADS)
Whitlock, C.; Marlon, J.; Bartlein, P.
2006-12-01
Particulate charcoal preserved in lake sediments has become an important tool for examining the long-term role of fire as an ecosystem process. The record of microscopic charcoal (100 micron diameter or less) offers information on regional burning patterns, whereas macroscopic particles travel less far and are used to infer local fire history. Reconstruction of past fire activity is based on observations of modern charcoal production, transport, and deposition; modeling; and information on current fire regimes. Approaches and statistics used to interpret charcoal records generally focus on (1) quantifying charcoal content in contiguous samples, (2) determining an appropriate age model, (3) converting raw data to charcoal accumulation rates, and (4) extracting fire signal from noise. Detection of signal in charcoal time series is based on knowledge of recent fires provided by dendrochronological and documentary data. Additional paleofire information is obtained from stratigraphic changes in charcoal composition, pollen assemblages adapted to fire, and other paleoenvironmental proxy. Fire-history studies from western North and South America provide examples of Holocene fire-history reconstructions at spatial scales ranging from watershed to regional. Individual sites show dramatic shifts from crown to surface fire regimes associated with major changes in vegetation. Networks of records reveal regional variations in fire activity and vegetation that are attributed to insolation- driven shifts in atmospheric circulation and changes in short-term climate variability. A global database of paleofire records under development offers an opportunity to consider continental-scale fire patterns and their broad consequences for vegetation dynamics, biogeochemical cycling, and atmospheric chemistry.
NASA Astrophysics Data System (ADS)
Garcia Menendez, F.; Afrin, S.
2017-12-01
Prescribed fires are used extensively across the Southeastern United States and are a major source of air pollutant emissions in the region. These land management projects can adversely impact local and regional air quality. However, the emissions and air pollution impacts of prescribed fires remain largely uncertain. Satellite data, commonly used to estimate fire emissions, is often unable to detect the low-intensity, short-lived prescribed fires characteristic of the region. Additionally, existing ground-based prescribed burn records are incomplete, inconsistent and scattered. Here we present a new unified database of prescribed fire occurrence and characteristics developed from systemized digital burn permit records collected from public and private land management organizations in the Southeast. This bottom-up fire database is used to analyze the correlation between high PM2.5 concentrations measured by monitoring networks in southern states and prescribed fire occurrence at varying spatial and temporal scales. We show significant associations between ground-based records of prescribed fire activity and the observational air quality record at numerous sites by applying regression analysis and controlling confounding effects of meteorology. Furthermore, we demonstrate that the response of measured PM2.5 concentrations to prescribed fire estimates based on burning permits is significantly stronger than their response to satellite fire observations from MODIS (moderate-resolution imaging spectroradiometer) and geostationary satellites or prescribed fire emissions data in the National Emissions Inventory. These results show the importance of bottom-up smoke emissions estimates and reflect the need for improved ground-based fire data to advance air quality impacts assessments focused on prescribed burning.
Fire detection behind a wall by using microwave techniques
NASA Astrophysics Data System (ADS)
Alkurt, Fatih Özkan; Baǧmancı, Mehmet; Karaaslan, Muharrem; Bakır, Mehmet; Altıntaş, Olcay; Karadaǧ, Faruk; Akgöl, Oǧuzhan; Ünal, Emin
2018-02-01
In this work, detection of the fire location behind a wall by using microwave techniques is illustrated. According to Planck's Law, Blackbody emits electromagnetic radiation in the microwave region of the electromagnetic spectrum. This emitted waves penetrates all materials except that metals. These radiated waves can be detected by using directional and high gain antennas. The proposed antenna consists of a simple microstrip patch antenna and a 2×2 microstrip patch antenna array. FIT based simulation results show that 2×2 array antenna can absorb emitted power from a fire source which is located behind a wall. This contribution can be inspirational for further works.
Low Power Wireless Smoke Alarm System in Home Fires
Luis, Juan Aponte; Galán, Juan Antonio Gómez; Espigado, Javier Alcina
2015-01-01
A novel sensing device for fire detection in domestic environments is presented. The fire detector uses a combination of several sensors that not only detect smoke, but discriminate between different types of smoke. This feature avoids false alarms and warns of different situations. Power consumption is optimized both in terms of hardware and software, providing a high degree of autonomy of almost five years. Data gathered from the device are transmitted through a wireless communication to a base station. The low cost and compact design provides wide application prospects. PMID:26307994
Low Power Wireless Smoke Alarm System in Home Fires.
Aponte Luis, Juan; Gómez Galán, Juan Antonio; Alcina Espigado, Javier
2015-08-21
A novel sensing device for fire detection in domestic environments is presented. The fire detector uses a combination of several sensors that not only detect smoke, but discriminate between different types of smoke. This feature avoids false alarms and warns of different situations. Power consumption is optimized both in terms of hardware and software, providing a high degree of autonomy of almost five years. Data gathered from the device are transmitted through a wireless communication to a base station. The low cost and compact design provides wide application prospects.
Smoke from Fires in Southwestern Oregon, Northern California
2017-12-08
This satellite image shows smoke from several fires in Oregon and California on Aug. 2, 2015. The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument that flies aboard NASA's Aqua satellite captured an image of smoke from these fires Aug. 2 at 21:05 UTC (5:05 p.m. EDT). The multiple red pixels are heat signatures detected by MODIS. The smoke appears to be a light brown color. InciWeb is an interagency all-risk incident information management system that coordinates with federal, state and local agencies to manage wildfires. In Oregon smoke from the Cable Crossing Fire, the Stouts Fire and the Potter Mountain Complex Fire commingle. The Cable Crossing Fire was reported burning on forestlands protected by the Douglas Forest Protective Association (DFPA) at approximately 3:25 p.m. on Tuesday, July 28, 2015, near Oregon Highway 138 East, near Mile Post 23, east of Glide. South of the Cable Crossing Fire is the Stouts Fire also in forestlands of the DFPA. This fire was reported on Thursday, July 30, 2015, burning approximately 11 miles east of Canyonville near the community of Milo. East of the other fires is the Potter Mountain Complex Fire. These fires are located in the Deschutes Forest consists of eight fires. According to Inciweb they were started by dry lightning on Saturday, Aug. 2, at approximately 5:30 p.m. about five miles north of Toketee Lake. In northern California, smoke from the River Complex Fire, the Fork Complex Fire and the Shf July Lightning Fire was visible in the MODIS image. The River Complex currently consists of seven reported and observed fires on the Six Rivers and Shasta Trinity National Forests. Originally identified as 18 fires, some have burned together. Inciweb noted that in the Six Rivers National Forest there are fires in the Trinity Alps Wilderness. Those fires include the Groves Fire and the Elk Fire. In the Shasta-Trinity National Forest the fires include the Happy Fire at 2,256 acres, Daily Fire at 16 acres, the Look Fire at 7 acres, Onion Fire at 136 acres and Smokey Fire at 1 acre. In the same forest, south of the River Complex is the Fork Complex fire. Inciweb reported that the Fork Complex consists of (at current count) over 40 fires, all of which were ignited by lightning between July 29 and 31, 2015. To the southwest of this complex is the Mad River Complex. This is a series of seven lightning fires that started on July 30, 2015 after a lightning storm moved through Northern California. To the east of this and the other fires, burns another near Redding, California, called the Shf July Lightning Fire. This is also under the Shasta-Trinity National Forest management. At 8 p.m. PDT on Aug. 2, Inciweb reported that approximately 15 lightning strikes occurred within 24 hours throughout the Shasta Trinity National Forest and resulted in two new fires. The Caves fire, east of Mt. Shasta, is approximately one-tenth of an acre. The Bluejay fire, east of Shasta Lake, is approximately four acres. Image credit: NASA Goddard's MODIS Rapid Response Team, Jeff Schmaltz NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Ichoku, C.; Giglio, L.; Korontzi, S.; Chu, D. A.; Hao, W. M.; Justice, C. O.; Lau, William K. M. (Technical Monitor)
2001-01-01
The MODIS sensor, launched on NASA's Terra satellite at the end of 1999, was designed with 36 spectral channels for a wide array of land, ocean, and atmospheric investigations. MODIS has a unique ability to observe fires, smoke, and burn scars globally. Its main fire detection channels saturate at high brightness temperatures: 500 K at 4 microns and 400 K at 11 microns, which can only be attained in rare circumstances at the I kin fire detection spatial resolution. Thus, unlike other polar orbiting satellite sensors with similar thermal and spatial resolutions, but much lower saturation temperatures (e.g. AVHRR and ATSR), MODIS can distinguish between low intensity ground surface fires and high intensity crown forest fires. Smoke column concentration over land is for the first time being derived from the MOMS solar channels, extending from 0.41 microns to 2.1 microns. The smoke product has been provisionally validated both globally and regionally over southern Africa and central and south America. Burn scars are observed from MODIS even in the presence of smoke, using the 1.2 to 2.1 micron channels. MODIS burned area information is used to estimate pyrogenic emissions. A wide range of these fire and related products and validation are demonstrated for the wild fires that occurred in northwestern United States in the summer of 2000. The MODIS rapid response system and direct broadcast capability is being developed to enable users to obtain and generate data in near real time. It is expected that health and land management organizations will use these systems for monitoring the occurrence of fires and the dispersion of smoke within two to six hours after data acquisition.
Modeling and Analysis of Realistic Fire Scenarios in Spacecraft
NASA Technical Reports Server (NTRS)
Brooker, J. E.; Dietrich, D. L.; Gokoglu, S. A.; Urban, D. L.; Ruff, G. A.
2015-01-01
An accidental fire inside a spacecraft is an unlikely, but very real emergency situation that can easily have dire consequences. While much has been learned over the past 25+ years of dedicated research on flame behavior in microgravity, a quantitative understanding of the initiation, spread, detection and extinguishment of a realistic fire aboard a spacecraft is lacking. Virtually all combustion experiments in microgravity have been small-scale, by necessity (hardware limitations in ground-based facilities and safety concerns in space-based facilities). Large-scale, realistic fire experiments are unlikely for the foreseeable future (unlike in terrestrial situations). Therefore, NASA will have to rely on scale modeling, extrapolation of small-scale experiments and detailed numerical modeling to provide the data necessary for vehicle and safety system design. This paper presents the results of parallel efforts to better model the initiation, spread, detection and extinguishment of fires aboard spacecraft. The first is a detailed numerical model using the freely available Fire Dynamics Simulator (FDS). FDS is a CFD code that numerically solves a large eddy simulation form of the Navier-Stokes equations. FDS provides a detailed treatment of the smoke and energy transport from a fire. The simulations provide a wealth of information, but are computationally intensive and not suitable for parametric studies where the detailed treatment of the mass and energy transport are unnecessary. The second path extends a model previously documented at ICES meetings that attempted to predict maximum survivable fires aboard space-craft. This one-dimensional model implies the heat and mass transfer as well as toxic species production from a fire. These simplifications result in a code that is faster and more suitable for parametric studies (having already been used to help in the hatch design of the Multi-Purpose Crew Vehicle, MPCV).
Technology Development for Fire Safety in Exploration Spacecraft and Habitats
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Urban, David L.
2007-01-01
Fire during an exploration mission far from Earth is a particularly critical risk for exploration vehicles and habitats. The Fire Prevention, Detection, and Suppression (FPDS) project is part of the Exploration Technology Development Program (ETDP) and has the goal to enhance crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the mission, crew, or system. Within the past year, the FPDS project has been formalized within the ETDP structure and has seen significant progress on its tasks in fire prevention, detection, and suppression. As requirements for Constellation vehicles and, specifically, the CEV have developed, the need for the FPDS technologies has become more apparent and we continue to make strides to infuse them into the Constellation architecture. This paper describes the current structure of the project within the ETDP and summarizes the significant programmatic activities. Major technical accomplishments are identified as are activities planned for FY07.
Technology Development for Fire Safety in Exploration Spacecraft and Habitats
NASA Technical Reports Server (NTRS)
Ruff, Gary A.; Urban, David L.
2006-01-01
Fire during an exploration mission far from Earth is a particularly critical risk for exploration vehicles and habitats. The Fire Prevention, Detection, and Suppression (FPDS) project is part of the Exploration Technology Development Program (ETDP) and has the goal to enhance crew health and safety on exploration missions by reducing the likelihood of a fire, or, if one does occur, minimizing the risk to the mission, crew, or system. Within the past year, the FPDS project has been formalized within the ETDP structure and has seen significant progress on its tasks in fire prevention, detection, and suppression. As requirements for Constellation vehicles and, specifically, the CEV have developed, the need for the FPDS technologies has become more apparent and we continue to make strides to infuse them into the Constellation architecture. This paper describes the current structure of the project within the ETDP and summarizes the significant programmatic activities. Major technical accomplishments are identified as are activities planned for FY07.
NASA Technical Reports Server (NTRS)
Deutschman, W. A. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Detection of short-lived events has continued. Forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods have been detected and analyzed.
Advanced Fire Information System - A real time fire information system for Africa
NASA Astrophysics Data System (ADS)
Frost, P. E.; Roy, D. P.
2012-12-01
The Council for Scientific and Industrial Research (CSIR) lead by the Meraka Institute and supported by the South African National Space Agency (SANSA) developed the Advanced Fire Information System (AFIS) to provide near real time fire information to a variety of operational and science fire users including disaster managers, fire fighters, farmers and forest managers located across Southern and Eastern Africa. The AFIS combines satellite data with ground based observations and statistics and distributes the information via mobile phone technology. The system was launched in 2004, and Eskom (South Africa' and Africa's largest power utility) quickly became the biggest user and today more than 300 Eskom line managers and support staff receive cell phone and email fire alert messages whenever a wildfire is within 2km of any of the 28 000km of Eskom electricity transmission lines. The AFIS uses Earth observation satellites from NASA and Europe to detect possible actively burning fires and their fire radiative power (FRP). The polar orbiting MODIS Terra and Aqua satellites provide data at around 10am, 15pm, 22am and 3am daily, while the European Geostationary MSG satellite provides 15 minute updates at lower spatial resolution. The AFIS processing system ingests the raw satellite data and within minutes of the satellite overpass generates fire location and FRP based fire intensity information. The AFIS and new functionality are presented including an incident report and permiting system that can be used to differentiate between prescribed burns and uncontrolled wild fires, and the provision of other information including 5-day fire danger forecasts, vegetation curing information and historical burned area maps. A new AFIS mobile application for IOS and Android devices as well as a fire reporting tool are showcased that enable both the dissemination and alerting of fire information and enable user upload of geo tagged photographs and on the fly creation of fire reports for user defined areas of interest.
1986-01-01
by sensors in the test cell and sampled, digitized, averaged, and calibrated by the facility computer system. The data included flowrates calculated ...before the next test could be started. This required about 2 minutes. 6.4 Combat Damage Testing Appendix C contains calculations and analysis...were comparable (Figure 7-5). Agent quantities required per MIL-E-22285 were again calculated using the equations noted in paragraph 7.1.1. The
Advanced spacecraft fire safety: Proposed projects and program plan
NASA Technical Reports Server (NTRS)
Youngblood, Wallace W.; Vedha-Nayagam, M.
1989-01-01
A detailed review identifies spacecraft fire safety issues and the efforts for their resolution, particularly for the threats posed by the increased on-orbit duration, size, and complexity of the Space Station Freedom. Suggestions provided by a survey of Wyle consultants and outside fire safety experts were combined into 30 research and engineering projects. The projects were then prioritized with respect to urgency to meet Freedom design goals, status of enabling technology, cost, and so on, to yield 14 highest priority projects, described in terms of background, work breakdown structure, and schedule. These highest priority projects can be grouped into the thematic areas of fire detection, fire extinguishment, risk assessment, toxicology and human effects, and ground based testing. Recommendations for overall program management stress the need for NASA Headquarters and field center coordination, with information exchange through spacecraft fire safety oversight committees.
Post-Fire Changes in Forest Biomass Retrieved by Airborne LiDAR in Amazonia
Luciane Sato; Vitor Gomes; Yosio Shimabukuro; Michael Keller; Egidio Arai; Maiza dos-Santos; Irving Brown; Luiz Aragão
2016-01-01
Fire is one of the main factors directly impacting Amazonian forest biomass and dynamics. Because of Amazoniaâs large geographical extent, remote sensing techniques are required for comprehensively assessing forest fire impacts at the landscape level. In this context, Light Detection and Ranging (LiDAR) stands out as a technology capable of retrieving direct...
The potential impact of regional climate change on fire weather in the United States
Ying Tang; Shiyuan Zhong; Lifeng Luo; Xindi Bian; Warren E. Heilman; Julie. Winkler
2015-01-01
Climate change is expected to alter the frequency and severity of atmospheric conditions conducive for wildfires. In this study, we assess potential changes in fire weather conditions for the contiguous United States using the Haines Index (HI), a fire weather index that has been employed operationally to detect atmospheric conditions favorable for large and erratic...
Gaps in Data and Modeling Tools for Understanding Fire and Fire Effects in Tundra Ecosystems
NASA Astrophysics Data System (ADS)
French, N. H.; Miller, M. E.; Loboda, T. V.; Jenkins, L. K.; Bourgeau-Chavez, L. L.; Suiter, A.; Hawkins, S. M.
2013-12-01
As the ecosystem science community learns more about tundra ecosystems and disturbance in tundra, a review of base data sets and ecological field data for the region shows there are many gaps that need to be filled. In this paper we will review efforts to improve our knowledge of the occurrence and impacts of fire in the North American tundra region completed under a NASA Terrestrial Ecology grant. Our main source of information is remote sensing data from satellite sensors and ecological data from past and recent field data collections by our team, collaborators, and others. Past fire occurrence is not well known for this region compared with other North American biomes. In this presentation we review an effort to use a semi-automated detection algorithm to identify past fire occurrence using the Landsat TM/ETM+ archives, pointing out some of the still-unaddressed issues for a full understanding of fire regime for the region. For this task, fires in Landsat scenes were mapped using the Random Forest classifier (Breiman 2001) to automatically detect potential burn scars. Random Forests is an ensemble classifier that employs machine learning to build a large collection of decision trees that are grown from a random selection of user supplied training data. A pixel's classification is then determined by which class receives the most 'votes' from each tree. We also review the use fire location records and existing modeling methods to quantify emissions from these fires. Based on existing maps of vegetation fuels, we used the approach developed for the Wildland Fire Emissions Information System (WFEIS; French et al. 2011) to estimate emissions across the tundra region. WFEIS employs the Consume model (http://www.fs.fed.us/pnw/fera/research/smoke/consume/index.shtml) to estimate emissions by applying empirically developed relationships between fuels, fire conditions (weather-based fire indexes), and emissions. Here again, we will review the gaps in data and modeling capability for accurate estimation of fire emissions in this region. Initial evaluation of Landsat for tundra fire characterization (Loboda et al. 2013) and successful use of the rich archive of Synthetic Aperture Radar imagery for many fire-disturbed sites in the region will be additional topics covered in this poster presentation. References: Breiman, L. 2001. Random forests. Machine Learning, 45:5-32. French, N.H.F., W.J. de Groot, L.K. Jenkins, B.. Rogers, et al. 2011. Model comparisons for estimating carbon emissions from North American wildland fire. J. Geophys. Res. 116:G00K05, doi:10.1029/2010JG001469. Loboda, T L, N H F French, C. Hight-Harf, L. Jenkins, M.E. Miller. 2013. Mapping fire extent and burn severity in Alaskan tussock tundra: An analysis of the spectral response of tundra vegetation to wildland fire. Remote Sens. Enviro. 134:194-209.
NASA Astrophysics Data System (ADS)
Nesterova, Natalia; Semenova, Olga; Lebedeva, Luidmila
2015-04-01
Large territories of Siberia and Russian Far East are the subject to frequent forest fires. Often there is no information available about fire impact except its timing, areal distribution and qualitative characteristics of fire severity. Observed changes of hydrological response in burnt watersheds can be considered as indirect evidence of soil and vegetation transformation due to fire impact. In our study we used MODIS Fire products to detect spatial distribution of fires in Transbaikal and Far East regions of Russia in 2000 - 2012 period. Small and middle-size watersheds (with area up to 10000 km2) affected by extensive (burn area not less than 20 %) fires were chosen. We analyzed available hydrological data (measured discharges in watersheds outlets) for chosen basins. In several cases apparent hydrological response to fire was detected. To investigate main factors causing the change of hydrologic regime after fire several scenarios of soil and vegetation transformation were developed for each watershed under consideration. Corresponding sets of hydrological model parameters describing those transformations were elaborated based on data analysis and post-fire landscape changes as derived from a literature review. We implied different factors such as removal of organic layer, albedo changes, intensification of soil thaw (in presence of permafrost and seasonal soil freezing), reduction of infiltration rate and evapotranspiration, increase of upper subsurface flow fraction in summer flood events following the fire and others. We applied Hydrograph model (Russia) to conduct simulation experiments aiming to reveal which landscape changes scenarios were more plausible. The advantages of chosen hydrological model for this study are 1) that it takes into consideration thermal processes in soils which in case of permafrost and seasonal soil freezing presence can play leading role in runoff formation and 2) that observable vegetation and soil properties are used as its parameters allowing minimal resort to calibration. The model can use dynamic set of parameters performing preassigned abrupt and/or gradual changes of landscape characteristics. Interestingly, based on modelling results it can be concluded that depending on dominant landscape different aspects of soil and vegetation cover changes may influence runoff formation in contrasting way. The results of the study will be reported.
NASA Technical Reports Server (NTRS)
Gage, Mark; Dehoff, Ronald
1991-01-01
This system architecture task (1) analyzed the current process used to make an assessment of engine and component health after each test or flight firing of an SSME, (2) developed an approach and a specific set of objectives and requirements for automated diagnostics during post fire health assessment, and (3) listed and described the software applications required to implement this system. The diagnostic system described is a distributed system with a database management system to store diagnostic information and test data, a CAE package for visual data analysis and preparation of plots of hot-fire data, a set of procedural applications for routine anomaly detection, and an expert system for the advanced anomaly detection and evaluation.
NASA Technical Reports Server (NTRS)
2007-01-01
In what seemed like the blink of an eye, wildfires ignited in the paper-dry, drought-stricken vegetation of Southern California over the weekend of October 20, 2007, and exploded into massive infernos that forced hundreds of thousands of people to evacuate their communities. Driven by Santa Ana winds, fires grew thousands of acres in just one to two days. The fires sped down from the mountains into the outskirts of coastal cities, including San Diego. Dozens of homes have burned to the ground, and at least one person has died, according to local news reports. Several of the fires were burning completely out of control as of October 22. This image of the fires in California was captured at 1:55 p.m. U.S. Pacific Daylight Time on October 22, 2007. Places where MODIS detected actively burning fires are outlined in red. Thick streamers of smoke unfurl over the Pacific Ocean. The brownish plumes are clouds of dust. Fires northwest of Los Angeles seemed calmer at the time of this image than they were the previous day.
Crew Exploration Vehicle Environmental Control and Life Support Fire Protection Approach
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard; Tuan, George C.
2007-01-01
As part of preparing for the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) worked on developing the requirements to manage the fire risk. The new CEV poses unique challenges to current fire protection systems. The size and configuration of the vehicle resembles the Apollo capsule instead of the current Space Shuttle or the International Space Station. The smaller free air volume and fully cold plated avionic bays of the CEV requires a different approach in fire protection than the ones currently utilized. The fire protection approach discussed in this paper incorporates historical lessons learned and fire detection and suppression system design philosophy spanning from Apollo to the International Space Station. Working with NASA fire and materials experts, this approach outlines the best requirements for both the closed out area of the vehicle, such as the avionics bay, and the crew cabin area to address the unique challenges due to the size and configuration of the CEV.
Detection of Bursts and Pauses in Spike Trains
Ko, D.; Wilson, C. J.; Lobb, C. J.; Paladini, C. A.
2012-01-01
Midbrain dopaminergic neurons in vivo exhibit a wide range of firing patterns. They normally fire constantly at a low rate, and speed up, firing a phasic burst when reward exceeds prediction, or pause when an expected reward does not occur. Therefore, the detection of bursts and pauses from spike train data is a critical problem when studying the role of phasic dopamine (DA) in reward related learning, and other DA dependent behaviors. However, few statistical methods have been developed that can identify bursts and pauses simultaneously. We propose a new statistical method, the Robust Gaussian Surprise (RGS) method, which performs an exhaustive search of bursts and pauses in spike trains simultaneously. We found that the RGS method is adaptable to various patterns of spike trains recorded in vivo, and is not influenced by baseline firing rate, making it applicable to all in vivo spike trains where baseline firing rates vary over time. We compare the performance of the RGS method to other methods of detecting bursts, such as the Poisson Surprise (PS), Rank Surprise (RS), and Template methods. Analysis of data using the RGS method reveals potential mechanisms underlying how bursts and pauses are controlled in DA neurons. PMID:22939922
Autonomous long-range open area fire detection and reporting
NASA Astrophysics Data System (ADS)
Engelhaupt, Darell E.; Reardon, Patrick J.; Blackwell, Lisa; Warden, Lance; Ramsey, Brian D.
2005-03-01
Approximately 5 billion dollars in US revenue was lost in 2003 due to open area fires. In addition many lives are lost annually. Early detection of open area fires is typically performed by manned observatories, random reporting and aerial surveillance. Optical IR flame detectors have been developed previously. They typically have experienced high false alarms and low flame detection sensitivity due to interference from solar and other causes. Recently a combination of IR detectors has been used in a two or three color mode to reduce false alarms from solar, or background sources. A combination of ultra-violet C (UVC) and near infra-red (NIR) detectors has also been developed recently for flame discrimination. Relatively solar-blind basic detectors are now available but typically detect at only a few tens of meters at ~ 1 square meter fuel flame. We quantify the range and solar issues for IR and visible detectors and qualitatively define UV sensor requirements in terms of the mode of operation, collection area issues and flame signal output by combustion photochemistry. We describe innovative flame signal collection optics for multiple wavelengths using UV and IR as low false alarm detection of open area fires at long range (8-10 km/m2) in daylight (or darkness). A circular array detector and UV-IR reflective and refractive devices including cylindrical or toroidal lens elements for the IR are described. The dispersion in a refractive cylindrical IR lens characterizes the fire and allows a stationary line or circle generator to locate the direction and different flame IR "colors" from a wide FOV. The line generator will produce spots along the line corresponding to the fire which can be discriminated with a linear detector. We demonstrate prototype autonomous sensors with RF digital reporting from various sites.
Smoke detection in low-G fires
NASA Technical Reports Server (NTRS)
Urban, David L.; Griffin, Devon W.; Gard, Melissa Y.; Hoy, Michael
1995-01-01
Fires in spacecraft are considered a credible risk. To respond to this risk, NASA flew fire detectors on Skylab and the Space Shuttle (STS) and included them in the design for International Space Station Alpha (ISSA). In previous missions (Mercury, Gemini and Apollo), the crew quarters were so cramped that it was not considered credible that the astronauts could fail to observe a fire. The Skylab nodule included approximately 20 UV fire detectors. The space shuttle has 9 ionization detectors in the mid deck and flight deck and Spacelab has six additional ionization detectors. The planned detectors for ISSA are laser-diode, forward-scattering, smoke or particulate detectors. Current plans for the ISSA call for two detectors in the open area of the module and detectors in racks that have both cooling air flow and electrical power. Due to the complete absence of data concerning the nature of particulate and radiant emission from low-g fires, all three of these detector systems were designed based upon 1-g test data. As planned mission durations and complexity increase and the volume of spacecraft increases, the need for and importance of effective, crew independent, fire detection grows significantly. This requires more knowledge concerning low-gravity fires and how they might be detected. To date, no combustion-generated particulate samples have been collected for well-developed microgravity flames. All of the extant data come from drop tower tests and therefore only correspond to the early stages of a fire. The fuel sources were restricted to laminar gas-jet diffusion flames and rapidly overheated wire insulation. These gas-jet drop tower tests indicate, through thermophoretic sampling, that soot primaries and aggregates (groups of primary particles) in micro-g may be significantly larger than those in normal-g (ng). This raises new scientific questions about soot processes as well as practical issues for particulate detection/alarm threshold levels used in on-orbit smoke detectors. Furthermore, it is widely speculated but unverified that the aggregates will grow to very large scales in a microgravity fire of longer duration than available on the ground. Preliminary tests in the 2.2 second drop tower suggest that particulate generated by overheated wire insulation will also be larger in microgravity than in normal gravity. TEM grids downstream of the fire region in the WIF experiment as well as visual observation of long string-like aggregates, further confirm this suggestion. The combined impact of these limited results and theoretical predictions is that direct knowledge of low-g combustion particulate as opposed to extrapolation from 1-g data is needed for a more confident design of smoke detectors for spacecraft.
A Methodology for the Optimization of Disaggregated Space System Conceptual Designs
2015-06-18
orbit disaggregated space systems. Savings of $82 million are identified for an optimized fire detection system. Savings of $5.7 billion are...solutions and update architecture ................................................................31 Fire detection problem...149 Figure 30 – Example cost vs. weighted mean science return output [37] ...................... 153 Figure 31
NASA Astrophysics Data System (ADS)
Wuttke, M. W.; Halisch, M.; Tanner, D. C.; Cai, Z. Y.; Zeng, Q.; Wang, C.
2012-04-01
Spontaneous uncontrolled coal seam fires are a well known phenomenon that causes severe environmental problems and severe impact on natural coal reserves. Coal fires are a worldwide phenomenon, but in particular in Xinjiang, that covers 17.3 % of Chinas area and hosts approx 42 % of its coal resources. In Xinjiang since more than 50 years a rigorous strategy for fire fighting on local and regional scale is persued. The Xinjiang Coalfield Fire Fighting Bureau (FFB) has developed technologies and methods to deal with any known fire. Many fires have been extinguished already, but the problem is still there if not even growing. This problem is not only a problem for China due to the loss of valuable energy resources, but it is also a worldwide threat because of the generation of substantial amounts of greenhouse gases. Through the FFB, China is struggling to overcome this, but the activities could be much enhanced by the continuation of the already successful conjoint operations. The last ten years have seen two successful cooperative projects between China and Germany on the field of coal-fire fighting, namely the German Technical Cooperation Project on Coal Fire in Xinjiang and the Sino-German Coal Fire Research Initiative funded by the corresponding ministeries of both countries. A persistent task in the fire fighting is the identification and supervision of areas with higher risks for the ignition of coal fires, the exploration of already ignited fire zones to extinguish the fires and the monitoring of extinguished fires to detect as early as possible process that may foster re-ignition. This can be achieved by modeling both the structures and the processes that are involved. This has also been a promising part of the past cooperation projects, yet to be transformed into a standard application of fire fighting procedures. In this contribution we describe the plans for a new conjoint project between China and Germany where on the basis of field investigations and laboratory measurements realistic dynamical models of fire-zones are constructed to increase the understanding of particular coal-fires, to interpret the surface signatures of the coal-fire in terms of location and propagation and to estimate the output of hazardous exhaust products to evaluate the economic benefit of fire extinction.
NASA Astrophysics Data System (ADS)
Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.
2011-12-01
In several important biomes, including croplands and tropical forests, many small fires exist that have sizes that are well below the detection limit for the current generation of burned area products derived from moderate resolution spectroradiometers. These fires likely have important effects on greenhouse gas and aerosol emissions and regional air quality. Here we developed an approach for combining 1km thermal anomalies (active fires; MOD14A2) and 500m burned area observations (MCD64A1) to estimate the prevalence of these fires and their likely contribution to burned area and carbon emissions. We first estimated active fires within and outside of 500m burn scars in 0.5 degree grid cells during 2001-2010 for which MCD64A1 burned area observations were available. For these two sets of active fires we then examined mean fire radiative power (FRP) and changes in enhanced vegetation index (EVI) derived from 16-day intervals immediately before and after each active fire observation. To estimate the burned area associated with sub-500m fires, we first applied burned area to active fire ratios derived solely from within burned area perimeters to active fires outside of burn perimeters. In a second step, we further modified our sub-500m burned area estimates using EVI changes from active fires outside and within of burned areas (after subtracting EVI changes derived from control regions). We found that in northern and southern Africa savanna regions and in Central and South America dry forest regions, the number of active fires outside of MCD64A1 burned areas increased considerably towards the end of the fire season. EVI changes for active fires outside of burn perimeters were, on average, considerably smaller than EVI changes associated with active fires inside burn scars, providing evidence for burn scars that were substantially smaller than the 25 ha area of a single 500m pixel. FRP estimates also were lower for active fires outside of burn perimeters. In our analysis we quantified how including sub-500m burned area influenced global burned area, carbon emissions, and net ecosystem exchange (NEE) in different continental regions using the Global Fire Emissions Database (GFED) biogeochemical model. We conclude by discussing validation needs using higher resolution visible and thermal imagery.
Barrett, Kirsten; Loboda, Tatiana; McGuire, A. David; Genet, Hélène; Hoy, Elizabeth; Kasischke, Eric
2016-01-01
Wildfire, a dominant disturbance in boreal forests, is highly variable in occurrence and behavior at multiple spatiotemporal scales. New data sets provide more detailed spatial and temporal observations of active fires and the post-burn environment in Alaska. In this study, we employ some of these new data to analyze variations in fire activity by developing three explanatory models to examine the occurrence of (1) seasonal periods of elevated fire activity using the number of MODIS active fire detections data set (MCD14DL) within an 11-day moving window, (2) unburned patches within a burned area using the Monitoring Trends in Burn Severity fire severity product, and (3) short-to-moderate interval (<60 yr) fires using areas of burned area overlap in the Alaska Large Fire Database. Explanatory variables for these three models included dynamic variables that can change over the course of the fire season, such as weather and burn date, as well as static variables that remain constant over a fire season, such as topography, drainage, vegetation cover, and fire history. We found that seasonal periods of high fire activity are associated with both seasonal timing and aggregated weather conditions, as well as the landscape composition of areas that are burning. Important static inputs to the model of seasonal fire activity indicate that when fire weather conditions are suitable, areas that typically resist fire (e.g., deciduous stands) may become more vulnerable to burning and therefore less effective as fire breaks. The occurrence of short-to-moderate interval fires appears to be primarily driven by weather conditions, as these were the only relevant explanatory variables in the model. The unique importance of weather in explaining short-to-moderate interval fires implies that fire return intervals (FRIs) will be sensitive to projected climate changes in the region. Unburned patches occur most often in younger stands, which may be related to a greater deciduous fraction of vegetation as well as lower fuel loads compared with mature stands. The fraction of unburned patches may therefore increase in response to decreasing FRIs and increased deciduousness in the region, or these may decrease if fire weather conditions become more severe.
Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery
NASA Astrophysics Data System (ADS)
Hardtke, Leonardo A.; Blanco, Paula D.; Valle, Héctor F. del; Metternicht, Graciela I.; Sione, Walter F.
2015-06-01
Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Remote sensing has become the most widely used tool to detect fire affected areas over large tracts of land (e.g., ecosystem, regional and global levels). Standard satellite burned area and active fire products derived from the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour l'Observation de la Terre (SPOT) are available to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applications. Consequently, we propose a novel semi-automated algorithm for identification and mapping of burned areas at regional scale. The semi-arid Monte shrublands, a biome covering 240,000 km2 in the western part of Argentina, and exposed to seasonal bushfires was selected as the test area. The algorithm uses a set of the normalized burned ratio index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. Additionally, the performance of the adaptive algorithm was assessed against standard global fire products derived from MODIS Aqua and Terra satellites, total burned area (MCD45A1), the active fire algorithm (MOD14); and the L3JRC SPOT VEGETATION 1 km GLOBCARBON products. The correlation between the size of burned areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01-0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.
A novel approach for fire recognition using hybrid features and manifold learning-based classifier
NASA Astrophysics Data System (ADS)
Zhu, Rong; Hu, Xueying; Tang, Jiajun; Hu, Sheng
2018-03-01
Although image/video based fire recognition has received growing attention, an efficient and robust fire detection strategy is rarely explored. In this paper, we propose a novel approach to automatically identify the flame or smoke regions in an image. It is composed to three stages: (1) a block processing is applied to divide an image into several nonoverlapping image blocks, and these image blocks are identified as suspicious fire regions or not by using two color models and a color histogram-based similarity matching method in the HSV color space, (2) considering that compared to other information, the flame and smoke regions have significant visual characteristics, so that two kinds of image features are extracted for fire recognition, where local features are obtained based on the Scale Invariant Feature Transform (SIFT) descriptor and the Bags of Keypoints (BOK) technique, and texture features are extracted based on the Gray Level Co-occurrence Matrices (GLCM) and the Wavelet-based Analysis (WA) methods, and (3) a manifold learning-based classifier is constructed based on two image manifolds, which is designed via an improve Globular Neighborhood Locally Linear Embedding (GNLLE) algorithm, and the extracted hybrid features are used as input feature vectors to train the classifier, which is used to make decision for fire images or non fire images. Experiments and comparative analyses with four approaches are conducted on the collected image sets. The results show that the proposed approach is superior to the other ones in detecting fire and achieving a high recognition accuracy and a low error rate.
Fire-probability maps for the Brazilian Amazonia
NASA Astrophysics Data System (ADS)
Cardoso, M.; Nobre, C.; Obregon, G.; Sampaio, G.
2009-04-01
Most fires in Amazonia result from the combination between climate and land-use factors. They occur mainly in the dry season and are used as an inexpensive tool for land clearing and management. However, their unintended consequences are of important concern. Fire emissions are the most important sources of greenhouse gases and aerosols in the region, accidental fires are a major threat to protected areas, and frequent fires may lead to permanent conversion of forest areas into savannas. Fire-activity models have thus become important tools for environmental analyses in Amazonia. They are used, for example, in warning systems for monitoring the risk of burnings in protected areas, to improve the description of biogeochemical cycles and vegetation composition in ecosystem models, and to help estimate the long-term potential for savannas in biome models. Previous modeling studies for the whole region were produced in units of satellite fire pixels, which complicate their direct use for environmental applications. By reinterpreting remote-sensing based data using a statistical approach, we were able to calibrate models for the whole region in units of probability, or chance of fires to occur. The application of these models for years 2005 and 2006 provided maps of fire potential at 3-month and 0.25-deg resolution as a function of precipitation and distance from main roads. In both years, the performance of the resulting maps was better for the period July-September. During these months, most of satellite-based fire observations were located in areas with relatively high chance of fire, as determined by the modeled probability maps. In addition to reproduce reasonably well the areas presenting maximum fire activity as detected by remote sensing, the new results in units of probability are easier to apply than previous estimates from fire-pixel models.
Fire-probability maps for the Brazilian Amazonia
NASA Astrophysics Data System (ADS)
Cardoso, Manoel; Sampaio, Gilvan; Obregon, Guillermo; Nobre, Carlos
2010-05-01
Most fires in Amazonia result from the combination between climate and land-use factors. They occur mainly in the dry season and are used as an inexpensive tool for land clearing and management. However, their unintended consequences are of important concern. Fire emissions are the most important sources of greenhouse gases and aerosols in the region, accidental fires are a major threat to protected areas, and frequent fires may lead to permanent conversion of forest areas into savannas. Fire-activity models have thus become important tools for environmental analyses in Amazonia. They are used, for example, in warning systems for monitoring the risk of burnings in protected areas, to improve the description of biogeochemical cycles and vegetation composition in ecosystem models, and to help estimate the long-term potential for savannas in biome models. Previous modeling studies for the whole region were produced in units of satellite fire pixels, which complicate their direct use for environmental applications. By reinterpreting remote-sensing based data using a statistical approach, we were able to calibrate models for the whole region in units of probability, or chance of fires to occur. The application of these models for years 2005 and 2006 provided maps of fire potential at 3-month and 0.25-deg resolution as a function of precipitation and distance from main roads. In both years, the performance of the resulting maps was better for the period July-September. During these months, most of satellite-based fire observations were located in areas with relatively high chance of fire, as determined by the modeled probability maps. In addition to reproduce reasonably well the areas presenting maximum fire activity as detected by remote sensing, the new results in units of probability are easier to apply than previous estimates from fire-pixel models.
Influence of daily versus monthly fire emissions on atmospheric model applications in the tropics
NASA Astrophysics Data System (ADS)
Marlier, M. E.; Voulgarakis, A.; Faluvegi, G.; Shindell, D. T.; DeFries, R. S.
2012-12-01
Fires are widely used throughout the tropics to create and maintain areas for agriculture, but are also significant contributors to atmospheric trace gas and aerosol concentrations. However, the timing and magnitude of fire activity can vary strongly by year and ecosystem type. For example, frequent, low intensity fires dominate in African savannas whereas Southeast Asian peatland forests are susceptible to huge pulses of emissions during regional El Niño droughts. Despite the potential implications for modeling interactions with atmospheric chemistry and transport, fire emissions have commonly been input into global models at a monthly resolution. Recognizing the uncertainty that this can introduce, several datasets have parsed fire emissions to daily and sub-daily scales with satellite active fire detections. In this study, we explore differences between utilizing the monthly and daily Global Fire Emissions Database version 3 (GFED3) products as inputs into the NASA GISS-E2 composition climate model. We aim to understand how the choice of the temporal resolution of fire emissions affects uncertainty with respect to several common applications of global models: atmospheric chemistry, air quality, and climate. Focusing our analysis on tropical ozone, carbon monoxide, and aerosols, we compare modeled concentrations with available ground and satellite observations. We find that increasing the temporal frequency of fire emissions from monthly to daily can improve correlations with observations, predominately in areas or during seasons more heavily affected by fires. Differences between the two datasets are more evident with public health applications: daily resolution fire emissions increases the number of days exceeding World Health Organization air quality targets.
LSA SAF Meteosat FRP products - Part 1: Algorithms, product contents, and analysis
NASA Astrophysics Data System (ADS)
Wooster, M. J.; Roberts, G.; Freeborn, P. H.; Xu, W.; Govaerts, Y.; Beeby, R.; He, J.; Lattanzio, A.; Fisher, D.; Mullen, R.
2015-11-01
Characterizing changes in landscape fire activity at better than hourly temporal resolution is achievable using thermal observations of actively burning fires made from geostationary Earth Observation (EO) satellites. Over the last decade or more, a series of research and/or operational "active fire" products have been developed from geostationary EO data, often with the aim of supporting biomass burning fuel consumption and trace gas and aerosol emission calculations. Such Fire Radiative Power (FRP) products are generated operationally from Meteosat by the Land Surface Analysis Satellite Applications Facility (LSA SAF) and are available freely every 15 min in both near-real-time and archived form. These products map the location of actively burning fires and characterize their rates of thermal radiative energy release (FRP), which is believed proportional to rates of biomass consumption and smoke emission. The FRP-PIXEL product contains the full spatio-temporal resolution FRP data set derivable from the SEVIRI (Spinning Enhanced Visible and Infrared Imager) imager onboard Meteosat at a 3 km spatial sampling distance (decreasing away from the west African sub-satellite point), whilst the FRP-GRID product is an hourly summary at 5° grid resolution that includes simple bias adjustments for meteorological cloud cover and regional underestimation of FRP caused primarily by underdetection of low FRP fires. Here we describe the enhanced geostationary Fire Thermal Anomaly (FTA) detection algorithm used to deliver these products and detail the methods used to generate the atmospherically corrected FRP and per-pixel uncertainty metrics. Using SEVIRI scene simulations and real SEVIRI data, including from a period of Meteosat-8 "special operations", we describe certain sensor and data pre-processing characteristics that influence SEVIRI's active fire detection and FRP measurement capability, and use these to specify parameters in the FTA algorithm and to make recommendations for the forthcoming Meteosat Third Generation operations in relation to active fire measures. We show that the current SEVIRI FTA algorithm is able to discriminate actively burning fires covering down to 10-4 of a pixel and that it appears more sensitive to fire than other algorithms used to generate many widely exploited active fire products. Finally, we briefly illustrate the information contained within the current Meteosat FRP-PIXEL and FRP-GRID products, providing example analyses for both individual fires and multi-year regional-scale fire activity; the companion paper (Roberts et al., 2015) provides a full product performance evaluation and a demonstration of product use within components of the Copernicus Atmosphere Monitoring Service (CAMS).
NASA Astrophysics Data System (ADS)
Meddens, A. J.; Kolden, C.; Lutz, J. A.; Abatzoglou, J. T.; Hudak, A. T.
2016-12-01
Recently, there has been concern about increasing extent and severity of wildfires across the globe given rapid climate change. Areas that do not burn within fire perimeters can act as fire refugia, providing (1) protection from the detrimental effects of the fire, (2) seed sources, and (3) post-fire habitat on the landscape. However, recent studies have mainly focused on the higher end of the burn severity spectrum whereas the lower end of the burn severity spectrum has been largely ignored. We developed a spatially explicit database for 2,200 fires across the inland northwestern USA, delineating unburned areas within fire perimeters from 1984 to 2014. We used 1,600 Landsat scenes with one or two scenes before and one or two scenes after the fires to capture the unburned proportion of the fire. Subsequently, we characterized the spatial and temporal patterns of unburned areas and related the unburned proportion to interannual climate variability. The overall classification accuracy detecting unburned locations was 89.2% using a 10-fold cross-validation classification tree approach in combination with 719 randomly located field plots. The unburned proportion ranged from 2% to 58% with an average of 19% for a select number of fires. We find that using both an immediate post-fire image and a one-year post fire image improves classification accuracy of unburned islands over using just a single post-fire image. The spatial characteristics of the unburned islands differ between forested and non-forested regions with a larger amount of unburned area within non-forest. In addition, we show trends of unburned proportion related primarily to concurrent climatic drought conditions across the entire region. This database is important for subsequent analyses of fire refugia prioritization, vegetation recovery studies, ecosystem resilience, and forest management to facilitate unburned islands through fuels breaks, prescribed burning, and fire suppression strategies.
SCAR-B fires in the tropics: Properties and remote sensing from EOS-MODIS
NASA Astrophysics Data System (ADS)
Kaufman, Yoram J.; Kleidman, Richard G.; King, Michael D.
1998-12-01
Two moderate resolution imaging spectroradiometer (MODIS) instruments are planned for launch in 1999 and 2000 on the NASA Earth Observing System (EOS) AM-1 and EOS PM-1 satellites. The MODIS instrument will sense fires with designated 3.9 and 11 μm channels that saturate at high temperatures (450 and 400 K, respectively). MODIS data will be used to detect fires, to estimate the rate of emission of radiative energy from the fire, and to estimate the fraction of biomass burned in the smoldering phase. The rate of emission of radiative energy is a measure of the rate of combustion of biomass in the fires. In the Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment the NASA ER-2 aircraft flew the MODIS airborne simulator (MAS) to measure the fire thermal and mid-IR signature with a 50 m spatial resolution. These data are used to observe the thermal properties and sizes of fires in the cerrado grassland and Amazon forests of Brazil and to simulate the performance of the MODIS 1 km resolution fire observations. Although some fires saturated the MAS 3.9 μm channel, all the fires were well within the MODIS instrument saturation levels. Analysis of MAS data over different ecosystems, shows that the fire size varied from single MAS pixels (50×50 m) to over 1 km2. The 1×1 km resolution MODIS instrument can observe only 30-40% of these fires, but the observed fires are responsible for 80 to nearly 100% of the emitted radiative energy and therefore for 80 to 100% of the rate of biomass burning in the region. The rate of emission of radiative energy from the fires correlated very well with the formation of fire burn scars (correlation coefficient = 0.97). This new remotely sensed quantity should be useful in regional estimates of biomass consumption.
Kirkpatrick, C.; Conway, C.J.; Jones, P.B.
2006-01-01
The frequency of wild and prescribed fires in montane forests of the southwestern United States has increased after a century of fire suppression and subsequent fuels accumulation. To assess the effects of recent fires (median time since fire = 6 yr) on the montane forest bird community, we surveyed birds in 8 Sky Island mountain ranges in southeastern Arizona, USA, and examined how the distribution (i.e., presence-absence) of 65 species and relative abundance of 16 species correlated with evidence of severe and less severe fire at >1,500 survey points. We detected associations between fire and bird presence-absence for 17% of the 65 species analyzed and between fire and bird relative abundance for 25% of the 16 species analyzed. Most species (73%) were positively associated with burned areas and displayed stronger associations (i.e., more extreme odds ratios) with survey points that had evidence of severe as opposed to less severe fire. Positive associations with severe fire were strong (>3 to 1 odds) for western wood-pewee (Contopus sordidulus) and house wren (Troglodytes aedon), and negative associations with severe fire were strong for warbling vireo (Vireo gilvus) and red-breasted nuthatch (Sitta canadensis). Although recent fires appear to have had a positive effect on the distribution and relative abundance of several montane forest bird species in the region, these species are not the open-woodland birds that we would have expected to have benefited from fire based on previous research. Nevertheless, our results confirm associations between fire and bird presence-absence and relative abundance reported previously for 7 species of birds. Our results also provide new information for Grace's warbler (Dendroica graciae) and greater pewee (C. pertinax), 2 species for which fire data were formerly lacking. Managers can use these data to make and test predictions about the effects of future fires, both severe and less severe, on montane forest birds in the southwestern United States.
Trends in fire risk and burned area in Brazil in the 20th century
NASA Astrophysics Data System (ADS)
Silva, P.; Bastos, A.; DaCamara, C.; Libonati, R.
2016-12-01
Fire has a significant contribution to the global greenhouse gas emissions and vast ecological and climatic impacts. Worldwide, Brazil is one of the areas most affected by fire, which highly influences the state of the vegetation cover, the ecological diversity of the region and has significant consequences to the global CO2 balance [1]. Hence, with the increasing evidence of human induced climate change, it becomes essential to understand the present and future trends of fire risk in Brazil. Although a large number of fires in Brazil are anthropogenic, it has been shown that the burned area is mainly controlled by meteorological conditions [2], therefore being partially determined by fire risk. In this study we use a fire danger index specifically tailored for the Brazilian climate and biome characteristics, the MFDI developed by INPE, to assess the patterns and trends of fire risk in Brazil. The index relies on values of maximum temperature, accumulated precipitation over different periods, minimum relative humidity and vegetation cover to estimate the likelihood of fire occurrence. We test the sensitivity of the index to different climate reanalyses and evaluate the trends in fire risk in Brazil during the past four decades for different biomes. We further assess the link between the calculated fire risk and observed fire occurrence and burned area. Finally, we compare the results with fire risk simulated by a regional climate model (RCA4 forced by EC-Earth from CORDEX) in order to evaluate its suitability for future projections of fire risk and burned area. [1] Bowman, D. M. et al. Fire in the earth system. Science, v. 324, p. 481-484, 24 apr. 2009. [2] Libonati, R. et al. An Algorithm for Burned Area Detection in the Brazilian Cerrado Using 4 μm MODIS Imagery. Remote Sensing, v. 7, p. 15782-15803, 2015.
Assessment of chamber pressure oscillations in the Shuttle SRB
NASA Technical Reports Server (NTRS)
Mathes, H. B.
1980-01-01
Combustion stability evaluations of the Shuttle solid propellant booster motor are reviewed. Measurement of the amplitude and frequency of low level chamber pressure oscillations which have been detected in motor firings, are discussed and a statistical analysis of the data is presented. Oscillatory data from three recent motor firings are shown and the results are compared with statistical predictions which are based on earlier motor firings.
Kenneth L. Clark; Nicholas Skowronski; John Hom; Matthew Duveneck; Yude Pan; Stephen Van Tuyl; Jason Cole; Matthew Patterson; Stephen Maurer
2009-01-01
Our goal is to assist the New Jersey Forest Fire Service and federal wildland fire managers in the New Jersey Pine Barrens evaluate where and when to conduct hazardous fuel reduction treatments. We used remotely sensed LIDAR (Light Detection and Ranging System) data and field sampling to estimate fuel loads and consumption during prescribed fire treatments. This...
NASA Astrophysics Data System (ADS)
Arca, B.; Salis, M.; Bacciu, V.; Duce, P.; Pellizzaro, G.; Ventura, A.; Spano, D.
2009-04-01
Although in many countries lightning is the main cause of ignition, in the Mediterranean Basin the forest fires are predominantly ignited by arson, or by human negligence. The fire season peaks coincide with extreme weather conditions (mainly strong winds, hot temperatures, low atmospheric water vapour content) and high tourist presence. Many works reported that in the Mediterranean Basin the projected impacts of climate change will cause greater weather variability and extreme weather conditions, with drier and hotter summers and heat waves. At long-term scale, climate changes could affect the fuel load and the dead/live fuel ratio, and therefore could change the vegetation flammability. At short-time scale, the increase of extreme weather events could directly affect fuel water status, and it could increase large fire occurrence. In this context, detecting the areas characterized by both high probability of large fire occurrence and high fire severity could represent an important component of the fire management planning. In this work we compared several fire probability and severity maps (fire occurrence, rate of spread, fireline intensity, flame length) obtained for a study area located in North Sardinia, Italy, using FlamMap simulator (USDA Forest Service, Missoula). FlamMap computes the potential fire behaviour characteristics over a defined landscape for given weather, wind and fuel moisture data. Different weather and fuel moisture scenarios were tested to predict the potential impact of climate changes on fire parameters. The study area, characterized by a mosaic of urban areas, protected areas, and other areas subject to anthropogenic disturbances, is mainly composed by fire-prone Mediterranean maquis. The input themes needed to run FlamMap were input as grid of 10 meters; the wind data, obtained using a computational fluid-dynamic model, were inserted as gridded file, with a resolution of 50 m. The analysis revealed high fire probability and severity in most of the areas, and therefore a high potential danger. The FlamMap outputs and the derived fire probability maps can be used in decision support systems for fire spread and behaviour and for fire danger assessment with actual and future fire regimes.
Lewis, Tyler; Schmutz, Joel A.; Amundson, Courtney L.; Lindberg, Mark S.
2016-01-01
Summary 1. Wildfires are the principal disturbance in the boreal forest, and their size and frequency are increasing as the climate warms. Impacts of fires on boreal wildlife are largely unknown, especially for the tens of millions of waterfowl that breed in the region. This knowledge gap creates significant barriers to the integrative management of fires and waterfowl, leading to fire policies that largely disregard waterfowl. 2. Waterfowl populations across the western boreal forest of North America have been monitored annually since 1955 by the Waterfowl Breeding Population and Habitat Survey (BPOP), widely considered the most extensive wildlife survey in the world. Using these data, we examined impacts of forest fires on abundance of two waterfowl guilds – dabblers and divers. We modelled waterfowl abundance in relation to fire extent (i.e. amount of survey transect burned) and time since fire, examining both immediate and lagged fire impacts. 3. From 1955 to 2014, >1100 fires in the western boreal forest intersected BPOP survey transects, and many transects burned multiple times. Nonetheless, fires had no detectable impact on waterfowl abundance; annual transect counts of dabbler and diver pairs remained stable from the pre- to post-fire period. 4. The absence of fire impacts on waterfowl abundance extended from the years immediately following the fire to those more than a decade afterwards. Likewise, the amount of transect burned did not influence waterfowl abundance, with similar pair counts from the pre- to post-fire period for small (1–20% burned), medium (21–60%) and large (>60%) burns. 5. Policy implications. Waterfowl populations appear largely resilient to forest fires, providing initial evidence that current policies of limited fire suppression, which predominate throughout much of the boreal forest, have not been detrimental to waterfowl populations. Likewise, fire-related management actions, such as prescribed burning or targeted suppression, seem to have limited impacts on waterfowl abundance and productivity. For waterfowl managers, our results suggest that adaptive models of waterfowl harvest, which annually guide hunting quotas, do not need to emphasize fires when integrating climate change effects.
NASA Technical Reports Server (NTRS)
Peterson, D.; Wang, J.; Ichoku, C.; Remer, L. A.
2010-01-01
The effects of lightning and other meteorological factors on wildfire activity in the North American boreal forest are statistically analyzed during the fire seasons of 2000-2006 through an integration of the following data sets: the MODerate Resolution Imaging Spectroradiometer (MODIS) level 2 fire products, the 3-hourly 32-kin gridded meteorological data from North American Regional Reanalysis (NARR), and the lightning data collected by the Canadian Lightning Detection Network (CLDN) and the Alaska Lightning Detection Network (ALDN). Positive anomalies of the 500 hPa geopotential height field, convective available potential energy (CAPE), number of cloud-to-ground lightning strikes, and the number of consecutive dry days are found to be statistically important to the seasonal variation of MODIS fire counts in a large portion of Canada and the entirety of Alaska. Analysis of fire occurrence patterns in the eastern and western boreal forest regions shows that dry (in the absence of precipitation) lightning strikes account for only 20% of the total lightning strikes, but are associated with (and likely cause) 40% of the MODIS observed fire counts in these regions. The chance for ignition increases when a threshold of at least 10 dry strikes per NARR grid box and at least 10 consecutive dry days is reached. Due to the orientation of the large-scale pattern, complex differences in fire and lightning occurrence and variability were also found between the eastern and western sub-regions. Locations with a high percentage of dry strikes commonly experience an increased number of fire counts, but the mean number of fire counts per dry strike is more than 50% higher in western boreal forest sub-region, suggesting a geographic and possible topographic influence. While wet lightning events are found to occur with a large range of CAPE values, a high probability for dry lightning occurs only when 500 hPa geopotential heights are above 5700m and CAPE values are near the maximum observed level, underscoring the importance of low-level instability to boreal fire weather forecasts-
NASA Technical Reports Server (NTRS)
Morton, Douglas C.; DeFries, Ruth S.; Nagol, Jyoteshwar; Souza, Carlos M., Jr.; Kasischke, Eric S.; Hurtt, George C.; Dubayah, Ralph
2011-01-01
Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars less than 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (greater than 500 ha) burn scars that accounted for the majority of all fire-damaged forest in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 square kilometers) were an order of magnitude higher than during the 1997-1998 El Nino event (124 square kilometers and 39 square kilometers, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by applying the BDR algorithm over larger areas and longer image time series.
Detection of Wildfires with Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Umphlett, B.; Leeman, J.; Morrissey, M. L.
2011-12-01
Currently fire detection for the National Oceanic and Atmospheric Administration (NOAA) using satellite data is accomplished with algorithms and error checking human analysts. Artificial neural networks (ANNs) have been shown to be more accurate than algorithms or statistical methods for applications dealing with multiple datasets of complex observed data in the natural sciences. ANNs also deal well with multiple data sources that are not all equally reliable or equally informative to the problem. An ANN was tested to evaluate its accuracy in detecting wildfires utilizing polar orbiter numerical data from the Advanced Very High Resolution Radiometer (AVHRR). Datasets containing locations of known fires were gathered from the NOAA's polar orbiting satellites via the Comprehensive Large Array-data Stewardship System (CLASS). The data was then calibrated and navigation corrected using the Environment for Visualizing Images (ENVI). Fires were located with the aid of shapefiles generated via ArcGIS. Afterwards, several smaller ten pixel by ten pixel datasets were created for each fire (using the ENVI corrected data). Several datasets were created for each fire in order to vary fire position and avoid training the ANN to look only at fires in the center of an image. Datasets containing no fires were also created. A basic pattern recognition neural network was established with the MATLAB neural network toolbox. The datasets were then randomly separated into categories used to train, validate, and test the ANN. To prevent over fitting of the data, the mean squared error (MSE) of the network was monitored and training was stopped when the MSE began to rise. Networks were tested using each channel of the AVHRR data independently, channels 3a and 3b combined, and all six channels. The number of hidden neurons for each input set was also varied between 5-350 in steps of 5 neurons. Each configuration was run 10 times, totaling about 4,200 individual network evaluations. Thirty network parameters were recorded to characterize performance. These parameters were plotted with various data display techniques to determine which network configuration was not only most accurate in fire classification, but also the most computationally efficient. The most accurate fire classification network used all six channels of AVHRR data to achieve an accuracy ranging from 73-90%.
Smoke over Montana and Wyoming
NASA Technical Reports Server (NTRS)
2002-01-01
California was not the only western state affected by fire during the last weekend of July. Parts of Montana and Wyoming were covered by a thick pall of smoke on July 30, 2000. This true-color image was captured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). It is much easier to distinguish smoke from cloud in the color SeaWiFS imagery than the black and white Geostationary Operational Environmental Satellite (GOES) imagery. However, GOES provides almost continuous coverage (animation of Sequoia National Forest fire) and has thermal infrared bands (Extensive Fires in the Western U.S.) which detect the heat from fires. On Monday July 31, 2000, eight fires covering 105,000 acres were burning in Montana, and three fires covering 12,000 acres were burning in Wyoming. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE
Potential release of fibers from burning carbon composites. [aircraft fires
NASA Technical Reports Server (NTRS)
Bell, V. L.
1980-01-01
A comprehensive experimental carbon fiber source program was conducted to determine the potential for the release of conductive carbon fibers from burning composites. Laboratory testing determined the relative importance of several parameters influencing the amounts of single fibers released, while large-scale aviation jet fuel pool fires provided realistic confirmation of the laboratory data. The dimensions and size distributions of fire-released carbon fibers were determined, not only for those of concern in an electrical sense, but also for those of potential interest from a health and environmental standpoint. Fire plume and chemistry studies were performed with large pool fires to provide an experimental input into an analytical modelling of simulated aircraft crash fires. A study of a high voltage spark system resulted in a promising device for the detection, counting, and sizing of electrically conductive fibers, for both active and passive modes of operation.