-
A model of metastable dynamics during ongoing and evoked cortical activity
NASA Astrophysics Data System (ADS)
La Camera, Giancarlo
The dynamics of simultaneously recorded spike trains in alert animals often evolve through temporal sequences of metastable states. Little is known about the network mechanisms responsible for the genesis of such sequences, or their potential role in neural coding. In the gustatory cortex of alert rates, state sequences can be observed also in the absence of overt sensory stimulation, and thus form the basis of the so-called `ongoing activity'. This activity is characterized by a partial degree of coordination among neurons, sharp transitions among states, and multi-stability of single neurons' firing rates. A recurrent spiking network model with clustered topology can account for both the spontaneous generation of state sequences and the (network-generated) multi-stability. In the model, each network state results from the activation of specific neural clusters with potentiated intra-cluster connections. A mean field solution of the model shows a large number of stable states, each characterized by a subset of simultaneously active clusters. The firing rate in each cluster during ongoing activity depends on the number of active clusters, so that the same neuron can have different firing rates depending on the state of the network. Because of dense intra-cluster connectivity and recurrent inhibition, in finite networks the stable states lose stability due to finite size effects. Simulations of the dynamics show that the model ensemble activity continuously hops among the different states, reproducing the ongoing dynamics observed in the data. Moreover, when probed with external stimuli, the model correctly predicts the quenching of single neuron multi-stability into bi-stability, the reduction of dimensionality of the population activity, the reduction of trial-to-trial variability, and a potential role for metastable states in the anticipation of expected events. Altogether, these results provide a unified mechanistic model of ongoing and evoked cortical dynamics. NSF IIS-1161852, NIDCD K25-DC013557, NIDCD R01-DC010389.
-
Breaking Open the Black Box: Isolating the Most Potent Features of a Web and Mobile Phone-Based Intervention for Depression, Anxiety, and Stress.
PubMed
Whitton, Alexis E; Proudfoot, Judith; Clarke, Janine; Birch, Mary-Rose; Parker, Gordon; Manicavasagar, Vijaya; Hadzi-Pavlovic, Dusan
2015-01-01
Internet-delivered mental health (eMental Health) interventions produce treatment effects similar to those observed in face-to-face treatment. However, there is a large degree of variation in treatment effects observed from program to program, and eMental Health interventions remain somewhat of a black box in terms of the mechanisms by which they exert their therapeutic benefit. Trials of eMental Health interventions typically use large sample sizes and therefore provide an ideal context within which to systematically investigate the therapeutic benefit of specific program features. Furthermore, the growth and impact of mobile phone technology within eMental Health interventions provides an opportunity to examine associations between symptom improvement and the use of program features delivered across computer and mobile phone platforms. The objective of this study was to identify the patterns of program usage associated with treatment outcome in a randomized controlled trial (RCT) of a fully automated, mobile phone- and Web-based self-help program, "myCompass", for individuals with mild-to-moderate symptoms of depression, anxiety, and/or stress. The core features of the program include interactive psychotherapy modules, a symptom tracking feature, short motivational messages, symptom tracking reminders, and a diary, with many of these features accessible via both computer and mobile phone. Patterns of program usage were recorded for 231 participants with mild-to-moderate depression, anxiety, and/or stress, and who were randomly allocated to receive access to myCompass for seven weeks during the RCT. Depression, anxiety, stress, and functional impairment were examined at baseline and at eight weeks. Log data indicated that the most commonly used components were the short motivational messages (used by 68.4%, 158/231 of participants) and the symptom tracking feature (used by 61.5%, 142/231 of participants). Further, after controlling for baseline symptom severity, increased use of these alert features was associated with significant improvements in anxiety and functional impairment. Associations between use of symptom tracking reminders and improved treatment outcome remained significant after controlling for frequency of symptom tracking. Although correlations were not statistically significant, reminders received via SMS (ie, text message) were more strongly associated with symptom reduction than were reminders received via email. These findings indicate that alerts may be an especially potent component of eMental Health interventions, both via their association with enhanced program usage, as well as independently. Although there was evidence of a stronger association between symptom improvement and use of alerts via the mobile phone platform, the degree of overlap between use of email and SMS alerts may have precluded identification of alert delivery modalities that were most strongly associated with symptom reduction. Future research using random assignment to computer and mobile delivery is needed to fully determine the most ideal platform for delivery of this and other features of online interventions. Australian New Zealand Clinical Trials Registry (ACTRN): 12610000625077; http://www.anzctr.org.au/TrialSearch.aspx? (Archived by WebCite http://www.webcitation.org/6WPqHK0mQ).
-
Breaking Open the Black Box: Isolating the Most Potent Features of a Web and Mobile Phone-Based Intervention for Depression, Anxiety, and Stress
PubMed Central
Proudfoot, Judith; Clarke, Janine; Birch, Mary-Rose; Parker, Gordon; Manicavasagar, Vijaya; Hadzi-Pavlovic, Dusan
2015-01-01
Background Internet-delivered mental health (eMental Health) interventions produce treatment effects similar to those observed in face-to-face treatment. However, there is a large degree of variation in treatment effects observed from program to program, and eMental Health interventions remain somewhat of a black box in terms of the mechanisms by which they exert their therapeutic benefit. Trials of eMental Health interventions typically use large sample sizes and therefore provide an ideal context within which to systematically investigate the therapeutic benefit of specific program features. Furthermore, the growth and impact of mobile phone technology within eMental Health interventions provides an opportunity to examine associations between symptom improvement and the use of program features delivered across computer and mobile phone platforms. Objective The objective of this study was to identify the patterns of program usage associated with treatment outcome in a randomized controlled trial (RCT) of a fully automated, mobile phone- and Web-based self-help program, “myCompass”, for individuals with mild-to-moderate symptoms of depression, anxiety, and/or stress. The core features of the program include interactive psychotherapy modules, a symptom tracking feature, short motivational messages, symptom tracking reminders, and a diary, with many of these features accessible via both computer and mobile phone. Methods Patterns of program usage were recorded for 231 participants with mild-to-moderate depression, anxiety, and/or stress, and who were randomly allocated to receive access to myCompass for seven weeks during the RCT. Depression, anxiety, stress, and functional impairment were examined at baseline and at eight weeks. Results Log data indicated that the most commonly used components were the short motivational messages (used by 68.4%, 158/231 of participants) and the symptom tracking feature (used by 61.5%, 142/231 of participants). Further, after controlling for baseline symptom severity, increased use of these alert features was associated with significant improvements in anxiety and functional impairment. Associations between use of symptom tracking reminders and improved treatment outcome remained significant after controlling for frequency of symptom tracking. Although correlations were not statistically significant, reminders received via SMS (ie, text message) were more strongly associated with symptom reduction than were reminders received via email. Conclusions These findings indicate that alerts may be an especially potent component of eMental Health interventions, both via their association with enhanced program usage, as well as independently. Although there was evidence of a stronger association between symptom improvement and use of alerts via the mobile phone platform, the degree of overlap between use of email and SMS alerts may have precluded identification of alert delivery modalities that were most strongly associated with symptom reduction. Future research using random assignment to computer and mobile delivery is needed to fully determine the most ideal platform for delivery of this and other features of online interventions. Trial Registration Australian New Zealand Clinical Trials Registry (ACTRN): 12610000625077; http://www.anzctr.org.au/TrialSearch.aspx? (Archived by WebCite http://www.webcitation.org/6WPqHK0mQ). PMID:26543909
-
Earthquake Early Warning: New Strategies for Seismic Hardware
NASA Astrophysics Data System (ADS)
Allardice, S.; Hill, P.
2017-12-01
Implementing Earthquake Early Warning System (EEWS) triggering algorithms into seismic networks has been a hot topic of discussion for some years now. With digitizer technology now available, such as the Güralp Minimus, with on average 40-60ms delay time (latency) from earthquake origin to issuing an alert the next step is to provide network operators with a simple interface for on board parameter calculations from a seismic station. A voting mechanism is implemented on board which mitigates the risk of false positives being communicated. Each Minimus can be configured to with a `score' from various sources i.e. Z channel on seismometer, N/S E/W channels on accelerometer and MEMS inside Minimus. If the score exceeds the set threshold then an alert is sent to the `Master Minimus'. The Master Minimus within the network will also be configured as to when the alert should be issued i.e. at least 3 stations must have triggered. Industry standard algorithms focus around the calculation of Peak Ground Acceleration (PGA), Peak Ground Velocity (PGV), Peak Ground Displacement (PGD) and C. Calculating these single station parameters on-board in order to stream only the results could help network operators with possible issues, such as restricted bandwidth. Developments on the Minimus allow these parameters to be calculated and distributed through Common Alert Protocol (CAP). CAP is the XML based data format used for exchanging and describing public warnings and emergencies. Whenever the trigger conditions are met the Minimus can send a signed UDP packet to the configured CAP receiver which can then send the alert via SMS, e-mail or CAP forwarding. Increasing network redundancy is also a consideration when developing these features, therefore the forwarding CAP message can be sent to multiple destinations. This allows for a hierarchical approach by which the single station (or network) parameters can be streamed to another Minimus, or data centre, or both, so that there is no one single point of failure. Developments on the Guralp Minimus to calculate these on board parameters which are capable of streaming single station parameters, accompanied with the ultra-low latency is the next generation of EEWS and Güralps contribution to the community.
-
WIFIRE: A Scalable Data-Driven Monitoring, Dynamic Prediction and Resilience Cyberinfrastructure for Wildfires
NASA Astrophysics Data System (ADS)
Altintas, I.; Block, J.; Braun, H.; de Callafon, R. A.; Gollner, M. J.; Smarr, L.; Trouve, A.
2013-12-01
Recent studies confirm that climate change will cause wildfires to increase in frequency and severity in the coming decades especially for California and in much of the North American West. The most critical sustainability issue in the midst of these ever-changing dynamics is how to achieve a new social-ecological equilibrium of this fire ecology. Wildfire wind speeds and directions change in an instant, and first responders can only be effective when they take action as quickly as the conditions change. To deliver information needed for sustainable policy and management in this dynamically changing fire regime, we must capture these details to understand the environmental processes. We are building an end-to-end cyberinfrastructure (CI), called WIFIRE, for real-time and data-driven simulation, prediction and visualization of wildfire behavior. The WIFIRE integrated CI system supports social-ecological resilience to the changing fire ecology regime in the face of urban dynamics and climate change. Networked observations, e.g., heterogeneous satellite data and real-time remote sensor data is integrated with computational techniques in signal processing, visualization, modeling and data assimilation to provide a scalable, technological, and educational solution to monitor weather patterns to predict a wildfire's Rate of Spread. Our collaborative WIFIRE team of scientists, engineers, technologists, government policy managers, private industry, and firefighters architects implement CI pathways that enable joint innovation for wildfire management. Scientific workflows are used as an integrative distributed programming model and simplify the implementation of engineering modules for data-driven simulation, prediction and visualization while allowing integration with large-scale computing facilities. WIFIRE will be scalable to users with different skill-levels via specialized web interfaces and user-specified alerts for environmental events broadcasted to receivers before, during and after a wildfire. Scalability of the WIFIRE approach allows many sensors to be subjected to user-specified data processing algorithms to generate threshold alerts within seconds. Integration of this sensor data into both rapidly available fire image data and models will better enable situational awareness, responses and decision support at local, state, national, and international levels. The products of WIFIRE will be initially disseminated to our collaborators (SDG&E, CAL FIRE, USFS), covering academic, private, and government laboratories while generating values to emergency officials, and consequently to the general public. WIFIRE may be used by government agencies in the future to save lives and property during wildfire events, test the effectiveness of response and evacuation scenarios before they occur and assess the effectiveness of high-density sensor networks in improving fire and weather predictions. WIFIRE's high-density network, therefore, will serve as a testbed for future applications worldwide.
-
EVALUATION OF SMOKE AND GAS SENSOR RESPONSES FOR FIRES OF COMMON MINE COMBUSTIBLES
PubMed Central
Perera, Inoka Eranda; Litton, Charles D.
2015-01-01
Experiments were conducted to evaluate the response characteristics of commercially available gas, smoke, and flame sensors to fires of common combustible mine materials. The experiments were conducted in the large-scale Fire gallery located at the National Institute for Occupational Safety and Health (NIOSH) Lake Lynn Laboratory (LLL) in Fairchance, PA, using Ponderosa Pine, Red Oak, Douglas-fir, high and low volatile coals, PVC and SBR conveyor belt, No. 2 diesel fuel, and diesel exhaust. All the experiments (except those using No. 2 diesel fuel and the diesel exhaust tests) were conducted in a similar manner, with combustible materials heated rapidly by electrical strip heaters producing smoldering fires that quickly transitioned into flaming fires. The sensors included a diffusion-type carbon monoxide (CO) sensor, photoelectric- and ionization-type smoke sensors, a video smoke/flame detector, and an optical flame detector. Simultaneous measurements were obtained for average gas concentrations, smoke mass concentrations, and smoke optical densities in order to quantify the levels of combustion products at the alert and alarm times of the sensors. Because the required sensor alarm levels are 10 ppm and 0.044 m−1 optical density for CO and smoke sensors, respectively, the different sensor alarms are compared to the time at which the CO and smoke reached these alarm levels (1). In addition, the potential impact of using smoke sensors that have met the performance standards from accredited testing laboratories is also evaluated using the response of an Underwriters’ Laboratory (UL)-approved combination photoelectric/ionization smoke detector. The results are discussed relative to fire sensor needs that can have a positive impact on mine fire safety. PMID:26229418
-
EVALUATION OF SMOKE AND GAS SENSOR RESPONSES FOR FIRES OF COMMON MINE COMBUSTIBLES.
PubMed
Perera, Inoka Eranda; Litton, Charles D
Experiments were conducted to evaluate the response characteristics of commercially available gas, smoke, and flame sensors to fires of common combustible mine materials. The experiments were conducted in the large-scale Fire gallery located at the National Institute for Occupational Safety and Health (NIOSH) Lake Lynn Laboratory (LLL) in Fairchance, PA, using Ponderosa Pine, Red Oak, Douglas-fir, high and low volatile coals, PVC and SBR conveyor belt, No. 2 diesel fuel, and diesel exhaust. All the experiments (except those using No. 2 diesel fuel and the diesel exhaust tests) were conducted in a similar manner, with combustible materials heated rapidly by electrical strip heaters producing smoldering fires that quickly transitioned into flaming fires. The sensors included a diffusion-type carbon monoxide (CO) sensor, photoelectric- and ionization-type smoke sensors, a video smoke/flame detector, and an optical flame detector. Simultaneous measurements were obtained for average gas concentrations, smoke mass concentrations, and smoke optical densities in order to quantify the levels of combustion products at the alert and alarm times of the sensors. Because the required sensor alarm levels are 10 ppm and 0.044 m -1 optical density for CO and smoke sensors, respectively, the different sensor alarms are compared to the time at which the CO and smoke reached these alarm levels (1). In addition, the potential impact of using smoke sensors that have met the performance standards from accredited testing laboratories is also evaluated using the response of an Underwriters' Laboratory (UL)-approved combination photoelectric/ionization smoke detector. The results are discussed relative to fire sensor needs that can have a positive impact on mine fire safety.
-
Personalized Alert Notifications and Evacuation Routes in Indoor Environments
PubMed Central
Aedo, Ignacio; Yu, Shuxin; Díaz, Paloma; Acuña, Pablo; Onorati, Teresa
2012-01-01
The preparedness phase is crucial in the emergency management process for reaching an adequate level of readiness to react to potential threats and hazards. During this phase, emergency plans are developed to establish, among other procedures, evacuation and emergency escape routes. Information and Communication Technologies (ICT) can support and improve these procedures providing appropriate, updated and accessible information to all people in the affected zone. Current emergency management and evacuation systems do not adapt information to the context and the profile of each person, so messages received in the emergency might be useless. In this paper, we propose a set of criteria that ICT-based systems could achieve in order to avoid this problem adapting emergency alerts and evacuation routes to different situations and people. Moreover, in order to prove the applicability of such criteria, we define a mechanism that can be used as a complement of traditional evacuation systems to provide personalized alerts and evacuation routes to all kinds of people during emergency situations in working places. This mechanism is composed by three main components: CAP-ONES for notifying emergency alerts, NERES for defining emergency plans and generating personalized evacuation routes, and iNeres as the interface to receive and visualize these routes on smartphones. The usability and understandability of proposed interface has been assessed through a user study performed in a fire simulation in an indoor environment. This evaluation demonstrated that users considered iNeres easy to understand, to learn and to use, and they also found very innovative the idea to use smartphones as a support for escaping instead of static signals on walls and doors. PMID:22969373
-
78 FR 21086 - Endangered and Threatened Wildlife and Plants; 90-Day Finding on a Petition to List Two...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-09
... same taxon as a consequence of physical, physiological, ecological, or behavioral factors (quantitative.... 2012, pp. 57-60). The petitioners provide a variety of study results showing that post-fire salvage...; Arlington, VA 22203. We will not accept emails or faxes. We will post all information we receive on http...
-
Benefits of Earthquake Early Warning to Large Municipalities (Invited)
NASA Astrophysics Data System (ADS)
Featherstone, J.
2013-12-01
The City of Los Angeles has been involved in the testing of the Cal Tech Shake Alert, Earthquake Early Warning (EQEW) system, since February 2012. This system accesses a network of seismic monitors installed throughout California. The system analyzes and processes seismic information, and transmits a warning (audible and visual) when an earthquake occurs. In late 2011, the City of Los Angeles Emergency Management Department (EMD) was approached by Cal Tech regarding EQEW, and immediately recognized the value of the system. Simultaneously, EMD was in the process of finalizing a report by a multi-discipline team that visited Japan in December 2011, which spoke to the effectiveness of EQEW for the March 11, 2011 earthquake that struck that country. Information collected by the team confirmed that the EQEW systems proved to be very effective in alerting the population of the impending earthquake. The EQEW in Japan is also tied to mechanical safeguards, such as the stopping of high-speed trains. For a city the size and complexity of Los Angeles, the implementation of a reliable EQEW system will save lives, reduce loss, ensure effective and rapid emergency response, and will greatly enhance the ability of the region to recovery from a damaging earthquake. The current Shake Alert system is being tested at several governmental organizations and private businesses in the region. EMD, in cooperation with Cal Tech, identified several locations internal to the City where the system would have an immediate benefit. These include the staff offices within EMD, the Los Angeles Police Department's Real Time Analysis and Critical Response Division (24 hour crime center), and the Los Angeles Fire Department's Metropolitan Fire Communications (911 Dispatch). All three of these agencies routinely manage the collaboration and coordination of citywide emergency information and response during times of crisis. Having these three key public safety offices connected and included in the early testing of an EQEW system will help shape the EQEW policy which will determine the seismic safety of millions of Californians in the years to come.
-
Real-time notification and improved situational awareness in fire emergencies using geospatial-based publish/subscribe
NASA Astrophysics Data System (ADS)
Kassab, Ala'; Liang, Steve; Gao, Yang
2010-12-01
Emergency agencies seek to maintain situational awareness and effective decision making through continuous monitoring of, and real-time alerting about, sources of information regarding current incidents and developing fire hazards. The nature of this goal requires integrating different, potentially numerous, sources of dynamic geospatial information on the one side, and a large number of clients having heterogeneous and specific interests in data on the other side. In such scenarios, the traditional request/reply communication style may function inefficiently, as it is based on point-to-point, synchronous, and pulling mode interaction between consumer clients and information providers/services. In this work, we propose Geospatial-based Publish/ Subscribe, an interaction framework that serves as a middleware for real-time transacting of spatially related information of interest, termed geospatial events, in distributed systems. Expressive data models, including geospatial event and geospatial subscription, as well as an efficient matching approach for fast dissemination of geospatial events to interested clients, are introduced. The proposed interaction framework is realized through the development of a Real-Time Fire Emergency Response System (RFERS) prototype. The prototype is designed for transacting several topics of geospatial events that are crucial within the context of fire emergencies, including GPS locations of emergency assets, meteorological observations of wireless sensors, fire incidents reports, and temporal sequences of remote sensing images of active wildfires. The performance of the system prototype has been evaluated in order to demonstrate its efficiency.
-
Changes in tracheid and ray traits in fire scars of North American conifers and their ecophysiological implications.
PubMed
Arbellay, Estelle; Stoffel, Markus; Sutherland, Elaine K; Smith, Kevin T; Falk, Donald A
2014-08-01
Fire scars have been widely used as proxies for the reconstruction of fire history; however, little is known about the impact of fire injury on wood anatomy. This study investigates changes in tracheid and ray traits in fire scars of Douglas fir (Pseudotsuga menziesii), western larch (Larix occidentalis) and ponderosa pine (Pinus ponderosa), and discusses their ecophysiological implications for tree recovery from fire. Transverse and tangential microsections were prepared for light microscopy and image analysis. Measurements of tracheids and rays were made in the three spatial dimensions: axially (at different section heights), radially (in different rings) and tangentially (with increasing distance from the wound margin). Changes were strongest in the first year after fire injury, with a decrease in tracheid size (by 25-30 %) and an increase in tracheid density (by 21-53 %) for the three species. In addition, an increase in ray size (by 5-27 %) and an increase in ray density (by 19-36 %) were found in P. menziesii and L. occidentalis. Changes were comparable along the fire-injured stem and were often most marked close to the fire scar. The differentiation after fire injury of narrower and more numerous tracheids expresses a trade-off between hydraulic safety and hydraulic efficiency, while that of larger and more numerous rays serves compartmentalization and wound closure, mechanical strength and defence responses. Pinus ponderosa does not generally produce more ray tissue after fire injury and thus appears to be more adapted to fire. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
-
The Impact of Tropical Peat Fire on Termite Assemblage in Sumatra, Indonesia: Reduced Complexity of Community Structure and Survival Strategies.
PubMed
Neoh, Kok-Boon; Bong, Lee-Jin; Muhammad, Ahmad; Itoh, Masayuki; Kozan, Osamu; Takematsu, Yoko; Yoshimura, Tsuyoshi
2016-10-01
Tropical peat swamp forests in Southeast Asia account for approximately 72% of global peatland. However, extensive forest exploitation following peat drainage for agricultural expansion has been leading to catastrophic peat fires. In this study, we compared the termite assemblage in burnt and unburnt peats in Sumatra, Indonesia. We also identified which taxonomic group is particularly resistant to fire disturbance and the traits that correlate with its persistence in fire-impacted peatlands. Overall, the termite species richness in fire-impacted peats was up to 40% lower than that of the total species found in peat swamp forests. Although the estimated species richness values in fire-impacted peats and peat swamp forests were not significantly different, fire changed termite community structure significantly. Only termites of the family Rhinotermitidae survived in the fire event, whereas members of the Termitidae that were reportedly resilient to fire and open habitats elsewhere disappeared during the fire events. The rhinotermitids found in the burnt sites were exclusively wood nesters. This suggests that the desiccation tolerance of termites in open habitat is not the simple underlying survival strategy, but tree branches and barks might have provided a refuge from heat during fire. The result also suggests that the high similarity in species composition in recently burnt peats and long burnt peats implies low species turnover. Thus, regardless of how much time had passed since the fire-impacted peats were abandoned or cultivated, the increase in habitat complexity did not favor colonization by the forest-dependent group. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
-
Tsunami.gov: NOAA's Tsunami Information Portal
NASA Astrophysics Data System (ADS)
Shiro, B.; Carrick, J.; Hellman, S. B.; Bernard, M.; Dildine, W. P.
2014-12-01
We present the new Tsunami.gov website, which delivers a single authoritative source of tsunami information for the public and emergency management communities. The site efficiently merges information from NOAA's Tsunami Warning Centers (TWC's) by way of a comprehensive XML feed called Tsunami Event XML (TEX). The resulting unified view allows users to quickly see the latest tsunami alert status in geographic context without having to understand complex TWC areas of responsibility. The new site provides for the creation of a wide range of products beyond the traditional ASCII-based tsunami messages. The publication of modern formats such as Common Alerting Protocol (CAP) can drive geographically aware emergency alert systems like FEMA's Integrated Public Alert and Warning System (IPAWS). Supported are other popular information delivery systems, including email, text messaging, and social media updates. The Tsunami.gov portal allows NOAA staff to easily edit content and provides the facility for users to customize their viewing experience. In addition to access by the public, emergency managers and government officials may be offered the capability to log into the portal for special access rights to decision-making and administrative resources relevant to their respective tsunami warning systems. The site follows modern HTML5 responsive design practices for optimized use on mobile as well as non-mobile platforms. It meets all federal security and accessibility standards. Moving forward, we hope to expand Tsunami.gov to encompass tsunami-related content currently offered on separate websites, including the NOAA Tsunami Website, National Tsunami Hazard Mitigation Program, NOAA Center for Tsunami Research, National Geophysical Data Center's Tsunami Database, and National Data Buoy Center's DART Program. This project is part of the larger Tsunami Information Technology Modernization Project, which is consolidating the software architectures of NOAA's existing TWC's into a single system. We welcome your feedback to help Tsunami.gov become an effective public resource for tsunami information and a medium to enable better global tsunami warning coordination.
-
On The Usage Of Fire Smoke Emissions In An Air Quality Forecasting System To Reduce Particular Matter Forecasting Error
NASA Astrophysics Data System (ADS)
Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; DiMego, G.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2016-12-01
Wildfires contribute to air quality problems not only towards primary emissions of particular matters (PM) but also emitted ozone precursor gases that can lead to elevated ozone concentration. Wildfires are unpredictable and can be ignited by natural causes such as lightning or accidently by human negligent behavior such as live cigarette. Although wildfire impacts on the air quality can be studied by collecting fire information after events, it is extremely difficult to predict future occurrence and behavior of wildfires for real-time air quality forecasts. Because of the time constraints of operational air quality forecasting, assumption of future day's fire behavior often have to be made based on observed fire information in the past. The United States (U.S.) NOAA/NWS built the National Air Quality Forecast Capability (NAQFC) based on the U.S. EPA CMAQ to provide air quality forecast guidance (prediction) publicly. State and local forecasters use the forecast guidance to issue air quality alerts in their area. The NAQFC fine particulates (PM2.5) prediction includes emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and fires. The fire emission input to the NAQFC is derived from the NOAA NESDIS HMS fire and smoke detection product and the emission module of the US Forest Service BlueSky Smoke Modeling Framework. This study focuses on the error estimation of NAQFC PM2.5 predictions resulting from fire emissions. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that present operational NAQFC fire emissions assumption can lead to a huge error in PM2.5 prediction as fire emissions are sometimes placed at wrong location and time. This PM2.5 prediction error can be propagated from the fire source in the Northwest U.S. to downstream areas as far as the Southeast U.S. From this study, a new procedure has been identified to minimize the aforementioned error. An additional 24 hours reanalysis-run of NAQFC using same-day observed fire emission are being tested. Preliminary results have shown that this procedure greatly improves the PM2.5 predictions at both nearby and downstream areas from fire sources. The 24 hours reanalysis-run is critical and necessary especially during extreme fire events to provide better PM2.5 predictions.
-
The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems
NASA Astrophysics Data System (ADS)
Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.
2017-12-01
The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions resulting from incorporating fire smoke emissions into the NAQFC from a recently updated newer version of USFS BlueSky system. This study will show how new approaches has improved the PM2.5 predictions at both nearby and downstream areas from fire sources. Furthermore, Environment and Climate Change Canada (ECCC) fire emissions data are being tested.
-
Conceptual Questions and Challenge Problems
NASA Astrophysics Data System (ADS)
Nurrenbern, Susan C.; Robinson, William R.
1998-11-01
The JCE Internet Conceptual Question and Challenge Problem Web site is a source of questions and problems that can be used in teaching and assessing conceptual understanding and problem solving in chemistry. Here you can find a library of free-response and multiple-choice conceptual questions and challenge problems, tips for writing these questions and problems, and a discussion of types of conceptual questions. This site is intended to be a means of sharing conceptual questions and challenge problems among chemical educators. This is a living site that will grow as you share conceptual questions and challenge problems and as we find new sources of information. We would like to make this site as inclusive as possible. Please share your questions and problems with us and alert us to references or Web sites that could be included on the site. You can use email, fax, or regular mail. Email: nurrenbern@purdue.edu or wrrobin@purdue.edu Fax: 765/494-0239 Mailing address: Susan C. Nurrenbern or William R. Robinson; Department of Chemistry; Purdue University; 1393 Brown Building; West Lafayette, IN 47907-1393. The Conceptual Questions and Challenge Problems Web site can be found here.
-
Fire Increases Genetic Diversity of Populations of Six-Lined Racerunner.
PubMed
Ragsdale, Alexandria K; Frederick, Bridget M; Dukes, David W; Liebl, Andrea L; Ashton, Kyle G; McCoy, Earl D; Mushinsky, Henry R; Schrey, Aaron W
2016-01-01
Wildfires are highly variable and can disturb habitats, leading to direct and indirect effects on the genetic characteristics of local populations. Florida scrub is a fire-dependent, highly fragmented, and severely threatened habitat. Understanding the effect of fire on genetic characteristics of the species that use this habitat is critically important. We investigated one such lizard, the Six-lined Racerunner (Aspidoscelis sexlineata), which has a strong preference for open areas. We collected Six-lined Racerunners (n = 154) from 11 sites in Highlands County, FL, and defined 2 time-since-last-fire (TSF) categories: recently burned and long unburned. We screened genetic variation at 6 microsatellites to estimate genetic differentiation and compare genetic diversity among sites to determine the relationship with TSF. A clear pattern exists between genetic diversity and TSF in the absence of strong genetic differentiation. Genetic diversity was greater and inbreeding was lower in sites with more recent TSF, and genetic characteristics had significantly larger variance in long unburned sites compared with more recently burned sites. Our results suggest that fire suppression increases variance in genetic characteristics of the Six-lined Racerunner. More generally, fire may benefit genetic characteristics of some species that use fire-dependent habitats and management efforts for such severely fragmented habitat will be challenged by the presence of multiple species with incompatible fire preferences. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
-
Separating Spike Count Correlation from Firing Rate Correlation
PubMed Central
Vinci, Giuseppe; Ventura, Valérie; Smith, Matthew A.; Kass, Robert E.
2016-01-01
Populations of cortical neurons exhibit shared fluctuations in spiking activity over time. When measured for a pair of neurons over multiple repetitions of an identical stimulus, this phenomenon emerges as correlated trial-to-trial response variability via spike count correlation (SCC). However, spike counts can be viewed as noisy versions of firing rates, which can vary from trial to trial. From this perspective, the SCC for a pair of neurons becomes a noisy version of the corresponding firing-rate correlation (FRC). Furthermore, the magnitude of the SCC is generally smaller than that of the FRC, and is likely to be less sensitive to experimental manipulation. We provide statistical methods for disambiguating time-averaged drive from within-trial noise, thereby separating FRC from SCC. We study these methods to document their reliability, and we apply them to neurons recorded in vivo from area V4, in an alert animal. We show how the various effects we describe are reflected in the data: within-trial effects are largely negligible, while attenuation due to trial-to-trial variation dominates, and frequently produces comparisons in SCC that, because of noise, do not accurately reflect those based on the underlying FRC. PMID:26942746
-
An automated DICOM database capable of arbitrary data mining (including radiation dose indicators) for quality monitoring.
PubMed
Wang, Shanshan; Pavlicek, William; Roberts, Catherine C; Langer, Steve G; Zhang, Muhong; Hu, Mengqi; Morin, Richard L; Schueler, Beth A; Wellnitz, Clinton V; Wu, Teresa
2011-04-01
The U.S. National Press has brought to full public discussion concerns regarding the use of medical radiation, specifically x-ray computed tomography (CT), in diagnosis. A need exists for developing methods whereby assurance is given that all diagnostic medical radiation use is properly prescribed, and all patients' radiation exposure is monitored. The "DICOM Index Tracker©" (DIT) transparently captures desired digital imaging and communications in medicine (DICOM) tags from CT, nuclear imaging equipment, and other DICOM devices across an enterprise. Its initial use is recording, monitoring, and providing automatic alerts to medical professionals of excursions beyond internally determined trigger action levels of radiation. A flexible knowledge base, aware of equipment in use, enables automatic alerts to system administrators of newly identified equipment models or software versions so that DIT can be adapted to the new equipment or software. A dosimetry module accepts mammography breast organ dose, skin air kerma values from XA modalities, exposure indices from computed radiography, etc. upon receipt. The American Association of Physicists in Medicine recommended a methodology for effective dose calculations which are performed with CT units having DICOM structured dose reports. Web interface reporting is provided for accessing the database in real-time. DIT is DICOM-compliant and, thus, is standardized for international comparisons. Automatic alerts currently in use include: email, cell phone text message, and internal pager text messaging. This system extends the utility of DICOM for standardizing the capturing and computing of radiation dose as well as other quality measures.