Risk-based Spacecraft Fire Safety Experiments
NASA Technical Reports Server (NTRS)
Apostolakis, G.; Catton, I.; Issacci, F.; Paulos, T.; Jones, S.; Paxton, K.; Paul, M.
1992-01-01
Viewgraphs on risk-based spacecraft fire safety experiments are presented. Spacecraft fire risk can never be reduced to a zero probability. Probabilistic risk assessment is a tool to reduce risk to an acceptable level.
P. B. Woodbury; D. A. Weinstein
2010-01-01
We reviewed probabilistic regional risk assessment methodologies to identify the methods that are currently in use and are capable of estimating threats to ecosystems from fire and fuels, invasive species, and their interactions with stressors. In a companion chapter, we highlight methods useful for evaluating risks from fire. In this chapter, we highlight methods...
Review of methods for developing probabilistic risk assessments
D. A. Weinstein; P.B. Woodbury
2010-01-01
We describe methodologies currently in use or those under development containing features for estimating fire occurrence risk assessment. We describe two major categories of fire risk assessment tools: those that predict fire under current conditions, assuming that vegetation, climate, and the interactions between them and fire remain relatively similar to their...
Quantitative Risk Modeling of Fire on the International Space Station
NASA Technical Reports Server (NTRS)
Castillo, Theresa; Haught, Megan
2014-01-01
The International Space Station (ISS) Program has worked to prevent fire events and to mitigate their impacts should they occur. Hardware is designed to reduce sources of ignition, oxygen systems are designed to control leaking, flammable materials are prevented from flying to ISS whenever possible, the crew is trained in fire response, and fire response equipment improvements are sought out and funded. Fire prevention and mitigation are a top ISS Program priority - however, programmatic resources are limited; thus, risk trades are made to ensure an adequate level of safety is maintained onboard the ISS. In support of these risk trades, the ISS Probabilistic Risk Assessment (PRA) team has modeled the likelihood of fire occurring in the ISS pressurized cabin, a phenomenological event that has never before been probabilistically modeled in a microgravity environment. This paper will discuss the genesis of the ISS PRA fire model, its enhancement in collaboration with fire experts, and the results which have informed ISS programmatic decisions and will continue to be used throughout the life of the program.
A simulation of probabilistic wildfire risk components for the continental United States
Mark A. Finney; Charles W. McHugh; Isaac C. Grenfell; Karin L. Riley; Karen C. Short
2011-01-01
This simulation research was conducted in order to develop a large-fire risk assessment system for the contiguous land area of the United States. The modeling system was applied to each of 134 Fire Planning Units (FPUs) to estimate burn probabilities and fire size distributions. To obtain stable estimates of these quantities, fire ignition and growth was simulated for...
Probabilistic risk models for multiple disturbances: an example of forest insects and wildfires
Haiganoush K. Preisler; Alan A. Ager; Jane L. Hayes
2010-01-01
Building probabilistic risk models for highly random forest disturbances like wildfire and forest insect outbreaks is a challenging. Modeling the interactions among natural disturbances is even more difficult. In the case of wildfire and forest insects, we looked at the probability of a large fire given an insect outbreak and also the incidence of insect outbreaks...
Validation of a probabilistic post-fire erosion model
Pete Robichaud; William J. Elliot; Sarah A. Lewis; Mary Ellen Miller
2016-01-01
Post-fire increases of runoff and erosion often occur and land managers need tools to be able to project the increased risk. The Erosion Risk Management Tool (ERMiT) uses the Water Erosion Prediction Project (WEPP) model as the underlying processor. ERMiT predicts the probability of a given amount of hillslope sediment delivery from a single rainfall or...
Statistical aspects of carbon fiber risk assessment modeling. [fire accidents involving aircraft
NASA Technical Reports Server (NTRS)
Gross, D.; Miller, D. R.; Soland, R. M.
1980-01-01
The probabilistic and statistical aspects of the carbon fiber risk assessment modeling of fire accidents involving commercial aircraft are examined. Three major sources of uncertainty in the modeling effort are identified. These are: (1) imprecise knowledge in establishing the model; (2) parameter estimation; and (3)Monte Carlo sampling error. All three sources of uncertainty are treated and statistical procedures are utilized and/or developed to control them wherever possible.
How well does the Post-fire Erosion Risk Management Tool (ERMiT) really work?
NASA Astrophysics Data System (ADS)
Robichaud, Peter; Elliot, William; Lewis, Sarah; Miller, Mary Ellen
2016-04-01
The decision of where, when, and how to apply the most effective postfire erosion mitigation treatments requires land managers to assess the risk of damaging runoff and erosion events occurring after a fire. The Erosion Risk Management Tool (ERMiT) was developed to assist post fire assessment teams identify high erosion risk areas and effectiveness of various mitigation treatments to reduce that risk. ERMiT is a web-based application that uses the Water Erosion Prediction Project (WEPP) technology to estimate erosion, in probabilistic terms, on burned and recovering forest, range, and chaparral lands with and without the application of mitigation treatments. User inputs are processed by ERMiT to combine rain event variability with spatial and temporal variabilities of hillslope burn severity and soil properties which are then used as WEPP inputs. Since 2007, the model has been used in making hundreds of land management decisions in the US and elsewhere. We use eight published field study sites in the Western US to compare ERMiT predictions to observed hillslope erosion rates. Most sites experience only a few rainfall events that produced runoff and sediment except for a California site with a Mediterranean climate. When hillslope erosion occurred, significant correlations occurred between the observed hillslope erosion and those predicted by ERMiT. Significant correlation occurred for most mitigation treatments as well as the five recovery years. These model validation results suggest reasonable estimates of probabilistic post-fire hillslope sediment delivery when compared to observation.
Lindsay A. Chiono; Danny L. Fry; Brandon M. Collins; Andrea H. Chatfield; Scott L. Stephens
2017-01-01
Forest managers are challenged with meeting numerous demands that often include wildlife habitat and carbon (C) sequestration. We used a probabilistic framework of wildfire occurrence to (1) estimate the potential for fuel treatments to reduce fire risk and hazard across the landscape and within protected California spotted owl (Strix occidentalis...
Findings of a review of spacecraft fire safety needs
NASA Technical Reports Server (NTRS)
Apostolakis, G. E.; Catton, I.; Paulos, T.; Paxton, K.; Jones, S.
1992-01-01
Discussions from a workshop to guide UCLA and NASA investigators on the state of knowledge and perceived needs in spacecraft fire safety and its risk management are reviewed, for an introduction to an analytical and experimental project in this field. The report summarizes the workshop discussions and includes the visual aids used in the presentations. Probabilistic Safety Assessment (PSA) methods, which are currently not used, would be of great value to the designs and operation of future human-crew spacecraft. Key points in the discussions were the importance of understanding and testing smoldering as a likely fire scenario in space and the need for smoke damage modeling, since many fire-risk models ignore this mechanism and consider only heat damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin; Slaughter, Andrew; Veeraraghavan, Swetha
Multi-hazard Analysis for STOchastic time-DOmaiN phenomena (MASTODON) is a finite element application that aims at analyzing the response of 3-D soil-structure systems to natural and man-made hazards such as earthquakes, floods and fire. MASTODON currently focuses on the simulation of seismic events and has the capability to perform extensive ‘source-to-site’ simulations including earthquake fault rupture, nonlinear wave propagation and nonlinear soil-structure interaction (NLSSI) analysis. MASTODON is being developed to be a dynamic probabilistic risk assessment framework that enables analysts to not only perform deterministic analyses, but also easily perform probabilistic or stochastic simulations for the purpose of risk assessment.
Probabilistic soil erosion modeling using the Erosion Risk Management Tool (ERMIT) after wildfires
P. R. Robichaud; W. J. Elliot; J. W. Wagenbrenner
2011-01-01
The decision of whether or not to apply post-fire hillslope erosion mitigation treatments, and if so, where these treatments are most needed, is a multi-step process. Land managers must assess the risk of damaging runoff and sediment delivery events occurring on the unrecovered burned hillslope. We developed the Erosion Risk Management Tool (ERMiT) to address this need...
Matthew Thompson; David Calkin; Joe H. Scott; Michael Hand
2017-01-01
Wildfire risk assessment is increasingly being adopted to support federal wildfire management decisions in the United States. Existing decision support systems, specifically the Wildland Fire Decision Support System (WFDSS), provide a rich set of probabilistic and riskâbased information to support the management of active wildfire incidents. WFDSS offers a wide range...
DOE Office of Scientific and Technical Information (OSTI.GOV)
De-Cheng, Chen; Chung-Kung, Lo; Tsu-Jen, Lin
2004-07-01
The living fire probabilistic risk assessment (PRA) models for all three operating nuclear power plants (NPPs) in Taiwan had been established in December 2000. In that study, a scenario-based PRA approach was adopted to systematically evaluate the fire and smoke hazards and associated risks. Using these fire PRA models developed, a risk-informed application project had also been completed in December 2002 for the evaluation of cable-tray fire-barrier wrapping exemption. This paper presents a new application of the fire PRA models to fire protection issues using the fire protection significance determination process (FP SDP). The fire protection issues studied may involvemore » the selection of appropriate compensatory measures during the period when an automatic fire detection or suppression system in a safety-related fire zone becomes inoperable. The compensatory measure can either be a 24-hour fire watch or an hourly fire patrol. The living fire PRA models were used to estimate the increase in risk associated with the fire protection issue in terms of changes in core damage frequency (CDF) and large early release frequency (LERF). In compliance with SDP at-power and the acceptance guidelines specified in RG 1.174, the fire protection issues in question can be grouped into four categories; red, yellow, white and green, in accordance with the guidelines developed for FD SDP. A 24-hour fire watch is suggested only required for the yellow condition, while an hourly fire patrol may be adopted for the white condition. More limiting requirement is suggested for the red condition, but no special consideration is needed for the green condition. For the calculation of risk measures, risk impacts from any additional fire scenarios that may have been introduced, as well as more severe initiating events and fire damages that may accompany the fire protection issue should be considered carefully. Examples are presented in this paper to illustrate the evaluation process. (authors)« less
Fan, Ming; Thongsri, Tepwitoon; Axe, Lisa; Tyson, Trevor A
2005-06-01
A probabilistic approach was applied in an ecological risk assessment (ERA) to characterize risk and address uncertainty employing Monte Carlo simulations for assessing parameter and risk probabilistic distributions. This simulation tool (ERA) includes a Window's based interface, an interactive and modifiable database management system (DBMS) that addresses a food web at trophic levels, and a comprehensive evaluation of exposure pathways. To illustrate this model, ecological risks from depleted uranium (DU) exposure at the US Army Yuma Proving Ground (YPG) and Aberdeen Proving Ground (APG) were assessed and characterized. Probabilistic distributions showed that at YPG, a reduction in plant root weight is considered likely to occur (98% likelihood) from exposure to DU; for most terrestrial animals, likelihood for adverse reproduction effects ranges from 0.1% to 44%. However, for the lesser long-nosed bat, the effects are expected to occur (>99% likelihood) through the reduction in size and weight of offspring. Based on available DU data for the firing range at APG, DU uptake will not likely affect survival of aquatic plants and animals (<0.1% likelihood). Based on field and laboratory studies conducted at APG and YPG on pocket mice, kangaroo rat, white-throated woodrat, deer, and milfoil, body burden concentrations observed fall into the distributions simulated at both sites.
Modeling the Risk of Fire/Explosion Due to Oxidizer/Fuel Leaks in the Ares I Interstage
NASA Technical Reports Server (NTRS)
Ring, Robert W.; Stott, James E.; Hales, Christy
2008-01-01
A significant flight hazard associated with liquid propellants, such as those used in the upper stage of NASA's new Ares I launch vehicle, is the possibility of leakage of hazardous fluids resulting in a catastrophic fire/explosion. The enclosed and vented interstage of the Ares I contains numerous oxidizer and fuel supply lines as well as ignition sources. The potential for fire/explosion due to leaks during ascent depends on the relative concentrations of hazardous and inert fluids within the interstage along with other variables such as pressure, temperature, leak rates, and fluid outgasing rates. This analysis improves on previous NASA Probabilistic Risk Assessment (PRA) estimates of the probability of deflagration, in which many of the variables pertinent to the problem were not explicitly modeled as a function of time. This paper presents the modeling methodology developed to analyze these risks.
Compressed natural gas bus safety: a quantitative risk assessment.
Chamberlain, Samuel; Modarres, Mohammad
2005-04-01
This study assesses the fire safety risks associated with compressed natural gas (CNG) vehicle systems, comprising primarily a typical school bus and supporting fuel infrastructure. The study determines the sensitivity of the results to variations in component failure rates and consequences of fire events. The components and subsystems that contribute most to fire safety risk are determined. Finally, the results are compared to fire risks of the present generation of diesel-fueled school buses. Direct computation of the safety risks associated with diesel-powered vehicles is possible because these are mature technologies for which historical performance data are available. Because of limited experience, fatal accident data for CNG bus fleets are minimal. Therefore, this study uses the probabilistic risk assessment (PRA) approach to model and predict fire safety risk of CNG buses. Generic failure data, engineering judgments, and assumptions are used in this study. This study predicts the mean fire fatality risk for typical CNG buses as approximately 0.23 fatalities per 100-million miles for all people involved, including bus passengers. The study estimates mean values of 0.16 fatalities per 100-million miles for bus passengers only. Based on historical data, diesel school bus mean fire fatality risk is 0.091 and 0.0007 per 100-million miles for all people and bus passengers, respectively. One can therefore conclude that CNG buses are more prone to fire fatality risk by 2.5 times that of diesel buses, with the bus passengers being more at risk by over two orders of magnitude. The study estimates a mean fire risk frequency of 2.2 x 10(-5) fatalities/bus per year. The 5% and 95% uncertainty bounds are 9.1 x 10(-6) and 4.0 x 10(-5), respectively. The risk result was found to be affected most by failure rates of pressure relief valves, CNG cylinders, and fuel piping.
Unraveling the Complexity of Wildland Urban Interface Fires.
Mahmoud, Hussam; Chulahwat, Akshat
2018-06-18
Recent wildland urban interface fires have demonstrated the unrelenting destructive nature of these events and have called for an urgent need to address the problem. The Wildfire paradox reinforces the ideology that forest fires are inevitable and are actually beneficial; therefore focus should to be shifted towards minimizing potential losses to communities. This requires the development of vulnerability-based frameworks that can be used to provide holistic understanding of risk. In this study, we devise a probabilistic approach for quantifying community vulnerability to wildfires by applying concepts of graph theory. A directed graph for community in question is developed to model wildfire inside a community by incorporating different fire propagation modes. The model accounts for relevant community-specific characteristics including wind conditions, community layout, individual structural features, and the surrounding wildland vegetation. We calibrate the framework to study the infamous 1991 Oakland fire in an attempt to unravel the complexity of community fires. We use traditional centrality measures to identify critical behavior patterns and to evaluate the effect of fire mitigation strategies. Unlike current practice, the results are shown to be community-specific with substantial dependency of risk on meteorological conditions, environmental factors, and community characteristics and layout.
Measuring the effect of fuel treatments on forest carbon using landscape risk analysis
A.A. Ager; M.A. Finney; A. McMahan; J. Carthcart
2010-01-01
Wildfire simulation modelling was used to examine whether fuel reduction treatments can potentially reduce future wildfire emissions and provide carbon benefits. In contrast to previous reports, the current study modelled landscape scale effects of fuel treatments on fire spread and intensity, and used a probabilistic framework to quantify wildfire effects on carbon...
A probabilistic approach to modeling postfire erosion after the 2009 Australian bushfires
P. R. Robichaud; W. J. Elliot; F. B. Pierson; D. E. Hall; C. A. Moffet
2009-01-01
Major concerns after bushfires and wildfires include increased flooding, erosion and debris flows due to loss of the protective forest floor layer, loss of water storage, and creation of water repellent soil conditions. To assist postfire assessment teams in their efforts to evaluate fire effects and make postfire treatment decisions, a web-based Erosion Risk...
Limitations imposed on fire PRA methods as the result of incomplete and uncertain fire event data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowlen, Steven Patrick; Hyslop, J. S.
2010-04-01
Fire probabilistic risk assessment (PRA) methods utilize data and insights gained from actual fire events in a variety of ways. For example, fire occurrence frequencies, manual fire fighting effectiveness and timing, and the distribution of fire events by fire source and plant location are all based directly on the historical experience base. Other factors are either derived indirectly or supported qualitatively based on insights from the event data. These factors include the general nature and intensity of plant fires, insights into operator performance, and insights into fire growth and damage behaviors. This paper will discuss the potential methodology improvements thatmore » could be realized if more complete fire event reporting information were available. Areas that could benefit from more complete event reporting that will be discussed in the paper include fire event frequency analysis, analysis of fire detection and suppression system performance including incipient detection systems, analysis of manual fire fighting performance, treatment of fire growth from incipient stages to fully-involved fires, operator response to fire events, the impact of smoke on plant operations and equipment, and the impact of fire-induced cable failures on plant electrical circuits.« less
NASA Astrophysics Data System (ADS)
McCarthy, Michael A.; Lindenmayer, David B.
2007-04-01
While previous studies have examined how forest management is influenced by the risk of fire, they rely on probabilistic estimates of the occurrence and impacts of fire. However, nonprobabilistic approaches are required for assessing the importance of fire risk when data are poor but risks are appreciable. We explore impacts of fire risk on forest management using as a case study a water catchment in the Australian Capital Territory (ACT) (southeastern Australia). In this forested area, urban water supply and timber yields from exotic plantations are potential joint but also competing land uses. Our analyses were stimulated by extensive wildfires in early 2003 that burned much of the existing exotic pine plantation estate in the water catchment and the resulting need to explore the relative economic benefits of revegetating the catchment with exotic plantations or native vegetation. The current mean fire interval in the ACT is approximately 40 years, making the establishment of a pine plantation economically marginal at a 4% discount rate. However, the relative impact on water yield of revegetation with native species and pines is very uncertain, as is the risk of fire under climate change. We use info-gap decision theory to account for these nonprobabilistic sources of uncertainty, demonstrating that the decision that is most robust to uncertainty is highly sensitive to the cost of native revegetation. If costs of native revegetation are sufficiently small, this option is more robust to uncertainty than revegetation with a commercial pine plantation.
McCarthy, Michael A; Lindenmayer, David B
2007-04-01
While previous studies have examined how forest management is influenced by the risk of fire, they rely on probabilistic estimates of the occurrence and impacts of fire. However, nonprobabilistic approaches are required for assessing the importance of fire risk when data are poor but risks are appreciable. We explore impacts of fire risk on forest management using as a case study a water catchment in the Australian Capital Territory (ACT) (southeastern Australia). In this forested area, urban water supply and timber yields from exotic plantations are potential joint but also competing land uses. Our analyses were stimulated by extensive wildfires in early 2003 that burned much of the existing exotic pine plantation estate in the water catchment and the resulting need to explore the relative economic benefits of revegetating the catchment with exotic plantations or native vegetation. The current mean fire interval in the ACT is approximately 40 years, making the establishment of a pine plantation economically marginal at a 4% discount rate. However, the relative impact on water yield of revegetation with native species and pines is very uncertain, as is the risk of fire under climate change. We use info-gap decision theory to account for these nonprobabilistic sources of uncertainty, demonstrating that the decision that is most robust to uncertainty is highly sensitive to the cost of native revegetation. If costs of native revegetation are sufficiently small, this option is more robust to uncertainty than revegetation with a commercial pine plantation.
ERMiT: Estimating Post-Fire Erosion in Probabilistic Terms
NASA Astrophysics Data System (ADS)
Pierson, F. B.; Robichaud, P. R.; Elliot, W. J.; Hall, D. E.; Moffet, C. A.
2006-12-01
Mitigating the impact of post-wildfire runoff and erosion on life, property, and natural resources have cost the United States government tens of millions of dollars over the past decade. The decision of where, when, and how to apply the most effective mitigation treatments requires land managers to assess the risk of damaging runoff and erosion events occurring after a fire. The Erosion Risk Management Tool (ERMiT) is a web-based application that estimates erosion in probabilistic terms on burned and recovering forest, range, and chaparral lands. Unlike most erosion prediction models, ERMiT does not provide `average annual erosion rates;' rather, it provides a distribution of erosion rates with the likelihood of their occurrence. ERMiT combines rain event variability with spatial and temporal variabilities of hillslope burn severity, soil properties, and ground cover to estimate Water Erosion Prediction Project (WEPP) model input parameter values. Based on 20 to 40 individual WEPP runs, ERMiT produces a distribution of rain event erosion rates with a probability of occurrence for each of five post-fire years. Over the 5 years of modeled recovery, the occurrence probability of the less erodible soil parameters is increased and the occurrence probability of the more erodible soil parameters is decreased. In addition, the occurrence probabilities and the four spatial arrangements of burn severity (arrangements of overland flow elements (OFE's)), are shifted toward lower burn severity with each year of recovery. These yearly adjustments are based on field measurements made through post-fire recovery periods. ERMiT also provides rain event erosion rate distributions for hillslopes that have been treated with seeding, straw mulch, straw wattles and contour-felled log erosion barriers. Such output can help managers make erosion mitigation treatment decisions based on the probability of high sediment yields occurring, the value of resources at risk for damage, cost, and other management considerations.
NASA Astrophysics Data System (ADS)
Scherb, Anke; Papakosta, Panagiota; Straub, Daniel
2014-05-01
Wildfires cause severe damages to ecosystems, socio-economic assets, and human lives in the Mediterranean. To facilitate coping with wildfire risks, an understanding of the factors influencing wildfire occurrence and behavior (e.g. human activity, weather conditions, topography, fuel loads) and their interaction is of importance, as is the implementation of this knowledge in improved wildfire hazard and risk prediction systems. In this project, a probabilistic wildfire risk prediction model is developed, with integrated fire occurrence and fire propagation probability and potential impact prediction on natural and cultivated areas. Bayesian Networks (BNs) are used to facilitate the probabilistic modeling. The final BN model is a spatial-temporal prediction system at the meso scale (1 km2 spatial and 1 day temporal resolution). The modeled consequences account for potential restoration costs and production losses referred to forests, agriculture, and (semi-) natural areas. BNs and a geographic information system (GIS) are coupled within this project to support a semi-automated BN model parameter learning and the spatial-temporal risk prediction. The coupling also enables the visualization of prediction results by means of daily maps. The BN parameters are learnt for Cyprus with data from 2006-2009. Data from 2010 is used as validation data set. A special focus is put on the performance evaluation of the BN for fire occurrence, which is modeled as binary classifier and thus, could be validated by means of Receiver Operator Characteristic (ROC) curves. With the final best models, AUC values of more than 70% for validation could be achieved, which indicates potential for reliable prediction performance via BN. Maps of selected days in 2010 are shown to illustrate final prediction results. The resulting system can be easily expanded to predict additional expected damages in the mesoscale (e.g. building and infrastructure damages). The system can support planning of preventive measures (e.g. state resources allocation for wildfire prevention and preparedness) and assist recuperation plans of damaged areas.
Forecasting distribution of numbers of large fires
Haiganoush K. Preisler; Jeff Eidenshink; Stephen Howard; Robert E. Burgan
2015-01-01
Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the...
Predicting Geomorphic and Hydrologic Risks after Wildfire Using Harmonic and Stochastic Analyses
NASA Astrophysics Data System (ADS)
Mikesell, J.; Kinoshita, A. M.; Florsheim, J. L.; Chin, A.; Nourbakhshbeidokhti, S.
2017-12-01
Wildfire is a landscape-scale disturbance that often alters hydrological processes and sediment flux during subsequent storms. Vegetation loss from wildfires induce changes to sediment supply such as channel erosion and sedimentation and streamflow magnitude or flooding. These changes enhance downstream hazards, threatening human populations and physical aquatic habitat over various time scales. Using Williams Canyon, a basin burned by the Waldo Canyon Fire (2012) as a case study, we utilize deterministic and statistical modeling methods (Fourier series and first order Markov chain) to assess pre- and post-fire geomorphic and hydrologic characteristics, including of precipitation, enhanced vegetation index (EVI, a satellite-based proxy of vegetation biomass), streamflow, and sediment flux. Local precipitation, terrestrial Light Detection and Ranging (LiDAR) scanning, and satellite-based products are used for these time series analyses. We present a framework to assess variability of periodic and nonperiodic climatic and multivariate trends to inform development of a post-wildfire risk assessment methodology. To establish the extent to which a wildfire affects hydrologic and geomorphic patterns, a Fourier series was used to fit pre- and post-fire geomorphic and hydrologic characteristics to yearly temporal cycles and subcycles of 6, 4, 3, and 2.4 months. These cycles were analyzed using least-squares estimates of the harmonic coefficients or amplitudes of each sub-cycle's contribution to fit the overall behavior of a Fourier series. The stochastic variances of these characteristics were analyzed by composing first-order Markov models and probabilistic analysis through direct likelihood estimates. Preliminary results highlight an increased dependence of monthly post-fire hydrologic characteristics on 12 and 6-month temporal cycles. This statistical and probabilistic analysis provides a basis to determine the impact of wildfires on the temporal dependence of geomorphic and hydrologic characteristics, which can be incorporated into post-fire mitigation, management, and recovery-based measures to protect and rehabilitate areas subject to influence from wildfires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Short, Steven M.; Coles, Garill A.; Bohlander, Karl L.
In June 2004 the U.S. Nuclear Regulatory Commission (NRC) amended its fire protection requirements to permit existing nuclear power reactor licensees to voluntarily adopt fire protection requirements contained in National Fire Protection Association (NFPA) Standard 805. NFPA 805 is a performance-based standard for nuclear power plant fire protection that is an alternative to the deterministic, prescriptive fire protection requirements, such as 10 CFR 50 Appendix R, that was issued in 1980. One aspect of implementing NFPA 805 is that the licensee adopts the performance goals, objectives, and criteria for nuclear safety specified in the Standard. These goals, objectives, and criteriamore » can be met through the implementation of deterministic approaches or performance-based approaches, including engineering analyses, probabilistic risk assessment, and fire modeling. Licensees voluntarily adopting the fire protection requirements in NFPA 805 must submit a license amendment request (LAR) to the NRC. The LAR provides the new proposed fire protection licensing basis, including the methodology and results of required evaluations and analyses that show how the NFPA 805 performance criteria are met. As of August 2014, licensees have submitted LARs for 26 nuclear power plants, representing 42 nuclear reactor units. Of these, 7 nuclear power plants, representing 10 nuclear reactor units, have been issued a safety evaluation (SE) by the NRC approving transition of their fire protection licensing basis to one that complies with NFPA 805. Pacific Northwest National Laboratory (PNNL) supports the NRC staff’s technical review of the LARs in the areas of fundamental fire protection, safe shutdown analysis, and Probabilistic Risk Assessment (PRA). PNNL, of course, cannot speak for the nuclear industry and its choice of implementation strategies or the NRC staff’s assessment of the approaches being taken to adopt NFPA 805. However, as a reviewer of the technical details of these submittals, PNNL is in a position to observe the array of implementation tactics taken in these submittals, and observe different ways licensees are making the NFPA 805 process work. For example, we see differences in how fire areas are being transitioned, the kinds of plant modifications being implemented, the changes being made to plant procedures, the number and types of recovery actions being credited, and the kinds and extent of detailed modeling being performed in support of the Fire PRAs. As a caveat, we note that it is probably too early to comment on the overall success or limitations of the NFPA 805 process or provide lessons learned for the future. Furthermore, it is not our intention to endorse any particular approach taken in a submittal over another or to critique the industry or the regulator. Rather our goal in this paper is to summarize a set of interesting and useful differences across submittals that may provide context for further future discussions about what we (i.e., reviewers, industry, and regulators) have learned in being part of the NFPA process; and how to best use that information to inform future NFPA 805 activities or other risk-informed endeavors.« less
LaWen T. Hollingsworth; Laurie L. Kurth; Bernard R. Parresol; Roger D. Ottmar; Susan J. Prichard
2012-01-01
Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation...
Bashari, Hossein; Naghipour, Ali Asghar; Khajeddin, Seyed Jamaleddin; Sangoony, Hamed; Tahmasebi, Pejman
2016-09-01
Identifying areas that have a high risk of burning is a main component of fire management planning. Although the available tools can predict the fire risks, these are poor in accommodating uncertainties in their predictions. In this study, we accommodated uncertainty in wildfire prediction using Bayesian belief networks (BBNs). An influence diagram was developed to identify the factors influencing wildfire in arid and semi-arid areas of Iran, and it was populated with probabilities to produce a BBNs model. The behavior of the model was tested using scenario and sensitivity analysis. Land cover/use, mean annual rainfall, mean annual temperature, elevation, and livestock density were recognized as the main variables determining wildfire occurrence. The produced model had good accuracy as its ROC area under the curve was 0.986. The model could be applied in both predictive and diagnostic analysis for answering "what if" and "how" questions. The probabilistic relationships within the model can be updated over time using observation and monitoring data. The wildfire BBN model may be updated as new knowledge emerges; hence, it can be used to support the process of adaptive management.
Richard A. Minnich; Ernesto Franco-Vizcaíno
2009-01-01
Fire suppression in industrialized countries encourages massive smoke emissions from high-intensity fires as a result of two inextricably related processes under current suppression policies: the nonrandom occurrence of vegetation fires in extreme weather states and the anomalous accumulation of spatially homogenous fuels. We propose as an organizing idea that the...
Near-term probabilistic forecast of significant wildfire events for the Western United States
Haiganoush K. Preisler; Karin L. Riley; Crystal S. Stonesifer; Dave E. Calkin; Matt Jolly
2016-01-01
Fire danger and potential for large fires in the United States (US) is currently indicated via several forecasted qualitative indices. However, landscape-level quantitative forecasts of the probability of a large fire are currently lacking. In this study, we present a framework for forecasting large fire occurrence - an extreme value event - and evaluating...
NASA Astrophysics Data System (ADS)
Farahmand, A.; Reager, J. T., II; Behrangi, A.; Stavros, E. N.; Randerson, J. T.
2017-12-01
Fires are a key disturbance globally acting as a catalyst for terrestrial ecosystem change and contributing significantly to both carbon emissions and changes in surface albedo. The socioeconomic impacts of wildfire activities are also significant with wildfire activity results in billions of dollars of losses every year. Fire size, area burned and frequency are increasing, thus the likelihood of fire danger, defined by United States National Interagency Fire Center (NFIC) as the demand of fire management resources as a function of how flammable fuels (a function of ignitability, consumability and availability) are from normal, is an important step toward reducing costs associated with wildfires. Numerous studies have aimed to predict the likelihood of fire danger, but few studies use remote sensing data to map fire danger at scales commensurate with regional management decisions (e.g., deployment of resources nationally throughout fire season with seasonal and monthly prediction). Here, we use NASA Gravity Recovery And Climate Experiment (GRACE) assimilated surface soil moisture, NASA Atmospheric Infrared Sounder (AIRS) vapor pressure deficit, NASA Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index products and landcover products, along with US Forest Service historical fire activity data to generate probabilistic monthly fire potential maps in the United States. These maps can be useful in not only government operational allocation of fire management resources, but also improving understanding of the Earth System and how it is changing in order to refine predictions of fire extremes.
NASA Astrophysics Data System (ADS)
Nunes, João Pedro; Keizer, Jan Jacob
2017-04-01
Models can be invaluable tools to assess and manage the impacts of forest fires on hydrological and erosion processes. Immediately after fires, models can be used to identify priority areas for post-fire interventions or assess the risks of flooding and downstream contamination. In the long term, models can be used to evaluate the long-term implications of a fire regime for soil protection, surface water quality and potential management risks, or determine how changes to fire regimes, caused e.g. by climate change, can impact soil and water quality. However, several challenges make post-fire modelling particularly difficult: • Fires change vegetation cover and properties, such as by changing soil water repellency or by adding an ash layer over the soil; these processes, however are not described in currently used models, so that existing models need to be modified and tested. • Vegetation and soils recover with time since fire, changing important model parameters, so that the recovery processes themselves also need to be simulated, including the role of post-fire interventions. • During the window of vegetation and soil disturbance, particular weather conditions, such as the occurrence of severe droughts or extreme rainfall events, can have a large impact on the amount of runoff and erosion produced in burnt areas, so that models that smooth out these peak responses and rather simulate "long-term" average processes are less useful. • While existing models can simulate reasonable well slope-scale runoff generation and associated sediment losses and their catchment-scale routing, few models can accommodate the role of the ash layer or its transport by overland flow, in spite of its importance for soil fertility losses and downstream contamination. This presentation will provide an overview of the importance of post-fire hydrological and erosion modelling as well as of the challenges it faces and of recent efforts made to overcome these challenges. It will illustrate these challenges with two examples: probabilistic approaches to simulate the impact of different vegetation regrowth and post-fire climate combinations on runoff and erosion; and model developments for post-fire soil water repellency with different levels of complexity. It will also present an inventory of the current state-of-the-art and propose future research directions, both on post-fire models themselves and on their integration with other models in large-scale water resource assessment management.
Simulating fire regimes in the Amazon in response to climate change and deforestation.
Silvestrini, Rafaella Almeida; Soares-Filho, Britaldo Silveira; Nepstad, Daniel; Coe, Michael; Rodrigues, Hermann; Assunção, Renato
2011-07-01
Fires in tropical forests release globally significant amounts of carbon to the atmosphere and may increase in importance as a result of climate change. Despite the striking impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still hampers our ability to simulate tropical forest fire regimes today and in the future. Here we present a probabilistic model of human-induced fire occurrence for the Amazon that integrates the effects of a series of anthropogenic factors with climatic conditions described by vapor pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003 and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded fitness values > 85% for all months from 2002 to 2005. Simulated fires exhibited high overlap with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We applied this model to simulate fire regimes in the Amazon until 2050 using IPCC's A2 scenario climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of deforestation and road expansion from SimAmazonia. Results show that the combination of these scenarios may double forest fire occurrence outside protected areas (PAs) in years of extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury. In particular, forest fires may increase substantially across southern and southwestern Amazon, especially along the highways slated for paving and in agricultural zones. Committed emissions from Amazon forest fires and deforestation under a scenario of global warming and uncurbed deforestation may amount to 21 +/- 4 Pg of carbon by 2050. BAU deforestation may increase fires occurrence outside PAs by 19% over the next four decades, while climate change alone may account for a 12% increase. In turn, the combination of climate change and deforestation would boost fire occurrence outside PAs by half during this period. Our modeling results, therefore, confirm the synergy between the two Ds of REDD (Reducing Emissions from Deforestation and Forest Degradation in Developing Countries).
External events analysis for the Savannah River Site K reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandyberry, M.D.; Wingo, H.E.
1990-01-01
The probabilistic external events analysis performed for the Savannah River Site K-reactor PRA considered many different events which are generally perceived to be external'' to the reactor and its systems, such as fires, floods, seismic events, and transportation accidents (as well as many others). Events which have been shown to be significant contributors to risk include seismic events, tornados, a crane failure scenario, fires and dam failures. The total contribution to the core melt frequency from external initiators has been found to be 2.2 {times} 10{sup {minus}4} per year, from which seismic events are the major contributor (1.2 {times} 10{supmore » {minus}4} per year). Fire initiated events contribute 1.4 {times} 10{sup {minus}7} per year, tornados 5.8 {times} 10{sup {minus}7} per year, dam failures 1.5 {times} 10{sup {minus}6} per year and the crane failure scenario less than 10{sup {minus}4} per year to the core melt frequency. 8 refs., 3 figs., 5 tabs.« less
Reliability and Failure in NASA Missions: Blunders, Normal Accidents, High Reliability, Bad Luck
NASA Technical Reports Server (NTRS)
Jones, Harry W.
2015-01-01
NASA emphasizes crew safety and system reliability but several unfortunate failures have occurred. The Apollo 1 fire was mistakenly unanticipated. After that tragedy, the Apollo program gave much more attention to safety. The Challenger accident revealed that NASA had neglected safety and that management underestimated the high risk of shuttle. Probabilistic Risk Assessment was adopted to provide more accurate failure probabilities for shuttle and other missions. NASA's "faster, better, cheaper" initiative and government procurement reform led to deliberately dismantling traditional reliability engineering. The Columbia tragedy and Mars mission failures followed. Failures can be attributed to blunders, normal accidents, or bad luck. Achieving high reliability is difficult but possible.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... must be one which, if proven, would entitle the requestor/petitioner to relief. A requestor/ petitioner..., and fire modeling calculations, have been performed to demonstrate that the performance-based... may include engineering evaluations, probabilistic safety assessments, and fire modeling calculations...
A decision support system for managing forest fire casualties.
Bonazountas, Marc; Kallidromitou, Despina; Kassomenos, Pavlos; Passas, Nikos
2007-09-01
Southern Europe is exposed to anthropogenic and natural forest fires. These result in loss of lives, goods and infrastructure, but also deteriorate the natural environment and degrade ecosystems. The early detection and combating of such catastrophes requires the use of a decision support system (DSS) for emergency management. The current literature reports on a series of efforts aimed to deliver DSSs for the management of the forest fires by utilising technologies like remote sensing and geographical information systems (GIS), yet no integrated system exists. This manuscript presents the results of scientific research aiming to the development of a DSS for managing forest fires. The system provides a series of software tools for the assessment of the propagation and combating of forest fires based on Arc/Info, ArcView, Arc Spatial Analyst, Arc Avenue, and Visual C++ technologies. The system integrates GIS technologies under the same data environment and utilises a common user interface to produce an integrated computer system based on semi-automatic satellite image processing (fuel maps), socio-economic risk modelling and probabilistic models that would serve as a useful tool for forest fire prevention, planning and management. Its performance has been demonstrated via real time up-to-date accurate information on the position and evolution of the fire. The system can assist emergency assessment, management and combating of the incident. A site demonstration and validation has been accomplished for the island of Evoia, Greece, an area particularly vulnerable to forest fires due to its ecological characteristics and prevailing wind patterns.
Identification of failure type in corroded pipelines: a bayesian probabilistic approach.
Breton, T; Sanchez-Gheno, J C; Alamilla, J L; Alvarez-Ramirez, J
2010-07-15
Spillover of hazardous materials from transport pipelines can lead to catastrophic events with serious and dangerous environmental impact, potential fire events and human fatalities. The problem is more serious for large pipelines when the construction material is under environmental corrosion conditions, as in the petroleum and gas industries. In this way, predictive models can provide a suitable framework for risk evaluation, maintenance policies and substitution procedure design that should be oriented to reduce increased hazards. This work proposes a bayesian probabilistic approach to identify and predict the type of failure (leakage or rupture) for steel pipelines under realistic corroding conditions. In the first step of the modeling process, the mechanical performance of the pipe is considered for establishing conditions under which either leakage or rupture failure can occur. In the second step, experimental burst tests are used to introduce a mean probabilistic boundary defining a region where the type of failure is uncertain. In the boundary vicinity, the failure discrimination is carried out with a probabilistic model where the events are considered as random variables. In turn, the model parameters are estimated with available experimental data and contrasted with a real catastrophic event, showing good discrimination capacity. The results are discussed in terms of policies oriented to inspection and maintenance of large-size pipelines in the oil and gas industry. 2010 Elsevier B.V. All rights reserved.
Probabilistic approach to damage of tunnel lining due to fire
NASA Astrophysics Data System (ADS)
Šejnoha, Jiří; Sýkora, Jan; Novotná, Eva; Šejnoha, Michal
2017-09-01
In this paper, risk is perceived as the probable damage caused by a fire in the tunnel lining. In its first part the traffic flow is described as a Markov chain of joint states consisting of a combination of trucks/buses (TB) and personal cars (PC) from adjoining lanes. The heat release rate is then taken for a measure of the fire power. The intensity λf reflecting the frequency of fires was assessed based on extensive studies carried out in Austria [1] and Italy [2, 3]. The traffic density AADT, the length of the tunnel L, the percentage of TBs, and the number of lanes are the remaining parameters characterizing the traffic flow. In the second part, a special combination of models originally proposed by Bažant and Thonguthai [4], and Künzel & Kiessl [5] for the description of transport processes in concrete at very high temperatures creates a basis for the prediction of the thickness of the spalling zone and the volume of concrete degraded by temperatures that exceed a certain temperature level. The model was validated against a macroscopic test on concrete samples placed into the furnace.
Probabilistic calibration of the SPITFIRE fire spread model using Earth observation data
NASA Astrophysics Data System (ADS)
Gomez-Dans, Jose; Wooster, Martin; Lewis, Philip; Spessa, Allan
2010-05-01
There is a great interest in understanding how fire affects vegetation distribution and dynamics in the context of global vegetation modelling. A way to include these effects is through the development of embedded fire spread models. However, fire is a complex phenomenon, thus difficult to model. Statistical models based on fire return intervals, or fire danger indices need large amounts of data for calibration, and are often prisoner to the epoch they were calibrated to. Mechanistic models, such as SPITFIRE, try to model the complete fire phenomenon based on simple physical rules, making these models mostly independent of calibration data. However, the processes expressed in models such as SPITFIRE require many parameters. These parametrisations are often reliant on site-specific experiments, or in some other cases, paremeters might not be measured directly. Additionally, in many cases, changes in temporal and/or spatial resolution result in parameters becoming effective. To address the difficulties with parametrisation and the often-used fitting methodologies, we propose using a probabilistic framework to calibrate some areas of the SPITFIRE fire spread model. We calibrate the model against Earth Observation (EO) data, a global and ever-expanding source of relevant data. We develop a methodology that tries to incorporate the limitations of the EO data, reasonable prior values for parameters and that results in distributions of parameters, which can be used to infer uncertainty due to parameter estimates. Additionally, the covariance structure of parameters and observations is also derived, whcih can help inform data gathering efforts and model development, respectively. For this work, we focus on Southern African savannas, an important ecosystem for fire studies, and one with a good amount of EO data relevnt to fire studies. As calibration datasets, we use burned area data, estimated number of fires and vegetation moisture dynamics.
Poisson-Like Spiking in Circuits with Probabilistic Synapses
Moreno-Bote, Rubén
2014-01-01
Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705
NASA Technical Reports Server (NTRS)
Brown, Andrew M.; DeHaye, Michael; DeLessio, Steven
2011-01-01
The LOX-Hydrogen J-2X Rocket Engine, which is proposed for use as an upper-stage engine for numerous earth-to-orbit and heavy lift launch vehicle architectures, is presently in the design phase and will move shortly to the initial development test phase. Analysis of the design has revealed numerous potential resonance issues with hardware in the turbomachinery turbine-side flow-path. The analysis of the fuel pump turbine blades requires particular care because resonant failure of the blades, which are rotating in excess of 30,000 revolutions/minutes (RPM), could be catastrophic for the engine and the entire launch vehicle. This paper describes a series of probabilistic analyses performed to assess the risk of failure of the turbine blades due to resonant vibration during past and present test series. Some significant results are that the probability of failure during a single complete engine hot-fire test is low (1%) because of the small likelihood of resonance, but that the probability increases to around 30% for a more focused turbomachinery-only test because all speeds will be ramped through and there is a greater likelihood of dwelling at more speeds. These risk calculations have been invaluable for use by program management in deciding if risk-reduction methods such as dampers are necessary immediately or if the test can be performed before the risk-reduction hardware is ready.
Probabilistic models to estimate fire-induced cable damage at nuclear power plants
NASA Astrophysics Data System (ADS)
Valbuena, Genebelin R.
Even though numerous PRAs have shown that fire can be a major contributor to nuclear power plant risk, there are some specific areas of knowledge related to this issue, such as the prediction of fire-induced damage to electrical cables and circuits, and their potential effects in the safety of the nuclear power plant, that still constitute a practical enigma, particularly for the lack of approaches/models to perform consistent and objective assessments. This report contains a discussion of three different models to estimate fire-induced cable damage likelihood given a specified fire profile: the kinetic, the heat transfer and the IR "K Factor" model. These models not only are based on statistical analysis of data available in the open literature, but to the greatest extent possible they use physics based principles to describe the underlying mechanism of failures that take place among the electrical cables upon heating due to external fires. The characterization of cable damage, and consequently the loss of functionality of electrical cables in fire is a complex phenomenon that depends on a variety of intrinsic factors such as cable materials and dimensions, and extrinsic factors such as electrical and mechanical loads on the cables, heat flux severity, and exposure time. Some of these factors are difficult to estimate even in a well-characterized fire, not only for the variability related to the unknown material composition and physical arrangements, but also for the lack of objective frameworks and theoretical models to study the behavior of polymeric wire cable insulation under dynamic external thermal insults. The results of this research will (1) help to develop a consistent framework to predict fire-induced cable failure modes likelihood, and (2) develop some guidance to evaluate and/or reduce the risk associated with these failure modes in existing and new power plant facilities. Among the models evaluated, the physics-based heat transfer model takes into account the properties and characteristics of the cables and cable materials, and the characteristics of the thermal insult. This model can be used to estimate the probability of cable damage under different thermal conditions.
SETS. Set Equation Transformation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worrell, R.B.
1992-01-13
SETS is used for symbolic manipulation of Boolean equations, particularly the reduction of equations by the application of Boolean identities. It is a flexible and efficient tool for performing probabilistic risk analysis (PRA), vital area analysis, and common cause analysis. The equation manipulation capabilities of SETS can also be used to analyze noncoherent fault trees and determine prime implicants of Boolean functions, to verify circuit design implementation, to determine minimum cost fire protection requirements for nuclear reactor plants, to obtain solutions to combinatorial optimization problems with Boolean constraints, and to determine the susceptibility of a facility to unauthorized access throughmore » nullification of sensors in its protection system.« less
Reconciling uncertain costs and benefits in bayes nets for invasive species management
Burgman, M.A.; Wintle, B.A.; Thompson, C.A.; Moilanen, A.; Runge, M.C.; Ben-Haim, Y.
2010-01-01
Bayes nets are used increasingly to characterize environmental systems and formalize probabilistic reasoning to support decision making. These networks treat probabilities as exact quantities. Sensitivity analysis can be used to evaluate the importance of assumptions and parameter estimates. Here, we outline an application of info-gap theory to Bayes nets that evaluates the sensitivity of decisions to possibly large errors in the underlying probability estimates and utilities. We apply it to an example of management and eradication of Red Imported Fire Ants in Southern Queensland, Australia and show how changes in management decisions can be justified when uncertainty is considered. ?? 2009 Society for Risk Analysis.
Focused sunlight factor of forest fire danger assessment using Web-GIS and RS technologies
NASA Astrophysics Data System (ADS)
Baranovskiy, Nikolay V.; Sherstnyov, Vladislav S.; Yankovich, Elena P.; Engel, Marina V.; Belov, Vladimir V.
2016-08-01
Timiryazevskiy forestry of Tomsk region (Siberia, Russia) is a study area elaborated in current research. Forest fire danger assessment is based on unique technology using probabilistic criterion, statistical data on forest fires, meteorological conditions, forest sites classification and remote sensing data. MODIS products are used for estimating some meteorological conditions and current forest fire situation. Geonformation technologies are used for geospatial analysis of forest fire danger situation on controlled forested territories. GIS-engine provides opportunities to construct electronic maps with different levels of forest fire probability and support raster layer for satellite remote sensing data on current forest fires. Web-interface is used for data loading on specific web-site and for forest fire danger data representation via World Wide Web. Special web-forms provide interface for choosing of relevant input data in order to process the forest fire danger data and assess the forest fire probability.
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
Volume 5 is Appendix C, Auxiliary Shuttle Risk Analyses, and contains the following reports: Probabilistic Risk Assessment of Space Shuttle Phase 1 - Space Shuttle Catastrophic Failure Frequency Final Report; Risk Analysis Applied to the Space Shuttle Main Engine - Demonstration Project for the Main Combustion Chamber Risk Assessment; An Investigation of the Risk Implications of Space Shuttle Solid Rocket Booster Chamber Pressure Excursions; Safety of the Thermal Protection System of the Space Shuttle Orbiter - Quantitative Analysis and Organizational Factors; Space Shuttle Main Propulsion Pressurization System Probabilistic Risk Assessment, Final Report; and Space Shuttle Probabilistic Risk Assessment Proof-of-Concept Study - Auxiliary Power Unit and Hydraulic Power Unit Analysis Report.
Fuzzy-probabilistic model for risk assessment of radioactive material railway transportation.
Avramenko, M; Bolyatko, V; Kosterev, V
2005-01-01
Transportation of radioactive materials is obviously accompanied by a certain risk. A model for risk assessment of emergency situations and terrorist attacks may be useful for choosing possible routes and for comparing the various defence strategies. In particular, risk assessment is crucial for safe transportation of excess weapons-grade plutonium arising from the removal of plutonium from military employment. A fuzzy-probabilistic model for risk assessment of railway transportation has been developed taking into account the different natures of risk-affecting parameters (probabilistic and not probabilistic but fuzzy). Fuzzy set theory methods as well as standard methods of probability theory have been used for quantitative risk assessment. Information-preserving transformations are applied to realise the correct aggregation of probabilistic and fuzzy parameters. Estimations have also been made of the inhalation doses resulting from possible accidents during plutonium transportation. The obtained data show the scale of possible consequences that may arise from plutonium transportation accidents.
The probabilistic nature of preferential choice.
Rieskamp, Jörg
2008-11-01
Previous research has developed a variety of theories explaining when and why people's decisions under risk deviate from the standard economic view of expected utility maximization. These theories are limited in their predictive accuracy in that they do not explain the probabilistic nature of preferential choice, that is, why an individual makes different choices in nearly identical situations, or why the magnitude of these inconsistencies varies in different situations. To illustrate the advantage of probabilistic theories, three probabilistic theories of decision making under risk are compared with their deterministic counterparts. The probabilistic theories are (a) a probabilistic version of a simple choice heuristic, (b) a probabilistic version of cumulative prospect theory, and (c) decision field theory. By testing the theories with the data from three experimental studies, the superiority of the probabilistic models over their deterministic counterparts in predicting people's decisions under risk become evident. When testing the probabilistic theories against each other, decision field theory provides the best account of the observed behavior.
NASA Astrophysics Data System (ADS)
Valencia, J. M.; Sepúlveda, J.; Hoyos, C.; Herrera, L.
2017-12-01
Characterization and identification of fire and hailstorm events using weather radar data in a tropical complex topography region is an important task in risk management and agriculture. Polarimetric variables from a C-Band Dual polarization weather radar have potential uses in particle classification, due to the relationship their sensitivity to shape, spatial orientation, size and fall behavior of particles. In this sense, three forest fires and two chemical fires were identified for the Áburra Valley regions. Measurements were compared between each fire event type and with typical data radar retrievals for liquid precipitation events. Results of this analysis show different probability density functions for each type of event according to the particles present in them. This is very important and useful result for early warning systems to avoid precipitation false alarms during fire events within the study region, as well as for the early detection of fires using radar retrievals in remote cases. The comparative methodology is extended to hailstorm cases. Complementary sensors like laser precipitation sensors (LPM) disdrometers and meteorological stations were used to select dates of solid precipitation occurrence. Then, in this dates weather radar data variables were taken in pixels surrounding the stations and solid precipitation polar values were statistically compared with liquid precipitation values. Spectrum precipitation measured by LPM disdrometer helps to define typical features like particles number, fall velocities and diameters for both precipitation types. In addition, to achieve a complete hailstorm characterization, other meteorological variables were analyzed: wind field from meteorological stations and radar wind profiler, profiling data from Micro Rain Radar (MRR), and thermodynamic data from a microwave radiometer.
Denovan, Andrew; Dagnall, Neil; Drinkwater, Kenneth; Parker, Andrew; Clough, Peter
2017-01-01
The present study assessed the degree to which probabilistic reasoning performance and thinking style influenced perception of risk and self-reported levels of terrorism-related behavior change. A sample of 263 respondents, recruited via convenience sampling, completed a series of measures comprising probabilistic reasoning tasks (perception of randomness, base rate, probability, and conjunction fallacy), the Reality Testing subscale of the Inventory of Personality Organization (IPO-RT), the Domain-Specific Risk-Taking Scale, and a terrorism-related behavior change scale. Structural equation modeling examined three progressive models. Firstly, the Independence Model assumed that probabilistic reasoning, perception of risk and reality testing independently predicted terrorism-related behavior change. Secondly, the Mediation Model supposed that probabilistic reasoning and reality testing correlated, and indirectly predicted terrorism-related behavior change through perception of risk. Lastly, the Dual-Influence Model proposed that probabilistic reasoning indirectly predicted terrorism-related behavior change via perception of risk, independent of reality testing. Results indicated that performance on probabilistic reasoning tasks most strongly predicted perception of risk, and preference for an intuitive thinking style (measured by the IPO-RT) best explained terrorism-related behavior change. The combination of perception of risk with probabilistic reasoning ability in the Dual-Influence Model enhanced the predictive power of the analytical-rational route, with conjunction fallacy having a significant indirect effect on terrorism-related behavior change via perception of risk. The Dual-Influence Model possessed superior fit and reported similar predictive relations between intuitive-experiential and analytical-rational routes and terrorism-related behavior change. The discussion critically examines these findings in relation to dual-processing frameworks. This includes considering the limitations of current operationalisations and recommendations for future research that align outcomes and subsequent work more closely to specific dual-process models.
Denovan, Andrew; Dagnall, Neil; Drinkwater, Kenneth; Parker, Andrew; Clough, Peter
2017-01-01
The present study assessed the degree to which probabilistic reasoning performance and thinking style influenced perception of risk and self-reported levels of terrorism-related behavior change. A sample of 263 respondents, recruited via convenience sampling, completed a series of measures comprising probabilistic reasoning tasks (perception of randomness, base rate, probability, and conjunction fallacy), the Reality Testing subscale of the Inventory of Personality Organization (IPO-RT), the Domain-Specific Risk-Taking Scale, and a terrorism-related behavior change scale. Structural equation modeling examined three progressive models. Firstly, the Independence Model assumed that probabilistic reasoning, perception of risk and reality testing independently predicted terrorism-related behavior change. Secondly, the Mediation Model supposed that probabilistic reasoning and reality testing correlated, and indirectly predicted terrorism-related behavior change through perception of risk. Lastly, the Dual-Influence Model proposed that probabilistic reasoning indirectly predicted terrorism-related behavior change via perception of risk, independent of reality testing. Results indicated that performance on probabilistic reasoning tasks most strongly predicted perception of risk, and preference for an intuitive thinking style (measured by the IPO-RT) best explained terrorism-related behavior change. The combination of perception of risk with probabilistic reasoning ability in the Dual-Influence Model enhanced the predictive power of the analytical-rational route, with conjunction fallacy having a significant indirect effect on terrorism-related behavior change via perception of risk. The Dual-Influence Model possessed superior fit and reported similar predictive relations between intuitive-experiential and analytical-rational routes and terrorism-related behavior change. The discussion critically examines these findings in relation to dual-processing frameworks. This includes considering the limitations of current operationalisations and recommendations for future research that align outcomes and subsequent work more closely to specific dual-process models. PMID:29062288
Probabilistic Risk Assessment: A Bibliography
NASA Technical Reports Server (NTRS)
2000-01-01
Probabilistic risk analysis is an integration of failure modes and effects analysis (FMEA), fault tree analysis and other techniques to assess the potential for failure and to find ways to reduce risk. This bibliography references 160 documents in the NASA STI Database that contain the major concepts, probabilistic risk assessment, risk and probability theory, in the basic index or major subject terms, An abstract is included with most citations, followed by the applicable subject terms.
Legenstein, Robert; Maass, Wolfgang
2014-01-01
It has recently been shown that networks of spiking neurons with noise can emulate simple forms of probabilistic inference through “neural sampling”, i.e., by treating spikes as samples from a probability distribution of network states that is encoded in the network. Deficiencies of the existing model are its reliance on single neurons for sampling from each random variable, and the resulting limitation in representing quickly varying probabilistic information. We show that both deficiencies can be overcome by moving to a biologically more realistic encoding of each salient random variable through the stochastic firing activity of an ensemble of neurons. The resulting model demonstrates that networks of spiking neurons with noise can easily track and carry out basic computational operations on rapidly varying probability distributions, such as the odds of getting rewarded for a specific behavior. We demonstrate the viability of this new approach towards neural coding and computation, which makes use of the inherent parallelism of generic neural circuits, by showing that this model can explain experimentally observed firing activity of cortical neurons for a variety of tasks that require rapid temporal integration of sensory information. PMID:25340749
Forecasting distribution of numbers of large fires
Eidenshink, Jeffery C.; Preisler, Haiganoush K.; Howard, Stephen; Burgan, Robert E.
2014-01-01
Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the Monitoring Trends in Burn Severity project, and satellite and surface observations of fuel conditions in the form of the Fire Potential Index, to estimate two aspects of fire danger: 1) the probability that a 1 acre ignition will result in a 100+ acre fire, and 2) the probabilities of having at least 1, 2, 3, or 4 large fires within a Predictive Services Area in the forthcoming week. These statistical processes are the main thrust of the paper and are used to produce two daily national forecasts that are available from the U.S. Geological Survey, Earth Resources Observation and Science Center and via the Wildland Fire Assessment System. A validation study of our forecasts for the 2013 fire season demonstrated good agreement between observed and forecasted values.
Measuring the effect of fuel treatments on forest carbon using landscape risk analysis
NASA Astrophysics Data System (ADS)
Ager, A. A.; Finney, M. A.; McMahan, A.; Cathcart, J.
2010-12-01
Wildfire simulation modelling was used to examine whether fuel reduction treatments can potentially reduce future wildfire emissions and provide carbon benefits. In contrast to previous reports, the current study modelled landscape scale effects of fuel treatments on fire spread and intensity, and used a probabilistic framework to quantify wildfire effects on carbon pools to account for stochastic wildfire occurrence. The study area was a 68 474 ha watershed located on the Fremont-Winema National Forest in southeastern Oregon, USA. Fuel reduction treatments were simulated on 10% of the watershed (19% of federal forestland). We simulated 30 000 wildfires with random ignition locations under both treated and untreated landscapes to estimate the change in burn probability by flame length class resulting from the treatments. Carbon loss functions were then calculated with the Forest Vegetation Simulator for each stand in the study area to quantify change in carbon as a function of flame length. We then calculated the expected change in carbon from a random ignition and wildfire as the sum of the product of the carbon loss and the burn probabilities by flame length class. The expected carbon difference between the non-treatment and treatment scenarios was then calculated to quantify the effect of fuel treatments. Overall, the results show that the carbon loss from implementing fuel reduction treatments exceeded the expected carbon benefit associated with lowered burn probabilities and reduced fire severity on the treated landscape. Thus, fuel management activities resulted in an expected net loss of carbon immediately after treatment. However, the findings represent a point in time estimate (wildfire immediately after treatments), and a temporal analysis with a probabilistic framework used here is needed to model carbon dynamics over the life cycle of the fuel treatments. Of particular importance is the long-term balance between emissions from the decay of dead trees killed by fire and carbon sequestration by forest regeneration following wildfire.
Reliability and risk assessment of structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1991-01-01
Development of reliability and risk assessment of structural components and structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) the evaluation of the various uncertainties in terms of cumulative distribution functions for various structural response variables based on known or assumed uncertainties in primitive structural variables; (2) evaluation of the failure probability; (3) reliability and risk-cost assessment; and (4) an outline of an emerging approach for eventual certification of man-rated structures by computational methods. Collectively, the results demonstrate that the structural durability/reliability of man-rated structural components and structures can be effectively evaluated by using formal probabilistic methods.
Use of limited data to construct Bayesian networks for probabilistic risk assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, Katrina M.; Swiler, Laura Painton
2013-03-01
Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was tomore » establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.« less
PRA (Probabilistic Risk Assessment) Applications Program for inspection at Oconee Unit 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gore, B.F.; Vo, T.V.; Harris, M.S.
1987-10-01
The extensive Oconee-3 PRA performed by EPRI has been analyzed to identify plant systems and components important to minimizing public risk, and to identify the primary failure modes of these components. This information has been tabulated, and correlated with inspection modules from the NRC Inspection and Enforcement Manual. The report presents a series of tables, organized by system and prioritized by public risk (in person-rem per year), which identify components associated with 98% of the inspectable risk due to plant operation. External events (earthquakes, tornadoes, fires and floods) are not addressed because inspections cannot directly minimize the risks from thesemore » events; however, flooding caused by the breach of internal systems is addressed. The systems addressed, in descending order of risk importance, are: Reactor Building Spray, R B Cooling, Condenser Circulating Water, Safety Relief Valves, Low Pressure Injection, Standby Shutdown Facility-High Pressure Injection, Low-Pressure Service Water, and Emergency Feedwater. This ranking is based on the Fussel-Vesely measure of risk importance, i.e., the fraction of the total risk which involves failures of the system of interest. 8 refs., 25 tabs.« less
COMMUNICATING PROBABILISTIC RISK OUTCOMES TO RISK MANAGERS
Increasingly, risk assessors are moving away from simple deterministic assessments to probabilistic approaches that explicitly incorporate ecological variability, measurement imprecision, and lack of knowledge (collectively termed "uncertainty"). While the new methods provide an...
Storm Prediction Center Day 3-8 Fire Weather Forecast Issued on May 27,
National RADAR Product Archive NOAA Weather Radio Research Non-op. Products Forecast Tools Svr. Tstm information in MS-Word or PDF. Note: Through September 29, 2015 the SPC will issue Experimental Probabilistic
Weickert, Thomas W.; Goldberg, Terry E.; Egan, Michael F.; Apud, Jose A.; Meeter, Martijn; Myers, Catherine E.; Gluck, Mark A; Weinberger, Daniel R.
2010-01-01
Background While patients with schizophrenia display an overall probabilistic category learning performance deficit, the extent to which this deficit occurs in unaffected siblings of patients with schizophrenia is unknown. There are also discrepant findings regarding probabilistic category learning acquisition rate and performance in patients with schizophrenia. Methods A probabilistic category learning test was administered to 108 patients with schizophrenia, 82 unaffected siblings, and 121 healthy participants. Results Patients with schizophrenia displayed significant differences from their unaffected siblings and healthy participants with respect to probabilistic category learning acquisition rates. Although siblings on the whole failed to differ from healthy participants on strategy and quantitative indices of overall performance and learning acquisition, application of a revised learning criterion enabling classification into good and poor learners based on individual learning curves revealed significant differences between percentages of sibling and healthy poor learners: healthy (13.2%), siblings (34.1%), patients (48.1%), yielding a moderate relative risk. Conclusions These results clarify previous discrepant findings pertaining to probabilistic category learning acquisition rate in schizophrenia and provide the first evidence for the relative risk of probabilistic category learning abnormalities in unaffected siblings of patients with schizophrenia, supporting genetic underpinnings of probabilistic category learning deficits in schizophrenia. These findings also raise questions regarding the contribution of antipsychotic medication to the probabilistic category learning deficit in schizophrenia. The distinction between good and poor learning may be used to inform genetic studies designed to detect schizophrenia risk alleles. PMID:20172502
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollingsworth, LaWen T.; Kurth, Laurie,; Parresol, Bernard, R.
Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation System. The fundamental fire intensity algorithms in these systems require surface fire behavior fuel models and canopy cover to model surface fire behavior. Canopy base height, stand height, and canopy bulk density are required in addition to surface fire behavior fuel models and canopy cover to model crown fire activity. Several surface fuelmore » and canopy classification efforts have used various remote sensing and ecological relationships as core methods to develop the spatial layers. All of these methods depend upon consistent and temporally constant interpretations of crown attributes and their ecological conditions to estimate surface fuel conditions. This study evaluates modeled fire behavior for an 80,000 ha tract of land in the Atlantic Coastal Plain of the southeastern US using three different data sources. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the US using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern US using satellite imagery. Differences in modeled fire behavior, data development, and data utility are summarized to assist in determining which data source may be most applicable for various land management activities and required analyses. Characterizing fire behavior under different fuel relationships provides insights for natural ecological processes, management strategies for fire mitigation, and positive and negative features of different modeling systems. A comparison of flame length, rate of spread, crown fire activity, and burn probabilities modeled with FlamMap shows some similar patterns across the landscape from all three data sources, but there are potentially important differences. All data sources showed an expected range of fire behavior. Average flame lengths ranged between 1 and 1.4 m. Rate of spread varied the greatest with a range of 2.4-5.7 m min{sup -1}. Passive crown fire was predicted for 5% of the study area using FCCS and LANDFIRE while passive crown fire was not predicted using SWRA data. No active crown fire was predicted regardless of the data source. Burn probability patterns across the landscape were similar but probability was highest using SWRA and lowest using FCCS.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... Staff Guidance on Implementation of a Seismic Margin Analysis for New Reactors Based on Probabilistic... Seismic Margin Analysis for New Reactors Based on Probabilistic Risk Assessment,'' (Agencywide Documents.../COL-ISG-020 ``Implementation of a Seismic Margin Analysis for New Reactors Based on Probabilistic Risk...
WIPCast: Probabilistic Forecasting for Aviation Decision Aid Applications
2011-06-01
traders, or families planning an outing – manage weather-related risk. By quantifying risk , probabilistic forecasting enables optimization of actions via...confidence interval to the user’s risk tolerance helps drive highly effective and innovative decision support mechanisms for visually quantifying risk for
Web-GIS platform for forest fire danger prediction in Ukraine: prospects of RS technologies
NASA Astrophysics Data System (ADS)
Baranovskiy, N. V.; Zharikova, M. V.
2016-10-01
There are many different statistical and empirical methods of forest fire danger use at present time. All systems have not physical basis. Last decade deterministic-probabilistic method is rapidly developed in Tomsk Polytechnic University. Forest sites classification is one way to estimate forest fire danger. We used this method in present work. Forest fire danger estimation depends on forest vegetation condition, forest fire retrospective, precipitation and air temperature. In fact, we use modified Nesterov Criterion. Lightning activity is under consideration as a high temperature source in present work. We use Web-GIS platform for program realization of this method. The program realization of the fire danger assessment system is the Web-oriented geoinformation system developed by the Django platform in the programming language Python. The GeoDjango framework was used for realization of cartographic functions. We suggest using of Terra/Aqua MODIS products for hot spot monitoring. Typical territory for forest fire danger estimation is Proletarskoe forestry of Kherson region (Ukraine).
NASA Astrophysics Data System (ADS)
Biass, Sébastien; Falcone, Jean-Luc; Bonadonna, Costanza; Di Traglia, Federico; Pistolesi, Marco; Rosi, Mauro; Lestuzzi, Pierino
2016-10-01
We present a probabilistic approach to quantify the hazard posed by volcanic ballistic projectiles (VBP) and their potential impact on the built environment. A model named Great Balls of Fire (GBF) is introduced to describe ballistic trajectories of VBPs accounting for a variable drag coefficient and topography. It relies on input parameters easily identifiable in the field and is designed to model large numbers of VBPs stochastically. Associated functions come with the GBF code to post-process model outputs into a comprehensive probabilistic hazard assessment for VBP impacts. Outcomes include probability maps to exceed given thresholds of kinetic energies at impact, hazard curves and probabilistic isoenergy maps. Probabilities are calculated either on equally-sized pixels or zones of interest. The approach is calibrated, validated and applied to La Fossa volcano, Vulcano Island (Italy). We constructed a generic eruption scenario based on stratigraphic studies and numerical inversions of the 1888-1890 long-lasting Vulcanian cycle of La Fossa. Results suggest a ~ 10- 2% probability of occurrence of VBP impacts with kinetic energies ≤ 104 J at the touristic locality of Porto. In parallel, the vulnerability to roof perforation was estimated by combining field observations and published literature, allowing for a first estimate of the potential impact of VBPs during future Vulcanian eruptions. Results indicate a high physical vulnerability to the VBP hazard, and, consequently, half of the building stock having a ≥ 2.5 × 10- 3% probability of roof perforation.
A Wide Area Risk Assessment Framework for Underwater Military Munitions Response
NASA Astrophysics Data System (ADS)
Holland, K. T.; Calantoni, J.
2017-12-01
Our objective was to develop a prototype statistical framework supporting Wide Area Assessment and Remedial Investigation decisions relating to the risk of unexploded ordnance and other military munitions concentrated in underwater environments. Decision making involving underwater munitions is inherently complex due to the high degree of uncertainty in the environmental conditions that force munitions responses (burial, decay, migration, etc.) and associated risks to the public. The prototype framework provides a consistent approach to accurately delineating contaminated areas at underwater munitions sites through the estimation of most probable concentrations. We adapted existing deterministic models and environmental data services for use within statistical modules that allowed the estimation of munition concentration given historic site information and environmental attributes. Ultimately this risk surface can be used to evaluate costs associated with various remediation approaches (e.g. removal, monitoring, etc.). Unfortunately, evaluation of the assessment framework was limited due to the lack of enduser data services from munition site managers. Of the 450 U.S. sites identified as having potential contamination with underwater munitions, assessment of available munitions information (including historic firing or disposal records, and recent ground-truth munitions samples) indicated very limited information in the databases. Example data types include the most probable munition types, approximate firing / disposal dates and locations, and any supportive munition survey or sampling results. However the overall technical goal to integrate trained statistical belief networks with detailed geophysical knowledge of sites, of sensors and of the underwater environment was demonstrated and should allow probabilistic estimates of the most likely outcomes and tradeoffs while managing uncertainty associated with military munitions response.
Integrated probabilistic risk assessment for nanoparticles: the case of nanosilica in food.
Jacobs, Rianne; van der Voet, Hilko; Ter Braak, Cajo J F
Insight into risks of nanotechnology and the use of nanoparticles is an essential condition for the social acceptance and safe use of nanotechnology. One of the problems with which the risk assessment of nanoparticles is faced is the lack of data, resulting in uncertainty in the risk assessment. We attempt to quantify some of this uncertainty by expanding a previous deterministic study on nanosilica (5-200 nm) in food into a fully integrated probabilistic risk assessment. We use the integrated probabilistic risk assessment method in which statistical distributions and bootstrap methods are used to quantify uncertainty and variability in the risk assessment. Due to the large amount of uncertainty present, this probabilistic method, which separates variability from uncertainty, contributed to a better understandable risk assessment. We found that quantifying the uncertainties did not increase the perceived risk relative to the outcome of the deterministic study. We pinpointed particular aspects of the hazard characterization that contributed most to the total uncertainty in the risk assessment, suggesting that further research would benefit most from obtaining more reliable data on those aspects.
Fusar-Poli, P; Schultze-Lutter, F
2016-02-01
Prediction of psychosis in patients at clinical high risk (CHR) has become a mainstream focus of clinical and research interest worldwide. When using CHR instruments for clinical purposes, the predicted outcome is but only a probability; and, consequently, any therapeutic action following the assessment is based on probabilistic prognostic reasoning. Yet, probabilistic reasoning makes considerable demands on the clinicians. We provide here a scholarly practical guide summarising the key concepts to support clinicians with probabilistic prognostic reasoning in the CHR state. We review risk or cumulative incidence of psychosis in, person-time rate of psychosis, Kaplan-Meier estimates of psychosis risk, measures of prognostic accuracy, sensitivity and specificity in receiver operator characteristic curves, positive and negative predictive values, Bayes' theorem, likelihood ratios, potentials and limits of real-life applications of prognostic probabilistic reasoning in the CHR state. Understanding basic measures used for prognostic probabilistic reasoning is a prerequisite for successfully implementing the early detection and prevention of psychosis in clinical practice. Future refinement of these measures for CHR patients may actually influence risk management, especially as regards initiating or withholding treatment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Influence Diagrams as Decision-Making Tools for Pesticide Risk Management
The pesticide policy arena is filled with discussion of probabilistic approaches to assess ecological risk, however, similar discussions about implementing formal probabilistic methods in pesticide risk decision making are less common. An influence diagram approach is proposed f...
Probabilistic Risk Assessment to Inform Decision Making: Frequently Asked Questions
General concepts and principles of Probabilistic Risk Assessment (PRA), describe how PRA can improve the bases of Agency decisions, and provide illustrations of how PRA has been used in risk estimation and in describing the uncertainty in decision making.
Population rate dynamics and multineuron firing patterns in sensory cortex
Okun, Michael; Yger, Pierre; Marguet, Stephan; Gerard-Mercier, Florian; Benucci, Andrea; Katzner, Steffen; Busse, Laura; Carandini, Matteo; Harris, Kenneth D.
2012-01-01
Cortical circuits encode sensory stimuli through the firing of neuronal ensembles, and also produce spontaneous population patterns in the absence of sensory drive. This population activity is often characterized experimentally by the distribution of multineuron “words” (binary firing vectors), and a match between spontaneous and evoked word distributions has been suggested to reflect learning of a probabilistic model of the sensory world. We analyzed multineuron word distributions in sensory cortex of anesthetized rats and cats, and found that they are dominated by fluctuations in population firing rate rather than precise interactions between individual units. Furthermore, cortical word distributions change when brain state shifts, and similar behavior is seen in simulated networks with fixed, random connectivity. Our results suggest that similarity or dissimilarity in multineuron word distributions could primarily reflect similarity or dissimilarity in population firing rate dynamics, and not necessarily the precise interactions between neurons that would indicate learning of sensory features. PMID:23197704
Developing Probabilistic Safety Performance Margins for Unknown and Underappreciated Risks
NASA Technical Reports Server (NTRS)
Benjamin, Allan; Dezfuli, Homayoon; Everett, Chris
2015-01-01
Probabilistic safety requirements currently formulated or proposed for space systems, nuclear reactor systems, nuclear weapon systems, and other types of systems that have a low-probability potential for high-consequence accidents depend on showing that the probability of such accidents is below a specified safety threshold or goal. Verification of compliance depends heavily upon synthetic modeling techniques such as PRA. To determine whether or not a system meets its probabilistic requirements, it is necessary to consider whether there are significant risks that are not fully considered in the PRA either because they are not known at the time or because their importance is not fully understood. The ultimate objective is to establish a reasonable margin to account for the difference between known risks and actual risks in attempting to validate compliance with a probabilistic safety threshold or goal. In this paper, we examine data accumulated over the past 60 years from the space program, from nuclear reactor experience, from aircraft systems, and from human reliability experience to formulate guidelines for estimating probabilistic margins to account for risks that are initially unknown or underappreciated. The formulation includes a review of the safety literature to identify the principal causes of such risks.
Structural reliability assessment capability in NESSUS
NASA Technical Reports Server (NTRS)
Millwater, H.; Wu, Y.-T.
1992-01-01
The principal capabilities of NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), an advanced computer code developed for probabilistic structural response analysis, are reviewed, and its structural reliability assessed. The code combines flexible structural modeling tools with advanced probabilistic algorithms in order to compute probabilistic structural response and resistance, component reliability and risk, and system reliability and risk. An illustrative numerical example is presented.
Structural reliability assessment capability in NESSUS
NASA Astrophysics Data System (ADS)
Millwater, H.; Wu, Y.-T.
1992-07-01
The principal capabilities of NESSUS (Numerical Evaluation of Stochastic Structures Under Stress), an advanced computer code developed for probabilistic structural response analysis, are reviewed, and its structural reliability assessed. The code combines flexible structural modeling tools with advanced probabilistic algorithms in order to compute probabilistic structural response and resistance, component reliability and risk, and system reliability and risk. An illustrative numerical example is presented.
Monetizing Leakage Risk of Geologic CO2 Storage using Wellbore Permeability Frequency Distributions
NASA Astrophysics Data System (ADS)
Bielicki, Jeffrey; Fitts, Jeffrey; Peters, Catherine; Wilson, Elizabeth
2013-04-01
Carbon dioxide (CO2) may be captured from large point sources (e.g., coal-fired power plants, oil refineries, cement manufacturers) and injected into deep sedimentary basins for storage, or sequestration, from the atmosphere. This technology—CO2 Capture and Storage (CCS)—may be a significant component of the portfolio of technologies deployed to mitigate climate change. But injected CO2, or the brine it displaces, may leak from the storage reservoir through a variety of natural and manmade pathways, including existing wells and wellbores. Such leakage will incur costs to a variety of stakeholders, which may affect the desirability of potential CO2 injection locations as well as the feasibility of the CCS approach writ large. Consequently, analyzing and monetizing leakage risk is necessary to develop CCS as a viable technological option to mitigate climate change. Risk is the product of the probability of an outcome and the impact of that outcome. Assessment of leakage risk from geologic CO2 storage reservoirs requires an analysis of the probabilities and magnitudes of leakage, identification of the outcomes that may result from leakage, and an assessment of the expected economic costs of those outcomes. One critical uncertainty regarding the rate and magnitude of leakage is determined by the leakiness of the well leakage pathway. This leakiness is characterized by a leakage permeability for the pathway, and recent work has sought to determine frequency distributions for the leakage permeabilities of wells and wellbores. We conduct a probabilistic analysis of leakage and monetized leakage risk for CO2 injection locations in the Michigan Sedimentary Basin (USA) using empirically derived frequency distributions for wellbore leakage permeabilities. To conduct this probabilistic risk analysis, we apply the RISCS (Risk Interference of Subsurface CO2 Storage) model (Bielicki et al, 2013a, 2012b) to injection into the Mt. Simon Sandstone. RISCS monetizes leakage risk by combining 3D geospatial data with fluid-flow simulations from the ELSA (Estimating Leakage Semi-Analytically) model (e.g., Celia and Nordbotten, 2006) and the Leakage Impact Valuation (LIV) method (Pollak et al, 2013; Bielicki et al, 2013). We extend RISCS to iterate ELSA semi-analytic modeling simulations by drawing values from the frequency distribution of leakage permeabilities. The iterations assign these values to existing wells in the basin, and the probabilistic risk analysis thus incorporates the uncertainty of the extent of leakage. We show that monetized leakage risk can vary significantly over tens of kilometers, and we identify "hot spots" favorable to CO2 injection based on the monetized leakage risk for each potential location in the basin.
Probabilistic Exposure Analysis for Chemical Risk Characterization
Bogen, Kenneth T.; Cullen, Alison C.; Frey, H. Christopher; Price, Paul S.
2009-01-01
This paper summarizes the state of the science of probabilistic exposure assessment (PEA) as applied to chemical risk characterization. Current probabilistic risk analysis methods applied to PEA are reviewed. PEA within the context of risk-based decision making is discussed, including probabilistic treatment of related uncertainty, interindividual heterogeneity, and other sources of variability. Key examples of recent experience gained in assessing human exposures to chemicals in the environment, and other applications to chemical risk characterization and assessment, are presented. It is concluded that, although improvements continue to be made, existing methods suffice for effective application of PEA to support quantitative analyses of the risk of chemically induced toxicity that play an increasing role in key decision-making objectives involving health protection, triage, civil justice, and criminal justice. Different types of information required to apply PEA to these different decision contexts are identified, and specific PEA methods are highlighted that are best suited to exposure assessment in these separate contexts. PMID:19223660
Risk analysis of analytical validations by probabilistic modification of FMEA.
Barends, D M; Oldenhof, M T; Vredenbregt, M J; Nauta, M J
2012-05-01
Risk analysis is a valuable addition to validation of an analytical chemistry process, enabling not only detecting technical risks, but also risks related to human failures. Failure Mode and Effect Analysis (FMEA) can be applied, using a categorical risk scoring of the occurrence, detection and severity of failure modes, and calculating the Risk Priority Number (RPN) to select failure modes for correction. We propose a probabilistic modification of FMEA, replacing the categorical scoring of occurrence and detection by their estimated relative frequency and maintaining the categorical scoring of severity. In an example, the results of traditional FMEA of a Near Infrared (NIR) analytical procedure used for the screening of suspected counterfeited tablets are re-interpretated by this probabilistic modification of FMEA. Using this probabilistic modification of FMEA, the frequency of occurrence of undetected failure mode(s) can be estimated quantitatively, for each individual failure mode, for a set of failure modes, and the full analytical procedure. Copyright © 2012 Elsevier B.V. All rights reserved.
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity.
Pecevski, Dejan; Maass, Wolfgang
2016-01-01
Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p (*) that generates the examples it receives. This holds even if p (*) contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference.
Learning Probabilistic Inference through Spike-Timing-Dependent Plasticity123
Pecevski, Dejan
2016-01-01
Abstract Numerous experimental data show that the brain is able to extract information from complex, uncertain, and often ambiguous experiences. Furthermore, it can use such learnt information for decision making through probabilistic inference. Several models have been proposed that aim at explaining how probabilistic inference could be performed by networks of neurons in the brain. We propose here a model that can also explain how such neural network could acquire the necessary information for that from examples. We show that spike-timing-dependent plasticity in combination with intrinsic plasticity generates in ensembles of pyramidal cells with lateral inhibition a fundamental building block for that: probabilistic associations between neurons that represent through their firing current values of random variables. Furthermore, by combining such adaptive network motifs in a recursive manner the resulting network is enabled to extract statistical information from complex input streams, and to build an internal model for the distribution p* that generates the examples it receives. This holds even if p* contains higher-order moments. The analysis of this learning process is supported by a rigorous theoretical foundation. Furthermore, we show that the network can use the learnt internal model immediately for prediction, decision making, and other types of probabilistic inference. PMID:27419214
A probabilistic approach to modeling postfire erosion after the 2009 australian brushfires
USDA-ARS?s Scientific Manuscript database
Major concerns after bushfires and wildfires include increased flooding, erosion and debris flows due to loss of the protective forest floor layer, loss of water storage, and creation of water repellent soil conditions. To assist postfire assessment teams in their efforts to evaluate fire effects an...
A methodology for post-mainshock probabilistic assessment of building collapse risk
Luco, N.; Gerstenberger, M.C.; Uma, S.R.; Ryu, H.; Liel, A.B.; Raghunandan, M.
2011-01-01
This paper presents a methodology for post-earthquake probabilistic risk (of damage) assessment that we propose in order to develop a computational tool for automatic or semi-automatic assessment. The methodology utilizes the same so-called risk integral which can be used for pre-earthquake probabilistic assessment. The risk integral couples (i) ground motion hazard information for the location of a structure of interest with (ii) knowledge of the fragility of the structure with respect to potential ground motion intensities. In the proposed post-mainshock methodology, the ground motion hazard component of the risk integral is adapted to account for aftershocks which are deliberately excluded from typical pre-earthquake hazard assessments and which decrease in frequency with the time elapsed since the mainshock. Correspondingly, the structural fragility component is adapted to account for any damage caused by the mainshock, as well as any uncertainty in the extent of this damage. The result of the adapted risk integral is a fully-probabilistic quantification of post-mainshock seismic risk that can inform emergency response mobilization, inspection prioritization, and re-occupancy decisions.
Annual review of energy. Volume 6
NASA Astrophysics Data System (ADS)
Hollander, J. M.; Simmons, M. K.; Wood, D. O.
Developments in the areas of energy resources and supply technologies, energy end use and conservation, energy policy, energy-related risks and the sociopolitical aspects of energy are reviewed. Progress in solar energy technologies over the last five years is discussed, along with the implications for reactor safety of the accident at Three Mile Island, the derivation of biomass fuels from agricultural products and the application of probabilistic risk assessment to energy technologies. Attention is also given to a program for national survival during an oil crisis, energy conservation in new buildings, the development of a United States synthetic fuel industry, the role of OPEC policies in world oil availability, the social impacts of soft and hard energy systems, and the energy implications of fixed rail mass transportation systems. Additional topics include the energy consumptions of industries, the relative economics of nuclear, coal and oil-fired electricity generation, and the role of petroleum price and allocation regulations in the management of energy shortages.
NASA Technical Reports Server (NTRS)
Bigler, Mark; Canga, Michael A.; Duncan, Gary
2010-01-01
The Shuttle Program initiated an Extravehicular Activity (EVA) Probabilistic Risk Assessment (PRA) to assess the risks associated with performing a Shuttle Thermal Protection System (TPS) repair during the Space Transportation System (STS)-125 Hubble repair mission as part of risk trades between TPS repair and crew rescue.
Probabilistic simulation of uncertainties in thermal structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Shiao, Michael
1990-01-01
Development of probabilistic structural analysis methods for hot structures is a major activity at Lewis Research Center. It consists of five program elements: (1) probabilistic loads; (2) probabilistic finite element analysis; (3) probabilistic material behavior; (4) assessment of reliability and risk; and (5) probabilistic structural performance evaluation. Recent progress includes: (1) quantification of the effects of uncertainties for several variables on high pressure fuel turbopump (HPFT) blade temperature, pressure, and torque of the Space Shuttle Main Engine (SSME); (2) the evaluation of the cumulative distribution function for various structural response variables based on assumed uncertainties in primitive structural variables; (3) evaluation of the failure probability; (4) reliability and risk-cost assessment, and (5) an outline of an emerging approach for eventual hot structures certification. Collectively, the results demonstrate that the structural durability/reliability of hot structural components can be effectively evaluated in a formal probabilistic framework. In addition, the approach can be readily extended to computationally simulate certification of hot structures for aerospace environments.
NASA Astrophysics Data System (ADS)
Hussin, Haydar; van Westen, Cees; Reichenbach, Paola
2013-04-01
Local and regional authorities in mountainous areas that deal with hydro-meteorological hazards like landslides and floods try to set aside budgets for emergencies and risk mitigation. However, future losses are often not calculated in a probabilistic manner when allocating budgets or determining how much risk is acceptable. The absence of probabilistic risk estimates can create a lack of preparedness for reconstruction and risk reduction costs and a deficiency in promoting risk mitigation and prevention in an effective way. The probabilistic risk of natural hazards at local scale is usually ignored all together due to the difficulty in acknowledging, processing and incorporating uncertainties in the estimation of losses (e.g. physical damage, fatalities and monetary loss). This study attempts to set up a working framework for a probabilistic risk assessment (PRA) of landslides and floods at a municipal scale using the Fella river valley (Eastern Italian Alps) as a multi-hazard case study area. The emphasis is on the evaluation and determination of the uncertainty in the estimation of losses from multi-hazards. To carry out this framework some steps are needed: (1) by using physically based stochastic landslide and flood models we aim to calculate the probability of the physical impact on individual elements at risk, (2) this is then combined with a statistical analysis of the vulnerability and monetary value of the elements at risk in order to include their uncertainty in the risk assessment, (3) finally the uncertainty from each risk component is propagated into the loss estimation. The combined effect of landslides and floods on the direct risk to communities in narrow alpine valleys is also one of important aspects that needs to be studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, Katrina M.; Zumwalt, Hannah Ruth; Clark, Andrew Jordan
2016-03-01
Hydrogen Risk Assessment Models (HyRAM) is a prototype software toolkit that integrates data and methods relevant to assessing the safety of hydrogen fueling and storage infrastructure. The HyRAM toolkit integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing the impact of hydrogen hazards, including thermal effects from jet fires and thermal pressure effects from deflagration. HyRAM version 1.0 incorporates generic probabilities for equipment failures for nine types of components, and probabilistic models for the impact of heat flux on humans and structures, with computationally and experimentally validated models of various aspects of gaseous hydrogen releasemore » and flame physics. This document provides an example of how to use HyRAM to conduct analysis of a fueling facility. This document will guide users through the software and how to enter and edit certain inputs that are specific to the user-defined facility. Description of the methodology and models contained in HyRAM is provided in [1]. This User’s Guide is intended to capture the main features of HyRAM version 1.0 (any HyRAM version numbered as 1.0.X.XXX). This user guide was created with HyRAM 1.0.1.798. Due to ongoing software development activities, newer versions of HyRAM may have differences from this guide.« less
Probabilistic Forecasting of Coastal Morphodynamic Storm Response at Fire Island, New York
NASA Astrophysics Data System (ADS)
Wilson, K.; Adams, P. N.; Hapke, C. J.; Lentz, E. E.; Brenner, O.
2013-12-01
Site-specific probabilistic models of shoreline change are useful because they are derived from direct observations so that local factors, which greatly influence coastal response, are inherently considered by the model. Fire Island, a 50-km barrier island off Long Island, New York, is periodically subject to large storms, whose waves and storm surge dramatically alter beach morphology. Nor'Ida, which impacted the Fire Island coast in 2009, was one of the larger storms to occur in the early 2000s. In this study, we improve upon a Bayesian Network (BN) model informed with historical data to predict shoreline change from Nor'Ida. We present two BN models, referred to as 'original' model (BNo) and 'revised' model (BNr), designed to predict the most probable magnitude of net shoreline movement (NSM), as measured at 934 cross-shore transects, spanning 46 km. Both are informed with observational data (wave impact hours, shoreline and dune toe change rates, pre-storm beach width, and measured NSM) organized within five nodes, but the revised model contains a sixth node to represent the distribution of material added during an April 2009 nourishment project. We evaluate model success by examining the percentage of transects on which the model chooses the correct (observed) bin value of NSM. Comparisons of observed to model-predicted NSM show BNr has slightly higher predictive success over the total study area and significantly higher success at nourished locations. The BNo, which neglects anthropogenic modification history, correctly predicted the most probable NSM in 66.6% of transects, with ambiguous prediction at 12.7% of the locations. BNr, which incorporates anthropogenic modification history, resulted in 69.4% predictive accuracy and 13.9% ambiguity. However, across nourished transects, BNr reported 72.9% predictive success, while BNo reported 61.5% success. Further, at nourished transects, BNr reported higher ambiguity of 23.5% compared to 9.9% in BNo. These results demonstrate that BNr recognizes that nourished transects may behave differently from the expectation derived from historical data and therefore is more 'cautious' in its predictions at these locations. In contrast, BNo is more confident, but less accurate, demonstrating the risk of ignoring the influences of anthropogenic modification in a probabilistic model. Over the entire study region, both models produced greatest predictive accuracy for low retreat observations (BNo: 77.6%; BNr: 76.0%) and least success at predicting low advance observations, although BNr shows considerable improvement over BNo (39.4% vs. 28.6%, respectively). BNr also was significantly more accurate at predicting observations of no shoreline change (BNo: 56.2%; BNr: 68.93%). Both models were accurate for 60% of high advance observations, and reported high predictive success for high retreat observations (BNo: 69.1%; BNr: 67.6%), the scenario of greatest concern to coastal managers.
Uncertainty characterization approaches for risk assessment of DBPs in drinking water: a review.
Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James
2009-04-01
The management of risk from disinfection by-products (DBPs) in drinking water has become a critical issue over the last three decades. The areas of concern for risk management studies include (i) human health risk from DBPs, (ii) disinfection performance, (iii) technical feasibility (maintenance, management and operation) of treatment and disinfection approaches, and (iv) cost. Human health risk assessment is typically considered to be the most important phase of the risk-based decision-making or risk management studies. The factors associated with health risk assessment and other attributes are generally prone to considerable uncertainty. Probabilistic and non-probabilistic approaches have both been employed to characterize uncertainties associated with risk assessment. The probabilistic approaches include sampling-based methods (typically Monte Carlo simulation and stratified sampling) and asymptotic (approximate) reliability analysis (first- and second-order reliability methods). Non-probabilistic approaches include interval analysis, fuzzy set theory and possibility theory. However, it is generally accepted that no single method is suitable for the entire spectrum of problems encountered in uncertainty analyses for risk assessment. Each method has its own set of advantages and limitations. In this paper, the feasibility and limitations of different uncertainty analysis approaches are outlined for risk management studies of drinking water supply systems. The findings assist in the selection of suitable approaches for uncertainty analysis in risk management studies associated with DBPs and human health risk.
Fire risk in San Diego County, California: A weighted Bayesian model approach
Kolden, Crystal A.; Weigel, Timothy J.
2007-01-01
Fire risk models are widely utilized to mitigate wildfire hazards, but models are often based on expert opinions of less understood fire-ignition and spread processes. In this study, we used an empirically derived weights-of-evidence model to assess what factors produce fire ignitions east of San Diego, California. We created and validated a dynamic model of fire-ignition risk based on land characteristics and existing fire-ignition history data, and predicted ignition risk for a future urbanization scenario. We then combined our empirical ignition-risk model with a fuzzy fire behavior-risk model developed by wildfire experts to create a hybrid model of overall fire risk. We found that roads influence fire ignitions and that future growth will increase risk in new rural development areas. We conclude that empirically derived risk models and hybrid models offer an alternative method to assess current and future fire risk based on management actions.
Robert E. Keane; Stacy A. Drury; Eva C. Karau; Paul F. Hessburg; Keith M. Reynolds
2010-01-01
This paper presents modeling methods for mapping fire hazard and fire risk using a research model called FIREHARM (FIRE Hazard and Risk Model) that computes common measures of fire behavior, fire danger, and fire effects to spatially portray fire hazard over space. FIREHARM can compute a measure of risk associated with the distribution of these measures over time using...
NASA Astrophysics Data System (ADS)
Stavros, E.; Abatzoglou, J. T.; Larkin, N.; McKenzie, D.; Steel, A.
2012-12-01
Across the western United States, the largest wildfires account for a major proportion of the area burned and substantially affect mountain forests and their associated ecosystem services, among which is pristine air quality. These fires commandeer national attention and significant fire suppression resources. Despite efforts to understand the influence of fuel loading, climate, and weather on annual area burned, few studies have focused on understanding what abiotic factors enable and drive the very largest wildfires. We investigated the correlation between both antecedent climate and in-situ biophysical variables and very large (>20,000 ha) fires in the western United States from 1984 to 2009. We built logistic regression models, at the spatial scale of the national Geographic Area Coordination Centers (GACCs), to estimate the probability that a given day is conducive to a very large wildfire. Models vary in accuracy and in which variables are the best predictors. In a case study of the conditions of the High Park Fire, neighboring Fort Collins, Colorado, occurring in early summer 2012, we evaluate the predictive accuracy of the Rocky Mountain model.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-08
... Subcommittee on Reliability and Probabilistic Risk Assessment The ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA) will hold a meeting on September 20, 2011, Room T-2B1, 11545 Rockville Pike... Memorandum on Modifying the Risk-Informed Regulatory Guidance for New Reactors. The Subcommittee will hear...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... Role of Risk Analysis in Decision-Making AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... documents entitled, ``Using Probabilistic Methods to Enhance the Role of Risk Analysis in Decision- Making... Probabilistic Methods to Enhance the Role of Risk Analysis in Decision-Making, with Case Study Examples'' and...
Probabilistic Approaches for Multi-Hazard Risk Assessment of Structures and Systems
NASA Astrophysics Data System (ADS)
Kwag, Shinyoung
Performance assessment of structures, systems, and components for multi-hazard scenarios has received significant attention in recent years. However, the concept of multi-hazard analysis is quite broad in nature and the focus of existing literature varies across a wide range of problems. In some cases, such studies focus on hazards that either occur simultaneously or are closely correlated with each other. For example, seismically induced flooding or seismically induced fires. In other cases, multi-hazard studies relate to hazards that are not dependent or correlated but have strong likelihood of occurrence at different times during the lifetime of a structure. The current approaches for risk assessment need enhancement to account for multi-hazard risks. It must be able to account for uncertainty propagation in a systems-level analysis, consider correlation among events or failure modes, and allow integration of newly available information from continually evolving simulation models, experimental observations, and field measurements. This dissertation presents a detailed study that proposes enhancements by incorporating Bayesian networks and Bayesian updating within a performance-based probabilistic framework. The performance-based framework allows propagation of risk as well as uncertainties in the risk estimates within a systems analysis. Unlike conventional risk assessment techniques such as a fault-tree analysis, a Bayesian network can account for statistical dependencies and correlations among events/hazards. The proposed approach is extended to develop a risk-informed framework for quantitative validation and verification of high fidelity system-level simulation tools. Validation of such simulations can be quite formidable within the context of a multi-hazard risk assessment in nuclear power plants. The efficiency of this approach lies in identification of critical events, components, and systems that contribute to the overall risk. Validation of any event or component on the critical path is relatively more important in a risk-informed environment. Significance of multi-hazard risk is also illustrated for uncorrelated hazards of earthquakes and high winds which may result in competing design objectives. It is also illustrated that the number of computationally intensive nonlinear simulations needed in performance-based risk assessment for external hazards can be significantly reduced by using the power of Bayesian updating in conjunction with the concept of equivalent limit-state.
Methodology for assessing the safety of Hydrogen Systems: HyRAM 1.1 technical reference manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, Katrina; Hecht, Ethan; Reynolds, John Thomas
The HyRAM software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of hydrogen safety, hazards, and risk. HyRAM is envisioned as a unifying platform combining validated, analytical models of hydrogen behavior, a stan- dardized, transparent QRA approach, and engineering models and generic data for hydrogen installations. HyRAM is being developed at Sandia National Laboratories for the U. S. De- partment of Energy to increase access to technical data about hydrogen safety andmore » to enable the use of that data to support development and revision of national and international codes and standards. This document provides a description of the methodology and models contained in the HyRAM version 1.1. HyRAM 1.1 includes generic probabilities for hydrogen equipment fail- ures, probabilistic models for the impact of heat flux on humans and structures, and computa- tionally and experimentally validated analytical and first order models of hydrogen release and flame physics. HyRAM 1.1 integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hydrogen hazards (thermal effects from jet fires, overpressure effects from deflagrations), and assessing impact on people and structures. HyRAM is a prototype software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals.« less
76 FR 28102 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
..., Probabilistic Risk Assessment Branch, Division of Risk Analysis, Office of Nuclear Regulatory Research, U.S... approaches and methods (whether quantitative or qualitative, deterministic or probabilistic), data, and... uses in evaluating specific problems or postulated accidents, and data that the staff needs in its...
The case for probabilistic forecasting in hydrology
NASA Astrophysics Data System (ADS)
Krzysztofowicz, Roman
2001-08-01
That forecasts should be stated in probabilistic, rather than deterministic, terms has been argued from common sense and decision-theoretic perspectives for almost a century. Yet most operational hydrological forecasting systems produce deterministic forecasts and most research in operational hydrology has been devoted to finding the 'best' estimates rather than quantifying the predictive uncertainty. This essay presents a compendium of reasons for probabilistic forecasting of hydrological variates. Probabilistic forecasts are scientifically more honest, enable risk-based warnings of floods, enable rational decision making, and offer additional economic benefits. The growing demand for information about risk and the rising capability to quantify predictive uncertainties create an unparalleled opportunity for the hydrological profession to dramatically enhance the forecasting paradigm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacvarov, D.C.
1981-01-01
A new method for probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes is presented. The utilized approach of applying the finite element method for probabilistic risk assessment is demonstrated to be very powerful. The reasons for this are two. First, the finite element method is inherently suitable for analysis of three dimensional spaces where the parameters, such as three variate probability densities of the lightning currents, are non-uniformly distributed. Second, the finite element method permits non-uniform discretization of the three dimensional probability spaces thus yielding high accuracy in critical regions, such as the area of themore » low probability events, while at the same time maintaining coarse discretization in the non-critical areas to keep the number of grid points and the size of the problem to a manageable low level. The finite element probabilistic risk assessment method presented here is based on a new multidimensional search algorithm. It utilizes an efficient iterative technique for finite element interpolation of the transmission line insulation flashover criteria computed with an electro-magnetic transients program. Compared to other available methods the new finite element probabilistic risk assessment method is significantly more accurate and approximately two orders of magnitude computationally more efficient. The method is especially suited for accurate assessment of rare, very low probability events.« less
Probabilistic Assessment of Cancer Risk from Solar Particle Events
NASA Astrophysics Data System (ADS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
For long duration missions outside of the protection of the Earth's magnetic field, space radi-ation presents significant health risks including cancer mortality. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic ray (GCR), which include high energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. We es-timated the probability of SPE occurrence using a non-homogeneous Poisson model to fit the historical database of proton measurements. Distributions of particle fluences of SPEs for a specified mission period were simulated ranging from its 5th to 95th percentile to assess the cancer risk distribution. Spectral variability of SPEs was also examined, because the detailed energy spectra of protons are important especially at high energy levels for assessing the cancer risk associated with energetic particles for large events. We estimated the overall cumulative probability of GCR environment for a specified mission period using a solar modulation model for the temporal characterization of the GCR environment represented by the deceleration po-tential (φ). Probabilistic assessment of cancer fatal risk was calculated for various periods of lunar and Mars missions. This probabilistic approach to risk assessment from space radiation is in support of mission design and operational planning for future manned space exploration missions. In future work, this probabilistic approach to the space radiation will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.
Probabilistic Assessment of Cancer Risk from Solar Particle Events
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
2010-01-01
For long duration missions outside of the protection of the Earth s magnetic field, space radiation presents significant health risks including cancer mortality. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic ray (GCR), which include high energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. We estimated the probability of SPE occurrence using a non-homogeneous Poisson model to fit the historical database of proton measurements. Distributions of particle fluences of SPEs for a specified mission period were simulated ranging from its 5 th to 95th percentile to assess the cancer risk distribution. Spectral variability of SPEs was also examined, because the detailed energy spectra of protons are important especially at high energy levels for assessing the cancer risk associated with energetic particles for large events. We estimated the overall cumulative probability of GCR environment for a specified mission period using a solar modulation model for the temporal characterization of the GCR environment represented by the deceleration potential (^). Probabilistic assessment of cancer fatal risk was calculated for various periods of lunar and Mars missions. This probabilistic approach to risk assessment from space radiation is in support of mission design and operational planning for future manned space exploration missions. In future work, this probabilistic approach to the space radiation will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.
One of the major recommendations of the National Academy of Science to the USEPA, NMFS and USFWS was to utilize probabilistic methods when assessing the risks of pesticides to federally listed endangered and threatened species. The Terrestrial Investigation Model (TIM, version 3....
NASA Astrophysics Data System (ADS)
González, F. I.; Leveque, R. J.; Hatheway, D.; Metzger, N.
2011-12-01
Risk is defined in many ways, but most are consistent with Crichton's [1999] definition based on the ''risk triangle'' concept and the explicit identification of three risk elements: ''Risk is the probability of a loss, and this depends on three elements: hazard, vulnerability, and exposure. If any of these three elements in risk increases or decreases, then the risk increases or decreases respectively." The World Meteorological Organization, for example, cites Crichton [1999] and then defines risk as [WMO, 2008] Risk = function (Hazard x Vulnerability x Exposure) while the Asian Disaster Reduction Center adopts the more general expression [ADRC, 2005] Risk = function (Hazard, Vulnerability, Exposure) In practice, probabilistic concepts are invariably invoked, and at least one of the three factors are specified as probabilistic in nature. The Vulnerability and Exposure factors are defined in multiple ways in the relevant literature; but the Hazard factor, which is the focus of our presentation, is generally understood to deal only with the physical aspects of the phenomena and, in particular, the ability of the phenomena to inflict harm [Thywissen, 2006]. A Hazard factor can be estimated by a methodology known as Probabilistic Tsunami Hazard Assessment (PTHA) [González, et al., 2009]. We will describe the PTHA methodology and provide an example -- the results of a previous application to Seaside, OR. We will also present preliminary results for a PTHA of Crescent City, CA -- a pilot project and coastal modeling/mapping effort funded by the Federal Emergency Management Agency (FEMA) Region IX office as part of the new California Coastal Analysis and Mapping Project (CCAMP). CCAMP and the PTHA in Crescent City are being conducted under the nationwide FEMA Risk Mapping, Assessment, and Planning (Risk MAP) Program which focuses on providing communities with flood information and tools they can use to enhance their mitigation plans and better protect their citizens.
A probabilistic assessment of health risks associated with short-term exposure to tropospheric ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, R.G; Biller, W.F.; Jusko, M.J.
1996-06-01
The work described in this report is part of a larger risk assessment sponsored by the U.S. Environmental Protection Agency. Earlier efforts developed exposure-response relationships for acute health effects among populations engaged in heavy exertion. Those efforts also developed a probabilistic national ambient air quality standards exposure model and a general methodology for integrating probabilistic exposure-response relation- ships and exposure estimates to calculate overall risk results. Recently published data make it possible to model additional health endpoints (for exposure at moderate exertion), including hospital admissions. New air quality and exposure estimates for alternative national ambient air quality standards for ozonemore » are combined with exposure-response models to produce the risk results for hospital admissions and acute health effects. Sample results explain the methodology and introduce risk output formats.« less
Donati, Maria Anna; Panno, Angelo; Chiesi, Francesca; Primi, Caterina
2014-01-01
This study tested the mediating role of probabilistic reasoning ability in the relationship between fluid intelligence and advantageous decision making among adolescents in explicit situations of risk--that is, in contexts in which information on the choice options (gains, losses, and probabilities) were explicitly presented at the beginning of the task. Participants were 282 adolescents attending high school (77% males, mean age = 17.3 years). We first measured fluid intelligence and probabilistic reasoning ability. Then, to measure decision making under explicit conditions of risk, participants performed the Game of Dice Task, in which they have to decide among different alternatives that are explicitly linked to a specific amount of gain or loss and have obvious winning probabilities that are stable over time. Analyses showed a significant positive indirect effect of fluid intelligence on advantageous decision making through probabilistic reasoning ability that acted as a mediator. Specifically, fluid intelligence may enhance ability to reason in probabilistic terms, which in turn increases the likelihood of advantageous choices when adolescents are confronted with an explicit decisional context. Findings show that in experimental paradigm settings, adolescents are able to make advantageous decisions using cognitive abilities when faced with decisions under explicit risky conditions. This study suggests that interventions designed to promote probabilistic reasoning, for example by incrementing the mathematical prerequisites necessary to reason in probabilistic terms, may have a positive effect on adolescents' decision-making abilities.
Gis-Based Multi-Criteria Decision Analysis for Forest Fire Risk Mapping
NASA Astrophysics Data System (ADS)
Akay, A. E.; Erdoğan, A.
2017-11-01
The forested areas along the coastal zone of the Mediterranean region in Turkey are classified as first-degree fire sensitive areas. Forest fires are major environmental disaster that affects the sustainability of forest ecosystems. Besides, forest fires result in important economic losses and even threaten human lives. Thus, it is critical to determine the forested areas with fire risks and thereby minimize the damages on forest resources by taking necessary precaution measures in these areas. The risk of forest fire can be assessed based on various factors such as forest vegetation structures (tree species, crown closure, tree stage), topographic features (slope and aspect), and climatic parameters (temperature, wind). In this study, GIS-based Multi-Criteria Decision Analysis (MCDA) method was used to generate forest fire risk map. The study was implemented in the forested areas within Yayla Forest Enterprise Chiefs at Dursunbey Forest Enterprise Directorate which is classified as first degree fire sensitive area. In the solution process, "extAhp 2.0" plug-in running Analytic Hierarchy Process (AHP) method in ArcGIS 10.4.1 was used to categorize study area under five fire risk classes: extreme risk, high risk, moderate risk, and low risk. The results indicated that 23.81 % of the area was of extreme risk, while 25.81 % was of high risk. The result indicated that the most effective criterion was tree species, followed by tree stages. The aspect had the least effective criterion on forest fire risk. It was revealed that GIS techniques integrated with MCDA methods are effective tools to quickly estimate forest fire risk at low cost. The integration of these factors into GIS can be very useful to determine forested areas with high fire risk and also to plan forestry management after fire.
Quantitative assessment of building fire risk to life safety.
Guanquan, Chu; Jinhua, Sun
2008-06-01
This article presents a quantitative risk assessment framework for evaluating fire risk to life safety. Fire risk is divided into two parts: probability and corresponding consequence of every fire scenario. The time-dependent event tree technique is used to analyze probable fire scenarios based on the effect of fire protection systems on fire spread and smoke movement. To obtain the variation of occurrence probability with time, Markov chain is combined with a time-dependent event tree for stochastic analysis on the occurrence probability of fire scenarios. To obtain consequences of every fire scenario, some uncertainties are considered in the risk analysis process. When calculating the onset time to untenable conditions, a range of fires are designed based on different fire growth rates, after which uncertainty of onset time to untenable conditions can be characterized by probability distribution. When calculating occupant evacuation time, occupant premovement time is considered as a probability distribution. Consequences of a fire scenario can be evaluated according to probability distribution of evacuation time and onset time of untenable conditions. Then, fire risk to life safety can be evaluated based on occurrence probability and consequences of every fire scenario. To express the risk assessment method in detail, a commercial building is presented as a case study. A discussion compares the assessment result of the case study with fire statistics.
Probabilistic load simulation: Code development status
NASA Astrophysics Data System (ADS)
Newell, J. F.; Ho, H.
1991-05-01
The objective of the Composite Load Spectra (CLS) project is to develop generic load models to simulate the composite load spectra that are included in space propulsion system components. The probabilistic loads thus generated are part of the probabilistic design analysis (PDA) of a space propulsion system that also includes probabilistic structural analyses, reliability, and risk evaluations. Probabilistic load simulation for space propulsion systems demands sophisticated probabilistic methodology and requires large amounts of load information and engineering data. The CLS approach is to implement a knowledge based system coupled with a probabilistic load simulation module. The knowledge base manages and furnishes load information and expertise and sets up the simulation runs. The load simulation module performs the numerical computation to generate the probabilistic loads with load information supplied from the CLS knowledge base.
Assessment of mercury health risks to adults from coal combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipfert, F.W.; Moskowitz, P.D.; Fthenakis, V.M.
1994-05-01
The U.S. Environmental Protection Agency (EPA) is preparing, for the U.S. Congress, a report evaluating the need to regulate mercury (Hg) emissions from electric utilities. This study, to be completed in 1995, will have important health and economic implications. In support of these efforts, the U.S. Department of Energy, Office of Fossil Energy, sponsored a risk assessment project at Brookhaven National Laboratory (BNL) to evaluate methylmercury (MeHg) hazards independently. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical 1000 MW{sub e} coal-fired power plant were estimated using probabilistic risk assessment techniques. The approach drawsmore » on the extant knowledge in each of the important steps in the calculation chain from emissions to health effects. Estimated results at key points in the chain were compared with actual measurements to help validate the modeled estimates. Two cases were considered: the baseline case (no local impacts), and the impact case (maximum local power-plant impact). The BNL study showed that the effects of emissions of a single power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized area near the power plant. Many implicit and explicit sources of uncertainty exist in this analysis. Those that appear to be most in need of improvement include data on doses and responses for potentially sensitive subpopulations (e.g., fetal exposures). Rather than considering hypothetical situations, it would also be preferable to assess the risks associated with actual coal-fired power plants and the nearby sensitive water bodies and susceptible subpopulations. Finally, annual total Hg emissions from coal burning and from other anthropogenic sources are still uncertain; this makes it difficult to estimate the effects of U.S. coal burning on global Hg concentration levels, especially over the long term.« less
Forest fire risk zonation mapping using remote sensing technology
NASA Astrophysics Data System (ADS)
Chandra, Sunil; Arora, M. K.
2006-12-01
Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.
Damage and Loss Estimation for Natural Gas Networks: The Case of Istanbul
NASA Astrophysics Data System (ADS)
Çaktı, Eser; Hancılar, Ufuk; Şeşetyan, Karin; Bıyıkoǧlu, Hikmet; Şafak, Erdal
2017-04-01
Natural gas networks are one of the major lifeline systems to support human, urban and industrial activities. The continuity of gas supply is critical for almost all functions of modern life. Under natural phenomena such as earthquakes and landslides the damages to the system elements may lead to explosions and fires compromising human life and damaging physical environment. Furthermore, the disruption in the gas supply puts human activities at risk and also results in economical losses. This study is concerned with the performance of one of the largest natural gas distribution systems in the world. Physical damages to Istanbul's natural gas network are estimated under the most recent probabilistic earthquake hazard models available, as well as under simulated ground motions from physics based models. Several vulnerability functions are used in modelling damages to system elements. A first-order assessment of monetary losses to Istanbul's natural gas distribution network is also attempted.
Probabilistic structural analysis of aerospace components using NESSUS
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Nagpal, Vinod K.; Chamis, Christos C.
1988-01-01
Probabilistic structural analysis of a Space Shuttle main engine turbopump blade is conducted using the computer code NESSUS (numerical evaluation of stochastic structures under stress). The goal of the analysis is to derive probabilistic characteristics of blade response given probabilistic descriptions of uncertainties in blade geometry, material properties, and temperature and pressure distributions. Probability densities are derived for critical blade responses. Risk assessment and failure life analysis is conducted assuming different failure models.
Comparing two models for post-wildfire debris flow susceptibility mapping
NASA Astrophysics Data System (ADS)
Cramer, J.; Bursik, M. I.; Legorreta Paulin, G.
2017-12-01
Traditionally, probabilistic post-fire debris flow susceptibility mapping has been performed based on the typical method of failure for debris flows/landslides, where slip occurs along a basal shear zone as a result of rainfall infiltration. Recent studies have argued that post-fire debris flows are fundamentally different in their method of initiation, which is not infiltration-driven, but surface runoff-driven. We test these competing models by comparing the accuracy of the susceptibility maps produced by each initiation method. Debris flow susceptibility maps are generated according to each initiation method for a mountainous region of Southern California that recently experienced wildfire and subsequent debris flows. A multiple logistic regression (MLR), which uses the occurrence of past debris flows and the values of environmental parameters, was used to determine the probability of future debris flow occurrence. The independent variables used in the MLR are dependent on the initiation method; for example, depth to slip plane, and shear strength of soil are relevant to the infiltration initiation, but not surface runoff. A post-fire debris flow inventory serves as the standard to compare the two susceptibility maps, and was generated by LiDAR analysis and field based ground-truthing. The amount of overlap between the true locations where debris flow erosion can be documented, and where the MLR predicts high probability of debris flow initiation was statistically quantified. The Figure of Merit in Space (FMS) was used to compare the two models, and the results of the FMS comparison suggest that surface runoff-driven initiation better explains debris flow occurrence. Wildfire can breed conditions that induce debris flows in areas that normally would not be prone to them. Because of this, nearby communities at risk may not be equipped to protect themselves against debris flows. In California, there are just a few months between wildland fire season and the wet season to assess a community's risk and prepare. It is important, therefore, that researchers have a way to quickly and accurately assess the susceptibility for debris flows in recently burned areas.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-02
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA); Notice of Meeting The ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA), Room T-2B1, 11545 Rockville Pike, Rockville, Maryland...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-25
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Reliability and Probabilistic Risk Assessment; Notice of Meeting The ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA) will hold a meeting on May 11, 2011, Room T-2B3, 11545...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Reliability and Probabilistic Risk Assessment; Notice of Meeting The ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA) will hold a meeting on December 14, 2011, Room T-2B3...
Adolescents' Heightened Risk-Seeking in a Probabilistic Gambling Task
ERIC Educational Resources Information Center
Burnett, Stephanie; Bault, Nadege; Coricelli, Giorgio; Blakemore, Sarah-Jayne
2010-01-01
This study investigated adolescent males' decision-making under risk, and the emotional response to decision outcomes, using a probabilistic gambling task designed to evoke counterfactually mediated emotions (relief and regret). Participants were 20 adolescents (aged 9-11), 26 young adolescents (aged 12-15), 20 mid-adolescents (aged 15-18) and 17…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravindra, M.K.; Banon, H.
1992-07-01
In this report, the scoping quantification procedures for external events in probabilistic risk assessments of nuclear power plants are described. External event analysis in a PRA has three important goals; (1) the analysis should be complete in that all events are considered; (2) by following some selected screening criteria, the more significant events are identified for detailed analysis; (3) the selected events are analyzed in depth by taking into account the unique features of the events: hazard, fragility of structures and equipment, external-event initiated accident sequences, etc. Based on the above goals, external event analysis may be considered as amore » three-stage process: Stage I: Identification and Initial Screening of External Events; Stage II: Bounding Analysis; Stage III: Detailed Risk Analysis. In the present report, first, a review of published PRAs is given to focus on the significance and treatment of external events in full-scope PRAs. Except for seismic, flooding, fire, and extreme wind events, the contributions of other external events to plant risk have been found to be negligible. Second, scoping methods for external events not covered in detail in the NRC's PRA Procedures Guide are provided. For this purpose, bounding analyses for transportation accidents, extreme winds and tornadoes, aircraft impacts, turbine missiles, and chemical release are described.« less
Use of Probabilistic Risk Assessment in Shuttle Decision Making Process
NASA Technical Reports Server (NTRS)
Boyer, Roger L.; Hamlin, Teri, L.
2011-01-01
This slide presentation reviews the use of Probabilistic Risk Assessment (PRA) to assist in the decision making for the shuttle design and operation. Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and disciplined approach to identifying and analyzing risk in complex systems and/or processes that seeks answers to three basic questions: (i.e., what can go wrong? what is the likelihood of these occurring? and what are the consequences that could result if these occur?) The purpose of the Shuttle PRA (SPRA) is to provide a useful risk management tool for the Space Shuttle Program (SSP) to identify strengths and possible weaknesses in the Shuttle design and operation. SPRA was initially developed to support upgrade decisions, but has evolved into a tool that supports Flight Readiness Reviews (FRR) and near real-time flight decisions. Examples of the use of PRA for the shuttle are reviewed.
Probabilistic Description of the Hydrologic Risk in Agriculture
NASA Astrophysics Data System (ADS)
Vico, G.; Porporato, A. M.
2011-12-01
Supplemental irrigation represents one of the main strategies to mitigate the effects of climatic variability on agroecosystems productivity and profitability, at the expenses of increasing water requirements for irrigation purposes. Optimizing water allocation for crop yield preservation and sustainable development needs to account for hydro-climatic variability, which is by far the main source of uncertainty affecting crop yields and irrigation water requirements. In this contribution, a widely applicable probabilistic framework is proposed to quantitatively define the hydrologic risk of yield reduction for both rainfed and irrigated agriculture. The occurrence of rainfall events and irrigation applications are linked probabilistically to crop development during the growing season. Based on these linkages, long-term and real-time yield reduction risk indices are defined as a function of climate, soil and crop parameters, as well as irrigation strategy. The former risk index is suitable for long-term irrigation strategy assessment and investment planning, while the latter risk index provides a rigorous probabilistic quantification of the emergence of drought conditions during a single growing season. This probabilistic framework allows also assessing the impact of limited water availability on crop yield, thus guiding the optimal allocation of water resources for human and environmental needs. Our approach employs relatively few parameters and is thus easily and broadly applicable to different crops and sites, under current and future climate scenarios, thus facilitating the assessment of the impact of increasingly frequent water shortages on agricultural productivity, profitability, and sustainability.
Finley, B; Paustenbach, D
1994-02-01
Probabilistic risk assessments are enjoying increasing popularity as a tool to characterize the health hazards associated with exposure to chemicals in the environment. Because probabilistic analyses provide much more information to the risk manager than standard "point" risk estimates, this approach has generally been heralded as one which could significantly improve the conduct of health risk assessments. The primary obstacles to replacing point estimates with probabilistic techniques include a general lack of familiarity with the approach and a lack of regulatory policy and guidance. This paper discusses some of the advantages and disadvantages of the point estimate vs. probabilistic approach. Three case studies are presented which contrast and compare the results of each. The first addresses the risks associated with household exposure to volatile chemicals in tapwater. The second evaluates airborne dioxin emissions which can enter the food-chain. The third illustrates how to derive health-based cleanup levels for dioxin in soil. It is shown that, based on the results of Monte Carlo analyses of probability density functions (PDFs), the point estimate approach required by most regulatory agencies will nearly always overpredict the risk for the 95th percentile person by a factor of up to 5. When the assessment requires consideration of 10 or more exposure variables, the point estimate approach will often predict risks representative of the 99.9th percentile person rather than the 50th or 95th percentile person. This paper recommends a number of data distributions for various exposure variables that we believe are now sufficiently well understood to be used with confidence in most exposure assessments. A list of exposure variables that may require additional research before adequate data distributions can be developed are also discussed.
A probabilistic approach to modeling erosion for spatially-varied conditions
William J. Elliot; Peter R. Robichaud; C. D. Pannkuk
2001-01-01
In the years following a major forest disturbance, such as fire, the erosion rate is greatly influenced by variability in weather, in soil properties, and in spatial distribution. This paper presents a method to incorporate these variabilities into the erosion rate predicted by the Water Erosion Prediction Project model. It appears that it is not necessary to describe...
NASA Astrophysics Data System (ADS)
Juarez, A. M.; Kibler, K. M.; Sayama, T.; Ohara, M.
2016-12-01
Flood management decision-making is often supported by risk assessment, which may overlook the role of coping capacity and the potential benefits derived from direct use of flood-prone land. Alternatively, risk-benefit analysis can support floodplain management to yield maximum socio-ecological benefits for the minimum flood risk. We evaluate flood risk-probabilistic benefit tradeoffs of livelihood practices compatible with direct human use of flood-prone land (agriculture/wild fisheries) and nature conservation (wild fisheries only) in Candaba, Philippines. Located north-west to Metro Manila, Candaba area is a multi-functional landscape that provides a temporally-variable mix of possible land uses, benefits and ecosystem services of local and regional value. To characterize inundation from 1.3- to 100-year recurrence intervals we couple frequency analysis with rainfall-runoff-inundation modelling and remotely-sensed data. By combining simulated probabilistic floods with both damage and benefit functions (e.g. fish capture and rice yield with flood intensity) we estimate potential damages and benefits over varying probabilistic flood hazards. We find that although direct human uses of flood-prone land are associated with damages, for all the investigated magnitudes of flood events with different frequencies, the probabilistic benefits ( 91 million) exceed risks by a large margin ( 33 million). Even considering risk, probabilistic livelihood benefits of direct human uses far exceed benefits provided by scenarios that exclude direct "risky" human uses (difference of 85 million). In addition, we find that individual coping strategies, such as adapting crop planting periods to the flood pulse or fishing rather than cultivating rice in the wet season, minimize flood losses ( 6 million) while allowing for valuable livelihood benefits ($ 125 million) in flood-prone land. Analysis of societal benefits and local capacities to cope with regular floods demonstrate the relevance of accounting for the full range of flood events and their relation to both potential damages and benefits in risk assessments. Management measures may thus be designed to reflect local contexts and support benefits of natural hydrologic processes, while minimizing flood damage.
Modeling Payload Stowage Impacts on Fire Risks On-Board the International Space Station
NASA Technical Reports Server (NTRS)
Anton, Kellie e.; Brown, Patrick F.
2010-01-01
The purpose of this presentation is to determine the risks of fire on-board the ISS due to non-standard stowage. ISS stowage is constantly being reexamined for optimality. Non-standard stowage involves stowing items outside of rack drawers, and fire risk is a key concern and is heavily mitigated. A Methodology is needed to account for fire risk due to non-standard stowage to capture the risk. The contents include: 1) Fire Risk Background; 2) General Assumptions; 3) Modeling Techniques; 4) Event Sequence Diagram (ESD); 5) Qualitative Fire Analysis; 6) Sample Qualitative Results for Fire Risk; 7) Qualitative Stowage Analysis; 8) Sample Qualitative Results for Non-Standard Stowage; and 9) Quantitative Analysis Basic Event Data.
Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery.
Saglam, Bülent; Bilgili, Ertugrul; Dincdurmaz, Bahar; Kadiogulari, Ali Ihsan; Kücük, Ömer
2008-06-20
Computing fire danger and fire risk on a spatio-temporal scale is of crucial importance in fire management planning, and in the simulation of fire growth and development across a landscape. However, due to the complex nature of forests, fire risk and danger potential maps are considered one of the most difficult thematic layers to build up. Remote sensing and digital terrain data have been introduced for efficient discrete classification of fire risk and fire danger potential. In this study, two time-series data of Landsat imagery were used for determining spatio-temporal change of fire risk and danger potential in Korudag forest planning unit in northwestern Turkey. The method comprised the following two steps: (1) creation of indices of the factors influencing fire risk and danger; (2) evaluation of spatio-temporal changes in fire risk and danger of given areas using remote sensing as a quick and inexpensive means and determining the pace of forest cover change. Fire risk and danger potential indices were based on species composition, stand crown closure, stand development stage, insolation, slope and, proximity of agricultural lands to forest and distance from settlement areas. Using the indices generated, fire risk and danger maps were produced for the years 1987 and 2000. Spatio-temporal analyses were then realized based on the maps produced. Results obtained from the study showed that the use of Landsat imagery provided a valuable characterization and mapping of vegetation structure and type with overall classification accuracy higher than 83%.
Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis
NASA Technical Reports Server (NTRS)
Dezfuli, Homayoon; Kelly, Dana; Smith, Curtis; Vedros, Kurt; Galyean, William
2009-01-01
This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to provide guidelines for the collection and evaluation of risk and reliability-related data. It is aimed at scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to the investigation and application of a variety of risk and reliability data assessment methods, tools, and techniques. This document provides both: A broad perspective on data analysis collection and evaluation issues. A narrow focus on the methods to implement a comprehensive information repository. The topics addressed herein cover the fundamentals of how data and information are to be used in risk and reliability analysis models and their potential role in decision making. Understanding these topics is essential to attaining a risk informed decision making environment that is being sought by NASA requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements).
Probabilistic reversal learning is impaired in Parkinson's disease
Peterson, David A.; Elliott, Christian; Song, David D.; Makeig, Scott; Sejnowski, Terrence J.; Poizner, Howard
2009-01-01
In many everyday settings, the relationship between our choices and their potentially rewarding outcomes is probabilistic and dynamic. In addition, the difficulty of the choices can vary widely. Although a large body of theoretical and empirical evidence suggests that dopamine mediates rewarded learning, the influence of dopamine in probabilistic and dynamic rewarded learning remains unclear. We adapted a probabilistic rewarded learning task originally used to study firing rates of dopamine cells in primate substantia nigra pars compacta (Morris et al. 2006) for use as a reversal learning task with humans. We sought to investigate how the dopamine depletion in Parkinson's disease (PD) affects probabilistic reward learning and adaptation to a reversal in reward contingencies. Over the course of 256 trials subjects learned to choose the more favorable from among pairs of images with small or large differences in reward probabilities. During a subsequent otherwise identical reversal phase, the reward probability contingencies for the stimuli were reversed. Seventeen Parkinson's disease (PD) patients of mild to moderate severity were studied off of their dopaminergic medications and compared to 15 age-matched controls. Compared to controls, PD patients had distinct pre- and post-reversal deficiencies depending upon the difficulty of the choices they had to learn. The patients also exhibited compromised adaptability to the reversal. A computational model of the subjects’ trial-by-trial choices demonstrated that the adaptability was sensitive to the gain with which patients weighted pre-reversal feedback. Collectively, the results implicate the nigral dopaminergic system in learning to make choices in environments with probabilistic and dynamic reward contingencies. PMID:19628022
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-04
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA); Notice of Meeting The ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA) will hold a meeting on April 20, 2011, Room T-2B1, 11545...
Offerman, Theo; Palley, Asa B
2016-01-01
Strictly proper scoring rules are designed to truthfully elicit subjective probabilistic beliefs from risk neutral agents. Previous experimental studies have identified two problems with this method: (i) risk aversion causes agents to bias their reports toward the probability of [Formula: see text], and (ii) for moderate beliefs agents simply report [Formula: see text]. Applying a prospect theory model of risk preferences, we show that loss aversion can explain both of these behavioral phenomena. Using the insights of this model, we develop a simple off-the-shelf probability assessment mechanism that encourages loss-averse agents to report true beliefs. In an experiment, we demonstrate the effectiveness of this modification in both eliminating uninformative reports and eliciting true probabilistic beliefs.
Probabilistic Methods for Structural Reliability and Risk
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2010-01-01
A probabilistic method is used to evaluate the structural reliability and risk of select metallic and composite structures. The method is a multiscale, multifunctional and it is based on the most elemental level. A multifactor interaction model is used to describe the material properties which are subsequently evaluated probabilistically. The metallic structure is a two rotor aircraft engine, while the composite structures consist of laminated plies (multiscale) and the properties of each ply are the multifunctional representation. The structural component is modeled by finite element. The solution method for structural responses is obtained by an updated simulation scheme. The results show that the risk for the two rotor engine is about 0.0001 and the composite built-up structure is also 0.0001.
Probabilistic Methods for Structural Reliability and Risk
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
2008-01-01
A probabilistic method is used to evaluate the structural reliability and risk of select metallic and composite structures. The method is a multiscale, multifunctional and it is based on the most elemental level. A multi-factor interaction model is used to describe the material properties which are subsequently evaluated probabilistically. The metallic structure is a two rotor aircraft engine, while the composite structures consist of laminated plies (multiscale) and the properties of each ply are the multifunctional representation. The structural component is modeled by finite element. The solution method for structural responses is obtained by an updated simulation scheme. The results show that the risk for the two rotor engine is about 0.0001 and the composite built-up structure is also 0.0001.
Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.
Geothermal probabilistic cost study
NASA Technical Reports Server (NTRS)
Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.
1981-01-01
A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.
Hunt, James; Birch, Gavin; Warne, Michael St J
2010-05-01
Groundwater contaminated with volatile chlorinated hydrocarbons (VCHs) was identified as discharging to Penrhyn Estuary, an intertidal embayment of Botany Bay, New South Wales, Australia. A screening-level hazard assessment of surface water in Penrhyn Estuary identified an unacceptable hazard to marine organisms posed by VCHs. Given the limitations of hazard assessments, the present study conducted a higher-tier, quantitative probabilistic risk assessment using the joint probability curve (JPC) method that accounted for variability in exposure and toxicity profiles to quantify risk (delta). Risk was assessed for 24 scenarios, including four areas of the estuary based on three exposure scenarios (low tide, high tide, and both low and high tides) and two toxicity scenarios (chronic no-observed-effect concentrations [NOEC] and 50% effect concentrations [EC50]). Risk (delta) was greater at low tide than at high tide and varied throughout the tidal cycle. Spatial distributions of risk in the estuary were similar using both NOEC and EC50 data. The exposure scenario including data combined from both tides was considered the most accurate representation of the ecological risk in the estuary. When assessing risk using data across both tides, the greatest risk was identified in the Springvale tributary (delta=25%)-closest to the source area-followed by the inner estuary (delta=4%) and the Floodvale tributary (delta=2%), with the lowest risk in the outer estuary (delta=0.1%), farthest from the source area. Going from the screening level ecological risk assessment (ERA) to the probabilistic ERA changed the risk from unacceptable to acceptable in 50% of exposure scenarios in two of the four areas within the estuary. The probabilistic ERA provided a more realistic assessment of risk than the screening-level hazard assessment. Copyright (c) 2010 SETAC.
Nadal, Martí; Kumar, Vikas; Schuhmacher, Marta; Domingo, José L
2008-04-01
Recently, we developed a GIS-Integrated Integral Risk Index (IRI) to assess human health risks in areas with presence of environmental pollutants. Contaminants were previously ranked by applying a self-organizing map (SOM) to their characteristics of persistence, bioaccumulation, and toxicity in order to obtain the Hazard Index (HI). In the present study, the original IRI was substantially improved by allowing the entrance of probabilistic data. A neuroprobabilistic HI was developed by combining SOM and Monte Carlo analysis. In general terms, the deterministic and probabilistic HIs followed a similar pattern: polychlorinated biphenyls (PCBs) and light polycyclic aromatic hydrocarbons (PAHs) were the pollutants showing the highest and lowest values of HI, respectively. However, the bioaccumulation value of heavy metals notably increased after considering a probability density function to explain the bioaccumulation factor. To check its applicability, a case study was investigated. The probabilistic integral risk was calculated in the chemical/petrochemical industrial area of Tarragona (Catalonia, Spain), where an environmental program has been carried out since 2002. The risk change between 2002 and 2005 was evaluated on the basis of probabilistic data of the levels of various pollutants in soils. The results indicated that the risk of the chemicals under study did not follow a homogeneous tendency. However, the current levels of pollution do not mean a relevant source of health risks for the local population. Moreover, the neuroprobabilistic HI seems to be an adequate tool to be taken into account in risk assessment processes.
Asteroid Risk Assessment: A Probabilistic Approach.
Reinhardt, Jason C; Chen, Xi; Liu, Wenhao; Manchev, Petar; Paté-Cornell, M Elisabeth
2016-02-01
Following the 2013 Chelyabinsk event, the risks posed by asteroids attracted renewed interest, from both the scientific and policy-making communities. It reminded the world that impacts from near-Earth objects (NEOs), while rare, have the potential to cause great damage to cities and populations. Point estimates of the risk (such as mean numbers of casualties) have been proposed, but because of the low-probability, high-consequence nature of asteroid impacts, these averages provide limited actionable information. While more work is needed to further refine its input distributions (e.g., NEO diameters), the probabilistic model presented in this article allows a more complete evaluation of the risk of NEO impacts because the results are distributions that cover the range of potential casualties. This model is based on a modularized simulation that uses probabilistic inputs to estimate probabilistic risk metrics, including those of rare asteroid impacts. Illustrative results of this analysis are presented for a period of 100 years. As part of this demonstration, we assess the effectiveness of civil defense measures in mitigating the risk of human casualties. We find that they are likely to be beneficial but not a panacea. We also compute the probability-but not the consequences-of an impact with global effects ("cataclysm"). We conclude that there is a continued need for NEO observation, and for analyses of the feasibility and risk-reduction effectiveness of space missions designed to deflect or destroy asteroids that threaten the Earth. © 2015 Society for Risk Analysis.
Himanen, Risto; Julin, Ari; Jänkälä, Kalle; Holmberg, Jan-Erik; Virolainen, Reino
2012-11-01
There are four operating nuclear power plant (NPP) units in Finland. The Teollisuuden Voima (TVO) power company has two 840 MWe BWR units supplied by Asea-Atom at the Olkiluoto site. The Fortum corporation (formerly IVO) has two 500 MWe VVER 440/213 units at the Loviisa site. In addition, a 1600 MWe European Pressurized Water Reactor supplied by AREVA NP (formerly the Framatome ANP--Siemens AG Consortium) is under construction at the Olkiluoto site. Recently, the Finnish Parliament ratified the government Decision in Principle that the utilities' applications to build two new NPP units are in line with the total good of the society. The Finnish utilities, Fenno power company, and TVO company are in progress of qualifying the type of the new nuclear builds. In Finland, risk-informed applications are formally integrated in the regulatory process of NPPs that are already in the early design phase and these are to run through the construction and operation phases all through the entire plant service time. A plant-specific full-scope probabilistic risk assessment (PRA) is required for each NPP. PRAs shall cover internal events, area events (fires, floods), and external events such as harsh weather conditions and seismic events in all operating modes. Special attention is devoted to the use of various risk-informed PRA applications in the licensing of Olkiluoto 3 NPP. © 2012 Society for Risk Analysis.
Fire behavior and risk analysis in spacecraft
NASA Technical Reports Server (NTRS)
Friedman, Robert; Sacksteder, Kurt R.
1988-01-01
Practical risk management for present and future spacecraft, including space stations, involves the optimization of residual risks balanced by the spacecraft operational, technological, and economic limitations. Spacecraft fire safety is approached through three strategies, in order of risk: (1) control of fire-causing elements, through exclusion of flammable materials for example; (2) response to incipient fires through detection and alarm; and (3) recovery of normal conditions through extinguishment and cleanup. Present understanding of combustion in low gravity is that, compared to normal gravity behavior, fire hazards may be reduced by the absence of buoyant gas flows yet at the same time increased by ventilation flows and hot particle expulsion. This paper discusses the application of low-gravity combustion knowledge and appropriate aircraft analogies to fire detection, fire fighting, and fire-safety decisions for eventual fire-risk management and optimization in spacecraft.
Theory-Based Cartographic Risk Model Development and Application for Home Fire Safety.
Furmanek, Stephen; Lehna, Carlee; Hanchette, Carol
There is a gap in the use of predictive risk models to identify areas at risk for home fires and burn injury. The purpose of this study was to describe the creation, validation, and application of such a model using a sample from an intervention study with parents of newborns in Jefferson County, KY, as an example. Performed was a literature search to identify risk factors for home fires and burn injury in the target population. Obtained from the American Community Survey at the census tract level and synthesized to create a predictive cartographic risk model was risk factor data. Model validation was performed through correlation, regression, and Moran's I with fire incidence data from open records. Independent samples t-tests were used to examine the model in relation to geocoded participant addresses. Participant risk level for fire rate was determined and proximity to fire station service areas and hospitals. The model showed high and severe risk clustering in the northwest section of the county. Strongly correlated with fire rate was modeled risk; the best predictive model for fire risk contained home value (low), race (black), and non high school graduates. Applying the model to the intervention sample, the majority of participants were at lower risk and mostly within service areas closest to a fire department and hospital. Cartographic risk models were useful in identifying areas at risk and analyzing participant risk level. The methods outlined in this study are generalizable to other public health issues.
NASA Astrophysics Data System (ADS)
Sampath, A.; Bhatt, U. S.; Bieniek, P.; York, A.; Peng, P.; Brettschneider, B.; Thoman, R.; Jandt, R.; Ziel, R.; Branson, G.; Strader, M. H.; Alden, M. S.
2017-12-01
The summer 2004 and 2015 wildfires in Alaska were the two largest fire seasons on record since 1950 where approximately the land area of Massachusetts burned. The record fire year of 2004 resulted in 6.5 million acres burned while the 2015 wildfire season resulted in 5.2 million acres burned. In addition to the logistical cost of fighting fires and the loss of infrastructure, wildfires also lead to dangerous air quality in Alaska. Fires in Alaska result from lightning strikes coupled with persistent (extreme) dry warm conditions in remote areas with limited fire management and the seasonal climate/weather determine the extent of the fire season in Alaska. Advanced weather/climate outlooks for allocating staff and resources from days to a season are particularly needed by fire managers. However, there are no operational seasonal products currently for the Alaska region. Probabilistic forecasts of the expected seasonal climate/weather would aid tremendously in the planning process. Earlier insight of both lightening and fuel conditions would assist fire managers in planning resource allocation for the upcoming season. For fuel conditions, the state-of-the-art NMME (1982-2017) climate predictions were used to compute the Canadian Forest Fire Weather Index System (CFFWIS). The CFFWIS is used by fire managers to forecast forest fires in Alaska. NMME forecast (March and May) based Buildup Index (BUI) values were underestimated compared to BUI based on reanalysis and station data, demonstrating the necessity for bias correction. Post processing of NMME data will include bias correction using the quantile mapping technique. This study will provide guidance as to the what are the best available products for anticipating the fire season.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
... NIOSH 141-A] Preventing Deaths and Injuries of Fire Fighters Using Risk Management Principles at Structure Fires AGENCY: National Institute for Occupational Safety and Health (NIOSH) of the Centers for... publication entitled ``Preventing Deaths and Injuries of Fire Fighters Using Risk Management Principles at...
Urban fire risk control: House design, upgrading and replanning
Mbuya, Elinorata Celestine
2018-01-01
Urbanisation leads to house densification, a phenomenon experienced in both planned and unplanned settlements in cities in developing countries. Such densification limits fire brigade access into settlements, thereby aggravating fire disaster risks. In this article, we assess the fire exposure and risks in residences in informal areas of Mchikichini ward, in Dar es Salaam City, Tanzania. We rely on interviews of residents and government officials to obtain background on the occurrence and causes of fire accidents, policy provisions and regulations, and experiences with fire outbreaks and coping strategies, as well as on observations and measurements of house transformations, spatial quality and indoor real life. Our findings suggest that fire risks arise from both inappropriate structural characteristics and unsound behavioural practices. This includes unsafe electric practices by residents, poor capacity of residents to fight fires once started, limited access to structures by firefighting equipment because of flouting of planning regulations and inadequate awareness of local government leaders of the magnitude of fire risks. Potential changes to reduce fire risks in the settlement include the installation of firefighting systems, restriction of cooking to designated spaces, use of safer cooking energy sources and lighting means, improvements of vehicle access routes to neighbourhoods, capacity building at the grass root level and the establishment of community-based fire risk management.
NASA Technical Reports Server (NTRS)
1991-01-01
The technical effort and computer code enhancements performed during the sixth year of the Probabilistic Structural Analysis Methods program are summarized. Various capabilities are described to probabilistically combine structural response and structural resistance to compute component reliability. A library of structural resistance models is implemented in the Numerical Evaluations of Stochastic Structures Under Stress (NESSUS) code that included fatigue, fracture, creep, multi-factor interaction, and other important effects. In addition, a user interface was developed for user-defined resistance models. An accurate and efficient reliability method was developed and was successfully implemented in the NESSUS code to compute component reliability based on user-selected response and resistance models. A risk module was developed to compute component risk with respect to cost, performance, or user-defined criteria. The new component risk assessment capabilities were validated and demonstrated using several examples. Various supporting methodologies were also developed in support of component risk assessment.
Craig, Joyce A; Creegan, Shelagh; Tait, Martin; Dolan, Donna
2015-04-14
The Scottish Fire and Rescue Service and NHS Tayside piloted partnership working. A Community Fire Safety Link Worker provided Risk Assessments to adults, identified by community health teams, at high risk of fires, with the aim of reducing fires. An existing evaluation shows the Service developed a culture of 'high trust' between partners and had high client satisfaction. This paper reports on an economic evaluation of the costs and benefits of the Link Worker role. An economic evaluation of the costs and benefits of the Link Worker role was undertaken. Changes in the Risk Assessment score following delivery of the Service were used to estimate the potential fires avoided. These were valued using a national cost of a fire. The estimated cost of delivering the Service was deducted from these savings. The pilot was estimated to save 4.4 fires, equivalent to £286 per client. The estimated cost of delivering the Service was £55 per client, giving net savings of £231 per client. The pilot was cost-saving under all scenarios, with results sensitive to the probability of a fire. We believe this is the first evaluation of Fire Safety Risk Assessments. Partnership working, delivering joint Risk Assessments in the homes of people at high risk of fire, is modelled to be cost saving. Uncertainties in data and small sample are key limitations. Further research is required into the ex ante risk of fire by risk category. Despite these limitations, potential savings identified in this study supports greater adoption of this partnership initiative.
Evidence-based risk communication: a systematic review.
Zipkin, Daniella A; Umscheid, Craig A; Keating, Nancy L; Allen, Elizabeth; Aung, KoKo; Beyth, Rebecca; Kaatz, Scott; Mann, Devin M; Sussman, Jeremy B; Korenstein, Deborah; Schardt, Connie; Nagi, Avishek; Sloane, Richard; Feldstein, David A
2014-08-19
Effective communication of risks and benefits to patients is critical for shared decision making. To review the comparative effectiveness of methods of communicating probabilistic information to patients that maximize their cognitive and behavioral outcomes. PubMed (1966 to March 2014) and CINAHL, EMBASE, and the Cochrane Central Register of Controlled Trials (1966 to December 2011) using several keywords and structured terms. Prospective or cross-sectional studies that recruited patients or healthy volunteers and compared any method of communicating probabilistic information with another method. Two independent reviewers extracted study characteristics and assessed risk of bias. Eighty-four articles, representing 91 unique studies, evaluated various methods of numerical and visual risk display across several risk scenarios and with diverse outcome measures. Studies showed that visual aids (icon arrays and bar graphs) improved patients' understanding and satisfaction. Presentations including absolute risk reductions were better than those including relative risk reductions for maximizing accuracy and seemed less likely than presentations with relative risk reductions to influence decisions to accept therapy. The presentation of numbers needed to treat reduced understanding. Comparative effects of presentations of frequencies (such as 1 in 5) versus event rates (percentages, such as 20%) were inconclusive. Most studies were small and highly variable in terms of setting, context, and methods of administering interventions. Visual aids and absolute risk formats can improve patients' understanding of probabilistic information, whereas numbers needed to treat can lessen their understanding. Due to study heterogeneity, the superiority of any single method for conveying probabilistic information is not established, but there are several good options to help clinicians communicate with patients. None.
NASA Astrophysics Data System (ADS)
Mishra, H.; Karmakar, S.; Kumar, R.
2016-12-01
Risk assessment will not remain simple when it involves multiple uncertain variables. Uncertainties in risk assessment majorly results from (1) the lack of knowledge of input variable (mostly random), and (2) data obtained from expert judgment or subjective interpretation of available information (non-random). An integrated probabilistic-fuzzy health risk approach has been proposed for simultaneous treatment of random and non-random uncertainties associated with input parameters of health risk model. The LandSim 2.5, a landfill simulator, has been used to simulate the Turbhe landfill (Navi Mumbai, India) activities for various time horizons. Further the LandSim simulated six heavy metals concentration in ground water have been used in the health risk model. The water intake, exposure duration, exposure frequency, bioavailability and average time are treated as fuzzy variables, while the heavy metals concentration and body weight are considered as probabilistic variables. Identical alpha-cut and reliability level are considered for fuzzy and probabilistic variables respectively and further, uncertainty in non-carcinogenic human health risk is estimated using ten thousand Monte-Carlo simulations (MCS). This is the first effort in which all the health risk variables have been considered as non-deterministic for the estimation of uncertainty in risk output. The non-exceedance probability of Hazard Index (HI), summation of hazard quotients, of heavy metals of Co, Cu, Mn, Ni, Zn and Fe for male and female population have been quantified and found to be high (HI>1) for all the considered time horizon, which evidently shows possibility of adverse health effects on the population residing near Turbhe landfill.
NASA Astrophysics Data System (ADS)
Trostyansky, S. N.; Kalach, A. V.; Lavlinsky, V. V.; Lankin, O. V.
2018-03-01
Based on the analysis of the dynamic model of panel data by region, including fire statistics for surveillance sites and statistics of a set of regional socio-economic indicators, as well as the time of rapid response of the state fire service to fires, the probability of fires in the surveillance sites and the risk of human death in The result of such fires from the values of the corresponding indicators for the previous year, a set of regional social-economics factors, as well as regional indicators time rapid response of the state fire service in the fire. The results obtained are consistent with the results of the application to the fire risks of the model of a rational offender. Estimation of the economic equivalent of human life from data on surveillance objects for Russia, calculated on the basis of the analysis of the presented dynamic model of fire risks, correctly agrees with the known literary data. The results obtained on the basis of the econometric approach to fire risks allow us to forecast fire risks at the supervisory sites in the regions of Russia and to develop management solutions to minimize such risks.
NASA Astrophysics Data System (ADS)
Kozine, Igor
2018-04-01
The paper suggests looking on probabilistic risk quantities and concepts through the prism of accepting one of the views: whether a true value of risk exists or not. It is argued that discussions until now have been primarily focused on closely related topics that are different from the topic of the current paper. The paper examines operational consequences of adhering to each of the views and contrasts them. It is demonstrated that operational differences on how and what probabilistic measures can be assessed and how they can be interpreted appear tangible. In particular, this concerns prediction intervals, the use of Byes rule, models of complete ignorance, hierarchical models of uncertainty, assignment of probabilities over possibility space and interpretation of derived probabilistic measures. Behavioural implications of favouring the either view are also briefly described.
NASA Astrophysics Data System (ADS)
Kim, S. J.; Lim, C. H.; Kim, G. S.; Lee, W. K.
2017-12-01
Analysis of forest fire risk is important in disaster risk reduction (DRR) since it provides a way to manage forest fires. Climate and socio-economic factors are important in the cause of forest fires, and the role of the socio-economic factors in prevention and preparedness of forest fires is increasing. As most of the forest fires in the Republic of Korea are highly related to human activities, both environmental factors and socio-economic factors were considered into the analysis of forest fire risk. In this study, the Maximum Entropy (MaxEnt) model was used to predict the potential geographical distribution and probability of forest fire occurrence spatially and temporally from 1980s to the 2010s in the Republic of Korea by multi-temporal analysis and analyze the relationship between forest fires and the factors. As a result of the risk analysis, there was an overall increasing trend in forest fire risk from the 1980s to the 2000s, and socio-economic factors were highly correlated with the occurrence of forest fires. The study demonstrates that the socio-economic factors considered as human activities can increase the occurrence of forest fires. The result implies that managing human activities are significant to prevent forest fire occurrence. In addition, timely forest fire prevention and control is necessary as drought index such as Standardized Precipitation Index (SPI) also affected forest fires.
Economic efficiency and risk character of fire management programs, Northern Rocky Mountains
Thomas J. Mills; Frederick W. Bratten
1988-01-01
Economic efficiency and risk have long been considered during the selection of fire management programs and the design of fire management polices. The risk considerations was largely subjective, however, and efficiency has only recently been calculated for selected portions of the fire management program. The highly stochastic behavior of the fire system and the high...
Sowmya, S V; Somashekar, R K
2010-11-01
Fire is the most spectacular natural disturbance that affects the forest ecosystem composition and diversity. Fire has a devastating effect on the landscape and its impact is felt at every level of the ecosystem and it is possible to map forest fire risk zone and thereby minimize the frequency of fire. There is a need for supranational approaches that analyze wide scenarios of factors involved and global fire effects. Fires can be monitored and analyzed over large areas in a timely and cost effective manner by using satellite imagery. Also Geographical Information System (GIS) can be used effectively to demarcate the fire risk zone map. Bhadra wildlife Sanctuary located in Kamataka, India was selected for this study. Vegetation, slope, distance from roads, settlements parameters were derived for a study area using topographic maps and field information. The Remote Sensing (RS) and Geographical Information System (GIS)-based forest fire risk model of the study area appeared to be highly compatible with the actual fire-affected sites. The temporal satellite data from 1989 to2006 have been analyzed to map the burnt areas. These classes were weighted according to their influence on forest fire. Four categories of fire risk regions such as Low, Moderate, High and Very high fire intensity zones were identified. It is predicted that around 10.31% of the area falls undermoderate risk zone.
Perceived risk of home fire and escape plans in rural households.
Yang, Jingzhen; Peek-Asa, Corinne; Allareddy, Veerasathpurush; Zwerling, Craig; Lundell, John
2006-01-01
Homes in rural areas have a higher fire death rate. Although successful exit from a home fire could greatly reduce fire-related deaths and injuries, little is known about factors associated with behaviors of developing and practicing an escape plan. Between July 2003 and June 2004, a baseline survey was administered, in person, to 691 rural households. Information collected included a history of previous home fire, perceived risk of home fire, existing smoke alarms and their working status, and home fire safety practices, as well as home and occupant characteristics. The association of residents' perceived risk of home fire and fire escape plans was assessed. Forty-two percent of rural households reported having a fire escape plan. Of the households with a plan, less than two thirds (56.9%) discussed or practiced the plan. Households with children were more likely to develop and practice a fire escape plan. Households with an elderly or disabled person were less likely to develop or practice the plan. Compared to respondents who perceived low or very low risk of home fire, those who perceived a high or very high risk had 3.5 times greater odds of having a fire escape plan and 5.5 times greater odds of discussion or practicing their plan. Increasing awareness of the potential risk of home fires may help occupants develop and practice home fire escape plans. In order to reduce fire deaths and injuries, different strategies need to be developed for those households in which the occupants lack the ability to escape.
Costing the satellite power system
NASA Technical Reports Server (NTRS)
Hazelrigg, G. A., Jr.
1978-01-01
The paper presents a methodology for satellite power system costing, places approximate limits on the accuracy possible in cost estimates made at this time, and outlines the use of probabilistic cost information in support of the decision-making process. Reasons for using probabilistic costing or risk analysis procedures instead of standard deterministic costing procedures are considered. Components of cost, costing estimating relationships, grass roots costing, and risk analysis are discussed. Risk analysis using a Monte Carlo simulation model is used to estimate future costs.
Bondar, Yu I; Navumau, A D; Nikitin, A N; Brown, J; Dowdall, M
2014-12-01
Forest fires and wild fires are recognized as a possible cause of resuspension and redistribution of radioactive substances when occurring on lands contaminated with such materials, and as such are a matter of concern within the regions of Belarus and the Ukraine which were contaminated by the Chernobyl accident in 1986. Modelling the effects of such fires on radioactive contaminants is a complex matter given the number of variables involved. In this paper, a probabilistic model was developed using empirical data drawn from the Polessie State Radiation-Ecological Reserve (PSRER), Belarus, and the Maximum Entropy Method. Using the model, it was possible to derive estimates of the contribution of fire events to overall variability in the levels of (137)Cs and (239,240)Pu in ground air as well as estimates of the deposition of these radionuclides to specific water bodies within the contaminated areas of Belarus. Results indicate that fire events are potentially significant redistributors of radioactive contaminants within the study area and may result in additional contamination being introduced to water bodies. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sánchez-Vizcaíno, Fernando; Perez, Andrés; Martínez-López, Beatriz; Sánchez-Vizcaíno, José Manuel
2012-08-01
Trade of animals and animal products imposes an uncertain and variable risk for exotic animal diseases introduction into importing countries. Risk analysis provides importing countries with an objective, transparent, and internationally accepted method for assessing that risk. Over the last decades, European Union countries have conducted probabilistic risk assessments quite frequently to quantify the risk for rare animal diseases introduction into their territories. Most probabilistic animal health risk assessments have been typically classified into one-level and multilevel binomial models. One-level models are more simple than multilevel models because they assume that animals or products originate from one single population. However, it is unknown whether such simplification may result in substantially different results compared to those obtained through the use of multilevel models. Here, data used on a probabilistic multilevel binomial model formulated to assess the risk for highly pathogenic avian influenza introduction into Spain were reanalyzed using a one-level binomial model and their outcomes were compared. An alternative ordinal model is also proposed here, which makes use of simpler assumptions and less information compared to those required by traditional one-level and multilevel approaches. Results suggest that, at least under certain circumstances, results of the one-level and ordinal approaches are similar to those obtained using multilevel models. Consequently, we argue that, when data are insufficient to run traditional probabilistic models, the ordinal approach presented here may be a suitable alternative to rank exporting countries in terms of the risk that they impose for the spread of rare animal diseases into disease-free countries. © 2012 Society for Risk Analysis.
Muis, Sanne; Güneralp, Burak; Jongman, Brenden; Aerts, Jeroen C J H; Ward, Philip J
2015-12-15
An accurate understanding of flood risk and its drivers is crucial for effective risk management. Detailed risk projections, including uncertainties, are however rarely available, particularly in developing countries. This paper presents a method that integrates recent advances in global-scale modeling of flood hazard and land change, which enables the probabilistic analysis of future trends in national-scale flood risk. We demonstrate its application to Indonesia. We develop 1000 spatially-explicit projections of urban expansion from 2000 to 2030 that account for uncertainty associated with population and economic growth projections, as well as uncertainty in where urban land change may occur. The projections show that the urban extent increases by 215%-357% (5th and 95th percentiles). Urban expansion is particularly rapid on Java, which accounts for 79% of the national increase. From 2000 to 2030, increases in exposure will elevate flood risk by, on average, 76% and 120% for river and coastal floods. While sea level rise will further increase the exposure-induced trend by 19%-37%, the response of river floods to climate change is highly uncertain. However, as urban expansion is the main driver of future risk, the implementation of adaptation measures is increasingly urgent, regardless of the wide uncertainty in climate projections. Using probabilistic urban projections, we show that spatial planning can be a very effective adaptation strategy. Our study emphasizes that global data can be used successfully for probabilistic risk assessment in data-scarce countries. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Vico, Giulia; Porporato, Amilcare
2013-04-01
Supplemental irrigation represents one of the main strategies to mitigate the effects of climate variability and stabilize yields. Irrigated agriculture currently provides 40% of food production and its relevance is expected to further increase in the near future, in face of the projected alterations of rainfall patterns and increase in food, fiber, and biofuel demand. Because of the significant investments and water requirements involved in irrigation, strategic choices are needed to preserve productivity and profitability, while maintaining a sustainable water management - a nontrivial task given the unpredictability of the rainfall forcing. To facilitate decision making under uncertainty, a widely applicable probabilistic framework is proposed. The occurrence of rainfall events and irrigation applications are linked probabilistically to crop development during the growing season and yields at harvest. Based on these linkages, the probability density function of yields and corresponding probability density function of required irrigation volumes, as well as the probability density function of yields under the most common case of limited water availability are obtained analytically, as a function of irrigation strategy, climate, soil and crop parameters. The full probabilistic description of the frequency of occurrence of yields and water requirements is a crucial tool for decision making under uncertainty, e.g., via expected utility analysis. Furthermore, the knowledge of the probability density function of yield allows us to quantify the yield reduction hydrologic risk. Two risk indices are defined and quantified: the long-term risk index, suitable for long-term irrigation strategy assessment and investment planning, and the real-time risk index, providing a rigorous probabilistic quantification of the emergence of drought conditions during a single growing season in an agricultural setting. Our approach employs relatively few parameters and is thus easily and broadly applicable to different crops and sites, under current and future climate scenarios. Hence, the proposed probabilistic framework provides a quantitative tool to assess the impact of irrigation strategy and water allocation on the risk of not meeting a certain target yield, thus guiding the optimal allocation of water resources for human and environmental needs.
Computational properties of networks of synchronous groups of spiking neurons.
Dayhoff, Judith E
2007-09-01
We demonstrate a model in which synchronously firing ensembles of neurons are networked to produce computational results. Each ensemble is a group of biological integrate-and-fire spiking neurons, with probabilistic interconnections between groups. An analogy is drawn in which each individual processing unit of an artificial neural network corresponds to a neuronal group in a biological model. The activation value of a unit in the artificial neural network corresponds to the fraction of active neurons, synchronously firing, in a biological neuronal group. Weights of the artificial neural network correspond to the product of the interconnection density between groups, the group size of the presynaptic group, and the postsynaptic potential heights in the synchronous group model. All three of these parameters can modulate connection strengths between neuronal groups in the synchronous group models. We give an example of nonlinear classification (XOR) and a function approximation example in which the capability of the artificial neural network can be captured by a neural network model with biological integrate-and-fire neurons configured as a network of synchronously firing ensembles of such neurons. We point out that the general function approximation capability proven for feedforward artificial neural networks appears to be approximated by networks of neuronal groups that fire in synchrony, where the groups comprise integrate-and-fire neurons. We discuss the advantages of this type of model for biological systems, its possible learning mechanisms, and the associated timing relationships.
Trends in fire risk and burned area in Brazil in the 20th century
NASA Astrophysics Data System (ADS)
Silva, P.; Bastos, A.; DaCamara, C.; Libonati, R.
2016-12-01
Fire has a significant contribution to the global greenhouse gas emissions and vast ecological and climatic impacts. Worldwide, Brazil is one of the areas most affected by fire, which highly influences the state of the vegetation cover, the ecological diversity of the region and has significant consequences to the global CO2 balance [1]. Hence, with the increasing evidence of human induced climate change, it becomes essential to understand the present and future trends of fire risk in Brazil. Although a large number of fires in Brazil are anthropogenic, it has been shown that the burned area is mainly controlled by meteorological conditions [2], therefore being partially determined by fire risk. In this study we use a fire danger index specifically tailored for the Brazilian climate and biome characteristics, the MFDI developed by INPE, to assess the patterns and trends of fire risk in Brazil. The index relies on values of maximum temperature, accumulated precipitation over different periods, minimum relative humidity and vegetation cover to estimate the likelihood of fire occurrence. We test the sensitivity of the index to different climate reanalyses and evaluate the trends in fire risk in Brazil during the past four decades for different biomes. We further assess the link between the calculated fire risk and observed fire occurrence and burned area. Finally, we compare the results with fire risk simulated by a regional climate model (RCA4 forced by EC-Earth from CORDEX) in order to evaluate its suitability for future projections of fire risk and burned area. [1] Bowman, D. M. et al. Fire in the earth system. Science, v. 324, p. 481-484, 24 apr. 2009. [2] Libonati, R. et al. An Algorithm for Burned Area Detection in the Brazilian Cerrado Using 4 μm MODIS Imagery. Remote Sensing, v. 7, p. 15782-15803, 2015.
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
This document is the Executive Summary of a technical report on a probabilistic risk assessment (PRA) of the Space Shuttle vehicle performed under the sponsorship of the Office of Space Flight of the US National Aeronautics and Space Administration. It briefly summarizes the methodology and results of the Shuttle PRA. The primary objective of this project was to support management and engineering decision-making with respect to the Shuttle program by producing (1) a quantitative probabilistic risk model of the Space Shuttle during flight, (2) a quantitative assessment of in-flight safety risk, (3) an identification and prioritization of the design and operations that principally contribute to in-flight safety risk, and (4) a mechanism for risk-based evaluation proposed modifications to the Shuttle System. Secondary objectives were to provide a vehicle for introducing and transferring PRA technology to the NASA community, and to demonstrate the value of PRA by applying it beneficially to a real program of great international importance.
Recent developments of the NESSUS probabilistic structural analysis computer program
NASA Technical Reports Server (NTRS)
Millwater, H.; Wu, Y.-T.; Torng, T.; Thacker, B.; Riha, D.; Leung, C. P.
1992-01-01
The NESSUS probabilistic structural analysis computer program combines state-of-the-art probabilistic algorithms with general purpose structural analysis methods to compute the probabilistic response and the reliability of engineering structures. Uncertainty in loading, material properties, geometry, boundary conditions and initial conditions can be simulated. The structural analysis methods include nonlinear finite element and boundary element methods. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. The scope of the code has recently been expanded to include probabilistic life and fatigue prediction of structures in terms of component and system reliability and risk analysis of structures considering cost of failure. The code is currently being extended to structural reliability considering progressive crack propagation. Several examples are presented to demonstrate the new capabilities.
Real time forest fire warning and forest fire risk zoning: a Vietnamese case study
NASA Astrophysics Data System (ADS)
Chu, T.; Pham, D.; Phung, T.; Ha, A.; Paschke, M.
2016-12-01
Forest fire occurs seriously in Vietnam and has been considered as one of the major causes of forest lost and degradation. Several studies of forest fire risk warning were conducted using Modified Nesterov Index (MNI) but remaining shortcomings and inaccurate predictions that needs to be urgently improved. In our study, several important topographic and social factors such as aspect, slope, elevation, distance to residential areas and road system were considered as "permanent" factors while meteorological data were updated hourly using near-real-time (NRT) remotely sensed data (i.e. MODIS Terra/Aqua and TRMM) for the prediction and warning of fire. Due to the limited number of weather stations in Vietnam, data from all active stations (i.e. 178) were used with the satellite data to calibrate and upscale meteorological variables. These data with finer resolution were then used to generate MNI. The only significant "permanent" factors were selected as input variables based on the correlation coefficients that computed from multi-variable regression among true fire-burning (collected from 1/2007) and its spatial characteristics. These coefficients also used to suggest appropriate weight for computing forest fire risk (FR) model. Forest fire risk model was calculated from the MNI and the selected factors using fuzzy regression models (FRMs) and GIS based multi-criteria analysis. By this approach, the FR was slightly modified from MNI by the integrated use of various factors in our fire warning and prediction model. Multifactor-based maps of forest fire risk zone were generated from classifying FR into three potential danger levels. Fire risk maps were displayed using webgis technology that is easy for managing data and extracting reports. Reported fire-burnings thereafter have been used as true values for validating the forest fire risk. Fire probability has strong relationship with potential danger levels (varied from 5.3% to 53.8%) indicating that the higher potential risk, the more chance of fire happen. By adding spatial factors to continuous daily updated remote sensing based meteo-data, results are valuable for both mapping forest fire risk zones in short and long-term and real time fire warning in Vietnam. Key words: Near-real-time, forest fire warning, fuzzy regression model, remote sensing.
Advanced Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Technical Exchange Meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis
2013-09-01
During FY13, the INL developed an advanced SMR PRA framework which has been described in the report Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Technical Framework Specification, INL/EXT-13-28974 (April 2013). In this framework, the various areas are considered: Probabilistic models to provide information specific to advanced SMRs Representation of specific SMR design issues such as having co-located modules and passive safety features Use of modern open-source and readily available analysis methods Internal and external events resulting in impacts to safety All-hazards considerations Methods to support the identification of design vulnerabilities Mechanistic and probabilistic data needs to support modelingmore » and tools In order to describe this framework more fully and obtain feedback on the proposed approaches, the INL hosted a technical exchange meeting during August 2013. This report describes the outcomes of that meeting.« less
Fire occurrence prediction in the Mediterranean: Application to Southern France
NASA Astrophysics Data System (ADS)
Papakosta, Panagiota; Öster, Jan; Scherb, Anke; Straub, Daniel
2013-04-01
The areas that extend in the Mediterranean basin have a long fire history. The climatic conditions of wet winters and long hot drying summers support seasonal fire events, mainly ignited by humans. Extended land fragmentation hinders fire spread, but seasonal winds (e.g. Mistral in South France or Meltemia in Greece) can drive fire events to become uncontrollable fires with severe impacts to humans and the environment [1]. Prediction models in these areas should incorporate both natural and anthropogenic factors. Several indices have been developed worldwide to express fire weather conditions. The Canadian Fire Weather Index (FWI) is currently adapted by many countries in Europe due to the easily observable input weather parameters (temperature, wind speed, relative humidity, precipitation) and the easy-to-implement algorithms of the Canadian formulation describing fuel moisture relations [2],[3]. Human influence can be expressed directly by human presence (e.g. population density) or indirectly by proxy indicators (e.g. street density [4], land cover type). The random nature of fire occurrences and the uncertainties associated with the influencing factors motivate probabilistic prediction models. The aim of this study is to develop a prediction model of fire occurrence probability under natural and anthropogenic influence in Southern France and to compare it with earlier developed predictions in other Mediterranean areas [5]. Fire occurrence is modeled as a Poisson process. Two interpolation methods (Kriging and Inverse Distance Weighting) are used to interpolate daily weather observations from weather stations to a 1 km² spatial grid and their results are compared. Poisson regression estimates the parameters of the model and the resulting daily predictions are provided in terms of maps displaying fire occurrence rates. The model is applied to the regions Provence-Alpes-Côtes D'Azur und Languedoc-Roussillon in the South of France. Weather data are obtained from the German and French Weather Services (Deutscher Wetterdienst and Météo-France). Historical fire events are taken from Prométhée database. Time series 2000-2010 are used as learning data and data from 2011 is used as the validation data. The resulting model can support real-time fire risk estimation for improved allocation of firefighting resources and planning of other mitigation actions. [1] Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. (2012): Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, New York, USA, pp.515 [2] Lawson, B.D.; Armitage, O.B. (2008): Weather Guide for the Canadian Forest Fire Danger Rating System. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada. [3] Van Wagner, C.E.; Pickett, T.L. (1985): Equations and FORTRAN Program for the Canadian Forest Fire Weather Index System. Forestry Technical Report 33. Canadian Forestry Service, Government of Canada, Ottawa, Ontario, Canada [4] Syphard, A.D.; Radeloff, V.C.; Keuler, N.S.; Taylor, R.S.; Hawbaker, T.J.; Stewart, S.I.; Clayton, M.K. (2008): Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire, 17, pp.602-613 [5] Papakosta, P.; Klein, F.; König, S.; Straub, D. (2012): Linking spatio-temporal data to the Fire Weather Index to estimate the probability of wildfire in the Mediterranean. Geophysical Research Abstracts, Vol.14, EGU2012-12737, EGU General Assembly 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravindra, M.K.; Banon, H.
1992-07-01
In this report, the scoping quantification procedures for external events in probabilistic risk assessments of nuclear power plants are described. External event analysis in a PRA has three important goals; (1) the analysis should be complete in that all events are considered; (2) by following some selected screening criteria, the more significant events are identified for detailed analysis; (3) the selected events are analyzed in depth by taking into account the unique features of the events: hazard, fragility of structures and equipment, external-event initiated accident sequences, etc. Based on the above goals, external event analysis may be considered as amore » three-stage process: Stage I: Identification and Initial Screening of External Events; Stage II: Bounding Analysis; Stage III: Detailed Risk Analysis. In the present report, first, a review of published PRAs is given to focus on the significance and treatment of external events in full-scope PRAs. Except for seismic, flooding, fire, and extreme wind events, the contributions of other external events to plant risk have been found to be negligible. Second, scoping methods for external events not covered in detail in the NRC`s PRA Procedures Guide are provided. For this purpose, bounding analyses for transportation accidents, extreme winds and tornadoes, aircraft impacts, turbine missiles, and chemical release are described.« less
An approach to the real time risk evaluation system of boreal forest fire
NASA Astrophysics Data System (ADS)
Nakau, K.; Fukuda, M.; Kimura, K.; Hayasaka, H.; Tani, H.; Kushida, K.
2005-12-01
Huge boreal forest fire may cause massive impacts not only on global warming gas emission but also local communities. Thus, it is important to control forest fire. We collected data about boreal forest fire as satellite imagery and fire observation simultaneously in Alaska and east Siberia in summer fire seasons for these three years. Fire observation data was collected from aircraft flying between Japan and Europe. Fire detection results were compared with observed data to evaluate the accuracy and earliness of automatic detection. NOAA and MODIS satellite images covering Alaska and East Siberia are collected. We are also developing fire expansion simulation model to forecast the possible fire expansion area. On the basis of fire expansion forecast, risk analysis of possible fire expansion for decision aid of fire-fighting activities will be analyzed. To identify the risk of boreal forest fire and public concern about forest fire, we collected local news paper in Fairbanks, AK and discuss the statistics of articles related to forest fire on the newspaper.
Probabilistic evaluation of uncertainties and risks in aerospace components
NASA Technical Reports Server (NTRS)
Shah, A. R.; Shiao, M. C.; Nagpal, V. K.; Chamis, C. C.
1992-01-01
A methodology is presented for the computational simulation of primitive variable uncertainties, and attention is given to the simulation of specific aerospace components. Specific examples treated encompass a probabilistic material behavior model, as well as static, dynamic, and fatigue/damage analyses of a turbine blade in a mistuned bladed rotor in the SSME turbopumps. An account is given of the use of the NESSES probabilistic FEM analysis CFD code.
Method and system for dynamic probabilistic risk assessment
NASA Technical Reports Server (NTRS)
Dugan, Joanne Bechta (Inventor); Xu, Hong (Inventor)
2013-01-01
The DEFT methodology, system and computer readable medium extends the applicability of the PRA (Probabilistic Risk Assessment) methodology to computer-based systems, by allowing DFT (Dynamic Fault Tree) nodes as pivot nodes in the Event Tree (ET) model. DEFT includes a mathematical model and solution algorithm, supports all common PRA analysis functions and cutsets. Additional capabilities enabled by the DFT include modularization, phased mission analysis, sequence dependencies, and imperfect coverage.
Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners (Second Edition)
NASA Technical Reports Server (NTRS)
Stamatelatos,Michael; Dezfuli, Homayoon; Apostolakis, George; Everline, Chester; Guarro, Sergio; Mathias, Donovan; Mosleh, Ali; Paulos, Todd; Riha, David; Smith, Curtis;
2011-01-01
Probabilistic Risk Assessment (PRA) is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in complex technological systems for the purpose of cost-effectively improving their safety and performance. NASA's objective is to better understand and effectively manage risk, and thus more effectively ensure mission and programmatic success, and to achieve and maintain high safety standards at NASA. NASA intends to use risk assessment in its programs and projects to support optimal management decision making for the improvement of safety and program performance. In addition to using quantitative/probabilistic risk assessment to improve safety and enhance the safety decision process, NASA has incorporated quantitative risk assessment into its system safety assessment process, which until now has relied primarily on a qualitative representation of risk. Also, NASA has recently adopted the Risk-Informed Decision Making (RIDM) process [1-1] as a valuable addition to supplement existing deterministic and experience-based engineering methods and tools. Over the years, NASA has been a leader in most of the technologies it has employed in its programs. One would think that PRA should be no exception. In fact, it would be natural for NASA to be a leader in PRA because, as a technology pioneer, NASA uses risk assessment and management implicitly or explicitly on a daily basis. NASA has probabilistic safety requirements (thresholds and goals) for crew transportation system missions to the International Space Station (ISS) [1-2]. NASA intends to have probabilistic requirements for any new human spaceflight transportation system acquisition. Methods to perform risk and reliability assessment in the early 1960s originated in U.S. aerospace and missile programs. Fault tree analysis (FTA) is an example. It would have been a reasonable extrapolation to expect that NASA would also become the world leader in the application of PRA. That was, however, not to happen. Early in the Apollo program, estimates of the probability for a successful roundtrip human mission to the moon yielded disappointingly low (and suspect) values and NASA became discouraged from further performing quantitative risk analyses until some two decades later when the methods were more refined, rigorous, and repeatable. Instead, NASA decided to rely primarily on the Hazard Analysis (HA) and Failure Modes and Effects Analysis (FMEA) methods for system safety assessment.
Domains of Risk in the Developmental Continuity of Fire Setting
ERIC Educational Resources Information Center
McCarty, Carolyn A.; McMahon, Robert J.
2005-01-01
Juvenile fire setting is a serious, dangerous, and costly behavior. The majority of research examining youth fire setting has been cross-sectional. We sought to examine early risk attributes that could differentiate fire setters from non-fire setters, in addition to examining their association with the developmental continuity of fire-setting…
Probability and possibility-based representations of uncertainty in fault tree analysis.
Flage, Roger; Baraldi, Piero; Zio, Enrico; Aven, Terje
2013-01-01
Expert knowledge is an important source of input to risk analysis. In practice, experts might be reluctant to characterize their knowledge and the related (epistemic) uncertainty using precise probabilities. The theory of possibility allows for imprecision in probability assignments. The associated possibilistic representation of epistemic uncertainty can be combined with, and transformed into, a probabilistic representation; in this article, we show this with reference to a simple fault tree analysis. We apply an integrated (hybrid) probabilistic-possibilistic computational framework for the joint propagation of the epistemic uncertainty on the values of the (limiting relative frequency) probabilities of the basic events of the fault tree, and we use possibility-probability (probability-possibility) transformations for propagating the epistemic uncertainty within purely probabilistic and possibilistic settings. The results of the different approaches (hybrid, probabilistic, and possibilistic) are compared with respect to the representation of uncertainty about the top event (limiting relative frequency) probability. Both the rationale underpinning the approaches and the computational efforts they require are critically examined. We conclude that the approaches relevant in a given setting depend on the purpose of the risk analysis, and that further research is required to make the possibilistic approaches operational in a risk analysis context. © 2012 Society for Risk Analysis.
Fire safety knowledge and practices among residents of an assisted living facility.
Jaslow, David; Ufberg, Jacob; Yoon, Russell; McQueen, Clay; Zecher, Derek; Jakubowski, Greg
2005-01-01
Assisted living facilities (ALFs) pose unique fire risks to the elderly that may be linked to specific fire safety (FS) practices. To evaluate self-reported FS practices among ALF residents. All residents of a small ALF were surveyed regarding actual and hypothetical FS behaviors, self-perceived fire risk, and FS preparedness. Fifty-eight ALF residents completed the survey. Thirty-three (58%) individuals reported one or more disabilities. Seven (12%) residents ignored the fire alarm and 21 (35%) could not hear it clearly. Sixteen (28%) residents would attempt to locate the source of a fire rather than escape from the building. Only 24 (42%) residents were familiar with the building fire plan. Twenty-three (40%) people surveyed believed that they were not at risk of fire in the study facility. Residents of an ALF may be at increased fire injury risk due to their FS practices and disabilities.
Chapter 4. Predicting post-fire erosion and sedimentation risk on a landscape scale
MacDonald, L.H.; Sampson, R.; Brady, D.; Juarros, L.; Martin, Deborah
2000-01-01
Historic fire suppression efforts have increased the likelihood of large wildfires in much of the western U.S. Post-fire soil erosion and sedimentation risks are important concerns to resource managers. In this paper we develop and apply procedures to predict post-fire erosion and sedimentation risks on a pixel-, catchment-, and landscape-scale in central and western Colorado.Our model for predicting post-fire surface erosion risk is conceptually similar to the Revised Universal Soil Loss Equation (RUSLE). One key addition is the incorporation of a hydrophobicity risk index (HY-RISK) based on vegetation type, predicted fire severity, and soil texture. Post-fire surface erosion risk was assessed for each 90-m pixel by combining HYRISK, slope, soil erodibility, and a factor representing the likely increase in soil wetness due to removal of the vegetation. Sedimentation risk was a simple function of stream gradient. Composite surface erosion and sedimentation risk indices were calculated and compared across the 72 catchments in the study area.When evaluated on a catchment scale, two-thirds of the catchments had relatively little post-fire erosion risk. Steeper catchments with higher fuel loadings typically had the highest post-fire surface erosion risk. These were generally located along the major north-south mountain chains and, to a lesser extent, in west-central Colorado. Sedimentation risks were usually highest in the eastern part of the study area where a higher proportion of streams had lower gradients. While data to validate the predicted erosion and sedimentation risks are lacking, the results appear reasonable and are consistent with our limited field observations. The models and analytic procedures can be readily adapted to other locations and should provide useful tools for planning and management at both the catchment and landscape scale.
Surgical fires, a clear and present danger.
Yardley, I E; Donaldson, L J
2010-04-01
A surgical fire is potentially devastating for a patient. Fire has been recognised as a potential complication of surgery for many years. Surgical fires continue to happen with alarming frequency. We present a review of the literature and an examination of possible solutions to this problem. The PubMed and Medline databases from 1948 onwards were searched using the subject headings "operating rooms", "fire", "safety" and "safety management". "Surgical fire" was also searched as a keyword. Relevant references from articles were obtained. Fire occurs when the three elements of the fire triad, fuel, oxidiser and ignition coincide. Surgical fires are unusual in the absence of an oxygen-enriched atmosphere. The ignition source is most commonly diathermy but lasers carry a relatively greater risk. The majority of fires occur during head and neck surgery. This is due to the presence of oxygen and the extensive use of lasers. The risk of fire can be reduced with an awareness of the risk and good communication. Surgery will always carry a risk of fire. Reducing this risk requires a concerted effort from all team members. Copyright 2010 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
What is the Value Added to Adaptation Planning by Probabilistic Projections of Climate Change?
NASA Astrophysics Data System (ADS)
Wilby, R. L.
2008-12-01
Probabilistic projections of climate change offer new sources of risk information to support regional impacts assessment and adaptation options appraisal. However, questions continue to surround how best to apply these scenarios in a practical context, and whether the added complexity and computational burden leads to more robust decision-making. This paper provides an overview of recent efforts in the UK to 'bench-test' frameworks for employing probabilistic projections ahead of the release of the next generation, UKCIP08 projections (in November 2008). This is involving close collaboration between government agencies, research and stakeholder communities. Three examples will be cited to illustrate how probabilistic projections are already informing decisions about future flood risk management in London, water resource planning in trial river basins, and assessments of risks from rising water temperatures to Atlantic salmon stocks in southern England. When compared with conventional deterministic scenarios, ensemble projections allow exploration of a wider range of management options and highlight timescales for implementing adaptation measures. Users of probabilistic scenarios must keep in mind that other uncertainties (e.g., due to impacts model structure and parameterisation) should be handled in an equally rigorous way to those arising from climate models and emission scenarios. Finally, it is noted that a commitment to long-term monitoring is also critical for tracking environmental change, testing model projections, and for evaluating the success (or not) of any scenario-led interventions.
NASA Astrophysics Data System (ADS)
Price, O. F.; Bradstock, R. A.
2013-12-01
In order to quantify the risks from fire at the wildland urban interface (WUI), it is important to understand where fires occur and their likelihood of spreading to the WUI. For each of the 999 fires in the Sydney region we calculated the distance between the ignition and the WUI, the fire's weather and wind direction and whether it spread to the WUI. The likelihood of burning the WUI was analysed using binomial regression. Weather and distance interacted such that under mild weather conditions, the model predicted only a 5% chance that a fire starting >2.5 km from the interface would reach it, whereas when the conditions are extreme the predicted chance remained above 30% even at distances >10 km. Fires were more likely to spread to the WUI if the wind was from the west and in the western side of the region. We examined whether the management responses to wildfires are commensurate with risk by comparing the distribution of distance to the WUI of wildfires with roads and prescribed fires. Prescribed fires and roads were concentrated nearer to the WUI than wildfires as a whole, but further away than wildfires that burnt the WUI under extreme weather conditions (high risk fires). Overall, 79% of these high risk fires started within 2 km of the WUI, so there is some argument for concentrating more management effort near the WUI. By substituting climate change scenario weather into the statistical model, we predicted a small increase in the risk of fires spreading to the WUI, but the increase will be greater under extreme weather. This approach has a variety of uses, including mapping fire risk and improving the ability to match fire management responses to the threat from each fire. They also provide a baseline from which a cost-benefit analysis of complementary fire management strategies can be conducted.
NASA Astrophysics Data System (ADS)
Price, O. F.; Bradstock, R. A.
2013-09-01
In order to quantify the risks from fire at the Wildland Urban Interface (WUI), it is important to understand where fires occur and their likelihood of spreading to the WUI. For each of 999 fires in the Sydney region we calculated the distance between the ignition and the WUI, the fire weather and wind direction and whether it spread to the WUI. The likelihood of burning the WUI was analysed using binomial regression. Weather and distance interacted such that under mild weather conditions, the model predicted only a 5% chance that a fire starting more than 2.5 km from the interface would reach it, whereas when the conditions are extreme the predicted chance remained above 30% even at distances further than 10 km. Fires were more likely to spread to the WUI if the wind was from the west and in the western side of the region. We examined whether the management responses to wildfires are commensurate with risk by comparing the distribution of distance to the WUI of wildfires with roads and prescribed fires. Prescribed fires and roads were concentrated nearer to the WUI than wildfires as a whole, but further away than wildfires that burnt the WUI under extreme weather conditions (high risk fires). 79% of these high risk fires started within 2 km of the WUI, so there is some argument for concentrating more management effort near the WUI. By substituting climate change scenario weather into the statistical model, we predicted a small increase in the risk of fires spreading to the WUI, but the increase will be greater under extreme weather. This approach has a variety of uses, including mapping fire risk and improving the ability to match fire management responses to the threat from each fire. They also provide a baseline from which a cost-benefit analysis of complementary fire management strategies can be conducted.
Risk in fire management decisionmaking: techniques and criteria
Gail Blatternberger; William F. Hyde; Thomas J. Mills
1984-01-01
In the past, decisionmaking in wildland fire management generally has not included a full consideration of the risk and uncertainty that is inherent in evaluating alternatives. Fire management policies in some Federal land management agencies now require risk evaluation. The model for estimating the economic efficiency of fire program alternatives is the minimization...
Chen, Yingming Amy; Bridgman-Acker, Karen; Edwards, Jim; Lauwers, Albert Edward
2011-05-01
To identify the predictors of residential fire deaths in the Ontario pediatric population using systematically collected data from the Office of the Chief Coroner. Retrospective cohort study. Ontario. Children younger than 16 years of age who died in accidental residential fires in Ontario between January 1, 2001, and December 31, 2006. The study retrospectively reviewed the coroner's case files for 60 subjects who qualified according to the selection criteria. Reviewed documents included the coroner's investigation statements, autopsy reports, toxicology reports, fire marshal's reports, police reports, and Children's Aid Society (CAS) reports. Information on a range of demographic, behavioural, social, and environmental factors was collected. Statistical tests, including relative risk, relative risk confidence intervals, and χ(2) tests were performed to determine the correlation between factors of interest and to establish their significance. Thirty-nine fire events resulting in 60 deaths occurred between 2001 and 2006. Fire play and electrical failures were the top 2 causes of residential fires. More fires occurred during the night (midnight to 9 AM) than during the day (9 AM to midnight). Nighttime fires were most commonly due to electrical failures or unattended candles, whereas daytime fires were primarily caused by unsupervised fire play and stove fires. Smoke alarms were present at 32 of 39 fire events (82%), but overall alarm functionality was only 54%. Children from families with a history of CAS involvement were approximately 32 times more likely to die in fires. Risk factors for pediatric fire death in Ontario include smoke alarm functionality, fire play, fire escape behaviour, and CAS involvement. Efforts to prevent residential fire deaths should target these populations and risk factors, and primary care physicians should consider education around these issues as a primary preventive strategy for families with young children.
Probabilistic risk analysis of building contamination.
Bolster, D T; Tartakovsky, D M
2008-10-01
We present a general framework for probabilistic risk assessment (PRA) of building contamination. PRA provides a powerful tool for the rigorous quantification of risk in contamination of building spaces. A typical PRA starts by identifying relevant components of a system (e.g. ventilation system components, potential sources of contaminants, remediation methods) and proceeds by using available information and statistical inference to estimate the probabilities of their failure. These probabilities are then combined by means of fault-tree analyses to yield probabilistic estimates of the risk of system failure (e.g. building contamination). A sensitivity study of PRAs can identify features and potential problems that need to be addressed with the most urgency. Often PRAs are amenable to approximations, which can significantly simplify the approach. All these features of PRA are presented in this paper via a simple illustrative example, which can be built upon in further studies. The tool presented here can be used to design and maintain adequate ventilation systems to minimize exposure of occupants to contaminants.
Forecasting European Wildfires Today and in the Future
NASA Astrophysics Data System (ADS)
Navarro Abellan, Maria; Porras Alegre, Ignasi; María Sole, Josep; Gálvez, Pedro; Bielski, Conrad; Nurmi, Pertti
2017-04-01
Society as a whole is increasingly exposed and vulnerable to natural disasters due to extreme weather events exacerbated by climate change. The increased frequency of wildfires is not only a result of a changing climate, but wildfires themselves also produce a significant amount of greenhouse gases that, in-turn, further contribute to global warming. I-REACT (Improving Resilience to Emergencies through Advanced Cyber Technologies) is an innovation project funded by the European Commission , which aims to use social media, smartphones and wearables to improve natural disaster management by integrating existing services, both local and European, into a platform that supports the entire emergency management cycle. In order to assess the impact of climate change on wildfire hazards, METEOSIM designed two different System Processes (SP) that will be integrated into the I-REACT service that can provide information on a variety of time scales. SP1 - Climate Change Impact The climate change impact on climate variables related to fires is calculated by building an ensemble based on the Coupled Model Intercomparison Project Phase 5 (CMIP5) and CORDEX data. A validation and an Empirical-Statistical Downscaling (ESD) calibration are done to assess the changes in the past of the climatic variables related to wildfires (temperature, precipitation, wind, relative humidity and Fire Weather Index). Calculations in the trend and the frequency of extreme events of those variables are done for three time scales: near-term (2011-2040), mid-term (2041-2070) and long term (2071-2100). SP2 - Operational daily forecast of the Canadian Forest Fire Weather Index (FWI) Using ensemble data from the ECMWF and from the GLAMEPS (multi-model ensemble) models, both supplied by the Finnish Meteorological Institute (FMI), the Fire Weather Index (FWI) and its index components are produced for each ensemble member within a wide forecast time range, from a few hours up to 10 days resulting in a probabilistic output of the FWI for different regions in Europe. This work will improve the currently available information to various wildfire information users such as fire departments, the civil protection, local authorities, etc., where accurate and reliable information in extreme weather situations are vital for improving planning and risk management.
Guo, Guang-Hui; Wu, Feng-Chang; He, Hong-Ping; Feng, Cheng-Lian; Zhang, Rui-Qing; Li, Hui-Xian
2012-04-01
Probabilistic approaches, such as Monte Carlo Sampling (MCS) and Latin Hypercube Sampling (LHS), and non-probabilistic approaches, such as interval analysis, fuzzy set theory and variance propagation, were used to characterize uncertainties associated with risk assessment of sigma PAH8 in surface water of Taihu Lake. The results from MCS and LHS were represented by probability distributions of hazard quotients of sigma PAH8 in surface waters of Taihu Lake. The probabilistic distribution of hazard quotient were obtained from the results of MCS and LHS based on probabilistic theory, which indicated that the confidence intervals of hazard quotient at 90% confidence level were in the range of 0.000 18-0.89 and 0.000 17-0.92, with the mean of 0.37 and 0.35, respectively. In addition, the probabilities that the hazard quotients from MCS and LHS exceed the threshold of 1 were 9.71% and 9.68%, respectively. The sensitivity analysis suggested the toxicity data contributed the most to the resulting distribution of quotients. The hazard quotient of sigma PAH8 to aquatic organisms ranged from 0.000 17 to 0.99 using interval analysis. The confidence interval was (0.001 5, 0.016 3) at the 90% confidence level calculated using fuzzy set theory, and the confidence interval was (0.000 16, 0.88) at the 90% confidence level based on the variance propagation. These results indicated that the ecological risk of sigma PAH8 to aquatic organisms were low. Each method has its own set of advantages and limitations, which was based on different theory; therefore, the appropriate method should be selected on a case-by-case to quantify the effects of uncertainties on the ecological risk assessment. Approach based on the probabilistic theory was selected as the most appropriate method to assess the risk of sigma PAH8 in surface water of Taihu Lake, which provided an important scientific foundation of risk management and control for organic pollutants in water.
NASA Astrophysics Data System (ADS)
Klügel, J.
2006-12-01
Deterministic scenario-based seismic hazard analysis has a long tradition in earthquake engineering for developing the design basis of critical infrastructures like dams, transport infrastructures, chemical plants and nuclear power plants. For many applications besides of the design of infrastructures it is of interest to assess the efficiency of the design measures taken. These applications require a method allowing to perform a meaningful quantitative risk analysis. A new method for a probabilistic scenario-based seismic risk analysis has been developed based on a probabilistic extension of proven deterministic methods like the MCE- methodology. The input data required for the method are entirely based on the information which is necessary to perform any meaningful seismic hazard analysis. The method is based on the probabilistic risk analysis approach common for applications in nuclear technology developed originally by Kaplan & Garrick (1981). It is based (1) on a classification of earthquake events into different size classes (by magnitude), (2) the evaluation of the frequency of occurrence of events, assigned to the different classes (frequency of initiating events, (3) the development of bounding critical scenarios assigned to each class based on the solution of an optimization problem and (4) in the evaluation of the conditional probability of exceedance of critical design parameters (vulnerability analysis). The advantage of the method in comparison with traditional PSHA consists in (1) its flexibility, allowing to use different probabilistic models for earthquake occurrence as well as to incorporate advanced physical models into the analysis, (2) in the mathematically consistent treatment of uncertainties, and (3) in the explicit consideration of the lifetime of the critical structure as a criterion to formulate different risk goals. The method was applied for the evaluation of the risk of production interruption losses of a nuclear power plant during its residual lifetime.
Back to Basics: Preventing Surgical Fires.
Spruce, Lisa
2016-09-01
When fires occur in the OR, they are devastating and potentially fatal to both patients and health care workers. Fires can be prevented by understanding the fire triangle and methods of reducing fire risk, conducting fire risk assessments, and knowing how to respond if a fire occurs. This Back to Basics article addresses the basics of fire prevention and the steps that can be taken to prevent fires from occurring. Copyright © 2016 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Reliability and Probabilistic Risk Assessment - How They Play Together
NASA Technical Reports Server (NTRS)
Safie, Fayssal; Stutts, Richard; Huang, Zhaofeng
2015-01-01
Since the Space Shuttle Challenger accident in 1986, NASA has extensively used probabilistic analysis methods to assess, understand, and communicate the risk of space launch vehicles. Probabilistic Risk Assessment (PRA), used in the nuclear industry, is one of the probabilistic analysis methods NASA utilizes to assess Loss of Mission (LOM) and Loss of Crew (LOC) risk for launch vehicles. PRA is a system scenario based risk assessment that uses a combination of fault trees, event trees, event sequence diagrams, and probability distributions to analyze the risk of a system, a process, or an activity. It is a process designed to answer three basic questions: 1) what can go wrong that would lead to loss or degraded performance (i.e., scenarios involving undesired consequences of interest), 2) how likely is it (probabilities), and 3) what is the severity of the degradation (consequences). Since the Challenger accident, PRA has been used in supporting decisions regarding safety upgrades for launch vehicles. Another area that was given a lot of emphasis at NASA after the Challenger accident is reliability engineering. Reliability engineering has been a critical design function at NASA since the early Apollo days. However, after the Challenger accident, quantitative reliability analysis and reliability predictions were given more scrutiny because of their importance in understanding failure mechanism and quantifying the probability of failure, which are key elements in resolving technical issues, performing design trades, and implementing design improvements. Although PRA and reliability are both probabilistic in nature and, in some cases, use the same tools, they are two different activities. Specifically, reliability engineering is a broad design discipline that deals with loss of function and helps understand failure mechanism and improve component and system design. PRA is a system scenario based risk assessment process intended to assess the risk scenarios that could lead to a major/top undesirable system event, and to identify those scenarios that are high-risk drivers. PRA output is critical to support risk informed decisions concerning system design. This paper describes the PRA process and the reliability engineering discipline in detail. It discusses their differences and similarities and how they work together as complementary analyses to support the design and risk assessment processes. Lessons learned, applications, and case studies in both areas are also discussed in the paper to demonstrate and explain these differences and similarities.
Deriving forest fire ignition risk with biogeochemical process modelling.
Eastaugh, C S; Hasenauer, H
2014-05-01
Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's 'soil water' and 'labile litter carbon' variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness.
Deriving forest fire ignition risk with biogeochemical process modelling☆
Eastaugh, C.S.; Hasenauer, H.
2014-01-01
Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905
WRF-based fire risk modelling and evaluation for years 2010 and 2012 in Poland
NASA Astrophysics Data System (ADS)
Stec, Magdalena; Szymanowski, Mariusz; Kryza, Maciej
2016-04-01
Wildfires are one of the main ecosystems' disturbances for forested, seminatural and agricultural areas. They generate significant economic loss, especially in forest management and agriculture. Forest fire risk modeling is therefore essential e.g. for forestry administration. In August 2015 a new method of forest fire risk forecasting entered into force in Poland. The method allows to predict a fire risk level in a 4-degree scale (0 - no risk, 3 - highest risk) and consists of a set of linearized regression equations. Meteorological information is used as predictors in regression equations, with air temperature, relative humidity, average wind speed, cloudiness and rainfall. The equations include also pine litter humidity as a measure of potential fuel characteristics. All these parameters are measured routinely in Poland at 42 basic and 94 auxiliary sites. The fire risk level is estimated for a current (basing on morning measurements) or next day (basing on midday measurements). Entire country is divided into 42 prognostic zones, and fire risk level for each zone is taken from the closest measuring site. The first goal of this work is to assess if the measurements needed for fire risk forecasting may be replaced by the data from mesoscale meteorological model. Additionally, the use of a meteorological model would allow to take into account much more realistic spatial differentiation of weather elements determining the fire risk level instead of discrete point-made measurements. Meteorological data have been calculated using the Weather Research and Forecasting model (WRF). For the purpose of this study the WRF model is run in the reanalysis mode allowing to estimate all required meteorological data in a 5-kilometers grid. The only parameter that cannot be directly calculated using WRF is the litter humidity, which has been estimated using empirical formula developed by Sakowska (2007). The experiments are carried out for two selected years: 2010 and 2012. The year 2010 was characterized by the smallest number of wildfires and burnt area whereas 2012 - by the biggest number of fires and the largest area of conflagration. The data about time, localization, scale and causes of individual wildfire occurrence in given years are taken from the National Forest Fire Information System (KSIPL), administered by Forest Fire Protection Department of Polish Forest Research Institute. The database is a part of European Forest Fire Information System (EFFIS). Basing on this data and on the WRF-based fire risk modelling we intend to achieve the second goal of the study, which is the evaluation of the forecasted fire risk with an occurrence of wildfires. Special attention is paid here to the number, time and the spatial distribution of wildfires occurred in cases of low-level predicted fire risk. Results obtained reveals the effectiveness of the new forecasting method. The outcome of our investigation allows to draw a conclusion that some adjustments are possible to improve the efficiency on the fire-risk estimation method.
Software for Probabilistic Risk Reduction
NASA Technical Reports Server (NTRS)
Hensley, Scott; Michel, Thierry; Madsen, Soren; Chapin, Elaine; Rodriguez, Ernesto
2004-01-01
A computer program implements a methodology, denoted probabilistic risk reduction, that is intended to aid in planning the development of complex software and/or hardware systems. This methodology integrates two complementary prior methodologies: (1) that of probabilistic risk assessment and (2) a risk-based planning methodology, implemented in a prior computer program known as Defect Detection and Prevention (DDP), in which multiple requirements and the beneficial effects of risk-mitigation actions are taken into account. The present methodology and the software are able to accommodate both process knowledge (notably of the efficacy of development practices) and product knowledge (notably of the logical structure of a system, the development of which one seeks to plan). Estimates of the costs and benefits of a planned development can be derived. Functional and non-functional aspects of software can be taken into account, and trades made among them. It becomes possible to optimize the planning process in the sense that it becomes possible to select the best suite of process steps and design choices to maximize the expectation of success while remaining within budget.
Saramago, Pedro; Cooper, Nicola J; Sutton, Alex J; Hayes, Mike; Dunn, Ken; Manca, Andrea; Kendrick, Denise
2014-05-16
The UK has one of the highest rates for deaths from fire and flames in children aged 0-14 years compared to other high income countries. Evidence shows that smoke alarms can reduce the risk of fire-related injury but little exists on their cost-effectiveness. We aimed to compare the cost effectiveness of different interventions for the uptake of 'functioning' smoke alarms and consequently for the prevention of fire-related injuries in children in the UK. We carried out a decision model-based probabilistic cost-effectiveness analysis. We used a hypothetical population of newborns and evaluated the impact of living in a household with or without a functioning smoke alarm during the first 5 years of their life on overall lifetime costs and quality of life from a public health perspective. We compared seven interventions, ranging from usual care to more complex interventions comprising of education, free/low cost equipment giveaway, equipment fitting and/or home safety inspection. Education and free/low cost equipment was the most cost-effective intervention with an estimated incremental cost-effectiveness ratio of £34,200 per QALY gained compared to usual care. This was reduced to approximately £4,500 per QALY gained when 1.8 children under the age of 5 were assumed per household. Assessing cost-effectiveness, as well as effectiveness, is important in a public sector system operating under a fixed budget restraint. As highlighted in this study, the more effective interventions (in this case the more complex interventions) may not necessarily be the ones considered the most cost-effective.
Probabilistic Risk Model for Organ Doses and Acute Health Effects of Astronauts on Lunar Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.
2009-01-01
Exposure to large solar particle events (SPEs) is a major concern during EVAs on the lunar surface and in Earth-to-Lunar transit. 15% of crew times may be on EVA with minimal radiation shielding. Therefore, an accurate assessment of SPE occurrence probability is required for the mission planning by NASA. We apply probabilistic risk assessment (PRA) for radiation protection of crews and optimization of lunar mission planning.
Risk assessment of turbine rotor failure using probabilistic ultrasonic non-destructive evaluations
NASA Astrophysics Data System (ADS)
Guan, Xuefei; Zhang, Jingdan; Zhou, S. Kevin; Rasselkorde, El Mahjoub; Abbasi, Waheed A.
2014-02-01
The study presents a method and application of risk assessment methodology for turbine rotor fatigue failure using probabilistic ultrasonic nondestructive evaluations. A rigorous probabilistic modeling for ultrasonic flaw sizing is developed by incorporating the model-assisted probability of detection, and the probability density function (PDF) of the actual flaw size is derived. Two general scenarios, namely the ultrasonic inspection with an identified flaw indication and the ultrasonic inspection without flaw indication, are considered in the derivation. To perform estimations for fatigue reliability and remaining useful life, uncertainties from ultrasonic flaw sizing and fatigue model parameters are systematically included and quantified. The model parameter PDF is estimated using Bayesian parameter estimation and actual fatigue testing data. The overall method is demonstrated using a realistic application of steam turbine rotor, and the risk analysis under given safety criteria is provided to support maintenance planning.
Synaptic and nonsynaptic plasticity approximating probabilistic inference
Tully, Philip J.; Hennig, Matthias H.; Lansner, Anders
2014-01-01
Learning and memory operations in neural circuits are believed to involve molecular cascades of synaptic and nonsynaptic changes that lead to a diverse repertoire of dynamical phenomena at higher levels of processing. Hebbian and homeostatic plasticity, neuromodulation, and intrinsic excitability all conspire to form and maintain memories. But it is still unclear how these seemingly redundant mechanisms could jointly orchestrate learning in a more unified system. To this end, a Hebbian learning rule for spiking neurons inspired by Bayesian statistics is proposed. In this model, synaptic weights and intrinsic currents are adapted on-line upon arrival of single spikes, which initiate a cascade of temporally interacting memory traces that locally estimate probabilities associated with relative neuronal activation levels. Trace dynamics enable synaptic learning to readily demonstrate a spike-timing dependence, stably return to a set-point over long time scales, and remain competitive despite this stability. Beyond unsupervised learning, linking the traces with an external plasticity-modulating signal enables spike-based reinforcement learning. At the postsynaptic neuron, the traces are represented by an activity-dependent ion channel that is shown to regulate the input received by a postsynaptic cell and generate intrinsic graded persistent firing levels. We show how spike-based Hebbian-Bayesian learning can be performed in a simulated inference task using integrate-and-fire (IAF) neurons that are Poisson-firing and background-driven, similar to the preferred regime of cortical neurons. Our results support the view that neurons can represent information in the form of probability distributions, and that probabilistic inference could be a functional by-product of coupled synaptic and nonsynaptic mechanisms operating over several timescales. The model provides a biophysical realization of Bayesian computation by reconciling several observed neural phenomena whose functional effects are only partially understood in concert. PMID:24782758
Uncertainty and risk in wildland fire management: A review
Matthew P. Thompson; Dave E. Calkin
2011-01-01
Wildland fire management is subject to manifold sources of uncertainty. Beyond the unpredictability of wildfire behavior, uncertainty stems from inaccurate/missing data, limited resource value measures to guide prioritization across fires and resources at risk, and an incomplete scientific understanding of ecological response to fire, of fire behavior response to...
Fire Safety. Managing School Facilities, Guide 6.
ERIC Educational Resources Information Center
Department for Education and Employment, London (England). Architects and Building Branch.
This booklet discusses how United Kingdom schools can manage fire safety and minimize the risk of fire. The guide examines what legislation school buildings must comply with and covers the major risks. It also describes training and evacuation procedures and provides guidance on fire precautions, alarm systems, fire fighting equipment, and escape…
NASA Astrophysics Data System (ADS)
de Torres Curth, Monica; Biscayart, Carolina; Ghermandi, Luciana; Pfister, Gabriela
2012-04-01
In many regions of the world, fires are primarily of anthropogenic origin. In northwestern Patagonia, the number of fires is not correlated with meteorological variables, but is concentrated in urban areas. This study was conducted in the wildland-urban interface (WUI) area of San Carlos de Bariloche (Patagonia, Argentina), within the Nahuel Huapi National Park. WUI fires are particularly problematic because, besides people and goods, they represent a danger to protected areas. We studied the relationship between fire records and socioeconomic indicators within the WUI of San Carlos de Bariloche. We conducted a Multiple Correspondence Factorial Analysis and an Ascendant Hierarchical Classification of the city neighborhoods. The results show that the neighborhoods in Bariloche can be divided into three classes: High Socioeconomic Fire Risk neighborhoods, including neighborhoods with the highest fire rates, where people have low instruction level, high levels of unsatisfied basic needs and high unemployment levels; Low Socioeconomic Fire Risk neighborhoods, that groups neighborhoods which present the opposite characterization, and Moderate Socioeconomic Fire Risk neighborhoods, which are more heterogeneous. Once neighborhoods were classified, a Socioeconomic Fire Risk map was generated, supplementing the existing WUI Fire Danger map. Our results emphasize the relevance of socioeconomic variables to fire policies.
Bayesian networks improve causal environmental ...
Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on value
A Unified Probabilistic Framework for Dose-Response Assessment of Human Health Effects.
Chiu, Weihsueh A; Slob, Wout
2015-12-01
When chemical health hazards have been identified, probabilistic dose-response assessment ("hazard characterization") quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework. We developed a unified framework for probabilistic dose-response assessment. We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose-response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, "effect metrics" can be specified to define "toxicologically equivalent" sizes for this underlying individual response; and d) dose-response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose-response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets. Probabilistically derived exposure limits are based on estimating a "target human dose" (HDMI), which requires risk management-informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%-10% effect sizes. Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk management decisions.
Development of probabilistic multimedia multipathway computer codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, C.; LePoire, D.; Gnanapragasam, E.
2002-01-01
The deterministic multimedia dose/risk assessment codes RESRAD and RESRAD-BUILD have been widely used for many years for evaluation of sites contaminated with residual radioactive materials. The RESRAD code applies to the cleanup of sites (soils) and the RESRAD-BUILD code applies to the cleanup of buildings and structures. This work describes the procedure used to enhance the deterministic RESRAD and RESRAD-BUILD codes for probabilistic dose analysis. A six-step procedure was used in developing default parameter distributions and the probabilistic analysis modules. These six steps include (1) listing and categorizing parameters; (2) ranking parameters; (3) developing parameter distributions; (4) testing parameter distributionsmore » for probabilistic analysis; (5) developing probabilistic software modules; and (6) testing probabilistic modules and integrated codes. The procedures used can be applied to the development of other multimedia probabilistic codes. The probabilistic versions of RESRAD and RESRAD-BUILD codes provide tools for studying the uncertainty in dose assessment caused by uncertain input parameters. The parameter distribution data collected in this work can also be applied to other multimedia assessment tasks and multimedia computer codes.« less
Barnard, R J; Gardner, G W; Diaco, N V; Kattus, A A
1975-11-01
Near-maximal ECG stress testing and coronary artery disease risk factor analysis including blood pressure, serum cholesterol and smoking habits were conducted on a randomly selected group (N=90) of Los Angeles City Fire Fighters ranging in age from 40 to 59 yrs. The data obtained from the fire fighters were compared to data previously reported for a group of Los Angeles insurance underwriters of the same age range. Only 12% of the fire fighters had cholesterol values greater than 260 mg% while 18% of the insurance executives fell into this category. Only 2% of the fire fighters had blood pressure values greater than 160/90 mm Hg while 25% of the insurance executives were hypertensive. Thirty-two percent of the fire fighters were smokers at the time of testing as compared to 26% for the insurance executives. Only one fire fighter had all three risk factors elevated and only five had two risk factors elevated. Forty-seven of the fire fighters had no risk factors elevated. Ten percent of the fire fighters had ischemic stress tests as compared to 8% for the insurance executives. Of the nine fire fighters with ischemic stress tests one was hypertensive, one had elevated serum triglycerides, and three were smokers at the time of testing. Since the fire fighters are a medically-selected population with low risk factors for CHD, the observed incidence of ischemic stress tests is surprising and suggests that ischemic heart disease may be job associated.
Risk assessment for construction projects of transport infrastructure objects
NASA Astrophysics Data System (ADS)
Titarenko, Boris
2017-10-01
The paper analyzes and compares different methods of risk assessment for construction projects of transport objects. The management of such type of projects demands application of special probabilistic methods due to large level of uncertainty of their implementation. Risk management in the projects requires the use of probabilistic and statistical methods. The aim of the work is to develop a methodology for using traditional methods in combination with robust methods that allow obtaining reliable risk assessments in projects. The robust approach is based on the principle of maximum likelihood and in assessing the risk allows the researcher to obtain reliable results in situations of great uncertainty. The application of robust procedures allows to carry out a quantitative assessment of the main risk indicators of projects when solving the tasks of managing innovation-investment projects. Calculation of damage from the onset of a risky event is possible by any competent specialist. And an assessment of the probability of occurrence of a risky event requires the involvement of special probabilistic methods based on the proposed robust approaches. Practice shows the effectiveness and reliability of results. The methodology developed in the article can be used to create information technologies and their application in automated control systems for complex projects.
Probabilistic Assessment of Cancer Risk for Astronauts on Lunar Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
2009-01-01
During future lunar missions, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon transit. NASA s new lunar program anticipates that up to 15% of crew time may be on EVA, with minimal radiation shielding. For the operational challenge to respond to events of unknown size and duration, a probabilistic risk assessment approach is essential for mission planning and design. Using the historical database of proton measurements during the past 5 solar cycles, a typical hazard function for SPE occurrence was defined using a non-homogeneous Poisson model as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions ranging from the 5th to 95th percentile of particle fluences for a specified mission period were simulated. Organ doses corresponding to particle fluences at the median and at the 95th percentile for a specified mission period were assessed using NASA s baryon transport model, BRYNTRN. The cancer fatality risk for astronauts as functions of age, gender, and solar cycle activity were then analyzed. The probability of exceeding the NASA 30- day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated. Future work will involve using this probabilistic risk assessment approach to SPE forecasting, combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.
NASA Astrophysics Data System (ADS)
Aricak, Burak; Kucuk, Omer; Enez, Korhan
2014-01-01
Fighting forest fires not only depends on the forest type, topography, and weather conditions, but is also closely related to the technical properties of fire-fighting equipment. Firefighting is an important part of fire management planning. However, because of the complex nature of forests, creating thematic layers to generate potential fire risk maps is difficult. The use of remote sensing data has become an efficient method for the discrete classification of potential fire risks. The study was located in the Central District of the Kastamonu Regional Forest Directorate, covering an area of 24,320 ha, 15,685 ha of which is forested. On the basis of stand age, crown closure, and tree species, the sizes and distributions of potential fire risk zones within the study area were determined using high-resolution GeoEye satellite imagery and geographical information system data. The status of pumper truck intervention in zones with high fire risk and the sufficiency of existing forest roads within an existing forest network were discussed based on combustible matter characteristics. Pumper truck intervention was 83% for high-risk zones, 79% for medium-risk zones, and 78% for low-risk zones. A pumper truck intervention area map along existing roads was also created.
Forest fuels and landscape-level fire risk assessment of the ozark highlands, Missouri
Michael C. Stambaugh; Richard P. Guyette; Daniel C. Dey
2007-01-01
In this paper we describe a fire risk assessment of the Ozark Highlands. Fire risk is rated using information on ignition potential and fuel hazard. Fuel loading, a component of the fire hazard module, is weakly predicted (r2 = 0.19) by site- and landscape-level attributes. Fuel loading does not significantly differ between Ozark ecological...
Probability based models for estimation of wildfire risk
Haiganoush Preisler; D. R. Brillinger; R. E. Burgan; John Benoit
2004-01-01
We present a probability-based model for estimating fire risk. Risk is defined using three probabilities: the probability of fire occurrence; the conditional probability of a large fire given ignition; and the unconditional probability of a large fire. The model is based on grouped data at the 1 km²-day cell level. We fit a spatially and temporally explicit non-...
Diversity in Southwesterners' views of Forest Service fire management
P.L. Winter; G.T. Cvetkovich
2007-01-01
The risk of wildland fires is of significant concern in the southwestern United States. Although the Southwest has a long hi story as a fire· prone ecosystem, years of drought and insect infestation have increased fire risk. Paired with these ecological forces is the increased risk caused by the concentration of populations in the wildland urban interface (WUl),...
Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance
Smithwick, Erica A. H.; Naithani, Kusum J.; Balser, Teri C.; Romme, William H.; Turner, Monica G.
2012-01-01
Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R2<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21st Century. PMID:23226324
A Practical Probabilistic Graphical Modeling Tool for Weighing Ecological Risk-Based Evidence
Past weight-of-evidence frameworks for adverse ecological effects have provided soft-scoring procedures for judgments based on the quality and measured attributes of evidence. Here, we provide a flexible probabilistic structure for weighing and integrating lines of evidence for e...
Post-wildfire logging hinders regeneration and increases fire risk.
Donato, D C; Fontaine, J B; Campbell, J L; Robinson, W D; Kauffman, J B; Law, B E
2006-01-20
We present data from a study of early conifer regeneration and fuel loads after the 2002 Biscuit Fire, Oregon, USA, with and without postfire logging. Natural conifer regeneration was abundant after the high-severity fire. Postfire logging reduced median regeneration density by 71%, significantly increased downed woody fuels, and thus increased short-term fire risk. Additional reduction of fuels is necessary for effective mitigation of fire risk. Postfire logging can be counterproductive to the goals of forest regeneration and fuel reduction.
Seismic, high wind, tornado, and probabilistic risk assessments of the High Flux Isotope Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, S.P.; Stover, R.L.; Hashimoto, P.S.
1989-01-01
Natural phenomena analyses were performed on the High Flux Isotope Reactor (HFIR) Deterministic and probabilistic evaluations were made to determine the risks resulting from earthquakes, high winds, and tornadoes. Analytic methods in conjunction with field evaluations and an earthquake experience data base evaluation methods were used to provide more realistic results in a shorter amount of time. Plant modifications completed in preparation for HFIR restart and potential future enhancements are discussed. 5 figs.
Waters, Martha; McKernan, Lauralynn; Maier, Andrew; Jayjock, Michael; Schaeffer, Val; Brosseau, Lisa
2015-01-01
The fundamental goal of this article is to describe, define, and analyze the components of the risk characterization process for occupational exposures. Current methods are described for the probabilistic characterization of exposure, including newer techniques that have increasing applications for assessing data from occupational exposure scenarios. In addition, since the probability of health effects reflects variability in the exposure estimate as well as the dose-response curve—the integrated considerations of variability surrounding both components of the risk characterization provide greater information to the occupational hygienist. Probabilistic tools provide a more informed view of exposure as compared to use of discrete point estimates for these inputs to the risk characterization process. Active use of such tools for exposure and risk assessment will lead to a scientifically supported worker health protection program. Understanding the bases for an occupational risk assessment, focusing on important sources of variability and uncertainty enables characterizing occupational risk in terms of a probability, rather than a binary decision of acceptable risk or unacceptable risk. A critical review of existing methods highlights several conclusions: (1) exposure estimates and the dose-response are impacted by both variability and uncertainty and a well-developed risk characterization reflects and communicates this consideration; (2) occupational risk is probabilistic in nature and most accurately considered as a distribution, not a point estimate; and (3) occupational hygienists have a variety of tools available to incorporate concepts of risk characterization into occupational health and practice. PMID:26302336
Gutiérrez, Simón; Fernandez, Carlos; Barata, Carlos; Tarazona, José Vicente
2009-12-20
This work presents a computer model for Risk Assessment of Basins by Ecotoxicological Evaluation (RABETOX). The model is based on whole effluent toxicity testing and water flows along a specific river basin. It is capable of estimating the risk along a river segment using deterministic and probabilistic approaches. The Henares River Basin was selected as a case study to demonstrate the importance of seasonal hydrological variations in Mediterranean regions. As model inputs, two different ecotoxicity tests (the miniaturized Daphnia magna acute test and the D.magna feeding test) were performed on grab samples from 5 waste water treatment plant effluents. Also used as model inputs were flow data from the past 25 years, water velocity measurements and precise distance measurements using Geographical Information Systems (GIS). The model was implemented into a spreadsheet and the results were interpreted and represented using GIS in order to facilitate risk communication. To better understand the bioassays results, the effluents were screened through SPME-GC/MS analysis. The deterministic model, performed each month during one calendar year, showed a significant seasonal variation of risk while revealing that September represents the worst-case scenario with values up to 950 Risk Units. This classifies the entire area of study for the month of September as "sublethal significant risk for standard species". The probabilistic approach using Monte Carlo analysis was performed on 7 different forecast points distributed along the Henares River. A 0% probability of finding "low risk" was found at all forecast points with a more than 50% probability of finding "potential risk for sensitive species". The values obtained through both the deterministic and probabilistic approximations reveal the presence of certain substances, which might be causing sublethal effects in the aquatic species present in the Henares River.
Health Impacts of Climate Change-Induced Subzero Temperature Fires.
Metallinou, Maria-Monika; Log, Torgrim
2017-07-20
General fire risk and the special risk related to cold climate cellulosic drying processes are outlined. Four recent subzero temperatures fires are studied with respect to health impacts: a wooden village fire, a single wood structure fire, a wildland urban interface (WUI) fire and a huge wildland fire. The health impacts range from stress related to loss of jobs, psychological effects of lost possessions, exposure to smoke and heat as well as immediate, or delayed, loss of lives. These four fires resulted in 32 fatalities, 385 persons hospitalized for shorter or longer periods, 104 structures lost and 1015 km² of wildland burned north of, and just south of, the Arctic Circle. It is shown that the combination of subzero temperature dry weather, strong winds, changing agricultural activities and declining snowpack may lead to previously anticipated threats to people and the environment. There are reasons to believe that these fires are a result of the ongoing climate changes. Risk impacts are discussed. Rural districts and/or vulnerable populations seem to be most affected. Training methods to identify and better monitor critical fire risk parameters are suggested to mitigate the health impacts of a possibly increasing number of such fires.
Health Impacts of Climate Change-Induced Subzero Temperature Fires
Metallinou, Maria-Monika; Log, Torgrim
2017-01-01
General fire risk and the special risk related to cold climate cellulosic drying processes are outlined. Four recent subzero temperatures fires are studied with respect to health impacts: a wooden village fire, a single wood structure fire, a wildland urban interface (WUI) fire and a huge wildland fire. The health impacts range from stress related to loss of jobs, psychological effects of lost possessions, exposure to smoke and heat as well as immediate, or delayed, loss of lives. These four fires resulted in 32 fatalities, 385 persons hospitalized for shorter or longer periods, 104 structures lost and 1015 km2 of wildland burned north of, and just south of, the Arctic Circle. It is shown that the combination of subzero temperature dry weather, strong winds, changing agricultural activities and declining snowpack may lead to previously anticipated threats to people and the environment. There are reasons to believe that these fires are a result of the ongoing climate changes. Risk impacts are discussed. Rural districts and/or vulnerable populations seem to be most affected. Training methods to identify and better monitor critical fire risk parameters are suggested to mitigate the health impacts of a possibly increasing number of such fires. PMID:28726752
Toledo, David; Kreuter, Urs P; Sorice, Michael G; Taylor, Charles A
2014-01-01
Risk and liability concerns regarding fire affect people's attitudes toward fire and have led to human-induced alterations of fire regimes. This has, in turn, contributed to brush encroachment and degradation of many grasslands and savannas. Efforts to successfully restore such degraded ecosystems at the landscape scale in regions of the United States with high proportions of private lands require the reintroduction of fire. Prescribed Burn Associations (PBA) provide training, equipment, and labor to apply fire safely, facilitating the application of this rangeland management tool and thereby reducing the associated risk. PBAs help build networks and social capital among landowners who are interested in using fire. They can also change attitudes toward fire and enhance the social acceptability of using prescribed fire as a management practice. PBAs are an effective mechanism for promoting the widespread use of prescribed fire to restore and maintain the biophysical integrity of grasslands and savannas at the landscape scale. We report findings of a project aimed at determining the human dimensions of using prescribed fire to control woody plant encroachment in three different eco-regions of Texas. Specifically, we examine membership in PBAs as it relates to land manager decisions regarding the use of prescribed fire. Perceived risk has previously been identified as a key factor inhibiting the use of prescribed fire by landowners. Our results show that perceived constraints, due to lack of skill, knowledge, and access to equipment and membership in a PBAs are more important factors than risk perceptions in affecting landowner decisions about the use of fire. This emphasizes the potential for PBAs to reduce risk perceptions regarding the application of prescribed fire and, therefore, their importance for restoring brush-encroached grasslands and savannas. Published by Elsevier Ltd.
A Unified Probabilistic Framework for Dose–Response Assessment of Human Health Effects
Slob, Wout
2015-01-01
Background When chemical health hazards have been identified, probabilistic dose–response assessment (“hazard characterization”) quantifies uncertainty and/or variability in toxicity as a function of human exposure. Existing probabilistic approaches differ for different types of endpoints or modes-of-action, lacking a unifying framework. Objectives We developed a unified framework for probabilistic dose–response assessment. Methods We established a framework based on four principles: a) individual and population dose responses are distinct; b) dose–response relationships for all (including quantal) endpoints can be recast as relating to an underlying continuous measure of response at the individual level; c) for effects relevant to humans, “effect metrics” can be specified to define “toxicologically equivalent” sizes for this underlying individual response; and d) dose–response assessment requires making adjustments and accounting for uncertainty and variability. We then derived a step-by-step probabilistic approach for dose–response assessment of animal toxicology data similar to how nonprobabilistic reference doses are derived, illustrating the approach with example non-cancer and cancer datasets. Results Probabilistically derived exposure limits are based on estimating a “target human dose” (HDMI), which requires risk management–informed choices for the magnitude (M) of individual effect being protected against, the remaining incidence (I) of individuals with effects ≥ M in the population, and the percent confidence. In the example datasets, probabilistically derived 90% confidence intervals for HDMI values span a 40- to 60-fold range, where I = 1% of the population experiences ≥ M = 1%–10% effect sizes. Conclusions Although some implementation challenges remain, this unified probabilistic framework can provide substantially more complete and transparent characterization of chemical hazards and support better-informed risk management decisions. Citation Chiu WA, Slob W. 2015. A unified probabilistic framework for dose–response assessment of human health effects. Environ Health Perspect 123:1241–1254; http://dx.doi.org/10.1289/ehp.1409385 PMID:26006063
Setterfield, Samantha A.; Rossiter-Rachor, Natalie A.; Douglas, Michael M.; Wainger, Lisa; Petty, Aaron M.; Barrow, Piers; Shepherd, Ian J.; Ferdinands, Keith B.
2013-01-01
Background Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. Methodology/Principal Findings We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha−1 in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha−1 resulted in an increase from five to 38 days with fire risk in the ‘severe’ category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. Conclusions/Significance This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies. PMID:23690917
Setterfield, Samantha A; Rossiter-Rachor, Natalie A; Douglas, Michael M; Wainger, Lisa; Petty, Aaron M; Barrow, Piers; Shepherd, Ian J; Ferdinands, Keith B
2013-01-01
Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass). Fuel load within the most densely invaded area had increased from 6 to 10 t ha(-1) in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI) for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha(-1) resulted in an increase from five to 38 days with fire risk in the 'severe' category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times) in the past decade due primarily to A. gayanus invasion. This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies.
System Risk Assessment and Allocation in Conceptual Design
NASA Technical Reports Server (NTRS)
Mahadevan, Sankaran; Smith, Natasha L.; Zang, Thomas A. (Technical Monitor)
2003-01-01
As aerospace systems continue to evolve in addressing newer challenges in air and space transportation, there exists a heightened priority for significant improvement in system performance, cost effectiveness, reliability, and safety. Tools, which synthesize multidisciplinary integration, probabilistic analysis, and optimization, are needed to facilitate design decisions allowing trade-offs between cost and reliability. This study investigates tools for probabilistic analysis and probabilistic optimization in the multidisciplinary design of aerospace systems. A probabilistic optimization methodology is demonstrated for the low-fidelity design of a reusable launch vehicle at two levels, a global geometry design and a local tank design. Probabilistic analysis is performed on a high fidelity analysis of a Navy missile system. Furthermore, decoupling strategies are introduced to reduce the computational effort required for multidisciplinary systems with feedback coupling.
Rachel S. Madsen; Hylton J. G. Haynes; Sarah M. McCaffrey
2018-01-01
As wildland fires have had increasing negative impacts on a range of human values, in many parts of the United States (U.S.) and around the world, collaborative risk reduction efforts among agencies, homeowners, and fire departments are needed to improve wildfire safety and mitigate risk. Using interview data from 46 senior officers from local fire departments around...
An analytical framework for quantifying wildland fire risk and fuel treatment benefit
Joe H. Scott
2006-01-01
Federal wildland fire management programs have readily embraced the practice of fuel treatment. Wildland fire risk is quantified as expected annual loss ($ yr â1 or $ yr â1 ac â1). Fire risk at a point on the landscape is a function of the probability of burning at that point, the relative frequency...
Modern Approaches to Wildfire Mitigation by Air and by Ground: An Interdisciplinary Perspective
NASA Astrophysics Data System (ADS)
Duffin, J.; Lindquist, E.; Pierce, J. L.; Wuerzer, T.; Lawless, B.; McCoy, J.
2013-12-01
In 2012, 1.7 million acres of land burned in Idaho--more than any other state. Boise, Idaho, is situated at the base of the Boise Foothills; this physiographic setting places the area at risk of not only fires along on the Wildland-Urban Interface (WUI), but also at risk for post-fire floods and debris flows in the lower lying neighborhoods adjacent to steep hillslopes. In 1959 and 1994, fires and post-fire debris flows devastated areas of the foothills, and inundated residences with water and mud. Anthropogenically-induced climate change is projected to increased summer temperatures and decrease summer precipitation; the associated increase in fire risk necessitates enhanced wildfire planning in Boise's WUI. Temporal uncertainty with varying weather and vegetation conditions poses problems in defining wildfire risk and requires new methods to address the WUI challenges. Unmanned aerial systems (UAS) could identify and characterize fire hazards to be mapped and used as a management tool. This technology would allow for repeat flights to update risk analysis as the hazards change both annually and multiple times within each fire season. With aerial photography obtained from flights, Structure from Motion software can be used to compile the images and render a 3D model to help quantify biomass. Aerial photographs would also allow for the ability to track seasonal changes in fire risk from vegetation height and inferred moisture content. Boise State University's departments of Geoscience, Community and Regional Planning, and the Public Policy Center are examining the risks and impacts of fire along the Boise WUI. The research integrates the perspectives of the geosciences and social sciences by combining physically-based fire hazards, effective fire management policies, and urban/regional planning in the WUI to provide better spatially-appropriate data and resources to the community and a common reference to assist in unifying the local efforts for fire mitigation. This presentation will introduce findings from a homeowner's survey of potentially at-risk residents regarding their perceptions of risk and uncertainty and their receptiveness to local mitigation, adaptation policies, and alternatives.
Fire Effects Planning Framework: A user's guide
A. Black; T. Opperman
2005-01-01
Each decision to suppress fire reinforces a feedback cycle in which fuels continue to accumulate, risk escalates, and the tendency to suppress fires grows (Miller and others, 2003). Existing decision-support tools focus primarily on the negative consequences of fire. This guide outlines a framework managers can use to (1) identify key areas of fire risk and (2)...
NASA Technical Reports Server (NTRS)
Guarro, Sergio B.
2010-01-01
This report validates and documents the detailed features and practical application of the framework for software intensive digital systems risk assessment and risk-informed safety assurance presented in the NASA PRA Procedures Guide for Managers and Practitioner. This framework, called herein the "Context-based Software Risk Model" (CSRM), enables the assessment of the contribution of software and software-intensive digital systems to overall system risk, in a manner which is entirely compatible and integrated with the format of a "standard" Probabilistic Risk Assessment (PRA), as currently documented and applied for NASA missions and applications. The CSRM also provides a risk-informed path and criteria for conducting organized and systematic digital system and software testing so that, within this risk-informed paradigm, the achievement of a quantitatively defined level of safety and mission success assurance may be targeted and demonstrated. The framework is based on the concept of context-dependent software risk scenarios and on the modeling of such scenarios via the use of traditional PRA techniques - i.e., event trees and fault trees - in combination with more advanced modeling devices such as the Dynamic Flowgraph Methodology (DFM) or other dynamic logic-modeling representations. The scenarios can be synthesized and quantified in a conditional logic and probabilistic formulation. The application of the CSRM method documented in this report refers to the MiniAERCam system designed and developed by the NASA Johnson Space Center.
Seasonal Forecasts of Extreme Conditions for Wildland Fire Management in Alaska using NMME
NASA Astrophysics Data System (ADS)
Bhatt, U. S.; Bieniek, P.; Thoman, R.; York, A.; Ziel, R.
2016-12-01
The summer of 2015 was the second largest Alaska fire season since 1950 where approximately the land area of Massachusetts burned. The record fire year of 2004 resulted in 6.5 million acres burned and was costly from property loss (> 35M) and emergency personnel (> 17M). In addition to requiring significant resources, wildfire smoke impacts air quality in Alaska and downstream into North America. Fires in Alaska result from lightning strikes coupled with persistent (extreme) dry warm conditions in remote areas with limited fire management and the seasonal climate/weather determine the extent of the fire season in Alaska. Fire managers rely on weather/climate outlooks for allocating staff and resources from days to a season in advance. Though currently few tested products are available at the seasonal scale. Probabilistic forecasts of the expected seasonal climate/weather would aid tremendously in the planning process. Advanced knowledge of both lightning and fuel conditions would assist managers in planning resource allocation for the upcoming season. For fuel conditions, the Canadian Forest Fire Weather Index System (CFFWIS) has been used since 1992 because it better suits the Alaska fire regime than the standard US National Fire Danger Rating System (NFDRS). This CFFWIS is based on early afternoon values of 2-m air temperature, relative humidity, and 10-m winds and daily total precipitation. Extremes of these indices and the variables are used to calculate these indices will be defined in reference to fire weather for the boreal forest. The CFFWIS will be applied and evaluated for the NMME hindcasts. This study will evaluate the quality of the forecasts comparing the hindcast NMME CFFWIS to acres burned in Alaska. Spatial synoptic patterns in the NMME related to fire weather extremes will be constructed using self-organized maps and probabilities of occurrence will be evaluated against acres burned.
Turner, Samantha L; Johnson, Rhodri D; Weightman, Alison L; Rodgers, Sarah E; Arthur, Geri; Bailey, Rowena; Lyons, Ronan A
2017-04-01
To identify the distinguishing risk factors associated with unintentional house fire incidents, injuries and deaths. Systematic review. A range of bibliographical databases and grey literature were searched from their earliest records to January 2016. To ensure the magnitude of risk could be quantified, only those study types which contained a control group, and undertook appropriate statistical analyses were included. A best evidence synthesis was conducted instead of a meta-analysis due to study heterogeneity. Eleven studies investigating a variety of risk factors and outcomes were identified. Studies ranged from medium to low quality with no high quality studies identified. Characteristics commonly associated with increased risk of house fire incidents, injuries and fatalities included: higher numbers of residents, male, children under the age of 5 years, non-working households, smoking, low income, non-privately owned properties, apartments and buildings in poor condition. Several risk factors were only associated with one outcome (eg, living alone was only associated with increased risk of injurious fires), and households with older residents were at increased risk of injurious fires, but significantly less likely to experience a house fire in the first place. This best evidence synthesis indicates that several resident and property characteristics are associated with risk of experiencing house fire incidents, injuries or death. These findings should be considered by the Fire and Rescue Services and others with a role in fire prevention. Future research should adopt robust, standardised study designs to permit meta-analyses and enable stronger conclusions to be drawn. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Field modeling of heat transfer in atrium
NASA Astrophysics Data System (ADS)
Nedryshkin, Oleg; Gravit, Marina; Bushuev, Nikolay
2017-10-01
The results of calculating fire risk are an important element in the system of modern fire safety assessment. The article reviews the work on the mathematical modeling of fire in the room. A comparison of different calculation models in the programs of fire risk assessment and fire modeling was performed. The results of full-scale fire tests and fire modeling in the FDS program are presented. The analysis of empirical and theoretical data on fire modeling is made, a conclusion is made about the modeling accuracy in the FDS program.
Application of the NUREG/CR-6850 EPRI/NRC Fire PRA Methodology to a DOE Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tom Elicson; Bentley Harwood; Richard Yorg
2011-03-01
The application NUREG/CR-6850 EPRI/NRC fire PRA methodology to DOE facility presented several challenges. This paper documents the process and discusses several insights gained during development of the fire PRA. A brief review of the tasks performed is provided with particular focus on the following: • Tasks 5 and 14: Fire-induced risk model and fire risk quantification. A key lesson learned was to begin model development and quantification as early as possible in the project using screening values and simplified modeling if necessary. • Tasks 3 and 9: Fire PRA cable selection and detailed circuit failure analysis. In retrospect, it wouldmore » have been beneficial to perform the model development and quantification in 2 phases with detailed circuit analysis applied during phase 2. This would have allowed for development of a robust model and quantification earlier in the project and would have provided insights into where to focus the detailed circuit analysis efforts. • Tasks 8 and 11: Scoping fire modeling and detailed fire modeling. More focus should be placed on detailed fire modeling and less focus on scoping fire modeling. This was the approach taken for the fire PRA. • Task 14: Fire risk quantification. Typically, multiple safe shutdown (SSD) components fail during a given fire scenario. Therefore dependent failure analysis is critical to obtaining a meaningful fire risk quantification. Dependent failure analysis for the fire PRA presented several challenges which will be discussed in the full paper.« less
Probabilistic, meso-scale flood loss modelling
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno
2016-04-01
Flood risk analyses are an important basis for decisions on flood risk management and adaptation. However, such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments and even more for flood loss modelling. State of the art in flood loss modelling is still the use of simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood loss models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we demonstrate and evaluate the upscaling of the approach to the meso-scale, namely on the basis of land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany (Botto et al. submitted). The application of bagging decision tree based loss models provide a probability distribution of estimated loss per municipality. Validation is undertaken on the one hand via a comparison with eight deterministic loss models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official loss data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of loss estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation approach is that it inherently provides quantitative information about the uncertainty of the prediction. References: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64. Botto A, Kreibich H, Merz B, Schröter K (submitted) Probabilistic, multi-variable flood loss modelling on the meso-scale with BT-FLEMO. Risk Analysis.
Proposal of a method for evaluating tsunami risk using response-surface methodology
NASA Astrophysics Data System (ADS)
Fukutani, Y.
2017-12-01
Information on probabilistic tsunami inundation hazards is needed to define and evaluate tsunami risk. Several methods for calculating these hazards have been proposed (e.g. Løvholt et al. (2012), Thio (2012), Fukutani et al. (2014), Goda et al. (2015)). However, these methods are inefficient, and their calculation cost is high, since they require multiple tsunami numerical simulations, therefore lacking versatility. In this study, we proposed a simpler method for tsunami risk evaluation using response-surface methodology. Kotani et al. (2016) proposed an evaluation method for the probabilistic distribution of tsunami wave-height using a response-surface methodology. We expanded their study and developed a probabilistic distribution of tsunami inundation depth. We set the depth (x1) and the slip (x2) of an earthquake fault as explanatory variables and tsunami inundation depth (y) as an object variable. Subsequently, tsunami risk could be evaluated by conducting a Monte Carlo simulation, assuming that the generation probability of an earthquake follows a Poisson distribution, the probability distribution of tsunami inundation depth follows the distribution derived from a response-surface, and the damage probability of a target follows a log normal distribution. We applied the proposed method to a wood building located on the coast of Tokyo Bay. We implemented a regression analysis based on the results of 25 tsunami numerical calculations and developed a response-surface, which was defined as y=ax1+bx2+c (a:0.2615, b:3.1763, c=-1.1802). We assumed proper probabilistic distribution for earthquake generation, inundation height, and vulnerability. Based on these probabilistic distributions, we conducted Monte Carlo simulations of 1,000,000 years. We clarified that the expected damage probability of the studied wood building is 22.5%, assuming that an earthquake occurs. The proposed method is therefore a useful and simple way to evaluate tsunami risk using a response-surface and Monte Carlo simulation without conducting multiple tsunami numerical simulations.
United States Fire Administration
... Vehicle Fire Safety flyer PDF 234 KB Publication Risk management practices This guide contains recommended approaches to manage organizational, operational and community risk. If you are a fire department leader, our ...
Assessing the Fire Risk for a Historic Hangar
NASA Technical Reports Server (NTRS)
Datta, Koushik; Morrison, Richard S.
2010-01-01
NASA Ames Research Center (ARC) is evaluating options of reuse of its historic Hangar 1. As a part of this evaluation, a qualitative fire risk assessment study was performed to evaluate the potential threat of combustion of the historic hangar. The study focused on the fire risk trade-off of either installing or not installing a Special Hazard Fire Suppression System in the Hangar 1 deck areas. The assessment methodology was useful in discussing the important issues among various groups within the Center. Once the methodology was deemed acceptable, the results were assessed. The results showed that the risk remained in the same risk category, whether Hangar 1 does or does not have a Special Hazard Fire Suppression System. Note that the methodology assessed the risk to Hangar 1 and not the risk to an aircraft in the hangar. If one had a high value aircraft, the aircraft risk analysis could potentially show a different result. The assessed risk results were then communicated to management and other stakeholders.
Managing the risks of risk management on large fires
Donald G. MacGregor; Armando González-Cabán
2013-01-01
Large fires pose risks to a number of important values, including the ecology, property and the lives of incident responders. A relatively unstudied aspect of fire management is the risks to which incident managers are exposed due to organizational and sociopolitical factors that put them in a position of, for example, potential liability or degradation of their image...
Managing risk with chance-constrained programming
Michael Bevers; Brian Kent
2007-01-01
Reducing catastrophic fire risk is an important objective of many fuel treatment programs (Kent et al. 2003; Machlis et al. 2002; USDA/USDI 2001a). In practice, risk reductions can be accomplished by lowering the probability of a given loss to forest fires, the amount of probable loss, or both. Forest fire risk objectives are seldom quantified, however, making it...
A Tutorial on Probablilistic Risk Assessement and its Role in Risk-Informed Decision Making
NASA Technical Reports Server (NTRS)
Dezfuli, Homayoon
2010-01-01
This slide presentation reviews risk assessment and its role in risk-informed decision making. It includes information on probabilistic risk assessment, typical risk management process, origins of risk matrix, performance measures, performance objectives and Bayes theorem.
NASA Astrophysics Data System (ADS)
Salis, M.; Ager, A.; Arca, B.; Finney, M.; Bacciu, V. M.; Spano, D.; Duce, P.
2012-12-01
Spatial and temporal patterns of fire spread and behavior are dependent on interactions among climate, topography, vegetation and fire suppression efforts (Pyne et al. 1996; Viegas 2006; Falk et al. 2007). Humans also play a key role in determining frequency and spatial distribution of ignitions (Bar Massada et al, 2011), and thus influence fire regimes as well. The growing incidence of catastrophic wildfires has led to substantial losses for important ecological and human values within many areas of the Mediterranean basin (Moreno et al. 1998; Mouillot et al. 2005; Viegas et al. 2006a; Riaño et al. 2007). The growing fire risk issue has led to many new programs and policies of fuel management and risk mitigation by environmental and fire agencies. However, risk-based methodologies to help identify areas characterized by high potential losses and prioritize fuel management have been lacking for the region. Formal risk assessment requires the joint consideration of likelihood, intensity, and susceptibility, the product of which estimates the chance of a specific loss (Brillinger 2003; Society of Risk Analysis, 2006). Quantifying fire risk therefore requires estimates of a) the probability of a specific location burning at a specific intensity and location, and b) the resulting change in financial or ecological value (Finney 2005; Scott 2006). When large fires are the primary cause of damage, the application of this risk formulation requires modeling fire spread to capture landscape properties that affect burn probability. Recently, the incorporation of large fire spread into risk assessment systems has become feasible with the development of high performance fire simulation systems (Finney et al. 2011) that permit the simulation of hundreds of thousands of fires to generate fine scale maps of burn probability, flame length, and fire size, while considering the combined effects of weather, fuels, and topography (Finney 2002; Andrews et al. 2007; Ager and Finney 2009; Finney et al. 2009; Salis et al. 2012 accepted). In this work, we employed wildfire simulation methods to quantify wildfire exposure to human and ecological values for the island of Sardinia, Italy. The work was focused on the risk and exposure posed by large fires (e.g. 100 - 10,000 ha), and considers historical weather, ignition patterns and fuels. We simulated 100,000 fires using burn periods that replicated the historical size distribution on the Island, and an ignition probability grid derived from historic ignition data. We then examine spatial variation in three exposure components (burn probability, flame length, fire size) among important human and ecological values. The results allowed us to contract exposure among and within the various features examined, and highlighted the importance of human factors in shaping wildfire exposure in Sardinia. The work represents the first application of burn probability modeling in the Mediterranean region, and sets the stage for expanded work in the region to quantify risk from large fires
Probabilistic framework for product design optimization and risk management
NASA Astrophysics Data System (ADS)
Keski-Rahkonen, J. K.
2018-05-01
Probabilistic methods have gradually gained ground within engineering practices but currently it is still the industry standard to use deterministic safety margin approaches to dimensioning components and qualitative methods to manage product risks. These methods are suitable for baseline design work but quantitative risk management and product reliability optimization require more advanced predictive approaches. Ample research has been published on how to predict failure probabilities for mechanical components and furthermore to optimize reliability through life cycle cost analysis. This paper reviews the literature for existing methods and tries to harness their best features and simplify the process to be applicable in practical engineering work. Recommended process applies Monte Carlo method on top of load-resistance models to estimate failure probabilities. Furthermore, it adds on existing literature by introducing a practical framework to use probabilistic models in quantitative risk management and product life cycle costs optimization. The main focus is on mechanical failure modes due to the well-developed methods used to predict these types of failures. However, the same framework can be applied on any type of failure mode as long as predictive models can be developed.
Influence of fuels, weather and the built environment on the exposure of property to wildfire
Penman, Trent D.; Collins, Luke S.; Syphard, Alexandra D.; Keeley, Jon E.; Bradstock, Ross A.
2014-01-01
Wildfires can pose a significant risk to people and property. Billions of dollars are spent investing in fire management actions in an attempt to reduce the risk of loss. One of the key areas where money is spent is through fuel treatment – either fuel reduction (prescribed fire) or fuel removal (fuel breaks). Individual treatments can influence fire size and the maximum distance travelled from the ignition and presumably risk, but few studies have examined the landscape level effectiveness of these treatments. Here we use a Bayesian Network model to examine the relative influence of the built and natural environment, weather, fuel and fuel treatments in determining the risk posed from wildfire to the wildland-urban interface. Fire size and distance travelled was influenced most strongly by weather, with exposure to fires most sensitive to changes in the built environment and fire parameters. Natural environment variables and fuel load all had minor influences on fire size, distance travelled and exposure of assets. These results suggest that management of fuels provided minimal reductions in risk to assets and adequate planning of the changes in the built environment to cope with the expansion of human populations is going to be vital for managing risk from fire under future climates.
Influence of Fuels, Weather and the Built Environment on the Exposure of Property to Wildfire
Penman, Trent D.; Collins, Luke; Syphard, Alexandra D.; Keeley, Jon E.; Bradstock, Ross A.
2014-01-01
Wildfires can pose a significant risk to people and property. Billions of dollars are spent investing in fire management actions in an attempt to reduce the risk of loss. One of the key areas where money is spent is through fuel treatment – either fuel reduction (prescribed fire) or fuel removal (fuel breaks). Individual treatments can influence fire size and the maximum distance travelled from the ignition and presumably risk, but few studies have examined the landscape level effectiveness of these treatments. Here we use a Bayesian Network model to examine the relative influence of the built and natural environment, weather, fuel and fuel treatments in determining the risk posed from wildfire to the wildland-urban interface. Fire size and distance travelled was influenced most strongly by weather, with exposure to fires most sensitive to changes in the built environment and fire parameters. Natural environment variables and fuel load all had minor influences on fire size, distance travelled and exposure of assets. These results suggest that management of fuels provided minimal reductions in risk to assets and adequate planning of the changes in the built environment to cope with the expansion of human populations is going to be vital for managing risk from fire under future climates. PMID:25360741
The development of a probabilistic approach to forecast coastal change
Lentz, Erika E.; Hapke, Cheryl J.; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.
2011-01-01
This study demonstrates the applicability of a Bayesian probabilistic model as an effective tool in predicting post-storm beach changes along sandy coastlines. Volume change and net shoreline movement are modeled for two study sites at Fire Island, New York in response to two extratropical storms in 2007 and 2009. Both study areas include modified areas adjacent to unmodified areas in morphologically different segments of coast. Predicted outcomes are evaluated against observed changes to test model accuracy and uncertainty along 163 cross-shore transects. Results show strong agreement in the cross validation of predictions vs. observations, with 70-82% accuracies reported. Although no consistent spatial pattern in inaccurate predictions could be determined, the highest prediction uncertainties appeared in locations that had been recently replenished. Further testing and model refinement are needed; however, these initial results show that Bayesian networks have the potential to serve as important decision-support tools in forecasting coastal change.
Shared values and trust: the experience of community residents in a fire-prone ecosystem
Patricia L. Winter; George T. Cvetkovich
2010-01-01
The risk and impact of fires have been significant on the San Bernardino National Forest. It is important to understand how residents of areas surrounded by the forest perceive the impact of fires. If fire management agencies understand these perceptions, fire management agencies will be better equipped to communicate with publics about risk-reduction efforts that...
Evaluating risks and benefits of wildland fire at landscape scales
Carol Miller; Peter B. Landres; Paul B. Alaback
2000-01-01
Fire suppression has resulted in severe management challenges, especially in the wildland-urban interface zone. Fire managers seek to reduce fuels and risks in the interface zone, while striving to return the natural role of fire to wildland ecosystems. Managers must balance the benefits of wildland fire on ecosystem health against the values that need to be protected...
Estimation of wildfire size and risk changes due to fuels treatments
Cochrane, M.A.; Moran, C.J.; Wimberly, M.C.; Baer, A.D.; Finney, M.A.; Beckendorf, K.L.; Eidenshink, J.; Zhu, Z.
2012-01-01
Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of more than a million hectares of land, quantitative assessments of the effectiveness of existing fuel treatments at reducing the size of actual wildfires or how they might alter the risk of burning across landscapes are currently lacking. Here, we present a method for estimating spatial probabilities of burning as a function of extant fuels treatments for any wildland fire-affected landscape. We examined the landscape effects of more than 72 000 ha of wildland fuel treatments involved in 14 large wildfires that burned 314 000 ha of forests in nine US states between 2002 and 2010. Fuels treatments altered the probability of fire occurrence both positively and negatively across landscapes, effectively redistributing fire risk by changing surface fire spread rates and reducing the likelihood of crowning behaviour. Trade offs are created between formation of large areas with low probabilities of increased burning and smaller, well-defined regions with reduced fire risk.
The Probabilistic Nature of Preferential Choice
ERIC Educational Resources Information Center
Rieskamp, Jorg
2008-01-01
Previous research has developed a variety of theories explaining when and why people's decisions under risk deviate from the standard economic view of expected utility maximization. These theories are limited in their predictive accuracy in that they do not explain the probabilistic nature of preferential choice, that is, why an individual makes…
Pouzou, Jane G; Cullen, Alison C; Yost, Michael G; Kissel, John C; Fenske, Richard A
2017-11-06
Implementation of probabilistic analyses in exposure assessment can provide valuable insight into the risks of those at the extremes of population distributions, including more vulnerable or sensitive subgroups. Incorporation of these analyses into current regulatory methods for occupational pesticide exposure is enabled by the exposure data sets and associated data currently used in the risk assessment approach of the Environmental Protection Agency (EPA). Monte Carlo simulations were performed on exposure measurements from the Agricultural Handler Exposure Database and the Pesticide Handler Exposure Database along with data from the Exposure Factors Handbook and other sources to calculate exposure rates for three different neurotoxic compounds (azinphos methyl, acetamiprid, emamectin benzoate) across four pesticide-handling scenarios. Probabilistic estimates of doses were compared with the no observable effect levels used in the EPA occupational risk assessments. Some percentage of workers were predicted to exceed the level of concern for all three compounds: 54% for azinphos methyl, 5% for acetamiprid, and 20% for emamectin benzoate. This finding has implications for pesticide risk assessment and offers an alternative procedure that may be more protective of those at the extremes of exposure than the current approach. © 2017 Society for Risk Analysis.
76 FR 81998 - Methodology for Low Power/Shutdown Fire PRA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0295] Methodology for Low Power/Shutdown Fire PRA AGENCY..., ``Methodology for Low Power/Shutdown Fire PRA--Draft Report for Comment.'' DATES: Submit comments by March 01... risk assessment (PRA) method for quantitatively analyzing fire risk in commercial nuclear power plants...
78 FR 28892 - Hazardous Fire Risk Reduction, East Bay Hills, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... DEPARTMENT OF HOMELAND SECURITY Federal Emergency Management Agency [Docket ID FEMA 2010-0037] Hazardous Fire Risk Reduction, East Bay Hills, CA AGENCY: Federal Emergency Management Agency, DHS. ACTION..., limbing and mowing, thinning, and grazing techniques as appropriate to reduce the risk of fire hazard...
Spatially Informed Plant PRA Models for Security Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Timothy A.; Thomas, Willard; Thornsbury, Eric
2006-07-01
Traditional risk models can be adapted to evaluate plant response for situations where plant systems and structures are intentionally damaged, such as from sabotage or terrorism. This paper describes a process by which traditional risk models can be spatially informed to analyze the effects of compound and widespread harsh environments through the use of 'damage footprints'. A 'damage footprint' is a spatial map of regions of the plant (zones) where equipment could be physically destroyed or disabled as a direct consequence of an intentional act. The use of 'damage footprints' requires that the basic events from the traditional probabilistic riskmore » assessment (PRA) be spatially transformed so that the failure of individual components can be linked to the destruction of or damage to specific spatial zones within the plant. Given the nature of intentional acts, extensive modifications must be made to the risk models to account for the special nature of the 'initiating events' associated with deliberate adversary actions. Intentional acts might produce harsh environments that in turn could subject components and structures to one or more insults, such as structural, fire, flood, and/or vibration and shock damage. Furthermore, the potential for widespread damage from some of these insults requires an approach that addresses the impacts of these potentially severe insults even when they occur in locations distant from the actual physical location of a component or structure modeled in the traditional PRA. (authors)« less
The Global Tsunami Model (GTM)
NASA Astrophysics Data System (ADS)
Thio, H. K.; Løvholt, F.; Harbitz, C. B.; Polet, J.; Lorito, S.; Basili, R.; Volpe, M.; Romano, F.; Selva, J.; Piatanesi, A.; Davies, G.; Griffin, J.; Baptista, M. A.; Omira, R.; Babeyko, A. Y.; Power, W. L.; Salgado Gálvez, M.; Behrens, J.; Yalciner, A. C.; Kanoglu, U.; Pekcan, O.; Ross, S.; Parsons, T.; LeVeque, R. J.; Gonzalez, F. I.; Paris, R.; Shäfer, A.; Canals, M.; Fraser, S. A.; Wei, Y.; Weiss, R.; Zaniboni, F.; Papadopoulos, G. A.; Didenkulova, I.; Necmioglu, O.; Suppasri, A.; Lynett, P. J.; Mokhtari, M.; Sørensen, M.; von Hillebrandt-Andrade, C.; Aguirre Ayerbe, I.; Aniel-Quiroga, Í.; Guillas, S.; Macias, J.
2016-12-01
The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.
NASA Astrophysics Data System (ADS)
Nowak, W.; Enzenhoefer, R.; Bunk, T.
2013-12-01
Wellhead protection zones are commonly delineated via advective travel time analysis without considering any aspects of model uncertainty. In the past decade, research efforts produced quantifiable risk-based safety margins for protection zones. They are based on well vulnerability criteria (e.g., travel times, exposure times, peak concentrations) cast into a probabilistic setting, i.e., they consider model and parameter uncertainty. Practitioners still refrain from applying these new techniques for mainly three reasons. (1) They fear the possibly cost-intensive additional areal demand of probabilistic safety margins, (2) probabilistic approaches are allegedly complex, not readily available, and consume huge computing resources, and (3) uncertainty bounds are fuzzy, whereas final decisions are binary. The primary goal of this study is to show that these reservations are unjustified. We present a straightforward and computationally affordable framework based on a novel combination of well-known tools (e.g., MODFLOW, PEST, Monte Carlo). This framework provides risk-informed decision support for robust and transparent wellhead delineation under uncertainty. Thus, probabilistic risk-informed wellhead protection is possible with methods readily available for practitioners. As vivid proof of concept, we illustrate our key points on a pumped karstic well catchment, located in Germany. In the case study, we show that reliability levels can be increased by re-allocating the existing delineated area at no increase in delineated area. This is achieved by simply swapping delineated low-risk areas against previously non-delineated high-risk areas. Also, we show that further improvements may often be available at only low additional delineation area. Depending on the context, increases or reductions of delineated area directly translate to costs and benefits, if the land is priced, or if land owners need to be compensated for land use restrictions.
The Global Tsunami Model (GTM)
NASA Astrophysics Data System (ADS)
Lorito, S.; Basili, R.; Harbitz, C. B.; Løvholt, F.; Polet, J.; Thio, H. K.
2017-12-01
The tsunamis occurred worldwide in the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but often disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.
The Global Tsunami Model (GTM)
NASA Astrophysics Data System (ADS)
Løvholt, Finn
2017-04-01
The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.
Geographic Mapping as a Tool for Identifying Communities at High Risk for Fires.
Fahey, Erin; Lehna, Carlee; Hanchette, Carol; Coty, Mary-Beth
2016-01-01
The purpose of this study was to evaluate whether the sample of older adults in a home fire safety (HFS) study captured participants living in the areas at highest risk for fire occurrence. The secondary aim was to identify high risk areas to focus future HFS interventions. Geographic information systems software was used to identify census tracts where study participants resided. Census data for these tracts were compared with participant data based on seven risk factors (ie, age greater than 65 years, nonwhite race, below high school education, low socioeconomic status, rented housing, year home built, home value) previously identified in a fire risk model. The distribution of participants and census tracts among risk categories determined how well higher risk census tracts were sampled. Of the 46 census tracts where the HFS intervention was implemented, 78% (n = 36) were identified as high or severe risk according to the fire risk model. Study participants' means for median annual family income (P < .0001) and median home value (P < .0001) were significantly lower than the census tract means (n = 46), indicating participants were at higher risk of fire occurrence. Of the 92 census tracts identified as high or severe risk in the entire county, the study intervention was implemented in 39% (n = 36), indicating 56 census tracts as potential areas for future HFS interventions. The Geographic information system-based fire risk model is an underutilized but important tool for practice that allows community agencies to develop, plan, and evaluate their outreach efforts and ensure the most effective use of scarce resources.
Zhang, Kejiang; Achari, Gopal; Pei, Yuansheng
2010-10-01
Different types of uncertain information-linguistic, probabilistic, and possibilistic-exist in site characterization. Their representation and propagation significantly influence the management of contaminated sites. In the absence of a framework with which to properly represent and integrate these quantitative and qualitative inputs together, decision makers cannot fully take advantage of the available and necessary information to identify all the plausible alternatives. A systematic methodology was developed in the present work to incorporate linguistic, probabilistic, and possibilistic information into the Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE), a subgroup of Multi-Criteria Decision Analysis (MCDA) methods for ranking contaminated sites. The identification of criteria based on the paradigm of comparative risk assessment provides a rationale for risk-based prioritization. Uncertain linguistic, probabilistic, and possibilistic information identified in characterizing contaminated sites can be properly represented as numerical values, intervals, probability distributions, and fuzzy sets or possibility distributions, and linguistic variables according to their nature. These different kinds of representation are first transformed into a 2-tuple linguistic representation domain. The propagation of hybrid uncertainties is then carried out in the same domain. This methodology can use the original site information directly as much as possible. The case study shows that this systematic methodology provides more reasonable results. © 2010 SETAC.
77 FR 10576 - Methodology for Low Power/Shutdown Fire PRA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0295] Methodology for Low Power/Shutdown Fire PRA AGENCY.../Shutdown Fire PRA.'' In response to request from members of the public, the NRC is extending the public... risk assessment (PRA) method for quantitatively analyzing fire risk in commercial nuclear power plants...
Managing the Library Fire Risk.
ERIC Educational Resources Information Center
Morris, John
A discussion of fire risks, causes, prevention, and salvage in libraries is presented in text and photographs. A description of some historic library fires demonstrates the value of adequate protection and preparedness programs to minimize loss and damage. The need for fire retardant construction and protection from valdalism and arson are…
Brian R. Sturtevant; Brian R. Miranda; Jian Yang; Hong S. He; Eric J. Gustafson; Robert M. Scheller
2009-01-01
Public forests are surrounded by land over which agency managers have no control, and whose owners expect the public forest to be a "good neighbor." Fire risk abatement on multi-owner landscapes containing flammable but fire-dependent ecosystems epitomizes the complexities of managing public lands. We report a case study that applies a landscape disturbance...
Gomez, Céline; Mangeas, Morgan; Curt, Thomas; Ibanez, Thomas; Munzinger, Jérôme; Dumas, Pascal; Jérémy, André; Despinoy, Marc; Hély, Christelle
2015-01-01
Wildfire has been recognized as one of the most ubiquitous disturbance agents to impact on natural environments. In this study, our main objective was to propose a modeling approach to investigate the potential impact of wildfire on biodiversity. The method is illustrated with an application example in New Caledonia where conservation and sustainable biodiversity management represent an important challenge. Firstly, a biodiversity loss index, including the diversity and the vulnerability indexes, was calculated for every vegetation unit in New Caledonia and mapped according to its distribution over the New Caledonian mainland. Then, based on spatially explicit fire behavior simulations (using the FLAMMAP software) and fire ignition probabilities, two original fire risk assessment approaches were proposed: a one-off event model and a multi-event burn probability model. The spatial distribution of fire risk across New Caledonia was similar for both indices with very small localized spots having high risk. The patterns relating to highest risk are all located around the remaining sclerophyll forest fragments and are representing 0.012% of the mainland surface. A small part of maquis and areas adjacent to dense humid forest on ultramafic substrates should also be monitored. Vegetation interfaces between secondary and primary units displayed high risk and should represent priority zones for fire effects mitigation. Low fire ignition probability in anthropogenic-free areas decreases drastically the risk. A one-off event associated risk allowed localizing of the most likely ignition areas with potential for extensive damage. Emergency actions could aim limiting specific fire spread known to have high impact or consist of on targeting high risk areas to limit one-off fire ignitions. Spatially explicit information on burning probability is necessary for setting strategic fire and fuel management planning. Both risk indices provide clues to preserve New Caledonia hot spot of biodiversity facing wildfires.
Gomez, Céline; Mangeas, Morgan; Curt, Thomas; Ibanez, Thomas; Munzinger, Jérôme; Dumas, Pascal; Jérémy, André; Despinoy, Marc; Hély, Christelle
2015-01-01
Wildfire has been recognized as one of the most ubiquitous disturbance agents to impact on natural environments. In this study, our main objective was to propose a modeling approach to investigate the potential impact of wildfire on biodiversity. The method is illustrated with an application example in New Caledonia where conservation and sustainable biodiversity management represent an important challenge. Firstly, a biodiversity loss index, including the diversity and the vulnerability indexes, was calculated for every vegetation unit in New Caledonia and mapped according to its distribution over the New Caledonian mainland. Then, based on spatially explicit fire behavior simulations (using the FLAMMAP software) and fire ignition probabilities, two original fire risk assessment approaches were proposed: a one-off event model and a multi-event burn probability model. The spatial distribution of fire risk across New Caledonia was similar for both indices with very small localized spots having high risk. The patterns relating to highest risk are all located around the remaining sclerophyll forest fragments and are representing 0.012% of the mainland surface. A small part of maquis and areas adjacent to dense humid forest on ultramafic substrates should also be monitored. Vegetation interfaces between secondary and primary units displayed high risk and should represent priority zones for fire effects mitigation. Low fire ignition probability in anthropogenic-free areas decreases drastically the risk. A one-off event associated risk allowed localizing of the most likely ignition areas with potential for extensive damage. Emergency actions could aim limiting specific fire spread known to have high impact or consist of on targeting high risk areas to limit one-off fire ignitions. Spatially explicit information on burning probability is necessary for setting strategic fire and fuel management planning. Both risk indices provide clues to preserve New Caledonia hot spot of biodiversity facing wildfires. PMID:25691965
Rats bred for high alcohol drinking are more sensitive to delayed and probabilistic outcomes.
Wilhelm, C J; Mitchell, S H
2008-10-01
Alcoholics and heavy drinkers score higher on measures of impulsivity than nonalcoholics and light drinkers. This may be because of factors that predate drug exposure (e.g. genetics). This study examined the role of genetics by comparing impulsivity measures in ethanol-naive rats selectively bred based on their high [high alcohol drinking (HAD)] or low [low alcohol drinking (LAD)] consumption of ethanol. Replicates 1 and 2 of the HAD and LAD rats, developed by the University of Indiana Alcohol Research Center, completed two different discounting tasks. Delay discounting examines sensitivity to rewards that are delayed in time and is commonly used to assess 'choice' impulsivity. Probability discounting examines sensitivity to the uncertain delivery of rewards and has been used to assess risk taking and risk assessment. High alcohol drinking rats discounted delayed and probabilistic rewards more steeply than LAD rats. Discount rates associated with probabilistic and delayed rewards were weakly correlated, while bias was strongly correlated with discount rate in both delay and probability discounting. The results suggest that selective breeding for high alcohol consumption selects for animals that are more sensitive to delayed and probabilistic outcomes. Sensitivity to delayed or probabilistic outcomes may be predictive of future drinking in genetically predisposed individuals.
From cyclone tracks to the costs of European winter storms: A probabilistic loss assessment model
NASA Astrophysics Data System (ADS)
Renggli, Dominik; Corti, Thierry; Reese, Stefan; Wueest, Marc; Viktor, Elisabeth; Zimmerli, Peter
2014-05-01
The quantitative assessment of the potential losses of European winter storms is essential for the economic viability of a global reinsurance company. For this purpose, reinsurance companies generally use probabilistic loss assessment models. This work presents an innovative approach to develop physically meaningful probabilistic events for Swiss Re's new European winter storm loss model. The meteorological hazard component of the new model is based on cyclone and windstorm tracks identified in the 20th Century Reanalysis data. The knowledge of the evolution of winter storms both in time and space allows the physically meaningful perturbation of properties of historical events (e.g. track, intensity). The perturbation includes a random element but also takes the local climatology and the evolution of the historical event into account. The low-resolution wind footprints taken from 20th Century Reanalysis are processed by a statistical-dynamical downscaling to generate high-resolution footprints of the historical and probabilistic winter storm events. Downscaling transfer functions are generated using ENSEMBLES regional climate model data. The result is a set of reliable probabilistic events representing thousands of years. The event set is then combined with country- and risk-specific vulnerability functions and detailed market- or client-specific exposure information to compute (re-)insurance risk premiums.
Lagged cumulative spruce budworm defoliation affects the risk of fire ignition in Ontario, Canada.
James, Patrick M A; Robert, Louis-Etienne; Wotton, B Mike; Martell, David L; Fleming, Richard A
2017-03-01
Detailed understanding of forest disturbance interactions is needed for effective forecasting, modelling, and management. Insect outbreaks are a significant forest disturbance that alters forest structure as well as the distribution and connectivity of combustible fuels at broad spatial scales. The effect of insect outbreaks on fire activity is an important but contentious issue with significant policy consequences. The eastern spruce budworm (Choristoneura fumiferana) is a native defoliating insect in eastern North America whose periodic outbreaks create large patches of dead fir and spruce trees. Of particular concern to fire and forest managers is whether these patches represent an increased fire risk, if so, for how long, and how the relationship between defoliation and fire risk varies through space and time. Previous work suggests a temporary increase in flammability in budworm-killed forests, but regional and seasonal variability in these relationships has not been examined. Using an extensive database on historical lightning-caused fire ignitions and spruce budworm defoliation between 1963 and 2000, we assess the relative importance of cumulative defoliation and fire weather on the probability of ignition in Ontario, Canada. We modeled fire ignition using a generalized additive logistic regression model that accounts for temporal autocorrelation in fire weather. We compared two ecoregions in eastern Ontario (Abitibi Plains) and western Ontario (Lake of the Woods) that differ in terms of climate, geomorphology, and forest composition. We found that defoliation has the potential to both increase and decrease the probability of ignition depending on the time scale, ecoregion, and season examined. Most importantly, we found that lagged spruce budworm defoliation (8-10 yr) increases the risk of fire ignition whereas recent defoliation (1 yr) can decrease this risk. We also found that historical defoliation has a greater influence on ignition risk during the spring than during the summer fire season. Given predicted increases in forest insect activity due to global change, these results represent important information for fire management agencies that can be used to refine existing models of fire risk. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Mastrolorenzo, G.; Pappalardo, L.; de Natale, G.; Troise, C.; Rossano, S.; Panizza, A.
2009-04-01
Probabilistic approaches based on available volcanological data from real eruptions of Campi Flegrei and Somma-Vesuvius, are assembled in a comprehensive assessment of volcanic hazards at the Neapolitan area. This allows to compare the volcanic hazards related to the different types of events, which can be used for evaluating the conditional probability of flows and falls hazard in case of a volcanic crisis. Hazard maps are presented, based on a rather complete set of numerical simulations, produced using field and laboratory data as input parameters relative to a large range (VEI 1 to 5) of fallout and pyroclastic-flow events and their relative occurrence. The results allow us to quantitatively evaluate and compare the hazard related to pyroclastic fallout and density currents (PDCs) at the Neapolitan volcanoes and their surroundings, including the city of Naples. Due to its position between the two volcanic areas, the city of Naples is particularly exposed to volcanic risk from VEI>2 eruptions, as recorded in the local volcanic succession. Because dominant wind directions, the area of Naples is particularly prone to fallout hazard from Campi Flegrei caldera eruptions in the VEI range 2-5. The hazard from PDCs decreases roughly radially with distance from the eruptive vents and is strongly controlled by the topographic heights. Campi Flegrei eruptions are particularly hazardous for Naples, although the Camaldoli and Posillipo hills produce an effective barrier to propagation to the very central part of Naples. PDCs from Vesuvius eruptions with VEI>4 can cover the city of Naples, whereas even VEI>3 eruptions have a moderate fallout hazard there.
Skin antiseptics and the risk of operating theatre fires.
Spigelman, Allan D; Swan, Judith R
2005-07-01
Following press reports of patients catching fire or receiving chemical burns in the operating theatre, a review was conducted on the flammability of skin antiseptics. The purpose of the paper was to clarify confusion regarding povidine-iodine (Betadine), which had been reported as being flammable, and also to determine the use of alcohol-based solutions in the Hunter Area Health Service. A risk assessment was conducted and risk reduction strategies outlined. Risk assessment was made following a literature review and an audit of 10 operating theatres in the Hunter Area Health Service. Risk for operating room fires from alcohol-based skin antiseptics was confirmed. Antiseptics in aqueous solutions only smoulder. The Hunter Health survey indicated that although alcohol-based solutions were not used in operating theatres, they were used in anaesthetic bays for insertion of epidural and central line catheters. Strategies to reduce the risk of fire include discontinuation of use of alcohol-based skin antiseptics in operating theatres; using fire retardant surgical drapes; installing over-current protection devices on electrical equipment; minimizing flammable conditions by avoiding nitrous oxide and using the lowest required concentration of inspired oxygen; use of non-flammable cuffed endotracheal tubes; education and training of operating theatre personnel in fire hazards. Operating theatre fires continue to be a major risk for patient safety. In order to reduce this risk, the strategies outlined here should be followed.
A Probabilistic Risk Assessment of Groundwater-Related Risks at Excavation Sites
NASA Astrophysics Data System (ADS)
Jurado, A.; de Gaspari, F.; Vilarrasa, V.; Sanchez-Vila, X.; Fernandez-Garcia, D.; Tartakovsky, D. M.; Bolster, D.
2010-12-01
Excavation sites such as those associated with the construction of subway lines, railways and highway tunnels are hazardous places, posing risks to workers, machinery and surrounding buildings. Many of these risks can be groundwater related. In this work we develop a general framework based on a probabilistic risk assessment (PRA) to quantify such risks. This approach is compatible with standard PRA practices and it employs many well-developed risk analysis tools, such as fault trees. The novelty and computational challenges of the proposed approach stem from the reliance on stochastic differential equations, rather than reliability databases, to compute the probabilities of basic events. The general framework is applied to a specific case study in Spain. It is used to estimate and minimize risks for a potential construction site of an underground station for the new subway line in the Barcelona metropolitan area.
NASA Astrophysics Data System (ADS)
Verbesselt, J.; Somers, B.; Lhermitte, S.; van Aardt, J.; Jonckheere, I.; Coppin, P.
2005-10-01
The lack of information on vegetation dryness prior to the use of fire as a management tool often leads to a significant deterioration of the savanna ecosystem. This paper therefore evaluated the capacity of SPOT VEGETATION time-series to monitor the vegetation dryness (i.e., vegetation moisture content per vegetation amount) in order to optimize fire risk assessment in the savanna ecosystem of Kruger National Park in South Africa. The integrated Relative Vegetation Index approach (iRVI) to quantify the amount of herbaceous biomass at the end of the rain season and the Accumulated Relative Normalized Difference vegetation index decrement (ARND) related to vegetation moisture content were selected. The iRVI and ARND related to vegetation amount and moisture content, respectively, were combined in order to monitor vegetation dryness and optimize fire risk assessment in the savanna ecosystems. In situ fire activity data was used to evaluate the significance of the iRVI and ARND to monitor vegetation dryness for fire risk assessment. Results from the binary logistic regression analysis confirmed that the assessment of fire risk was optimized by integration of both the vegetation quantity (iRVI) and vegetation moisture content (ARND) as statistically significant explanatory variables. Consequently, the integrated use of both iRVI and ARND to monitor vegetation dryness provides a more suitable tool for fire management and suppression compared to other traditional satellite-based fire risk assessment methods, only related to vegetation moisture content.
Fire safety in the operating room.
Rinder, Christine Stowe
2008-12-01
Elimination of flammable anesthetic gases has had little effect on operating-room fires except to change their etiology. Electrocautery and lasers, in an oxygen-enriched environment, can ignite even the most fire-resistant materials, including the patient, and the fire triad possibilities in the operating room are nearly limitless. This review will: identify operating room contents capable of acting as ignition/oxidizer/fuel sources, highlight operating room items that are uniquely potent fire triad contributors, and operating room identify settings where fire risk is enhanced by proximity of triad components in time or space. Anesthesiologists are cognizant of the risk of airway surgery fires due to laser ignition of the endotracheal tube and/or its contents. Recently, however, head/neck surgery under monitored anesthesia care has emerged as a high-risk setting for operating room fires; burn injuries represent 20% of monitored anesthesia care-related malpractice claims, 95% of which involved head/neck surgery. Operating room fires are infrequent but catastrophic. Operating room fire prevention depends on: (a)understanding how fire triad elements interact to create a fire, (b) recognizing how standard operating-room equipment, materials, and supplemental oxygen can become one of those elements, and (c) vigilance for circumstances that bring fire triad elements into close proximity.
Risk assessment for furan contamination through the food chain in Belgian children.
Scholl, Georges; Huybrechts, Inge; Humblet, Marie-France; Scippo, Marie-Louise; De Pauw, Edwin; Eppe, Gauthier; Saegerman, Claude
2012-08-01
Young, old, pregnant and immuno-compromised persons are of great concern for risk assessors as they represent the sub-populations most at risk. The present paper focuses on risk assessment linked to furan exposure in children. Only the Belgian population was considered because individual contamination and consumption data that are required for accurate risk assessment were available for Belgian children only. Two risk assessment approaches, the so-called deterministic and probabilistic, were applied and the results were compared for the estimation of daily intake. A significant difference between the average Estimated Daily Intake (EDI) was underlined between the deterministic (419 ng kg⁻¹ body weight (bw) day⁻¹) and the probabilistic (583 ng kg⁻¹ bw day⁻¹) approaches, which results from the mathematical treatment of the null consumption and contamination data. The risk was characterised by two ways: (1) the classical approach by comparison of the EDI to a reference dose (RfD(chronic-oral)) and (2) the most recent approach, namely the Margin of Exposure (MoE) approach. Both reached similar conclusions: the risk level is not of a major concern, but is neither negligible. In the first approach, only 2.7 or 6.6% (respectively in the deterministic and in the probabilistic way) of the studied population presented an EDI above the RfD(chronic-oral). In the second approach, the percentage of children displaying a MoE above 10,000 and below 100 is 3-0% and 20-0.01% in the deterministic and probabilistic modes, respectively. In addition, children were compared to adults and significant differences between the contamination patterns were highlighted. While major contamination was linked to coffee consumption in adults (55%), no item predominantly contributed to the contamination in children. The most important were soups (19%), dairy products (17%), pasta and rice (11%), fruit and potatoes (9% each).
Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coleman, Justin L.; Bolisetti, Chandu; Veeraraghavan, Swetha
Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporatesmore » deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.« less
Development of optimization-based probabilistic earthquake scenarios for the city of Tehran
NASA Astrophysics Data System (ADS)
Zolfaghari, M. R.; Peyghaleh, E.
2016-01-01
This paper presents the methodology and practical example for the application of optimization process to select earthquake scenarios which best represent probabilistic earthquake hazard in a given region. The method is based on simulation of a large dataset of potential earthquakes, representing the long-term seismotectonic characteristics in a given region. The simulation process uses Monte-Carlo simulation and regional seismogenic source parameters to generate a synthetic earthquake catalogue consisting of a large number of earthquakes, each characterized with magnitude, location, focal depth and fault characteristics. Such catalogue provides full distributions of events in time, space and size; however, demands large computation power when is used for risk assessment, particularly when other sources of uncertainties are involved in the process. To reduce the number of selected earthquake scenarios, a mixed-integer linear program formulation is developed in this study. This approach results in reduced set of optimization-based probabilistic earthquake scenario, while maintaining shape of hazard curves and full probabilistic picture by minimizing the error between hazard curves driven by full and reduced sets of synthetic earthquake scenarios. To test the model, the regional seismotectonic and seismogenic characteristics of northern Iran are used to simulate a set of 10,000-year worth of events consisting of some 84,000 earthquakes. The optimization model is then performed multiple times with various input data, taking into account probabilistic seismic hazard for Tehran city as the main constrains. The sensitivity of the selected scenarios to the user-specified site/return period error-weight is also assessed. The methodology could enhance run time process for full probabilistic earthquake studies like seismic hazard and risk assessment. The reduced set is the representative of the contributions of all possible earthquakes; however, it requires far less computation power. The authors have used this approach for risk assessment towards identification of effectiveness-profitability of risk mitigation measures, using optimization model for resource allocation. Based on the error-computation trade-off, 62-earthquake scenarios are chosen to be used for this purpose.
NASA Astrophysics Data System (ADS)
Lowe, R.; Ballester, J.; Robine, J.; Herrmann, F. R.; Jupp, T. E.; Stephenson, D.; Rodó, X.
2013-12-01
Users of climate information often require probabilistic information on which to base their decisions. However, communicating information contained within a probabilistic forecast presents a challenge. In this paper we demonstrate a novel visualisation technique to display ternary probabilistic forecasts on a map in order to inform decision making. In this method, ternary probabilistic forecasts, which assign probabilities to a set of three outcomes (e.g. low, medium, and high risk), are considered as a point in a triangle of barycentric coordinates. This allows a unique colour to be assigned to each forecast from a continuum of colours defined on the triangle. Colour saturation increases with information gain relative to the reference forecast (i.e. the long term average). This provides additional information to decision makers compared with conventional methods used in seasonal climate forecasting, where one colour is used to represent one forecast category on a forecast map (e.g. red = ';dry'). We use the tool to present climate-related mortality projections across Europe. Temperature and humidity are related to human mortality via location-specific transfer functions, calculated using historical data. Daily mortality data at the NUTS2 level for 16 countries in Europe were obtain from 1998-2005. Transfer functions were calculated for 54 aggregations in Europe, defined using criteria related to population and climatological similarities. Aggregations are restricted to fall within political boundaries to avoid problems related to varying adaptation policies between countries. A statistical model is fit to cold and warm tails to estimate future mortality using forecast temperatures, in a Bayesian probabilistic framework. Using predefined categories of temperature-related mortality risk, we present maps of probabilistic projections for human mortality at seasonal to decadal time scales. We demonstrate the information gained from using this technique compared to more traditional methods to display ternary probabilistic forecasts. This technique allows decision makers to identify areas where the model predicts with certainty area-specific heat waves or cold snaps, in order to effectively target resources to those areas most at risk, for a given season or year. It is hoped that this visualisation tool will facilitate the interpretation of the probabilistic forecasts not only for public health decision makers but also within a multi-sectoral climate service framework.
NASA Astrophysics Data System (ADS)
Peterson, Seth Howard
Fire is an integral part of ecosystems in the western United States. Decades of fire suppression have led to (unnaturally) large accumulations of fuel in some forest communities, such as the lower elevation forests of the Sierra Nevada. Urban sprawl into fire prone chaparral vegetation in southern California has put human lives at risk and the decreased fire return intervals have put the vegetation community at risk of type conversion. This research examines the factors affecting fire risk in two of the dominant landscapes in the state of California, chaparral and inland coniferous forests. Live fuel moisture (LFM) is important for fire ignition, spread rate, and intensity in chaparral. LFM maps were generated for Los Angeles County by developing and then inverting robust cross-validated regression equations from time series field data and vegetation indices (VIs) and phenological metrics from MODIS data. Fire fuels, including understory fuels which are not visible to remote sensing instruments, were mapped in Yosemite National Park using the random forests decision tree algorithm and climatic, topographic, remotely sensed, and fire history variables. Combining the disparate data sources served to improve classification accuracies. The models were inverted to produce maps of fuel models and fuel amounts, and these showed that fire fuel amounts are highest in the low elevation forests that have been most affected by fire suppression impacting the natural fire regime. Wildland fires in chaparral commonly burn in late summer or fall when LFM is near its annual low, however, the Jesusita Fire burned in early May of 2009, when LFM was still relatively high. The HFire fire spread model was used to simulate the growth of the Jesusita Fire using LFM maps derived from imagery acquired at the time of the fire and imagery acquired in late August to determine how much different the fire would have been if it had occurred later in the year. Simulated fires were 1.5 times larger, and the fire reached the wildland urban interface three hours earlier, when using August LFM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, Rachel, E-mail: rachel.sparks@ucl.ac.uk; Barratt, Dean; Nicolas Bloch, B.
2015-03-15
Purpose: Transrectal ultrasound (TRUS)-guided needle biopsy is the current gold standard for prostate cancer diagnosis. However, up to 40% of prostate cancer lesions appears isoechoic on TRUS. Hence, TRUS-guided biopsy has a high false negative rate for prostate cancer diagnosis. Magnetic resonance imaging (MRI) is better able to distinguish prostate cancer from benign tissue. However, MRI-guided biopsy requires special equipment and training and a longer procedure time. MRI-TRUS fusion, where MRI is acquired preoperatively and then aligned to TRUS, allows for advantages of both modalities to be leveraged during biopsy. MRI-TRUS-guided biopsy increases the yield of cancer positive biopsies. Inmore » this work, the authors present multiattribute probabilistic postate elastic registration (MAPPER) to align prostate MRI and TRUS imagery. Methods: MAPPER involves (1) segmenting the prostate on MRI, (2) calculating a multiattribute probabilistic map of prostate location on TRUS, and (3) maximizing overlap between the prostate segmentation on MRI and the multiattribute probabilistic map on TRUS, thereby driving registration of MRI onto TRUS. MAPPER represents a significant advancement over the current state-of-the-art as it requires no user interaction during the biopsy procedure by leveraging texture and spatial information to determine the prostate location on TRUS. Although MAPPER requires manual interaction to segment the prostate on MRI, this step is performed prior to biopsy and will not substantially increase biopsy procedure time. Results: MAPPER was evaluated on 13 patient studies from two independent datasets—Dataset 1 has 6 studies acquired with a side-firing TRUS probe and a 1.5 T pelvic phased-array coil MRI; Dataset 2 has 7 studies acquired with a volumetric end-firing TRUS probe and a 3.0 T endorectal coil MRI. MAPPER has a root-mean-square error (RMSE) for expert selected fiducials of 3.36 ± 1.10 mm for Dataset 1 and 3.14 ± 0.75 mm for Dataset 2. State-of-the-art MRI-TRUS fusion methods report RMSE of 3.06–2.07 mm. Conclusions: MAPPER aligns MRI and TRUS imagery without manual intervention ensuring efficient, reproducible registration. MAPPER has a similar RMSE to state-of-the-art methods that require manual intervention.« less
Wild Fire Risk Map in the Eastern Steppe of Mongolia Using Spatial Multi-Criteria Analysis
NASA Astrophysics Data System (ADS)
Nasanbat, Elbegjargal; Lkhamjav, Ochirkhuyag
2016-06-01
Grassland fire is a cause of major disturbance to ecosystems and economies throughout the world. This paper investigated to identify risk zone of wildfire distributions on the Eastern Steppe of Mongolia. The study selected variables for wildfire risk assessment using a combination of data collection, including Social Economic, Climate, Geographic Information Systems, Remotely sensed imagery, and statistical yearbook information. Moreover, an evaluation of the result is used field validation data and assessment. The data evaluation resulted divided by main three group factors Environmental, Social Economic factor, Climate factor and Fire information factor into eleven input variables, which were classified into five categories by risk levels important criteria and ranks. All of the explanatory variables were integrated into spatial a model and used to estimate the wildfire risk index. Within the index, five categories were created, based on spatial statistics, to adequately assess respective fire risk: very high risk, high risk, moderate risk, low and very low. Approximately more than half, 68 percent of the study area was predicted accuracy to good within the very high, high risk and moderate risk zones. The percentages of actual fires in each fire risk zone were as follows: very high risk, 42 percent; high risk, 26 percent; moderate risk, 13 percent; low risk, 8 percent; and very low risk, 11 percent. The main overall accuracy to correct prediction from the model was 62 percent. The model and results could be support in spatial decision making support system processes and in preventative wildfire management strategies. Also it could be help to improve ecological and biodiversity conservation management.
Uncertainty and risk in wildland fire management: a review.
Thompson, Matthew P; Calkin, Dave E
2011-08-01
Wildland fire management is subject to manifold sources of uncertainty. Beyond the unpredictability of wildfire behavior, uncertainty stems from inaccurate/missing data, limited resource value measures to guide prioritization across fires and resources at risk, and an incomplete scientific understanding of ecological response to fire, of fire behavior response to treatments, and of spatiotemporal dynamics involving disturbance regimes and climate change. This work attempts to systematically align sources of uncertainty with the most appropriate decision support methodologies, in order to facilitate cost-effective, risk-based wildfire planning efforts. We review the state of wildfire risk assessment and management, with a specific focus on uncertainties challenging implementation of integrated risk assessments that consider a suite of human and ecological values. Recent advances in wildfire simulation and geospatial mapping of highly valued resources have enabled robust risk-based analyses to inform planning across a variety of scales, although improvements are needed in fire behavior and ignition occurrence models. A key remaining challenge is a better characterization of non-market resources at risk, both in terms of their response to fire and how society values those resources. Our findings echo earlier literature identifying wildfire effects analysis and value uncertainty as the primary challenges to integrated wildfire risk assessment and wildfire management. We stress the importance of identifying and characterizing uncertainties in order to better quantify and manage them. Leveraging the most appropriate decision support tools can facilitate wildfire risk assessment and ideally improve decision-making. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Fragola, Joseph R.; Maggio, Gaspare; Frank, Michael V.; Gerez, Luis; Mcfadden, Richard H.; Collins, Erin P.; Ballesio, Jorge; Appignani, Peter L.; Karns, James J.
1995-01-01
The application of the probabilistic risk assessment methodology to a Space Shuttle environment, particularly to the potential of losing the Shuttle during nominal operation is addressed. The different related concerns are identified and combined to determine overall program risks. A fault tree model is used to allocate system probabilities to the subsystem level. The loss of the vehicle due to failure to contain energetic gas and debris, to maintain proper propulsion and configuration is analyzed, along with the loss due to Orbiter, external tank failure, and landing failure or error.
Understanding the long-term fire risks in forests affected by sudden oak death
Yana Valachovic; Chris Lee; Radoslaw Glebocki; Hugh Scanlon; J. Morgan Varner; David Rizzo
2010-01-01
It is assumed that large numbers of dead and down tanoak in forests infested by Phytophthora ramorum contribute to increased fire hazard risk and fuel loading. We studied the impact of P. ramorum infestation on surface fuel loading, potential fire hazard, and potential fire behavior in Douglas-fir- (Pseudotsuga...
Risk Factors for Rural Residential Fires
ERIC Educational Resources Information Center
Allareddy, Veerasathpurush; Peek-Asa, Corinne; Yang, Jingzhen; Zwerling, Craig
2007-01-01
Context and Purpose: Rural households report high fire-related mortality and injury rates, but few studies have examined the risk factors for fires. This study aims to identify occupant and household characteristics that are associated with residential fires in a rural cohort. Methods: Of 1,005 households contacted in a single rural county, 691…
Using risk analysis to reveal opportunities for the management of unplanned ignitions in wilderness
Kevin Barnett; Carol Miller; Tyron J. Venn
2016-01-01
A goal of fire management in wilderness is to allow fire to play its natural ecological role without intervention. Unfortunately, most unplanned ignitions in wilderness are suppressed, in part because of the risk they might pose to values outside of the wilderness. We capitalize on recent advances in fire risk analysis to demonstrate a risk-based approach for revealing...
Butsic, Van; Syphard, Alexandra D.; Keeley, Jon E.; Bar-Massada, Avi
2017-01-01
The purchase of private land for conservation purposes is a common way to prevent the exploitation of sensitive ecological areas. However, private land conservation can also provide other benefits, one of these being natural hazard reduction. Here, we investigated the impacts of private land conservation on fire risk to homes in San Diego County, California. We coupled an econometric land use change model with a model that estimates the probability of house loss due to fire in order to compare fire risk at the county and municipality scale under alternative private land purchasing schemes and over a 20 year time horizon. We found that conservation purchases could reduce fire risk on this landscape, and the amount of risk reduction was related to the targeting approach used to choose which parcels were conserved. Conservation land purchases that targeted parcels designated as high fire hazard resulted in lower fire risk to homes than purchases that targeted low costs or high likelihood to subdivide. This result was driven by (1) preventing home placement in fire prone areas and (2) taking land off the market, and hence increasing development densities in other areas. These results raise the possibility that resource conservation and fire hazard reduction may benefit from combining efforts. With adequate planning, future conservation purchases could have synergistic effects beyond just protecting ecologically sensitive areas.
Risk reduction in road and rail LPG transportation by passive fire protection.
Paltrinieri, Nicola; Landucci, Gabriele; Molag, Menso; Bonvicini, Sarah; Spadoni, Gigliola; Cozzani, Valerio
2009-08-15
The potential reduction of risk in LPG (Liquefied Petroleum Gas) road transport due to the adoption of passive fire protections was investigated. Experimental data available for small scale vessels fully engulfed by a fire were extended to real scale road and rail tankers through a finite elements model. The results of mathematical simulations of real scale fire engulfment scenarios that may follow accidents involving LPG tankers proved the effectiveness of the thermal protections in preventing the "fired" BLEVE (Boiling Liquid Expanding Vapour Explosion) scenario. The presence of a thermal coating greatly increases the "time to failure", providing a time lapse that in the European experience may be considered sufficient to allow the start of effective mitigation actions by fire brigades. The results obtained were used to calculate the expected reduction of individual and societal risk due to LPG transportation in real case scenarios. The analysis confirmed that the introduction of passive fire protections turns out in a significant reduction of risk, up to an order of magnitude in the case of individual risk and of about 50% if the expectation value is considered. Thus, the adoption of passive fire protections, not compulsory in European regulations, may be an effective technical measure for risk reduction, and may contribute to achieve the control of "major accidents hazards" cited by the European legislation.
Development at the wildland-urban interface and the mitigation of forest-fire risk.
Spyratos, Vassilis; Bourgeron, Patrick S; Ghil, Michael
2007-09-04
This work addresses the impacts of development at the wildland-urban interface on forest fires that spread to human habitats. Catastrophic fires in the western United States and elsewhere make these impacts a matter of urgency for decision makers, scientists, and the general public. Using a simple fire-spread model, along with housing and vegetation data, we show that fire size probability distributions can be strongly modified by the density and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability and house density. Many actual fire landscapes in the United States appear to have spreading properties close to this transition. Thus, the density and flammability of buildings should be taken into account when assessing fire risk at the wildland-urban interface. Moreover, our results highlight ways for regulation at this interface to help mitigate fire risk.
On the Measurement and Properties of Ambiguity in Probabilistic Expectations
ERIC Educational Resources Information Center
Pickett, Justin T.; Loughran, Thomas A.; Bushway, Shawn
2015-01-01
Survey respondents' probabilistic expectations are now widely used in many fields to study risk perceptions, decision-making processes, and behavior. Researchers have developed several methods to account for the fact that the probability of an event may be more ambiguous for some respondents than others, but few prior studies have empirically…
Reliability, Risk and Cost Trade-Offs for Composite Designs
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Singhal, Surendra N.; Chamis, Christos C.
1996-01-01
Risk and cost trade-offs have been simulated using a probabilistic method. The probabilistic method accounts for all naturally-occurring uncertainties including those in constituent material properties, fabrication variables, structure geometry and loading conditions. The probability density function of first buckling load for a set of uncertain variables is computed. The probabilistic sensitivity factors of uncertain variables to the first buckling load is calculated. The reliability-based cost for a composite fuselage panel is defined and minimized with respect to requisite design parameters. The optimization is achieved by solving a system of nonlinear algebraic equations whose coefficients are functions of probabilistic sensitivity factors. With optimum design parameters such as the mean and coefficient of variation (representing range of scatter) of uncertain variables, the most efficient and economical manufacturing procedure can be selected. In this paper, optimum values of the requisite design parameters for a predetermined cost due to failure occurrence are computationally determined. The results for the fuselage panel analysis show that the higher the cost due to failure occurrence, the smaller the optimum coefficient of variation of fiber modulus (design parameter) in longitudinal direction.
Erin K. Noonan-Wright; Tonja S. Opperman
2015-01-01
In response to federal wildfire policy changes, risk-informed decision-making by way of improved decision support, is increasingly becoming a component of managing wildfires. As fire incidents escalate in size and complexity, the Wildland Fire Decision Support System (WFDSS) provides support with different analytical tools as fire conditions change. We demonstrate the...
An assessment of adult risks of paresthesia due to mercury from coal combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipfert, F.; Moskowitz, P.; Fthenakis, V.
1993-11-01
This paper presents results from a probabilistic assessment of the mercury health risks associated with a hypothetical 1000 MW coal-fired power plant. The assessment draws on the extant knowledge in each of the important steps in the chain from emissions to health effects, based on methylmercury derived from seafood. For this assessment, we define three separate sources of dietary Hg: canned tuna (affected by global Hg), marine shellfish and finfish (affected by global Hg), and freshwater gamefish (affected by both global Hg and local deposition from nearby sources). We consider emissions of both reactive and elemental mercury from the hypotheticalmore » plant (assumed to burn coal with the US average Hg content) and estimate wet and dry deposition rates; atmospheric reactions are not considered. Mercury that is not deposited within 50 km is assumed to enter the global background pool. The incremental Hg in local fish is assumed to be proportional to the incremental total Hg deposition. Three alternative dose-response models were derived from published data on specific neurological responses, in this case, adult paresthesia (skin prickling or tingling of the extremities). Preliminary estimates show the upper 95th percentile of the baseline risk attributed to seafood consumption to be around 10{sup {minus}4} (1 chance in 10,000). Based on a doubling of Hg deposition in the immediate vicinity of the hypothetical plant, the incremental local risk from seafood would be about a factor of 4 higher. These risks should be compared to the estimated background prevalence rate of paresthesia, which is about 7%.« less
Estimation of the Forest Fire Risk in Indonesia based on Satellite Remote Sensing
NASA Astrophysics Data System (ADS)
Suzuki, H.; Takahashi, Y.; Hashimoto, A.; Akita, M.; Hasegawa, Y.; Ogino, Y.; Naruse, N.; Takahashi, Y.
2016-12-01
To minimize forest fires in tropical area is extremely important, because the fire has a large impact on global warming, biodiversity, and human society. In the previous study, Shimada and Ishibashi monitored the ground-water lever from the value of Normalized Difference Vegetation Index (NDVI) obtained in Kalimantan Island to predict where the forest fires will happen. We have developed a method to map the forest fire risk by calculating the value of Modified Soil Adjusted Vegetation Index 2 (MSAVI2). Moreover, we investigated the relation between the distance from a road as an artificial factor and the occurrence of the fire.First, calculating the MSAVI2 from Landsat 7 and 8 images of August, 2015 around Martapura in South Sumatra, Indonesia, we mapped the area where the plants were stressed. Next, we checked the degrees of matching between the area of low MSAVI2 and the forest fire points.As a result, half of the fires happened in the area having the MSAVI2 values of 0.20 to 0.35. When we focused on only the area which is over 5 kilometers far from a road, the degrees of matching became higher; it rose up to 62 percent.Those results indicate that the fire risks relate to the dry area calculated as low MSAVI2 in the case with less human activities. We need to consider an effect of artificial factors to estimate the whole risk of forest fire.In conclusion, the map of forest fire risk by calculating the value of MSAVI2 is applicable to an area with less artificial factor, while we have to take the effect of artificial fire factor into the consideration.
Risk Assessment Guidance for Superfund (RAGS) Volume III: Part A
EPA's Risk Assessment Guidance for Superfund (RAGS) Volume 3A provides policies and guiding principles on the application of probabilistic risk assessment (PRA) methods to human health and ecological risk assessment in the EPA Superfund Program.
Which subgroups of fire fighters are more prone to work-related diminished health requirements?
Plat, Marie-Christine J; Frings-Dresen, Monique H W; Sluiter, Judith K
2012-10-01
To determine whether certain subgroups of fire fighters are prone to work-related diminished health requirements. The health requirements for fire-fighting were tested in a workers' health surveillance (WHS) setting. These health requirements included psychological, physical and sense-related components as well as cardiovascular risk factors. The odds ratio (OR) and 95% confidence interval (95% CI) for the presence of the diminished health requirements were calculated for the subgroups of gender, professionalism and age. The prevalence of diminished psychological requirements was equivalent among the subgroups, and no significant high-risk group was identified. As compared to men fire fighters, women fire fighters were more likely to have diminished physical requirements (OR 28.5; 95% CI 12.1-66.9) and less likely to have cardiovascular risk factors (OR 0.3; 0.1-0.5). As compared to volunteer fire fighters, professionals were less likely to have diminished physical requirements (OR 0.5; 0.3-0.9), but professionals had a higher prevalence of cardiovascular risk factors with an odds ratio of 1.9 (1.1-3.2). As compared to the youngest fire fighters, the oldest fire fighters were more likely to have diminished sense-related requirements (OR 7.1; 3.4-15.2); a similar comparison could be made between oldest and middle-aged fire fighters (OR 5.1; 2.5-10.5). In addition, the oldest fire fighters were more likely to have cardiovascular risk factors when compared to the youngest (OR 4.4; 1.7-11.1) and to the middle-aged fire fighters (OR 3.1; 1.2-7.9). Subgroups (gender, professionalism and age) of fire fighters are prone to at least one specific work-related diminished health requirement. Therefore, parts of the WHS could be applied with more attention to these high-risk groups.
Penman, T D; Collins, L; Price, O F; Bradstock, R A; Metcalf, S; Chong, D M O
2013-12-15
Large budgets are spent on both suppression and fuel treatments in order to reduce the risk of wildfires. There is little evidence regarding the relative contribution of fire weather, suppression and fuel treatments in determining the risk posed from wildfires. Here we undertake a simulation study in the Sydney Basin, Australia, to examine this question using a fire behaviour model (Phoenix Rapidfire). Results of the study indicate that fire behaviour is most strongly influenced by fire weather. Suppression has a greater influence on whether a fire reaches 5 ha in size compared to fuel treatments. In contrast, fuel treatments have a stronger effect on the fire size and maximum distance the fire travels. The study suggests that fire management agencies will receive additional benefits from fuel treatment if they are located in areas which suppression resources can respond rapidly and attempt to contain the fires. No combination of treatments contained all fires, and the proportion of uncontained fires increased under more severe fire weather when the greatest number of properties are lost. Our study highlights the importance of alternative management strategies to reduce the risk of property loss. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Monitoring Of Air Quality Parameters For Construction Of Fire Risk Detection Systems
NASA Astrophysics Data System (ADS)
Romancov, I. I.; Dashkovky, A. G.; Panin, V. F.; Melkov, D. N.
2017-01-01
The analysis of fire developmental process is given, which showed that there are seven stages of fire development, a set of phenomena (factors, signs) of fire risk condition, characterized by a set of defined parameters, corresponds to each stage. Observed that the registration of high staging factors (high ambient temperature, content of CO2, etc.) means the registration of actual low staging fire (thermal destruction of materials gases, fumes, etc.) - fire risk situation. It is shown that the decrease of registered factor staging leads to construction of fire preventive and diagnostic systems as the lower is registered stage, the more uncertain is connection between the fact of its detection and a fire. It is indicated that with development of electronic equipment the staging of fire situations factors used for detection is reducing in whole, and also it is noted that for each control object it is necessary to choose (identify) the optimal factor, in particular, in many ways the optimal factor for aircrafts are smokes and their TV image.
Tseng, Wei-Wen; Shih, Chung-Liang; Chien, Shen-Wen
2013-04-01
Taiwan's worst hospital fire in history on October 23rd, 2012 at Sinying Hospital's Bei-Men Branch resulted in 13 elderly patient deaths and over 70 injuries. The heavy casualties were due in part to the serious condition of patients. Some patients on life-support machines were unable to move or be moved. This disaster highlights the issue of fire safety in small-scale hospitals that have transformed existing hospital space into special care environments for elderly patients. Compared with medical centers and general hospitals, these small-scale health facilities are ill equipped to deal properly with fire safety management and emergency response issues due to inadequate fire protection facilities, fire safety equipment, and human resources. Small-scale facilities that offer health care and medical services to mostly immobile patients face fire risks that differ significantly from general health care facilities. This paper focuses on fire risks in small-scale facilities and suggests a strategy for fire prevention and emergency response procedures, including countermeasures for fire risk assessment, management, and emergency response, in order to improve fire safety at these institutions in Taiwan.
Probabilistic Seismic Risk Model for Western Balkans
NASA Astrophysics Data System (ADS)
Stejskal, Vladimir; Lorenzo, Francisco; Pousse, Guillaume; Radovanovic, Slavica; Pekevski, Lazo; Dojcinovski, Dragi; Lokin, Petar; Petronijevic, Mira; Sipka, Vesna
2010-05-01
A probabilistic seismic risk model for insurance and reinsurance purposes is presented for an area of Western Balkans, covering former Yugoslavia and Albania. This territory experienced many severe earthquakes during past centuries producing significant damage to many population centres in the region. The highest hazard is related to external Dinarides, namely to the collision zone of the Adriatic plate. The model is based on a unified catalogue for the region and a seismic source model consisting of more than 30 zones covering all the three main structural units - Southern Alps, Dinarides and the south-western margin of the Pannonian Basin. A probabilistic methodology using Monte Carlo simulation was applied to generate the hazard component of the model. Unique set of damage functions based on both loss experience and engineering assessments is used to convert the modelled ground motion severity into the monetary loss.
NASA Technical Reports Server (NTRS)
Veldkamp, Ted; Wada, Yoshihide; Aerts, Jeroen; Ward, Phillip
2016-01-01
Water scarcity -driven by climate change, climate variability, and socioeconomic developments- is recognized as one of the most important global risks, both in terms of likelihood and impact. Whilst a wide range of studies have assessed the role of long term climate change and socioeconomic trends on global water scarcity, the impact of variability is less well understood. Moreover, the interactions between different forcing mechanisms, and their combined effect on changes in water scarcity conditions, are often neglected. Therefore, we provide a first step towards a framework for global water scarcity risk assessments, applying probabilistic methods to estimate water scarcity risks for different return periods under current and future conditions while using multiple climate and socioeconomic scenarios.
Refugee camps, fire disasters and burn injuries.
Atiyeh, B S; Gunn, S W A
2017-09-30
In the past five years, no fewer than 15 conflicts have brought unspeakable tragedy and misery to millions across the world. At present, nearly 20 people are forcibly displaced every minute as a result of conflict or persecution, representing a crisis of historic proportions. Many displaced persons end up in camps generally developing in an impromptu fashion, and are totally dependent on humanitarian aid. The precarious condition of temporary installations puts the nearly 700 refugee camps worldwide at high risk of disease, child soldier and terrorist recruitment, and physical and sexual violence. Poorly planned, densely packed refugee settlements are also one of the most pathogenic environments possible, representing high risk for fires with potential for uncontrolled fire spread and development over sometimes quite large areas. Moreover, providing healthcare to refugees comes with its own unique challenges. Internationally recognized guidelines for minimum standards in shelters and settlements have been set, however they remain largely inapplicable. As for fire risk reduction, and despite the high number of fire incidents, it is not evident that fire safety can justify a higher priority. In that regard, a number of often conflicting influences will need to be considered. The greatest challenge remains in balancing the various risks, such as the need/cost of shelter against the fire risk/cost of fire protection.
Refugee camps, fire disasters and burn injuries
Atiyeh, B.S.; Gunn, S.W.A.
2017-01-01
Summary In the past five years, no fewer than 15 conflicts have brought unspeakable tragedy and misery to millions across the world. At present, nearly 20 people are forcibly displaced every minute as a result of conflict or persecution, representing a crisis of historic proportions. Many displaced persons end up in camps generally developing in an impromptu fashion, and are totally dependent on humanitarian aid. The precarious condition of temporary installations puts the nearly 700 refugee camps worldwide at high risk of disease, child soldier and terrorist recruitment, and physical and sexual violence. Poorly planned, densely packed refugee settlements are also one of the most pathogenic environments possible, representing high risk for fires with potential for uncontrolled fire spread and development over sometimes quite large areas. Moreover, providing healthcare to refugees comes with its own unique challenges. Internationally recognized guidelines for minimum standards in shelters and settlements have been set, however they remain largely inapplicable. As for fire risk reduction, and despite the high number of fire incidents, it is not evident that fire safety can justify a higher priority. In that regard, a number of often conflicting influences will need to be considered. The greatest challenge remains in balancing the various risks, such as the need/cost of shelter against the fire risk/cost of fire protection. PMID:29849526
Do probabilistic forecasts lead to better decisions?
NASA Astrophysics Data System (ADS)
Ramos, M. H.; van Andel, S. J.; Pappenberger, F.
2012-12-01
The last decade has seen growing research in producing probabilistic hydro-meteorological forecasts and increasing their reliability. This followed the promise that, supplied with information about uncertainty, people would take better risk-based decisions. In recent years, therefore, research and operational developments have also start putting attention to ways of communicating the probabilistic forecasts to decision makers. Communicating probabilistic forecasts includes preparing tools and products for visualization, but also requires understanding how decision makers perceive and use uncertainty information in real-time. At the EGU General Assembly 2012, we conducted a laboratory-style experiment in which several cases of flood forecasts and a choice of actions to take were presented as part of a game to participants, who acted as decision makers. Answers were collected and analyzed. In this paper, we present the results of this exercise and discuss if indeed we make better decisions on the basis of probabilistic forecasts.
Do probabilistic forecasts lead to better decisions?
NASA Astrophysics Data System (ADS)
Ramos, M. H.; van Andel, S. J.; Pappenberger, F.
2013-06-01
The last decade has seen growing research in producing probabilistic hydro-meteorological forecasts and increasing their reliability. This followed the promise that, supplied with information about uncertainty, people would take better risk-based decisions. In recent years, therefore, research and operational developments have also started focusing attention on ways of communicating the probabilistic forecasts to decision-makers. Communicating probabilistic forecasts includes preparing tools and products for visualisation, but also requires understanding how decision-makers perceive and use uncertainty information in real time. At the EGU General Assembly 2012, we conducted a laboratory-style experiment in which several cases of flood forecasts and a choice of actions to take were presented as part of a game to participants, who acted as decision-makers. Answers were collected and analysed. In this paper, we present the results of this exercise and discuss if we indeed make better decisions on the basis of probabilistic forecasts.
Ingrid M. Martin; Wade E. Martin; Carol B. Raish
2011-01-01
As the incidence of devastating fires rises, managing the risk posed by these fires has become critical. This report provides important information to examine the ways that different groups or disaster subcultures develop the mentalities or perceived realities that affect their views and responses concerning risk and disaster preparedness. Fire risk beliefs and...
Veronica Loewe M.; Victor Vargas; Juan Miguel Ruiz; Andrea Alvarez C.; Felipe Lobo Q.
2015-01-01
Currently, the Chilean insurance market sells forest fire insurance policies and agricultural weather risk policies. However, access to forest fire insurance is difficult for small and medium enterprises (SMEs), with a significant proportion (close to 50%) of forest plantations being without coverage. Indeed, the insurance market that sells forest fire insurance...
Fire Severity and Intensity During Spring Burning in Natural and Masticated Mixed Shrub Woodlands
Tim Bradley; Jennifer Gibson; Windy Bunn
2006-01-01
Fire risk is an ever present management concern in many urban interface regions. To mitigate this risk, land management agencies have expanded their options beyond prescribed fire to include vegetation mastication and other mechanical fuel treatments. This research project examined fire severity and intensity in masticated and unmanipulated units that were burned in...
Pediatric fire deaths in Ontario
Chen, Yingming Amy; Bridgman-Acker, Karen; Edwards, Jim; Lauwers, Albert Edward
2011-01-01
Abstract Objective To identify the predictors of residential fire deaths in the Ontario pediatric population using systematically collected data from the Office of the Chief Coroner. Design Retrospective cohort study. Setting Ontario. Participants Children younger than 16 years of age who died in accidental residential fires in Ontario between January 1, 2001, and December 31, 2006. Main outcome measures The study retrospectively reviewed the coroner’s case files for 60 subjects who qualified according to the selection criteria. Reviewed documents included the coroner’s investigation statements, autopsy reports, toxicology reports, fire marshal’s reports, police reports, and Children’s Aid Society (CAS) reports. Information on a range of demographic, behavioural, social, and environmental factors was collected. Statistical tests, including relative risk, relative risk confidence intervals, and χ2 tests were performed to determine the correlation between factors of interest and to establish their significance. Results Thirty-nine fire events resulting in 60 deaths occurred between 2001 and 2006. Fire play and electrical failures were the top 2 causes of residential fires. More fires occurred during the night (midnight to 9 am) than during the day (9 am to midnight). Nighttime fires were most commonly due to electrical failures or unattended candles, whereas daytime fires were primarily caused by unsupervised fire play and stove fires. Smoke alarms were present at 32 of 39 fire events (82%), but overall alarm functionality was only 54%. Children from families with a history of CAS involvement were approximately 32 times more likely to die in fires. Conclusion Risk factors for pediatric fire death in Ontario include smoke alarm functionality, fire play, fire escape behaviour, and CAS involvement. Efforts to prevent residential fire deaths should target these populations and risk factors, and primary care physicians should consider education around these issues as a primary preventive strategy for families with young children. PMID:21571705
Reducing hazardous fuels on nonindustrial private forests: factors influencing landowner decisions
A. Paige Fischer
2011-01-01
In mixed-ownership landscapes, fuels conditions on private lands have implications for fire risk on public lands and vice versa. The success of efforts to mitigate fire risk depends on the extent, efficacy, and coordination of treatments on nearby ownerships. Understanding factors in forest owners' decisions to address the risk of wildland fire is therefore...
Using ArcObjects for automating fireshed assessments and analyzing wildfire risk
Alan A. Ager; Bernhard Bahro; Mark Finney
2006-01-01
Firesheds are geographic units used by the Forest Service to delineate areas with similar fire regimes, fire history, and wildland fire risk issues. Fireshed assessment is a collaborative process where specialists design fuel treatments to mitigate wildfire risk. Fireshed assessments are an iterative process where fuel treatments are proposed for specific stands based...
Code of Federal Regulations, 2014 CFR
2014-01-01
... of burns from explosive vapor ignition and flashback fire. 1145.3 Section 1145.3 Commercial Practices...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...
Code of Federal Regulations, 2011 CFR
2011-01-01
... of burns from explosive vapor ignition and flashback fire. 1145.3 Section 1145.3 Commercial Practices...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...
Code of Federal Regulations, 2012 CFR
2012-01-01
... of burns from explosive vapor ignition and flashback fire. 1145.3 Section 1145.3 Commercial Practices...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...
Code of Federal Regulations, 2010 CFR
2010-01-01
... of burns from explosive vapor ignition and flashback fire. 1145.3 Section 1145.3 Commercial Practices...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...
Probabilistic Structural Analysis Program
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.
2010-01-01
NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.
Fire characteristics associated with firefighter injury on large federal wildland fires.
Britton, Carla; Lynch, Charles F; Torner, James; Peek-Asa, Corinne
2013-02-01
Wildland fires present many injury hazards to firefighters. We estimate injury rates and identify fire-related factors associated with injury. Data from the National Interagency Fire Center from 2003 to 2007 provided the number of injuries in which the firefighter could not return to his or her job assignment, person-days worked, and fire characteristics (year, region, season, cause, fuel type, resistance to control, and structures destroyed). We assessed fire-level risk factors of having at least one reported injury using logistic regression. Negative binomial regression was used to examine incidence rate ratios associated with fire-level risk factors. Of 867 fires, 9.5% required the most complex management and 24.7% required the next-highest level of management. Fires most often occurred in the western United States (82.8%), during the summer (69.6%), caused by lightening (54.9%). Timber was the most frequent fuel source (40.2%). Peak incident management level, person-days of exposure, and the fire's resistance to control were significantly related to the odds of a fire having at least one reported injury. However, the most complex fires had a lower injury incidence rate than less complex fires. Although fire complexity and the number of firefighters were associated with the risk for at least one reported injury, the more experienced and specialized firefighting teams had lower injury incidence. Copyright © 2013 Elsevier Inc. All rights reserved.
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
Bar-Massada, A.; Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.
2009-01-01
The rapid growth of housing in and near the wildland-urban interface (WUI) increases wildfire risk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfire risk to a 60,000 ha WUI area in northwestern Wisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfire risk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfire risk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfire risk and those most vulnerable under extreme weather conditions. ?? 2009 Elsevier B.V.
Probabilistic risk analysis and terrorism risk.
Ezell, Barry Charles; Bennett, Steven P; von Winterfeldt, Detlof; Sokolowski, John; Collins, Andrew J
2010-04-01
Since the terrorist attacks of September 11, 2001, and the subsequent establishment of the U.S. Department of Homeland Security (DHS), considerable efforts have been made to estimate the risks of terrorism and the cost effectiveness of security policies to reduce these risks. DHS, industry, and the academic risk analysis communities have all invested heavily in the development of tools and approaches that can assist decisionmakers in effectively allocating limited resources across the vast array of potential investments that could mitigate risks from terrorism and other threats to the homeland. Decisionmakers demand models, analyses, and decision support that are useful for this task and based on the state of the art. Since terrorism risk analysis is new, no single method is likely to meet this challenge. In this article we explore a number of existing and potential approaches for terrorism risk analysis, focusing particularly on recent discussions regarding the applicability of probabilistic and decision analytic approaches to bioterrorism risks and the Bioterrorism Risk Assessment methodology used by the DHS and criticized by the National Academies and others.
Clare, Joseph; Garis, Len; Plecas, Darryl; Jennings, Charles
2012-04-01
In 2008, Surrey Fire Services, British Columbia, commenced a firefighter-delivered, door-to-door fire-prevention education and smoke alarm examination/installation initiative with the intention of reducing the frequency and severity of residential structure fires in the City of Surrey. High-risk zones within the city were identified and 18,473 home visits were undertaken across seven temporal delivery cohorts (13.8% of non-apartment dwellings in the city). The frequency and severity of fires pre- and post- the home visit intervention was examined in comparison to randomized high-risk cluster controls. Overall, the frequency of fires was found to have reduced in the city overall, however, the reduction in the intervention cohorts was significantly larger than for controls. Furthermore, when fires did occur within the intervention cohorts, smoke detectors were activated more frequently and the fires were confined to the object of origin more often post-home visits. No equivalent pattern was observed for the cluster control. On-duty fire fighters can reduce the frequency and severity of residential fires through targeted, door-to-door distribution of fire prevention education in high-risk areas. Copyright © 2012 Elsevier Ltd. All rights reserved.
Forman, Jason L.; Kent, Richard W.; Mroz, Krystoffer; Pipkorn, Bengt; Bostrom, Ola; Segui-Gomez, Maria
2012-01-01
This study sought to develop a strain-based probabilistic method to predict rib fracture risk with whole-body finite element (FE) models, and to describe a method to combine the results with collision exposure information to predict injury risk and potential intervention effectiveness in the field. An age-adjusted ultimate strain distribution was used to estimate local rib fracture probabilities within an FE model. These local probabilities were combined to predict injury risk and severity within the whole ribcage. The ultimate strain distribution was developed from a literature dataset of 133 tests. Frontal collision simulations were performed with the THUMS (Total HUman Model for Safety) model with four levels of delta-V and two restraints: a standard 3-point belt and a progressive 3.5–7 kN force-limited, pretensioned (FL+PT) belt. The results of three simulations (29 km/h standard, 48 km/h standard, and 48 km/h FL+PT) were compared to matched cadaver sled tests. The numbers of fractures predicted for the comparison cases were consistent with those observed experimentally. Combining these results with field exposure informantion (ΔV, NASS-CDS 1992–2002) suggests a 8.9% probability of incurring AIS3+ rib fractures for a 60 year-old restrained by a standard belt in a tow-away frontal collision with this restraint, vehicle, and occupant configuration, compared to 4.6% for the FL+PT belt. This is the first study to describe a probabilistic framework to predict rib fracture risk based on strains observed in human-body FE models. Using this analytical framework, future efforts may incorporate additional subject or collision factors for multi-variable probabilistic injury prediction. PMID:23169122
[Forest fire risk assessment for China under different climate scenarios.
Tian, Xiao Rui; Dai, Xuan; Wang, Ming Yu; Zhao, Feng Jun; Shu, Li Fu
2016-03-01
Forest fire risk depends on the hazard factors, affected body, and hazard prevention and reduction ability. The integrated risk assessment is the foundation for developing scientific fire mana-gement policies and carrying out the forest fire prevention measures. A forest fire risk assessment model and index system were established based on the classic natural disaster risk model and available data, and the model was used to assess the forest fire risks in past and future. The future climate scenario data included outputs from five global climate models (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM and NorESM1-M) for RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5, respectively. Each component index of Fire Weather Index (FWI) system was calculated daily for each grid in 1987-2050 for the historical observations and future climate scenarios according to the maximum temperature, minimum relative humidity, wind speed and daily precipitation. The results showed that areas with high and very high fire danger ratings in 1987-2010 accounted for 21.2% and 6.2%, respectively, which were distributed in Greater Xing'an Mountains and the Changbai Mountain area, most parts of Yunnan, and many fragment areas in southern China. The areas with high and very high burn possibilities were mainly distributed in the northeast and southwest region, accounting for 13.1% and 4.0%, respectively. Compared with the observation period, the areas with high and very high fire danger ratings in 2021-2050 would increase by 0.6%, 5.5%, 2.3%, and 3.5% under RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 respectively, and North China would show significant increase. The regions with high-risk forest fires would also increase due to climate change, with the most significant increase under RCP 8.5 scenario (+1.6%).
A probabilistic QMRA of Salmonella in direct agricultural reuse of treated municipal wastewater.
Amha, Yamrot M; Kumaraswamy, Rajkumari; Ahmad, Farrukh
2015-01-01
Developing reliable quantitative microbial risk assessment (QMRA) procedures aids in setting recommendations on reuse applications of treated wastewater. In this study, a probabilistic QMRA to determine the risk of Salmonella infections resulting from the consumption of edible crops irrigated with treated wastewater was conducted. Quantitative polymerase chain reaction (qPCR) was used to enumerate Salmonella spp. in post-disinfected samples, where they showed concentrations ranging from 90 to 1,600 cells/100 mL. The results were used to construct probabilistic exposure models for the raw consumption of three vegetables (lettuce, cabbage, and cucumber) irrigated with treated wastewater, and to estimate the disease burden using Monte Carlo analysis. The results showed elevated median disease burden, when compared with acceptable disease burden set by the World Health Organization, which is 10⁻⁶ disability-adjusted life years per person per year. Of the three vegetables considered, lettuce showed the highest risk of infection in all scenarios considered, while cucumber showed the lowest risk. The results of the Salmonella concentration obtained with qPCR were compared with the results of Escherichia coli concentration for samples taken on the same sampling dates.
Pouzou, Jane G.; Cullen, Alison C.; Yost, Michael G.; Kissel, John C.; Fenske, Richard A.
2018-01-01
Implementation of probabilistic analyses in exposure assessment can provide valuable insight into the risks of those at the extremes of population distributions, including more vulnerable or sensitive subgroups. Incorporation of these analyses into current regulatory methods for occupational pesticide exposure is enabled by the exposure data sets and associated data currently used in the risk assessment approach of the Environmental Protection Agency (EPA). Monte Carlo simulations were performed on exposure measurements from the Agricultural Handler Exposure Database and the Pesticide Handler Exposure Database along with data from the Exposure Factors Handbook and other sources to calculate exposure rates for three different neurotoxic compounds (azinphos methyl, acetamiprid, emamectin benzoate) across four pesticide-handling scenarios. Probabilistic estimates of doses were compared with the no observable effect levels used in the EPA occupational risk assessments. Some percentage of workers were predicted to exceed the level of concern for all three compounds: 54% for azinphos methyl, 5% for acetamiprid, and 20% for emamectin benzoate. This finding has implications for pesticide risk assessment and offers an alternative procedure that may be more protective of those at the extremes of exposure than the current approach. PMID:29105804
Surrogate modeling of joint flood risk across coastal watersheds
NASA Astrophysics Data System (ADS)
Bass, Benjamin; Bedient, Philip
2018-03-01
This study discusses the development and performance of a rapid prediction system capable of representing the joint rainfall-runoff and storm surge flood response of tropical cyclones (TCs) for probabilistic risk analysis. Due to the computational demand required for accurately representing storm surge with the high-fidelity ADvanced CIRCulation (ADCIRC) hydrodynamic model and its coupling with additional numerical models to represent rainfall-runoff, a surrogate or statistical model was trained to represent the relationship between hurricane wind- and pressure-field characteristics and their peak joint flood response typically determined from physics based numerical models. This builds upon past studies that have only evaluated surrogate models for predicting peak surge, and provides the first system capable of probabilistically representing joint flood levels from TCs. The utility of this joint flood prediction system is then demonstrated by improving upon probabilistic TC flood risk products, which currently account for storm surge but do not take into account TC associated rainfall-runoff. Results demonstrate the source apportionment of rainfall-runoff versus storm surge and highlight that slight increases in flood risk levels may occur due to the interaction between rainfall-runoff and storm surge as compared to the Federal Emergency Management Association's (FEMAs) current practices.
Assessing the risk of ignition in the Russian far east within a modeling framework of fire threat.
Loboda, Tatiana V; Csiszar, Ivan A
2007-04-01
The forests of high biological importance in the Russian Far East (RFE) have been experiencing increasing pressure from growing demands for natural resources under the changing economy of post-Soviet Russia. This pressure is further amplified by the rising threat of large and catastrophic fire occurrence, which threatens both the resources and the economic potential of the region. In this paper we introduce a conceptual Fire Threat Model (FTM) and use it to provide quantitative assessment of the risk of ignition in the Russian Far East. The remotely sensed data driven FTM is aimed at evaluating potential wildland fire occurrence and its impact and recovery potential for a given resource. This model is intended for use by resource managers to assist in assessing current levels of fire threat to a given resource, projecting the changes in fire threat under changing climate and land use, and evaluating the efficiency of various management approaches aimed at minimizing the fire impact. Risk of ignition (one of the major uncertainties within fire threat modeling) was analyzed using the MODIS active fire product. The risk of ignition in the RFE is shown to be highly variable in spatial and temporal domains. However, the number of ignition points is not directly proportional to the amount of fire occurrence in the area. Fire ignitions in the RFE are strongly linked to anthropogenic activity (transportation routes, settlements, and land use). An increase in the number of fire ignitions during summer months could be attributed to (1) disruption of the summer monsoons and subsequent changes in fire weather and (2) an increase in natural sources of fire ignitions.
Evaluating Fire Risk in the Northeastern United States in the Past, Present, and Future
NASA Astrophysics Data System (ADS)
Miller, D.; Bradley, R. S.
2017-12-01
One poorly understood consequence of climate change is its effects on extreme events such as wildfires. Robust associations between wildfire frequency and climatic variability have been shown to exist, indicating that future climate change may continue to have a significant effect on wildfire activity. The Northeastern United States (NEUS) has seen some of the most infamous and largest historic fires in North America, such as the Miramichi Fire of 1825 and the fires of 1947. Although return intervals for large fires in the NEUS are long (hundreds of years), wildfires have played a critical role in ecosystem development and forest structure in the region. Understanding and predicting fire occurrence and vulnerability in the NEUS, especially in a changing climate, is economically and culturally important yet remains difficult due to human impacts (i.e. fire suppression activities and human disturbance). Thus, an alternative method for investigating fire risk in the NEUS is needed. Here, we present a compilation of meteorological data collected from Automated Surface Observing Systems (ASOS) from the NEUS throughout the 20th century through present day. We use these data to compute fifteen common "fire danger indices" employed in the USA and Canada to investigate changes in the region's fire risk over time, as well as the skill of each of these indices at predicting wildfire activity relative to the historical record of fires in the NEUS. We use dynamically-downscaled regional climate model output for the 21st century to project future wildfire activity based on the fire danger indices capable of capturing historical fire activity in the NEUS. These projections will aid in predicting how fire risk in the NEUS will evolve with anticipated climate change.
Israel wildfires: future trends, impacts and mitigation strategies
NASA Astrophysics Data System (ADS)
Wittenberg, Lea
2017-04-01
Forest fires in the Euro-Mediterranean region burn about 450,000 ha each year. In Israel, the frequency and extent of wildfires have been steadily increasing over the past decades, culminating in several large and costly fires in 2010, 2012 and 2016. The extensive development of forest areas since the 1950's and the accumulation of fuel in the forests, has led to increased occurrences of high intensity fires. Land-use changes and human population growth are the most prevailing and common determinant of wildfire occurrence and impacts. Climate extremes, possibly already a sign of regional climate change, are another frequent determinant of increasing wildfire risk. Therefore, the combination of extreme dry spells, high fuel loads and increased anthropogenic pressure on the open spaces result in an overall amplified wildfire risk. These fires not only cause loss of life and damage to properties but also carry serious environmental repercussions. Combustion of standing vegetation and the leaf litter leave the soil bare and vulnerable to runoff and erosion, thereby increasing risks of flooding. Today, all of Israel's open spaces, forests, natural parks, major metropolitan centers, towns and villages are embedded within the wildland urban interface (WUI). Typically, wildfires near or in the WUI occur on uplands and runoff generated from the burned area poses flooding risks in urban and agricultural zones located downstream. Post-fire management aims at reducing associated hazards as collapsing trees and erosion risk. Often the time interval between a major fire and the definition of priority sites is in the order of days-to-weeks since administrative procedures, financial estimates and implementation of post-fire salvage logging operations require time. Defining the magnitude of the burn scar and estimating its potential impact on runoff and erosion must therefore be done quickly. A post-fire burn severity, runoff and erosion model is a useful tool in estimating potential risks and management strategic. Moreover, national agencies and local authorities must decide on a range of post-fire measures to mitigate risks quickly since most large fires occur late in summer shortly before the winter season. Possible climate changes, socio-economic trends, and intense land use pressures are contributing factors in a national challenge to deal with forest fires along the WUI. However, in order to support integrated fire preparedness, response, management and recovery at the national, regional and local scales, stronger research and planning effort are required. This includes long-term monitoring programs and a systematic, standardized data acquisition scheme, compiling fire history, landscape-fire spread, mitigation and assessment of the immediate fire effects, land use changes and weather data. Knowledge of both short and long-term impacts of wildfire is essential for effective risk assessment, policy formulation and wildfire management.
Fault tree analysis for integrated and probabilistic risk analysis of drinking water systems.
Lindhe, Andreas; Rosén, Lars; Norberg, Tommy; Bergstedt, Olof
2009-04-01
Drinking water systems are vulnerable and subject to a wide range of risks. To avoid sub-optimisation of risk-reduction options, risk analyses need to include the entire drinking water system, from source to tap. Such an integrated approach demands tools that are able to model interactions between different events. Fault tree analysis is a risk estimation tool with the ability to model interactions between events. Using fault tree analysis on an integrated level, a probabilistic risk analysis of a large drinking water system in Sweden was carried out. The primary aims of the study were: (1) to develop a method for integrated and probabilistic risk analysis of entire drinking water systems; and (2) to evaluate the applicability of Customer Minutes Lost (CML) as a measure of risk. The analysis included situations where no water is delivered to the consumer (quantity failure) and situations where water is delivered but does not comply with water quality standards (quality failure). Hard data as well as expert judgements were used to estimate probabilities of events and uncertainties in the estimates. The calculations were performed using Monte Carlo simulations. CML is shown to be a useful measure of risks associated with drinking water systems. The method presented provides information on risk levels, probabilities of failure, failure rates and downtimes of the system. This information is available for the entire system as well as its different sub-systems. Furthermore, the method enables comparison of the results with performance targets and acceptable levels of risk. The method thus facilitates integrated risk analysis and consequently helps decision-makers to minimise sub-optimisation of risk-reduction options.
Haiganoush Preisler; Alan Ager
2013-01-01
For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...
Bayesian Networks Improve Causal Environmental Assessments for Evidence-Based Policy.
Carriger, John F; Barron, Mace G; Newman, Michael C
2016-12-20
Rule-based weight of evidence approaches to ecological risk assessment may not account for uncertainties and generally lack probabilistic integration of lines of evidence. Bayesian networks allow causal inferences to be made from evidence by including causal knowledge about the problem, using this knowledge with probabilistic calculus to combine multiple lines of evidence, and minimizing biases in predicting or diagnosing causal relationships. Too often, sources of uncertainty in conventional weight of evidence approaches are ignored that can be accounted for with Bayesian networks. Specifying and propagating uncertainties improve the ability of models to incorporate strength of the evidence in the risk management phase of an assessment. Probabilistic inference from a Bayesian network allows evaluation of changes in uncertainty for variables from the evidence. The network structure and probabilistic framework of a Bayesian approach provide advantages over qualitative approaches in weight of evidence for capturing the impacts of multiple sources of quantifiable uncertainty on predictions of ecological risk. Bayesian networks can facilitate the development of evidence-based policy under conditions of uncertainty by incorporating analytical inaccuracies or the implications of imperfect information, structuring and communicating causal issues through qualitative directed graph formulations, and quantitatively comparing the causal power of multiple stressors on valued ecological resources. These aspects are demonstrated through hypothetical problem scenarios that explore some major benefits of using Bayesian networks for reasoning and making inferences in evidence-based policy.
Structural fire risk of Portugal
NASA Astrophysics Data System (ADS)
Parente, Joana; Pereira, Mário
2017-04-01
Portugal is on the top of the European countries most affected by vegetation fires which underlines the importance of the existence of an updated and coherent fire risk map. This map represent a valuable supporting tool for forest and fire management decisions, focus prevention activities, improve the efficiency of fire detection systems, manage resources and actions of fire fighting with greater effectiveness. Therefore this study proposed a structural fire risk map of the vegetated area of Portugal using a deterministic approach based on the concept of fire risk currently accepted by the scientific community which consists in the combination of the fire hazard and the potential economic damage. The existing fire susceptibility map for Portugal based on the slope, land cover and fire probability, was adopted and updated by the use of a higher resolution digital terrain model, longer burnt area perimeter dataset (1975 - 2013) and the entire set of Corine land cover inventories. Five susceptibility classes were mapped to be in accordance with the Portuguese law and the results confirms the good performance of this model not only in terms of the favourability scores but also in the predictive values. Considering three different scenarios of (maximum, mean, and minimum annual) burnt area, fire hazard were estimate. The vulnerability scores and monetary values of species defined in the literature and by law were used to calculate the potential economic damage. The result was a fire risk map that identifies the areas more prone to be affected by fires in the future and provides an estimate of the economic damage of the fire which will be a valuable tool for forest and fire managers and to minimize the economic and environmental consequences of vegetation fires in Portugal. Acknowledgements: This work was supported by: (i) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; (ii) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF and ISA for providing the fire data.
Operating room fires: a closed claims analysis.
Mehta, Sonya P; Bhananker, Sanjay M; Posner, Karen L; Domino, Karen B
2013-05-01
To assess patterns of injury and liability associated with operating room (OR) fires, closed malpractice claims in the American Society of Anesthesiologists Closed Claims Database since 1985 were reviewed. All claims related to fires in the OR were compared with nonfire-related surgical anesthesia claims. An analysis of fire-related claims was performed to identify causative factors. There were 103 OR fire claims (1.9% of 5,297 surgical claims). Electrocautery was the ignition source in 90% of fire claims. OR fire claims more frequently involved older outpatients compared with other surgical anesthesia claims (P < 0.01). Payments to patients were more often made in fire claims (P < 0.01), but payment amounts were lower (median $120,166) compared to nonfire surgical claims (median $250,000, P < 0.01). Electrocautery-induced fires (n = 93) increased over time (P < 0.01) to 4.4% claims between 2000 and 2009. Most (85%) electrocautery fires occurred during head, neck, or upper chest procedures (high-fire-risk procedures). Oxygen served as the oxidizer in 95% of electrocautery-induced OR fires (84% with open delivery system). Most electrocautery-induced fires (n = 75, 81%) occurred during monitored anesthesia care. Oxygen was administered via an open delivery system in all high-risk procedures during monitored anesthesia care. In contrast, alcohol-containing prep solutions and volatile compounds were present in only 15% of OR fires during monitored anesthesia care. Electrocautery-induced fires during monitored anesthesia care were the most common cause of OR fires claims. Recognition of the fire triad (oxidizer, fuel, and ignition source), particularly the critical role of supplemental oxygen by an open delivery system during use of the electrocautery, is crucial to prevent OR fires. Continuing education and communication among OR personnel along with fire prevention protocols in high-fire-risk procedures may reduce the occurrence of OR fires.
Forest landowner decisions and the value of information under fire risk.
Gregory S. Amacher; Arun S. Malik; Robert G. Haight
2005-01-01
We estimate the value of three types of information about fire risk to a nonindustrial forest landowner: the relationship between fire arrival rates and stand age, the magnitude of fire arrival rates, and the efficacy of fuel reduction treatment. Our model incorporates planting density and the level and timing of fuel reduction treatment as landowner decisions. These...
NASA Astrophysics Data System (ADS)
Kerr, Gaige Hunter; DeGaetano, Arthur T.; Stoof, Cathelijne R.; Ward, Daniel
2018-01-01
This study is among the first to investigate wildland fire risk in the Northeastern and the Great Lakes states under a changing climate. We use a multi-model ensemble (MME) of regional climate models from the Coordinated Regional Downscaling Experiment (CORDEX) together with the Canadian Forest Fire Weather Index System (CFFWIS) to understand changes in wildland fire risk through differences between historical simulations and future projections. Our results are relatively homogeneous across the focus region and indicate modest increases in the magnitude of fire weather indices (FWIs) during northern hemisphere summer. The most pronounced changes occur in the date of the initialization of CFFWIS and peak of the wildland fire season, which in the future are trending earlier in the year, and in the significant increases in the length of high-risk episodes, defined by the number of consecutive days with FWIs above the current 95th percentile. Further analyses show that these changes are most closely linked to expected changes in the focus region's temperature and precipitation. These findings relate to the current understanding of particulate matter vis-à-vis wildfires and have implications for human health and local and regional changes in radiative forcings. When considering current fire management strategies which could be challenged by increasing wildland fire risk, fire management agencies could adapt new strategies to improve awareness, prevention, and resilience to mitigate potential impacts to critical infrastructure and population.
NASA Astrophysics Data System (ADS)
Rousseau, N. J.; Jensen, D.; Zajic, B.; Rodell, M.; Reager, J. T., II
2015-12-01
Understanding the relationship between wildfire activity and soil moisture in the United States has been difficult to assess, with limited ability to determine areas that are at high risk. This limitation is largely due to complex environmental factors at play, especially as they relate to alternating periods of wet and dry conditions, and the lack of remotely-sensed products. Recent drought conditions and accompanying low Fuel Moisture Content (FMC) have led to disastrous wildfire outbreaks causing economic loss, property damage, and environmental degradation. Thus, developing a programmed toolset to assess the relationship between soil moisture, which contributes greatly to FMC and fire severity, can establish the framework for determining overall wildfire risk. To properly evaluate these parameters, we used data assimilated from the Gravity Recovery and Climate Experiment (GRACE) and data from the Fire Program Analysis fire-occurrence database (FPA FOD) to determine the extent soil moisture affects fire activity. Through these datasets, we produced correlation and regression maps at a coarse resolution of 0.25 degrees for the contiguous United States. These fire-risk products and toolsets proved the viability of this methodology, allowing for the future incorporation of more GRACE-derived water parameters, MODIS vegetation indices, and other environmental datasets to refine the model for fire risk. Additionally, they will allow assessment to national-scale early fire management and provide responders with a predictive tool to better employ early decision-support to areas of high risk during regions' respective fire season(s).
Brandsch, Rainer
2017-10-01
Migration modelling provides reliable migration estimates from food-contact materials (FCM) to food or food simulants based on mass-transfer parameters like diffusion and partition coefficients related to individual materials. In most cases, mass-transfer parameters are not readily available from the literature and for this reason are estimated with a given uncertainty. Historically, uncertainty was accounted for by introducing upper limit concepts first, turning out to be of limited applicability due to highly overestimated migration results. Probabilistic migration modelling gives the possibility to consider uncertainty of the mass-transfer parameters as well as other model inputs. With respect to a functional barrier, the most important parameters among others are the diffusion properties of the functional barrier and its thickness. A software tool that accepts distribution as inputs and is capable of applying Monte Carlo methods, i.e., random sampling from the input distributions of the relevant parameters (i.e., diffusion coefficient and layer thickness), predicts migration results with related uncertainty and confidence intervals. The capabilities of probabilistic migration modelling are presented in the view of three case studies (1) sensitivity analysis, (2) functional barrier efficiency and (3) validation by experimental testing. Based on the predicted migration by probabilistic migration modelling and related exposure estimates, safety evaluation of new materials in the context of existing or new packaging concepts is possible. Identifying associated migration risk and potential safety concerns in the early stage of packaging development is possible. Furthermore, dedicated material selection exhibiting required functional barrier efficiency under application conditions becomes feasible. Validation of the migration risk assessment by probabilistic migration modelling through a minimum of dedicated experimental testing is strongly recommended.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of burns from explosive vapor ignition and flashback fire. § 1145.3 Section § 1145.3 Commercial...; risk of burns from explosive vapor ignition and flashback fire. (a) The Commission finds that it is in the public interest to regulate the risk of burns from explosive vapor ignition and flashback fire...
Risk Based Reliability Centered Maintenance of DOD Fire Protection Systems
1999-01-01
2.2.3 Failure Mode and Effect Analysis ( FMEA )............................ 2.2.4 Failure Mode Risk Characterization...Step 2 - System functions and functional failures definition Step 3 - Failure mode and effect analysis ( FMEA ) Step 4 - Failure mode risk...system). The Interface Location column identifies the location where the FMEA of the fire protection system began or stopped. For example, for the fire
Investment appraisal using quantitative risk analysis.
Johansson, Henrik
2002-07-01
Investment appraisal concerned with investments in fire safety systems is discussed. Particular attention is directed at evaluating, in terms of the Bayesian decision theory, the risk reduction that investment in a fire safety system involves. It is shown how the monetary value of the change from a building design without any specific fire protection system to one including such a system can be estimated by use of quantitative risk analysis, the results of which are expressed in terms of a Risk-adjusted net present value. This represents the intrinsic monetary value of investing in the fire safety system. The method suggested is exemplified by a case study performed in an Avesta Sheffield factory.
Predicting fire effects on water quality: a perspective and future needs
NASA Astrophysics Data System (ADS)
Smith, Hugh; Sheridan, Gary; Nyman, Petter; Langhans, Christoph; Noske, Philip; Lane, Patrick
2017-04-01
Forest environments are a globally significant source of drinking water. Fire presents a credible threat to the supply of high quality water in many forested regions. The post-fire risk to water supplies depends on storm event characteristics, vegetation cover and fire-related changes in soil infiltration and erodibility modulated by landscape position. The resulting magnitude of runoff generation, erosion and constituent flux to streams and reservoirs determines the severity of water quality impacts in combination with the physical and chemical composition of the entrained material. Research to date suggests that most post-fire water quality impacts are due to large increases in the supply of particulates (fine-grained sediment and ash) and particle-associated chemical constituents. The largest water quality impacts result from high magnitude erosion events, including debris flow processes, which typically occur in response to short duration, high intensity storm events during the recovery period. Most research to date focuses on impacts on water quality after fire. However, information on potential water quality impacts is required prior to fire events for risk planning. Moreover, changes in climate and forest management (e.g. prescribed burning) that affect fire regimes may alter water quality risks. Therefore, prediction requires spatial-temporal representation of fire and rainfall regimes coupled with information on fire-related changes to soil hydrologic parameters. Recent work has applied such an approach by combining a fire spread model with historic fire weather data in a Monte Carlo simulation to quantify probabilities associated with fire and storm events generating debris flows and fine sediment influx to a reservoir located in Victoria, Australia. Prediction of fire effects on water quality would benefit from further research in several areas. First, more work on regional-scale stochastic modelling of intersecting fire and storm events with landscape zones of erosion vulnerability is required to support quantitative evaluation of water quality risk and the effect of future changes in climate and land management. Second, we underscore previous calls for characterisation of landscape-scale domains to support regionalisation of parameter sets derived from empirical studies. Recent examples include work identifying aridity as a control of hydro-geomorphic response to fire and the use of spectral-based indices to predict spatial heterogeneity in ash loadings. Third, information on post-fire erosion from colluvial or alluvial stores is needed to determine their significance as both sediment-contaminant sinks and sources. Such sediment stores may require explicit spatial representation in risk models for some environments and sediment tracing can be used to determine their relative importance as secondary sources. Fourth, increased dating of sediment archives could provide regional datasets of fire-related erosion event frequency. Presently, the lack of such data hinders evaluation of risk models linking fire and storm events to erosion and water quality impacts.
NASA Astrophysics Data System (ADS)
Cioca, Ionel-Lucian; Moraru, Roland Iosif
2012-10-01
In order to meet statutory requirements concerning the workers health and safety, it is necessary for mine managers within Valea Jiului coal basin in Romania to address the potential for underground fires and explosions and their impact on the workforce and the mine ventilation systems. Highlighting the need for a unified and systematic approach of the specific risks, the authors are developing a general framework for fire/explosion risk assessment in gassy mines, based on the quantification of the likelihood of occurrence and gravity of the consequences of such undesired events and employing Root-Cause analysis method. It is emphasized that even a small fire should be regarded as being a major hazard from the point of view of explosion initiation, should a combustible atmosphere arise. The developed methodology, for the assessment of underground fire and explosion risks, is based on the known underground explosion hazards, fire engineering principles and fire test criteria for potentially combustible materials employed in mines.
Improved Methods for Fire Risk Assessment in Low-Income and Informal Settlements.
Twigg, John; Christie, Nicola; Haworth, James; Osuteye, Emmanuel; Skarlatidou, Artemis
2017-02-01
Fires cause over 300,000 deaths annually worldwide and leave millions more with permanent injuries: some 95% of these deaths are in low- and middle-income countries. Burn injury risk is strongly associated with low-income and informal (or slum) settlements, which are growing rapidly in an urbanising world. Fire policy and mitigation strategies in poorer countries are constrained by inadequate data on incidence, impacts, and causes, which is mainly due to a lack of capacity and resources for data collection, analysis, and modelling. As a first step towards overcoming such challenges, this project reviewed the literature on the subject to assess the potential of a range of methods and tools for identifying, assessing, and addressing fire risk in low-income and informal settlements; the process was supported by an expert workshop at University College London in May 2016. We suggest that community-based risk and vulnerability assessment methods, which are widely used in disaster risk reduction, could be adapted to urban fire risk assessment, and could be enhanced by advances in crowdsourcing and citizen science for geospatial data creation and collection. To assist urban planners, emergency managers, and community organisations who are working in resource-constrained settings to identify and assess relevant fire risk factors, we also suggest an improved analytical framework based on the Haddon Matrix.
Marchal, Jean; Cumming, Steve G; McIntire, Eliot J B
2017-01-01
Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover's direct effects and feedbacks in simulation models of coupled climate-fire-fuels systems.
History of Fire Events in the U.S. Commercial Nuclear Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bijan Najafi; Joglar-Biloch, Francisco; Kassawara, Robert P.
2002-07-01
Over the past decade, interest in performance-based fire protection has increased within the nuclear industry. In support of this growing interest, in 1997 the Electric Power Research Institute (EPRI) developed a long-range plan to develop/improve data and tools needed to support Risk-Informed/Performance-Based fire protection. This plan calls for continued improvement in collection and use of information obtained from fire events at nuclear plants. The data collection process has the objectives of improving the insights gained from such data and reducing the uncertainty in fire risk and fire modeling methods in order to make them a more reliable basis for performancemore » based fire protection programs. In keeping with these objectives, EPRI continues to collect, review and analyze fire events in support of the nuclear industry. EPRI collects these records in cooperation with the Nuclear Electric Insurance Limited (NEIL), by compiling public fire event reports and by direct solicitation of U.S. nuclear facilities. EPRI fire data collection project is based on the principle that the understanding of history is one of the cornerstones of improving fire protection technology and practice. Therefore, the goal has been to develop and maintain a comprehensive database of fire events with flexibility to support various aspects of fire protection engineering. With more than 1850 fire records over a period of three decades and 2400 reactor years, this is the most comprehensive database of nuclear power industry fire events in existence today. In general, the frequency of fires in the U.S. commercial nuclear industry remains constant. In few cases, e.g., transient fires and fires in BWR offgas/recombiner systems, where either increasing or decreasing trends are observed, these trends tend to slow after 1980. The key issues in improving quality of the data remain to be consistency of the recording and reporting of fire events and difficulties in collection of records. EPRI has made significant progress towards improving the quality of the fire events data through use of multiple collection methods as well as its review and verification. To date EPRI has used this data to develop a generic fire ignition frequency model for U.S. nuclear power industry (Ref. 1, 4 and 5) as well as to support other models in support of EPRI Fire Risk Methods such as a cable fire manual suppression model. EPRI will continue its effort to collect and analyze operating data to support risk informed/performance based fire safety engineering, including collection and analysis of impairment data for fire protection systems and features. This paper provides details on the collection and application of fire events to risk informed/performance based fire protection. The paper also provides valuable insights into improving both collection and use of fire events data. (authors)« less
Using Remotely Sensed Soil Moisture to Estimate Fire Risk in Tropical Peatlands
NASA Astrophysics Data System (ADS)
Dadap, N.; Cobb, A.; Hoyt, A.; Harvey, C. F.; Konings, A. G.
2017-12-01
Tropical peatlands in Equatorial Asia have become more vulnerable to fire due to deforestation and peatland drainage over the last 30 years. In these regions, water table depth has been shown to play an important role in mediating fire risk as it serves as a proxy for peat moisture content. However, water table depth observations are sparse and expensive. Soil moisture could provide a more direct indicator of fire risk than water table depth. In this study, we use new soil moisture retrievals from the Soil Moisture Active Passive (SMAP) satellite to demonstrate that - contrary to popular wisdom - remotely sensed soil moisture observations are possible over most Southeast Asian peatlands. Soil moisture estimation in this region was previously thought to be impossible over tropical peatlands because of dense vegetation cover. We show that vegetation density is sufficiently low across most Equatorial Asian peatlands to allow soil moisture estimation, and hypothesize that deforestation and other anthropogenic changes in land cover have combined to reduce overall vegetation density sufficient to allow soil moisture estimation. We further combine burned area estimates from the Global Fire Emissions Database and SMAP soil moisture retrievals to show that soil moisture provides a strong signal for fire risk in peatlands, with fires occurring at a much greater rate over drier soils. We will also develop an explicit fire risk model incorporating soil moisture with additional climatic, land cover, and anthropogenic predictor variables.
A probabilistic topic model for clinical risk stratification from electronic health records.
Huang, Zhengxing; Dong, Wei; Duan, Huilong
2015-12-01
Risk stratification aims to provide physicians with the accurate assessment of a patient's clinical risk such that an individualized prevention or management strategy can be developed and delivered. Existing risk stratification techniques mainly focus on predicting the overall risk of an individual patient in a supervised manner, and, at the cohort level, often offer little insight beyond a flat score-based segmentation from the labeled clinical dataset. To this end, in this paper, we propose a new approach for risk stratification by exploring a large volume of electronic health records (EHRs) in an unsupervised fashion. Along this line, this paper proposes a novel probabilistic topic modeling framework called probabilistic risk stratification model (PRSM) based on Latent Dirichlet Allocation (LDA). The proposed PRSM recognizes a patient clinical state as a probabilistic combination of latent sub-profiles, and generates sub-profile-specific risk tiers of patients from their EHRs in a fully unsupervised fashion. The achieved stratification results can be easily recognized as high-, medium- and low-risk, respectively. In addition, we present an extension of PRSM, called weakly supervised PRSM (WS-PRSM) by incorporating minimum prior information into the model, in order to improve the risk stratification accuracy, and to make our models highly portable to risk stratification tasks of various diseases. We verify the effectiveness of the proposed approach on a clinical dataset containing 3463 coronary heart disease (CHD) patient instances. Both PRSM and WS-PRSM were compared with two established supervised risk stratification algorithms, i.e., logistic regression and support vector machine, and showed the effectiveness of our models in risk stratification of CHD in terms of the Area Under the receiver operating characteristic Curve (AUC) analysis. As well, in comparison with PRSM, WS-PRSM has over 2% performance gain, on the experimental dataset, demonstrating that incorporating risk scoring knowledge as prior information can improve the performance in risk stratification. Experimental results reveal that our models achieve competitive performance in risk stratification in comparison with existing supervised approaches. In addition, the unsupervised nature of our models makes them highly portable to the risk stratification tasks of various diseases. Moreover, patient sub-profiles and sub-profile-specific risk tiers generated by our models are coherent and informative, and provide significant potential to be explored for the further tasks, such as patient cohort analysis. We hypothesize that the proposed framework can readily meet the demand for risk stratification from a large volume of EHRs in an open-ended fashion. Copyright © 2015 Elsevier Inc. All rights reserved.
Probabilistic confidence for decisions based on uncertain reliability estimates
NASA Astrophysics Data System (ADS)
Reid, Stuart G.
2013-05-01
Reliability assessments are commonly carried out to provide a rational basis for risk-informed decisions concerning the design or maintenance of engineering systems and structures. However, calculated reliabilities and associated probabilities of failure often have significant uncertainties associated with the possible estimation errors relative to the 'true' failure probabilities. For uncertain probabilities of failure, a measure of 'probabilistic confidence' has been proposed to reflect the concern that uncertainty about the true probability of failure could result in a system or structure that is unsafe and could subsequently fail. The paper describes how the concept of probabilistic confidence can be applied to evaluate and appropriately limit the probabilities of failure attributable to particular uncertainties such as design errors that may critically affect the dependability of risk-acceptance decisions. This approach is illustrated with regard to the dependability of structural design processes based on prototype testing with uncertainties attributable to sampling variability.
NASA Astrophysics Data System (ADS)
Donovan, Amy; Oppenheimer, Clive; Bravo, Michael
2012-12-01
This paper constitutes a philosophical and social scientific study of expert elicitation in the assessment and management of volcanic risk on Montserrat during the 1995-present volcanic activity. It outlines the broader context of subjective probabilistic methods and then uses a mixed-method approach to analyse the use of these methods in volcanic crises. Data from a global survey of volcanologists regarding the use of statistical methods in hazard assessment are presented. Detailed qualitative data from Montserrat are then discussed, particularly concerning the expert elicitation procedure that was pioneered during the eruptions. These data are analysed and conclusions about the use of these methods in volcanology are drawn. The paper finds that while many volcanologists are open to the use of these methods, there are still some concerns, which are similar to the concerns encountered in the literature on probabilistic and determinist approaches to seismic hazard analysis.
Yue, Meng; Wang, Xiaoyu
2015-07-01
It is well-known that responsive battery energy storage systems (BESSs) are an effective means to improve the grid inertial response to various disturbances including the variability of the renewable generation. One of the major issues associated with its implementation is the difficulty in determining the required BESS capacity mainly due to the large amount of inherent uncertainties that cannot be accounted for deterministically. In this study, a probabilistic approach is proposed to properly size the BESS from the perspective of the system inertial response, as an application of probabilistic risk assessment (PRA). The proposed approach enables a risk-informed decision-making processmore » regarding (1) the acceptable level of solar penetration in a given system and (2) the desired BESS capacity (and minimum cost) to achieve an acceptable grid inertial response with a certain confidence level.« less
A performance-based approach to landslide risk analysis
NASA Astrophysics Data System (ADS)
Romeo, R. W.
2009-04-01
An approach for the risk assessment based on a probabilistic analysis of the performance of structures threatened by landslides is shown and discussed. The risk is a possible loss due to the occurrence of a potentially damaging event. Analytically the risk is the probability convolution of hazard, which defines the frequency of occurrence of the event (i.e., the demand), and fragility that defines the capacity of the system to withstand the event given its characteristics (i.e., severity) and those of the exposed goods (vulnerability), that is: Risk=p(D>=d|S,V) The inequality sets a damage (or loss) threshold beyond which the system's performance is no longer met. Therefore a consistent approach to risk assessment should: 1) adopt a probabilistic model which takes into account all the uncertainties of the involved variables (capacity and demand), 2) follow a performance approach based on given loss or damage thresholds. The proposed method belongs to the category of the semi-empirical ones: the theoretical component is given by the probabilistic capacity-demand model; the empirical component is given by the observed statistical behaviour of structures damaged by landslides. Two landslide properties alone are required: the area-extent and the type (or kinematism). All other properties required to determine the severity of landslides (such as depth, speed and frequency) are derived via probabilistic methods. The severity (or intensity) of landslides, in terms of kinetic energy, is the demand of resistance; the resistance capacity is given by the cumulative distribution functions of the limit state performance (fragility functions) assessed via damage surveys and cards compilation. The investigated limit states are aesthetic (of nominal concern alone), functional (interruption of service) and structural (economic and social losses). The damage probability is the probabilistic convolution of hazard (the probability mass function of the frequency of occurrence of given severities) and vulnerability (the probability of a limit state performance be reached, given a certain severity). Then, for each landslide all the exposed goods (structures and infrastructures) within the landslide area and within a buffer (representative of the maximum extension of a landslide given a reactivation), are counted. The risk is the product of the damage probability and the ratio of the exposed goods of each landslide to the whole assets exposed to the same type of landslides. Since the risk is computed numerically and by the same procedure applied to all landslides, it is free from any subjective assessment such as those implied in the qualitative methods.
Architecture for Integrated Medical Model Dynamic Probabilistic Risk Assessment
NASA Technical Reports Server (NTRS)
Jaworske, D. A.; Myers, J. G.; Goodenow, D.; Young, M.; Arellano, J. D.
2016-01-01
Probabilistic Risk Assessment (PRA) is a modeling tool used to predict potential outcomes of a complex system based on a statistical understanding of many initiating events. Utilizing a Monte Carlo method, thousands of instances of the model are considered and outcomes are collected. PRA is considered static, utilizing probabilities alone to calculate outcomes. Dynamic Probabilistic Risk Assessment (dPRA) is an advanced concept where modeling predicts the outcomes of a complex system based not only on the probabilities of many initiating events, but also on a progression of dependencies brought about by progressing down a time line. Events are placed in a single time line, adding each event to a queue, as managed by a planner. Progression down the time line is guided by rules, as managed by a scheduler. The recently developed Integrated Medical Model (IMM) summarizes astronaut health as governed by the probabilities of medical events and mitigation strategies. Managing the software architecture process provides a systematic means of creating, documenting, and communicating a software design early in the development process. The software architecture process begins with establishing requirements and the design is then derived from the requirements.
Affective and cognitive factors influencing sensitivity to probabilistic information.
Tyszka, Tadeusz; Sawicki, Przemyslaw
2011-11-01
In study 1 different groups of female students were randomly assigned to one of four probabilistic information formats. Five different levels of probability of a genetic disease in an unborn child were presented to participants (within-subject factor). After the presentation of the probability level, participants were requested to indicate the acceptable level of pain they would tolerate to avoid the disease (in their unborn child), their subjective evaluation of the disease risk, and their subjective evaluation of being worried by this risk. The results of study 1 confirmed the hypothesis that an experience-based probability format decreases the subjective sense of worry about the disease, thus, presumably, weakening the tendency to overrate the probability of rare events. Study 2 showed that for the emotionally laden stimuli, the experience-based probability format resulted in higher sensitivity to probability variations than other formats of probabilistic information. These advantages of the experience-based probability format are interpreted in terms of two systems of information processing: the rational deliberative versus the affective experiential and the principle of stimulus-response compatibility. © 2011 Society for Risk Analysis.
Marchal, Jean; Cumming, Steve G.; McIntire, Eliot J. B.
2017-01-01
Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover’s direct effects and feedbacks in simulation models of coupled climate–fire–fuels systems. PMID:28609467
EPRI/NRC-RES fire human reliability analysis guidelines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Stuart R.; Cooper, Susan E.; Najafi, Bijan
2010-03-01
During the 1990s, the Electric Power Research Institute (EPRI) developed methods for fire risk analysis to support its utility members in the preparation of responses to Generic Letter 88-20, Supplement 4, 'Individual Plant Examination - External Events' (IPEEE). This effort produced a Fire Risk Assessment methodology for operations at power that was used by the majority of U.S. nuclear power plants (NPPs) in support of the IPEEE program and several NPPs overseas. Although these methods were acceptable for accomplishing the objectives of the IPEEE, EPRI and the U.S. Nuclear Regulatory Commission (NRC) recognized that they required upgrades to support currentmore » requirements for risk-informed, performance-based (RI/PB) applications. In 2001, EPRI and the USNRC's Office of Nuclear Regulatory Research (RES) embarked on a cooperative project to improve the state-of-the-art in fire risk assessment to support a new risk-informed environment in fire protection. This project produced a consensus document, NUREG/CR-6850 (EPRI 1011989), entitled 'Fire PRA Methodology for Nuclear Power Facilities' which addressed fire risk for at power operations. NUREG/CR-6850 developed high level guidance on the process for identification and inclusion of human failure events (HFEs) into the fire PRA (FPRA), and a methodology for assigning quantitative screening values to these HFEs. It outlined the initial considerations of performance shaping factors (PSFs) and related fire effects that may need to be addressed in developing best-estimate human error probabilities (HEPs). However, NUREG/CR-6850 did not describe a methodology to develop best-estimate HEPs given the PSFs and the fire-related effects. In 2007, EPRI and RES embarked on another cooperative project to develop explicit guidance for estimating HEPs for human failure events under fire generated conditions, building upon existing human reliability analysis (HRA) methods. This document provides a methodology and guidance for conducting a fire HRA. This process includes identification and definition of post-fire human failure events, qualitative analysis, quantification, recovery, dependency, and uncertainty. This document provides three approaches to quantification: screening, scoping, and detailed HRA. Screening is based on the guidance in NUREG/CR-6850, with some additional guidance for scenarios with long time windows. Scoping is a new approach to quantification developed specifically to support the iterative nature of fire PRA quantification. Scoping is intended to provide less conservative HEPs than screening, but requires fewer resources than a detailed HRA analysis. For detailed HRA quantification, guidance has been developed on how to apply existing methods to assess post-fire fire HEPs.« less
Probabilistic Assessment of Radiation Risk for Astronauts in Space Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; DeAngelis, Giovanni; Cucinotta, Francis A.
2009-01-01
Accurate predictions of the health risks to astronauts from space radiation exposure are necessary for enabling future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons, (less than 100 MeV); and galactic cosmic rays (GCR), which include protons and heavy ions of higher energies. While the expected frequency of SPEs is strongly influenced by the solar activity cycle, SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, phi. The risk of radiation exposure from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection, including determining the shielding and operational requirements for astronauts and hardware. To support the probabilistic risk assessment for EVAs, which would be up to 15% of crew time on lunar missions, we estimated the probability of SPE occurrence as a function of time within a solar cycle using a nonhomogeneous Poisson model to fit the historical database of measurements of protons with energy > 30 MeV, (phi)30. The resultant organ doses and dose equivalents, as well as effective whole body doses for acute and cancer risk estimations are analyzed for a conceptual habitat module and a lunar rover during defined space mission periods. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning to manage radiation risks for space exploration.
Alan A. Ager; Nicole M. Vaillant; Mark A. Finney
2011-01-01
Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals...
Canadian Wildland Fire Strategy Project Management Team
2006-01-01
The Canadian Wildland Fire Strategy (CWFS) provides a vision for a new, innovative, and integrated approach to wildland fire management in Canada. It was developed under the auspices of the Canadian Council of Forest Ministers and seeks to balance the social, ecological, and economic aspects of wildland fire through a risk management framework that emphasizes hazard...
PREFER: a European service providing forest fire management support products
NASA Astrophysics Data System (ADS)
Eftychidis, George; Laneve, Giovanni; Ferrucci, Fabrizio; Sebastian Lopez, Ana; Lourenco, Louciano; Clandillon, Stephen; Tampellini, Lucia; Hirn, Barbara; Diagourtas, Dimitris; Leventakis, George
2015-06-01
PREFER is a Copernicus project of the EC-FP7 program which aims developing spatial information products that may support fire prevention and burned areas restoration decisions and establish a relevant web-based regional service for making these products available to fire management stakeholders. The service focuses to the Mediterranean region, where fire risk is high and damages from wildfires are quite important, and develop its products for pilot areas located in Spain, Portugal, Italy, France and Greece. PREFER aims to allow fire managers to have access to online resources, which shall facilitate fire prevention measures, fire hazard and risk assessment, estimation of fire impact and damages caused by wildfire as well as support monitoring of post-fire regeneration and vegetation recovery. It makes use of a variety of products delivered by space borne sensors and develop seasonal and daily products using multi-payload, multi-scale and multi-temporal analysis of EO data. The PREFER Service portfolio consists of two main suite of products. The first refers to mapping products for supporting decisions concerning the Preparedness/Prevention Phase (ISP Service). The service delivers Fuel, Hazard and Fire risk maps for this purpose. Furthermore the PREFER portfolio includes Post-fire vegetation recovery, burn scar maps, damage severity and 3D fire damage assessment products in order to support relative assessments required in context of the Recovery/Reconstruction Phase (ISR Service) of fire management.
NASA Astrophysics Data System (ADS)
Berdufi, I.; Jaupaj, O.; Marku, M.; Deda, M.; Fiori, E.; D'Andrea, M.; Biondi, G.; Fioruci, P.; Massabò, M.; Zorba, P.; Gjonaj, M.
2012-04-01
In the territory of Albania usually every year around 1000 ha are affected by forest fires, from which about 500 ha are completely destroyed. The number of forest fires (nf), with the burning surface (bs) in years has been like this: during the years 1988-1998: nf / bs = 2.19, 1998-2001: nf / bs = 5.66, year 2002 -2005: nf / bs = 8.2, and during the years 2005-2006: nf / bs = 11.9, while economic losses in a year by forest fires is about 2 million of Euro. The increase in years of these figures and the last floods which happened in the last two years in Shkoder, led to an international cooperation, that between the Italian Civil Protection Department and the Albania General Directorate of Civil Emergency. The focus of this cooperation was the building capacity of the Albanian National System of Civil Protection in forecasting, monitoring and prevention forest fires and floods risks. As a result of this collaboration the "National Center for the Forecast and Monitoring of Natural Risks", was set up at the Institute of Geosciences, Energy, Water and Environment. The Center is the first of its kind in Albania. The mission of the Center is the prediction and monitoring of the forest fire and flood risk in the Albanian territory, as a tools for risk reduction and mitigation. The first step to achieve this strategy was the implementation of the forest fires risk forecast model "RISICO". RISICO was adapted for whole Albania territory by CIMA Research Foundation. The Center, in the summer season, issues a daily bulletin. The bulletin reports the potential risk scenarios related with the ignition and propagation of fires in Albania. The bulletin is broadcasted through email or fax within 12.00 AM of each working day. It highlights where and when severe risk conditions may occur within the next 48 hours
Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin
Massada, Avi Bar; Radeloff, Volker C.; Stewart, Susan I.; Hawbaker, Todd J.
2009-01-01
The rapid growth of housing in and near the wildland–urban interface (WUI) increases wildfirerisk to lives and structures. To reduce fire risk, it is necessary to identify WUI housing areas that are more susceptible to wildfire. This is challenging, because wildfire patterns depend on fire behavior and spread, which in turn depend on ignition locations, weather conditions, the spatial arrangement of fuels, and topography. The goal of our study was to assess wildfirerisk to a 60,000 ha WUI area in northwesternWisconsin while accounting for all of these factors. We conducted 6000 simulations with two dynamic fire models: Fire Area Simulator (FARSITE) and Minimum Travel Time (MTT) in order to map the spatial pattern of burn probabilities. Simulations were run under normal and extreme weather conditions to assess the effect of weather on fire spread, burn probability, and risk to structures. The resulting burn probability maps were intersected with maps of structure locations and land cover types. The simulations revealed clear hotspots of wildfire activity and a large range of wildfirerisk to structures in the study area. As expected, the extreme weather conditions yielded higher burn probabilities over the entire landscape, as well as to different land cover classes and individual structures. Moreover, the spatial pattern of risk was significantly different between extreme and normal weather conditions. The results highlight the fact that extreme weather conditions not only produce higher fire risk than normal weather conditions, but also change the fine-scale locations of high risk areas in the landscape, which is of great importance for fire management in WUI areas. In addition, the choice of weather data may limit the potential for comparisons of risk maps for different areas and for extrapolating risk maps to future scenarios where weather conditions are unknown. Our approach to modeling wildfirerisk to structures can aid fire risk reduction management activities by identifying areas with elevated wildfirerisk and those most vulnerable under extreme weather conditions.
Human and biophysical influences on fire occurrence in the United States
Hawbaker, Todd J.; Radeloff, Volker C.; Stewart, Susan I.; Hammer, Roger B.; Keuler, Nicholas S.; Clayton, Murray K.
2013-01-01
National-scale analyses of fire occurrence are needed to prioritize fire policy and management activities across the United States. However, the drivers of national-scale patterns of fire occurrence are not well understood, and how the relative importance of human or biophysical factors varies across the country is unclear. Our research goal was to model the drivers of fire occurrence within ecoregions across the conterminous United States. We used generalized linear models to compare the relative influence of human, vegetation, climate, and topographic variables on fire occurrence in the United States, as measured by MODIS active fire detections collected between 2000 and 2006. We constructed models for all fires and for large fires only and generated predictive maps to quantify fire occurrence probabilities. Areas with high fire occurrence probabilities were widespread in the Southeast, and localized in the Mountain West, particularly in southern California, Arizona, and New Mexico. Probabilities for large-fire occurrence were generally lower, but hot spots existed in the western and south-central United States The probability of fire occurrence is a critical component of fire risk assessments, in addition to vegetation type, fire behavior, and the values at risk. Many of the hot spots we identified have extensive development in the wildland–urban interface and are near large metropolitan areas. Our results demonstrated that human variables were important predictors of both all fires and large fires and frequently exhibited nonlinear relationships. However, vegetation, climate, and topography were also significant variables in most ecoregions. If recent housing growth trends and fire occurrence patterns continue, these areas will continue to challenge policies and management efforts seeking to balance the risks generated by wildfires with the ecological benefits of fire.
Use of risk quotient and probabilistic approaches to assess risks of pesticides to birds
When conducting ecological risk assessments for pesticides, the United States Environmental Protection Agency typically relies upon the risk quotient (RQ). This approach is intended to be conservative in nature, making assumptions related to exposure and effects that are intended...
How Can You Support RIDM/CRM/RM Through the Use of PRA
NASA Technical Reports Server (NTRS)
DoVemto. Tpmu
2011-01-01
Probabilistic Risk Assessment (PRA) is one of key Risk Informed Decision Making (RIDM) tools. It is a scenario-based methodology aimed at identifying and assessing Safety and Technical Performance risks in complex technological systems.
NASA Astrophysics Data System (ADS)
Sheridan, G. J.; Nyman, P.; Langhans, C.; Noske, P. J.; Lane, P. N. J.
2014-12-01
Planned burning reduces fuel loads in forests, potentially reducing the severity of subsequent wildfires. However planned burning also increases the risk of a significant water quality impact by maintaining a proportion of the catchment in a burnt condition conducive to generating high magnitude erosion events (eg. debris flows). Differences in the frequency and magnitude of planned and unplanned fire, combined with poorly understood relationships between fire severity and hydrologic impacts, means that predictions of the net water contamination risks associated with any particular fire regime are difficult to predict. This presentation synthesises results from 10 years of point, plot and catchment-scale post-fire hydrology and erosion studies in SE Australia to estimate the likely benifits and risks of planned burning scenarios from a drinking water supply perspective
Lowton, Karen; Laybourne, Anne H; Whiting, David G; Martin, Finbarr C
2010-12-03
Older adults are at increased risk both of falling and of experiencing accidental domestic fire. In addition to advanced age, these adverse events share the risk factors of balance or mobility problems, cognitive impairment and socioeconomic deprivation. For both events, the consequences include significant injury and death, and considerable socioeconomic costs for the individual and informal carers, as well as for emergency services, health and social care agencies.Secondary prevention services for older people who have fallen or who are identifiable as being at high risk of falling include NHS Falls clinics, where a multidisciplinary team offers an individualised multifactorial targeted intervention including strength and balance exercise programmes, medication changes and home hazard modification. A similar preventative approach is employed by most Fire and Rescue Services who conduct Home Fire Safety Visits to assess and, if necessary, remedy domestic fire risk, fit free smoke alarms with instruction for use and maintenance, and plan an escape route. We propose that the similarity of population at risk, location, specific risk factors and the commonality of preventative approaches employed could offer net gains in terms of feasibility, effectiveness and acceptability if activities within these two preventative approaches were to be combined. This prospective proof of concept study, currently being conducted in two London boroughs, (Southwark and Lambeth) aims to reduce the incidence of both fires and falls in community-dwelling older adults. It comprises two concurrent 12-month interventions: the integration of 1) fall risk assessments into the Brigade's Home Fire Safety Visit and 2) fire risk assessments into Falls services by inviting older clinic attendees to book a Visit. Our primary objective is to examine the feasibility and effectiveness of these interventions. Furthermore, we are evaluating their acceptability and value to key stakeholders and services users. If our approach proves feasible and the risk assessment is both effective and acceptable, we envisage advocating a partnership model of working more broadly to fire and rescue services and health services in Britain, such that effective integration of preventative services for older people becomes routine for an ageing population.
Structural reliability methods: Code development status
NASA Astrophysics Data System (ADS)
Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.
1991-05-01
The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.
Structural reliability methods: Code development status
NASA Technical Reports Server (NTRS)
Millwater, Harry R.; Thacker, Ben H.; Wu, Y.-T.; Cruse, T. A.
1991-01-01
The Probabilistic Structures Analysis Method (PSAM) program integrates state of the art probabilistic algorithms with structural analysis methods in order to quantify the behavior of Space Shuttle Main Engine structures subject to uncertain loadings, boundary conditions, material parameters, and geometric conditions. An advanced, efficient probabilistic structural analysis software program, NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) was developed as a deliverable. NESSUS contains a number of integrated software components to perform probabilistic analysis of complex structures. A nonlinear finite element module NESSUS/FEM is used to model the structure and obtain structural sensitivities. Some of the capabilities of NESSUS/FEM are shown. A Fast Probability Integration module NESSUS/FPI estimates the probability given the structural sensitivities. A driver module, PFEM, couples the FEM and FPI. NESSUS, version 5.0, addresses component reliability, resistance, and risk.
NASA Astrophysics Data System (ADS)
Sun, Ruiyu
It is possible due to present day computing power to produce a fluid dynamical physically-based numerical solution to wildfire behavior, at least in the research mode. This type of wildfire modeling affords a flexibility and produces details that are not available in either current operational wildfire behavior models or field experiments. However before using these models to study wildfire, validation is necessary, and model results need to be systematically and objectively analyzed and compared to real fires. Plume theory and data from the Meteotron experiment, which was specially designed to provide results from measurements for the theoretical study of a convective plume produced by a high heat source at the ground, are used here to evaluate the fire plume properties simulated by two numerical wildfire models, the Fire Dynamics Simulator or FDS, and the Clark coupled atmosphere-fire model. The study indicates that the FDS produces good agreement with the plume theory and the Meteotron results. The study also suggests that the coupled atmosphere-fire model, a less explicit and ideally less computationally demanding model than the FDS; can produce good agreement, but that the agreement is sensitive to the method of putting the energy released from the fire into the atmosphere. The WFDS (Wildfire and wildland-urban interface FDS), an extension of the FDS to the vegetative fuel, and the Australian grass fire experiments are used to evaluate and improve the UULES-wildfire coupled model. Despite the simple fire parameterization in the UULES-wildfire coupled model, the fireline is fairly well predicted in terms of both shape and location in the simulation of Australian grass fire experiment F19. Finally, the UULES-wildfire coupled model is used to examine how the turbulent flow in the atmospheric boundary layer (ABL) affects the growth of the grass fires. The model fires showed significant randomness in fire growth: Fire spread is not deterministic in the ABL, and a probabilistic prediction method is warranted. Of the two contributors to the variability in fire growth in the grass fire simulations in the ABL, fire-induced convection, as opposed to the turbulent ABL wind, appears to be the more important one. One mechanism associated with enhanced fire-induced flow is the downdraft behind the frontal fireline. The downdraft is the direct result of the random interaction between the fire plume and the large eddies in the ABL. This study indicates a connection between fire variability in rate of spread and area burnt and so-called convective velocity scale, and it may be possible to use this boundary-layer scale parameter to account for the effects of ABL turbulence on fire spread and fire behavior in today's operational fire prediction systems.
Probabilistic eruption forecasting at short and long time scales
NASA Astrophysics Data System (ADS)
Marzocchi, Warner; Bebbington, Mark S.
2012-10-01
Any effective volcanic risk mitigation strategy requires a scientific assessment of the future evolution of a volcanic system and its eruptive behavior. Some consider the onus should be on volcanologists to provide simple but emphatic deterministic forecasts. This traditional way of thinking, however, does not deal with the implications of inherent uncertainties, both aleatoric and epistemic, that are inevitably present in observations, monitoring data, and interpretation of any natural system. In contrast to deterministic predictions, probabilistic eruption forecasting attempts to quantify these inherent uncertainties utilizing all available information to the extent that it can be relied upon and is informative. As with many other natural hazards, probabilistic eruption forecasting is becoming established as the primary scientific basis for planning rational risk mitigation actions: at short-term (hours to weeks or months), it allows decision-makers to prioritize actions in a crisis; and at long-term (years to decades), it is the basic component for land use and emergency planning. Probabilistic eruption forecasting consists of estimating the probability of an eruption event and where it sits in a complex multidimensional time-space-magnitude framework. In this review, we discuss the key developments and features of models that have been used to address the problem.
Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.
Efficacy of a proactive health and safety risk management system in the fire service.
Poplin, Gerald S; Griffin, Stephanie; Pollack Porter, Keshia; Mallett, Joshua; Hu, Chengcheng; Day-Nash, Virginia; Burgess, Jefferey L
2018-04-16
This study evaluated the efficacy of a fire department proactive risk management program aimed at reducing firefighter injuries and their associated costs. Injury data were collected for the intervention fire department and a contemporary control department. Workers' compensation claim frequency and costs were analyzed for the intervention fire department only. Total, exercise, patient transport, and fireground operations injury rates were calculated for both fire departments. There was a post-intervention average annual reduction in injuries (13%), workers' compensation injury claims (30%) and claims costs (21%). Median monthly injury rates comparing the post-intervention to the pre-intervention period did not show statistically significant changes in either the intervention or control fire department. Reduced workers' compensation claims and costs were observed following the risk management intervention, but changes in injury rates were not statistically significant.
Syphard, Alexandra D.; Butsic, Van; Bar-Massada, Avi; Keeley, Jon E.; Tracey, Jeff A.; Fisher, Robert N.
2016-01-01
Although wildfire plays an important role in maintaining biodiversity in many ecosystems, fire management to protect human assets is often carried out by different agencies than those tasked for conserving biodiversity. In fact, fire risk reduction and biodiversity conservation are often viewed as competing objectives. Here we explored the role of management through private land conservation and asked whether we could identify private land acquisition strategies that fulfill the mutual objectives of biodiversity conservation and fire risk reduction, or whether the maximization of one objective comes at a detriment to the other. Using a fixed budget and number of homes slated for development, we simulated 20 years of housing growth under alternative conservation selection strategies, and then projected the mean risk of fires destroying structures and the area and configuration of important habitat types in San Diego County, California, USA. We found clear differences in both fire risk projections and biodiversity impacts based on the way conservation lands are prioritized for selection, but these differences were split between two distinct groupings. If no conservation lands were purchased, or if purchases were prioritized based on cost or likelihood of development, both the projected fire risk and biodiversity impacts were much higher than if conservation lands were purchased in areas with high fire hazard or high species richness. Thus, conserving land focused on either of the two objectives resulted in nearly equivalent mutual benefits for both. These benefits not only resulted from preventing development in sensitive areas, but they were also due to the different housing patterns and arrangements that occurred as development was displaced from those areas. Although biodiversity conflicts may still arise using other fire management strategies, this study shows that mutual objectives can be attained through land-use planning in this region. These results likely generalize to any place where high species richness overlaps with hazardous wildland vegetation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozoki, G.E.; Fitzpatrick, R.G.; Bohn, M.P.
This report details the review of the Diablo Canyon Probabilistic Risk Assessment (DCPRA). The study was performed under contract from the Probabilistic Risk Analysis Branch, Office of Nuclear Reactor Research, USNRC by Brookhaven National Laboratory. The DCPRA is a full scope Level I effort and although the review touched on all aspects of the PRA, the internal events and seismic events received the vast majority of the review effort. The report includes a number of independent systems analyses sensitivity studies, importance analyses as well as conclusions on the adequacy of the DCPRA for use in the Diablo Canyon Long Termmore » Seismic Program.« less
NSTS Orbiter auxiliary power unit turbine wheel cracking risk assessment
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Mcclung, R. C.; Torng, T. Y.
1992-01-01
The present investigation of turbine-wheel cracking problems in the hydrazine-fueled APU turbine wheel of the Space Shuttle Orbiter's Main Engines has indicated the efficacy of systematic probabilistic risk assessment in flight certification and safety resolution. Nevertheless, real crack-initiation and propagation problems do not lend themselves to purely analytical studies. The high-cycle fatigue problem is noted to generally be unsuited to probabilistic modeling, due to its extremely high degree of intrinsic scatter. In the case treated, the cracks appear to trend toward crack arrest in a low cycle fatigue mode, due to a detuning of the resonance model.
Sanni, Steinar; Lyng, Emily; Pampanin, Daniela M
2017-06-01
Offshore oil and gas activities are required not to cause adverse environmental effects, and risk based management has been established to meet environmental standards. In some risk assessment schemes, Risk Indicators (RIs) are parameters to monitor the development of risk affecting factors. RIs have not yet been established in the Environmental Risk Assessment procedures for management of oil based discharges offshore. This paper evaluates the usefulness of biomarkers as RIs, based on their properties, existing laboratory biomarker data and assessment methods. Data shows several correlations between oil concentrations and biomarker responses, and assessment principles exist that qualify biomarkers for integration into risk procedures. Different ways that these existing biomarkers and methods can be applied as RIs in a probabilistic risk assessment system when linked with whole organism responses are discussed. This can be a useful approach to integrate biomarkers into probabilistic risk assessment related to oil based discharges, representing a potential supplement to information that biomarkers already provide about environmental impact and risk related to these kind of discharges. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cassandra Johnson Gaither; N.C. Poudyal; S. Goodrick; J.M. Bowker; S. Malone; J. Gan
2011-01-01
The southeastern U.S. is one of the more wildland fire prone areas of the country and also contains some of the poorest or most socially vulnerable rural communities. Our project addresses wildland fire risk in this part of the U.S and its intersection with social vulnerability. We examine spatial association between high wildland fire prone areas which also rank high...
NASA Astrophysics Data System (ADS)
Shah-Heydari pour, A.; Pahlavani, P.; Bigdeli, B.
2017-09-01
According to the industrialization of cities and the apparent increase in pollutants and greenhouse gases, the importance of forests as the natural lungs of the earth is felt more than ever to clean these pollutants. Annually, a large part of the forests is destroyed due to the lack of timely action during the fire. Knowledge about areas with a high-risk of fire and equipping these areas by constructing access routes and allocating the fire-fighting equipment can help to eliminate the destruction of the forest. In this research, the fire risk of region was forecasted and the risk map of that was provided using MODIS images by applying geographically weighted regression model with Gaussian kernel and ordinary least squares over the effective parameters in forest fire including distance from residential areas, distance from the river, distance from the road, height, slope, aspect, soil type, land use, average temperature, wind speed, and rainfall. After the evaluation, it was found that the geographically weighted regression model with Gaussian kernel forecasted 93.4% of the all fire points properly, however the ordinary least squares method could forecast properly only 66% of the fire points.
Tong, Ruipeng; Yang, Xiaoyi; Su, Hanrui; Pan, Yue; Zhang, Qiuzhuo; Wang, Juan; Long, Mingce
2018-03-01
The levels, sources and quantitative probabilistic health risks for polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the vicinity of power, steel and petrochemical plants in the suburbs of Shanghai are discussed. The total concentration of 16 PAHs in the soils ranges from 223 to 8214ng g -1 . The sources of PAHs were analyzed by both isomeric ratios and a principal component analysis-multiple linear regression method. The results indicate that PAHs mainly originated from the incomplete combustion of coal and oil. The probabilistic risk assessments for both carcinogenic and non-carcinogenic risks posed by PAHs in soils with adult farmers as concerned receptors were quantitatively calculated by Monte Carlo simulation. The estimated total carcinogenic risks (TCR) for the agricultural soils has a 45% possibility of exceeding the acceptable threshold value (10 -6 ), indicating potential adverse health effects. However, all non-carcinogenic risks are below the threshold value. Oral intake is the dominant exposure pathway, accounting for 77.7% of TCR, while inhalation intake is negligible. The three PAHs with the highest contribution for TCR are BaP (64.35%), DBA (17.56%) and InP (9.06%). Sensitivity analyses indicate that exposure frequency has the greatest impact on the total risk uncertainty, followed by the exposure dose through oral intake and exposure duration. These results indicate that it is essential to manage the health risks of PAH-contaminated agricultural soils in the vicinity of typical industries in megacities. Copyright © 2017 Elsevier B.V. All rights reserved.
Khan, F I; Iqbal, A; Ramesh, N; Abbasi, S A
2001-10-12
As it is conventionally done, strategies for incorporating accident--prevention measures in any hazardous chemical process industry are developed on the basis of input from risk assessment. However, the two steps-- risk assessment and hazard reduction (or safety) measures--are not linked interactively in the existing methodologies. This prevents a quantitative assessment of the impacts of safety measures on risk control. We have made an attempt to develop a methodology in which risk assessment steps are interactively linked with implementation of safety measures. The resultant system tells us the extent of reduction of risk by each successive safety measure. It also tells based on sophisticated maximum credible accident analysis (MCAA) and probabilistic fault tree analysis (PFTA) whether a given unit can ever be made 'safe'. The application of the methodology has been illustrated with a case study.
Cast Coil Transformer Fire Susceptibility and Reliability Study
1991-04-01
transformers reduce risk to the user compared to liquid-filled units, eliminate environmental impacts, are more efficient than most transformer designs, and...filled units, eliminate environmental impacts, arc more efficient than most transformer designs, and add minimal risk to the facility in a fire situation...add minimal risk to the facility in a fire situation. Cast coil transformers have a long record of operation and have proven to be reliable and
NASA Astrophysics Data System (ADS)
Giannakopoulos, Christos; Karali, Anna; Roussos, Anargyros
2014-05-01
Greece, being part of the eastern Mediterranean basin, is an area particularly vulnerable to climate change and associated forest fire risk. The aim of this study is to assess the vulnerability of Greek forests to fire risk occurrence and identify potential adaptation options within the context of climate change through continuous interaction with local stakeholders. To address their needs, the following tools for the provision of climate information services were developed: 1. An application providing fire risk forecasts for the following 3 days (http://cirrus.meteo.noa.gr/forecast/bolam/index.htm) was developed from NOA to address the needs of short term fire planners. 2. A web-based application providing long term fire risk and other fire related indices changes due to climate change (time horizon up to 2050 and 2100) was developed in collaboration with the WWF Greece office to address the needs of long term fire policy makers (http://www.oikoskopio.gr/map/). 3. An educational tool was built in order to complement the two web-based tools and to further expand knowledge in fire risk modeling to address the needs for in-depth training. In particular, the second product provided the necessary information to assess the exposure to forest fires. To this aim, maps depicting the days with elevated fire risk (FWI>30) both for the control (1961-1990) and the near future period (2021-2050) were created by the web-application. FWI is a daily index that provides numerical ratings of relative fire potential based solely on weather observations. The meteorological inputs to the FWI System are daily noon values of temperature, air relative humidity, 10m wind speed and precipitation during the previous 24 hours. It was found that eastern lowlands are more exposed to fire risk followed by eastern high elevation areas, for both the control and near future period. The next step towards vulnerability assessment was to address sensitivity, ie the human-environmental conditions that can worsen or ameliorate the hazard. In our study static information concerning fire affecting factors, namely the topography and vegetation, was used to create a fire hazard map in order to assess the sensitivity factor. Land cover types for the year 2007 were combined with topographic information deriving from a digital elevation model order to produce these maps. High elevation continental areas were found to be the most sensitive areas followed by the lowland continental areas. Exposure and sensitivity were combined to produce the overall impact of climate change to forest fire risk. The adaptive capacity is defined by the ability of forests to adapt to changing environmental conditions. To assess the adaptive capacity of Greek forests, a Multi-Criteria Analysis (MCA) tool was implemented and used by the stakeholders. The major proposed adaptation measures for Greek forests included fire prevention measures and the inclusion of the private forest covered areas in the fire fighting. Finally, vulnerability of Greek forest to fire was estimated as the overall impact of climate change minus the forests' adaptive capacity and was found to be medium for most areas in the country. Acknowledgement: This work was supported by the EU project CLIM-RUN under contract FP7-ENV-2010-265192.
Why do we need to communicate smoke impacts on health? Indicence and severity of large fires are increasing. As emissions from the Wildland fires produce air pollution that adversely impacts people's health, incidence and severity of large fires are increasing. As emissions fr...
Improved Methods for Fire Risk Assessment in Low-Income and Informal Settlements
Twigg, John; Christie, Nicola; Haworth, James; Osuteye, Emmanuel; Skarlatidou, Artemis
2017-01-01
Fires cause over 300,000 deaths annually worldwide and leave millions more with permanent injuries: some 95% of these deaths are in low- and middle-income countries. Burn injury risk is strongly associated with low-income and informal (or slum) settlements, which are growing rapidly in an urbanising world. Fire policy and mitigation strategies in poorer countries are constrained by inadequate data on incidence, impacts, and causes, which is mainly due to a lack of capacity and resources for data collection, analysis, and modelling. As a first step towards overcoming such challenges, this project reviewed the literature on the subject to assess the potential of a range of methods and tools for identifying, assessing, and addressing fire risk in low-income and informal settlements; the process was supported by an expert workshop at University College London in May 2016. We suggest that community-based risk and vulnerability assessment methods, which are widely used in disaster risk reduction, could be adapted to urban fire risk assessment, and could be enhanced by advances in crowdsourcing and citizen science for geospatial data creation and collection. To assist urban planners, emergency managers, and community organisations who are working in resource-constrained settings to identify and assess relevant fire risk factors, we also suggest an improved analytical framework based on the Haddon Matrix. PMID:28157149
Error reduction in EMG signal decomposition
Kline, Joshua C.
2014-01-01
Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization. PMID:25210159
A GIS-based approach for comparative analysis of potential fire risk assessment
NASA Astrophysics Data System (ADS)
Sun, Ying; Hu, Lieqiu; Liu, Huiping
2007-06-01
Urban fires are one of the most important sources of property loss and human casualty and therefore it is necessary to assess the potential fire risk with consideration of urban community safety. Two evaluation models are proposed, both of which are integrated with GIS. One is the single factor model concerning the accessibility of fire passage and the other is grey clustering approach based on the multifactor system. In the latter model, fourteen factors are introduced and divided into four categories involving security management, evacuation facility, construction resistance and fire fighting capability. A case study on campus of Beijing Normal University is presented to express the potential risk assessment models in details. A comparative analysis of the two models is carried out to validate the accuracy. The results are approximately consistent with each other. Moreover, modeling with GIS promotes the efficiency the potential risk assessment.
Estimating wildfire risk on a Mojave Desert landscape using remote sensing and field sampling
Van Linn, Peter F.; Nussear, Kenneth E.; Esque, Todd C.; DeFalco, Lesley A.; Inman, Richard D.; Abella, Scott R.
2013-01-01
Predicting wildfires that affect broad landscapes is important for allocating suppression resources and guiding land management. Wildfire prediction in the south-western United States is of specific concern because of the increasing prevalence and severe effects of fire on desert shrublands and the current lack of accurate fire prediction tools. We developed a fire risk model to predict fire occurrence in a north-eastern Mojave Desert landscape. First we developed a spatial model using remote sensing data to predict fuel loads based on field estimates of fuels. We then modelled fire risk (interactions of fuel characteristics and environmental conditions conducive to wildfire) using satellite imagery, our model of fuel loads, and spatial data on ignition potential (lightning strikes and distance to roads), topography (elevation and aspect) and climate (maximum and minimum temperatures). The risk model was developed during a fire year at our study landscape and validated at a nearby landscape; model performance was accurate and similar at both sites. This study demonstrates that remote sensing techniques used in combination with field surveys can accurately predict wildfire risk in the Mojave Desert and may be applicable to other arid and semiarid lands where wildfires are prevalent.
Downscaling climate change scenarios for apple pest and disease modeling in Switzerland
NASA Astrophysics Data System (ADS)
Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.
2012-02-01
As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1% on average today to over 60% in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g. insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.
Downscaling climate change scenarios for apple pest and disease modeling in Switzerland
NASA Astrophysics Data System (ADS)
Hirschi, M.; Stoeckli, S.; Dubrovsky, M.; Spirig, C.; Calanca, P.; Rotach, M. W.; Fischer, A. M.; Duffy, B.; Samietz, J.
2011-08-01
As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously not affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology depending on actual weather conditions and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980-2009 and 2045-2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth (Cydia pomonella) and fire blight (Erwinia amylovora) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045-2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1 % on average today to over 60 % in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g., insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.
Software risk estimation and management techniques at JPL
NASA Technical Reports Server (NTRS)
Hihn, J.; Lum, K.
2002-01-01
In this talk we will discuss how uncertainty has been incorporated into the JPL software model, probabilistic-based estimates, and how risk is addressed, how cost risk is currently being explored via a variety of approaches, from traditional risk lists, to detailed WBS-based risk estimates to the Defect Detection and Prevention (DDP) tool.
Risk Assessment: Evidence Base
NASA Technical Reports Server (NTRS)
Johnson-Throop, Kathy A.
2007-01-01
Human systems PRA (Probabilistic Risk Assessment: a) Provides quantitative measures of probability, consequence, and uncertainty; and b) Communicates risk and informs decision-making. Human health risks rated highest in ISS PRA are based on 1997 assessment of clinical events in analog operational settings. Much work remains to analyze remaining human health risks identified in Bioastronautics Roadmap.
Asteroid Impact Risk: Ground Hazard versus Impactor Size
NASA Technical Reports Server (NTRS)
Mathias, Donovan; Wheeler, Lorien; Dotson, Jessie; Aftosmis, Michael; Tarano, Ana
2017-01-01
We utilized a probabilistic asteroid impact risk (PAIR) model to stochastically assess the impact risk due to an ensemble population of Near-Earth Objects (NEOs). Concretely, we present the variation of risk with impactor size. Results suggest that large impactors dominate the average risk, even when only considering the subset of undiscovered NEOs.
Weighing costs and losses: A decision making game using probabilistic forecasts
NASA Astrophysics Data System (ADS)
Werner, Micha; Ramos, Maria-Helena; Wetterhall, Frederik; Cranston, Michael; van Andel, Schalk-Jan; Pappenberger, Florian; Verkade, Jan
2017-04-01
Probabilistic forecasts are increasingly recognised as an effective and reliable tool to communicate uncertainties. The economic value of probabilistic forecasts has been demonstrated by several authors, showing the benefit to using probabilistic forecasts over deterministic forecasts in several sectors, including flood and drought warning, hydropower, and agriculture. Probabilistic forecasting is also central to the emerging concept of risk-based decision making, and underlies emerging paradigms such as impact-based forecasting. Although the economic value of probabilistic forecasts is easily demonstrated in academic works, its evaluation in practice is more complex. The practical use of probabilistic forecasts requires decision makers to weigh the cost of an appropriate response to a probabilistic warning against the projected loss that would occur if the event forecast becomes reality. In this paper, we present the results of a simple game that aims to explore how decision makers are influenced by the costs required for taking a response and the potential losses they face in case the forecast flood event occurs. Participants play the role of one of three possible different shop owners. Each type of shop has losses of quite different magnitude, should a flood event occur. The shop owners are presented with several forecasts, each with a probability of a flood event occurring, which would inundate their shop and lead to those losses. In response, they have to decide if they want to do nothing, raise temporary defences, or relocate their inventory. Each action comes at a cost; and the different shop owners therefore have quite different cost/loss ratios. The game was played on four occasions. Players were attendees of the ensemble hydro-meteorological forecasting session of the 2016 EGU Assembly, professionals participating at two other conferences related to hydrometeorology, and a group of students. All audiences were familiar with the principles of forecasting and water-related risks, and one of the audiences comprised a group of experts in probabilistic forecasting. Results show that the different shop owners do take the costs of taking action and the potential losses into account in their decisions. Shop owners with a low cost/loss ratio were found to be more inclined to take actions based on the forecasts, though the absolute value of the losses also increased the willingness to take action. Little differentiation was found between the different groups of players.
A systematic conservation planning approach to fire risk management in Natura 2000 sites.
Foresta, Massimiliano; Carranza, Maria Laura; Garfì, Vittorio; Di Febbraro, Mirko; Marchetti, Marco; Loy, Anna
2016-10-01
A primary challenge in conservation biology is to preserve the most representative biodiversity while simultaneously optimizing the efforts associated with conservation. In Europe, the implementation of the Natura 2000 network requires protocols to recognize and map threats to biodiversity and to identify specific mitigation actions. We propose a systematic conservation planning approach to optimize management actions against specific threats based on two fundamental parameters: biodiversity values and threat pressure. We used the conservation planning software Marxan to optimize a fire management plan in a Natura 2000 coastal network in southern Italy. We address three primary questions: i) Which areas are at high fire risk? ii) Which areas are the most valuable for threatened biodiversity? iii) Which areas should receive priority risk-mitigation actions for the optimal effect?, iv) which fire-prevention actions are feasible in the management areas?. The biodiversity values for the Natura 2000 spatial units were derived from the distribution maps of 18 habitats and 89 vertebrate species of concern in Europe (Habitat Directive 92/43/EEC). The threat pressure map, defined as fire probability, was obtained from digital layers of fire risk and of fire frequency. Marxan settings were defined as follows: a) planning units of 40 × 40 m, b) conservation features defined as all habitats and vertebrate species of European concern occurring in the study area, c) conservation targets defined according with fire sensitivity and extinction risk of conservation features, and d) costs determined as the complement of fire probabilities. We identified 23 management areas in which to concentrate efforts for the optimal reduction of fire-induced effects. Because traditional fire prevention is not feasible for most of policy habitats included in the management areas, alternative prevention practices were identified that allows the conservation of the vegetation structure. The proposed approach has potential applications for multiple landscapes, threats and spatial scales and could be extended to other valuable natural areas, including protected areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Corcoran, Jonathan; Higgs, Gary; Rohde, David; Chhetri, Prem
2011-06-01
Fires in urban areas can cause significant economic, physical and psychological damage. Despite this, there has been a comparative lack of research into the spatial and temporal analysis of fire incidence in urban contexts. In this paper, we redress this gap through an exploration of the association of fire incidence to weather, calendar events and socio-economic characteristics in South-East Queensland, Australia using innovative technique termed the quad plot. Analysing trends in five fire incident types, including malicious false alarms (hoax calls), residential buildings, secondary (outdoor), vehicle and suspicious fires, results suggest that risk associated with all is greatly increased during school holidays and during long weekends. For all fire types the lowest risk of incidence was found to occur between one and six a.m. It was also found that there was a higher fire incidence in socially disadvantaged neighbourhoods and there was some evidence to suggest that there may be a compounding impact of high temperatures in such areas. We suggest that these findings may be used to guide the operations of fire services through spatial and temporal targeting to better utilise finite resources, help mitigate risk and reduce casualties.
Ciffroy, Philippe; Charlatchka, Rayna; Ferreira, Daniel; Marang, Laura
2013-07-01
The biotic ligand model (BLM) theoretically enables the derivation of environmental quality standards that are based on true bioavailable fractions of metals. Several physicochemical variables (especially pH, major cations, dissolved organic carbon, and dissolved metal concentrations) must, however, be assigned to run the BLM, but they are highly variable in time and space in natural systems. This article describes probabilistic approaches for integrating such variability during the derivation of risk indexes. To describe each variable using a probability density function (PDF), several methods were combined to 1) treat censored data (i.e., data below the limit of detection), 2) incorporate the uncertainty of the solid-to-liquid partitioning of metals, and 3) detect outliers. From a probabilistic perspective, 2 alternative approaches that are based on log-normal and Γ distributions were tested to estimate the probability of the predicted environmental concentration (PEC) exceeding the predicted non-effect concentration (PNEC), i.e., p(PEC/PNEC>1). The probabilistic approach was tested on 4 real-case studies based on Cu-related data collected from stations on the Loire and Moselle rivers. The approach described in this article is based on BLM tools that are freely available for end-users (i.e., the Bio-Met software) and on accessible statistical data treatments. This approach could be used by stakeholders who are involved in risk assessments of metals for improving site-specific studies. Copyright © 2013 SETAC.
A Probabilistic Analysis of Surface Water Flood Risk in London.
Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris
2018-06-01
Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.
Precursor Analysis for Flight- and Ground-Based Anomaly Risk Significance Determination
NASA Technical Reports Server (NTRS)
Groen, Frank
2010-01-01
This slide presentation reviews the precursor analysis for flight and ground based anomaly risk significance. It includes information on accident precursor analysis, real models vs. models, and probabilistic analysis.
NASA Astrophysics Data System (ADS)
Keyser, Alisa; Westerling, Anthony LeRoy
2017-05-01
A long history of fire suppression in the western United States has significantly changed forest structure and ecological function, leading to increasingly uncharacteristic fires in terms of size and severity. Prior analyses of fire severity in California forests showed that time since last fire and fire weather conditions predicted fire severity very well, while a larger regional analysis showed that topography and climate were important predictors of high severity fire. There has not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to determine regional scale high severity fire occurrence. We developed models to predict the probability of high severity fire occurrence for the western US. We predict high severity fire occurrence with some accuracy, and identify the relative importance of predictor classes in determining the probability of high severity fire. The inclusion of both vegetation and fire-year climate predictors was critical for model skill in identifying fires with high fractional fire severity. The inclusion of fire-year climate variables allows this model to forecast inter-annual variability in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone can accomplish. This allows for more targeted land management, including resource allocation for fuels reduction treatments to decrease the risk of high severity fire.
NASA Astrophysics Data System (ADS)
Liang, C. P.; Chen, J. S.
2017-12-01
An abundant and inexpensive supply of groundwater is used to meet drinking, agriculture and aquaculture requirements of the residents in the Pingtung Plain. Long-term groundwater quality monitoring data indicate that the As content in groundwater in the Pingtung Plain exceeds the maximum level of 10 g/L recommended by the World Health Organization (WHO). The situation is further complicated by the fact that only 46.89% of population in the Pingtung Plain has been served with tap water, far below the national average of 92.93%. Considering there is a considerable variation in the measured concentrations, from below the detection limit (<0.1 g/L) to the maximum value of 544 g/L and the consumption rate and body weight of the individual, the conventional approach to conducting a human health risk assessment may be insufficient for health risk management. This study presents a probabilistic risk assessment for inorganic As intake through the consumption of the drinking groundwater by local residents in the Pingtung Plain. The probabilistic risk assessment for inorganic As intake through the consumption of the drinking groundwater is achieved using Monte Carlo simulation technique based on the hazard quotient (HQ) and target cancer risk (TR) established by the U.S. Environmental Protection Agency. This study demonstrates the importance of the individual variability of inorganic As intake through drinking groundwater consumption when evaluating a high exposure sub-group of the population who drink high As content groundwater.
Alcohol skin preparation causes surgical fires
Rocos, B; Donaldson, LJ
2012-01-01
INTRODUCTION Surgical fires are a rare but serious preventable safety risk in modern hospitals. Data from the US show that up to 650 surgical fires occur each year, with up to 5% causing death or serious harm. This study used the National Reporting and Learning Service (NRLS) database at the National Patient Safety Agency to explore whether spirit-based surgical skin preparation fluid contributes to the cause of surgical fires. METHODS The NRLS database was interrogated for all incidents of surgical fires reported between 1 March 2004 and 1 March 2011. Each report was scrutinised manually to discover the cause of the fire. RESULTS Thirteen surgical fires were reported during the study period. Of these, 11 were found to be directly related to spirit-based surgical skin preparation or preparation soaked swabs and drapes. CONCLUSIONS Despite manufacturer's instructions and warnings, surgical fires continue to occur. Guidance published in the UK and US states that spirit-based skin preparation solutions should continue to be used but sets out some precautions. It may be that fire risk should be included in pre-surgical World Health Organization checklists or in the surgical training curriculum. Surgical staff should be aware of the risk that spirit-based skin preparation fluids pose and should take action to minimise the chance of fire occurring. PMID:22391366
Alcohol skin preparation causes surgical fires.
Rocos, B; Donaldson, L J
2012-03-01
Surgical fires are a rare but serious preventable safety risk in modern hospitals. Data from the US show that up to 650 surgical fires occur each year, with up to 5% causing death or serious harm. This study used the National Reporting and Learning Service (NRLS) database at the National Patient Safety Agency to explore whether spirit-based surgical skin preparation fluid contributes to the cause of surgical fires. The NRLS database was interrogated for all incidents of surgical fires reported between 1 March 2004 and 1 March 2011. Each report was scrutinised manually to discover the cause of the fire. Thirteen surgical fires were reported during the study period. Of these, 11 were found to be directly related to spirit-based surgical skin preparation or preparation soaked swabs and drapes. Despite manufacturer's instructions and warnings, surgical fires continue to occur. Guidance published in the UK and US states that spirit-based skin preparation solutions should continue to be used but sets out some precautions. It may be that fire risk should be included in pre-surgical World Health Organization checklists or in the surgical training curriculum. Surgical staff should be aware of the risk that spirit-based skin preparation fluids pose and should take action to minimise the chance of fire occurring.
Cost-benefit analysis of passive fire protections in road LPG transportation.
Paltrinieri, Nicola; Bonvicini, Sarah; Spadoni, Gigliola; Cozzani, Valerio
2012-02-01
The cost-benefit evaluation of passive fire protection adoption in the road transport of liquefied petroleum gas (LPG) was investigated. In a previous study, mathematical simulations of real scale fire scenarios proved the effectiveness of passive fire protections in preventing the "fired" boiling liquid expanding vapor explosion (BLEVE), thus providing a significant risk reduction. In the present study the economical aspects of the adoption of fire protections are analyzed and an approach to cost-benefit analysis (CBA) is proposed. The CBA model is based on the comparison of the risk reduction due to fire protections (expressed in monetary terms by the value of a statistical life) and the cost of the application of fire protections to a fleet of tankers. Different types of fire protections were considered, as well as the possibility to apply protections to the entire fleet or only to a part of it. The application of the proposed model to a real-life case study is presented and discussed. Results demonstrate that the adoption of passive fire protections on road tankers, though not compulsory in Europe, can be economically feasible, thus representing a concrete measure to achieve control of the "major hazard accidents" cited by the European legislation. © 2011 Society for Risk Analysis.
Probabilistic flood damage modelling at the meso-scale
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Botto, Anna; Schröter, Kai; Merz, Bruno
2014-05-01
Decisions on flood risk management and adaptation are usually based on risk analyses. Such analyses are associated with significant uncertainty, even more if changes in risk due to global change are expected. Although uncertainty analysis and probabilistic approaches have received increased attention during the last years, they are still not standard practice for flood risk assessments. Most damage models have in common that complex damaging processes are described by simple, deterministic approaches like stage-damage functions. Novel probabilistic, multi-variate flood damage models have been developed and validated on the micro-scale using a data-mining approach, namely bagging decision trees (Merz et al. 2013). In this presentation we show how the model BT-FLEMO (Bagging decision Tree based Flood Loss Estimation MOdel) can be applied on the meso-scale, namely on the basis of ATKIS land-use units. The model is applied in 19 municipalities which were affected during the 2002 flood by the River Mulde in Saxony, Germany. The application of BT-FLEMO provides a probability distribution of estimated damage to residential buildings per municipality. Validation is undertaken on the one hand via a comparison with eight other damage models including stage-damage functions as well as multi-variate models. On the other hand the results are compared with official damage data provided by the Saxon Relief Bank (SAB). The results show, that uncertainties of damage estimation remain high. Thus, the significant advantage of this probabilistic flood loss estimation model BT-FLEMO is that it inherently provides quantitative information about the uncertainty of the prediction. Reference: Merz, B.; Kreibich, H.; Lall, U. (2013): Multi-variate flood damage assessment: a tree-based data-mining approach. NHESS, 13(1), 53-64.
A probabilistic tsunami hazard assessment for Indonesia
NASA Astrophysics Data System (ADS)
Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.
2014-11-01
Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-29
... Nuclear Power Plant Fire Protection (CARMEN-FIRE) AGENCY: Nuclear Regulatory Commission. ACTION: Notice of... Nuclear Power Plant Fire Protection (CARMEN-FIRE), Draft Report for Comment.'' DATES: Comments on this... CONTACT: Felix Gonzalez, Fire Research Branch, Division of Risk Analysis, Office of Nuclear Regulatory...
Nonfatal residential fire-related injuries treated in emergency departments--United States, 2001.
2003-09-26
During 2000, the most recent year for which national mortality data are available, 3,907 persons died in the United States from fire-related injuries; residential fires accounted for 2,955 (76%) of these deaths. The National Fire Protection Association (NFPA) reported that approximately 396,500 residential fires occurred in 2001. Injuries from residential fires are preventable by improving awareness of the common causes of fires and by using simple interventions (e.g., properly maintained smoke alarms and fire escape plans). Surveillance of fire-related injuries can aid prevention by increasing the understanding of these injuries and by identifying at-risk populations to target for interventions and education. To characterize nonfatal residential fire-related injuries treated in U.S. hospital emergency departments (EDs) during 2001, CDC analyzed data from the National Electronic Injury Surveillance System-All Injury Program (NEISS-AIP). This report summarizes the results of that analysis, which indicate that, in 2001, an estimated 25,717 nonfatal residential fire-related injuries were treated in U.S. hospital EDs. Fire prevention and safety interventions and education should target at-risk populations for fire-related injuries.
The Pictorial Fire Stroop: A Measure of Processing Bias for Fire-Related Stimuli
ERIC Educational Resources Information Center
Gallagher-Duffy, Joanne; MacKay, Sherri; Duffy, Jim; Sullivan-Thomas, Meara; Peterson-Badali, Michele
2009-01-01
Fire interest is a risk factor for firesetting. This study tested whether a fire-specific emotional Stroop task can effectively measure an information-processing bias for fire-related stimuli. Clinic-referred and nonreferred adolescents (aged 13-16 years) completed a pictorial "Fire Stroop," as well as a self-report fire interest questionnaire and…
Wang, Yan; Deng, Lei; Caballero-Guzman, Alejandro; Nowack, Bernd
2016-12-01
Nano iron oxide particles are beneficial to our daily lives through their use in paints, construction materials, biomedical imaging and other industrial fields. However, little is known about the possible risks associated with the current exposure level of engineered nano iron oxides (nano-FeOX) to organisms in the environment. The goal of this study was to predict the release of nano-FeOX to the environment and assess their risks for surface waters in the EU and Switzerland. The material flows of nano-FeOX to technical compartments (waste incineration and waste water treatment plants) and to the environment were calculated with a probabilistic modeling approach. The mean value of the predicted environmental concentrations (PECs) of nano-FeOX in surface waters in the EU for a worst-case scenario (no particle sedimentation) was estimated to be 28 ng/l. Using a probabilistic species sensitivity distribution, the predicted no-effect concentration (PNEC) was determined from ecotoxicological data. The risk characterization ratio, calculated by dividing the PEC by PNEC values, was used to characterize the risks. The mean risk characterization ratio was predicted to be several orders of magnitude smaller than 1 (1.4 × 10 - 4 ). Therefore, this modeling effort indicates that only a very limited risk is posed by the current release level of nano-FeOX to organisms in surface waters. However, a better understanding of the hazards of nano-FeOX to the organisms in other ecosystems (such as sediment) needs to be assessed to determine the overall risk of these particles to the environment.
Risk of hospitalization for fire-related burns during extreme cold weather.
Ayoub, Aimina; Kosatsky, Tom; Smargiassi, Audrey; Bilodeau-Bertrand, Marianne; Auger, Nathalie
2017-10-01
Environmental factors are important predictors of fires, but no study has examined the association between outdoor temperature and fire-related burn injuries. We sought to investigate the relationship between extremely cold outdoor temperatures and the risk of hospitalization for fire-related burns. We carried out a time-stratified case-crossover study of 2470 patients hospitalized for fire-related burn injuries during cold months between 1989 and 2014 in Quebec, Canada. The main exposure was the minimum outdoor temperature on the day of and the day before the burn. We computed odds ratios (OR) and 95% confidence intervals (CI) to evaluate the relationship between minimum temperature and fire-related burns, and assessed how associations varied across sex and age. Exposure to extreme cold temperature was associated with a significantly higher risk of hospitalization for fire-related burns. Compared with 0°C, exposure to a minimum temperature of -30°C was associated with an OR of 1.51 (95% CI 1.22-1.87) for hospitalization for fire-related burns. The associations were somewhat stronger for women, youth, and the elderly. Compared with 0°C, a minimum temperature of -30°C was associated with an OR for fire-related burn hospitalization of 1.65 for women (95% CI 1.13-2.40), 1.60 for age < 25 years (95% CI 1.02-2.52), and 1.73 for age ≥ 65 years (95% CI 1.08-2.77). Extremely cold outdoor temperature is a risk factor for fire-related burns. Measures to prevent fires should be implemented prior to the winter season, and enhanced during extreme cold. Copyright © 2017 Elsevier Inc. All rights reserved.
Twidwell, Dirac; Wonkka, Carissa L; Sindelar, Michael T; Weir, John R
2015-01-01
Fire is widely recognized as a critical ecological and evolutionary driver that needs to be at the forefront of land management actions if conservation targets are to be met. However, the prevailing view is that prescribed fire is riskier than other land management techniques. Perceived risks associated with the application of fire limits its use and reduces agency support for prescribed burning in the private sector. As a result, considerably less cost-share support is given for prescribed fire compared to mechanical techniques. This study tests the general perception that fire is a riskier technique relative to other land management options. Due to the lack of data available to directly test this notion, we use a combination of approaches including 1) a comparison of fatalities resulting from different occupations that are proxies for techniques employed in land management, 2) a comparison of fatalities resulting from wildland fire versus prescribed fire, and 3) an exploration of causal factors responsible for wildland fire-related fatalities. This approach establishes a first approximation of the relative risk of fatality to private citizens using prescribed fire compared to other management techniques that are readily used in ecosystem management. Our data do not support using risks of landowner fatalities as justification for the use of alternative land management techniques, such as mechanical (machine-related) equipment, over prescribed fire. Vehicles and heavy machinery are consistently leading reasons for fatalities within occupations selected as proxies for management techniques employed by ranchers and agricultural producers, and also constitute a large proportion of fatalities among firefighters. Our study provides the foundation for agencies to establish data-driven decisions regarding the degree of support they provide for prescribed burning on private lands.
Twidwell, Dirac; Wonkka, Carissa L.; Sindelar, Michael T.; Weir, John R.
2015-01-01
Fire is widely recognized as a critical ecological and evolutionary driver that needs to be at the forefront of land management actions if conservation targets are to be met. However, the prevailing view is that prescribed fire is riskier than other land management techniques. Perceived risks associated with the application of fire limits its use and reduces agency support for prescribed burning in the private sector. As a result, considerably less cost-share support is given for prescribed fire compared to mechanical techniques. This study tests the general perception that fire is a riskier technique relative to other land management options. Due to the lack of data available to directly test this notion, we use a combination of approaches including 1) a comparison of fatalities resulting from different occupations that are proxies for techniques employed in land management, 2) a comparison of fatalities resulting from wildland fire versus prescribed fire, and 3) an exploration of causal factors responsible for wildland fire-related fatalities. This approach establishes a first approximation of the relative risk of fatality to private citizens using prescribed fire compared to other management techniques that are readily used in ecosystem management. Our data do not support using risks of landowner fatalities as justification for the use of alternative land management techniques, such as mechanical (machine-related) equipment, over prescribed fire. Vehicles and heavy machinery are consistently leading reasons for fatalities within occupations selected as proxies for management techniques employed by ranchers and agricultural producers, and also constitute a large proportion of fatalities among firefighters. Our study provides the foundation for agencies to establish data-driven decisions regarding the degree of support they provide for prescribed burning on private lands. PMID:26465329
Network analysis of wildfire transmission and implications for risk governance
Ager, Alan A.; Evers, Cody R.; Day, Michelle A.; Preisler, Haiganoush K.; Barros, Ana M. G.; Nielsen-Pincus, Max
2017-01-01
We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of human versus natural ignitions to wildfire exposure. Among the land tenures examined, the area burned by incoming fires averaged 57% of the total burned area. Community exposure from incoming fires ignited on surrounding land tenures accounted for 67% of the total area burned. The number of land tenures contributing wildfire to individual communities and surrounding wildland urban interface (WUI) varied from 3 to 20. Community firesheds, i.e. the area where ignitions can spawn fires that can burn into the WUI, covered 40% of the landscape, and were 5.5 times larger than the combined area of the community core and WUI. For the major land tenures within the study area, the amount of incoming versus outgoing fire was relatively constant, with some exceptions. The study provides a multi-scale characterization of wildfire networks within a large, mixed tenure and fire prone landscape, and illustrates the connectivity of risk between communities and the surrounding wildlands. We use the findings to discuss how scale mismatches in local wildfire governance result from disconnected planning systems and disparate fire management objectives among the large landowners (federal, state, private) and local communities. Local and regional risk planning processes can adopt our concepts and methods to better define and map the scale of wildfire risk from large fire events and incorporate wildfire network and connectivity concepts into risk assessments. PMID:28257416
Network analysis of wildfire transmission and implications for risk governance.
Ager, Alan A; Evers, Cody R; Day, Michelle A; Preisler, Haiganoush K; Barros, Ana M G; Nielsen-Pincus, Max
2017-01-01
We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of human versus natural ignitions to wildfire exposure. Among the land tenures examined, the area burned by incoming fires averaged 57% of the total burned area. Community exposure from incoming fires ignited on surrounding land tenures accounted for 67% of the total area burned. The number of land tenures contributing wildfire to individual communities and surrounding wildland urban interface (WUI) varied from 3 to 20. Community firesheds, i.e. the area where ignitions can spawn fires that can burn into the WUI, covered 40% of the landscape, and were 5.5 times larger than the combined area of the community core and WUI. For the major land tenures within the study area, the amount of incoming versus outgoing fire was relatively constant, with some exceptions. The study provides a multi-scale characterization of wildfire networks within a large, mixed tenure and fire prone landscape, and illustrates the connectivity of risk between communities and the surrounding wildlands. We use the findings to discuss how scale mismatches in local wildfire governance result from disconnected planning systems and disparate fire management objectives among the large landowners (federal, state, private) and local communities. Local and regional risk planning processes can adopt our concepts and methods to better define and map the scale of wildfire risk from large fire events and incorporate wildfire network and connectivity concepts into risk assessments.
Reducing Community Vulnerability to Wildland Fires in Southern California
NASA Astrophysics Data System (ADS)
Keeley, J. E.
2010-12-01
In the US fires are not treated like other hazards such as earthquakes but rather as preventable through landscape fuel treatments and aggressive fire suppression. In southern California extreme fire weather has made it impossible to control all fires and thus loss of homes and lives is a constant threat to communities. There is growing evidence that indicate we are not likely to ever eliminate fires on these landscapes. Thus, it is time to reframe the fire problem and think of fires like we do with other natural hazards such as earthquakes. We do not attempt to stop earthquakes, rather the primary emphasis is on altering human infrastructure in ways that minimize community vulnerability. In other words we need to change our approach from risk elimination to risk management. This approach means we accept that we cannot eliminate fires but rather learn to live with fire by communities becoming more fire adapted. We potentially can make great strides in reducing community vulnerability by finding those factors with high impacts and are sensitive to changes in management. Presently, decision makers have relatively little guidance about which of these is likely to have the greatest impact. Future reductions in fire risk to communities requires we address both wildland and urban elements that contribute to destructive losses. Damage risk or D is determined by: D = f (I, S, E, G, H) where I = the probability of a fire starting in the landscape S = the probability of the fire reaching a size sufficient to reach the urban environment E = probability of it encroaching into the urban environment G = probability of fire propagating within the built environment H = probability of a fire, once within the built environment, resulting in the destruction of a building. In southern California, reducing I through more strategic fire prevention has potential for reducing fire risk. There are many ignition sources that could be reduced, such as replacing power line ignitions with underground lines, strategically employing arson patrols during Santa Ana wind events, enforcing regulations on power equipment use in wildland areas, k-rail barriers along roads to reduce fire spread into wildland areas etc. S, or the probability of fire reaching urban environments has historically been the primary focus of state and federal fire management activities. There is a need for greater focus on understanding the most strategic application of wildland fuel treatments. E, the probability of fire encroaching into the urban environment, has largely been addressed in the past by attention to wildland-urban interface (WUI) fuel treatments. The one factor that has perhaps the greatest potential for impacting E are patterns of urban growth, both in strategic placement and spatial patterning within communities, and this is an area where alternative future growth scenarios could have huge impacts on fire outcomes. G, the chance of fire propagating within the urban environment is a function of urban fuels, which include both home construction and landscaping. This area has the potential for effecting large changes in fire losses dependent upon future regulations on plantings in the urban environment.
Applying GIS to develop a model for forest fire risk: A case study in Espírito Santo, Brazil.
Eugenio, Fernando Coelho; dos Santos, Alexandre Rosa; Fiedler, Nilton Cesar; Ribeiro, Guido Assunção; da Silva, Aderbal Gomes; dos Santos, Áureo Banhos; Paneto, Greiciane Gaburro; Schettino, Vitor Roberto
2016-05-15
A forest fire risk map is a basic element for planning and protecting forested areas. The main goal of this study was to develop a statistical model for preparing a forest fire risk map using GIS. Such model is based on assigning weights to nine variables divided into two classes: physical factors of the site (terrain slope, land-use/occupation, proximity to roads, terrain orientation, and altitude) and climatic factors (precipitation, temperature, water deficit, and evapotranspiration). In regions where the climate is different from the conditions of this study, the model will require an adjustment of the variables weights according to the local climate. The study area, Espírito Santo State, exhibited approximately 3.81% low risk, 21.18% moderate risk, 30.10% high risk, 41.50% very high risk, and 3.40% extreme risk of forest fire. The areas classified as high risk, very high and extreme, contemplated a total of 78.92% of heat spots. Copyright © 2016 Elsevier Ltd. All rights reserved.
2010-01-01
Background Older adults are at increased risk both of falling and of experiencing accidental domestic fire. In addition to advanced age, these adverse events share the risk factors of balance or mobility problems, cognitive impairment and socioeconomic deprivation. For both events, the consequences include significant injury and death, and considerable socioeconomic costs for the individual and informal carers, as well as for emergency services, health and social care agencies. Secondary prevention services for older people who have fallen or who are identifiable as being at high risk of falling include NHS Falls clinics, where a multidisciplinary team offers an individualised multifactorial targeted intervention including strength and balance exercise programmes, medication changes and home hazard modification. A similar preventative approach is employed by most Fire and Rescue Services who conduct Home Fire Safety Visits to assess and, if necessary, remedy domestic fire risk, fit free smoke alarms with instruction for use and maintenance, and plan an escape route. We propose that the similarity of population at risk, location, specific risk factors and the commonality of preventative approaches employed could offer net gains in terms of feasibility, effectiveness and acceptability if activities within these two preventative approaches were to be combined. Methods/Design This prospective proof of concept study, currently being conducted in two London boroughs, (Southwark and Lambeth) aims to reduce the incidence of both fires and falls in community-dwelling older adults. It comprises two concurrent 12-month interventions: the integration of 1) fall risk assessments into the Brigade's Home Fire Safety Visit and 2) fire risk assessments into Falls services by inviting older clinic attendees to book a Visit. Our primary objective is to examine the feasibility and effectiveness of these interventions. Furthermore, we are evaluating their acceptability and value to key stakeholders and services users. Discussion If our approach proves feasible and the risk assessment is both effective and acceptable, we envisage advocating a partnership model of working more broadly to fire and rescue services and health services in Britain, such that effective integration of preventative services for older people becomes routine for an ageing population. PMID:21129185
High resolution fire risk mapping in Italy
NASA Astrophysics Data System (ADS)
Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko
2014-05-01
The high topographic and vegetation heterogeneity makes Italy vulnerable to forest fires both in the summer and in winter. In particular, northern regions are predominantly characterized by a winter fire regime, mainly due to frequent extremely dry winds from the north, while southern and central regions and the large islands are characterized by a severe summer fire regime, because of the higher temperatures and prolonged lack of precipitation. The threat of wildfires in Italy is not confined to wooded areas as they extend to agricultural areas and urban-forest interface areas. The agricultural and rural areas, in the last century, have been gradually abandoned, especially in areas with complex topography. Many of these areas were subject to reforestation, leading to the spread of pioneer species mainly represented by Mediterranean conifer, which are highly vulnerable to fire. Because of the frequent spread of fire, these areas are limited to the early successional stages, consisting mainly of shrub vegetation; its survival in the competition with the climax species being ensured by the spread of fire itself. Due to the frequency of fire ignition — almost entirely man caused — the time between fires on the same area is at least an order of magnitude less than the time that would allow the establishment of forest climax species far less vulnerable to fire. In view of the limited availability of fire risk management resources, most of which are used in the management of national and regional air services, it is necessary to precisely identify the areas most vulnerable to fire risk. The few resources available can thus be used on a yearly basis to mitigate problems in the areas at highest risk by defining a program of forest management interventions, which is expected to make a significant contribution to the problem in a few years' time. The goal of such detailed planning is to dramatically reduce the costs associated with water bombers fleet management and fire extinguishing actions, leaving more resources to improve safety in areas at risk. With the availability of fire perimeters mapped over a period spanning from 5 to 10 years, depending by the region, a procedure was defined in order to assess areas at risk with high spatial resolution (900 m2) based on objective criteria by observing past fire events. The availability of fire perimeters combined with a detailed knowledge of topography and land cover allowed to understand which are the main features involved in forest fire occurrences and their behaviour. The seasonality of the fire regime was also considered, partitioning the analysis in two macro season (November- April and May- October). In addition, the total precipitation obtained from the interpolation of 30 years-long time series from 460 raingauges and the average air temperature obtained downscaling 30 years ERA-INTERIM data series were considered. About 48000 fire perimeters which burnt about 5500 km2 were considered in the analysis. The analysis has been carried out at 30 m spatial resolution. Some important considerations relating to climate and the territorial features that characterize the fire regime at national level contribute to better understand the forest fire phenomena. These results allow to define new strategies for forest fire prevention and management extensible to other geographical areas.
[Prediction model of human-caused fire occurrence in the boreal forest of northern China].
Guo, Fu-tao; Su, Zhang-wen; Wang, Guang-yu; Wang, Qiang; Sun, Long; Yang, Ting-ting
2015-07-01
The Chinese boreal forest is an important forest resource in China. However, it has been suffering serious disturbances of forest fires, which were caused equally by natural disasters (e.g., lightning) and human activities. The literature on human-caused fires indicates that climate, topography, vegetation, and human infrastructure are significant factors that impact the occurrence and spread of human-caused fires. But the studies on human-caused fires in the boreal forest of northern China are limited and less comprehensive. This paper applied the spatial analysis tools in ArcGIS 10.0 and Logistic regression model to investigate the driving factors of human-caused fires. Our data included the geographic coordinates of human-caused fires, climate factors during year 1974-2009, topographic information, and forest map. The results indicated that distance to railway (x1) and average relative humidity (x2) significantly impacted the occurrence of human-caused fire in the study area. The logistic model for predicting the fire occurrence probability was formulated as P= 1/[11+e-(3.026-0.00011x1-0.047x2)] with an accuracy rate of 80%. The above model was used to predict the monthly fire occurrence during the fire season of 2015 based on the HADCM2 future weather data. The prediction results showed that the high risk of human-caused fire occurrence concentrated in the months of April, May, June and August, while April and May had higher risk of fire occurrence than other months. According to the spatial distribution of possibility of fire occurrence, the high fire risk zones were mainly in the west and southwest of Tahe, where the major railways were located.
Schoennagel, Tania; Nelson, Cara R; Theobald, David M; Carnwath, Gunnar C; Chapman, Teresa B
2009-06-30
Because of increasing concern about the effects of catastrophic wildland fires throughout the western United States, federal land managers have been engaged in efforts to restore historical fire behavior and mitigate wildfire risk. During the last 5 years (2004-2008), 44,000 fuels treatments were implemented across the western United States under the National Fire Plan (NFP). We assessed the extent to which these treatments were conducted in and near the wildland-urban interface (WUI), where they would have the greatest potential to reduce fire risk in neighboring homes and communities. Although federal policies stipulate that significant resources should be invested in the WUI, we found that only 3% of the area treated was within the WUI, and another 8% was in an additional 2.5-km buffer around the WUI, totaling 11%. Only 17% of this buffered WUI is under federal ownership, which significantly limits the ability of federal agencies to implement fire-risk reduction treatments near communities. Although treatments far from the WUI may have some fire mitigation benefits, our findings suggest that greater priority must be given to locating treatments in and near the WUI, rather than in more remote settings, to satisfy NFP goals of reducing fire risk to communities. However, this may require shifting management and policy emphasis from public to private lands.
2009 Space Shuttle Probabilistic Risk Assessment Overview
NASA Technical Reports Server (NTRS)
Hamlin, Teri L.; Canga, Michael A.; Boyer, Roger L.; Thigpen, Eric B.
2010-01-01
Loss of a Space Shuttle during flight has severe consequences, including loss of a significant national asset; loss of national confidence and pride; and, most importantly, loss of human life. The Shuttle Probabilistic Risk Assessment (SPRA) is used to identify risk contributors and their significance; thus, assisting management in determining how to reduce risk. In 2006, an overview of the SPRA Iteration 2.1 was presented at PSAM 8 [1]. Like all successful PRAs, the SPRA is a living PRA and has undergone revisions since PSAM 8. The latest revision to the SPRA is Iteration 3. 1, and it will not be the last as the Shuttle program progresses and more is learned. This paper discusses the SPRA scope, overall methodology, and results, as well as provides risk insights. The scope, assumptions, uncertainties, and limitations of this assessment provide risk-informed perspective to aid management s decision-making process. In addition, this paper compares the Iteration 3.1 analysis and results to the Iteration 2.1 analysis and results presented at PSAM 8.
Low, Kah Hin; Zain, Sharifuddin Md; Abas, Mhd Radzi; Md Salleh, Kaharudin; Teo, Yin Yin
2015-06-15
The trace metal concentrations in edible muscle of red tilapia (Oreochromis spp.) sampled from a former tin mining pool, concrete tank and earthen pond in Jelebu were analysed with microwave assisted digestion-inductively coupled plasma-mass spectrometry. Results were compared with established legal limits and the daily ingestion exposures simulated using the Monte Carlo algorithm for potential health risks. Among the metals investigated, arsenic was found to be the key contaminant, which may have arisen from the use of formulated feeding pellets. Although the risks of toxicity associated with consumption of red tilapia from the sites investigated were found to be within the tolerable range, the preliminary probabilistic estimation of As cancer risk shows that the 95th percentile risk level surpassed the benchmark level of 10(-5). In general, the probabilistic health risks associated with ingestion of red tilapia can be ranked as follows: former tin mining pool > concrete tank > earthen pond. Copyright © 2015 Elsevier Ltd. All rights reserved.
Soil responses to the fire and fire surrogate study in the Sierra Nevada
Emily E.Y. Moghaddas; Scott L. Stephens
2007-01-01
The Fire and Fire Surrogate Study utilizes forest thinning and prescribed burning in attempt to create forest stand structures that reduce the risk of catastrophic wildfire. Replicated treatments consisting of mechanical tree harvest (commercial harvest plus mastication of submerchantable material), mechanical harvest followed by prescribed fire, prescribed fire alone...
Estimation of Wild Fire Risk Area based on Climate and Maximum Entropy in Korean Peninsular
NASA Astrophysics Data System (ADS)
Kim, T.; Lim, C. H.; Song, C.; Lee, W. K.
2015-12-01
The number of forest fires and accompanying human injuries and physical damages has been increased by frequent drought. In this study, forest fire danger zone of Korea is estimated to predict and prepare for future forest fire hazard regions. The MaxEnt (Maximum Entropy) model is used to estimate the forest fire hazard region which estimates the probability distribution of the status. The MaxEnt model is primarily for the analysis of species distribution, but its applicability for various natural disasters is getting recognition. The detailed forest fire occurrence data collected by the MODIS for past 5 years (2010-2014) is used as occurrence data for the model. Also meteorology, topography, vegetation data are used as environmental variable. In particular, various meteorological variables are used to check impact of climate such as annual average temperature, annual precipitation, precipitation of dry season, annual effective humidity, effective humidity of dry season, aridity index. Consequently, the result was valid based on the AUC(Area Under the Curve) value (= 0.805) which is used to predict accuracy in the MaxEnt model. Also predicted forest fire locations were practically corresponded with the actual forest fire distribution map. Meteorological variables such as effective humidity showed the greatest contribution, and topography variables such as TWI (Topographic Wetness Index) and slope also contributed on the forest fire. As a result, the east coast and the south part of Korea peninsula were predicted to have high risk on the forest fire. In contrast, high-altitude mountain area and the west coast appeared to be safe with the forest fire. The result of this study is similar with former studies, which indicates high risks of forest fire in accessible area and reflects climatic characteristics of east and south part in dry season. To sum up, we estimated the forest fire hazard zone with existing forest fire locations and environment variables and had meaningful result with artificial and natural effect. It is expected to predict future forest fire risk with future climate variables as the climate changes.
Carleton B. Edminster; C. Phillip Weatherspoon; Daniel G. Neary
2000-01-01
As part of the 1998 Joint USDA/USDI Fire Science Program, the Fire and Fire Surrogates Study was proposed to establish and evaluate cross-comparisons of fuels treatment practices and techniques to reduce wildfire risk. This study evaluates prescribed fire, thinning, and various mechanical treatment methods for treating, removing, or using woody biomass. Site-specific...
Dependence in probabilistic modeling Dempster-Shafer theory and probability bounds analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferson, Scott; Nelsen, Roger B.; Hajagos, Janos
2015-05-01
This report summarizes methods to incorporate information (or lack of information) about inter-variable dependence into risk assessments that use Dempster-Shafer theory or probability bounds analysis to address epistemic and aleatory uncertainty. The report reviews techniques for simulating correlated variates for a given correlation measure and dependence model, computation of bounds on distribution functions under a specified dependence model, formulation of parametric and empirical dependence models, and bounding approaches that can be used when information about the intervariable dependence is incomplete. The report also reviews several of the most pervasive and dangerous myths among risk analysts about dependence in probabilistic models.
Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang
2011-01-01
The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons. PMID:22096452
Wildfire Risk Mapping over the State of Mississippi: Land Surface Modeling Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, William H.; Mostovoy, Georgy; Anantharaj, Valentine G
2012-01-01
Three fire risk indexes based on soil moisture estimates were applied to simulate wildfire probability over the southern part of Mississippi using the logistic regression approach. The fire indexes were retrieved from: (1) accumulated difference between daily precipitation and potential evapotranspiration (P-E); (2) top 10 cm soil moisture content simulated by the Mosaic land surface model; and (3) the Keetch-Byram drought index (KBDI). The P-E, KBDI, and soil moisture based indexes were estimated from gridded atmospheric and Mosaic-simulated soil moisture data available from the North American Land Data Assimilation System (NLDAS-2). Normalized deviations of these indexes from the 31-year meanmore » (1980-2010) were fitted into the logistic regression model describing probability of wildfires occurrence as a function of the fire index. It was assumed that such normalization provides more robust and adequate description of temporal dynamics of soil moisture anomalies than the original (not normalized) set of indexes. The logistic model parameters were evaluated for 0.25 x0.25 latitude/longitude cells and for probability representing at least one fire event occurred during 5 consecutive days. A 23-year (1986-2008) forest fires record was used. Two periods were selected and examined (January mid June and mid September December). The application of the logistic model provides an overall good agreement between empirical/observed and model-fitted fire probabilities over the study area during both seasons. The fire risk indexes based on the top 10 cm soil moisture and KBDI have the largest impact on the wildfire odds (increasing it by almost 2 times in response to each unit change of the corresponding fire risk index during January mid June period and by nearly 1.5 times during mid September-December) observed over 0.25 x0.25 cells located along the state of Mississippi Coast line. This result suggests a rather strong control of fire risk indexes on fire occurrence probability over this region.« less
Huan, Zhibo; Xu, Zhi; Luo, Jinhui; Xie, Defang
2016-11-01
Residues of 14 pesticides were determined in 150 cowpea samples collected in five southern Chinese provinces in 2013 and 2014.70% samples were detected one or more residues. 61.3% samples were illegal mainly because of detection of unauthorized pesticides. 14.0% samples contained more than three pesticides. Deterministic and probabilistic methods were used to assess the chronic and acute risk of pesticides in cowpea to eight subgroups of people. Deterministic assessment showed that the estimated short-term intakes (ESTIs) of carbofuran were 1199.4%-2621.9% of the acute reference doses (ARfD) while the rates were 985.9%-4114.7% using probabilistic assessment. Probabilistic assessment showed 4.2%-7.8% subjects may suffer from unacceptable acute risk from carbofuran contaminated cowpeas from the five provinces (especially children). But undue concern is not necessary, because all the estimations are based on conservative assumption. Copyright © 2016 Elsevier Inc. All rights reserved.
Spatial planning using probabilistic flood maps
NASA Astrophysics Data System (ADS)
Alfonso, Leonardo; Mukolwe, Micah; Di Baldassarre, Giuliano
2015-04-01
Probabilistic flood maps account for uncertainty in flood inundation modelling and convey a degree of certainty in the outputs. Major sources of uncertainty include input data, topographic data, model structure, observation data and parametric uncertainty. Decision makers prefer less ambiguous information from modellers; this implies that uncertainty is suppressed to yield binary flood maps. Though, suppressing information may potentially lead to either surprise or misleading decisions. Inclusion of uncertain information in the decision making process is therefore desirable and transparent. To this end, we utilise the Prospect theory and information from a probabilistic flood map to evaluate potential decisions. Consequences related to the decisions were evaluated using flood risk analysis. Prospect theory explains how choices are made given options for which probabilities of occurrence are known and accounts for decision makers' characteristics such as loss aversion and risk seeking. Our results show that decision making is pronounced when there are high gains and loss, implying higher payoffs and penalties, therefore a higher gamble. Thus the methodology may be appropriately considered when making decisions based on uncertain information.
Managing wildland fire risk in Florida
J. Brenner; D. Carlton; S. McLellan; A. Dozier; T. Spencer; D. Buckley; A. Ralowicz
2010-01-01
Floridaâs Wildland Fire Risk Assessment (FRA), which was completed in 2002, is a statewide effort to develop a comprehensive suite of standardized spatial data layers developed to support implementation of a statewide fuels management strategy. By maintaining focus on fire and fuel dynamics for use with scientifically credible local to statewide applications, the FRA...
Not Getting Burned: The Importance of Fire
Gregory S. Amacher; Arun S. Malik; Robert G. Haight
2005-01-01
We extend existing stand-level models of forest landowner behavior in the presence of fire risk to include the level and timing of fuel management activities. These activities reduce losses if a stand ignites. Based on simulations, we find the standard result that fire risk reduces the optimal rotation age does not hold when landowners use fuel management. Instead,...
Brian R Sturtevant; Brian R Miranda; Douglas J Shinneman; Eric J Gustafson; Peter T. Wolter
2012-01-01
Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to...
Wildfire communication and climate risk mitigation
Robyn S. Wilson; Sarah M. McCaffrey; Eric Toman
2017-01-01
Throughout the late 19th century and most of the 20th century, risks associated with wildfire were addressed by suppressing fires as quickly as possible. However, by the 1960s, it became clear that fire exclusion policies were having adverse effects on ecological health, as well as contributing to larger and more damaging wildfires over time. Although federal fire...
Pollak, Yehuda; Shalit, Reut; Aran, Adi
2018-01-01
Adults with attention deficit/hyperactivity disorder (ADHD) are prone to suboptimal decision making and risk taking. The aim of this study was to test performance on a theoretically-based probabilistic decision making task in well-characterized adults with and without ADHD, and examine the relation between experimental risk taking and history of real-life risk-taking behavior, defined as cigarette, alcohol, and street drug use. University students with and without ADHD completed a modified version of the Cambridge Gambling Test, in which they had to choose between alternatives varied by level of risk, and reported their history of substance use. Both groups showed similar patterns of risk taking on the experimental decision making task, suggesting that ADHD is not linked to low sensitivity to risk. Past and present substance use was more prevalent in adults with ADHD. These finding question the validity of experimental probabilistic decision making task as a valid model for ADHD-related risk-taking behavior. Copyright © 2017 Elsevier B.V. All rights reserved.
Song, Chao; Kwan, Mei-Po; Zhu, Jiping
2017-04-08
An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.
Song, Chao; Kwan, Mei-Po; Zhu, Jiping
2017-01-01
An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale. PMID:28397745
Development of a Probabilistic Decision-Support Model to Forecast Coastal Resilience
NASA Astrophysics Data System (ADS)
Wilson, K.; Safak, I.; Brenner, O.; Lentz, E. E.; Hapke, C. J.
2016-02-01
Site-specific forecasts of coastal change are a valuable management tool in preparing for and assessing storm-driven impacts in coastal areas. More specifically, understanding the likelihood of storm impacts, recovery following events, and the alongshore variability of both is central in evaluating vulnerability and resiliency of barrier islands. We introduce a probabilistic modeling framework that integrates hydrodynamic, anthropogenic, and morphologic components of the barrier system to evaluate coastal change at Fire Island, New York. The model is structured on a Bayesian network (BN), which utilizes observations to learn statistical relationships between system variables. In addition to predictive ability, probabilistic models convey the level of confidence associated with a prediction, an important consideration for coastal managers. Our model predicts the likelihood of morphologic change on the upper beach based on several decades of beach monitoring data. A coupled hydrodynamic BN combines probabilistic and deterministic modeling approaches; by querying nearly two decades of nested-grid wave simulations that account for both distant swells and local seas, we produce scenarios of event and seasonal wave climates. The wave scenarios of total water level - a sum of run up, surge and tide - and anthropogenic modification are the primary drivers of morphologic change in our model structure. Preliminary results show the hydrodynamic BN is able to reproduce time series of total water levels, a critical validation process before generating scenarios, and forecasts of geomorphic change over three month intervals are up to 70% accurate. Predictions of storm-induced change and recovery are linked to evaluate zones of persistent vulnerability or resilience and will help managers target restoration efforts, identify areas most vulnerable to habitat degradation, and highlight resilient zones that may best support relocation of critical infrastructure.
Changes in future fire regimes under climate change
NASA Astrophysics Data System (ADS)
Thonicke, Kirsten; von Bloh, Werner; Lutz, Julia; Knorr, Wolfgang; Wu, Minchao; Arneth, Almut
2013-04-01
Fires are expected to change under future climate change, climatic fire is is increasing due to increase in droughts and heat waves affecting vegetation productivity and ecosystem function. Vegetation productivity influences fuel production, but can also limit fire spread. Vegetation-fire models allow investigating the interaction between wildfires and vegetation dynamics, thus non-linear effects between changes in fuel composition and production on fire as well as changes in fire regimes on fire-related plant mortality and fuel combustion. Here we present results from simulation experiments, where the vegetation-fire models LPJmL-SPITFIRE and LPJ-GUESS are applied to future climate change scenarios from regional climate models in Europe and Northern Africa. Climate change impacts on fire regimes, vegetation dynamics and carbon fluxes are quantified and presented. New fire-prone regions are mapped and changes in fire regimes of ecosystems with a long-fire history are analyzed. Fuel limitation is likely to increase in Mediterranean-type ecosystems, indicating non-linear connection between increasing fire risk and fuel production. Increased warming in temperate ecosystems in Eastern Europe and continued fuel production leads to increases not only in climatic fire risk, but also area burnt and biomass burnt. This has implications for fire management, where adaptive capacity to this new vulnerability might be limited.
NASA Astrophysics Data System (ADS)
Mahura, A. G.; Baklanov, A. A.
2003-10-01
The probabilistic analysis of atmospheric transport patterns from most important nuclear risk sites in the Euro-Arctic region is performed employing the methodology developed within the "Arctic Risk" Project of the NARP Programme (Baklanov and Mahura, 2003). The risk sites are the nuclear power plants in the Northwest Russia, Finland, Sweden, Lithuania, United Kingdom, and Germany as well as the Novaya Zemlya test site of Russia. The geographical regions of interest are the Northern and Central European countries and Northwest Russia. In this study, the employed research tools are the trajectory model to calculate a multiyear dataset of forward trajectories that originated over the risk site locations, and a set of statistical methods (including exploratory, cluster, and probability fields analyses) for analysis of trajectory modelling results. The probabilistic analyses of trajectory modelling results for eleven sites are presented as a set of various indicators of the risk sites possible impact on geographical regions and countries of interest. The nuclear risk site possible impact (on a particular geographical region, territory, country, site, etc.) due to atmospheric transport from the site after hypothetical accidental release of radioactivity can be properly estimated based on a combined interpretation of the indicators (simple characteristics, atmospheric transport pathways, airflow and fast transport probability fields, maximum reaching distance and maximum possible impact zone, typical transport time and precipitation factor fields) for different time periods (annual, seasonal, and monthly) for any selected site (both separately for each site or grouped for several sites) in the Euro-Arctic region. Such estimation could be the useful input information for the decision-making process, risk assessment, and planning of emergency response systems for sites of nuclear, chemical, and biological danger.
NASA Technical Reports Server (NTRS)
Shih, Ann T.; Lo, Yunnhon; Ward, Natalie C.
2010-01-01
Quantifying the probability of significant launch vehicle failure scenarios for a given design, while still in the design process, is critical to mission success and to the safety of the astronauts. Probabilistic risk assessment (PRA) is chosen from many system safety and reliability tools to verify the loss of mission (LOM) and loss of crew (LOC) requirements set by the NASA Program Office. To support the integrated vehicle PRA, probabilistic design analysis (PDA) models are developed by using vehicle design and operation data to better quantify failure probabilities and to better understand the characteristics of a failure and its outcome. This PDA approach uses a physics-based model to describe the system behavior and response for a given failure scenario. Each driving parameter in the model is treated as a random variable with a distribution function. Monte Carlo simulation is used to perform probabilistic calculations to statistically obtain the failure probability. Sensitivity analyses are performed to show how input parameters affect the predicted failure probability, providing insight for potential design improvements to mitigate the risk. The paper discusses the application of the PDA approach in determining the probability of failure for two scenarios from the NASA Ares I project
GIS applied to location of fires detection towers in domain area of tropical forest.
Eugenio, Fernando Coelho; Rosa Dos Santos, Alexandre; Fiedler, Nilton Cesar; Ribeiro, Guido Assunção; da Silva, Aderbal Gomes; Juvanhol, Ronie Silva; Schettino, Vitor Roberto; Marcatti, Gustavo Eduardo; Domingues, Getúlio Fonseca; Alves Dos Santos, Gleissy Mary Amaral Dino; Pezzopane, José Eduardo Macedo; Pedra, Beatriz Duguy; Banhos, Aureo; Martins, Lima Deleon
2016-08-15
In most countries, the loss of biodiversity caused by the fires is worrying. In this sense, the fires detection towers are crucial for rapid identification of fire outbreaks and can also be used in environmental inspection, biodiversity monitoring, telecommunications mechanisms, telemetry and others. Currently the methodologies for allocating fire detection towers over large areas are numerous, complex and non-standardized by government supervisory agencies. Therefore, this study proposes and evaluates different methodologies to best location of points to install fire detection towers considering the topography, risk areas, conservation units and heat spots. Were used Geographic Information Systems (GIS) techniques and unaligned stratified systematic sampling for implementing and evaluating 9 methods for allocating fire detection towers. Among the methods evaluated, the C3 method was chosen, represented by 140 fire detection towers, with coverage of: a) 67% of the study area, b) 73.97% of the areas with high risk, c) 70.41% of the areas with very high risk, d) 70.42% of the conservation units and e) 84.95% of the heat spots in 2014. The proposed methodology can be adapted to areas of other countries. Copyright © 2016 Elsevier B.V. All rights reserved.
Development and application of a geospatial wildfire exposure and risk calculation tool
Matthew P. Thompson; Jessica R. Haas; Julie W. Gilbertson-Day; Joe H. Scott; Paul Langowski; Elise Bowne; David E. Calkin
2015-01-01
Applying wildfire risk assessment models can inform investments in loss mitigation and landscape restoration, and can be used to monitor spatiotemporal trends in risk. Assessing wildfire risk entails the integration of fire modeling outputs, maps of highly valued resources and assets (HVRAs), characterization of fire effects, and articulation of relative importance...
Can acceptable risk be defined in wildland firefighting?
David Clancy
2011-01-01
Risk is an ever-present challenge for fire agencies, fire managers, and firefighters, who must ensure that risks are managed at a level that is as low as reasonably practicable. This challenge provides a significant dilemma as there is no one prescriptive method for—or consensus on—defining "acceptable risk" in the field of firefighting....
Probabilistic assessment of roadway departure risk in a curve
NASA Astrophysics Data System (ADS)
Rey, G.; Clair, D.; Fogli, M.; Bernardin, F.
2011-10-01
Roadway departure while cornering constitutes a major part of car accidents and casualties in France. Even though drastic policy about overspeeding contributes to reduce accidents, there obviously exist other factors. This article presents the construction of a probabilistic strategy for the roadway departure risk assessment. A specific vehicle dynamic model is developed in which some parameters are modelled by random variables. These parameters are deduced from a sensitivity analysis to ensure an efficient representation of the inherent uncertainties of the system. Then, structural reliability methods are employed to assess the roadway departure risk in function of the initial conditions measured at the entrance of the curve. This study is conducted within the French national road safety project SARI that aims to implement a warning systems alerting the driver in case of dangerous situation.
Probabilistic Causal Analysis for System Safety Risk Assessments in Commercial Air Transport
NASA Technical Reports Server (NTRS)
Luxhoj, James T.
2003-01-01
Aviation is one of the critical modes of our national transportation system. As such, it is essential that new technologies be continually developed to ensure that a safe mode of transportation becomes even safer in the future. The NASA Aviation Safety Program (AvSP) is managing the development of new technologies and interventions aimed at reducing the fatal aviation accident rate by a factor of 5 by year 2007 and by a factor of 10 by year 2022. A portfolio assessment is currently being conducted to determine the projected impact that the new technologies and/or interventions may have on reducing aviation safety system risk. This paper reports on advanced risk analytics that combine the use of a human error taxonomy, probabilistic Bayesian Belief Networks, and case-based scenarios to assess a relative risk intensity metric. A sample case is used for illustrative purposes.
Probabilistic Asteroid Impact Risk Assessment for the Hypothetical PDC17 Impact Exercise
NASA Technical Reports Server (NTRS)
Wheeler, Lorien; Mathias, Donovan
2017-01-01
Performing impact risk assessment for the 2017 Planetary Defense Conference (PDC17) hypothetical impact exercise, to take place at the PDC17 conference, May 15-20, 2017. Impact scenarios and trajectories are developed and provided by NASA's Near Earth Objects Office at JPL (Paul Chodas). These results represent purely hypothetical impact scenarios, and do not reflect any known asteroid threat. Risk assessment was performed using the Probabilistic Asteroid Impact Risk (PAIR) model developed by the Asteroid Threat Assessment Project (ATAP) at NASA Ames Research Center. This presentation includes sample results that may be presented or used in discussions during the various stages of the impact exercisecenter dot Some cases represent alternate scenario options that may not be used during the actual impact exercise at the PDC17 conference. Updates to these initial assessments and/or additional scenario assessments may be performed throughout the impact exercise as different scenario options unfold.
Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Curtis L; Mandelli, Diego; Zhegang Ma
2014-11-01
As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe themore » RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.« less
Simulating spatial and temporally related fire weather
Isaac C. Grenfell; Mark Finney; Matt Jolly
2010-01-01
Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...
Spatial distribution of human-caused forest fires in Galicia (NW Spain)
M. L. Chas-Amil; J. Touza; P. Prestemon
2010-01-01
It is crucial for fire prevention policies to assess the spatial patterns of human-started fires and their relationship with geographical and socioeconomic aspects. This study uses fire reports for the period 1988-2006 in Galicia, Spain, to analyze the spatial distribution of human-induced fire risk attending to causes and underlying motivations associated with fire...
NASA Astrophysics Data System (ADS)
Chen, C. H.; Chien, S. W.; Ho, M. C.
2015-08-01
Cultural heritages and historical buildings are vulnerable against severe threats from fire. Since the 1970s, ten fire-spread events involving historic buildings have occurred in Taiwan, affecting a total of 132 nearby buildings. Developed under the influence of traditional Taiwanese culture, historic buildings in Taiwan are often built using non-fire resistant brick-wood structure and located in proximity to residential occupancies. Fire outbreak in these types of neighborhood will lead to severe damage of antiquities, leaving only unrecoverable historical imagery. This study is aimed to investigate the minimal safety distance required between a historical building and its surroundings in order to reduce the risk of external fire. This study is based on literature analysis and the fire spread model using a Fire Dynamics Simulator. The selected target is Jingmei Temple in Taipei City. This study explored local geography to identify patterns behind historical buildings distribution. In the past, risk reduction engineering for cultural heritages and historical buildings focused mainly on fire equipment and the available personnel with emergency response ability, and little attention was given to external fire risks and the affected damage. Through discussions on the required safety distance, this research provides guidelines for the following items: management of neighborhoods with historical buildings and consultation between the protection of cultural heritages and disaster prevention, reducing the frequency and extent of fire damages, and preserving cultural resource.
Rocket engine system reliability analyses using probabilistic and fuzzy logic techniques
NASA Technical Reports Server (NTRS)
Hardy, Terry L.; Rapp, Douglas C.
1994-01-01
The reliability of rocket engine systems was analyzed by using probabilistic and fuzzy logic techniques. Fault trees were developed for integrated modular engine (IME) and discrete engine systems, and then were used with the two techniques to quantify reliability. The IRRAS (Integrated Reliability and Risk Analysis System) computer code, developed for the U.S. Nuclear Regulatory Commission, was used for the probabilistic analyses, and FUZZYFTA (Fuzzy Fault Tree Analysis), a code developed at NASA Lewis Research Center, was used for the fuzzy logic analyses. Although both techniques provided estimates of the reliability of the IME and discrete systems, probabilistic techniques emphasized uncertainty resulting from randomness in the system whereas fuzzy logic techniques emphasized uncertainty resulting from vagueness in the system. Because uncertainty can have both random and vague components, both techniques were found to be useful tools in the analysis of rocket engine system reliability.
A Comparison of Probabilistic and Deterministic Campaign Analysis for Human Space Exploration
NASA Technical Reports Server (NTRS)
Merrill, R. Gabe; Andraschko, Mark; Stromgren, Chel; Cirillo, Bill; Earle, Kevin; Goodliff, Kandyce
2008-01-01
Human space exploration is by its very nature an uncertain endeavor. Vehicle reliability, technology development risk, budgetary uncertainty, and launch uncertainty all contribute to stochasticity in an exploration scenario. However, traditional strategic analysis has been done in a deterministic manner, analyzing and optimizing the performance of a series of planned missions. History has shown that exploration scenarios rarely follow such a planned schedule. This paper describes a methodology to integrate deterministic and probabilistic analysis of scenarios in support of human space exploration. Probabilistic strategic analysis is used to simulate "possible" scenario outcomes, based upon the likelihood of occurrence of certain events and a set of pre-determined contingency rules. The results of the probabilistic analysis are compared to the nominal results from the deterministic analysis to evaluate the robustness of the scenario to adverse events and to test and optimize contingency planning.
NASA Astrophysics Data System (ADS)
Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios
2011-03-01
Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority.
Arianoutsou, Margarita; Koukoulas, Sotirios; Kazanis, Dimitrios
2011-03-01
Forest fires are one of the major causes of ecological disturbance in the mediterranean climate ecosystems of the world. Despite the fact that a lot of resources have been invested in fire prevention and suppression, the number of fires occurring in the Mediterranean Basin in the recent decades has continued to markedly increase. The understanding of the relationship between landscape and fire lies, among others, in the identification of the system's post-fire resilience. In our study, ecological and landscape data are integrated with decision-support techniques in a Geographic Information Systems (GIS) framework to evaluate the risk of losing post-fire resilience in Pinus halepensis forests, using Cape Sounion National Park, Central Greece, as a pilot case. The multi-criteria decision support approach has been used to synthesize both bio-indicators (woody cover, pine density, legume cover and relative species richness and annual colonizers) and geo-indicators (fire history, parent material, and slope inclination) in order to rank the landscape components. Judgments related to the significance of each factor were incorporated within the weights coefficients and then integrated into the multicriteria rule to map the risk index. Sensitivity analysis was very critical for assessing the contribution of each factor and the sensitivity to subjective weight judgments to the final output. The results of this study include a final ranking map of the risk of losing resilience, which is very useful in identifying the "risk hotspots", where post-fire management measures should be applied in priority.
National Fire Plan Research and Development 2001 Business Summary
USDA Forest Service
2002-01-01
Wildland fire remains a serious concern to the people of our Nation. This concern has been turned into action in the form of the National Fire Plan (NFP), an accelerated interagency effort, begun after the disastrous 2000 fire season, to step up, coordinate, and concentrate activity on reducing fire risks.
Fire Safety for Retired Adults: Participant's Coursebook.
ERIC Educational Resources Information Center
Walker (Bonnie) and Associates, Inc., Crofton, MD.
The risk of dying from fire increases substantially among older adults. This document contains a collection of fire safety information for elderly people. Information includes procedures to follow in case of fire and early warning technologies such as smoke alarms. The booklet describes potential sources of fires (smoking, home heating, kitchens,…
Probabilistic modeling of the flows and environmental risks of nano-silica.
Wang, Yan; Kalinina, Anna; Sun, Tianyin; Nowack, Bernd
2016-03-01
Nano-silica, the engineered nanomaterial with one of the largest production volumes, has a wide range of applications in consumer products and industry. This study aimed to quantify the exposure of nano-silica to the environment and to assess its risk to surface waters. Concentrations were calculated for four environmental (air, soil, surface water, sediments) and two technical compartments (wastewater, solid waste) for the EU and Switzerland using probabilistic material flow modeling. The corresponding median concentration in surface water is predicted to be 0.12 μg/l in the EU (0.053-3.3 μg/l, 15/85% quantiles). The concentrations in sediments in the complete sedimentation scenario were found to be the largest among all environmental compartments, with a median annual increase of 0.43 mg/kg · y in the EU (0.19-12 mg/kg · y, 15/85% quantiles). Moreover, probabilistic species sensitivity distributions (PSSD) were computed and the risk of nano-silica in surface waters was quantified by comparing the predicted environmental concentration (PEC) with the predicted no-effect concentration (PNEC) distribution, which was derived from the cumulative PSSD. This assessment suggests that nano-silica currently poses no risk to aquatic organisms in surface waters. Further investigations are needed to assess the risk of nano-silica in other environmental compartments, which is currently not possible due to a lack of ecotoxicological data. Copyright © 2015 Elsevier B.V. All rights reserved.
Maximizing Statistical Power When Verifying Probabilistic Forecasts of Hydrometeorological Events
NASA Astrophysics Data System (ADS)
DeChant, C. M.; Moradkhani, H.
2014-12-01
Hydrometeorological events (i.e. floods, droughts, precipitation) are increasingly being forecasted probabilistically, owing to the uncertainties in the underlying causes of the phenomenon. In these forecasts, the probability of the event, over some lead time, is estimated based on some model simulations or predictive indicators. By issuing probabilistic forecasts, agencies may communicate the uncertainty in the event occurring. Assuming that the assigned probability of the event is correct, which is referred to as a reliable forecast, the end user may perform some risk management based on the potential damages resulting from the event. Alternatively, an unreliable forecast may give false impressions of the actual risk, leading to improper decision making when protecting resources from extreme events. Due to this requisite for reliable forecasts to perform effective risk management, this study takes a renewed look at reliability assessment in event forecasts. Illustrative experiments will be presented, showing deficiencies in the commonly available approaches (Brier Score, Reliability Diagram). Overall, it is shown that the conventional reliability assessment techniques do not maximize the ability to distinguish between a reliable and unreliable forecast. In this regard, a theoretical formulation of the probabilistic event forecast verification framework will be presented. From this analysis, hypothesis testing with the Poisson-Binomial distribution is the most exact model available for the verification framework, and therefore maximizes one's ability to distinguish between a reliable and unreliable forecast. Application of this verification system was also examined within a real forecasting case study, highlighting the additional statistical power provided with the use of the Poisson-Binomial distribution.
Exposure to an Indoor Cooking Fire and Risk of Trachoma in Children of Kongwa, Tanzania
Zambrano, Andrea I.; Muñoz, Beatriz E.; Mkocha, Harran; West, Sheila K.
2015-01-01
Background Elimination of blinding trachoma by 2020 can only be achieved if affected areas have effective control programs in place before the target date. Identifying risk factors for active disease that are amenable to intervention is important to successfully design such programs. Previous studies have linked sleeping by a cooking fire to trachoma in children, but not fully explored the mechanism and risks. We propose to determine the risk for active trachoma in children with exposure to cooking fires by severity of trachoma, adjusting for other known risk factors. Methods Complete census of 52 communities in Kongwa, Tanzania, was conducted to collect basic household characteristics and demographic information on each family member. Information on exposure to indoor cooking fires while the mother was cooking and while sleeping for each child was collected. 6656 randomly selected children ages 1-9yrs were invited to a survey where both eyelids were graded for follicular (TF) and intense trachoma (TI) using the WHO simplified grading scheme. Ocular swab were taken to assess the presence of Chlamydia trachomatis. Findings 5240 (79%) of the invited children participated in the study. Overall prevalence for trachoma was 6·1%. Odds for trachoma and increased severity were higher in children sleeping without ventilation and a cooking fire in their room (TF OR = 1·81, 1·00–3·27 and TI OR 4·06, 1·96–8·42). Children with TF or TI who were exposed were more likely to have infection than children with TF or TI who were not exposed. There was no increased risk with exposure to a cooking fire while the mother was cooking. Conclusions In addition to known risk factors for trachoma, sleeping by an indoor cooking fire in a room without ventilation was associated with active trachoma and appears to substantially increase the risk of intense inflammation. PMID:26046359
Exposure to an Indoor Cooking Fire and Risk of Trachoma in Children of Kongwa, Tanzania.
Zambrano, Andrea I; Muñoz, Beatriz E; Mkocha, Harran; West, Sheila K
2015-01-01
Elimination of blinding trachoma by 2020 can only be achieved if affected areas have effective control programs in place before the target date. Identifying risk factors for active disease that are amenable to intervention is important to successfully design such programs. Previous studies have linked sleeping by a cooking fire to trachoma in children, but not fully explored the mechanism and risks. We propose to determine the risk for active trachoma in children with exposure to cooking fires by severity of trachoma, adjusting for other known risk factors. Complete census of 52 communities in Kongwa, Tanzania, was conducted to collect basic household characteristics and demographic information on each family member. Information on exposure to indoor cooking fires while the mother was cooking and while sleeping for each child was collected. 6656 randomly selected children ages 1-9 yrs were invited to a survey where both eyelids were graded for follicular (TF) and intense trachoma (TI) using the WHO simplified grading scheme. Ocular swab were taken to assess the presence of Chlamydia trachomatis. 5240 (79%) of the invited children participated in the study. Overall prevalence for trachoma was 6·1%. Odds for trachoma and increased severity were higher in children sleeping without ventilation and a cooking fire in their room (TF OR = 1·81, 1·00-3·27 and TI OR 4·06, 1·96-8·42). Children with TF or TI who were exposed were more likely to have infection than children with TF or TI who were not exposed. There was no increased risk with exposure to a cooking fire while the mother was cooking. In addition to known risk factors for trachoma, sleeping by an indoor cooking fire in a room without ventilation was associated with active trachoma and appears to substantially increase the risk of intense inflammation.
Opportunities for making wood products from small diameter trees in Colorado
Dennis L. Lynch; Kurt H. Mackes
2002-01-01
Colorado's forests are at risk to forest health problems and catastrophic fire. Forest areas at high risk to catastrophic fire, commonly referred to as Red Zones, contain 2.4 million acres in the Colorado Front Range and 6.3 million acres Statewide. The increasing frequency, size, and intensity of recent forest fires have prompted large appropriations of Federal...
A Probabilistic Typhoon Risk Model for Vietnam
NASA Astrophysics Data System (ADS)
Haseemkunju, A.; Smith, D. F.; Brolley, J. M.
2017-12-01
Annually, the coastal Provinces of low-lying Mekong River delta region in the southwest to the Red River Delta region in Northern Vietnam is exposed to severe wind and flood risk from landfalling typhoons. On average, about two to three tropical cyclones with a maximum sustained wind speed of >=34 knots make landfall along the Vietnam coast. Recently, Typhoon Wutip (2013) crossed Central Vietnam as a category 2 typhoon causing significant damage to properties. As tropical cyclone risk is expected to increase with increase in exposure and population growth along the coastal Provinces of Vietnam, insurance/reinsurance, and capital markets need a comprehensive probabilistic model to assess typhoon risk in Vietnam. In 2017, CoreLogic has expanded the geographical coverage of its basin-wide Western North Pacific probabilistic typhoon risk model to estimate the economic and insured losses from landfalling and by-passing tropical cyclones in Vietnam. The updated model is based on 71 years (1945-2015) of typhoon best-track data and 10,000 years of a basin-wide simulated stochastic tracks covering eight countries including Vietnam. The model is capable of estimating damage from wind, storm surge and rainfall flooding using vulnerability models, which relate typhoon hazard to building damageability. The hazard and loss models are validated against past historical typhoons affecting Vietnam. Notable typhoons causing significant damage in Vietnam are Lola (1993), Frankie (1996), Xangsane (2006), and Ketsana (2009). The central and northern coastal provinces of Vietnam are more vulnerable to wind and flood hazard, while typhoon risk in the southern provinces are relatively low.
Probabilistic Risk Assessment for Bone Fracture - Bone Fracture Risk Module (BFxRM)
NASA Technical Reports Server (NTRS)
Licata, Angelo; Myers, Jerry G.; Lewandowski, Beth
2013-01-01
This presentation summarizes the concepts, development, and application of NASA's Bone Fracture Risk Module (BFxRM). The overview includes an assessmnet of strenghts and limitations of the BFxRM and proposes a numebr of discussion questions to the panel regarding future development avenues for this simulation system.
Risk assessment for biodiversity conservation planning in Pacific Northwest forests
Becky K. Kerns; Alan Ager
2007-01-01
Risk assessment can provide a robust strategy for landscape-scale planning challenges associated with species conservation and habitat protection in Pacific Northwest forests. We provide an overview of quantitative and probabilistic ecological risk assessment with focus on the application of approaches and influences from the actuarial, financial, and technical...
Virtues and Limitations of Risk Analysis
ERIC Educational Resources Information Center
Weatherwax, Robert K.
1975-01-01
After summarizing the Rasmussion Report, the author reviews the probabilistic portion of the report from the perspectives of engineering utility and risk assessment uncertainty. The author shows that the report may represent a significant step forward in the assurance of reactor safety and an imperfect measure of actual reactor risk. (BT)
Singh, Ashish; Spak, Scott N.; Stone, Elizabeth A.; Downard, Jared; Bullard, Robert; Pooley, Mark; Kostle, Pamela A.; Mainprize, Matthew W.; Wichman, Michael D.; Peters, Thomas; Beardsley, Douglas; Stanier, Charles O.
2015-01-01
The Iowa City Landfill in eastern Iowa, United States, experienced a fire lasting 18 days in 2012, in which a drainage layer of over 1 million shredded tires burned, generating smoke that impacted the surrounding metropolitan area of 130,000 people. This emergency required air monitoring, risk assessment, dispersion modeling, and public notification. This paper quantifies the impact of the fire on local air quality and proposes a monitoring approach and an Air Quality Index (AQI) for use in future tire fires and other urban fires. Individual fire pollutants are ranked for acute and cancer relative risks using hazard ratios, with the highest acute hazard ratios attributed to SO2, particulate matter, and aldehydes. Using a dispersion model in conjunction with the new AQI, we estimate that smoke concentrations reached unhealthy outdoor levels for sensitive groups out to distances of 3.1 km and 18 km at 24-h and 1-h average times, respectively. Modeled and measured concentrations of PM2.5 from smoke and other compounds such as VOCs and benzo[a]pyrene are presented at a range of distances and averaging times, and the corresponding cancer risks are discussed. Through reflection on the air quality response to the event, consideration of cancer and acute risks, and comparison to other tire fires, we recommend that all landfills with shredded tire liners plan for hazmat fire emergencies. A companion paper presents emission factors and detailed smoke characterization. PMID:25624787
Singh, Ashish; Spak, Scott N; Stone, Elizabeth A; Downard, Jared; Bullard, Robert; Pooley, Mark; Kostle, Pamela A; Mainprize, Matthew W; Wichman, Michael D; Peters, Thomas; Beardsley, Douglas; Stanier, Charles O
2015-03-01
The Iowa City Landfill in eastern Iowa, United States, experienced a fire lasting 18 days in 2012, in which a drainage layer of over 1 million shredded tires burned, generating smoke that impacted the surrounding metropolitan area of 130,000 people. This emergency required air monitoring, risk assessment, dispersion modeling, and public notification. This paper quantifies the impact of the fire on local air quality and proposes a monitoring approach and an Air Quality Index (AQI) for use in future tire fires and other urban fires. Individual fire pollutants are ranked for acute and cancer relative risks using hazard ratios, with the highest acute hazard ratios attributed to SO 2 , particulate matter, and aldehydes. Using a dispersion model in conjunction with the new AQI, we estimate that smoke concentrations reached unhealthy outdoor levels for sensitive groups out to distances of 3.1 km and 18 km at 24-h and 1-h average times, respectively. Modeled and measured concentrations of PM 2.5 from smoke and other compounds such as VOCs and benzo[a]pyrene are presented at a range of distances and averaging times, and the corresponding cancer risks are discussed. Through reflection on the air quality response to the event, consideration of cancer and acute risks, and comparison to other tire fires, we recommend that all landfills with shredded tire liners plan for hazmat fire emergencies. A companion paper presents emission factors and detailed smoke characterization.
Forests at risk: integrating risk science into fuel management strategies.
Jonathan Thompson
2008-01-01
The threat from wildland fire continues to grow across many regions of the Western United States. Drought, urbanization, and a buildup of fuels over the last century have contributed to increasing wildfire risk to property and highly valued natural resources. Fuel treatments, including thinning overly dense forests to reduce fuel and lower fire risk, have become a...
A Robust Approach to Risk Assessment Based on Species Sensitivity Distributions.
Monti, Gianna S; Filzmoser, Peter; Deutsch, Roland C
2018-05-03
The guidelines for setting environmental quality standards are increasingly based on probabilistic risk assessment due to a growing general awareness of the need for probabilistic procedures. One of the commonly used tools in probabilistic risk assessment is the species sensitivity distribution (SSD), which represents the proportion of species affected belonging to a biological assemblage as a function of exposure to a specific toxicant. Our focus is on the inverse use of the SSD curve with the aim of estimating the concentration, HCp, of a toxic compound that is hazardous to p% of the biological community under study. Toward this end, we propose the use of robust statistical methods in order to take into account the presence of outliers or apparent skew in the data, which may occur without any ecological basis. A robust approach exploits the full neighborhood of a parametric model, enabling the analyst to account for the typical real-world deviations from ideal models. We examine two classic HCp estimation approaches and consider robust versions of these estimators. In addition, we also use data transformations in conjunction with robust estimation methods in case of heteroscedasticity. Different scenarios using real data sets as well as simulated data are presented in order to illustrate and compare the proposed approaches. These scenarios illustrate that the use of robust estimation methods enhances HCp estimation. © 2018 Society for Risk Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Clifford Kuofei
Chemical transport through human skin can play a significant role in human exposure to toxic chemicals in the workplace, as well as to chemical/biological warfare agents in the battlefield. The viability of transdermal drug delivery also relies on chemical transport processes through the skin. Models of percutaneous absorption are needed for risk-based exposure assessments and drug-delivery analyses, but previous mechanistic models have been largely deterministic. A probabilistic, transient, three-phase model of percutaneous absorption of chemicals has been developed to assess the relative importance of uncertain parameters and processes that may be important to risk-based assessments. Penetration routes through the skinmore » that were modeled include the following: (1) intercellular diffusion through the multiphase stratum corneum; (2) aqueous-phase diffusion through sweat ducts; and (3) oil-phase diffusion through hair follicles. Uncertainty distributions were developed for the model parameters, and a Monte Carlo analysis was performed to simulate probability distributions of mass fluxes through each of the routes. Sensitivity analyses using stepwise linear regression were also performed to identify model parameters that were most important to the simulated mass fluxes at different times. This probabilistic analysis of percutaneous absorption (PAPA) method has been developed to improve risk-based exposure assessments and transdermal drug-delivery analyses, where parameters and processes can be highly uncertain.« less
NASA Astrophysics Data System (ADS)
Ager, Alan; Barros, Ana; Day, Michelle; Preisler, Haiganoush; Evers, Cody
2015-04-01
We develop the idea of risk transmission from large wildfires and apply network analyses to understand its importance within the 3.2 million ha Fire-People-Forest study area in central Oregon, US. Historic wildfires within the study and elsewhere in the western US frequently burn over long distances (e.g., 20-50 km) through highly fragmented landscapes with respect to ownership, fuels, management intensity, population density, and ecological conditions. The collective arrangement of fuel loadings in concert with weather and suppression efforts ultimately determines containment and the resulting fire perimeter. While spatial interactions among land parcels in terms of fire spread and intensity have been frequently noted by fire managers, quantifying risk and exposure transmission is not well understood. In this paper we used simulation modeling to quantify wildfire transmission and built a transmission network among and within land owners and communities within the study area. The results suggested that 84% of the predicted area burned within the 25 communities in the study area was from simulated fires that ignited on federal lands. The wildland urban interface surrounding the communities was predicted to burn at a rate of 2 % per year, with 57% of the area burned from fires ignited on federal lands. The node degree for communities indicated that simulated fires originated on about 6 different landowners. Network analyses in general revealed independent variation in transmitted fire among landowners in terms of both node degree (diversity of landowners exchanging fire) and transmitted fire, indicating that both the spatial grain of land ownership and wildfire topology contribute to transmission among land parcels. We discuss how network analyses of wildfire transmission can inform fire management goals for creating fire adapted communities, conserving biodiversity, and resolving competing demands for fire-prone ecosystem services. We also discuss how biophysical fire networks can potentially be coupled with social fire networks to improve wildfire mitigation planning.
Progress report on the Worldwide Earthquake Risk Management (WWERM) Program
Algermissen, S.T.; Hays, Walter W.; Krumpe, Paul R.
1992-01-01
Considerable progress has been made in the Worldwide Earthquake Risk Management (WWERM) Program since its initiation in late 1989 as a cooperative program of the Agency for International Development (AID), Office of U.S. Foreign Disaster Assistance (OFDA), and the U.S. Geological Survey. Probabilistic peak acceleration and peak Modified Mercalli intensity (MMI) maps have been prepared for Chile and for Sulawesi province in Indonesia. Earthquake risk (loss) studies for dwellings in Gorontalo, North Sulawesi, have been completed and risk studies for dwellings in selected areas of central Chile are underway. A special study of the effect of site response on earthquake ground motion estimation in central Chile has also been completed and indicates that site response may modify the ground shaking by as much as plus or minus two units of MMI. A program for the development of national probabilistic ground motion maps for the Philippines is now underway and pilot studies of earthquake ground motion and risk are being planned for Morocco.
Restoring surface fire stabilizes forest carbon under extreme fire weather in the Sierra Nevada
Daniel J. Krofcheck; Matthew D. Hurteau; Robert M. Scheller; E. Louise Loudermilk
2017-01-01
Climate change in the western United States has increased the frequency of extreme fire weather events and is projected to increase the area burned by wildfire in the coming decades. This changing fire regime, coupled with increased high-severity fire risk from a legacy of fire exclusion, could destabilize forest carbon (C), decrease net ecosystem exchange (...
Mark A. Finney; Charles W. McHugh; Isaac Grenfell; Karin L. Riley
2010-01-01
Components of a quantitative risk assessment were produced by simulation of burn probabilities and fire behavior variation for 134 fire planning units (FPUs) across the continental U.S. The system uses fire growth simulation of ignitions modeled from relationships between large fire occurrence and the fire danger index Energy Release Component (ERC). Simulations of 10,...
Humans, Fires, and Forests - Social science applied to fire management
Hanna J. Cortner; Donald R. Field; Pam Jakes; James D. Buthman
2003-01-01
The 2000 and 2002 fire seasons resulted in increased political scrutiny of the nation's wildland fire threats, and given the fact that millions of acres of lands are still at high risk for future catastrophic fire events, the issues highlighted by the recent fire seasons are not likely to go away any time soon. Recognizing the magnitude of the problem, the...
ERIC Educational Resources Information Center
Texas State Commission on Fire Protection, Austin.
This booklet comprises the seventh grade component of a series of curriculum guides on fire and burn prevention. Designed to meet the age-specific needs of seventh grade students, its objectives include: (1) practicing responsible decision-making regarding fire and burn hazards, including peer pressure related to fire risks; and (2) practicing…
Risks and issues in fire safety on the Space Station
NASA Technical Reports Server (NTRS)
Friedman, Robert
1993-01-01
A fire in the inhabited portion of a spacecraft is a greatly feared hazard, but fire protection in space operations is complicated by two factors. First, the spacecraft cabin is an enclosed volume, which limits the resources for fire fighting and the options for crew escape. Second, an orbiting spacecraft experiences a balance of forces, creating a near-zero-gravity (microgravity) environment that profoundly affects the characteristics of fire initiation, spread, and suppression. The current Shuttle Orbiter is protected by a fire-detection and suppression system whose requirements are derived of necessity from accepted terrestrial and aircraft standards. While experience has shown that Shuttle fire safety is adequate, designers recognize that improved systems to respond specifically to microgravity fire characteristics are highly desirable. Innovative technology is particularly advisable for the Space Station, a forthcoming space community with a complex configuration and long-duration orbital missions, in which the effectiveness of current fire-protection systems is unpredictable. The development of risk assessments to evaluate the probabilities and consequences of fire incidents in spacecraft are briefly reviewed. It further discusses the important unresolved issues and needs for improved fire safety in the Space Station, including those of material selection, spacecraft atmospheres, fire detection, fire suppression, and post-fire restoration.
2017-03-13
support of airborne laser designator use during test and training exercises on military ranges. The initial MATILDA tool, MATILDA PRO Version-1.6.1...was based on the 2007 PRA model developed to perform range safety clearances for the UK Thermal Imaging Airborne Laser Designator (TIALD) system...AFRL Technical Reports. This Technical Report, designated Part I, con- tains documentation of the computational procedures for probabilistic fault
A statistical procedure for fire risk mapping in Italy
NASA Astrophysics Data System (ADS)
Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko
2015-04-01
The high topographic and vegetation heterogeneity makes Italy vulnerable to forest fires both in the summer and in winter. In particular, northern regions are predominantly characterized by a winter fire regime, mainly due to frequent extremely dry winds from the north, while southern and central regions and the large islands are characterized by a severe summer fire regime, because of the higher temperatures and prolonged lack of precipitation. The threat of wildfires in Italy is not confined to wooded areas as they extend to agricultural areas and urban-forest interface areas. In view of the limited availability of fire risk management resources, most of which are used in the management of national and regional air services, it is necessary to precisely identify the areas most vulnerable to fire risk. The few resources available can thus be used on a yearly basis to mitigate problems in the areas at highest risk by defining a program of forest management interventions, which is expected to make a significant contribution to the problem in a few years' time. Given the availability of fire perimeters mapped over a period spanning from 5 to 10 years, depending by the region, a statistical procedure was defined in order to assess areas at risk based on objective criteria by observing past fire events. The availability of fire perimeters combined with a detailed knowledge of topography and land cover allowed to understand which are the main features involved in forest fire occurrences and their behavior. The seasonality of the fire regime was also considered, partitioning the analysis in two macro season (November-April and May- October). In addition, the total precipitation obtained from the interpolation of 30 years-long time series from 460 raingauges and the average air temperature obtained downscaling 30 years ERA-INTERIM data series were considered. The analysis consists on the subdivision of the territory in classes based on the named information layers (elevation, slope, rainfall height, temperature, etc.) with a recursive algorithm that ensures the equal numerosity of each class. The number of fires occurred in each class is then assessed basing on time series in the last decade, in order to have an estimation of the fire hazard with a contant statistical confidence. The analysis was carried out at a spatial resolution of 500 m on the whole Italian territory by using a dataset of fires occurrences that spans from 2007 to 2013.
FEES: design of a Fire Economics Evaluation System
Thomas J. Mills; Frederick W. Bratten
1982-01-01
The Fire Economics Evaluation System (FEES)--a simulation model--is being designed for long-term planning application by all public agencies with wildland fire management responsibilities. A fully operational version of FEES will be capable of estimating the economic efficiency, fire-induced changes in resource outputs, and risk characteristics of a range of fire...
Fire Risk and Residential Development: A GIS Analysis
Jennifer L. Rechel; James B. Davis; Ted K. Bradshaw
1992-01-01
Population growth is rapid in rural areas in California. This growth into the wildland-urban interface makes fire protection and suppression more difficult. Fire managers have opportunities to reduce fire danger by improving housing development patterns; however, the overall density and placement of houses is usually set by criteria other than fire danger. By...
Estimation of wildfire size and risk changes due to fuels treatments
M. A. Cochrane; C. J. Moran; M. C. Wimberly; A. D. Baer; M. A. Finney; K. L. Beckendorf; J. Eidenshink; Z. Zhu
2012-01-01
Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of...
Assessing the home fire safety of urban older adults: a case study.
Twyman, Stephanie; Fahey, Erin; Lehna, Carlee
2014-01-01
Older adults are at a higher risk for fatal house fire injury due to decreased mobility, chronic illness, and lack of smoke alarms. The purpose of this illustrative case study is to describe the home fire safety (HFS) status of an urban older adult who participated in a large study funded by the Federal Emergency Management Agency (FEMA). During a home visit with the participant, HFS data were collected from documents, observation, physical artifacts, reflective logs, and interviews. Numerous HFS hazards were identified including non-working smoke alarms, inadequate number and inappropriate placement of smoke alarms, lack of carbon monoxide (CO) alarms, inability to identify a home fire escape plan, hot water heater temperature set too high, and cooking hazards. Identification of HFS risk factors will assist in the development of educational materials that can be tailored to the older adult population to decrease their risk of fire-related injuries and death.
Jonathan Yoder
2008-01-01
Prescribed fire is a useful but risky method for reducing the general wildfire risk and improving wildlife habitats, biodiversity, timber growth, and agricultural forage. In the past 15 years, laws to further promote the use of prescribed fire have been adopted in several states. This article examines the effect of liability laws and common regulations on the incidence...
Assessing the effect of a fuel break network to reduce burnt area and wildfire risk transmission
Tiago M. Oliveira; Ana M. G. Barros; Alan A. Ager; Paulo M. Fernandes
2016-01-01
Wildfires pose complex challenges to policymakers and fire agencies. Fuel break networks and area-wide fuel treatments are risk-management options to reduce losses from large fires. Two fuel management scenarios covering 3% of the fire-prone Algarve region of Portugal and differing in the intensity of treatment in 120-m wide fuel breaks were examined and compared with...
Prevalence of risk factors for residential fire and burn injuries in an American Indian community.
Mobley, C; Sugarman, J R; Deam, C; Giles, L
1994-01-01
Fatality rates from residential fires are high among American Indians. Contact burns and scalds are also among the leading types of thermal injuries. Information about the prevalence of risk factors for burn injuries is required to design interventions aimed at reducing residential fire and burn injuries. The authors conducted a survey in July and August 1992 of 68 households located in a small American Indian community in Washington State to ascertain the prevalence of selected risk factors for residential fire and burn injuries. Nearly all households (96 percent) in the study had a smoke detector, and 95 percent of those tested were functioning. However, a high prevalence of other household characteristics associated with excess risk of residential fire and burn injuries was identified: 59 percent of households had at least one member who smoked, 25 percent had a member who smoked in bed, 38 percent had a member who drank alcohol and smoked at the same time, 46 percent used wood stoves as a heat source, and 15 percent of households were mobile homes. Thirteen percent of households had at least one fire during the previous 3 years, and the incidence of burns due to all causes and requiring medical treatment was 1.5 per 100 persons per year. Hot water temperature was measured to determine the potential risk for scald burns, and 48 percent of households had a maximum hot water temperature of 130 degrees or more Fahrenheit. Such surveys can guide intervention strategies to reduce residential fire and burn injuries in American Indian communities. PMID:7938394
Finding simplicity in complexity: modelling post-fire hydrogeomorphic processes and risks
NASA Astrophysics Data System (ADS)
Sheridan, Gary; Langhans, Christoph; Lane, Patrick; Nyman, Petter
2017-04-01
Post-fire runoff and erosion can shape landscapes, destroy infrastructure, and result in the loss of human life. However even within seemingly similar geographic regions post-fire hydro-geomorphic responses vary from almost no response through to catastrophic flash floods and debris flows. Why is there so much variability, and how can we predict areas at risk? This presentation describes the research journey taken by the post-fire research group at The University of Melbourne to answer this question for the se Australian uplands. Key steps along the way have included identifying the dominant erosion processes (and their forcings), and the key system properties controlling the rates of these dominant processes. The high degree of complexity in the interactions between the forcings, the system properties, and the erosion processes, necessitated the development of a simplified conceptual representation of post-fire hydrogeomorphic system that was conducive to modelling and simulation. Spatially mappable metrics (and proxies) for key system forcings and properties were then required to parameterize and drive the model. Each step in this journey has depended on new research, as well as ongoing feedback from land and water management agencies tasked with implementing these risk models and interpreting the results. These models are now imbedded within agencies and used for strategic risk assessments, for tactical response during fires, and for post-fire remediation and risk planning. Reflecting on the successes and failures along the way provides for some more general insights into the process of developing research-based models for operational use by land and water management agencies.
Risk-Based Treatment Targets for Onsite Non-Potable Water Reuse
This presentation presents risk-based enteric pathogen log reduction targets for non-potable and potable uses of a variety of alternative source waters (i.e., municipal wastewater, locally-collected greywater, rainwater, and stormwater). A probabilistic, forward Quantitative Micr...
Risk management: Core principles and practices, and their relevance to wildland fire
Matthew P. Thompson; Donald G. MacGregor; Dave Calkin
2016-01-01
The Forest Service, U.S. Department of Agriculture faces a future of increasing complexity and risk, pressing financial issues, and the inescapable possibility of loss of human life. These issues are perhaps most acute for wildland fire management, the highest risk activity in which the Forest Service engages. Risk management (RM) has long been put forth as an...
Ye, Tao; Wang, Yao; Guo, Zhixing; Li, Yijia
2017-01-01
The contribution of factors including fuel type, fire-weather conditions, topography and human activity to fire regime attributes (e.g. fire occurrence, size distribution and severity) has been intensively discussed. The relative importance of those factors in explaining the burn probability (BP), which is critical in terms of fire risk management, has been insufficiently addressed. Focusing on a subtropical coniferous forest with strong human disturbance in East China, our main objective was to evaluate and compare the relative importance of fuel composition, topography, and human activity for fire occurrence, size and BP. Local BP distribution was derived with stochastic fire simulation approach using detailed historical fire data (1990-2010) and forest-resource survey results, based on which our factor contribution analysis was carried out. Our results indicated that fuel composition had the greatest relative importance in explaining fire occurrence and size, but human activity explained most of the variance in BP. This implies that the influence of human activity is amplified through the process of overlapping repeated ignition and spreading events. This result emphasizes the status of strong human disturbance in local fire processes. It further confirms the need for a holistic perspective on factor contribution to fire likelihood, rather than focusing on individual fire regime attributes, for the purpose of fire risk management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, S.E.; Poloski, J.P.; Sullivan, W.H.
1982-07-01
A probabilistic risk assessment (PRA) was made of the Browns Ferry, Unit 1, nuclear plant as part of the Nuclear Regulatory Commission's Interim Reliability Evaluation Program (IREP). Specific goals of the study were to identify the dominant contributors to core melt, develop a foundation for more extensive use of PRA methods, expand the cadre of experienced PRA practitioners, and apply procedures for extension of IREP analyses to other domestic light water reactors. Event tree and fault tree analyses were used to estimate the frequency of accident sequences initiated by transients and loss of coolant accidents. External events such as floods,more » fires, earthquakes, and sabotage were beyond the scope of this study and were, therefore, excluded. From these sequences, the dominant contributors to probable core melt frequency were chosen. Uncertainty and sensitivity analyses were performed on these sequences to better understand the limitations associated with the estimated sequence frequencies. Dominant sequences were grouped according to common containment failure modes and corresponding release categories on the basis of comparison with analyses of similar designs rather than on the basis of detailed plant-specific calculations.« less
El Niño Could Drive Intense Season for Amazon Fires
2017-12-08
El Niño conditions in 2015 and early 2016 altered rainfall patterns around the world. In the Amazon, El Niño reduced rainfall during the wet season, leaving the region drier at the start of the 2016 dry season than any year since 2002, according to NASA satellite data. Wildfire risk for the dry season months of July to October this year now exceeds fire risk in 2005 and 2010, drought years when wildfires burned large areas of Amazon rainforest, said Doug Morton, an Earth scientist at NASA’s Goddard Space Flight Center who helped create the fire forecast. "Severe drought conditions at the start of the dry season set the stage for extreme fire risk in 2016 across the southern Amazon," Morton said. The Amazon fire forecast uses the relationship between climate and active fire detections from NASA satellites to predict fire season severity during the region’s dry season. Developed in 2011 by scientists at University of California, Irvine and NASA’s Goddard Space Flight Center, the forecast model is focused particularly on the link between sea surface temperatures and fire activity. Warmer sea surface temperatures in the tropical Pacific (El Niño) and Atlantic oceans shift rainfall away from the Amazon region, increasing the risk of fires during dry season months. Read more: go.nasa.gov/2937ADt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Alan H. Taylor; Carl N. Skinner
2003-01-01
Fire exclusion in mixed conifer forests has increased the risk of fire due to decades of fuel accumulation. Restoration of fire into altered forests is a challenge because of a poor understanding of the spatial and temporal dynamics of fire regimes. In this study the spatial and temporal characteristics of fire regimes and forest age structure are reconstructed in a...
Jason B. Dunham; Michael K. Young; Robert E. Gresswell; Bruce E. Rieman
2003-01-01
Our limited understanding of the short and long-term effects of fire on fish contributes to considerable uncertainty in assessments of the risks and benefits of fire management alternatives. A primary concern among the many potential effects of fire is the effects of fire and fire management on persistence of native fish populations. Limited evidence suggests...
Assessing European wild fire vulnerability
NASA Astrophysics Data System (ADS)
Oehler, F.; Oliveira, S.; Barredo, J. I.; Camia, A.; Ayanz, J. San Miguel; Pettenella, D.; Mavsar, R.
2012-04-01
Wild fire vulnerability is a measure of potential socio-economic damage caused by a fire in a specific area. As such it is an important component of long-term fire risk management, helping policy-makers take informed decisions about adequate expenditures for fire prevention and suppression, and to target those regions at highest risk. This paper presents a first approach to assess wild fire vulnerability at the European level. A conservative approach was chosen that assesses the cost of restoring the previous land cover after a potential fire. Based on the CORINE Land Cover, a restoration cost was established for each land cover class at country level, and an average restoration time was assigned according to the recovery capacity of the land cover. The damage caused by fire was then assessed by discounting the cost of restoring the previous land cover over the restoration period. Three different vulnerability scenarios were considered assuming low, medium and high fire severity causing different levels of damage. Over Europe, the potential damage of wild land fires ranges from 10 - 13, 732 Euro*ha-1*yr-1 for low fire severity, 32 - 45,772 Euro*ha-1*yr-1 for medium fire severity and 54 - 77,812 Euro*ha-1*yr-1 for high fire severity. The least vulnerable are natural grasslands, moors and heathland and sclerophyllous vegetation, while the highest cost occurs for restoring broad-leaved forest. Preliminary validation comparing these estimates with official damage assessments for past fires shows reasonable results. The restoration cost approach allows for a straightforward, data extensive assessment of fire vulnerability at European level. A disadvantage is the inherent simplification of the evaluation procedure with the underestimation of non-markets goods and services. Thus, a second approach has been developed, valuing individual wild land goods and services and assessing their annual flow which is lost for a certain period of time in case of a fire event. However, due to limitations in data availability, this approach of environmental accounting is not fully implemented yet. Keywords: fire vulnerability, damage assessment, land cover restoration, long-term fire risk, European scale
Health concerns of the U.S. fire service: perspectives from the firehouse.
Jahnke, Sara A; Poston, Walker S C; Jitnarin, Nattinee; Haddock, C Keith
2012-01-01
Firefighters are expected to respond to any domestic emergency at a moment's notice, and therefore their health and readiness are key to the public safety net. Although emerging research is focusing on understanding firefighters' increased risk for disease and injury, the perspectives of fire service personnel is lacking. This study uses the cross-sectional qualitative data collection techniques of key informant interviews and focus groups. Data collection occurred with a national sample of firefighters from 28 (municipal and federal) career fire departments. Participants were 332 career firefighters (57.2%), company officers (23.4%), fire chiefs (15.4%), and other fire service personnel (3.9%). Focus groups and informant interviews were conducted with firefighters, fire chiefs, health promotion personnel, and medical directors to assess attitudes, opinions, and perceptions about firefighter health. Major themes that developed among fire service personnel included concerns about cancer, risk of cardiovascular disease, the importance of and barriers to physical fitness, the food culture of the firehouse, psychological stress resulting from repeated exposure to trauma, sleep disruptions, injuries, and risk for infectious disease. Health concerns identified by firefighters are juxtaposed with current efforts and trends within the national fire service. The health concerns of firefighters parallel both available epidemiological research and the health priorities of national fire service organizations. Unfortunately, these concerns often are in contrast with efforts by local governments to limit their financial liability for illnesses presumed to be caused by occupational exposures and long-held traditions in the fire service. This study highlights the need for epidemiological surveillance of firefighters and innovative health and organizational policy in the fire service. Future directions for the fire service, the public health community, and researchers are discussed.
Bui, David P; Pollack Porter, Keshia; Griffin, Stephanie; French, Dustin D; Jung, Alesia M; Crothers, Stephen; Burgess, Jefferey L
2017-11-17
Emergency service vehicle crashes (ESVCs) are a leading cause of death in the United States fire service. Risk management (RM) is a proactive process for identifying occupational risks and reducing hazards and unwanted events through an iterative process of scoping hazards, risk assessment, and implementing controls. We describe the process, outputs, and lessons learned from the application of a proactive RM process to reduce ESVCs in US fire departments. Three fire departments representative of urban, suburban, and rural geographies, participated in a facilitated RM process delivered through focus groups and stakeholder discussion. Crash reports from department databases were reviewed to characterize the context, circumstances, hazards and risks of ESVCs. Identified risks were ranked using a risk matrix that considered risk likelihood and severity. Department-specific control measures were selected based on group consensus. Interviews, and focus groups were used to assess acceptability and utility of the RM process and perceived facilitators and barriers of implementation. Three to six RM meetings were conducted at each fire department. There were 7.4 crashes per 100 personnel in the urban department and 10.5 per 100 personnel in the suburban department; the rural department experienced zero crashes. All departments identified emergency response, backing, on scene struck by, driver distraction, vehicle/road visibility, and driver training as high or medium concerns. Additional high priority risks varied by department; the urban department prioritized turning and rear ending crashes; the suburban firefighters prioritized inclement weather/road environment and low visibility related crashes; and the rural volunteer fire department prioritized exiting station, vehicle failure, and inclement weather/road environment related incidents. Selected controls included new policies and standard operating procedures to reduce emergency response, cameras to enhance driver visibility while backing, and increased training frequency and enhanced training. The RM process was generally acceptable to department participants and considered useful. All departments reported that the focused and systematic analysis of crashes was particularly helpful. Implementation of controls was a commonly cited challenge. Proactive RM of ESVCs in three US fire departments was positively received and supported the establishment of interventions tailored to each department's needs and priorities.
Greene, Michael A
2012-06-01
Comparison of characteristics of fire with non-fire households to determine factors differentially associated with fire households (fire risk factors). National household telephone survey in 2004-2005 by the US Consumer Product Safety Commission with 916 fire households and a comparison sample of 2161 non-fire households. There were an estimated 7.4 million fires (96.6% not reported to fire departments) with 130,000 injuries. Bivariate analysis and multivariate logistic regression analyses to assess differences in household characteristics. Significant factors associated with fire households were renting vs. owning (OR 1.988 p<0.0001); household members under 18 year of age (OR 1.277 p<0.0001); lack of residents over 64 years old (OR 0.552 p=0.0007); and college or higher education (some college OR 1.444 p=0.0360, college graduate OR 1.873, p<0.0001, postgraduate OR 2.156 p<0.0001). Not significant were age of house; race; ethnicity; and income. Number of smokers was borderline significant (OR 1.132 p=0.1019) but was significant in the subset of fire households with non-cooking fires (OR 1.383 p=0.0011). Single family houses were associated with non-fire households in the bivariate analysis but not in the multivariate analyses. Renting, household members under 18 years old and smokers are risk factors for unattended fires, similar to the literature for fatal and injury fires. Differences included household members over 65 years old (associated with non-fire households), college/postgraduate education (associated with fire households) and lack of significance of income. Preventing cooking fires (64% of survey incidents), smoking prevention efforts and fire prevention education for families with young children have the potential for reducing unattended fires and injuries.
Ballesteros, Michael F; Jackson, Mark L; Martin, Maurice W
2005-01-01
To address residential fires and related injuries, the Centers for Disease Control and Prevention funds state health departments to deliver a Smoke Alarm Installation and Fire Safety Education (SAIFE) program in high-risk homes in 16 states. This program involves recruiting local communities and community partners, hiring a local coordinator, canvassing neighborhood homes, installing long-lasting lithium-powered smoke alarms, and providing general fire safety education and 6-month follow-up to determine alarm functionality. Local fire departments are vital community partners in delivering this program. Since the program's inception, more than 212,000 smoke alarms have been installed in more than 126,000 high-risk homes. Additionally, approximately 610 lives have potentially been saved as a result of a program alarm that provided early warning to a dangerous fire incident.
Heightened fire risk in Indonesia in response to increasing temperature
NASA Astrophysics Data System (ADS)
Fernandes, K.; Baethgen, W.; Verchot, L. V.; Gutierrez-Velez, V.; Pinedo-Vasquez, M.
2016-12-01
In Indonesia, drought driven fires occur typically during the warm phase of the El Niño Southern Oscillation (ENSO), such as those of 1997 and 2015 that resulted in months-long hazardous atmospheric pollution levels in Equatorial Asia and record greenhouse gas emissions. Nonetheless, anomalously active fire seasons have also been observed in non-drought years. In this work, we investigated whether fires are impacted by temperature anomalies and if so, if the responses differ under contrasting precipitation regimes. Our findings show that when the July-October dry-season is anomalously dry, the sensitivity of fires to temperature anomalies is similar regardless of the sign of the anomalies. In contrast, in wet condition, fire risk increases sharply when the dry season is anomalously warm. We also present a characterization of near-term regional climate projections over the next few decades and the implications of continuing global temperature increase in future fire probability in Indonesia.
Determining critical groundwater level to prevent degraded peatland from severe peat fire
NASA Astrophysics Data System (ADS)
Putra, E. I.; Cochrane, M. A.; Vetrita, Y.; Graham, L.; Saharjo, B. H.
2018-05-01
Peat fires have been a severe recurrent problem for Indonesia, but droughts due to prolonged dry season aggravate burning conditions. To get a better understanding of this issue, we studied fire conditions in a portion of the ex-Mega Rice Project (MRP) area, Central Kalimantan. To examine fire season and hydrology factors affecting peat fires we analyzed daily TRMM data, Nino 3.4 SST Anomalies, and changing groundwater levels (GWL) from 300 dipwells. Our results quantify time-lags between the period of lowest precipitation and the lowest GWL; providing some ability to predict fire risk in advance of the lowest GWL. The rise of Nino 3.4 SST anomalies is significant risk factors for peat fire as they signify dry months which may yield large fire occurrences. GWL in 2011 was lower than in 2012, but fires were more frequent in 2012, indicating that low precipitation amounts in the wet season of 2011/2012 left the peat in a dry condition early in 2012. Most of the fires occurred in areas with GWL less than -30 cm, powerfully illustrating the importance of maintaining GWL at more than -10 cm, to prevent degraded peatlands from experiencing surface and deep peat fires.
Risk perceptions and behavioral context: U.S. Forest Service fire management professionals
Taylor, Jonathan G.; Carpenter, Edwin H.; Cortner, Hanna J.; Cleaves, David A.
1989-01-01
Fire managers from the U.S. Forest Service were surveyed to determine which decision factors most strongly influenced their fire‐risk decisions. Safety, the resources at risk, public opinion, and the reliability of information were important influences on these decisions. This research allowed direct comparison between fire managers’ perceptions of factor importance and how their fire‐risk decisions changed in response to those factors. These risk decisions were highly responsive to changes in context (an escaped wildfire decision versus a prescribed burning decision) as well as to changing factors. The results demonstrate the utility of using scenarios in risk research and the vital importance of context in studying risk‐taking behavior. Research which attempts to remove risk decisions from their real‐world context may well distort the nature of risk‐taking behavior.