Empirical evidence for multi-scaled controls on wildfire size distributions in California
NASA Astrophysics Data System (ADS)
Povak, N.; Hessburg, P. F., Sr.; Salter, R. B.
2014-12-01
Ecological theory asserts that regional wildfire size distributions are examples of self-organized critical (SOC) systems. Controls on SOC event-size distributions by virtue are purely endogenous to the system and include the (1) frequency and pattern of ignitions, (2) distribution and size of prior fires, and (3) lagged successional patterns after fires. However, recent work has shown that the largest wildfires often result from extreme climatic events, and that patterns of vegetation and topography may help constrain local fire spread, calling into question the SOC model's simplicity. Using an atlas of >12,000 California wildfires (1950-2012) and maximum likelihood estimation (MLE), we fit four different power-law models and broken-stick regressions to fire-size distributions across 16 Bailey's ecoregions. Comparisons among empirical fire size distributions across ecoregions indicated that most ecoregion's fire-size distributions were significantly different, suggesting that broad-scale top-down controls differed among ecoregions. One-parameter power-law models consistently fit a middle range of fire sizes (~100 to 10000 ha) across most ecoregions, but did not fit to larger and smaller fire sizes. We fit the same four power-law models to patch size distributions of aspect, slope, and curvature topographies and found that the power-law models fit to a similar middle range of topography patch sizes. These results suggested that empirical evidence may exist for topographic controls on fire sizes. To test this, we used neutral landscape modeling techniques to determine if observed fire edges corresponded with aspect breaks more often than expected by random. We found significant differences between the empirical and neutral models for some ecoregions, particularly within the middle range of fire sizes. Our results, combined with other recent work, suggest that controls on ecoregional fire size distributions are multi-scaled and likely are not purely SOC. California wildfire ecosystems appear to be adaptive, governed by stationary and non-stationary controls, which may be either exogenous or endogenous to the system.
Rao, Leela E.; Matchett, John R.; Brooks, Matthew L.; Johns, Robert; Minnich, Richard A.; Allen, Edith B.
2014-01-01
Although precipitation is correlated with fire size in desert ecosystems and is typically used as an indirect surrogate for fine fuel load, a direct link between fine fuel biomass and fire size has not been established. In addition, nitrogen (N) deposition can affect fire risk through its fertilisation effect on fine fuel production. In this study, we examine the relationships between fire size and precipitation, N deposition and biomass with emphasis on identifying biomass and N deposition thresholds associated with fire spreading across the landscape. We used a 28-year fire record of 582 burns from low-elevation desert scrub to evaluate the relationship of precipitation, N deposition and biomass with the distribution of fire sizes using quantile regression. We found that models using annual biomass have similar predictive ability to those using precipitation and N deposition at the lower to intermediate portions of the fire size distribution. No distinct biomass threshold was found, although within the 99th percentile of the distribution fire size increased with greater than 125 g m–2 of winter fine fuel production. The study did not produce an N deposition threshold, but did validate the value of 125 g m–2 of fine fuel for spread of fires.
On wildfire complexity, simple models and environmental templates for fire size distributions
NASA Astrophysics Data System (ADS)
Boer, M. M.; Bradstock, R.; Gill, M.; Sadler, R.
2012-12-01
Vegetation fires affect some 370 Mha annually. At global and continental scales, fire activity follows predictable spatiotemporal patterns driven by gradients and seasonal fluctuations of primary productivity and evaporative demand that set constraints for fuel accumulation rates and fuel dryness, two key ingredients of fire. At regional scales, fires are also known to affect some landscapes more than others and within landscapes to occur preferentially in some sectors (e.g. wind-swept ridges) and rarely in others (e.g. wet gullies). Another common observation is that small fires occur relatively frequent yet collectively burn far less country than relatively infrequent large fires. These patterns of fire activity are well known to management agencies and consistent with their (informal) models of how the basic drivers and constraints of fire (i.e. fuels, ignitions, weather) vary in time and space across the landscape. The statistical behaviour of these landscape fire patterns has excited the (academic) research community by showing some consistency with that of complex dynamical systems poised at a phase transition. The common finding that the frequency-size distributions of actual fires follow power laws that resemble those produced by simple cellular models from statistical mechanics has been interpreted as evidence that flammable landscapes operate as self-organising systems with scale invariant fire size distributions emerging 'spontaneously' from simple rules of contagious fire spread and a strong feedback between fires and fuel patterns. In this paper we argue that the resemblance of simulated and actual fire size distributions is an example of equifinality, that is fires in model landscapes and actual landscapes may show similar statistical behaviour but this is reached by qualitatively different pathways or controlling mechanisms. We support this claim with two key findings regarding simulated fire spread mechanisms and fire-fuel feedbacks. Firstly, we demonstrate that the power law behaviour of fire size distributions in the widely used Drossel and Schwabl (1992) Forest Fire Model (FFM) is strictly conditional on simulating fire spread as a cell-to-cell contagion over a fixed distance; the invariant scaling of fire sizes breaks down under the slightest variation in that distance, suggesting that pattern formation in the FFM is irreconcilable with the reality of disparate rates and modes of fire spread observed in the field. Secondly, we review field evidence showing that fuel age effects on the probability of fire spread, a key assumption in simulation models like the FFM, do not generally apply across flammable environments. Finally, we explore alternative explanations for the formation of scale invariant fire sizes in real landscapes. Using observations from southern Australian forest regions we demonstrate that the spatiotemporal patterns of fuel dryness and magnitudes of fire driving weather events set strong environmental templates for regional fire size distributions.
Spatiotemporal variability of wildland fuels in US Northern Rocky Mountain forests
Robert E. Keane
2016-01-01
Fire regimes are ultimately controlled by wildland fuel dynamics over space and time; spatial distributions of fuel influence the size, spread, and intensity of individual fires, while the temporal distribution of fuel deposition influences fire's frequency and controls fire size. These "shifting fuel mosaics" are both a cause and a consequence...
Preisler, H.K.; Burgan, R.E.; Eidenshink, J.C.; Klaver, Jacqueline M.; Klaver, R.W.
2009-01-01
The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i) number of ignitions; (ii) number of fires above a given size; (iii) conditional probabilities of fires greater than a specified size, given ignition. As an illustration, we used the methods to study the skill of the Fire Potential Index an index that incorporates satellite and surface observations to map fire potential at a national scale in forecasting distributions of large fires. ?? 2009 IAWF.
Wildfire Selectivity for Land Cover Type: Does Size Matter?
Barros, Ana M. G.; Pereira, José M. C.
2014-01-01
Previous research has shown that fires burn certain land cover types disproportionally to their abundance. We used quantile regression to study land cover proneness to fire as a function of fire size, under the hypothesis that they are inversely related, for all land cover types. Using five years of fire perimeters, we estimated conditional quantile functions for lower (avoidance) and upper (preference) quantiles of fire selectivity for five land cover types - annual crops, evergreen oak woodlands, eucalypt forests, pine forests and shrublands. The slope of significant regression quantiles describes the rate of change in fire selectivity (avoidance or preference) as a function of fire size. We used Monte-Carlo methods to randomly permutate fires in order to obtain a distribution of fire selectivity due to chance. This distribution was used to test the null hypotheses that 1) mean fire selectivity does not differ from that obtained by randomly relocating observed fire perimeters; 2) that land cover proneness to fire does not vary with fire size. Our results show that land cover proneness to fire is higher for shrublands and pine forests than for annual crops and evergreen oak woodlands. As fire size increases, selectivity decreases for all land cover types tested. Moreover, the rate of change in selectivity with fire size is higher for preference than for avoidance. Comparison between observed and randomized data led us to reject both null hypotheses tested ( = 0.05) and to conclude it is very unlikely the observed values of fire selectivity and change in selectivity with fire size are due to chance. PMID:24454747
Marchal, Jean; Cumming, Steve G; McIntire, Eliot J B
2017-01-01
Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover's direct effects and feedbacks in simulation models of coupled climate-fire-fuels systems.
Marchal, Jean; Cumming, Steve G.; McIntire, Eliot J. B.
2017-01-01
Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover’s direct effects and feedbacks in simulation models of coupled climate–fire–fuels systems. PMID:28609467
Forest-fire model with natural fire resistance.
Yoder, Mark R; Turcotte, Donald L; Rundle, John B
2011-04-01
Observations suggest that contemporary wildfire suppression practices in the United States have contributed to conditions that facilitate large, destructive fires. We introduce a forest-fire model with natural fire resistance that supports this theory. Fire resistance is defined with respect to the size and shape of clusters; the model yields power-law frequency-size distributions of model fires that are consistent with field observations in the United States, Canada, and Australia.
The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ Data
NASA Technical Reports Server (NTRS)
Nasiri, Shaima L.; Baum, Bryan A.; Heymsfield, Andrew J.; Yang, Ping; Poellot, Michael R.; Kratz, David P.; Hu, Yong-Xiang
2002-01-01
Detailed in situ data from cirrus clouds have been collected during dedicated field Campaigns, but the use of the size and habit distribution data has been lagging in the development of more realistic cirrus scattering models. In this study, the authors examine the use of in situ cirrus data collected during three field campaigns to develop more realistic midlatitude cirrus microphysical models. Data are used from the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)-I (1986) and FIRE-II (1991) campaigns and from a recent Atmospheric Radiation Measurement (ARM) Program campaign held in March-April of 2000. The microphysical models are based on measured vertical distributions of both particle size and particle habit and are used to develop new scattering models for a suite of moderate-resolution imaging spectroradiometer (MODIS) bands spanning visible. near-infrared, and infrared wavelengths. The sensitivity of the resulting scattering properties to the underlying assumptions of the assumed particle size and habit distributions are examined. It is found that the near-infrared bands are sensitive not only to the discretization of the size distribution but also to the assumed habit distribution. In addition. the results indicate that the effective diameter calculated from a given size distribution tends to be sensitive to the number of size bins that are used to discretize the data and also to the ice-crystal habit distribution.
Ye, Tao; Wang, Yao; Guo, Zhixing; Li, Yijia
2017-01-01
The contribution of factors including fuel type, fire-weather conditions, topography and human activity to fire regime attributes (e.g. fire occurrence, size distribution and severity) has been intensively discussed. The relative importance of those factors in explaining the burn probability (BP), which is critical in terms of fire risk management, has been insufficiently addressed. Focusing on a subtropical coniferous forest with strong human disturbance in East China, our main objective was to evaluate and compare the relative importance of fuel composition, topography, and human activity for fire occurrence, size and BP. Local BP distribution was derived with stochastic fire simulation approach using detailed historical fire data (1990-2010) and forest-resource survey results, based on which our factor contribution analysis was carried out. Our results indicated that fuel composition had the greatest relative importance in explaining fire occurrence and size, but human activity explained most of the variance in BP. This implies that the influence of human activity is amplified through the process of overlapping repeated ignition and spreading events. This result emphasizes the status of strong human disturbance in local fire processes. It further confirms the need for a holistic perspective on factor contribution to fire likelihood, rather than focusing on individual fire regime attributes, for the purpose of fire risk management.
Tarimo, Beatrice; Dick, Øystein B; Gobakken, Terje; Totland, Ørjan
2015-12-01
Anthropogenic uses of fire play a key role in regulating fire regimes in African savannas. These fires contribute the highest proportion of the globally burned area, substantial biomass burning emissions and threaten maintenance and enhancement of carbon stocks. An understanding of fire regimes at local scales is required for the estimation and prediction of the contribution of these fires to the global carbon cycle and for fire management. We assessed the spatio-temporal distribution of fires in miombo woodlands of Tanzania, utilizing the MODIS active fire product and Landsat satellite images for the past ~40 years. Our results show that up to 50.6% of the woodland area is affected by fire each year. An early and a late dry season peak in wetter and drier miombo, respectively, characterize the annual fire season. Wetter miombo areas have higher fire activity within a shorter annual fire season and have shorter return intervals. The fire regime is characterized by small-sized fires, with a higher ratio of small than large burned areas in the frequency-size distribution (β = 2.16 ± 0.04). Large-sized fires are rare, and occur more frequently in drier than in wetter miombo. Both fire prevalence and burned extents have decreased in the past decade. At a large scale, more than half of the woodland area has less than 2 years of fire return intervals, which prevent the occurrence of large intense fires. The sizes of fires, season of burning and spatial extent of occurrence are generally consistent across time, at the scale of the current analysis. Where traditional use of fire is restricted, a reassessment of fire management strategies may be required, if sustainability of tree cover is a priority. In such cases, there is a need to combine traditional and contemporary fire management practices.
Guo, Zhixing; Li, Yijia
2017-01-01
The contribution of factors including fuel type, fire-weather conditions, topography and human activity to fire regime attributes (e.g. fire occurrence, size distribution and severity) has been intensively discussed. The relative importance of those factors in explaining the burn probability (BP), which is critical in terms of fire risk management, has been insufficiently addressed. Focusing on a subtropical coniferous forest with strong human disturbance in East China, our main objective was to evaluate and compare the relative importance of fuel composition, topography, and human activity for fire occurrence, size and BP. Local BP distribution was derived with stochastic fire simulation approach using detailed historical fire data (1990–2010) and forest-resource survey results, based on which our factor contribution analysis was carried out. Our results indicated that fuel composition had the greatest relative importance in explaining fire occurrence and size, but human activity explained most of the variance in BP. This implies that the influence of human activity is amplified through the process of overlapping repeated ignition and spreading events. This result emphasizes the status of strong human disturbance in local fire processes. It further confirms the need for a holistic perspective on factor contribution to fire likelihood, rather than focusing on individual fire regime attributes, for the purpose of fire risk management. PMID:28207837
Stand structure and dynamics of sand pine differ between the Florida panhandle and peninsula
Drewa, P.B.; Platt, W.J.; Kwit, C.; Doyle, T.W.
2008-01-01
Size and age structures of stand populations of numerous tree species exhibit uneven or reverse J-distributions that can persist after non-catastrophic disturbance, especially windstorms. Among disjunct populations of conspecific trees, alternative distributions are also possible and may be attributed to more localized variation in disturbance. Regional differences in structure and demography among disjunct populations of sand pine (Pinus clausa (Chapm. ex Engelm.) Vasey ex Sarg.) in the Florida panhandle and peninsula may result from variation in hurricane regimes associated with each of these populations. We measured size, age, and growth rates of trees from panhandle and peninsula populations and then compiled size and age class distributions. We also characterized hurricanes in both regions over the past century. Size and age structures of panhandle populations were unevenly distributed and exhibited continuous recruitment; peninsula populations were evenly sized and aged and exhibited only periodic recruitment. Since hurricane regimes were similar between regions, historical fire regimes may have been responsible for regional differences in structure of sand pine populations. We hypothesize that fires were locally nonexistent in coastal panhandle populations, while periodic high intensity fires occurred in peninsula populations over the past century. Such differences in local fire regimes could have resulted in the absence of hurricane effects in the peninsula. Increased intensity of hurricanes in the panhandle and current fire suppression patterns in the peninsula may shift characteristics of sand pine stands in both regions. ?? 2007 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Noor, N. A. W. Mohd; Hassan, H.; Hashim, M. F.; Hasini, H.; Munisamy, K. M.
2017-04-01
This paper presents an investigation on the effects of primary airflow to coal fineness in coal-fired boilers. In coal fired power plant, coal is pulverized in a pulverizer, and it is then transferred to boiler for combustion. Coal need to be ground to its desired size to obtain maximum combustion efficiency. Coarse coal particle size may lead to many performance problems such as formation of clinker. In this study, the effects of primary airflow to coal particles size and coal flow distribution were investigated by using isokinetic coal sampling and computational fluid dynamic (CFD) modelling. Four different primary airflows were tested and the effects to resulting coal fineness were recorded. Results show that the optimum coal fineness distribution is obtained at design primary airflow. Any reduction or increase of air flow rate results in undesirable coal fineness distribution.
Survival analysis and classification methods for forest fire size
2018-01-01
Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at “being held” (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at “being held” exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances. PMID:29320497
Survival analysis and classification methods for forest fire size.
Tremblay, Pier-Olivier; Duchesne, Thierry; Cumming, Steven G
2018-01-01
Factors affecting wildland-fire size distribution include weather, fuels, and fire suppression activities. We present a novel application of survival analysis to quantify the effects of these factors on a sample of sizes of lightning-caused fires from Alberta, Canada. Two events were observed for each fire: the size at initial assessment (by the first fire fighters to arrive at the scene) and the size at "being held" (a state when no further increase in size is expected). We developed a statistical classifier to try to predict cases where there will be a growth in fire size (i.e., the size at "being held" exceeds the size at initial assessment). Logistic regression was preferred over two alternative classifiers, with covariates consistent with similar past analyses. We conducted survival analysis on the group of fires exhibiting a size increase. A screening process selected three covariates: an index of fire weather at the day the fire started, the fuel type burning at initial assessment, and a factor for the type and capabilities of the method of initial attack. The Cox proportional hazards model performed better than three accelerated failure time alternatives. Both fire weather and fuel type were highly significant, with effects consistent with known fire behaviour. The effects of initial attack method were not statistically significant, but did suggest a reverse causality that could arise if fire management agencies were to dispatch resources based on a-priori assessment of fire growth potentials. We discuss how a more sophisticated analysis of larger data sets could produce unbiased estimates of fire suppression effect under such circumstances.
"Smoke": Characterization Of Smoke Particulate For Spacecraft Fire Detection
NASA Technical Reports Server (NTRS)
Urban, David L.; Mulholland, George W.; Yang, Jiann; Cleary, Thomas G.; Yuan, Zeng-Guang
2003-01-01
The "Smoke" experiment is a flight definition investigation that seeks to increase our understanding of spacecraft fire detection through measurements of particulate size distributions of preignition smokes from typical spacecraft materials. Owing to the catastrophic risk posed by even a very small fire in a spacecraft, the design goal for spacecraft fire detection is to detect the fire as quickly as possible, preferably in the preignition phase before a real flaming fire has developed. Consequently the target smoke for detection is typically not soot (typical of established hydrocarbon fires) but instead, pyrolysis products, and recondensed polymer particles. At the same time, false alarms are extremely costly as the crew and the ground team must respond quickly to every alarm. The U.S. Space Shuttle (STS: Space Transportation System) and the International Space Station (ISS) both use smoke detection as the primary means of fire detection. These two systems were designed in the absence of any data concerning low-gravity smoke particle (and background dust) size distributions. The STS system uses an ionization detector coupled with a sampling pump and the ISS system is a forward light scattering detector operating in the near IR. These two systems have significantly different sensitivities with the ionization detector being most sensitive (on a mass concentration basis) to smaller particulate and the light scattering detector being most sensitive to particulate that is larger than 1 micron. Since any smoke detection system has inherent size sensitivity characteristics, proper design of future smoke detection systems will require an understanding of the background and alarm particle size distributions that can be expected in a space environment.
Particle size distributions from laboratory-scale biomass fires using fast response instruments
S Hosseini; L. Qi; D. Cocker; D. Weise; A. Miller; M. Shrivastava; J.W. Miller; S. Mahalingam; M. Princevac; H. Jung
2010-01-01
Particle size distribution from biomass combustion is an important parameter as it affects air quality, climate modelling and health effects. To date, particle size distributions reported from prior studies vary not only due to difference in fuels but also difference in experimental conditions. This study aims to report characteristics of particle size distributions in...
Sandra L. Haire; Kevin McGarigal; Carol Miller
2013-01-01
In many U.S. federally designated wilderness areas, wildfires are likely to burn of their own accord due to favorable management policies and remote location. Previous research suggested that limitations on fire size can result from the evolution of natural fire regimes, specifically in places where fuels were recently reduced by previous burning. To explore the...
Effects of particle size distribution in thick film conductors
NASA Technical Reports Server (NTRS)
Vest, R. W.
1983-01-01
Studies of particle size distribution in thick film conductors are discussed. The distribution of particle sizes does have an effect on fired film density but the effect is not always positive. A proper distribution of sizes is necessary, and while the theoretical models can serve as guides to selecting this proper distribution, improved densities can be achieved by empirical variations from the predictions of the models.
A population model for a long-lived, resprouting chaparral shrub: Adenostoma fasciculatum
Stohlgren, Thomas J.; Rundel, Philip W.
1986-01-01
Extensive stands of Adenostoma fasciculatum H.&A. (chamise) in the chaparral of California are periodically rejuvenated by fire. A population model based on size-specific demographic characteristics (thinning and fire-caused mortality) was developed to generate probable age distributions within size classes and survivorship curves for typical stands. The model was modified to assess the long term effects of different mortality rates on age distributions. Under observed mean mortality rates (28.7%), model output suggests some shrubs can survive more than 23 fires. A 10% increase in mortality rate by size class slightly shortened the survivorship curve, while a 10% decrease in mortality rate by size class greatly elongated the curve. This approach may be applicable to other long-lived plant species with complex life histories.
Simulating statistics of lightning-induced and man made fires
NASA Astrophysics Data System (ADS)
Krenn, R.; Hergarten, S.
2009-04-01
The frequency-area distributions of forest fires show power-law behavior with scaling exponents α in a quite narrow range, relating wildfire research to the theoretical framework of self-organized criticality. Examples of self-organized critical behavior can be found in computer simulations of simple cellular automata. The established self-organized critical Drossel-Schwabl forest fire model (DS-FFM) is one of the most widespread models in this context. Despite its qualitative agreement with event-size statistics from nature, its applicability is still questioned. Apart from general concerns that the DS-FFM apparently oversimplifies the complex nature of forest dynamics, it significantly overestimates the frequency of large fires. We present a straightforward modification of the model rules that increases the scaling exponent α by approximately 13 and brings the simulated event-size statistics close to those observed in nature. In addition, combined simulations of both the original and the modified model predict a dependence of the overall distribution on the ratio of lightning induced and man made fires as well as a difference between their respective event-size statistics. The increase of the scaling exponent with decreasing lightning probability as well as the splitting of the partial distributions are confirmed by the analysis of the Canadian Large Fire Database. As a consequence, lightning induced and man made forest fires cannot be treated separately in wildfire modeling, hazard assessment and forest management.
Mark A. Finney; Charles W. McHugh; Isaac Grenfell; Karin L. Riley
2010-01-01
Components of a quantitative risk assessment were produced by simulation of burn probabilities and fire behavior variation for 134 fire planning units (FPUs) across the continental U.S. The system uses fire growth simulation of ignitions modeled from relationships between large fire occurrence and the fire danger index Energy Release Component (ERC). Simulations of 10,...
Mitigating Large Fires in Drossel-Schwabl Forest Fire Models
NASA Astrophysics Data System (ADS)
Yoder, M.; Turcotte, D.; Rundle, J.; Morein, G.
2008-12-01
We employ variations of the traditional Drossel-Schwabl cellular automata Forest Fire Models (FFM) to study wildfire dynamics. The traditional FFM produces a very robust power law distribution of events, as a function of size, with frequency-size slope very close to -1. Observed data from Australia, the US and northern Mexico suggest that real wild fires closely follow power laws in frequency size with slopes ranging from close to -2 to -1.3 (B.D. Malamud et al. 2005). We suggest two models that, by fracturing and trimming large clusters, reduce the number of large fires while maintaining scale invariance. These fracturing and trimming processes can be justified in terms of real physical processes. For each model, we achieve slopes in the frequency-size relation ranging from approximately -1.77 to -1.06.
Numerical and Experimental Study on the Effect of Over Fire Air on NOx Distribution in Furnace
NASA Astrophysics Data System (ADS)
Wang, Qian; Deng, Yong-qiang; Xia, Yong-jun; Wu, Ying
2018-05-01
In this paper, a numerical investigation and experimental study was used to research the effect of a power plant 600MW supercritical four walls tangentially fired boiler furnace over fire air opening size on the inside furnace NOx concentration distribution and the results coincide. There are four cases in all. The influence and formation of NOx that was produced by pulverized coal furnace during combustion processes were analyzed. The research was proved that the over fire air has great effect on the concentration distribution of NOx in the furnance.
United States Geological Survey fire science: fire danger monitoring and forecasting
Eidenshink, Jeff C.; Howard, Stephen M.
2012-01-01
Each day, the U.S. Geological Survey produces 7-day forecasts for all Federal lands of the distributions of number of ignitions, number of fires above a given size, and conditional probabilities of fires growing larger than a specified size. The large fire probability map is an estimate of the likelihood that ignitions will become large fires. The large fire forecast map is a probability estimate of the number of fires on federal lands exceeding 100 acres in the forthcoming week. The ignition forecast map is a probability estimate of the number of fires on Federal land greater than 1 acre in the forthcoming week. The extreme event forecast is the probability estimate of the number of fires on Federal land that may exceed 5,000 acres in the forthcoming week.
Analysis of toxic effluents released from PVC carpet under different fire conditions.
Stec, A A; Readman, J; Blomqvist, P; Gylestam, D; Karlsson, D; Wojtalewicz, D; Dlugogorski, B Z
2013-01-01
A large number of investigations have been reported on minimising the PAH and PCDD/F yields during controlled combustion, such as incineration. This study is an attempt to quantify acute and chronic toxicants including PAH and PCDD/F in conditions relating to unwanted fires. This paper investigates distribution patterns of fire effluents between gas and aerosol phase, and the different particle size-ranges produced under different fire conditions. PVC carpet was selected as the fuel as a precursor for both PAH and PCDD/F. In order to generate fire effluents under controlled fire conditions, the steady-state tube furnace, was chosen as the physical fire model. Fire scenarios included oxidative pyrolysis, well-ventilated and under-ventilated fires. Fire effluent measurements included: carbon monoxide, carbon dioxide, hydrogen chloride, polycyclic aromatic hydrocarbons, chlorinated dibenzo-dioxins and furans and soot. The distribution patterns between gas and particle phase, and the size-ranges of the particles produced in these fires together with their chemical composition is also reported. Significant quantities of respirable submicron particles were detected, together with a range of PAHs. Lower levels of halogenated dioxins were detected in the fire residue compared with those found in other studies. Nevertheless, the findings do have implications for the health and safety of fire and rescue personnel, fire investigators, and other individuals exposed to the residue from unwanted fires. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wood crib fire free burning test in ISO room
NASA Astrophysics Data System (ADS)
Qiang, Xu; Griffin, Greg; Bradbury, Glenn; Dowling, Vince
2006-04-01
In the research of application potential of water mist fire suppression system for fire fighting in train luggage carriage, a series of experiments were conducted in ISO room on wood crib fire with and without water mist actuation. The results of free burn test without water mist suppression are used as reference in evaluating the efficiency of water mist suppression system. As part of the free burn test, several tests have been done under the hood of ISO room to calibrate the size of the crib fire and these tests can also be used in analyzing the wall effect in room fire hazard. In these free burning experiments, wood cribs of four sizes under the hood were tested. The temperature of crib fire, heat flux around the fire, gas concentration in hood of ISO room were measured in the experiments and two sets of thermal imaging system were used to get the temperature distribution and the typical shape of the free burning flames. From the experiments, the radiation intensity in specific positions around the fire, the effective heat of combustion, mass loss, oxygen consumption rate for different sizes of fire, typical structure of the flame and self extinguishment time was obtained for each crib size.
NASA Astrophysics Data System (ADS)
Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.
2016-06-01
Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The size distribution is particularly sensitive to the mass emissions flux, fire area, wind speed, and time, and we provide simplified fits of the aged size distribution to just these input variables. The simplified fits were tested against 11 aged biomass-burning size distributions observed at the Mt. Bachelor Observatory in August 2015. The simple fits captured over half of the variability in observed Dpm and modal width even though the freshly emitted Dpm and modal widths were unknown. These fits may be used in global and regional aerosol models. Finally, we show that coagulation generally leads to greater changes in the particle size distribution than OA evaporation/formation does, using estimates of OA production/loss from the literature.
B.M. Collins; S.L. Stephens
2010-01-01
The complexity inherent in variable, or mixed-severity fire regimes makes quantitative characterization of important fire regime attributes (e.g., proportion of landscape burned at different severities, size and distribution of stand-replacing patches) difficult. As a result, there is ambiguity associated with the term ‘mixed-severity’. We address...
Complex systems approach to fire dynamics and climate change impacts
NASA Astrophysics Data System (ADS)
Pueyo, S.
2012-04-01
I present some recent advances in complex systems theory as a contribution to understanding fire regimes and forecasting their response to a changing climate, qualitatively and quantitatively. In many regions of the world, fire sizes have been found to follow, approximately, a power-law frequency distribution. As noted by several authors, this distribution also arises in the "forest fire" model used by physicists to study mechanisms that give rise to scale invariance (the power law is a scale-invariant distribution). However, this model does not give and does not pretend to give a realistic description of fire dynamics. For example, it gives no role to weather and climate. Pueyo (2007) developed a variant of the "forest fire" model that is also simple but attempts to be more realistic. It also results into a power law, but the parameters of this distribution change through time as a function of weather and climate. Pueyo (2007) observed similar patterns of response to weather in data from boreal forest fires, and used the fitted response functions to forecast fire size distributions in a possible climate change scenario, including the upper extreme of the distribution. For some parameter values, the model in Pueyo (2007) displays a qualitatively different behavior, consisting of simple percolation. In this case, fire is virtually absent, but megafires sweep through the ecosystem a soon as environmental forcings exceed a critical threshold. Evidence gathered by Pueyo et al. (2010) suggests that this is realistic for tropical rainforests (specifically, well-conserved upland rainforests). Some climate models suggest that major tropical rainforest regions are going to become hotter and drier if climate change goes ahead unchecked, which could cause such abrupt shifts. Not all fire regimes are well described by this model. Using data from a tropical savanna region, Pueyo et al. (2010) found that the dynamics in this area do not match its assumptions, even though fire sizes are also well fitted by a power law. A possible interpretation is that the spatial structure of fire in savannas is strongly constrained by the spatial structure of their environment. Instead of resulting from ecosystem self-organization as in the model, in this case the scale invariance in fire events would be just a reflection of scale invariance in the environment in which the ecosystem lives. These results suggest at least three major types of fire dynamics: endogenous scaling, percolating, and exogenous scaling, in addition to intermediate options. The world's biomes can be classified based on the type of dynamics that is most likely to apply in each of them, and forecasts can be carried out with the tools developed for each of these types.
NASA Astrophysics Data System (ADS)
Ruffault, Julien; Mouillot, Florent; Moebius, Flavia
2013-04-01
Understanding the contribution of biophysical and human drivers to the spatial distribution of fires at regional scale has many ecological and economical implications in a context of on-going global changes. However these fire drivers often interact in complex ways, such that disentangling and assessing the relative contribution of human vs. biophysical factors remains a major challenge. Indeed, the identification of biophysical conditions that promote fires are confused by the inherent stochasticity in fire occurrences and fire spread on the one hand and, by the influence of human factors -through both fire ignition and suppression - on the other. Moreover, different factors may drive fire ignition and fire spread, in such a way that the areas with the highest density of ignitions may not coincide with those where large fires occur. In the present study, we investigated the drivers of fires ignition and spread in a Mediterranean area of southern France. We used a 17 years fire database (the PROMETHEE database from 1989-2006) combined with a set of 8 explanatory variables describing the spatial pattern in ignitions, vegetation and fire weather. We first isolated the weather conditions affecting the fire occurrence and their spread using a statistical model of the weather/fuel water status for each fire event.. The results of these statistical models were used to map the fire weather in terms of average number of days with suitable conditions for burning. Then, we used Boosted regression trees (BRT) models to assess the relative importance of the different variables on the distribution of wildfire with different sizes and to assess the relationship between each variables and fire occurrence and spread probabilities. We found that human activities explained up to 50 % of the spatial distribution of fire ignitions (SDI). The distribution of large fire was chiefly explained by fuel characteristics (about 40%). Surprisingly, the weather indices explained only 20 % of the SDI and its contribution does no vary according to the size of considered fire events. These results suggest that changes in fuel characteristics and human settlements/ activities, rather than weather conditions are the most likely to modify the future distribution of fires in this Mediterranean area. These conclusions provide useful information on the scenarios that could arise from the interaction of changes in climate and land cover for the Mediterranean area in the near future.
A simulation of probabilistic wildfire risk components for the continental United States
Mark A. Finney; Charles W. McHugh; Isaac C. Grenfell; Karin L. Riley; Karen C. Short
2011-01-01
This simulation research was conducted in order to develop a large-fire risk assessment system for the contiguous land area of the United States. The modeling system was applied to each of 134 Fire Planning Units (FPUs) to estimate burn probabilities and fire size distributions. To obtain stable estimates of these quantities, fire ignition and growth was simulated for...
Photochemical potential of forest fire smoke
W. Henry Benner; Paul Urone; Charles K. McMahon; Paul Ryan
1977-01-01
A stainless steel laboratory chamber to hold the entire combustion products from a small scale pine needle fire was useful for measuring the photochemical activity of pine needle fire smoke. Particle size distributions indicated that the nucleation of small numbers of submicron particles was sufficient to increase the amount of light a plume would scatter. Artificial...
Dermatas, Dimitris; Chrysochoou, Maria
2007-08-01
Six firing range soils were analyzed, representing different environments, firing conditions, and maintenance practices. The particle size distribution and lead (Pb) concentration in each soil fraction were determined for samples obtained from the backstop berms. The main factors that were found to influence Pb fragment size were the type of soil used to construct the berms and the type of weapon fired. The firing of high velocity weapons, i.e., rifles, onto highly angular soils induced significant fragmentation of the bullets and/or pulverization of the soil itself. This resulted in the accumulation of Pb in the finer soil fractions and the spread of Pb contamination beyond the vicinity of the backstop berm. Conversely, the use of clay as backstop and the use of low velocity pistols proved to be favorable for soil clean-up and range maintenance, since Pb was mainly present as large metallic fragments that can be recovered by a simple screening process. Other factors that played important roles in Pb particle size distribution were soil chemistry, firing distance, and maintenance practices, such as the use of water spray for dust suppression and deflectors prior to impact. Overall, coarse Pb particles provide much easier and more cost-effective maintenance, soil clean-up, and remediation via physical separation. Fine Pb particles release Pb more easily, pose an airborne Pb hazard, and require the application of stabilization/solidification treatment methods. Thus, to ensure sustainable firing range operations by means of cost-effective design, maintenance, and clean-up, especially when high velocity weapons are used, the above mentioned factors should be carefully considered.
Do one percent of the forest fires cause ninety-nine percent of the damage? Forest Science
David Strauss; Larry Bednar; Romain Mees
1989-01-01
A relatively small number of forest fires are responsible for a very high proportion of the total damage. The proportion due to the fraction p of largest fires, when plotted against p, is a measure of variability of fire sizes that is especially sensitive to the important extreme events. We find the theoretical form of the plot for several commonly used distributions...
Optimizing smoke and plume rise modeling approaches at local scales
Derek V. Mallia; Adam K. Kochanski; Shawn P. Urbanski; John C. Lin
2018-01-01
Heating from wildfires adds buoyancy to the overlying air, often producing plumes that vertically distribute fire emissions throughout the atmospheric column over the fire. The height of the rising wildfire plume is a complex function of the size of the wildfire, fire heat flux, plume geometry, and atmospheric conditions, which can make simulating plume rises difficult...
Fire frequency, area burned, and severity: A quantitative approach to defining a normal fire year
Lutz, J.A.; Key, C.H.; Kolden, C.A.; Kane, J.T.; van Wagtendonk, J.W.
2011-01-01
Fire frequency, area burned, and fire severity are important attributes of a fire regime, but few studies have quantified the interrelationships among them in evaluating a fire year. Although area burned is often used to summarize a fire season, burned area may not be well correlated with either the number or ecological effect of fires. Using the Landsat data archive, we examined all 148 wildland fires (prescribed fires and wildfires) >40 ha from 1984 through 2009 for the portion of the Sierra Nevada centered on Yosemite National Park, California, USA. We calculated mean fire frequency and mean annual area burned from a combination of field- and satellite-derived data. We used the continuous probability distribution of the differenced Normalized Burn Ratio (dNBR) values to describe fire severity. For fires >40 ha, fire frequency, annual area burned, and cumulative severity were consistent in only 13 of 26 years (50 %), but all pair-wise comparisons among these fire regime attributes were significant. Borrowing from long-established practice in climate science, we defined "fire normals" to be the 26 year means of fire frequency, annual area burned, and the area under the cumulative probability distribution of dNBR. Fire severity normals were significantly lower when they were aggregated by year compared to aggregation by area. Cumulative severity distributions for each year were best modeled with Weibull functions (all 26 years, r2 ??? 0.99; P < 0.001). Explicit modeling of the cumulative severity distributions may allow more comprehensive modeling of climate-severity and area-severity relationships. Together, the three metrics of number of fires, size of fires, and severity of fires provide land managers with a more comprehensive summary of a given fire year than any single metric.
The effect of urban growth on landscape-scale restoration for a fire-dependent songbird
Pickens, Bradley A.; Marcus, Jeffrey F.; Carpenter, John P.; Anderson, Scott; Taillie, Paul J.; Collazo, Jaime A.
2017-01-01
A landscape-scale perspective on restoration ecology has been advocated, but few studies have informed restoration with landscape metrics or addressed broad-scale threats. Threats such as urban growth may affect restoration effectiveness in a landscape context. Here, we studied longleaf pine savanna in the rapidly urbanizing southeastern United States where a habitat-specialist bird, Bachman's sparrow (Peucaea aestivalis), is closely associated with savanna vegetation structure and frequent fire. Our objectives were to construct a species distribution model for Bachman's sparrow, determine the relationship between fire and urbanization, quantify the urban growth effect (2010–2090), identify potential restoration areas, and determine the interaction between restoration potential and urban growth by 2050. Number of patches, patch size, and isolation metrics were used to evaluate scenarios. The species distribution model was 88% accurate and emphasized multiscale canopy cover characteristics, fire, and percent habitat. Fires were less common <600 m from urban areas, and this fire suppression effect exacerbated urban growth effects. For restoration scenarios, canopy cover reduction by 30% resulted in nearly double the amount of habitat compared to the prescribed fire scenario; canopy cover reduction resulted in larger patch sizes and less patch isolation compared to current conditions. The effect of urban growth on restoration scenarios was unequal. Seventy-four percent of restoration areas from the prescribed fire scenario overlapped with projected urban growth, whereas the canopy cover reduction scenario only overlapped by 9%. We emphasize the benefits of simultaneously considering the effects of urban growth and landscape-scale restoration potential to promote a landscape with greater patch sizes and less isolation.
Four millennia of woodland structure and dynamics at the Arctic treeline of eastern Canada.
Auger, Sarah; Payette, Serge
2010-05-01
Paleoecological analysis using complementary indicators of vegetation and soil can provide spatially explicit information on ecological processes influencing trajectories of long-term ecosystem change. Here we document the structure and dynamics of an old-growth woodland before and after its inception 1000 years ago. We infer vegetation and soil characteristics from size and age distributions of black spruce (Picea mariana (Mill.) B.S.P.), soil properties, plant fossils, and paleosols. Radiocarbon ages of charcoal on the ground and in the soil indicate that the fire return interval was approximately 300 years between 2750 and 1000 cal. yr BP. No fire evidence was found before and after this period despite the presence of spruce since 4200 cal. yr BP. The size structures of living and dead spruce suggest that the woodland is in equilibrium with present climate in absence of fire. Tree establishment and mortality occurred regularly since the last fire event around 950 cal. yr BP. Both layering and occasional seeding have contributed to stabilize the spatial distribution of spruce over the past 1000 years. Since initial afforestation, soil development has been homogenized by the changing spatial distribution of spruce following each fire. We conclude that the history of the woodland is characterized by vegetation shifts associated with fire and soil disturbances and by millennial-scale maintenance of the woodland's structure despite changing climatic conditions.
Wildland fires and dwarf mistletoes: A literature review of ecology and prescribed burning
Martin E. Alexander; Frank G. Hawksworth
1975-01-01
Wildfires play a multiple role in the distribution of dwarf mistletoes - they may either inhibit or encourage these parasites depending primarily on the size and intensity of the burn. Many reports suggest that fire exclusion policies of the past half century have resulted in increased dwarf mistletoe levels as, well as increased fire behavior potential. Prescribed...
NASA Astrophysics Data System (ADS)
Gleason, K. E.; Arienzo, M. M.; Chellman, N.; McConnell, J.
2017-12-01
Charred forests shed black carbon and burned debris, which accumulates and concentrates on winter snowpack, reducing snow surface albedo, and subsequently increasing snowmelt rates, and advancing the date of snow disappearance. Forest fires have occurred across vast areas of the seasonal snow zone in recent decades, however we do not understand the long-term implications of burned forests in montane headwaters to snow hydrology and downstream water resources. Across a chronosequence of nine burned forests in the Colorado River Headwaters, we sampled snow throughout the complete snowpack profile to conserve the composition, properties, and vertical stratigraphy of impurities in the snowpack during maximum snow accumulation. Using state-of-the-art geochemical analyses, we determined the magnitude, composition, and particle size distribution of black carbon, dust, and other impurities in the snowpack relative to years-since fire. Forest fires continue to darken snow for many years following fire, however the magnitude, composition, and particle size distribution of impurities change through time, altering the post-fire radiative forcing on snow as a burned forest ages.
The Evaluation of Small Arms Effectiveness Criteria, Volume I
1975-05-01
UNCLASSIFIED AD NUMBER ADB004382 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution authorized to U.S...aimedSand pointed fire E-14 E-4 Frequency distribution of sizes of M16 and BAR bursts of automatic fire E-16 SE-5 Percent of times each range bracket...defense range F-10 F-4 Weapon-signature simuilator F-15 1 F-5 Target components in armored target box F-17 F-6 Portable round counter for the M16 rifle
Sakaguchi, Shota; Bowman, David M. J. S.; Prior, Lynda D.; Crisp, Michael D.; Linde, Celeste C.; Tsumura, Yoshihiko; Isagi, Yuji
2013-01-01
Climate and fire are the key environmental factors that shape the distribution and demography of plant populations in Australia. Because of limited palaeoecological records in this arid continent, however, it is unclear as to which factor impacted vegetation more strongly, and what were the roles of fire regime changes owing to human activity and megafaunal extinction (since ca 50 kya). To address these questions, we analysed historical genetic, demographic and distributional changes in a widespread conifer species complex that paradoxically grows in fire-prone regions, yet is very sensitive to fire. Genetic demographic analysis showed that the arid populations experienced strong bottlenecks, consistent with range contractions during the Last Glacial Maximum (ca 20 kya) predicted by species distribution models. In southern temperate regions, the population sizes were estimated to have been mostly stable, followed by some expansion coinciding with climate amelioration at the end of the last glacial period. By contrast, in the flammable tropical savannahs, where fire risk is the highest, demographic analysis failed to detect significant population bottlenecks. Collectively, these results suggest that the impact of climate change overwhelmed any modifications to fire regimes by Aboriginal landscape burning and megafaunal extinction, a finding that probably also applies to other fire-prone vegetation across Australia. PMID:24174110
Analyzing wildfire exposure and source–sink relationships on a fire prone forest landscape
Alan A. Ager; Nicole M. Vaillant; Mark A. Finney; Haiganoush K. Preisler
2012-01-01
We used simulation modeling to analyze wildfire exposure to social and ecological values on a 0.6 million ha national forest in central Oregon, USA. We simulated 50,000 wildfires that replicated recent fire events in the area and generated detailed maps of burn probability (BP) and fire intensity distributions. We also recorded the ignition locations and size of each...
The effect of urban growth on landscape-scale restoration for a fire-dependent songbird.
Pickens, Bradley A; Marcus, Jeffrey F; Carpenter, John P; Anderson, Scott; Taillie, Paul J; Collazo, Jaime A
2017-04-15
A landscape-scale perspective on restoration ecology has been advocated, but few studies have informed restoration with landscape metrics or addressed broad-scale threats. Threats such as urban growth may affect restoration effectiveness in a landscape context. Here, we studied longleaf pine savanna in the rapidly urbanizing southeastern United States where a habitat-specialist bird, Bachman's sparrow (Peucaea aestivalis), is closely associated with savanna vegetation structure and frequent fire. Our objectives were to construct a species distribution model for Bachman's sparrow, determine the relationship between fire and urbanization, quantify the urban growth effect (2010-2090), identify potential restoration areas, and determine the interaction between restoration potential and urban growth by 2050. Number of patches, patch size, and isolation metrics were used to evaluate scenarios. The species distribution model was 88% accurate and emphasized multiscale canopy cover characteristics, fire, and percent habitat. Fires were less common <600 m from urban areas, and this fire suppression effect exacerbated urban growth effects. For restoration scenarios, canopy cover reduction by 30% resulted in nearly double the amount of habitat compared to the prescribed fire scenario; canopy cover reduction resulted in larger patch sizes and less patch isolation compared to current conditions. The effect of urban growth on restoration scenarios was unequal. Seventy-four percent of restoration areas from the prescribed fire scenario overlapped with projected urban growth, whereas the canopy cover reduction scenario only overlapped by 9%. We emphasize the benefits of simultaneously considering the effects of urban growth and landscape-scale restoration potential to promote a landscape with greater patch sizes and less isolation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Potential release of fibers from burning carbon composites. [aircraft fires
NASA Technical Reports Server (NTRS)
Bell, V. L.
1980-01-01
A comprehensive experimental carbon fiber source program was conducted to determine the potential for the release of conductive carbon fibers from burning composites. Laboratory testing determined the relative importance of several parameters influencing the amounts of single fibers released, while large-scale aviation jet fuel pool fires provided realistic confirmation of the laboratory data. The dimensions and size distributions of fire-released carbon fibers were determined, not only for those of concern in an electrical sense, but also for those of potential interest from a health and environmental standpoint. Fire plume and chemistry studies were performed with large pool fires to provide an experimental input into an analytical modelling of simulated aircraft crash fires. A study of a high voltage spark system resulted in a promising device for the detection, counting, and sizing of electrically conductive fibers, for both active and passive modes of operation.
Surface Dimming by the 2013 Rim Fire Simulated by a Sectional Aerosol Model
NASA Technical Reports Server (NTRS)
Yu, Pengfei; Toon, Owen B.; Bardeen, Charles G; Bucholtz, Anthony; Rosenlof, Karen; Saide, Pablo E.; Da Silva, Arlindo M.; Ziemba, Luke D.; Thornhill, Kenneth L.; Jimenez, Jose-Luis;
2016-01-01
The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number and particle size distribution are within variability of data obtained from multiple airborne in-situ measurements. Simulations suggest Rim Fire smoke may block 4-6 of sunlight energy reaching the surface, with a dimming efficiency around 120-150 W m(exp -2) per unit aerosol optical depth in the mid-visible at 13:00-15:00 local time. Underestimation of simulated smoke single scattering albedo at mid-visible by 0.04 suggests the model overestimates either the particle size or the absorption due to black carbon. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with one-degree resolution with overall good skill, though that resolution is still not sufficient to resolve the smoke peak near the source region.
Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model.
Yu, Pengfei; Toon, Owen B; Bardeen, Charles G; Bucholtz, Anthony; Rosenlof, Karen H; Saide, Pablo E; Da Silva, Arlindo; Ziemba, Luke D; Thornhill, Kenneth L; Jimenez, Jose-Luis; Campuzano-Jost, Pedro; Schwarz, Joshua P; Perring, Anne E; Froyd, Karl D; Wagner, N L; Mills, Michael J; Reid, Jeffrey S
2016-06-27
The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number, and particle size distribution are within variability of data obtained from multiple-airborne in situ measurements. Simulations suggest that Rim Fire smoke may block 4-6% of sunlight energy reaching the surface, with a dimming efficiency around 120-150 W m -2 per unit aerosol optical depth in the midvisible at 13:00-15:00 local time. Underestimation of simulated smoke single scattering albedo at midvisible by 0.04 suggests that the model overestimates either the particle size or the absorption due to black carbon. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with 1° resolution with overall good skill, although that resolution is still not sufficient to resolve the smoke peak near the source region.
Condition of live fire-scarred ponderosa pine trees six years after removing partial cross sections
Emily K. Heyerdahl; Steven J. McKay
2001-01-01
Our objective was to document the effect of fire-history sampling on the mortality of mature ponderosa pine trees in Oregon. We examined 138 trees from which fire-scarred partial cross sections had been removed five to six years earlier, and 386 similarly sized, unsampled neighbor trees, from 78 plots distributed over about 5,000 ha. Mortality was low for both groups....
Hu, L H; Fong, N K; Yang, L Z; Chow, W K; Li, Y Z; Huo, R
2007-02-09
Smoke and toxic gases, such as carbon monoxide, are the most fatal factors in fires. This paper models fire-induced smoke spread and carbon monoxide transportation in an 88m long channel by Fire Dynamics Simulator (FDS) with large eddy simulation (LES). FDS is now a well-founded fire dynamics computational fluid dynamic (CFD) program, which was developed by National Institute of Standards and Technology (NIST). Two full scale experiments with fire sizes of 0.75 and 1.6MW were conducted in this channel to validate the program. The spread of the fire-induced smoke flow together with the smoke temperature distribution along the channel, and the carbon monoxide concentration at an assigned position were measured. The FDS simulation results were compared with experimental data with fairly good agreement demonstrated. The validation work is then extended to numerically study the carbon monoxide concentration distribution, both vertically and longitudinally, in this long channel. Results showed that carbon monoxide concentration increase linearly with the height above the floor and decreases exponentially with the distance away from the fire source.
Time Dependence of Aerosol Light Scattering Downwind of Forest Fires
NASA Astrophysics Data System (ADS)
Kleinman, L. I.; Sedlacek, A. J., III; Wang, J.; Lewis, E. R.; Springston, S. R.; Chand, D.; Shilling, J.; Arnott, W. P.; Freedman, A.; Onasch, T. B.; Fortner, E.; Zhang, Q.; Yokelson, R. J.; Adachi, K.; Buseck, P. R.
2017-12-01
In the first phase of BBOP (Biomass Burn Observation Project), a Department of Energy (DOE) sponsored study, wildland fires in the Pacific Northwest were sampled from the G-1 aircraft via sequences of transects that encountered emission whose age (time since emission) ranged from approximately 15 minutes to four hours. Comparisons between transects allowed us to determine the near-field time evolution of trace gases, aerosol particles, and optical properties. The fractional increase in aerosol concentration with plume age was typically less than a third of the fractional increase in light scattering. In some fires the increase in light scattering exceeded a factor of two. Two possible causes for the discrepancy between scattering and aerosol mass are i) the downwind formation of refractory tar balls that are not detected by the AMS and therefore contribute to scattering but not to aerosol mass and ii) changes to the aerosol size distribution. Both possibilities are considered. Our information on tar balls comes from an analysis of TEM grids. A direct determination of size changes is complicated by extremely high aerosol number concentrations that caused coincidence problems for the PCASP and UHSAS probes. We instead construct a set of plausible log normal size distributions and for each member of the set do Mie calculations to determine mass scattering efficiency (MSE), angstrom exponents, and backscatter ratios. Best fit size distributions are selected by comparison with observed data derived from multi-wavelength scattering measurements, an extrapolated FIMS size distribution, and mass measurements from an SP-AMS. MSE at 550 nm varies from a typical near source value of 2-3 to about 4 in aged air.
Characteristics of sprinklers and water spray mists for fire safety
NASA Astrophysics Data System (ADS)
Jackman, Louise A.; Lavelle, Stephen P.; Nolan, P. F.
1991-04-01
In order to predict the type of sprinkler or spray head required for fire safety in buildings and transport systems (e.g. aircraft) it is necessary to model the interaction of water droplets with the thermally buoyant fire gases. Such modelling requires a detailed knowledge of the mean droplet size, the droplet size distribution, droplet velocity and trajectory. Many existing systems for the characterisation of droplets are indirect in that an optical property is measured and the results are subject to "black box" data processing. A direct method can be developed using a synchronised metal vapour laser and high speed cine camera with appropriate optics. Results on both sprinkler and spray mist will be presented and a basis for the choice of active fire protection systems will be outlined.
Fuselage ventilation due to wind flow about a postcrash aircraft
NASA Technical Reports Server (NTRS)
Stuart, J. W.
1980-01-01
Postcrash aircraft fuselage fire development, dependent on the internal and external fluid dynamics is discussed. The natural ventilation rate, a major factor in the internal flow patterns and fire development is reviewed. The flow about the fuselage as affected by the wind and external fire is studied. An analysis was performend which estimated the rates of ventilation produced by the wind for a limited idealized environmental configuration. The simulation utilizes the empirical pressure coefficient distribution of an infinite circular cylinder near a wall with its boundary later flow to represent the atmospheric boundary layer. The resulting maximum ventilation rate for two door size openings, with varying circumferential location in a common 10 mph wind was an order of magnitude greater than the forced ventilation specified in full scale fire testing. The parameter discussed are: (1) fuselage size and shape, (2) fuselage orientation and proximity to the ground, (3) fuselage-openings size and location, (4) wind speed and direction, and (5) induced flow of the external fire plume is recommended. The fire testing should be conducted to a maximum ventilation rate at least an order of magnitude greater than the inflight air conditioning rates.
NASA Astrophysics Data System (ADS)
Laing, James R.; Jaffe, Daniel A.; Hee, Jonathan R.
2016-12-01
The summer of 2015 was an extreme forest fire year in the Pacific Northwest. Our sample site at the Mt. Bachelor Observatory (MBO, 2.7 km a.s.l.) in central Oregon observed biomass burning (BB) events more than 50 % of the time during August. In this paper we characterize the aerosol physical and optical properties of 19 aged BB events during August 2015. Six of the 19 events were influenced by Siberian fires originating near Lake Baikal that were transported to MBO over 4-10 days. The remainder of the events resulted from wildfires in Northern California and Southwestern Oregon with transport times to MBO ranging from 3 to 35 h. Fine particulate matter (PM1), carbon monoxide (CO), aerosol light scattering coefficients (σscat), aerosol light absorption coefficients (σabs), and aerosol number size distributions were measured throughout the campaign. We found that the Siberian events had a significantly higher Δσabs/ΔCO enhancement ratio, higher mass absorption efficiency (MAE; Δσabs/ΔPM1), lower single scattering albedo (ω), and lower absorption Ångström exponent (AAE) when compared with the regional events. We suggest that the observed Siberian events represent that portion of the plume that has hotter flaming fire conditions and thus enabled strong pyroconvective lofting and long-range transport to MBO. The Siberian events observed at MBO therefore represent a selected portion of the original plume that would then have preferentially higher black carbon emissions and thus an enhancement in absorption. The lower AAE values in the Siberian events compared to regional events indicate a lack of brown carbon (BrC) production by the Siberian fires or a loss of BrC during transport. We found that mass scattering efficiencies (MSE) for the BB events ranged from 2.50 to 4.76 m2 g-1. We measured aerosol size distributions with a scanning mobility particle sizer (SMPS). Number size distributions ranged from unimodal to bimodal and had geometric mean diameters (Dpm) ranging from 138 to 229 nm and geometric standard deviations (σg) ranging from 1.53 to 1.89. We found MSEs for BB events to be positively correlated with the geometric mean of the aerosol size distributions (R2 = 0.73), which agrees with Mie theory. We did not find any dependence on event size distribution to transport time or fire source location.
Time evolution and emission factors of aerosol particles from day and night time savannah fires
NASA Astrophysics Data System (ADS)
Vakkari, Ville; Beukes, Johan Paul; Tiitta, Petri; Venter, Andrew; Jaars, Kerneels; Josipovic, Miroslav; van Zyl, Pieter; Kulmala, Markku; Laakso, Lauri
2013-04-01
The largest uncertainties in the current global climate models originate from aerosol particle effects (IPCC, 2007) and at the same time aerosol particles also pose a threat to human health (Pope and Dockery, 2006). In southern Africa wild fires and prescribed burning are one of the most important sources of aerosol particles, especially during the dry season from June to September (e.g. Swap et al., 2003; Vakkari et al., 2012). The aerosol particle emissions from savannah fires in southern Africa have been studied in several intensive campaigns such as SAFARI 1992 and 2000 (Swap et al., 2003). However, all previous measurements have been carried out during the daytime, whereas most of the prescribed fires in southern Africa are lit up only after sunset. Furthermore, the previous campaigns followed the plume evolution for up to one hour after emission only. In this study, combining remote sensing fire observations to ground-based long-term measurements of aerosol particle and trace gas properties at the Welgegund measurement station (www.welgegund.org), we have been able to follow the time evolution of savannah fire plumes up to several hours in the atmosphere. For the first time the aerosol particle size distribution measurements in savannah fire plumes cover both day and night time plumes and also the ultrafine size range below 100 nm. During the period from May 20th 2010 to April 15th 2012 altogether 61 savannah fire plumes were observed at Welgegund. The evolution of the aerosol size distribution remained rapid for at least five hours after the fire: during this period the growth rate of the aerosol particle count mean diameter (size range 12 to 840 nm) was 24 nm h-1 for daytime plumes and 8 nm h-1 for night time plumes. The difference in the day and night time growth rate shows that photochemical reactions significantly increase the condensable vapour concentration in the plume. Furthermore, the condensable vapour concentration was found to affect both the number and size of particles larger than 100 nm; if this is not accounted for the current emission factors may underestimate the CCN-sized particle yield from savannah fires by a factor of two to three. Acknowledgements This research was supported by the Academy of Finland under the project Atmospheric monitoring capacity building in Southern Africa (project number 132640), by the Saastamoinen säätiö, by the North-West University and by the Academy of Finland Center of Excellence program (project number 1118615). References IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007. Pope, C. A., and Dockery, D. W.: Health effects of fine particulate air pollution: lines that connect, J Air Waste Manag. Assoc., 56, 709-742, 2006. Swap, R. J., Annegarn, H. J., Suttles, J. T., King, M. D., Platnick, S., Privette, J. L., and Scholes, R. J.: Africa burning: A thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000), J. Geophys. Res., 108, 8465, doi:10.1029/2003JD003747, 2003. Vakkari, V., Beukes, J. P., Laakso, H., Mabaso, D., Pienaar, J. J., Kulmala, M., and Laakso, L.: Long-term observations of aerosol size distributions in semi-clean and polluted savannah in South Africa, Atmos. Chem. Phys. Discuss., 12, 24043-24093, doi:10.5194/acpd-12-24043-2012, 2012.
Simulating the effect of ignition source type on forest fire statistics
NASA Astrophysics Data System (ADS)
Krenn, Roland; Hergarten, Stefan
2010-05-01
Forest fires belong to the most frightening natural hazards, and have long-term ecological and economic effects on the regions involved. It was found that their frequency-area distributions show power-law behaviour under a wide variety of conditions, interpreting them as a self-organised critical phenomenon. Using computer simulations, self-organised critical behaviour manifests in simple cellular automaton models. With respect to ignition source, forest fires can be categorised as lightning-induced or as a result of human activity. Lightning fires are considered to be natural, whereas ``man made'' fires are frequently caused by some sort of technological disaster, such as sparks from wheels of trains, the rupture of overhead electrical lines, the misuse of electrical or mechanical devices and so on. Taking into account that such events rarely occur deep in the woods, man made fires should start preferably on the edge of a forest or where the forest is not very dense. We present a modification in the self-organised critical Drossel-Schwabl forest fire model that takes these two different triggering mechanisms into account and increases the scaling exponent of the frequency-area distribution by ca. 1/3. Combined simulations further predict a dependence of the overall event-size distribution on the ratio of lightning-induced and man made fires as well as a splitting of their partial distributions. Lightning is identified as the dominant mechanism in the regime of the largest fires. The results are confirmed by the analysis of the Canadian Large Fire Database and suggest that lightning-induced and man made forest fires cannot be treated separately in wildfire modelling, hazard assessment and forest management.
Comparing techniques for estimating flame temperature of prescribed fires
Deborah K. Kennard; Kenneth W. Outcalt; David Jones; Joseph J. O' Brien
2005-01-01
A variety of techniques that estimate temperature and/or heat output during fires are available. We assessed the predictive ability of metal and tile pyrometers, calorimeters of different sizes, and fuel consumption to time-temperature metrics derived from thick and thin thermocouples at 140 points distributed over 9 management-scale burns in a longleaf pine forest in...
Fuel and fire behavior prediction in big sagebrush
James K. Brown
1982-01-01
Relationships between height of big sagebrush and crown area, fuel loading, bulk density, size distribution of foliage and stemwood, and fraction dead stemwood are presented. Based upon these relationships, modeled rate-of-fire spread and fireline intensity are shown for sagebrush ranging in height from 20 to 120 em and in coverage from 10 to 40 percent. Verification...
Defining fire environment zones in the boreal forests of northeastern China.
Wu, Zhiwei; He, Hong S; Yang, Jian; Liang, Yu
2015-06-15
Fire activity in boreal forests will substantially increase with prolonged growing seasons under a warming climate. This trend poses challenges to managing fires in boreal forest landscapes. A fire environment zone map offers a basis for evaluating these fire-related problems and designing more effective fire management plans to improve the allocation of management resources across a landscape. Toward that goal, we identified three fire environment zones across boreal forest landscapes in northeastern China using analytical methods to identify spatial clustering of the environmental variables of climate, vegetation, topography, and human activity. The three fire environment zones were found to be in strong agreement with the spatial distributions of the historical fire data (occurrence, size, and frequency) for 1966-2005. This paper discusses how the resulting fire environment zone map can be used to guide forest fire management and fire regime prediction. Copyright © 2015 Elsevier B.V. All rights reserved.
Packing Optimization of Sorbent Bed Containing Dissimilar and Irregular Shaped Media
NASA Technical Reports Server (NTRS)
Holland, Nathan; Guttromson, Jayleen; Piowaty, Hailey
2011-01-01
The Fire Cartridge is a packed bed air filter with two different and separate layers of media designed to provide respiratory protection from combustion products after a fire event on the International Space Station (ISS). The first layer of media is a carbon monoxide catalyst and the second layer of media is universal carbon. During development of Fire Cartridge prototypes, the two media beds were noticed to have shifted inside the cartridge. The movement of media within the cartridge can cause mixing of the bed layers, air voids, and channeling, which could cause preferential air flow and allow contaminants to pass through without removal. An optimally packed bed mitigates these risks and ensures effective removal of contaminants from the air. In order to optimally pack each layer, vertical, horizontal, and orbital agitations were investigated and a packed bulk density was calculated for each method. Packed bulk density must be calculated for each media type to accommodate variations in particle size, shape, and density. Additionally, the optimal vibration parameters must be re-evaluated for each batch of media due to variations in particle size distribution between batches. For this application it was determined that orbital vibrations achieve an optimal pack density and the two media layers can be packed by the same method. Another finding was media with a larger size distribution of particles achieve an optimal bed pack easier than media with a smaller size distribution of particles.
NASA Astrophysics Data System (ADS)
Hyer, Edward J.; Reid, Jeffrey S.; Prins, Elaine M.; Hoffman, Jay P.; Schmidt, Christopher C.; Miettinen, Jukka I.; Giglio, Louis
2013-03-01
Biomass burning patterns over the Maritime Continent of Southeast Asia are examined using a new active fire detection product based on application of the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) to data from the imagers on the MTSAT geostationary satellites operated by the Japanese space agency JAXA. Data from MTSAT-1R and MTSAT-2 covering 34 months from September 2008 to July 2011 are examined for a study region consisting of Indonesia, Malaysia, and nearby environs. The spatial and temporal distributions of fires detected in the MTSAT WF_ABBA product are described and compared with active fire observations from MODIS MOD14 data. Land cover distributions for the two instruments are examined using a new 250 m land cover product from the National University of Singapore. The two products show broadly similar patterns of fire activity, land cover distribution of fires, and pixel fire radiative power (FRP). However, the MTSAT WF_ABBA data differ from MOD14 in important ways. Relative to MODIS, the MTSAT WF_ABBA product has lower overall detection efficiency, but more fires detected due to more frequent looks, a greater relative fraction of fires in forest and a lower relative fraction of fires in open areas, and significantly higher single-pixel retrieved FRP. The differences in land cover distribution and FRP between the MTSAT and MODIS products are shown to be qualitatively consistent with expectations based on pixel size and diurnal sampling. The MTSAT WF_ABBA data are used to calculate coverage-corrected diurnal cycles of fire for different regions within the study area. These diurnal cycles are preliminary but demonstrate that the fraction of diurnal fire activity sampled by the two MODIS sensors varies significantly by region and vegetation type. Based on the results from comparison of the two fire products, a series of steps is outlined to account for some of the systematic biases in each of these satellite products in order to produce a successful merged fire detection product.
Temporal-spatial distribution of American bison (Bison bison) in a tallgrass prairie fire mosaic
Schuler, K.L.; Leslie, David M.; Shaw, J.H.; Maichak, E.J.
2006-01-01
Fire and bison (Bison bison) are thought to be historically responsible for shaping prairie vegetation in North America. Interactions between temporal-spatial distributions of bison and prescribed burning protocols are important in current restoration of tallgrass prairies. We examined dynamics of bison distribution in a patch-burned tallgrass prairie in the south-central United States relative to bison group size and composition, and burn age and temporal distribution. Bison formed larger mixed groups during summer and smaller sexually segregated groups the rest of the year, and bison selected dormant-season burn patches in the 1st posture growing season most often during spring and summer. Large bison herds selecting recently burned areas resulted in seasonally variable and concentrated grazing pressure that may substantially alter site-specific vegetation. These dynamics must be considered when reintroducing bison and fire into tallgrass prairie because variable outcomes of floral richness and structural complexity are likely depending on temporal-spatial distribution of bison. ?? 2006 American Society of Mammalogists.
Zero Gravity Aircraft Testing of a Prototype Portable Fire Extinguisher for Use in Spacecraft
NASA Astrophysics Data System (ADS)
Butz, J.; Carriere, T.; Abbud-Madrid, A.; Easton, J.
2012-01-01
For the past five years ADA Technologies has been developing a portable fire extinguisher (PFE) for use in microgravity environments. This technology uses fine water mist (FWM) to effectively and efficiently extinguish fires representative of spacecraft hazards. Recently the FWM PFE was flown on a Zero-G (reduced gravity) aircraft to validate the performance of the technology in a microgravity environment. Test results demonstrated that droplet size distributions generated in the reduced gravity environment were in the same size range as data collected during normal gravity (1-g) discharges from the prototype PFE. Data taken in an obscured test configuration showed that the mist behind the obstacle was more dense in the low-g environment when compared to 1-g discharges. The mist behind the obstacle tended to smaller droplet sizes in both the low-g and 1-g test conditions.
Horn, Katherine C.; Eubanks, Micky D.; Siemann, Evan
2013-01-01
Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants. PMID:23776702
Using Size-Frequency Distributions to Analyze Fire Regimes in Florida
Thomas P. Holmes; Jeffrey P. Prestemon; John M. Pye; David T. Butry; D. Evan Mercer; Karen L. Abt
2004-01-01
Wildfire regimes in natural forest ecosystems have been characterized with powerÂlaw distributions. In this paper, we evaluated whether wildfire regimes in a human-dominated landscape were also consistent with powerÂlaw distributions. Our case study focused on wildfires in Florida, a state with rapid population growth and consequent rapid alteration of forest...
Characterization of fire regime in Sardinia (Italy)
NASA Astrophysics Data System (ADS)
Bacciu, V. M.; Salis, M.; Mastinu, S.; Masala, F.; Sirca, C.; Spano, D.
2012-12-01
In the last decades, a number of Authors highlighted the crucial role of forest fires within Mediterranean ecosystems, with impacts both negative and positive on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In Sardinia (Italy), the second largest island of the Mediterranean Basin, forest fires are perceived as one of the main environmental and social problems, and data are showing that the situation is worsening especially within the rural-urban peripheries and the increasing number of very large forest fires. The need for information concerning forest fire regime has been pointed out by several Authors (e.g. Rollins et al., 2002), who also emphasized the importance of understanding the factors (such as weather/climate, socio-economic, and land use) that determine spatial and temporal fire patterns. These would be used not only as a baseline to predict the climate change effect on forest fires, but also as a fire management and mitigation strategy. The main aim of this paper is, thus, to analyze the temporal and spatial patterns of fire occurrence in Sardinia (Italy) during the last three decades (1980-2010). For the analyzed period, fire statistics were provided by the Sardinian Forest Service (CFVA - Corpo Forestale e di Vigilanza Ambientale), while weather data for eight weather stations were obtained from the web site www.tutiempo.it. For each station, daily series of precipitation, mean, maximum and minimum temperature, relative humidity and wind speed were available. The present study firstly analyzed fire statistics (burned area and number of fires) according to the main fire regime characteristics (seasonality, fire return interval, fire incidence, fire size distribution). Then, fire and weather daily values were averaged to obtain monthly, seasonal and annual values, and a set of parametric and not parametric statistical tests were used to analyze the fire-weather relationships. Results showed a high inter- and intra-annual variability, also considering the different type of affected vegetation. As for other Mediterranean areas, a smaller number of large fires caused a high proportion of burned area. Land cover greatly influenced fire occurrence and fire size distribution across the landscape. Furthermore, fire activity (number of fires and area burned) showed significant correlations with weather variables, especially summer precipitation and wind, which seemed to drive the fire seasons and the fire propagation, respectively.
Self-organization, the cascade model, and natural hazards.
Turcotte, Donald L; Malamud, Bruce D; Guzzetti, Fausto; Reichenbach, Paola
2002-02-19
We consider the frequency-size statistics of two natural hazards, forest fires and landslides. Both appear to satisfy power-law (fractal) distributions to a good approximation under a wide variety of conditions. Two simple cellular-automata models have been proposed as analogs for this observed behavior, the forest fire model for forest fires and the sand pile model for landslides. The behavior of these models can be understood in terms of a self-similar inverse cascade. For the forest fire model the cascade consists of the coalescence of clusters of trees; for the sand pile model the cascade consists of the coalescence of metastable regions.
Self-organization, the cascade model, and natural hazards
Turcotte, Donald L.; Malamud, Bruce D.; Guzzetti, Fausto; Reichenbach, Paola
2002-01-01
We consider the frequency-size statistics of two natural hazards, forest fires and landslides. Both appear to satisfy power-law (fractal) distributions to a good approximation under a wide variety of conditions. Two simple cellular-automata models have been proposed as analogs for this observed behavior, the forest fire model for forest fires and the sand pile model for landslides. The behavior of these models can be understood in terms of a self-similar inverse cascade. For the forest fire model the cascade consists of the coalescence of clusters of trees; for the sand pile model the cascade consists of the coalescence of metastable regions. PMID:11875206
Effects of ignition location models on the burn patterns of simulated wildfires
Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.
2011-01-01
Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Henne, P. D.; Hawbaker, T. J.; Berryman, E.
2017-12-01
Annual area burned in the Rocky Mountains varies with climatic conditions. However, projecting long-term changes in wildfire presents an enduring challenge because climate also constrains vegetation and fuel availability. We combined an aridity-threshold fire model with the Landis-II dynamic landscape vegetation model (NECN extension) to project climate change impacts on vegetation, area burned, and ecosystem carbon balance in the Greater Yellowstone Ecosystem (GYE). We developed a fire model that relates drought stress to area burned by quantifying an aridity threshold separating large and small years in 15 ecoregions in the Intermountain West. A significant positive correlation (r2 = 0.97) exists between mean fire-season aridity and ecoregion-specific aridity thresholds. We simulated vegetation and fire dynamics in the GYE at 250 m spatial resolution with Landis-II, using projections from five climate models and two emissions scenarios for the period 1980-2100 AD. We determined if each simulation year exceeded the regional aridity threshold, then randomly drew the number of fires and size of individual fires from fire-size distributions from large or small fire years. Burned area increases dramatically in most climate scenarios, especially after 2060, when most years exceed the aridity threshold. Productivity gains due to rising temperatures partially offset biomass lost to fire, but C stocks plateau or decline after 2060 in most simulations as burned area increases, and drought stress causes post-fire regeneration to decline at low elevations. However, species level changes (e.g. expansion by drought-tolerant Pseuodotsuga menziesii) help maintain productivity in sites where water becomes limiting. Fire-adapted Pinus contorta occupies less total area, but a greater proportion of remaining forests, and Picea engelmannii and Abies lasiocarpa significantly decline. Although fire and climate change will alter species distributions and forest structure, our results suggest that the GYE can maintain a C sink through 2100. However, C stocks will likely shift to higher elevations, and forests will be less resilient to disturbance, in a warmer future. Our landscape-level approach identifies regions likely to maintain high conservation value and ecosystem services under multiple climate scenarios.
Development at the wildland-urban interface and the mitigation of forest-fire risk.
Spyratos, Vassilis; Bourgeron, Patrick S; Ghil, Michael
2007-09-04
This work addresses the impacts of development at the wildland-urban interface on forest fires that spread to human habitats. Catastrophic fires in the western United States and elsewhere make these impacts a matter of urgency for decision makers, scientists, and the general public. Using a simple fire-spread model, along with housing and vegetation data, we show that fire size probability distributions can be strongly modified by the density and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability and house density. Many actual fire landscapes in the United States appear to have spreading properties close to this transition. Thus, the density and flammability of buildings should be taken into account when assessing fire risk at the wildland-urban interface. Moreover, our results highlight ways for regulation at this interface to help mitigate fire risk.
Alvarado, Swanni T; Silva, Thiago Sanna Freire; Archibald, Sally
2018-07-15
Humans can alter fire dynamics in grassland systems by changing fire frequency, fire seasonality and fuel conditions. These changes have effects on vegetation structure and recovery, species composition, and ecosystem function. Understanding how human management can affect fire regimes is vital to detect potential changes in the resilience of plant communities, and to predict vegetation responses to human interventions. We evaluated the fire regimes of two recently protected areas in Madagascar (Ibity and Itremo NPA) and one in Brazil (Serra do Cipó NP) before and after livestock exclusion and fire suppression policies. We compare the pre- and post-management fire history in these areas and analyze differences in terms of total annual burned area, density of ignitions, burn scar size distribution, fire return period and seasonal fire distribution. More than 90% of total park areas were burned at least once during the studied period, for all parks. We observed a significant reduction in the number of ignitions for Ibity NPA and Serra do Cipó NP after livestock exclusion and active fire suppression, but no significant change in total burned area for each protected area. We also observed a seasonal shift in burning, with fires happening later in the fire season (October-November) after management intervention. However, the protected areas in Madagascar had shorter fire return intervals (3.23 and 1.82 years) than those in Brazil (7.91 years). Our results demonstrate that fire exclusion is unattainable, and probably unwarranted in tropical grassland conservation areas, but show how human intervention in fire and vegetation patterns can alter various aspects of the fire regimes. This information can help with formulating realistic and effective fire management policies in these valuable conservation areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
V. H. Bonnet; A. W. Schoettle; W. D. Shepperd
2004-01-01
In 2000, the Jasper fire in the Black Hills, SD, created a mosaic of burned and unburned patches of different sizes within the contiguous ponderosa pine forest. To study the spatial regeneration of ponderosa pine seedlings and the ecological gradients existing between burned and unburned areas two years after fire, we used a transect approach. We demonstrated that...
[Emission characteristics of PM10 from coal-fired industrial boiler].
Li, Chao; Li, Xing-Hua; Duan, Lei; Zhao, Meng; Duan, Jing-Chun; Hao, Ji-Ming
2009-03-15
Through ELPI (electrical low-pressure impactor) based dilution sampling system, the emission characteristics of PM10 and PM2.5 was studied experimentally at the inlet and outlet of dust catchers at eight different coal-fired industrial boilers. Results showed that a peak existed at around 0.12-0.20 microm of particle size for both number size distribution and mass size distribution of PM10 emitted from most of the boilers. Chemical composition analysis indicated that PM2.5 was largely composed of organic carbon, elementary carbon, and sulfate, with mass fraction of 3.7%-21.4%, 4.2%-24.6%, and 1.5%-55.2% respectively. Emission factors of PM10 and PM2.5 measured were 0.13-0.65 kg x t(-1) and 0.08-0.49 kg x t(-1) respectively for grate boiler using raw coal, and 0.24 kg x t(-1) and 0.22 kg x t(-1) for chain-grate boiler using briquette. In comparison, the PM2.5 emission factor of fluidized bed boiler is 1.14 kg x t(-1), much her than that of grate boiler. Due to high coal consumption and low efficiency of dust separator, coal-fired industrial boiler may become the most important source of PM10, and should be preferentially controlled in China.
NASA Astrophysics Data System (ADS)
Newman, W. I.; Turcotte, D. L.
2002-12-01
We have studied a hybrid model combining the forest-fire model with the site-percolation model in order to better understand the earthquake cycle. We consider a square array of sites. At each time step, a "tree" is dropped on a randomly chosen site and is planted if the site is unoccupied. When a cluster of "trees" spans the site (a percolating cluster), all the trees in the cluster are removed ("burned") in a "fire." The removal of the cluster is analogous to a characteristic earthquake and planting "trees" is analogous to increasing the regional stress. The clusters are analogous to the metastable regions of a fault over which an earthquake rupture can propagate once triggered. We find that the frequency-area statistics of the metastable regions are power-law with a negative exponent of two (as in the forest-fire model). This is analogous to the Gutenberg-Richter distribution of seismicity. This "self-organized critical behavior" can be explained in terms of an inverse cascade of clusters. Individual trees move from small to larger clusters until they are destroyed. This inverse cascade of clusters is self-similar and the power-law distribution of cluster sizes has been shown to have an exponent of two. We have quantified the forecasting of the spanning fires using error diagrams. The assumption that "fires" (earthquakes) are quasi-periodic has moderate predictability. The density of trees gives an improved degree of predictability, while the size of the largest cluster of trees provides a substantial improvement in forecasting a "fire."
NASA Technical Reports Server (NTRS)
Ingebo, Robert D.
1961-01-01
Single jets of ethanol were studied photomicrographically inside a rocket chamber as they broke up into sprays of drops which underwent simultaneous acceleration and vaporization with chemical reaction occurring in the surrounding combustion gas stream. In each rocket test-firing, liquid oxygen was used as the oxidant. Both drop velocity and drop size distribution data were obtained from photomicrographs of the ethanol drops taken with an ultra-high speed tracking camera developed at NASA, Lewis Research Center.
NASA Astrophysics Data System (ADS)
Salis, M.; Ager, A.; Arca, B.; Finney, M.; Bacciu, V. M.; Spano, D.; Duce, P.
2012-12-01
Spatial and temporal patterns of fire spread and behavior are dependent on interactions among climate, topography, vegetation and fire suppression efforts (Pyne et al. 1996; Viegas 2006; Falk et al. 2007). Humans also play a key role in determining frequency and spatial distribution of ignitions (Bar Massada et al, 2011), and thus influence fire regimes as well. The growing incidence of catastrophic wildfires has led to substantial losses for important ecological and human values within many areas of the Mediterranean basin (Moreno et al. 1998; Mouillot et al. 2005; Viegas et al. 2006a; Riaño et al. 2007). The growing fire risk issue has led to many new programs and policies of fuel management and risk mitigation by environmental and fire agencies. However, risk-based methodologies to help identify areas characterized by high potential losses and prioritize fuel management have been lacking for the region. Formal risk assessment requires the joint consideration of likelihood, intensity, and susceptibility, the product of which estimates the chance of a specific loss (Brillinger 2003; Society of Risk Analysis, 2006). Quantifying fire risk therefore requires estimates of a) the probability of a specific location burning at a specific intensity and location, and b) the resulting change in financial or ecological value (Finney 2005; Scott 2006). When large fires are the primary cause of damage, the application of this risk formulation requires modeling fire spread to capture landscape properties that affect burn probability. Recently, the incorporation of large fire spread into risk assessment systems has become feasible with the development of high performance fire simulation systems (Finney et al. 2011) that permit the simulation of hundreds of thousands of fires to generate fine scale maps of burn probability, flame length, and fire size, while considering the combined effects of weather, fuels, and topography (Finney 2002; Andrews et al. 2007; Ager and Finney 2009; Finney et al. 2009; Salis et al. 2012 accepted). In this work, we employed wildfire simulation methods to quantify wildfire exposure to human and ecological values for the island of Sardinia, Italy. The work was focused on the risk and exposure posed by large fires (e.g. 100 - 10,000 ha), and considers historical weather, ignition patterns and fuels. We simulated 100,000 fires using burn periods that replicated the historical size distribution on the Island, and an ignition probability grid derived from historic ignition data. We then examine spatial variation in three exposure components (burn probability, flame length, fire size) among important human and ecological values. The results allowed us to contract exposure among and within the various features examined, and highlighted the importance of human factors in shaping wildfire exposure in Sardinia. The work represents the first application of burn probability modeling in the Mediterranean region, and sets the stage for expanded work in the region to quantify risk from large fires
NASA Astrophysics Data System (ADS)
Barros, Ana; Ager, Alan; Preisler, Haiganoush; Day, Michelle; Spies, Tom; Bolte, John
2015-04-01
Agent-based models (ABM) allow users to examine the long-term effects of agent decisions in complex systems where multiple agents and processes interact. This framework has potential application to study the dynamics of coupled natural and human systems where multiple stimuli determine trajectories over both space and time. We used Envision, a landscape based ABM, to analyze long-term wildfire dynamics in a heterogeneous, multi-owner landscape in Oregon, USA. Landscape dynamics are affected by land management policies, actors decisions, and autonomous processes such as vegetation succession, wildfire, or at a broader scale, climate change. Key questions include: 1) How are landscape dynamics influenced by policies and institutions, and 2) How do land management policies and actor decisions interact to produce intended and unintended consequences with respect to wildfire on fire-prone landscapes. Applying Envision to address these questions required the development of a wildfire module that could accurately simulate wildfires on the heterogeneous landscapes within the study area in terms of replicating historical fire size distribution, spatial distribution and fire intensity. In this paper we describe the development and testing of a mechanistic fire simulation system within Envision and application of the model on a 3.2 million fire prone landscape in central Oregon USA. The core fire spread equations use the Minimum Travel Time algorithm developed by M Finney. The model operates on a daily time step and uses a fire prediction system based on the relationship between energy release component and historical fires. Specifically, daily wildfire probabilities and sizes are generated from statistical analyses of historical fires in relation to daily ERC values. The MTT was coupled with the vegetation dynamics module in Envision to allow communication between the respective subsystem and effectively model fire effects and vegetation dynamics after a wildfire. Canopy and surface fuels are modeled in a state and transition framework that accounts for succession, fire effects, and fuels management. Fire effects are modeled using simulated fire intensity (flame length) to calculate expected vegetation impacts for each vegetation state. This talk will describe the mechanics of the simulation system along with initial results of Envision simulations for the Central Oregon study area that explore the dynamics of wildfire, fuel management, and succession over time.
Lu, Zhixin; Squires, Shane; Ott, Edward; Girvan, Michelle
2016-12-01
We study the firing dynamics of a discrete-state and discrete-time version of an integrate-and-fire neuronal network model with both excitatory and inhibitory neurons. When the integer-valued state of a neuron exceeds a threshold value, the neuron fires, sends out state-changing signals to its connected neurons, and returns to the resting state. In this model, a continuous phase transition from non-ceaseless firing to ceaseless firing is observed. At criticality, power-law distributions of avalanche size and duration with the previously derived exponents, -3/2 and -2, respectively, are observed. Using a mean-field approach, we show analytically how the critical point depends on model parameters. Our main result is that the combined presence of both inhibitory neurons and integrate-and-fire dynamics greatly enhances the robustness of critical power-law behavior (i.e., there is an increased range of parameters, including both sub- and supercritical values, for which several decades of power-law behavior occurs).
Manies, K.L.; Harden, J.W.; Veldhuis, Hugo; Trumbore, Sue
2006-01-01
The U.S. Geological Survey project Fate of Carbon in Alaskan Landscapes (FOCAL) is studying the effect of fire and soil drainage on soil carbon storage in the boreal forest. As such this group was invited to be a part of a NSF-funded project (Fire, Ecosystem and Succession - Experiment Boreal or FIRES-ExB) to study the carbon balance of sites that varied in age (time since fire) and soil drainage in the Thompson, Manitoba, Canada region. This report describes the location of our FIRES-ExB sampling sites as well as the procedures used to describe, sample, and analyze the soils. This report also contains data tables with sample related information including, but not limited to, field descriptions, bulk density, particle size distribution, moisture content, carbon (C) concentration, nitrogen (N) concentration, isotopic data for C, and major, minor and trace elemental concentration.
Implications of the spatial dynamics of fire spread for the bistability of savanna and forest.
Schertzer, E; Staver, A C; Levin, S A
2015-01-01
The role of fire in expanding the global distribution of savanna is well recognized. Empirical observations and modeling suggest that fire spread has a threshold response to fuel-layer continuity, which sets up a positive feedback that maintains savanna-forest bistability. However, modeling has so far failed to examine fire spread as a spatial process that interacts with vegetation. Here, we use simple, well-supported assumptions about fire spread as an infection process and its effects on trees to ask whether spatial dynamics qualitatively change the potential for savanna-forest bistability. We show that the spatial effects of fire spread are the fundamental reason that bistability is possible: because fire spread is an infection process, it exhibits a threshold response to fuel continuity followed by a rapid increase in fire size. Other ecological processes affecting fire spread may also contribute including temporal variability in demography or fire spread. Finally, including the potential for spatial aggregation increases the potential both for savanna-forest bistability and for savanna and forest to coexist in a landscape mosaic.
Simulation of the Intercontinental Transport, Aging, and Removal of a Boreal Fire Smoke Plume
NASA Astrophysics Data System (ADS)
Ghan, S. J.; Chapman, E. G.; Easter, R. C.; Reid, J. S.; Justice, C.
2003-12-01
Back trajectories suggest that an elevated absorbing aerosol plume observed over Oklahoma in May 2003 can be traced to intense forest fires in Siberia two weeks earlier. The Fire Locating and Modeling of Burning Emissions (FLAMBE) product is used to estimate smoke emissions from those fires. The Model for Integrated Research on Atmospheric Model Exchanges (MIRAGE) is used to simulate the transport, aging, radiative properties, and removal of the aerosol. The simulated aerosol optical depth is compared with satellite retrievals, and the vertical structure of the plume is compared with in situ measurements. Sensitivity experiments are performed to determine the sensitivity of the simulated plume to uncertainty in the emissions vertical profile, mass flux, size distribution, and composition.
Structures observed on the spot radiance fields during the FIRE experiment
NASA Technical Reports Server (NTRS)
Seze, Genevieve; Smith, Leonard; Desbois, Michel
1990-01-01
Three Spot images taken during the FIRE experiment on stratocumulus are analyzed. From this high resolution data detailed observations of the true cloud radiance field may be made. The structure and inhomogeneity of these radiance fields hold important implications for the radiation budget, while the fine scale structure in radiance field provides information on cloud dynamics. Wieliki and Welsh, and Parker et al., have quantified the inhomogeneities of the cumulus clouds through a careful examination of the distribution of cloud (and hole) size as functions of an effective cloud diameter and radiance threshold. Cahalan (1988) has compared for different cloud types of (stratocumulus, fair weather cumulus, convective clouds in the ITCZ) the distributions of clouds (and holes) sizes, the relation between the size and the perimeter of these clouds (and holes), and examining the possibility of scale invariance. These results are extended from LANDSAT resolution (57 m and 30 m) to the Spot resolution (10 m) resolution in the case of boundary layer clouds. Particular emphasis is placed on the statistics of zones of high and low reflectivity as a function of a threshold reflectivity.
Löb, D; Lengert, N; Chagin, V O; Reinhart, M; Casas-Delucchi, C S; Cardoso, M C; Drossel, B
2016-04-07
DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase.
Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity.
Trauernicht, Clay; Brook, Barry W; Murphy, Brett P; Williamson, Grant J; Bowman, David M J S
2015-05-01
Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance.
Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity
Trauernicht, Clay; Brook, Barry W; Murphy, Brett P; Williamson, Grant J; Bowman, David M J S
2015-01-01
Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance. PMID:26140206
NASA Astrophysics Data System (ADS)
Liang, S.; Hurteau, M. D.; Westerling, A. L.
2014-12-01
The Sierra Nevada Mountains are occupied by a diversity of forest types that sort by elevation. The interaction of changing climate and altered disturbance regimes (e.g. fire) has the potential to drive changes in forest distribution as a function of species-specific response. Quantifying the effects of these drivers on species distributions and productivity under future climate-fire interactions is necessary for informing mitigation and adaptation efforts. In this study, we assimilated forest inventory and soil survey data and species life history traits into a landscape model, LANDIS-II, to quantify the response of forest dynamics to the interaction of climate change and large wildfire frequency in the Sierra Nevada. We ran 100-year simulations forced with historical climate and climate projections from three models (GFDL, CNRM and CCSM3) driven by the A2 emission scenario. We found that non-growing season NPP is greatly enhanced by 15%-150%, depending on the specific climate projection. The greatest increase occurs in subalpine forests. Species-specific response varied as a function of life history characteristics. The distribution of drought and fire-tolerant species, such as ponderosa pine, expanded by 7.3-9.6% from initial conditions, while drought and fire-intolerant species, such as white fir, showed little change in the absence of fire. Changes in wildfire size and frequency influence species distributions by altering the successional stage of burned patches. The range of responses to different climate models demonstrates the sensitivity of these forests to climate variability. The scale of climate projections relative to the scale of forest simulations presents a source of uncertainty, particularly at the ecotone between forest types and for identifying topographically mediated climate refugia. Improving simulations will likely require higher resolution climate projections.
Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size
Ragsdale, Alexandria K.; McCoy, Earl D.; Mushinsky, Henry R.
2016-01-01
Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. PMID:26976940
Estimating the direct radiative forcing due to haze from the 1997 forest fires in Indonesia
NASA Astrophysics Data System (ADS)
Davison, P. S.; Roberts, D. L.; Arnold, R. T.; Colvile, R. N.
2004-05-01
The El Niño event of 1997-1998 caused a severe reduction of rainfall in Indonesia that promoted the spread of forest fires, leading to a pervasive haze in the region. Here we use fire coverage data from the 1997 World Fire Atlas with a review of other available data and literature to estimate the distribution of particulate emissions from August to November 1997 and the particle size and radiative properties. Our preferred estimate of the total particulate emissions is approximately 41 Tg. The emissions have been used to drive an atmospheric model to simulate the distribution of the haze and its direct radiative effect, with and without allowing for the effects of the smoke on the atmospheric evolution. Model diagnostics of the aerosol and its radiative impact are compared with measurements and output from other models. Large decreases in the incident solar flux at the surface are obtained in the region. The simulated global mean shortwave radiative forcing at the top of the atmosphere, averaged over the 4 months, is -0.32 Wm-2. The accuracy of this calculation is discussed, and the importance of the Indonesian fires in particular and of biomass burning in general is assessed.
Behaviour of Reinforced Concrete Columns of Various Cross-Sections Subjected to Fire
NASA Astrophysics Data System (ADS)
Balaji, Aneesha; Muhamed Luquman, K.; Nagarajan, Praveen; Madhavan Pillai, T. M.
2016-09-01
Fire resistance is one of the crucial design regulations which are now mandatory in most of the design codes. Therefore, a thorough knowledge of behaviour of structures exposed to fire is required in this aspect. Columns are the most vulnerable structural member to fire as it can be exposed to fire from all sides. However, the data available for fire resistant design for columns are limited. Hence the present work is focused on the effect of cross-sectional shape of column in fire resistance design. The various cross-sections considered are Square, Ell (L), Tee (T), and Plus (`+') shape. Also the effect of size and shape and distribution of steel reinforcement on fire resistance of columns is studied. As the procedure for determining fire resistance is not mentioned in Indian Standard code IS 456 (2000), the simplified method (500 °C isotherm method) recommended in EN 1992-1-2:2004 (E) (Eurocode 2) is adopted. The temperature profiles for various cross-sections are developed using finite element method and these profiles are used to predict fire resistance capability of compression members. The fire resistance based on both numerical and code based methods are evaluated and compared for various types of cross-section.
Aged boreal biomass-burning aerosol size distributions from BORTAS 2011
NASA Astrophysics Data System (ADS)
Sakamoto, K. M.; Allan, J. D.; Coe, H.; Taylor, J. W.; Duck, T. J.; Pierce, J. R.
2015-02-01
Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number-size distributions in climate model inventories lead to uncertainties in the CCN (cloud condensation nuclei) concentrations and forcing estimates derived from these models. The BORTAS-B (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellite) measurement campaign was designed to sample boreal biomass-burning outflow over eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size distribution of aged biomass-burning emissions (aged ~ 1-2 days) from boreal wildfires in northwestern Ontario. The composite median size distribution yields a single dominant accumulation mode with Dpm = 230 nm (number-median diameter) and σ = 1.5, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA / ΔCO) along the path of Flight b622 show values of 0.09-0.17 μg m-3 ppbv-1 (parts per billion by volume) with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA (organic aerosol) production/evaporation within the aged plume over the sampling period (plume age: 1-2 days), though it does not preclude OA production/loss at earlier stages. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution corresponding to the BORTAS-B aged size distributions. The model was restricted to coagulation and dilution processes based on the insignificant net OA production/evaporation derived from the ΔOA / ΔCO enhancement ratios. We estimate that the young-plume median diameter was in the range of 59-94 nm with modal widths in the range of 1.7-2.8 (the ranges are due to uncertainty in the entrainment rate). Thus, the size of the freshly emitted particles is relatively unconstrained due to the uncertainties in the plume dilution rates.
Some experiments related to L-star instability in rocket motors
NASA Technical Reports Server (NTRS)
Kumar, R. N.; Mcnamara, R. P.
1973-01-01
The role of solid phase heterogeneity on the low-pressure L-star instability of nonmetallized AP/PBAN propellants is explored. Four particle size distributions are employed in propellants that are otherwise identical. Over one hundred test firings were conducted in the 21/2 in. diameter L-star burner. Pressure time histories in the chamber and color movies of two firings constitute the raw data. An economical firing program was used which enables the interesting range of L-star values to be covered during a single firing (at a set mean pressure), through the variations in the depleting propellant volume. Time-independent combustion, Helmholtz mode, chuff mode, and the pressure-burst phenomena are revealed as the principal signatures. Of these, the Helmholtz mode is found to be the most ordered form of instability.
Articulated Suspension Without Springs
NASA Technical Reports Server (NTRS)
Bickler, Donald B.
1990-01-01
Wheels negotiate bumps and holes with minimal tilting of vehicle body. In new suspension, wheel climbs obstacle as high as 1 1/2 times its diameter without excessive tilting of chassis. Provides highly stable ride over rough ground for such vehicles as wheelchairs, military scout cars, and police and fire robots. System of levers distributes weight to wheels. Sized to distribute equal or other desired portions of load among wheels.
Repeated Habitat Disturbances by Fire Decrease Local Effective Population Size.
Schrey, Aaron W; Ragsdale, Alexandria K; McCoy, Earl D; Mushinsky, Henry R
2016-07-01
Effective population size is a fundamental parameter in population genetics, and factors that alter effective population size will shape the genetic characteristics of populations. Habitat disturbance may have a large effect on genetic characteristics of populations by influencing immigration and gene flow, particularly in fragmented habitats. We used the Florida Sand Skink (Plestiodon reynoldsi) to investigate the effect of fire-based habitat disturbances on the effective population size in the highly threatened, severely fragmented, and fire dependent Florida scrub habitat. We screened 7 microsatellite loci in 604 individuals collected from 12 locations at Archbold Biological Station. Archbold Biological Station has an active fire management plan and detailed records of fires dating to 1967. Our objective was to determine how the timing, number, and intervals between fires affect effective population size, focusing on multiple fires in the same location. Effective population size was higher in areas that had not been burned for more than 10 years and decreased with number of fires and shorter time between fires. A similar pattern was observed in abundance: increasing abundance with time-since-fire and decreasing abundance with number of fires. The ratio of effective population size to census size was higher at sites with more recent fires and tended to decrease with time-since-last-fire. These results suggest that habitat disturbances, such as fire, may have a large effect in the genetic characteristics of local populations and that Florida Sand Skinks are well adapted to the natural fire dynamics required to maintain Florida scrub. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Relevance of wildfires on dust emissions via interaction with near-surface wind pattern
NASA Astrophysics Data System (ADS)
Wagner, Robert; Jähn, Michael; Schepanski, Kerstin
2017-04-01
Mineral dust is a key player in the Earth system and shows diverse impacts on the radiation budget, cloud microphysics, marine and terrestrial ecosystems. Eventually, it also affects our modern way of life. Not only dust emissions from barren or unvegetated soil surfaces like deserts or uncultivated croplands are important sources of airborne mineral dust. Also, during fire events dust is entrained into the atmosphere and appears to contribute noteworthy to the atmospheric dust burden. The underlying process, which drives dust entrainment during fires, is the so-called pyro-convection. The high temperatures in the center of a fire result in an upward motion of the heated air. Subsequently, air flows towards the fire replacing the raising air. The resulting accelerated winds are able to mobilize soil and dust particles up to a size of several millimeters, depending of both the size and the strength of the fire. Several measurements have shown that up to 80% of the mass fraction of the emitted particles during natural or prescribed fires is related to soil or dust particles. The particles are then mixed externally with the combustion aerosols into the convective updraft and were finally inject into altitudes above the planetary boundary layer where they can be distributed and transported over long distances by the atmospheric circulation. To investigate the impacts of such fires on the near-surface wind pattern and the potential for dust emissions via exceeding typical threshold velocities, high resolved Large-Eddy Simulations (LES) with the All Scale Atmospheric Model (ASAM) were executed. In the framework of this study, the influences of different fire properties (fire intensity, size, and shape) and different atmospheric conditions on the strength and extent of fire-related winds and finally their relevance for dust emissions were investigated using sensitivity studies. Prescribed fires are omnipresent during dry seasons and pyro-convection is a mechanism entraining dust particles into boundary layer. As the quantity of dust emitted during fire events is still unclear, the results presented here will support the development of a parameterization of fire-related dust entrainment for meso-scale models. This will allow an estimation of such fire-related dust emissions on a continental scale and can finally reduce the uncertainty in the aerosol-climate feedback.
Evaluating post-wildfire hydrologic recovery using ParFlow in southern California
NASA Astrophysics Data System (ADS)
Lopez, S. R.; Kinoshita, A. M.; Atchley, A. L.
2016-12-01
Wildfires are naturally occurring hazards that can have catastrophic impacts. They can alter the natural processes within a watershed, such as surface runoff and subsurface water storage. Generally, post-fire hydrologic models are either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models are useful in providing runoff measurements at the watershed outlet; however, do not provide distributed hydrologic simulation at each point within the watershed. This research demonstrates how ParFlow, a three-dimensional, distributed hydrologic model can simulate post-fire hydrologic processes by representing soil burn severity (via hydrophobicity) and vegetation recovery as they vary both spatially and temporally. Using this approach, we are able to evaluate the change in post-fire water components (surface flow, lateral flow, baseflow, and evapotranspiration). This model is initially developed for a hillslope in Devil Canyon, burned in 2003 by the Old Fire in southern California (USA). The domain uses a 2m-cell size resolution over a 25 m by 25 m lateral extent. The subsurface reaches 2 m and is assigned a variable cell thickness, allowing an explicit consideration of the soil burn severity throughout the stages of recovery and vegetation regrowth. Vegetation regrowth is incorporated represented by satellite-based Enhanced Vegetation Index (EVI) products. The pre- and post-fire surface runoff, subsurface storage, and surface storage interactions are evaluated and will be used as a basis for developing a watershed-scale model. Long-term continuous simulations will advance our understanding of post-fire hydrological partitioning between water balance components and the spatial variability of watershed processes, providing improved guidance for post-fire watershed management.
The influence of wildfires on aerosol size distributions in rural areas.
Alonso-Blanco, E; Calvo, A I; Fraile, R; Castro, A
2012-01-01
The number of particles and their size distributions were measured in a rural area, during the summer, using a PCASP-X. The aim was to study the influence of wildfires on particle size distributions. The comparative studies carried out reveal an average increase of around ten times in the number of particles in the fine mode, especially in sizes between 0.10 and 0.14 μm, where the increase is of nearly 20 times. An analysis carried out at three different points in time--before, during, and after the passing of the smoke plume from the wildfires--shows that the mean geometric diameter of the fine mode in the measurements affected by the fire is smaller than the one obtained in the measurements carried out immediately before and after (0.14 μm) and presents average values of 0.11 μm.
The Influence of Wildfires on Aerosol Size Distributions in Rural Areas
Alonso-Blanco, E.; Calvo, A. I.; Fraile, R.; Castro, A.
2012-01-01
The number of particles and their size distributions were measured in a rural area, during the summer, using a PCASP-X. The aim was to study the influence of wildfires on particle size distributions. The comparative studies carried out reveal an average increase of around ten times in the number of particles in the fine mode, especially in sizes between 0.10 and 0.14 μm, where the increase is of nearly 20 times. An analysis carried out at three different points in time—before, during, and after the passing of the smoke plume from the wildfires—shows that the mean geometric diameter of the fine mode in the measurements affected by the fire is smaller than the one obtained in the measurements carried out immediately before and after (0.14 μm) and presents average values of 0.11 μm. PMID:22629191
Temporal scaling behavior of forest and urban fires
NASA Astrophysics Data System (ADS)
Wang, J.; Song, W.; Zheng, H.; Telesca, L.
2009-04-01
It has been found that many natural systems are characterized by scaling behavior. In such systems natural factors dominate the event dynamics. Forest fires in different countries have been found to exhibit frequency-size power law over many orders of magnitude and with similar value of parameters. But in countries with high population density such as China and Japan, more than 95% of the forest fire disasters are caused by human activities. Furthermore, with the development of society, the wildland-urban interface (WUI) area is becoming more and more populated, and the forest fire is much connected with urban fire. Therefore exploring the scaling behavior of fires dominated by human-related factors is very challenging. The present paper explores the temporal scaling behavior of forest fires and urban fires in Japan with mathematical methods. Two factors, Allan factor (AF) and Fano factor (FF) are used to investigate time-scaling of fire systems. It is found that the FF for both forest fires and urban fires increases linearly in log-log scales, and this indicates that it behaves as a power-law for all the investigated timescales. From the AF plot a 7 days cycle is found, which indicates a weekly cycle. This may be caused by human activities which has a weekly periodicity because on weekends people usually have more outdoor activities, which may cause more hidden trouble of fire disasters. Our findings point out that although the human factors are the main cause, both the forest fires and urban fires exhibit time-scaling behavior. At the same time, the scaling exponents for urban fires are larger than forest fires, signifying a more intense clustering. The reason may be that fires are affected not only by weather condition, but also by human activities, which play a more important role for urban fires than forest fires and have a power law distribution and scaling behavior. Then some work is done to the relative humidity. Similar distribution law characterizes the relative humidity. The AF plot and FF plot of relative humidity validate the existence of a strong link between weather and fires, and it is very likely that the daily humidity cycle determines the daily fire periodicity.
Cloud Microphysics and Absorption Validation
NASA Technical Reports Server (NTRS)
Ackerman, Steven
2002-01-01
Vertical distributions of particle size and habit were developed from in-situ data collected from three midlatitude cirrus field campaigns (FIRE-1, FIRE-2, and ARM IOP). These new midlatitude microphysical models were used to develop new cirrus scattering models at a number of wavelengths appropriate for use with the MODIS imager (Nasiri et al. 2002). This was the first successful collaborative effort between all the investigators on this proposal. Recent efforts have extended the midlatitude cirrus cloud analyses to tropical cirrus, using in-situ data collected during the Tropical Rainfall Measurement Mission (TRMM) Kwajalein field campaign in 1999. We note that there are critical aspects to the work: a) Improvement in computing the scattering and radiative properties of ice crystals; b) Requirement for copious amounts of cirrus in-situ data, presented in terms of both particle size and habit distributions; c) Development of cirrus microphysical and optical models for various satellite, aircraft, and ground-based instruments based on the theoretical calculations and in-situ measurements; d) Application to satellite data.
Bukowski, Beth E; Baker, William L
2013-04-01
Sagebrush landscapes provide habitat for Sage-Grouse and other sagebrush obligates, yet historical fire regimes and the structure of historical sagebrush landscapes are poorly known, hampering ecological restoration and management. To remedy this, General Land Office Survey (GLO) survey notes were used to reconstruct over two million hectares of historical vegetation for four sagebrush-dominated (Artemisia spp.) study areas in the western United States. Reconstructed vegetation was analyzed for fire indicators used to identify historical fires and reconstruct historical fire regimes. Historical fire-size distributions were inverse-J shaped, and one fire > 100 000 ha was identified. Historical fire rotations were estimated at 171-342 years for Wyoming big sagebrush (A. tridentata ssp. wyomingensis) and 137-217 years for mountain big sagebrush (A. tridentata ssp. vaseyana). Historical fire and patch sizes were significantly larger in Wyoming big sagebrush than mountain big sagebrush, and historical fire rotations were significantly longer in Wyoming big sagebrush than mountain big sagebrush. Historical fire rotations in Wyoming were longer than those in other study areas. Fine-scale mosaics of burned and unburned area and larger unburned inclusions within fire perimeters were less common than in modern fires. Historical sagebrush landscapes were dominated by large, contiguous areas of sagebrush, though large grass-dominated areas and finer-scale mosaics of grass and sagebrush were also present in smaller amounts. Variation in sagebrush density was a common source of patchiness, and areas classified as "dense" made up 24.5% of total sagebrush area, compared to 16.3% for "scattered" sagebrush. Results suggest significant differences in historical and modern fire regimes. Modern fire rotations in Wyoming big sagebrush are shorter than historical fire rotations. Results also suggest that historical sagebrush landscapes would have fluctuated, because of infrequent episodes of large fires and long periods of recovery and maturity. Due to fragmentation of sagebrush landscapes, the large, contiguous expanses of sagebrush that dominated historically are most at risk and in need of conservation, including both dense and scattered sagebrush. Fire suppression in Wyoming big sagebrush may also be advisable, as modern fire rotations are shorter than their historical counterparts.
NASA Astrophysics Data System (ADS)
Ogulei, David; Hopke, Philip K.; Zhou, Liming; Patrick Pancras, J.; Nair, Narayanan; Ondov, John M.
Several multivariate data analysis methods have been applied to a combination of particle size and composition measurements made at the Baltimore Supersite. Partial least squares (PLS) was used to investigate the relationship (linearity) between number concentrations and the measured PM2.5 mass concentrations of chemical species. The data were obtained at the Ponca Street site and consisted of six days' measurements: 6, 7, 8, 18, 19 July, and 21 August 2002. The PLS analysis showed that the covariance between the data could be explained by 10 latent variables (LVs), but only the first four of these were sufficient to establish the linear relationship between the two data sets. More LVs could not make the model better. The four LVs were found to better explain the covariance between the large sized particles and the chemical species. A bilinear receptor model, PMF2, was then used to simultaneously analyze the size distribution and chemical composition data sets. The resolved sources were identified using information from number and mass contributions from each source (source profiles) as well as meteorological data. Twelve sources were identified: oil-fired power plant emissions, secondary nitrate I, local gasoline traffic, coal-fired power plant, secondary nitrate II, secondary sulfate, diesel emissions/bus maintenance, Quebec wildfire episode, nucleation, incinerator, airborne soil/road-way dust, and steel plant emissions. Local sources were mostly characterized by bi-modal number distributions. Regional sources were characterized by transport mode particles (0.2- 0.5μm).
NASA Astrophysics Data System (ADS)
Nurfaidhi Rizalman, Ahmad; Tahir, Ng Seong Yap Mahmood Md; Mohammad, Shahrin
2018-03-01
Concrete filled hollow steel section column have been widely accepted by structural engineers and designers for high rise construction due to the benefits of combining steel and concrete. The advantages of concrete filled hollow steel section column include higher strength, ductility, energy absorption capacity, and good structural fire resistance. In this paper, comparison on the fire performance between circular and square concrete filled hollow steel section column is established. A three-dimensional finite element package, ABAQUS, was used to develop the numerical model to study the temperature development, critical temperature, and fire resistance time of the selected composite columns. Based on the analysis and comparison of typical parameters, the effect of equal cross-sectional size for both steel and concrete, concrete types, and thickness of external protection on temperature distribution and structural fire behaviour of the columns are discussed. The result showed that concrete filled hollow steel section column with circular cross-section generally has higher fire resistance than the square section.
Fulé, Peter Z.; Swetnam, Thomas W.; Brown, Peter M.; Falk, Donald A.; Peterson, David L.; Allen, Craig D.; Aplet, Gregory H.; Battaglia, Mike A.; Binkley, Dan; Farris, Calvin; Keane, Robert E.; Margolis, Ellis Q.; Grissino-Mayer, Henri; Miller, Carol; Sieg, Carolyn Hull; Skinner, Carl; Stephens, Scott L.; Taylor, Alan
2014-01-01
Reconstructions of dry western US forests in the late 19th century in Arizona, Colorado and Oregon based on General Land Office records were used by Williams & Baker (2012; Global Ecology and Biogeography, 21, 1042–1052; hereafter W&B) to infer past fire regimes with substantial moderate and high-severity burning. The authors concluded that present-day large, high-severity fires are not distinguishable from historical patterns. We present evidence of important errors in their study. First, the use of tree size distributions to reconstruct past fire severity and extent is not supported by empirical age–size relationships nor by studies that directly quantified disturbance history in these forests. Second, the fire severity classification of W&B is qualitatively different from most modern classification schemes, and is based on different types of data, leading to an inappropriate comparison. Third, we note that while W&B asserted ‘surprising’ heterogeneity in their reconstructions of stand density and species composition, their data are not substantially different from many previous studies which reached very different conclusions about subsequent forest and fire behaviour changes. Contrary to the conclusions of W&B, the preponderance of scientific evidence indicates that conservation of dry forest ecosystems in the western United States and their ecological, social and economic value is not consistent with a present-day disturbance regime of large, high-severity fires, especially under changing climate
Trends and causes of severity, size, and number of fires in northwestern California, USA
J. D. Miller; Carl Skinner; H. D. Safford; Eric E. Knapp; C. M. Ramirez
2012-01-01
Research in the last several years has indicated that fire size and frequency are on the rise in western U.S. forests. Although fire size and frequency are important, they do not necessarily scale with ecosystem effects of fire, as different ecosystems have different ecological and evolutionary relationships with fire. Our study assessed trends and patterns in fire...
NASA Astrophysics Data System (ADS)
Sofiev, Mikhail; Soares, Joana; Kouznetsov, Rostislav; Vira, Julius; Prank, Marje
2016-04-01
Top-down emission estimation via inverse dispersion modelling is used for various problems, where bottom-up approaches are difficult or highly uncertain. One of such areas is the estimation of emission from wild-land fires. In combination with dispersion modelling, satellite and/or in-situ observations can, in principle, be used to efficiently constrain the emission values. This is the main strength of the approach: the a-priori values of the emission factors (based on laboratory studies) are refined for real-life situations using the inverse-modelling technique. However, the approach also has major uncertainties, which are illustrated here with a few examples of the Integrated System for wild-land Fires (IS4FIRES). IS4FIRES generates the smoke emission and injection profile from MODIS and SEVIRI active-fire radiative energy observations. The emission calculation includes two steps: (i) initial top-down calibration of emission factors via inverse dispersion problem solution that is made once using training dataset from the past, (ii) application of the obtained emission coefficients to individual-fire radiative energy observations, thus leading to bottom-up emission compilation. For such a procedure, the major classes of uncertainties include: (i) imperfect information on fires, (ii) simplifications in the fire description, (iii) inaccuracies in the smoke observations and modelling, (iv) inaccuracies of the inverse problem solution. Using examples of the fire seasons 2010 in Russia, 2012 in Eurasia, 2007 in Australia, etc, it is pointed out that the top-down system calibration performed for a limited number of comparatively moderate cases (often the best-observed ones) may lead to errors in application to extreme events. For instance, the total emission of 2010 Russian fires is likely to be over-estimated by up to 50% if the calibration is based on the season 2006 and fire description is simplified. Longer calibration period and more sophisticated parameterization (including the smoke injection model and distinguishing all relevant vegetation types) can improve the predictions. The other significant parameter, so far weakly addressed in fire emission inventories, is the size spectrum of the emitted aerosols. Direct size-resolving measurements showed, for instance, that smoke from smouldering fires has smaller particles as compares with smoke from flaming fires. Due to dependence of the smoke optical thickness on the size distribution, such variability can lead to significant changes in the top-down calibration step. Experiments with IS4FIRES-SILAM system manifested up to a factor of two difference in AOD, depending on the assumption on particle spectrum.
NASA Astrophysics Data System (ADS)
Araya, Samuel N.; Fogel, Marilyn L.; Asefaw Berhe, Asmeret
2017-02-01
Fire is a major driver of soil organic matter (SOM) dynamics, and contemporary global climate change is changing global fire regimes. We conducted laboratory heating experiments on soils from five locations across the western Sierra Nevada climosequence to investigate thermal alteration of SOM properties and determine temperature thresholds for major shifts in SOM properties. Topsoils (0 to 5 cm depth) were exposed to a range of temperatures that are expected during prescribed and wild fires (150, 250, 350, 450, 550, and 650 °C). With increase in temperature, we found that the concentrations of carbon (C) and nitrogen (N) decreased in a similar pattern among all five soils that varied considerably in their original SOM concentrations and mineralogies. Soils were separated into discrete size classes by dry sieving. The C and N concentrations in the larger aggregate size fractions (2-0.25 mm) decreased with an increase in temperature, so that at 450 °C the remaining C and N were almost entirely associated with the smaller aggregate size fractions ( < 0.25 mm). We observed a general trend of 13C enrichment with temperature increase. There was also 15N enrichment with temperature increase, followed by 15N depletion when temperature increased beyond 350 °C. For all the measured variables, the largest physical, chemical, elemental, and isotopic changes occurred at the mid-intensity fire temperatures, i.e., 350 and 450 °C. The magnitude of the observed changes in SOM composition and distribution in three aggregate size classes, as well as the temperature thresholds for critical changes in physical and chemical properties of soils (such as specific surface area, pH, cation exchange capacity), suggest that transformation and loss of SOM are the principal responses in heated soils. Findings from this systematic investigation of soil and SOM response to heating are critical for predicting how soils are likely to be affected by future climate and fire regimes.
Plume Particle Collection and Sizing from Static Firing of Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Sambamurthi, Jay K.
1995-01-01
Thermal radiation from the plume of any solid rocket motor, containing aluminum as one of the propellant ingredients, is mainly from the microscopic, hot aluminum oxide particles in the plume. The plume radiation to the base components of the flight vehicle is primarily determined by the plume flowfield properties, the size distribution of the plume particles, and their optical properties. The optimum design of a vehicle base thermal protection system is dependent on the ability to accurately predict this intense thermal radiation using validated theoretical models. This article describes a successful effort to collect reasonably clean plume particle samples from the static firing of the flight simulation motor (FSM-4) on March 10, 1994 at the T-24 test bed at the Thiokol space operations facility as well as three 18.3% scaled MNASA motors tested at NASA/MSFC. Prior attempts to collect plume particles from the full-scale motor firings have been unsuccessful due to the extremely hostile thermal and acoustic environment in the vicinity of the motor nozzle.
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Chen, D. W.
1990-01-01
Stratocumulus cloud fields in the FIRE IFO region are analyzed using LANDSAT Thematic Mapper imagery. Structural properties such as cloud cell size distribution, cell horizontal aspect ratio, fractional coverage and fractal dimension are determined. It is found that stratocumulus cloud number densities are represented by a power law. Cell horizontal aspect ratio has a tendency to increase at large cell sizes, and cells are bi-fractal in nature. Using LANDSAT Multispectral Scanner imagery for twelve selected stratocumulus scenes acquired during previous years, similar structural characteristics are obtained. Cloud field spatial organization also is analyzed. Nearest-neighbor spacings are fit with a number of functions, with Weibull and Gamma distributions providing the best fits. Poisson tests show that the spatial separations are not random. Second order statistics are used to examine clustering.
Increased aerosol content in the atmosphere over Ukraine during summer 2010
NASA Astrophysics Data System (ADS)
Galytska, Evgenia; Danylevsky, Vassyl; Hommel, René; Burrows, John P.
2018-04-01
In this paper we assessed the influence of biomass burning during forest fires throughout summer (1 June-31 August) 2010 on aerosol abundance, dynamics, and its properties over Ukraine. We also considered influences and effects over neighboring countries: European Russia, Estonia, Belarus, Poland, Moldova, and Romania. We used MODIS satellite instrument data to study fire distribution. We also used ground-based remote measurements from the international sun photometer network AERONET plus MODIS and CALIOP satellite instrument data to determine the aerosol content and optical properties in the atmosphere over Eastern Europe. We applied the HYSPLIT model to investigate atmospheric dynamics and model pathways of particle transport. As with previous studies, we found that the highest aerosol content was observed over Moscow in the first half of August 2010 due to the proximity of the most active fires. Large temporal variability of the aerosol content with pronounced pollution peaks during 7-17 August was observed at the Ukrainian (Kyiv and Sevastopol), Belarusian (Minsk), Estonian (Toravere), and Romanian (Bucharest) AERONET sites. We analyzed aerosol spatiotemporal distribution over Ukraine using MODIS AOD 550 nm and further compared with the Kyiv AERONET site sun photometer measurements; we also compared CALIOP AOD 532 nm with MODIS AOD data. We analyzed vertical distribution of aerosol extinction at 532 nm, retrieved from CALIOP measurements, for the territory of Ukraine at locations where high AOD values were observed during intense fires. We estimated the influence of fires on the spectral single scattering albedo, size distribution, and complex refractive indices using Kyiv AERONET measurements performed during summer 2010. In this study we showed that the maximum AOD in the atmosphere over Ukraine recorded in summer 2010 was caused by particle transport from the forest fires in Russia. Those fires caused the highest AOD 500 nm over the Kyiv site, which in August 2010 exceeded multiannual monthly mean for the entire observational period (2008-2016, excluding 2010) by a factor of 2.2. Also, the influence of fires resulted in a change of the particle microphysics in the polluted regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.
2009-03-01
The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and themore » derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.« less
The paper gives results of a comparison of the characteristics of particulate matter (PM) emitted from residual fuel oil combustion in two types of combustion equipment. A small commercial 732-kW fire-tube boiler yielded a weakly bi-modal particulate size distribution (PSD) with...
The paper gives results of a comparison of the characteristics of particulate matter (PM) emitted from residual fuel oil combustion in two types of combustion equipment. A small commercial 732-kW-rated fire-tube boiler yielded a weakly bimodal PM size distribution (PSD) with over...
Response of Arnica dealbata to climate change, nitrogen deposition, and fire
Matthew Hurteau; Malcolm North
2009-01-01
Predicted changes in climate and increasing nitrogen deposition are likely to have significant impacts on species that have limited distributions or are already experiencing diminished population size. Arnica dealbata (A. Gray, Asteraceae), a listed sensitive species in Yosemite National Park, is endemic to California and has limited...
Löb, D.; Lengert, N.; Chagin, V. O.; Reinhart, M.; Casas-Delucchi, C. S.; Cardoso, M. C.; Drossel, B.
2016-01-01
DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase. PMID:27052359
A Coupled Model for Simulating Future Wildfire Regimes in the Western U.S.
NASA Astrophysics Data System (ADS)
Bart, R. R.; Kennedy, M. C.; Tague, C.; Hanan, E. J.
2017-12-01
Higher temperatures and larger fuel loads in the western U.S. have increased the size and intensity of wildfires over the past decades. However, it is unclear if this trend will continue over the long-term since increased wildfire activity has the countering effect of reducing landscape fuel loads, while higher temperatures alter the rate of vegetation recovery following fire. In this study, we introduce a coupled ecohydrologic-fire model for investigating how changes in vegetation, forest management, climate, and hydrology may affect future fire regimes. The spatially-distributed ecohydrologic model, RHESSys, simulates hydrologic, carbon and nutrient fluxes at watershed scales; the fire-spread model, WMFire, stochastically propagates fire on a landscape based on conditions in the ecohydrologic model. We use the coupled model to replicate fire return intervals in multiple ecoregions within the western U.S., including the southern Sierra Nevada and southern California. We also examine the sensitivity of fire return intervals to various model processes, including litter production, fire severity, and post-fire vegetation recovery rates. Results indicate that the coupled model is able to replicate expected fire return intervals in the selected locations. Fire return intervals were highly sensitive to the rate of vegetation growth, with longer fire return intervals associated with slower growing vegetation. Application of the model is expected to aid in our understanding of how fuel treatments, climate change and droughts may affect future fire regimes.
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W., Jr.; Stephens, Graeme L.
1993-01-01
Due to the prevalence and persistence of cirrus cloudiness across the globe, cirrus clouds are believed to have an important effect on the climate. Stephens et al., (1990) among others have shown that the important factor determining how cirrus clouds modulate the climate is the balance between the albedo and emittance effect of the cloud systems. This factor was shown to depend in part upon the effective sizes of the cirrus cloud particles. Since effective sizes of cirrus cloud microphysical distributions are used as a basis of parameterizations in climate models, it is crucial that the relationships between effective sizes and radiative properties be clearly established. In this preliminary study, the retrieval of cirrus cloud effective sizes are examined using a two dimensional radiative transfer model for a cirrus cloud case sampled during FIRE Cirrus 11. The purpose of this paper is to present preliminary results from the SHSG model demonstrating the sensitivity of the bispectral relationships of reflected radiances and thus the retrieval of effective sizes to phase function and dimensionality.
Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage
Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.
2011-01-01
Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? Author(s) 2011. CC Attribution 3.0 License.
Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage
Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.
2011-01-01
Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? 2011 Author(s).
Wildfire patterns and landscape changes in Mediterranean oak woodlands.
Guiomar, N; Godinho, S; Fernandes, P M; Machado, R; Neves, N; Fernandes, J P
2015-12-01
Fire is infrequent in the oak woodlands of southern Portugal (montado) but large and severe fires affected these agro-forestry systems in 2003-2005. We hypothesised transition from forest to shrubland as a fire-driven process and investigated the links between fire incidence and montado change to other land cover types, particularly those related with the presence of pioneer communities (generically designed in this context as "transitions to early-successional communities"). We present a landscape-scale framework for assessing the probability of transition from montado to pioneer communities, considering three sets of explanatory variables: montado patterns in 1990 and prior changes from montado to early-successional communities (occurred between 1960 and 1990), fire patterns, and spatial factors. These three sets of factors captured 78.2% of the observed variability in the transitions from montado to pioneer vegetation. The contributions of fire patterns and spatial factors were high, respectively 60.6% and 43.4%, the influence of montado patterns and former changes in montado being lower (34.4%). The highest amount of explained variation in the occurrence of transitions from montado to early-successional communities was related to the pure effect of fire patterns (19.9%). Low spatial connectedness in montado landscape can increase vulnerability to changes, namely to pioneer vegetation, but the observed changes were mostly explained by fire characteristics and spatial factors. Among all metrics used to characterize fire patterns and extent, effective mesh size provided the best modelling results. Transitions from montado to pioneer communities are more likely in the presence of high values of the effective mesh size of total burned area. This cross-boundary metric is an indicator of the influence of large fires in the distribution of the identified transitions and, therefore, we conclude that the occurrence of large fires in montado increases its probability of transition to shrubland. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Posfai, Mihaly; Simonics, Renata; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.
2003-01-01
Individual aerosol particles in smoke plumes from biomass fires and in regional hazes in southern Africa were studied using analytical transmission electron microscopy (TEM), which allowed detailed characterization of carbonaceous particle types in smoke and determination of changes in particle properties and concentrations during smoke aging. Based on composition, morphology, and microstructure, three distinct types of carbonaceous particles were present in the smoke: organic particles with inorganic (K-salt) inclusions, tar ball particles, and soot. The relative number concentrations of organic particles were largest in young smoke, whereas tar balls were dominant in a slightly aged (1 hour) smoke from a smoldering fire. Flaming fires emitted relatively more soot particles than smoldering fires, but soot was a minor constituent of all studied plumes. Further aging caused the accumulation of sulfate on organic and soot particles, as indicated by the large number of internally mixed organic/sulfate and soot/sulfate particles in the regional haze. Externally mixed ammonium sulfate particles dominated in the boundary layer hazes, whereas organic/sulfate particles were the most abundant type in the upper hazes. Apparently, elevated haze layers were more strongly affected by biomass smoke than those within the boundary layer. Based on size distributions and the observed patterns of internal mixing, we hypothesize that organic and soot particles are the cloud-nucleating constituents of biomass smoke aerosols. Sea-salt particles dominated in the samples taken in stratus clouds over the Atlantic Ocean, off the coast of Namibia, whereas a distinct haze layer above the clouds consisted of aged biomass smoke particles.
Patrock, Richard J. W.; Porter, Sanford D.; Gilbert, Lawrence E.; Folgarait, Patricia J.
2009-01-01
Classical biological control efforts against imported fire ants have largely involved the use of Pseudacteon parasitoids. To facilitate further exploration for species and population biotypes a database of collection records for Pseudacteon species was organized, including those from the literature and other sources. These data were then used to map the geographical ranges of species associated with the imported fire ants in their native range in South America. In addition, we found geographical range metrics for all species in the genus and related these metrics to latitude and host use. Approximately equal numbers of Pseudacteon species were found in temperate and tropical regions, though the majority of taxa found only in temperate areas were found in the Northern Hemisphere. No significant differences in sizes of geographical ranges were found between Pseudacteon associated with the different host complexes of fire ants despite the much larger and systemic collection effort associated with the S. saevissima host group. The geographical range of the flies was loosely associated with both the number of hosts and the geographical range of their hosts. Pseudacteon with the most extensive ranges had either multiple hosts or hosts with broad distributions. Mean species richnesses of Pseudacteon in locality species assemblages associated with S. saevissima complex ants was 2.8 species, but intensively sampled locations were usually much higher. Possible factors are discussed related to variation in the size of geographical range, and areas in southern South America are outlined that are likely to have been under-explored for Pseudacteon associated with imported fire ants. PMID:20050779
Determination of Survivable Fires
NASA Technical Reports Server (NTRS)
Dietrich, D. L.; Niehaus, J. E.; Ruff, G. A.; Urban, D. L.; Takahashi, F.; Easton, J. W.; Abbott, A. A.; Graf, J. C.
2012-01-01
At NASA, there exists no standardized design or testing protocol for spacecraft fire suppression systems (either handheld or total flooding designs). An extinguisher's efficacy in safely suppressing any reasonable or conceivable fire is the primary benchmark. That concept, however, leads to the question of what a reasonable or conceivable fire is. While there exists the temptation to over-size' the fire extinguisher, weight and volume considerations on spacecraft will always (justifiably) push for the minimum size extinguisher required. This paper attempts to address the question of extinguisher size by examining how large a fire a crew member could successfully survive and extinguish in the confines of a spacecraft. The hazards to the crew and equipment during an accidental fire include excessive pressure rise resulting in a catastrophic rupture of the vehicle skin, excessive temperatures that burn or incapacitate the crew (due to hyperthermia), carbon dioxide build-up or other accumulation of other combustion products (e.g. carbon monoxide). Estimates of these quantities are determined as a function of fire size and mass of material burned. This then becomes the basis for determining the maximum size of a target fire for future fire extinguisher testing.
Hamaguchi, Kosuke; Riehle, Alexa; Brunel, Nicolas
2011-01-01
High firing irregularity is a hallmark of cortical neurons in vivo, and modeling studies suggest a balance of excitation and inhibition is necessary to explain this high irregularity. Such a balance must be generated, at least partly, from local interconnected networks of excitatory and inhibitory neurons, but the details of the local network structure are largely unknown. The dynamics of the neural activity depends on the local network structure; this in turn suggests the possibility of estimating network structure from the dynamics of the firing statistics. Here we report a new method to estimate properties of the local cortical network from the instantaneous firing rate and irregularity (CV(2)) under the assumption that recorded neurons are a part of a randomly connected sparse network. The firing irregularity, measured in monkey motor cortex, exhibits two features; many neurons show relatively stable firing irregularity in time and across different task conditions; the time-averaged CV(2) is widely distributed from quasi-regular to irregular (CV(2) = 0.3-1.0). For each recorded neuron, we estimate the three parameters of a local network [balance of local excitation-inhibition, number of recurrent connections per neuron, and excitatory postsynaptic potential (EPSP) size] that best describe the dynamics of the measured firing rates and irregularities. Our analysis shows that optimal parameter sets form a two-dimensional manifold in the three-dimensional parameter space that is confined for most of the neurons to the inhibition-dominated region. High irregularity neurons tend to be more strongly connected to the local network, either in terms of larger EPSP and inhibitory PSP size or larger number of recurrent connections, compared with the low irregularity neurons, for a given excitatory/inhibitory balance. Incorporating either synaptic short-term depression or conductance-based synapses leads many low CV(2) neurons to move to the excitation-dominated region as well as to an increase of EPSP size.
Bird, Douglas W.; Codding, Brian F.
2016-01-01
While evidence mounts that indigenous burning has a significant role in shaping pyrodiversity, the processes explaining its variation across local and external biophysical systems remain limited. This is especially the case with studies of climate–fire interactions, which only recognize an effect of humans on the fire regime when they act independently of climate. In this paper, we test the hypothesis that an anthropogenic fire regime (fire incidence, size and extent) does not covary with climate. In the lightning regime, positive El Niño southern oscillation (ENSO) values increase lightning fire incidence, whereas La Niña (and associated increases in prior rainfall) increase fire size. ENSO has the opposite effect in the Martu regime, decreasing ignitions in El Niño conditions without affecting fire size. Anthropogenic ignition rates covary positively with high antecedent rainfall, whereas fire size varies only with high temperatures and unpredictable winds, which may reduce control over fire spread. However, total area burned is similarly predicted by antecedent rainfall in both regimes, but is driven by increases in fire size in the lightning regime, and fire number in the anthropogenic regime. We conclude that anthropogenic regimes covary with climatic variation, but detecting the human–climate–fire interaction requires multiple measures of both fire regime and climate. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216513
Weak climatic control of stand-scale fire history during the late holocene.
Gavin, Daniel G; Hu, Feng Sheng; Lertzman, Kenneth; Corbett, Peter
2006-07-01
Forest fire occurrence is affected by multiple controls that operate at local to regional scales. At the spatial scale of forest stands, regional climatic controls may be obscured by local controls (e.g., stochastic ignitions, topography, and fuel loads), but the long-term role of such local controls is poorly understood. We report here stand-scale (<100 ha) fire histories of the past 5000 years based on the analysis of sediment charcoal at two lakes 11 km apart in southeastern British Columbia. The two lakes are today located in similar subalpine forests, and they likely have experienced the same late-Holocene climatic changes because of their close proximity. We evaluated two independent properties of fire history: (1) fire-interval distribution, a measure of the overall incidence of fire, and (2) fire synchroneity, a measure of the co-occurrence of fire (here, assessed at centennial to millennial time scales due to the resolution of sediment records). Fire-interval distributions differed between the sites prior to, but not after, 2500 yr before present. When the entire 5000-yr period is considered, no statistical synchrony between fire-episode dates existed between the two sites at any temporal scale, but for the last 2500 yr marginal levels of synchrony occurred at centennial scales. Each individual fire record exhibited little coherency with regional climate changes. In contrast, variations in the composite record (average of both sites) matched variations in climate evidenced by late-Holocene glacial advances. This was probably due to the increased sample size and spatial extent represented by the composite record (up to 200 ha) plus increased regional climatic variability over the last several millennia, which may have partially overridden local, non-climatic controls. We conclude that (1) over past millennia, neighboring stands with similar modern conditions may have experienced different fire intervals and asynchronous patterns in fire episodes, likely because local controls outweighed the synchronizing effect of climate; (2) the influence of climate on fire occurrence is more strongly expressed when climatic variability is relatively great; and (3) multiple records from a region are essential if climate-fire relations are to be reliably described.
Plume particle collection and sizing from static firing of solid rocket motors
NASA Technical Reports Server (NTRS)
Sambamurthi, Jay K.
1995-01-01
A unique dart system has been designed and built at the NASA Marshall Space Flight Center to collect aluminum oxide plume particles from the plumes of large scale solid rocket motors, such as the space shuttle RSRM. The capability of this system to collect clean samples from both the vertically fired MNASA (18.3% scaled version of the RSRM) motors and the horizontally fired RSRM motor has been demonstrated. The particle mass averaged diameters, d43, measured from the samples for the different motors, ranged from 8 to 11 mu m and were independent of the dart collection surface and the motor burn time. The measured results agreed well with those calculated using the industry standard Hermsen's correlation within the standard deviation of the correlation . For each of the samples analyzed from both MNASA and RSRM motors, the distribution of the cumulative mass fraction of the plume oxide particles as a function of the particle diameter was best described by a monomodal log-normal distribution with a standard deviation of 0.13 - 0.15. This distribution agreed well with the theoretical prediction by Salita using the OD3P code for the RSRM motor at the nozzle exit plane.
McMichael, Christine E; Hope, Allen S
2007-08-01
Fire is a primary agent of landcover transformation in California semi-arid shrubland watersheds, however few studies have examined the impacts of fire and post-fire succession on streamflow dynamics in these basins. While it may seem intuitive that larger fires will have a greater impact on streamflow response than smaller fires in these watersheds, the nature of these relationships has not been determined. The effects of fire size on seasonal and annual streamflow responses were investigated for a medium-sized basin in central California using a modified version of the MIKE SHE model which had been previously calibrated and tested for this watershed using the Generalized Likelihood Uncertainty Estimation methodology. Model simulations were made for two contrasting periods, wet and dry, in order to assess whether fire size effects varied with weather regime. Results indicated that seasonal and annual streamflow response increased nearly linearly with fire size in a given year under both regimes. Annual flow response was generally higher in wetter years for both weather regimes, however a clear trend was confounded by the effect of stand age. These results expand our understanding of the effects of fire size on hydrologic response in chaparral watersheds, but it is important to note that the majority of model predictions were largely indistinguishable from the predictive uncertainty associated with the calibrated model - a key finding that highlights the importance of analyzing hydrologic predictions for altered landcover conditions in the context of model uncertainty. Future work is needed to examine how alternative decisions (e.g., different likelihood measures) may influence GLUE-based MIKE SHE streamflow predictions following different size fires, and how the effect of fire size on streamflow varies with other factors such as fire location.
Four channel Laser Firing Unit using laser diodes
NASA Technical Reports Server (NTRS)
Rosner, David, Sr.; Spomer, Edwin, Sr.
1994-01-01
This paper describes the accomplishments and status of PS/EDD's (Pacific Scientific/Energy Dynamics Division) internal research and development effort to prototype and demonstrate a practical four channel laser firing unit (LFU) that uses laser diodes to initiate pyrotechnic events. The LFU individually initiates four ordnance devices using the energy from four diode lasers carried over the fiber optics. The LFU demonstrates end-to-end optical built in test (BIT) capabilities. Both Single Fiber Reflective BIT and Dual Fiber Reflective BIT approaches are discussed and reflection loss data is presented. This paper includes detailed discussions of the advantages and disadvantages of both BIT approaches, all-fire and no-fire levels, and BIT detection levels. The following topics are also addressed: electronic control and BIT circuits, fiber optic sizing and distribution, and an electromechanical shutter type safe/arm device. This paper shows the viability of laser diode initiation systems and single fiber BIT for typing military applications.
Keeley, Jon E; Zedler, Paul H
2009-01-01
We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10,000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (> or = 50,000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of fine fuels. Results from the Behave Plus fire model with a custom fuel module for young chaparral shows that there is sufficient dead fuel to spread fire even under relatively little winds. Empirical studies of fuel ages burned in recent fires illustrate that young fuels often comprise a major portion of burned vegetation, and there is no difference between evergreen chaparral and semi-deciduous sage scrub. It has also been argued that the present-day fire size distribution in northern Baja California is a model of the historical patterns that were present on southern California landscapes. Applying this model with historical fire frequencies shows that the Baja model is inadequate to maintain these fire-prone ecosystems and further demonstrates that fire managers in southern California are not likely to learn much from studying modern Baja California fire regimes. Further supporting this conclusion are theoretical cellular automata models of fire spread, which show that, even in systems with age dependent flammability, landscapes evolve toward a complex age mosaic with a plausible age structure only when there is a severe stopping rule that constrains fire size, and only if ignitions are saturating.
Keeley, J.E.; Zedler, P.H.
2009-01-01
We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (???50 000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of fine fuels. Results from the Behave Plus fire model with a custom fuel module for young chaparral shows that there is sufficient dead fuel to spread fire even under relatively little winds. Empirical studies of fuel ages burned in recent fires illustrate that young fuels often comprise a major portion of burned vegetation, and there is no difference between evergreen chaparral and semi-deciduous sage scrub. It has also been argued that the present-day fire size distribution in northern Baja California is a model of the historical patterns that were present on southern California landscapes. Applying this model with historical fire frequencies shows that the Baja model is inadequate to maintain these fire-prone ecosystems and further demonstrates that fire managers in southern California are not likely to learn much from studying modern Baja California fire regimes. Further supporting this conclusion are theoretical cellular automata models of fire spread, which show that, even in systems with age dependent flammability, landscapes evolve toward a complex age mosaic with a plausible age structure only when there is a severe stopping rule that constrains fire size, and only if ignitions are saturating. ?? 2009 by the Ecological Society of America.
HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin
Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less
HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers
Le Page, Yannick LB; Morton, Douglas; Bond-Lamberty, Benjamin; ...
2015-02-13
Vegetation fires are a major driver of ecosystem dynamics and greenhouse gas emissions. Anticipating potential changes in fire activity and their impacts relies first on a realistic model of fire activity (e.g., fire incidence and interannual variability) and second on a model accounting for fire impacts (e.g., mortality and emissions). In this paper, we focus on our understanding of fire activity and describe a new fire model, HESFIRE (Human–Earth System FIRE), which integrates the influence of weather, vegetation characteristics, and human activities on fires in a stand-alone framework. It was developed with a particular emphasis on allowing fires to spreadmore » over consecutive days given their major contribution to burned areas in many ecosystems. A subset of the model parameters was calibrated through an optimization procedure using observation data to enhance our knowledge of regional drivers of fire activity and improve the performance of the model on a global scale. Modeled fire activity showed reasonable agreement with observations of burned area, fire seasonality, and interannual variability in many regions, including for spatial and temporal domains not included in the optimization procedure. Significant discrepancies are investigated, most notably regarding fires in boreal regions and in xeric ecosystems and also fire size distribution. The sensitivity of fire activity to model parameters is analyzed to explore the dominance of specific drivers across regions and ecosystems. The characteristics of HESFIRE and the outcome of its evaluation provide insights into the influence of anthropogenic activities and weather, and their interactions, on fire activity.« less
Rocha, Adrian V.; Loranty, Michael M.; Higuera, Phil E.; Mack, Michelle C.; Hu, Feng Sheng; Jones, Benjamin M.; Breen, Amy L.; Rastetter, Edward B.; Goetz, Scott J.; Shaver, Gus R.
2012-01-01
Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required.
On the Specification of Smoke Injection Heights for Aerosol Forecasting
NASA Astrophysics Data System (ADS)
da Silva, A.; Schaefer, C.; Randles, C. A.
2014-12-01
The proper forecasting of biomass burning (BB) aerosols in global or regional transport models requires not only the specification of emission rates with sufficient temporal resolution but also the injection layers of such emissions. While current near realtime biomass burning inventories such as GFAS, QFED, FINN, GBBEP and FLAMBE provide such emission rates, it is left for each modeling system to come up with its own scheme for distributing these emissions in the vertical. A number of operational aerosol forecasting models deposits BB emissions in the near surface model layers, relying on the model's parameterization of turbulent and convective transport to determine the vertical mass distribution of BB aerosols. Despite their simplicity such schemes have been relatively successful reproducing the vertical structure of BB aerosols, except for those large fires that produce enough buoyancy to puncture the PBL and deposit the smoke at higher layers. Plume Rise models such as the so-called 'Freitas model', parameterize this sub-grid buoyancy effect, but require the specification of fire size and heat fluxes, none of which is readily available in near real-time from current remotely-sensed products. In this talk we will introduce a bayesian algorithm for estimating file size and heat fluxes from MODIS brightness temperatures. For small to moderate fires the Freitas model driven by these heat flux estimates produces plume tops that are highly correlated with the GEOS-5 model estimate of PBL height. Comparison to MINX plume height estimates from MISR indicates moderate skill of this scheme predicting the injection height of large fires. As an alternative, we make use of OMPS UV aerosol index data in combination with estimates of Overshooting Convective Tops (from MODIS and Geo-stationary satellites) to detect PyCu events and specify the BB emission vertical mass distribution in such cases. We will present a discussion of case studies during the SEAC4RS field campaign in August-September 2013.
Fasoli, Diego; Cattani, Anna; Panzeri, Stefano
2018-05-01
Despite their biological plausibility, neural network models with asymmetric weights are rarely solved analytically, and closed-form solutions are available only in some limiting cases or in some mean-field approximations. We found exact analytical solutions of an asymmetric spin model of neural networks with arbitrary size without resorting to any approximation, and we comprehensively studied its dynamical and statistical properties. The network had discrete time evolution equations and binary firing rates, and it could be driven by noise with any distribution. We found analytical expressions of the conditional and stationary joint probability distributions of the membrane potentials and the firing rates. By manipulating the conditional probability distribution of the firing rates, we extend to stochastic networks the associating learning rule previously introduced by Personnaz and coworkers. The new learning rule allowed the safe storage, under the presence of noise, of point and cyclic attractors, with useful implications for content-addressable memories. Furthermore, we studied the bifurcation structure of the network dynamics in the zero-noise limit. We analytically derived examples of the codimension 1 and codimension 2 bifurcation diagrams of the network, which describe how the neuronal dynamics changes with the external stimuli. This showed that the network may undergo transitions among multistable regimes, oscillatory behavior elicited by asymmetric synaptic connections, and various forms of spontaneous symmetry breaking. We also calculated analytically groupwise correlations of neural activity in the network in the stationary regime. This revealed neuronal regimes where, statistically, the membrane potentials and the firing rates are either synchronous or asynchronous. Our results are valid for networks with any number of neurons, although our equations can be realistically solved only for small networks. For completeness, we also derived the network equations in the thermodynamic limit of infinite network size and we analytically studied their local bifurcations. All the analytical results were extensively validated by numerical simulations.
Deconstructing the King Megafire.
Coen, Janice L; Stavros, E Natasha; Fites-Kaufman, Josephine A
2018-05-24
Hypotheses that megafires - very large, high impact fires - are caused by either climate effects such as drought or fuel accumulation due to fire exclusion with accompanying changes to forest structure have long been alleged and guided policy but their physical basis remains untested. Here, unique airborne observations and microscale simulations using a coupled weather - wildland fire behavior model allowed a recent megafire, the King Fire, to be deconstructed and the relative impacts of forest structure, fuel load, weather, and drought on fire size, behavior, and duration to be separated. Simulations reproduced observed details including the arrival at an inclined canyon, a 25-km run, and later slower growth and features. Analysis revealed that fire-induced winds that equaled or exceeded ambient winds and fine-scale airflow undetected by surface weather networks were primarily responsible for the fire's rapid growth and size. Sensitivity tests varied fuel moisture and amount across wide ranges and showed that both drought and fuel accumulation effects were secondary, limited to sloped terrain where they compounded each other, and, in this case, unable to significantly impact the final extent. Compared to standard data, fuel models derived solely from remote sensing of vegetation type and forest structure improved simulated fire progression, notably in disturbed areas, and the distribution of burn severity. These results point to self-reinforcing internal dynamics rather than external forces as a means of generating this and possibly other outlier fire events. Hence, extreme fires need not arise from extreme fire environment conditions. Kinematic models used in operations do not capture fire-induced winds and dynamic feedbacks so can underestimate megafire events. The outcomes provided a nuanced view of weather, forest structure, fuel accumulation, and drought impacts on landscape-scale fire behavior - roles that can be misconstrued using correlational analyses between area burned and macroscale climate data or other exogenous factors. A practical outcome is that fuel treatments should be focused on sloped terrain, where factors multiply, for highest impact. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Liu, Zhihua; Yang, Jian; He, Hong S.
2013-01-01
The relative importance of fuel, topography, and weather on fire spread varies at different spatial scales, but how the relative importance of these controls respond to changing spatial scales is poorly understood. We designed a “moving window” resampling technique that allowed us to quantify the relative importance of controls on fire spread at continuous spatial scales using boosted regression trees methods. This quantification allowed us to identify the threshold value for fire size at which the dominant control switches from fuel at small sizes to weather at large sizes. Topography had a fluctuating effect on fire spread across the spatial scales, explaining 20–30% of relative importance. With increasing fire size, the dominant control switched from bottom-up controls (fuel and topography) to top-down controls (weather). Our analysis suggested that there is a threshold for fire size, above which fires are driven primarily by weather and more likely lead to larger fire size. We suggest that this threshold, which may be ecosystem-specific, can be identified using our “moving window” resampling technique. Although the threshold derived from this analytical method may rely heavily on the sampling technique, our study introduced an easily implemented approach to identify scale thresholds in wildfire regimes. PMID:23383247
Geoffrey H. Donovan; Peter. Noordijk
2005-01-01
To determine the optimal suppression strategy for escaped wildfires, federal land managers are requiredto conduct a wildland fire situation analysis (WFSA). As part of the WFSA process, fire managers estimate final fire size and suppression costs. Estimates from 58 WFSAs conducted during the 2002 fire season are compared to actual outcomes. Results indicate that...
Particle and gas emissions from a simulated coal-burning household fire pit.
Tian, Linwei; Lucas, Donald; Fischer, Susan L; Lee, S C; Hammond, S Katharine; Koshland, Catherine P
2008-04-01
An open fire was assembled with firebricks to simulate the household fire pit used in rural China, and 15 different coals from this area were burned to measure the gaseous and particulate emissions. Particle size distribution was studied with a microorifice uniform-deposit impactor (MOUDI). Over 90% of the particulate mass was attributed to sub-micrometer particles. The carbon balance method was used to calculate the emission factors. Emission factors for four pollutants (particulate matter, CO2, total hydrocarbons, and NOx) were 2-4 times higherfor bituminous coals than for anthracites. In past inventories of carbonaceous emissions used for climate modeling, these two types of coal were not treated separately. The dramatic emission factor difference between the two types of coal warrants attention in the future development of emission inventories.
Effect of wildfires on physicochemical changes of watershed dissolved organic matter.
Revchuk, Alex D; Suffet, I H
2014-04-01
Physicochemical characterization of dissolved organic carbon (DOC) provides essential data to describe watershed characteristics after drastic changes caused by wildfires. Post-fire watershed behavior is important for water source selection, management, and drinking water treatment optimization. Using ash and other burned vegetation fragments, a leaching procedure was implemented to describe physicochemical changes to watershed DOC caused by wildfires. Samples were collected after the 2007 and 2009 wildfires near Santa Barbara, California. Substantial differences in size distribution (measured by ultrafiltration), polarity (measured by polarity rapid assessment method), and the origin of leached DOC (measured by fluorescence) were observed between burned and unburned sites. Recently burned ash had 10 times the DOC leaching potential, and was dominated by large size fragments, compared to weathered 2-year-old ash. Charged DOC fractions were found to positively correlate with DOC size, whereas hydrophobic and hydrophilic DOC fractions were not. Proteins were only observed in recently burned ash and were indicative of recent post-fire biological activity.
Quantifying the fire regime distributions for severity in Yosemite National Park, California, USA
Thode, Andrea E.; van Wagtendonk, Jan W.; Miller, Jay D.; Quinn, James F.
2011-01-01
This paper quantifies current fire severity distributions for 19 different fire-regime types in Yosemite National Park, California, USA. Landsat Thematic Mapper remote sensing data are used to map burn severity for 99 fires (cumulatively over 97 000 ha) that burned in Yosemite over a 20-year period. These maps are used to quantify the frequency distributions of fire severity by fire-regime type. A classification is created for the resultant distributions and they are discussed within the context of four vegetation zones: the foothill shrub and woodland zone; the lower montane forest zone; the upper montane forest zone and the subalpine forest zone. The severity distributions can form a building block from which to discuss current fire regimes across the Sierra Nevada in California. This work establishes a framework for comparing the effects of current fires on our landscapes with our notions of how fires historically burned, and how current fire severity distributions differ from our desired future conditions. As this process is refined, a new set of information will be available to researchers and land managers to help understand how fire regimes have changed from the past and how we might attempt to manage them in the future.
NASA Astrophysics Data System (ADS)
Crockett, J.; Westerling, A. L.
2016-12-01
The current drought in California is considered to be most severe drought event of the 20th and 21st century. Climate models forecast increasing temperatures in the Western United States but are less certain regarding precipitation patterns. Here we impose a novel index based on sustained, multiyear moisture deficit anomalies onto a 1/8° grid of the Western United States to investigate 1) whether California's drought is irregular in the recent history of the Western States; 2) how temperature and precipitation affected the development of large drought events; and 3) what impact did drought events have on burn area and severity of fires. Fire records were compiled from the Monitoring Trends in Burn Severity database and compared to drought events since 1984. Results indicate that drought events similar in size and duration to the current drought have occurred in the West since 1918, though previous drought events were not as severe nor centered on California. Six drought events of similar size to the 2012 - 2014 drought were compared: while they were characterized by negative precipitation anomalies, only the 2012 - 2014 event exhibited temperature anomalies that increased over the drought's duration. In addition, we found that large fires ( > 1000 acres) within drought areas had greater total area burned as well as area burned at medium and high severities compared to fires in non-drought areas. Our results suggest that though uncertainty of future precipitation patterns exists, increasing temperatures will exacerbate drought severity when events do occur. In addition, understanding the relationships between droughts and fire can guide land managers to more effective fire management during drought events.
NASA Astrophysics Data System (ADS)
Aricak, Burak; Kucuk, Omer; Enez, Korhan
2014-01-01
Fighting forest fires not only depends on the forest type, topography, and weather conditions, but is also closely related to the technical properties of fire-fighting equipment. Firefighting is an important part of fire management planning. However, because of the complex nature of forests, creating thematic layers to generate potential fire risk maps is difficult. The use of remote sensing data has become an efficient method for the discrete classification of potential fire risks. The study was located in the Central District of the Kastamonu Regional Forest Directorate, covering an area of 24,320 ha, 15,685 ha of which is forested. On the basis of stand age, crown closure, and tree species, the sizes and distributions of potential fire risk zones within the study area were determined using high-resolution GeoEye satellite imagery and geographical information system data. The status of pumper truck intervention in zones with high fire risk and the sufficiency of existing forest roads within an existing forest network were discussed based on combustible matter characteristics. Pumper truck intervention was 83% for high-risk zones, 79% for medium-risk zones, and 78% for low-risk zones. A pumper truck intervention area map along existing roads was also created.
Mercière, Alexandre; Vermeij, Mark J. A.; Planes, Serge
2017-01-01
While the fire coral Millepora platyphylla is an important component of Indo-Pacific reefs, where it thrives in a wide range of environments, the ecological and biological processes driving its distribution and population structure are not well understood. Here, we quantified this species’ population structure in five habitats with contrasting hydrodynamic regimes in Moorea, French Polynesia; two in the fore reef: mid and upper slopes, and three in the lagoon: back, fringing and patch reefs. A total of 3651 colonies of fire corals were mapped and measured over 45,000 m2 of surveyed reef. Due to the species’ sensitivity to fragmentation in response to strong water movement, hydrodynamic conditions (e.g. waves, pass and lagoonal circulation) corresponded to marked differences in colony size distributions, morphology and recruitment dynamics among habitats. The size structure varied among reef habitats with higher proportions of larger colonies in calm nearshore reefs (fringing and patch reefs), while populations were dominated by smaller colonies in the exposed fore reefs. The highest densities of fire corals were recorded in fore reef habitats (0.12–0.20 n.m-2) where the proportion of recruits and juveniles was higher at mid slope populations (49.3%) than on the upper slope near where waves break (29.0%). In the latter habitat, most colonies grew as vertical sheets on encrusting bases making them more vulnerable to colony fragmentation, whereas fire corals were encrusting or massive in all other habitats. The lowest densities of M. platyphylla occurred in lagoonal habitats (0.02–0.04 n.m-2) characterized by a combination of low water movement and other physical and biological stressors. This study reports the first evidence of population structure of fire corals in two common reef environments and illustrates the importance of water flow in driving population dynamic processes of these reef-building species. PMID:28273119
Dubé, Caroline E; Mercière, Alexandre; Vermeij, Mark J A; Planes, Serge
2017-01-01
While the fire coral Millepora platyphylla is an important component of Indo-Pacific reefs, where it thrives in a wide range of environments, the ecological and biological processes driving its distribution and population structure are not well understood. Here, we quantified this species' population structure in five habitats with contrasting hydrodynamic regimes in Moorea, French Polynesia; two in the fore reef: mid and upper slopes, and three in the lagoon: back, fringing and patch reefs. A total of 3651 colonies of fire corals were mapped and measured over 45,000 m2 of surveyed reef. Due to the species' sensitivity to fragmentation in response to strong water movement, hydrodynamic conditions (e.g. waves, pass and lagoonal circulation) corresponded to marked differences in colony size distributions, morphology and recruitment dynamics among habitats. The size structure varied among reef habitats with higher proportions of larger colonies in calm nearshore reefs (fringing and patch reefs), while populations were dominated by smaller colonies in the exposed fore reefs. The highest densities of fire corals were recorded in fore reef habitats (0.12-0.20 n.m-2) where the proportion of recruits and juveniles was higher at mid slope populations (49.3%) than on the upper slope near where waves break (29.0%). In the latter habitat, most colonies grew as vertical sheets on encrusting bases making them more vulnerable to colony fragmentation, whereas fire corals were encrusting or massive in all other habitats. The lowest densities of M. platyphylla occurred in lagoonal habitats (0.02-0.04 n.m-2) characterized by a combination of low water movement and other physical and biological stressors. This study reports the first evidence of population structure of fire corals in two common reef environments and illustrates the importance of water flow in driving population dynamic processes of these reef-building species.
NASA Technical Reports Server (NTRS)
Hooker, M. W.; Taylor, T. D.; Leigh, H. D.; Wise, S. A.; Buckley, J. D.; Vasquez, P.; Buck, G. M.; Hicks, L. P.
1993-01-01
An investment casting process has been developed to produce net-shape, superconducting ceramics. In this work, a factorial experiment was performed to determine the critical process parameters for producing cast YBa2Cu3O7 ceramics with optimum properties. An analysis of variance procedure indicated that the key variables in casting superconductive ceramics are the particle size distribution and sintering temperature. Additionally, the interactions between the sintering temperature and the other process parameters (e.g., particle size distribution and the use of silver dopants) were also found to influence the density, porosity, and critical current density of the fired ceramics.
Jeffrey M. Kane; J. Morgan Varner; Eric E. Knapp
2009-01-01
Mechanically masticated fuelbeds are distinct from natural or logging slash fuelbeds, with different particle size distributions, bulk density, and particle shapes, leading to challenges in predicting fire behavior and effects. Our study quantified some physical properties of fuel particles (e.g. squared quadratic mean diameter, proportion of non-cylindrical particles...
Liu, Xian; Chen, Chengrong; Wang, Weijin; Hughes, Jane M; Lewis, Tom; Hou, Enqing; Shen, Jupei
2015-11-01
Soil biogeochemical cycles are largely mediated by microorganisms, while fire significantly modifies biogeochemical cycles mainly via altering microbial community and substrate availability. Majority of studies on fire effects have focused on the surface soil; therefore, our understanding of the vertical distribution of microbial communities and the impacts of fire on nitrogen (N) dynamics in the soil profile is limited. Here, we examined the changes of soil denitrification capacity (DNC) and denitrifying communities with depth under different burning regimes, and their interaction with environmental gradients along the soil profile. Results showed that soil depth had a more pronounced impact than the burning treatment on the bacterial community size. The abundance of 16S rRNA and denitrification genes (narG, nirK, and nirS) declined exponentially with soil depth. Surprisingly, the nosZ-harboring denitrifiers were enriched in the deeper soil layers, which was likely to indicate that the nosZ-harboring denitrifiers could better adapt to the stress conditions (i.e., oxygen deficiency, nutrient limitation, etc.) than other denitrifiers. Soil nutrients, including dissolved organic carbon (DOC), total soluble N (TSN), ammonium (NH(4)(+)), and nitrate (NO(3)(-)), declined significantly with soil depth, which probably contributed to the vertical distribution of denitrifying communities. Soil DNC decreased significantly with soil depth, which was negligible in the depths below 20 cm. These findings have provided new insights into niche separation of the N-cycling functional guilds along the soil profile, under a varied fire disturbance regime.
Spatial distribution of soil water repellency in a grassland located in Lithuania
NASA Astrophysics Data System (ADS)
Pereira, Paulo; Novara, Agata
2014-05-01
Soil water repellency (SWR) it is recognized to be very heterogeneous in time in space and depends on soil type, climate, land use, vegetation and season (Doerr et al., 2002). It prevents or reduces water infiltration, with important impacts on soil hydrology, influencing the mobilization and transport of substances into the soil profile. The reduced infiltration increases surface runoff and soil erosion. SWR reduce also the seed emergency and plant growth due the reduced amount of water in the root zone. Positive aspects of SWR are the increase of soil aggregate stability, organic carbon sequestration and reduction of water evaporation (Mataix-Solera and Doerr, 2004; Diehl, 2013). SWR depends on the soil aggregate size. In fire affected areas it was founded that SWR was more persistent in small size aggregates (Mataix-Solera and Doerr, 2004; Jordan et al., 2011). However, little information is available about SWR spatial distribution according to soil aggregate size. The aim of this work is study the spatial distribution of SWR in fine earth (<2 mm) and different aggregate sizes, 2-1 mm, 1-0.5 mm, 0.5-0.25 mm and <0.25 mm. The studied area is located near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. A plot with 400 m2 (20 x 20 m with 5 m space between sampling points) and 25 soil samples were collected in the top soil (0-5 cm) and taken to the laboratory. Previously to SWR assessment, the samples were air dried. The persistence of SWR was analysed according to the Water Drop Penetration Method, which involves placing three drops of distilled water onto the soil surface and registering the time in seconds (s) required for the drop complete penetration (Wessel, 1988). Data did not respected Gaussian distribution, thus in order to meet normality requirements it was log-normal transformed. Spatial interpolations were carried out using Ordinary Kriging. The results shown that SWR was on average in fine earth 2.88 s (Coeficient of variation % (CV%)=44.62), 2-1mm 1.73 s (CV%=45.10), 1-0.5 mm 2.02 s (CV%=93.75), 0.5-0.25 mm 3.12 s (CV%=233.68) and in <0.25 mm 15.54 mm (CV%=240.74). This suggests that SWR persistence and CV% is higher in small size aggregates than in the coarser aggregate sizes. The interpolated maps showed that in fine earth SWR was higher in the western part of the studied plot and lower in the central area. In the 2-1 mm aggregate size it was higher in the southwest and lower at north and northwest area. In the 1-0.5 mm aggregate size it was lower in the central area and higher in the southwest. In the 0.5-0.25 mm aggregate size it was higher in the west part and lower in the north of the plot and. In the <0.25 mm no specific pattern was identified and the SWR was heterogeneously distributed. This suggests that the spatial distribution of SWR is very different according to the aggregate size. Future studies are needed in order to identify the causes and consequences of such dynamic. Acknowledgements The authors appreciated the support of the project "Litfire", Fire effects in Lithuanian soils and ecosystems (MIP-048/2011) funded by the Lithuanian Research Council References Diehl, D. (2013) Soil water repellency: Dynamics of heterogeneous surfaces, Colloids and surfaces A: Physicochem. Eng. Aspects, 432, 8-18. Doerr, S.H., Shakesby, R.A., and Walsh, R.P.D. (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance, Earth-Science Reviews, 51, 33-65. Jordan, A., Zavala, L., Mataix-Solera, J., Nava, A.L., Alanis, N. (2011) Effects of fire severity on water repellency and agregate stability on mexican volcanic soils, Catena, 84, 136-147. Mataix-Solera, J., Doerr, S. (2004) hydrophobicity and agregate stability in calcareous topsoils from fire-affected pine forests in south-easthern Spain, Geoderma, 118, 77-88. Wessel, A.T. (1988) On using the effective contact angle and the water drop penetration time for classification of water repellency in dune soils, Earth Surfaces Process. Landforms, 13, 555-562, 1988.
Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States
Liu, Zhihua; Wimberly, Michael C.
2015-01-01
An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959
NASA Astrophysics Data System (ADS)
Stevens, R. G.; Lonsdale, C. L.; Brock, C. A.; Reed, M. K.; Crawford, J. H.; Holloway, J. S.; Ryerson, T. B.; Huey, L. G.; Nowak, J. B.; Pierce, J. R.
2012-04-01
New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulphur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometres and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this presentation, we focus on sub-grid sulphate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. Based on the results of the System for Atmospheric Modelling (SAM), a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM) with online TwO Moment Aerosol Sectional (TOMAS) microphysics, we develop a computationally efficient, but physically based, parameterization that predicts the characteristics of aerosol formed within coal-fired power plant plumes based on parameters commonly available in global and regional-scale models. Given large-scale mean meteorological parameters, emissions from the power plant, mean background condensation sink, and the desired distance from the source, the parameterization will predict the fraction of the emitted SO2 that is oxidized to H2SO4, the fraction of that H2SO4 that forms new particles instead of condensing onto preexisting particles, the median diameter of the newly-formed particles, and the number of newly-formed particles per kilogram SO2 emitted. We perform a sensitivity analysis of these characteristics of the aerosol size distribution to the meteorological parameters, the condensation sink, and the emissions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large preexisting aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the amount of sunlight and NOx since both control OH concentrations. Decreases in NOx emissions without simultaneous decreases in SO2 emissions increase new-particle formation and growth due to increased oxidation of SO2. The parameterization we describe here should allow for more accurate predictions of aerosol size distributions and a greater confidence in the effects of aerosols in climate and health studies.
NASA Astrophysics Data System (ADS)
Archer-Nicholls, S.; Lowe, D.; Darbyshire, E.; Morgan, W.; Freitas, S. R.; Longo, K.; Coe, H.; McFiggans, G.
2014-12-01
The burning of forests in the Amazonia region is a globally significant source of carbonaceous aerosol, containing both absorbing and scattering components. Biomass burning aerosol (BBA) are efficient CCN, modifying cloud properties and influencing atmospheric circulation and precipitation tendencies. The impacts of BBA are highly dependent on their size distribution and composition. Studies in this region can therefore benefit greatly from the use of state-of-the-art sectional aerosol representations. A bottom-up fire emissions inventory, 3BEM, has been developed by Longo et al.1. It uses satellite products to identify fire locations, applying the emissions factors of Andrei and Merlot3 to generate daily emission maps. Flaming emissions are very buoyant, and a method for injecting emissions at altitude is needed to accurately describe the vertical profile of BBA. A parameterisation has been developed to simulate this sub-grid process4, and previously implemented in WRF-Chem using a modal aerosol scheme5. For this work we have modified the WRF-Chem model to simulate 3BEM emissions using the MOSAIC sectional aerosol scheme6. This modified version of WRF-Chem v3.4.1 has been run for September 2012 over South America (25km grid-spacing). We will present model results evaluating the modelled aerosol vertical distribution, size distribution, composition and optical properties against measurements taken by the FAAM BAe-146 research aircraft during the SAMBBA field campaign. The plume-rise parameterisation was found to inject flaming emissions too high over most fires, resulting in high modelled aerosol loadings at high altitude. We probed the behaviour of the parameterisation by developing a new SAMBBA-tuned 3BEM emissions scenario, which uses more realistic estimates of fire size. Results from high-resolution (5 and 1km) nested simulations will also be presented, in order to evaluate the impacts of explicit aerosol-cloud interactions in non-parameterised clouds. 1. K. Longo et al., 2010, Atmos. Chem. Phys., 10, 5785-5795. 2. M. O. Andreae and P. Merlot, 2001, Global Biogeochem. Cy., 15(4), 955-966. 3. S. Freitas et al., 2007, Atmos. Chem. Phys., 7, 3385-3398. 4. G. Grell et al., 2011, Atmos. Chem. Phys., 11, 5289-5303. 5. R. Zavari et al., 2008, J. Geophys. Res., 113, D132024.
McKenna, James T.; Yang, Chun; Franciosi, Serena; Winston, Stuart; Abarr, Kathleen K.; Rigby, Matthew S.; Yanagawa, Yuchio; McCarley, Robert W.; Brown, Ritchie E.
2013-01-01
The basal forebrain (BF) strongly regulates cortical activation, sleep homeostasis, and attention. Many BF neurons involved in these processes are GABAergic, including a subpopulation of projection neurons containing the calcium-binding protein, parvalbumin (PV). However, technical difficulties in identification have prevented a precise mapping of the distribution of GABAergic and GABA/PV+ neurons in the mouse or a determination of their intrinsic membrane properties. Here we used mice expressing fluorescent proteins in GABAergic (GAD67-GFP knock-in mice) or PV+ neurons (PV-Tomato mice) to study these neurons. Immunohistochemical staining for GABA in GAD67-GFP mice confirmed that GFP selectively labeled BF GABAergic neurons. GFP+ neurons and fibers were distributed throughout the BF, with the highest density in the magnocellular preoptic area (MCPO). Immunohistochemistry for PV indicated that the majority of PV+ neurons in the BF were large (>20 μm) or medium-sized (15–20 μm) GFP+ neurons. Most medium and large-sized BF GFP+ neurons, including those retrogradely labeled from the neocortex, were fast-firing and spontaneously active in vitro. They exhibited prominent hyperpolarization-activated inward currents and subthreshold “spikelets,” suggestive of electrical coupling. PV+ neurons recorded in PV-Tomato mice had similar properties but had significantly narrower action potentials and a higher maximal firing frequency. Another population of smaller GFP+ neurons had properties similar to striatal projection neurons. The fast firing and electrical coupling of BF GABA/PV+ neurons, together with their projections to cortical interneurons and the thalamic reticular nucleus, suggest a strong and synchronous control of the neocortical fast rhythms typical of wakefulness and REM sleep. PMID:23254904
Reticulite, Scoria and Lava: Foam Formation in Hawaiian Fire Fountain Eruptions
NASA Astrophysics Data System (ADS)
Rust, A. C.; Cashman, K. V.
2006-12-01
Hawaiian fire fountain eruptions can generate three types of foams: 1) scoria pyroclasts characterized by spherical bubbles and typical vesicularities of 70-85%, 2) reticulite pyroclasts consisting of a polygonal network of trigonal glass struts and vesicularities of 95-99% and 3) lava flows with bubble contents as high as 70-80%. We use bubble textures to explore the origins of these three distinct foams. With these data and the observation that all three foam types can erupt simultaneously, we discuss the dynamics of Hawaiian eruptions. Our main focus is reticulite, which is a minor but ubiquitous product of relatively high Hawaiian fountains. Compared to scoria, reticulite is more vesicular and has a larger mean bubble size and a much more uniform bubble size distribution. It was previously suggested that reticulite results from further expansion of hot scoria foam. However, to form reticulite from scoria requires not only that gas expand faster than it can percolate through bubble networks in scoria, but also requires processes such as Ostwald ripening that will reduce the range of bubble sizes. Such processes commonly occur in the formation of polygonal soap foams for instance. However, we suggest that a better analogue for reticulite formation is popcorn. In particular we propose that reticulite did not evolve from scoria but from magma that experienced (1) near-instantaneous bubble nucleation followed by (2) rapid and uniform expansion to generate (3) a polyhedral 'dry' foam that then (4) experienced near-instantaneous film rupture and quenching throughout the foam. In contrast, it seems that there are other parts of the system where bubble nucleation is not instantaneous and yields a broader size distribution of bubbles that expand more slowly, maintain spherical shapes, and become permeable through coalescence of small melt films between spherical bubble walls. We suggest that reticulite only forms in relatively high fire fountains, not because of longer time for expansion but because of higher ascent rates in these eruptions.
A human-driven decline in global burned area
NASA Astrophysics Data System (ADS)
Andela, N.
2017-12-01
Fire regimes are changing rapidly across the globe, driven by human land management and climate. We assessed long-term trends in fire activity using multiple satellite data sets and developed a new global data set on individual fire dynamics to understand the implications of changing fire regimes. Despite warming climate, burned area declined across most of the tropics, contributing to a global decline in burned area of 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area was largest in savannas and grasslands, where agricultural expansion and intensification were primary drivers of declining fire activity. In tropical forests, frequent fires for deforestation and agricultural management yield a sharp rise in fire activity with the expansion of settled land uses, but the use of fire decreases with increasing investment in agricultural areas in both savanna and forested landscapes. Disparate patterns of recent socieconomic development resulted in contrasting fire trends between southern Africa (increase) and South America (decrease). A strong inverse relationship between burned area and economic development in savannas and grasslands suggests that despite potential increasing fire risk from climate change, ongoing socioeconomic development will likely sustain observed declines in fire in these ecosystems during coming decades. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. The spatiotemporal distribution of fire size, duration, speed and direction of spread provided new insights in continental scale differences in fire regimes driven by human and climatic factors. Understanding these dynamics over larger scales is critical to achieve a balance between conservation of fire-dependent ecosystems and increasing agricultural production to support growing populations that will require careful management of fire activity in human-dominated landscapes.
Gordon, Christopher E; Price, Owen F; Tasker, Elizabeth M
2017-07-01
There is a public perception that large high-severity wildfires decrease biodiversity and increase fire hazard by homogenizing vegetation composition and increasing the cover of mid-story vegetation. But a growing literature suggests that vegetation responses are nuanced. LiDAR technology provides a promising remote sensing tool to test hypotheses about post-fire vegetation regrowth because vegetation cover can be quantified within different height strata at fine scales over large areas. We assess the usefulness of airborne LiDAR data for measuring post-fire mid-story vegetation regrowth over a range of spatial resolutions (10 × 10 m, 30 × 30 m, 50 × 50 m, 100 × 100 m cell size) and investigate the effect of fire severity on regrowth amount and spatial pattern following a mixed severity wildfire in Warrumbungle National Park, Australia. We predicted that recovery would be more vigorous in areas of high fire severity, because park managers observed dense post-fire regrowth in these areas. Moderate to strong positive associations were observed between LiDAR and field surveys of mid-story vegetation cover between 0.5-3.0 m. Thus our LiDAR survey was an apt representation of on-ground vegetation cover. LiDAR-derived mid-story vegetation cover was 22-40% lower in areas of low and moderate than high fire severity. Linear mixed-effects models showed that fire severity was among the strongest biophysical predictors of mid-story vegetation cover irrespective of spatial resolution. However much of the variance associated with these models was unexplained, presumably because soil seed banks varied at finer scales than our LiDAR maps. Dense patches of mid-story vegetation regrowth were small (median size 0.01 ha) and evenly distributed between areas of low, moderate and high fire severity, demonstrating that high-severity fires do not homogenize vegetation cover. Our results are relevant for ecosystem conservation and fire management because they: indicate that native vegetation are responsive and resilient to high-severity fire, and show the usefulness of remote sensing tools such as LiDAR to monitor post-fire vegetation recovery over large areas in situ. © 2017 by the Ecological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, Hammad, E-mail: engr.hammad.aziz03@gmail.com; Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Yusoff, P. S. M. Megat
Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC’s were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate themore » thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.« less
NASA Astrophysics Data System (ADS)
Aziz, Hammad; Ahmad, Faiz; Yusoff, P. S. M. Megat; Zia-ul-Mustafa, M.
2015-07-01
Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC's were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate the thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.
NASA Technical Reports Server (NTRS)
Mitchell, David L.; Chai, Steven K.; Dong, Yayi; Arnott, W. Patrick; Hallett, John
1993-01-01
The 1 November 1986 FIRE I case study was used to test an ice particle growth model which predicts bimodal size spectra in cirrus clouds. The model was developed from an analytically based model which predicts the height evolution of monomodal ice particle size spectra from the measured ice water content (IWC). Size spectra from the monomodal model are represented by a gamma distribution, N(D) = N(sub o)D(exp nu)exp(-lambda D), where D = ice particle maximum dimension. The slope parameter, lambda, and the parameter N(sub o) are predicted from the IWC through the growth processes of vapor diffusion and aggregation. The model formulation is analytical, computationally efficient, and well suited for incorporation into larger models. The monomodal model has been validated against two other cirrus cloud case studies. From the monomodal size spectra, the size distributions which determine concentrations of ice particles less than about 150 mu m are predicted.
Seen areas and the distribution of fires about a lookout
Romain M. Mees
1978-01-01
From the location of a fire lookout and the sites of past fires within a given radius about a lookout, an estimate of the fire distribution with respect to distance from the lookout can be obtained. The estimated distribution can include all fires located within a given number of feet below the last maximum line of sight from the lookout. Seen areas for the same...
Pelletizing/reslurrying as a means of distributing and firing clean coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conkle, H.N.; Raghavan, J.K.; Smit, F.J.
1991-11-21
The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cristina, S.; Feliziani, M.
1995-11-01
This paper describes a new procedure for the numerical computation of the electric field and current density distributions in a dc electrostatic precipitator in the presence of dust, taking into account the particle-size distribution. Poisson`s and continuity equations are numerically solved by supposing that the coronating conductors satisfy Kaptzov`s assumption on the emitter surfaces. Two iterative numerical procedures, both based on the finite element method (FEM), are implemented for evaluating, respectively, the unknown ionic charge density and the particle charge density distributions. The V-I characteristic and the precipitation efficiencies for the individual particle-size classes, calculated with reference to the pilotmore » precipitator installed by ENEL (Italian Electricity Board) at its Marghera (Venice) coal-fired power station, are found to be very close to those measured experimentally.« less
Synthesis and characterization of carbon microsphere for extinguishing sodium fire
NASA Astrophysics Data System (ADS)
Snehalatha, V.; Ponraju, D.; Nashine, B. K.; Chellapandi, P.
2013-06-01
In Sodium cooled Fast breeder Reactors (SFRs), accidental leakage of liquid sodium leads to sodium fire. Carbon microsphere is a promising and novel extinguishant for sodium fire since it possesses high thermal conductivity, chemical inertness and excellent flow characteristics. Low density Carbon microsphere (CMS) with high thermal stability was successfully synthesized from functionalized styrene divinyl benzene copolymer by carbonization under inert atmosphere. Protocol for stepwise carbonization was developed by optimizing heating rate and time of heating. The synthesized CMS was characterized by Densimeter, Scanning Electron Microscope (SEM), Fourier Transfer Infra-Red spectroscopy (FTIR), Thermogravimetry (TG), X-ray Diffraction (XRD) and RAMAN spectroscopy. CMS thus obtained was spherical in shape having diameters ranging between 60 to 80μm with narrow size distribution. The smooth surface of CMS ensures its free flow characteristics. The yield of carbonization process was about 38%. The performance of CMS was tested on small scale sodium. This paper describes the development of carbon microsphere for extinguishing sodium fire and its characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, B.; Lu, S. X.; Li, C. H.
In an atrium measured 120 m by 180 m by 36.5 m high, fire tests were conducted under 'natural filling' and 'mechanical exhaust' conditions by hot smoke test method. The fire size was 8 MW released by an ethanol pool of 3.6 m in diameter. The distribution of vertical temperature profiles above the fire source and the gas layer temperatures were measured. From these measurements, it was shown that the fans successfully exhausted hot smoke to control descending of hot smoke layer and temperature rising rate. The hot smoke layer can be maintained at about 30 m which was almostmore » 2 times of hot layer height in 'natural filling' condition. The temperature risings in both conditions were too low to cause thermal damage to the structure, only 18.6 K and 12 K. The centerline temperature above the fire source and the height of hot smoke layer were calculated using the plume models. The calculated results agreed well with the conclusions obtained from the experiment results.« less
Kontoes, Charalampos; Keramitsoglou, Iphigenia; Papoutsis, Ioannis; Sifakis, Nicolas I.; Xofis, Panteleimon
2013-01-01
This paper presents the results of an operational nationwide burnt area mapping service realized over Greece for the years 2007–2011, through the implementation of the so-called BSM_NOA dedicated method developed at the National Observatory of Athens for post-fire recovery management. The method exploits multispectral satellite imagery, such as Landsat-TM, SPOT, FORMOSAT-2, WorldView and IKONOS. The analysis of fire size distribution reveals that a high number of fire events evolve to large and extremely large wildfires under favorable wildfire conditions, confirming the reported trend of an increasing fire-severity in recent years. Furthermore, under such conditions wildfires affect to a higher degree areas at high altitudes, threatening the existence of ecologically significant ecosystems. Finally, recent socioeconomic changes and land abandonment has resulted in the encroachment of former agricultural areas of limited productivity by shrubs and trees, resulting both in increased fuel availability and continuity, and subsequently increased burnability. PMID:23966201
Griffiths phase and long-range correlations in a biologically motivated visual cortex model
NASA Astrophysics Data System (ADS)
Girardi-Schappo, M.; Bortolotto, G. S.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.
2016-07-01
Activity in the brain propagates as waves of firing neurons, namely avalanches. These waves’ size and duration distributions have been experimentally shown to display a stable power-law profile, long-range correlations and 1/f b power spectrum in vivo and in vitro. We study an avalanching biologically motivated model of mammals visual cortex and find an extended critical-like region - a Griffiths phase - characterized by divergent susceptibility and zero order parameter. This phase lies close to the expected experimental value of the excitatory postsynaptic potential in the cortex suggesting that critical be-havior may be found in the visual system. Avalanches are not perfectly power-law distributed, but it is possible to collapse the distributions and define a cutoff avalanche size that diverges as the network size is increased inside the critical region. The avalanches present long-range correlations and 1/f b power spectrum, matching experiments. The phase transition is analytically determined by a mean-field approximation.
Robert E. Keane
2006-01-01
The Tree Data (TD) methods are used to sample individual live and dead trees on a fixed-area plot to estimate tree density, size, and age class distributions before and after fire in order to assess tree survival and mortality rates. This method can also be used to sample individual shrubs if they are over 4.5 ft tall. When trees are larger than the user-specified...
Aboriginal hunting buffers climate-driven fire-size variability in Australia's spinifex grasslands.
Bliege Bird, Rebecca; Codding, Brian F; Kauhanen, Peter G; Bird, Douglas W
2012-06-26
Across diverse ecosystems, greater climatic variability tends to increase wildfire size, particularly in Australia, where alternating wet-dry cycles increase vegetation growth, only to leave a dry overgrown landscape highly susceptible to fire spread. Aboriginal Australian hunting fires have been hypothesized to buffer such variability, mitigating mortality on small-mammal populations, which have suffered declines and extinctions in the arid zone coincident with Aboriginal depopulation. We test the hypothesis that the relationship between climate and fire size is buffered through the maintenance of an anthropogenic, fine-grained fire regime by comparing the effect of climatic variability on landscapes dominated by Martu Aboriginal hunting fires with those dominated by lightning fires. We show that Aboriginal fires are smaller, more tightly clustered, and remain small even when climate variation causes huge fires in the lightning region. As these effects likely benefit threatened small-mammal species, Aboriginal hunters should be considered trophic facilitators, and policies aimed at reducing the risk of large fires should promote land-management strategies consistent with Aboriginal burning regimes.
Fire history of the San Francisco East Bay region and implications for landscape patterns
Keeley, J.E.
2005-01-01
The San Francisco East Bay landscape is a rich mosaic of grasslands, shrublands and woodlands that is experiencing losses of grassland due to colonization by shrubs and succession towards woodland associations. The instability of these grasslands is apparently due to their disturbance-dependent nature coupled with 20th century changes in fire and grazing activity. This study uses fire history records to determine the potential for fire in this region and for evidence of changes in the second half of the 20th century that would account for shrubland expansion. This region has a largely anthropogenic fire regime with no lightning-ignited fires in most years. Fire suppression policy has not excluded fire from this region; however, it has been effective at maintaining roughly similar burning levels in the face of increasing anthropogenic fires, and effective at decreasing the size of fires. Fire frequency parallels increasing population growth until the latter part of the 20th century, when it reached a plateau. Fire does not appear to have been a major factor in the shrub colonization of grasslands, and cessation of grazing is a more likely immediate cause. Because grasslands are not under strong edaphic control, rather their distribution appears to be disturbance-dependent, and natural lightning ignitions are rare in the region, I hypothesize that, before the entrance of people into the region, grasslands were of limited extent. Native Americans played a major role in creation of grasslands through repeated burning and these disturbance-dependent grasslands were maintained by early European settlers through overstocking of these range lands with cattle and sheep. Twentieth century reduction in grazing, coupled with a lack of natural fires and effective suppression of anthropogenic fires, have acted in concert to favor shrubland expansion.
Tedim, Fantina; Remelgado, Ruben; Martins, João; Carvalho, Salete
2015-01-01
Portugal is a European country with highest forest fires density and burned area. Since beginning of official forest fires database in 1980, an increase in number of fires and burned area as well as appearance of large and catastrophic fires have characterized fire activity in Portugal. In 1980s, the largest fires were just a little bit over 10,000 ha. However, in the beginning of 21st century several fires occurred with a burned area over 20,000 ha. Some of these events can be classified as mega-fires due to their ecological and socioeconomic severity. The present study aimed to discuss the characterization of large forest fires trend, in order to understand if the largest fires that occurred in Portugal were exceptional events or evidences of a new trend, and the constraints of fire size to characterize fire effects because, usually, it is assumed that larger the fire higher the damages. Using Portuguese forest fire database and satellite imagery, the present study showed that the largest fires could be seen at the same time as exceptional events and as evidence of a new fire regime. It highlighted the importance of size and patterns of unburned patches within fire perimeter as well as heterogeneity of fire ecological severity, usually not included in fire regime description, which are critical to fire management and research. The findings of this research can be used in forest risk reduction and suppression planning.
NASA Astrophysics Data System (ADS)
Liu, T.; Marlier, M. E.; Karambelas, A. N.; Jain, M.; DeFries, R. S.
2017-12-01
A leading source of outdoor emissions in northwestern India comes from crop residue burning after the annual monsoon (kharif) and winter (rabi) crop harvests. Agricultural burned area, from which agricultural fire emissions are often derived, can be poorly quantified due to the mismatch between moderate-resolution satellite sensors and the relatively small size and short burn period of the fires. Many previous studies use the Global Fire Emissions Database (GFED), which is based on the Moderate Resolution Imaging Spectroradiometer (MODIS) burned area product MCD64A1, as an outdoor fires emissions dataset. Correction factors with MODIS active fire detections have previously attempted to account for small fires. We present a new burned area classification algorithm that leverages more frequent MODIS observations (500 m x 500 m) with higher spatial resolution Landsat (30 m x 30 m) observations. Our approach is based on two-tailed Normalized Burn Ratio (NBR) thresholds, abbreviated as ModL2T NBR, and results in an estimated 104 ± 55% higher burned area than GFEDv4.1s (version 4, MCD64A1 + small fires correction) in northwestern India during the 2003-2014 winter (October to November) burning seasons. Regional transport of winter fire emissions affect approximately 63 million people downwind. The general increase in burned area (+37% from 2003-2007 to 2008-2014) over the study period also correlates with increased mechanization (+58% in combine harvester usage from 2001-2002 to 2011-2012). Further, we find strong correlation between ModL2T NBR-derived burned area and results of an independent survey (r = 0.68) and previous studies (r = 0.92). Sources of error arise from small median landholding sizes (1-3 ha), heterogeneous spatial distribution of two dominant burning practices (partial and whole field), coarse spatio-temporal satellite resolution, cloud and haze cover, and limited Landsat scene availability. The burned area estimates of this study can be used to build a new agricultural fire emissions inventory to re-evaluate the contributions of winter agricultural fires to rural and urban air quality degradation.
NASA Astrophysics Data System (ADS)
Odwuor, A.; Corr, C.; Griffin, R. J.; Pusede, S.; Anderson, B.; Beyersdorf, A. J.; Campuzano Jost, P.; Chen, G.; Day, D. A.; Diskin, G. S.; Jimenez, J. L.; Moore, R.; Nault, B.; Schwarz, J. P.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Armin, W.; Ziemba, L. D.
2017-12-01
Climate models and satellite aerosol classification retrievals rely on well-characterized aerosol optical properties (e.g., scattering and absorption coefficients) that vary with aerosol type. However, generalized parameterizations of aerosol optical properties are weakened by actual variability in aerosol chemical and physical properties that arises from factors independent of aerosol source (e.g., meteorology). This is particularly true for biomass burning (BB) aerosol, which can vary in composition and size depending on burn conditions (e.g., smoldering versus flaming) and fuel. This work investigates the relationships between BB aerosol chemical, physical, and optical properties and fuel. We compare BB aerosol measured in fire plumes associated with distinct fuel types sampled during three NASA airborne research campaigns: boreal forest fires during the Arctic Research of the Troposphere from Aircraft and Satellites (ARCTAS) mission in Saskatchewan, Canada in July 2008; agricultural fires during the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) over the continental U.S. in August/September 2013; and scrubland fires during the Student Airborne Research Program (SARP) mission in Southern California, U.S. in June 2016. Mean modified combustion efficiency values between 0.9 and 0.92 for the agricultural plumes and between 0.92 and 0.99 for the boreal and scrubland plumes indicate a significant flaming component to these fires. Despite similarities in burn conditions, SSA at 550nm was consistently lower for the agricultural and scrubland fires ( 0.92) compared to the boreal forest ( 0.96). While the ratio of black carbon to organic aerosol (OA) was similar among fires, differences in the OA were noted; f44/f60 ratios derived from Aerosol Mass Spectrometer OA measurements were consistently higher (>5) in scrubland and agricultural fires compared to boreal forest fires (<5). This suggests the amount of oxidized OA relative to fresh BB aerosol in fire plumes under flaming conditions may vary with fuel type and influence plume optical properties. The relationship between size distributions and optical properties is also explored in this work, with particular attention on the role of the coarse mode in aerosol absorption.
Recent Progress and Emerging Issues in Measuring and Modeling Biomass Burning Emissions
NASA Astrophysics Data System (ADS)
Yokelson, R. J.; Stockwell, C.; Veres, P. R.; Hatch, L. E.; Barsanti, K. C.; Simpson, I. J.; Blake, D. R.; Alvarado, M.; Kreidenweis, S. M.; Robinson, A. L.; Akagi, S. K.; McMeeking, G. R.; Stone, E.; Gilman, J.; Warneke, C.; Sedlacek, A. J.; Kleinman, L. I.
2013-12-01
Nine recent multi-PI campaigns (6 airborne, 3 laboratory) have quantified biomass burning emissions and the subsequent smoke evolution in unprecedented detail. Among these projects were the Fourth Fire Lab at Missoula Experiment (FLAME-4) and the DOE airborne campaign BBOP (Biomass Burning Observation Project). Between 2009 and 2013 a large selection of fuels and ecosystems were probed including: (1) 21 US prescribed fires in pine forests, chaparral, and shrublands; (2) numerous wildfires in the Pacific Northwest of the US; (3) 77 lab fires burning fuels collected from the sites of the prescribed fires; and (4) 158 lab fires burning authentic fuels in traditional cooking fires and advanced stoves; peat from Indonesia, Canada, and North Carolina; savanna grasses from Africa; temperate grasses from the US; crop waste from the US; rice straw from Taiwan, China, Malaysia, and California; temperate and boreal forest fuels collected in Montana and Alaska; chaparral fuels from California; trash; and tires. Instrumentation for gases included: FTIR, PTR-TOF-MS, 2D-GC and whole air sampling. Particle measurements included filter sampling (with IC, elemental carbon (EC), organic carbon (OC), and GC-MS) and numerous real-time measurements such as: HR-AMS (high-resolution aerosol MS), SP-AMS (soot particle AMS), SP2 (single particle soot photometer), SP-MS (single particle MS), ice nuclei, CCN (cloud condensation nuclei), water soluble OC, size distribution, and optical properties in the UV-VIS. New data include: emission factors for over 400 gases, black carbon (BC), brown carbon (BrC), organic aerosol (OA), ions, metals, EC, and OC; and details of particle morphology, mixing state, optical properties, size distributions, and cloud nucleating activity. Large concentrations (several ppm) of monoterpenes were present in fresh smoke. About 30-70% of the initially emitted gas-phase non-methane organic compounds were semivolatile and could not be identified with current technology. The detection rate for the sampled US prescribed fires was zero by burned area and <30% by active fire detection. Smoke evolution was measured for numerous gas-phase precursors and products, ozone, OA, ions, and BC and BrC mixing state. BC particles were coated within one hour and the smoke evolution was, in general, strongly impacted by the unidentified low volatility gases. An informative synthesis of lab and field fire data with fuels from the same sites was carried out. A preliminary comparison of wildfire and prescribed fire emissions will be presented. Novel schemes are under development to summarize the new emissions data for models, with limited mechanisms and parameterize fast, sub-grid processes. Key current issues to be discussed include: packaging/parameterizing the recent explosion of emissions/evolution data for use in model mechanisms; addressing fires not detected from space; addressing the large amount of unidentified semi-volatile gases emitted by all fires; and developing appropriate airborne and ground-based sampling scales/strategies for local-global models. We briefly summarize a recently funded project that will sample emissions and quantify biomass consumption by peat fires in Indonesia and a pending proposal for comprehensive sampling of cooking fires, brick kilns, garbage burning, diesel super-emitters, etc. in South Asia.
1996-06-10
The dart and associated launching system was developed by engineers at MSFC to collect a sample of the aluminum oxide particles during the static fire testing of the Shuttle's solid rocket motor. The dart is launched through the exhaust and recovered post test. The particles are collected on sticky copper tapes affixed to a cylindrical shaft in the dart. A protective sleeve draws over the tape after the sample is collected to prevent contamination. The sample is analyzed under a scarning electron microscope under high magnification and a particle size distribution is determined. This size distribution is input into the analytical model to predict the radiative heating rates from the motor exhaust. Good prediction models are essential to optimizing the development of the thermal protection system for the Shuttle.
Spatial distribution of human-caused forest fires in Galicia (NW Spain)
M. L. Chas-Amil; J. Touza; P. Prestemon
2010-01-01
It is crucial for fire prevention policies to assess the spatial patterns of human-started fires and their relationship with geographical and socioeconomic aspects. This study uses fire reports for the period 1988-2006 in Galicia, Spain, to analyze the spatial distribution of human-induced fire risk attending to causes and underlying motivations associated with fire...
THE DISTRIBUTION OF ROUNDS FIRED IN STOCHASTIC DUELS
This paper continues the development of the theory of Stochastic Duels to include the distribution of the number of rounds fired. Most generally...the duel between two contestants who fire at each other with constant kill probabilities per round is considered. The time between rounds fired may be...at the beginning of the duel may be limited and is a discrete random variable. Besides the distribution of rounds fired, its first two moments and
Seasonal distribution of African savanna fires
NASA Technical Reports Server (NTRS)
Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; O'Neill, Katherine P.
1992-01-01
The temporal and spatial distribution of savanna fires over the entire African continent, as determined from nighttime satellite imagery, is described. It is found that, contrary to expectations, most fires are left to burn uncontrolled, so that there is no strong diurnal cycle in the fire frequency. The knowledge gained from this study regarding the distribution and variability of fires is helpful in the monitoring of climatically important trace gases emitted from burning biomass.
Trends and causes of severity, size, and number of fires in northwestern California, USA.
Miller, J D; Skinner, C N; Safford, H D; Knapp, E E; Ramirez, C M
2012-01-01
Research in the last several years has indicated that fire size and frequency are on the rise in western U.S. forests. Although fire size and frequency are important, they do not necessarily scale with ecosystem effects of fire, as different ecosystems have different ecological and evolutionary relationships with fire. Our study assessed trends and patterns in fire size and frequency from 1910 to 2008 (all fires > 40 ha), and the percentage of high-severity in fires from 1987 to 2008 (all fires > 400 ha) on the four national forests of northwestern California. During 1910-2008, mean and maximum fire size and total annual area burned increased, but we found no temporal trend in the percentage of high-severity fire during 1987-2008. The time series of severity data was strongly influenced by four years with region-wide lightning events that burned huge areas at primarily low-moderate severity. Regional fire rotation reached a high of 974 years in 1984 and fell to 95 years by 2008. The percentage of high-severity fire in conifer-dominated forests was generally higher in areas dominated by smaller-diameter trees than in areas with larger-diameter trees. For Douglas-fir forests, the percentage of high-severity fire did not differ significantly between areas that re-burned and areas that only burned once (10% vs. 9%) when re-burned within 30 years. Percentage of high-severity fire decreased to 5% when intervals between first and second fires were > 30 years. In contrast, in both mixed-conifer and fir/high-elevation conifer forests, the percentage of high-severity fire was less when re-burned within 30 years compared to first-time burned (12% vs. 16% for mixed conifer; 11% vs. 19% for fir/high-elevation conifer). Additionally, the percentage of high-severity fire did not differ whether the re-burn interval was less than or greater than 30 years. Years with larger fires and greatest area burned were produced by region-wide lightning events, and characterized by less winter and spring precipitation than years dominated by smaller human-ignited fires. Overall percentage of high-severity fire was generally less in years characterized by these region-wide lightning events. Our results suggest that, under certain conditions, wildfires could be more extensively used to achieve ecological and management objectives in northwestern California.
NASA Astrophysics Data System (ADS)
Nesterova, Natalia; Semenova, Olga; Lebedeva, Luidmila
2015-04-01
Large territories of Siberia and Russian Far East are the subject to frequent forest fires. Often there is no information available about fire impact except its timing, areal distribution and qualitative characteristics of fire severity. Observed changes of hydrological response in burnt watersheds can be considered as indirect evidence of soil and vegetation transformation due to fire impact. In our study we used MODIS Fire products to detect spatial distribution of fires in Transbaikal and Far East regions of Russia in 2000 - 2012 period. Small and middle-size watersheds (with area up to 10000 km2) affected by extensive (burn area not less than 20 %) fires were chosen. We analyzed available hydrological data (measured discharges in watersheds outlets) for chosen basins. In several cases apparent hydrological response to fire was detected. To investigate main factors causing the change of hydrologic regime after fire several scenarios of soil and vegetation transformation were developed for each watershed under consideration. Corresponding sets of hydrological model parameters describing those transformations were elaborated based on data analysis and post-fire landscape changes as derived from a literature review. We implied different factors such as removal of organic layer, albedo changes, intensification of soil thaw (in presence of permafrost and seasonal soil freezing), reduction of infiltration rate and evapotranspiration, increase of upper subsurface flow fraction in summer flood events following the fire and others. We applied Hydrograph model (Russia) to conduct simulation experiments aiming to reveal which landscape changes scenarios were more plausible. The advantages of chosen hydrological model for this study are 1) that it takes into consideration thermal processes in soils which in case of permafrost and seasonal soil freezing presence can play leading role in runoff formation and 2) that observable vegetation and soil properties are used as its parameters allowing minimal resort to calibration. The model can use dynamic set of parameters performing preassigned abrupt and/or gradual changes of landscape characteristics. Interestingly, based on modelling results it can be concluded that depending on dominant landscape different aspects of soil and vegetation cover changes may influence runoff formation in contrasting way. The results of the study will be reported.
Spatial probability models of fire in the desert grasslands of the southwestern USA
USDA-ARS?s Scientific Manuscript database
Fire is an important driver of ecological processes in semiarid environments; however, the role of fire in desert grasslands of the Southwestern US is controversial and the regional fire distribution is largely unknown. We characterized the spatial distribution of fire in the desert grassland region...
Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example.
Russell-Smith, Jeremy; Yates, Cameron P; Edwards, Andrew C; Whitehead, Peter J; Murphy, Brett P; Lawes, Michael J
2015-01-01
Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings.
Deriving Multiple Benefits from Carbon Market-Based Savanna Fire Management: An Australian Example
Russell-Smith, Jeremy; Yates, Cameron P.; Edwards, Andrew C.; Whitehead, Peter J.; Murphy, Brett P.; Lawes, Michael J.
2015-01-01
Carbon markets afford potentially useful opportunities for supporting socially and environmentally sustainable land management programs but, to date, have been little applied in globally significant fire-prone savanna settings. While fire is intrinsic to regulating the composition, structure and dynamics of savanna systems, in north Australian savannas frequent and extensive late dry season wildfires incur significant environmental, production and social impacts. Here we assess the potential of market-based savanna burning greenhouse gas emissions abatement and allied carbon biosequestration projects to deliver compatible environmental and broader socio-economic benefits in a highly biodiverse north Australian setting. Drawing on extensive regional ecological knowledge of fire regime effects on fire-vulnerable taxa and communities, we compare three fire regime metrics (seasonal fire frequency, proportion of long-unburnt vegetation, fire patch-size distribution) over a 15-year period for three national parks with an indigenously (Aboriginal) owned and managed market-based emissions abatement enterprise. Our assessment indicates improved fire management outcomes under the emissions abatement program, and mostly little change or declining outcomes on the parks. We attribute improved outcomes and putative biodiversity benefits under the abatement program to enhanced strategic management made possible by the market-based mitigation arrangement. For these same sites we estimate quanta of carbon credits that could be delivered under realistic enhanced fire management practice, using currently available and developing accredited Australian savanna burning accounting methods. We conclude that, in appropriate situations, market-based savanna burning activities can provide transformative climate change mitigation, ecosystem health, and community benefits in northern Australia, and, despite significant challenges, potentially in other fire-prone savanna settings. PMID:26630453
Characterization and mapping of very fine particles in an engine machining and assembly facility.
Heitbrink, William A; Evans, Douglas E; Peters, Thomas M; Slavin, Thomas J
2007-05-01
Very fine particle number and mass concentrations were mapped in an engine machining and assembly facility in the winter and summer. A condensation particle counter (CPC) was used to measure particle number concentrations in the 0.01 microm to 1 microm range, and an optical particle counter (OPC) was used to measure particle number concentrations in 15 channels between 0.3 microm and 20 microm. The OPC measurements were used to estimate the respirable mass concentration. Very fine particle number concentrations were estimated by subtracting the OPC particle number concentrations from 0.3 microm to 1 microm from the CPC number concentrations. At specific locations during the summer visit, an electrical low pressure impactor was used to measure particle size distribution from 0.07 microm to 10 microm in 12 channels. The geometric mean ratio of respirable mass concentration estimated from the OPC to the gravimetrically measured mass concentration was 0.66 with a geometric standard deviation of 1.5. Very fine particle number concentrations in winter were substantially greater where direct-fire natural gas heaters were operated (7.5 x 10(5) particles/cm(3)) than where steam was used for heat (3 x 10(5) particles/cm(3)). During summer when heaters were off, the very fine particle number concentrations were below 10(5) particles/cm(3), regardless of location. Elevated very fine particle number concentrations were associated with machining operations with poor enclosures. Whereas respirable mass concentrations did not vary noticeably with season, they were greater in areas with poorly fitting enclosures (0.12 mg/m(3)) than in areas where state-of-the-art enclosures were used (0.03 mg/m(3)). These differences were attributed to metalworking fluid mist that escaped from poorly fitting enclosures. Particles generated from direct-fire natural gas heater operation were very small, with a number size distribution modal diameter of less than 0.023 microm. Aerosols generated by machining operations had number size distributions modes in the 0.023 microm to 0.1 microm range. However, multiple modes in the mass size distributions estimated from OPC measurements occurred in the 2-20 microm range. Although elevated, very fine particle concentrations and respirable mass concentrations were both associated with poorly enclosed machining operations; the operation of the direct-fire natural gas heaters resulted in the greatest very fine particle concentrations without elevating the respirable mass concentration. These results suggest that respirable mass concentration may not be an adequate indicator for very fine particle exposure.
46 CFR 199.175 - Survival craft and rescue boat equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... breakage-resistant material. (9) Fire extinguisher. The fire extinguisher must be approved under approval series 162.028. The fire extinguisher must be type B-C, size II, or larger. Two type B-C, size I fire... portions of the hull. (4) Bucket. The bucket must be made of corrosion-resistant material and should either...
Aboriginal hunting buffers climate-driven fire-size variability in Australia’s spinifex grasslands
Bliege Bird, Rebecca; Codding, Brian F.; Kauhanen, Peter G.
2012-01-01
Across diverse ecosystems, greater climatic variability tends to increase wildfire size, particularly in Australia, where alternating wet–dry cycles increase vegetation growth, only to leave a dry overgrown landscape highly susceptible to fire spread. Aboriginal Australian hunting fires have been hypothesized to buffer such variability, mitigating mortality on small-mammal populations, which have suffered declines and extinctions in the arid zone coincident with Aboriginal depopulation. We test the hypothesis that the relationship between climate and fire size is buffered through the maintenance of an anthropogenic, fine-grained fire regime by comparing the effect of climatic variability on landscapes dominated by Martu Aboriginal hunting fires with those dominated by lightning fires. We show that Aboriginal fires are smaller, more tightly clustered, and remain small even when climate variation causes huge fires in the lightning region. As these effects likely benefit threatened small-mammal species, Aboriginal hunters should be considered trophic facilitators, and policies aimed at reducing the risk of large fires should promote land-management strategies consistent with Aboriginal burning regimes. PMID:22689979
Simulation methods with extended stability for stiff biochemical Kinetics.
Rué, Pau; Villà-Freixa, Jordi; Burrage, Kevin
2010-08-11
With increasing computer power, simulating the dynamics of complex systems in chemistry and biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key quantity is the step size, or waiting time, tau, whose value inversely depends on the size of the propensities of the different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event simulation may be extremely expensive, in particular for stiff systems where tau can be very short due to the fast kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the integration step size. The so-called tau-leap approach takes a larger step size by allowing all the reactions to fire, from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer from large errors as tau grows. In this paper we extend Poisson tau-leap methods to a general class of Runge-Kutta (RK) tau-leap methods. We show that with the proper selection of the coefficients, the variance of the extended tau-leap can be well-behaved, leading to significantly larger step sizes. The benefit of adapting the extended method to the use of RK frameworks is clear in terms of speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in the original tau-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)chemical systems.
Dynamic Resource Allocation in Disaster Response: Tradeoffs in Wildfire Suppression
Petrovic, Nada; Alderson, David L.; Carlson, Jean M.
2012-01-01
Challenges associated with the allocation of limited resources to mitigate the impact of natural disasters inspire fundamentally new theoretical questions for dynamic decision making in coupled human and natural systems. Wildfires are one of several types of disaster phenomena, including oil spills and disease epidemics, where (1) the disaster evolves on the same timescale as the response effort, and (2) delays in response can lead to increased disaster severity and thus greater demand for resources. We introduce a minimal stochastic process to represent wildfire progression that nonetheless accurately captures the heavy tailed statistical distribution of fire sizes observed in nature. We then couple this model for fire spread to a series of response models that isolate fundamental tradeoffs both in the strength and timing of response and also in division of limited resources across multiple competing suppression efforts. Using this framework, we compute optimal strategies for decision making scenarios that arise in fire response policy. PMID:22514605
Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.
1992-01-01
Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conkle, H.N.; Raghavan, J.K.; Smit, F.J.
1991-11-21
The objective of this study is to develop technology that permits the practical and economic preparation, storage, handling, and transportation of coal pellets, which can be reslurried into Coal water fuels (CWF) suitable for firing in small- and medium-size commercial and industrial boilers, furnaces, and engines. The project includes preparing coal pellets and capsules from wet filter cake that can be economically stored, handled, transported, and reslurried into a CWF that can be suitably atomized and fired at the user site. The wet cakes studied were prepared from ultra-fine (95% -325 mesh) coal beneficiated by advanced froth-flotation techniques. The coalsmore » studied included two eastern bituminous coals, one from Virginia (Elkhorn) and one from Illinois (Illinois No. 6) and one western bituminous coal from Utah (Sky Line coal).« less
Price, Owen F; Penman, Trent; Bradstock, Ross; Borah, Rittick
2016-10-01
Wildfires are complex adaptive systems, and have been hypothesized to exhibit scale-dependent transitions in the drivers of fire spread. Among other things, this makes the prediction of final fire size from conditions at the ignition difficult. We test this hypothesis by conducting a multi-scale statistical modelling of the factors determining whether fires reached 10 ha, then 100 ha then 1000 ha and the final size of fires >1000 ha. At each stage, the predictors were measures of weather, fuels, topography and fire suppression. The objectives were to identify differences among the models indicative of scale transitions, assess the accuracy of the multi-step method for predicting fire size (compared to predicting final size from initial conditions) and to quantify the importance of the predictors. The data were 1116 fires that occurred in the eucalypt forests of New South Wales between 1985 and 2010. The models were similar at the different scales, though there were subtle differences. For example, the presence of roads affected whether fires reached 10 ha but not larger scales. Weather was the most important predictor overall, though fuel load, topography and ease of suppression all showed effects. Overall, there was no evidence that fires have scale-dependent transitions in behaviour. The models had a predictive accuracy of 73%, 66%, 72% and 53% accuracy at 10 ha, 100 ha, 1000 ha and final size scales. When these steps were combined, the overall accuracy for predicting the size of fires was 62%, while the accuracy of the one step model was only 20%. Thus, the multi-scale approach was an improvement on the single scale approach, even though the predictive accuracy was probably insufficient for use as an operational tool. The analysis has also provided further evidence of the important role of weather, compared to fuel, suppression and topography in driving fire behaviour. Copyright © 2016. Published by Elsevier Ltd.
Carkovic, Athena B; Pastén, Pablo A; Bonilla, Carlos A
2015-04-15
Water erosion is a leading cause of soil degradation and a major nonpoint source pollution problem. Many efforts have been undertaken to estimate the amount and size distribution of the sediment leaving the field. Multi-size class water erosion models subdivide eroded soil into different sizes and estimate the aggregate's composition based on empirical equations derived from agricultural soils. The objective of this study was to evaluate these equations on soil samples collected from natural landscapes (uncultivated) and fire-affected soils. Chemical, physical, and soil fractions and aggregate composition analyses were performed on samples collected in the Chilean Patagonia and later compared with the equations' estimates. The results showed that the empirical equations were not suitable for predicting the sediment fractions. Fine particles, including primary clay, primary silt, and small aggregates (<53 μm) were over-estimated, and large aggregates (>53 μm) and primary sand were under-estimated. The uncultivated and fire-affected soils showed a reduced fraction of fine particles in the sediment, as clay and silt were mostly in the form of large aggregates. Thus, a new set of equations was developed for these soils, where small aggregates were defined as particles with sizes between 53 μm and 250 μm and large aggregates as particles>250 μm. With r(2) values between 0.47 and 0.98, the new equations provided better estimates for primary sand and large aggregates. The aggregate's composition was also well predicted, especially the silt and clay fractions in the large aggregates from uncultivated soils (r(2)=0.63 and 0.83, respectively) and the fractions of silt in the small aggregates (r(2)=0.84) and clay in the large aggregates (r(2)=0.78) from fire-affected soils. Overall, these new equations proved to be better predictors for the sediment and aggregate's composition in uncultivated and fire-affected soils, and they reduce the error when estimating soil loss in natural landscapes. Copyright © 2015 Elsevier B.V. All rights reserved.
Fire regime characterization in Mediterranean ecosystems of Southern Italy
NASA Astrophysics Data System (ADS)
Lanorte, A.; Lasaponara, R.
2009-04-01
This paper addresses the wildfire regime in Mediterranean ecosystems of Southern Italy. Fire regimes refer to average fire conditions (including fire size, fire density, fire frequency, fire seasonality, fire intensity, fire severity, fire thresholds, etc.) occurring over a long period of time. Information on spatial pattern of forest fire locations is a key point in the study of the dynamics of fire disturbance, and allows us to improve the knowledge of past and current role of fire. Historical evidence clearly shows what did happen and this can fruitfully help to understand what is happening and what could happen in the next future. Mapping fire regimes is very challenging, because fire ocurrence features are the expression of the interactions between climate, fire, vegetation, topography, social factors. The main objective of this work is to provide a comprehensive characterization of the fire regime in Italy based on a recently updated national wildfire database. Fire data were obtained from the Italian National Forestry Service. This national database is comprised of information contained in individual fire reports completed for every fire that occurs on public lands in the Italian peninsula. Complete data were only available for 1996-2006 at the time we accessed the database, which determined the years we analysed. The primary fire history variables that we reported were number of fires, area burned, burning time and duration, and fire size (average size of individual fires) The wildfire records (wildfire area, location, time, vegetation) were analysed with other environmental (fuel availability and type), topographic features, and meteorological/climatological data. Results of our analysis could help better understand the different factors on the wildfire regime in Mediterranean ecosystems of Southern Italy.
Kafle, Lekhnath; Shih, Cheng-Jen
2012-03-01
The purpose of this study was to determine the most effective particle size of DDGS (distiller's dried grains with solubles) as fire ant bait carrier, as well as the most effective concentration of cypermethrin as a toxicant against the red imported fire ant (RIFA) Solenopsis invicta Buren under laboratory conditions. The DDGS particle size did not affect the fire ant's preference for the bait, but it did affect the mass of DDGS being carried back to the nest. The size of the DDGS particles and the mass of DDGS being carried back to the nest were positively correlated. The most efficient particle size of DDGS was 0.8-2 mm. The concentration of cypermethrin has a specific range for killing fire ants in an efficient manner. Neither a very low nor a very high concentration of cypermethrin was able to kill fire ants efficiently. The most effective concentration of cypermethrin was 0.13% in DDGS when mixed with 15% shrimp shell powders and 11% soybean oil. Based on its ability to kill fire ants when mixed with cypermethrin, as well as the advantage of having a larger area coverage when sprayed in the field, DDGS as the carrier and cypermethrin as the toxicant can be considered to be an efficient way to prepare fire ant bait for controlling fire ants in infested areas. Copyright © 2012 Society of Chemical Industry.
A recent study by Davies et al. sought to test whether winter grazing could reduce wildfire size, fire behavior metrics, and fire-induced plant mortality in shrub-grasslands. The authors concluded that ungrazed rangelands may experience more fire-induced mortality of native peren...
Predicting behavior and size of crown fires in the northern Rocky Mountains
Richard C. Rothermel
1991-01-01
Describes methods for approximating behavior and size of a wind-driven crown fire in mountainous terrain. Covers estimation of average rate of spread, energy release from tree crowns and surface fuel, fireline intensity, flame length, and unit area power of the fire and ambient wind. Plume-dominated fires, which may produce unexpectedly fast spread rates even with low...
USDA-ARS?s Scientific Manuscript database
A recent study by Davies et al. sought to test whether winter grazing could reduce wildfire size, fire behavior and intensity metrics, and fire-induced plant mortality in shrub-grasslands. The authors concluded that ungrazed rangelands may experience fire-induced mortality of native perennial bunchg...
Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V.
2007-01-01
Forest fires leave behind a changed ecosystem with a patchwork of surface cover that includes ash, charred organic matter, soils and soil minerals, and dead, damaged, and living vegetation. The distributions of these materials affect post-fire processes of erosion, nutrient cycling, and vegetation regrowth. We analyzed high spatial resolution (2.4??m pixel size) Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data collected over the Cerro Grande fire, to map post-fire surface cover into 10 classes, including ash, soil minerals, scorched conifer trees, and green vegetation. The Cerro Grande fire occurred near Los Alamos, New Mexico, in May 2000. The AVIRIS data were collected September 3, 2000. The surface cover map revealed complex patterns of ash, iron oxide minerals, and clay minerals in areas of complete combustion. Scorched conifer trees, which retained dry needles heated by the fire but not fully combusted by the flames, were found to cover much of the post-fire landscape. These scorched trees were found in narrow zones at the edges of completely burned areas. A surface cover map was also made using Landsat Enhanced Thematic Mapper plus (ETM+) data, collected September 5, 2000, and a maximum likelihood, supervised classification. When compared to AVIRIS, the Landsat classification grossly overestimated cover by dry conifer and ash classes and severely underestimated soil and green vegetation cover. In a comparison of AVIRIS surface cover to the Burned Area Emergency Rehabilitation (BAER) map of burn severity, the BAER high burn severity areas did not capture the variable patterns of post-fire surface cover by ash, soil, and scorched conifer trees seen in the AVIRIS map. The BAER map, derived from air photos, also did not capture the distribution of scorched trees that were observed in the AVIRIS map. Similarly, the moderate severity class of Landsat-derived burn severity maps generated from the differenced Normalized Burn Ratio (dNBR) calculation had low agreement with the AVIRIS classes of scorched conifer trees. Burn severity and surface cover images were found to contain complementary information, with the dNBR map presenting an image of degree of change caused by fire and the AVIRIS-derived map showing specific surface cover resulting from fire.
Bowsher, Julia H; Wray, Gregory A; Abouheif, Ehab
2007-12-15
Over the last decade, it has become clear that organismal form is largely determined by developmental and evolutionary changes in the growth and pattern formation of tissues. Yet, there is little known about how these two integrated processes respond to environmental cues or how they evolve relative to one another. Here, we present the discovery of vestigial wing imaginal discs in worker larvae of the red imported fire ant, Solenopsis invicta. These vestigial wing discs are present in all worker larvae, which is uncommon for a species with a large worker size distribution. Furthermore, the growth trajectory of these vestigial discs is distinct from all of the ant species examined to date because they grow at a rate slower than the leg discs. We predicted that the growth trajectory of the vestigial wing discs would be mirrored by evolutionary changes in their patterning. We tested this prediction by examining the expression of three patterning genes, extradenticle, ultrabithorax, and engrailed, known to underlie the wing polyphenism in ants. Surprisingly, the expression patterns of these three genes in the vestigial wing discs was the same as those found in ant species with different worker size distributions and wing disc growth than fire ants. We conclude that growth and patterning are evolutionarily dissociated in the vestigial wing discs of S. invicta because patterning in these discs is conserved, whereas their growth trajectories are not. The evolutionary dissociation of growth and patterning may be an important feature of gene networks that underlie polyphenic traits. 2007 Wiley-Liss, Inc
Mean-field theory of a plastic network of integrate-and-fire neurons.
Chen, Chun-Chung; Jasnow, David
2010-01-01
We consider a noise-driven network of integrate-and-fire neurons. The network evolves as result of the activities of the neurons following spike-timing-dependent plasticity rules. We apply a self-consistent mean-field theory to the system to obtain the mean activity level for the system as a function of the mean synaptic weight, which predicts a first-order transition and hysteresis between a noise-dominated regime and a regime of persistent neural activity. Assuming Poisson firing statistics for the neurons, the plasticity dynamics of a synapse under the influence of the mean-field environment can be mapped to the dynamics of an asymmetric random walk in synaptic-weight space. Using a master equation for small steps, we predict a narrow distribution of synaptic weights that scales with the square root of the plasticity rate for the stationary state of the system given plausible physiological parameter values describing neural transmission and plasticity. The dependence of the distribution on the synaptic weight of the mean-field environment allows us to determine the mean synaptic weight self-consistently. The effect of fluctuations in the total synaptic conductance and plasticity step sizes are also considered. Such fluctuations result in a smoothing of the first-order transition for low number of afferent synapses per neuron and a broadening of the synaptic-weight distribution, respectively.
Simulating wildfire spread behavior between two NASA Active Fire data timeframes
NASA Astrophysics Data System (ADS)
Adhikari, B.; Hodza, P.; Xu, C.; Minckley, T. A.
2017-12-01
Although NASA's Active Fire dataset is considered valuable in mapping the spatial distribution and extent of wildfires across the world, the data is only available at approximately 12-hour time intervals, creating uncertainties and risks associated with fire spread and behavior between the two Visible Infrared Imaging Radiometer Satellite (VIIRS) data collection timeframes. Our study seeks to close the information gap for the United States by using the latest Active Fire data collected for instance around 0130 hours as an ignition source and critical inputs to a wildfire model by uniquely incorporating forecasted and real-time weather conditions for predicting fire perimeter at the next 12 hour reporting time (i.e. around 1330 hours). The model ingests highly dynamic variables such as fuel moisture, temperature, relative humidity, wind among others, and prompts a Monte Carlo simulation exercise that uses a varying range of possible values for evaluating all possible wildfire behaviors. The Monte Carlo simulation implemented in this model provides a measure of the relative wildfire risk levels at various locations based on the number of times those sites are intersected by simulated fire perimeters. Model calibration is achieved using data at next reporting time (i.e. after 12 hours) to enhance the predictive quality at further time steps. While initial results indicate that the calibrated model can predict the overall geometry and direction of wildland fire spread, the model seems to over-predict the sizes of most fire perimeters possibly due to unaccounted fire suppression activities. Nonetheless, the results of this study show great promise in aiding wildland fire tracking, fighting and risk management.
A stochastic Forest Fire Model for future land cover scenarios assessment
NASA Astrophysics Data System (ADS)
D'Andrea, M.; Fiorucci, P.; Holmes, T. P.
2010-10-01
Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM) produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary - each cell either contains a tree or it is empty - and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM), addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.
Some environmental effects of forest fires in interior Alaska
NASA Astrophysics Data System (ADS)
Eaton, Frank; Wendler, Gerd
The high variability of burning conditions and fuels, found in Alaskan forest fires, produces an associated complex emission of particulate matter. Histological evidence of some large particles has been found in the forest fire plumes as well as aerosols resulting apparently from gas-to-particle conversion. Particles analyzed with a scanning electron microscope and X-ray energy dispersive techniques show large variability in both physical and chemical characteristics. Optical measurements show forest fire smoke affects atmospheric turbidity regionally. Turbidity values presented which were measured in the plume from a forest fire 400 km from Fairbanks show values in excess of those found for heavily polluted urban regions. The particulate matter analysis showing irregular shapes and highly varied chemical composition displays the difficulty in radiative transfer calculations due to the assumptions of Mie theory. The nature of the aerosol size concentrations (non-Junge power law distributions) found in forest fire plumes also violates the assumption necessary for application of Angstrom's classic method of defining the turbidity coefficient and wavelength exponent. Consequences of such particulate matter may affect the temperature structure of the atmosphere, radiation balance as well as visibility. In addition, the burnt over forest regions display a reduction of surface albedo and roughness parameter which will have prolonged influence on the heat exchange at the earth's surface.
Detection rates of the MODIS active fire product in the United States
Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.; Stewart, S.I.
2008-01-01
MODIS active fire data offer new information about global fire patterns. However, uncertainties in detection rates can render satellite-derived fire statistics difficult to interpret. We evaluated the MODIS 1??km daily active fire product to quantify detection rates for both Terra and Aqua MODIS sensors, examined how cloud cover and fire size affected detection rates, and estimated how detection rates varied across the United States. MODIS active fire detections were compared to 361 reference fires (??? 18??ha) that had been delineated using pre- and post-fire Landsat imagery. Reference fires were considered detected if at least one MODIS active fire pixel occurred within 1??km of the edge of the fire. When active fire data from both Aqua and Terra were combined, 82% of all reference fires were found, but detection rates were less for Aqua and Terra individually (73% and 66% respectively). Fires not detected generally had more cloudy days, but not when the Aqua data were considered exclusively. MODIS detection rates decreased with fire size, and the size at which 50% of all fires were detected was 105??ha when combining Aqua and Terra (195??ha for Aqua and 334??ha for Terra alone). Across the United States, detection rates were greatest in the West, lower in the Great Plains, and lowest in the East. The MODIS active fire product captures large fires in the U.S. well, but may under-represent fires in areas with frequent cloud cover or rapidly burning, small, and low-intensity fires. We recommend that users of the MODIS active fire data perform individual validations to ensure that all relevant fires are included. ?? 2008 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mathur, Ravi; Soni, Aditi
White wares produced worldwide represent the foundation of much of the ceramic industry; Porcelain bodies fabricated from triaxial mixtures of clay, quartz and feldspar with different size and amounts of nano particles were investigated. Although the purity of raw materials has a strong effect on the colour of the fired bodies, the particle size of raw materials also effect the whiteness The raw material mining minerals china Clay, Feldspar, quarts were prepared of various sized nano particles contains 10.60 -20.22%, 56.84- 70.80 % and 34.87-50.76 % of 100nm respectively. The fired bodies of raw mining minerals and triaxial bodies were subjected to colour measurement. The differences in whiteness were compared and discussed. The studies so far carried out is upto 400 mesh size while the present study has included up to 100nm particle size. A statistical correlation between whiteness of feldspar and triaxial body was also carried out. The correlation between china clay and triaxial body are 0.53, 0.57 and 0.66 for china clay similarly correlation for feldspar is 0.49, 0.73 and 0.83 for triaxial body it are 0.97, 0.84 and 0.75 for A1, A2 and A3 samples. Correlation between china clay and feldspar with triaxial body are 0.79 and 0.92 respectively.
A sEMG model with experimentally based simulation parameters.
Wheeler, Katherine A; Shimada, Hiroshima; Kumar, Dinesh K; Arjunan, Sridhar P
2010-01-01
A differential, time-invariant, surface electromyogram (sEMG) model has been implemented. While it is based on existing EMG models, the novelty of this implementation is that it assigns more accurate distributions of variables to create realistic motor unit (MU) characteristics. Variables such as muscle fibre conduction velocity, jitter (the change in the interpulse interval between subsequent action potential firings) and motor unit size have been considered to follow normal distributions about an experimentally obtained mean. In addition, motor unit firing frequencies have been considered to have non-linear and type based distributions that are in accordance with experimental results. Motor unit recruitment thresholds have been considered to be related to the MU type. The model has been used to simulate single channel differential sEMG signals from voluntary, isometric contractions of the biceps brachii muscle. The model has been experimentally verified by conducting experiments on three subjects. Comparison between simulated signals and experimental recordings shows that the Root Mean Square (RMS) increases linearly with force in both cases. The simulated signals also show similar values and rates of change of RMS to the experimental signals.
Assessing fire risk in Portugal during the summer fire season
NASA Astrophysics Data System (ADS)
Dacamara, C. C.; Pereira, M. G.; Trigo, R. M.
2009-04-01
Since 1998, Instituto de Meteorologia, the Portuguese Weather Service has relied on the Canadian Fire Weather Index (FWI) System (van Wagner, 1987) to produce daily forecasts of fire risk. The FWI System consists of six components that account for the effects of fuel moisture and wind on fire behavior. The first three components, i.e. the Fine Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC) and the Drought Code (DC) respectively rate the average moisture content of surface litter, decomposing litter, and organic (humus) layers of the soil. Wind effects are then added to FFMC leading to the Initial Spread Index (ISI) that rates fire spread. The remaining two fuel moisture codes (DMC and DC) are in turn combined to produce the Buildup Index (BUI) that is a rating of the total amount of fuel available for combustion. BUI is finally combined with ISI to produce the Fire Weather Index (FWI) that represents the rate of fire intensity. Classes of fire danger and levels of preparedness are commonly defined on an empirical way for a given region by calibrating the FWI System against wildfire activity as defined by the recorded number of events and by the observed burned area over a given period of time (Bovio and Camia, 1998). It is also a well established fact that distributions of burned areas are heavily skewed to the right and tend to follow distributions of the exponential-type (Cumming, 2001). Based on the described context, a new procedure is presented for calibrating the FWI System during the summer fire season in Portugal. Two datasets were used covering a 28-year period (1980-2007); i) the official Portuguese wildfire database which contains detailed information on fire events occurred in the 18 districts of Continental Portugal and ii) daily values of the six components of the FWI System as derived from reanalyses (Uppala et al., 2005) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Calibration of the FWI System is then performed in two steps; 1) a truncated Weibull distribution is fitted to the sample of burned areas and 2) the quality of the fitted statistical model is improved by incorporating components of the FWI System as covariates. Obtained model allows estimating on a daily basis the probability of occurrence of fires larger than a given threshold as well as producing maps of fire risk. Results as obtained from a prototype currently being developed will be presented and discussed. In particular, it will be shown that results provide additional evidence of the known fact that the extent of burned area in Portugal is controlled by two main atmospheric factors (Pereira et al. 2005): i) a long-term control related to the regime of temperature and precipitation in spring and ii) a short-term control exerted by the occurrence of very intense dry spells in days of extreme synoptic situations. Bovio, G., and A. Camia. 1998. An analysis of large forest fire danger conditions in Europe. In Proc. 3rd Int. Conf. on Forest Fire Research & 14th Conf. on Fire and Forest Meteorology, Viegas, D.X. (Ed.), Luso, 16-20 Nov., ADAI, 975-994. Cumming, S.G., 2001. Parametric models of the fire size distribution. Can J. For. Res., 31, 1297-1303. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C. and Leite, S.M., 2005. Synoptic patterns associated with large summer forest fires in Portugal. Agr. and For. Meteorol., 129 (1-2), 11-25. Uppala, S.M. et al., 2005: The ERA-40 re-analysis. Quart. J. R. Meteorol. Soc., 131, 2961-3012. Van Wagner, C.E., 1987. Development and structure of the Canadian forest fire weather index system. Canadian Forestry Service, Forest Technical Report 35, Ottawa, 37 pp.
Resistance of the boreal forest to high burn rates.
Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André
2014-09-23
Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30-500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks.
Resistance of the boreal forest to high burn rates
Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André
2014-01-01
Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30–500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks. PMID:25201981
NASA Astrophysics Data System (ADS)
Roy, Priyom; Guha, Arindam; Kumar, K. Vinod
2015-07-01
Radiant temperature images from thermal remote sensing sensors are used to delineate surface coal fires, by deriving a cut-off temperature to separate coal-fire from non-fire pixels. Temperature contrast of coal fire and background elements (rocks and vegetation etc.) controls this cut-off temperature. This contrast varies across the coal field, as it is influenced by variability of associated rock types, proportion of vegetation cover and intensity of coal fires etc. We have delineated coal fires from background, based on separation in data clusters in maximum v/s mean radiant temperature (13th band of ASTER and 10th band of Landsat-8) scatter-plot, derived using randomly distributed homogeneous pixel-blocks (9 × 9 pixels for ASTER and 27 × 27 pixels for Landsat-8), covering the entire coal bearing geological formation. It is seen that, for both the datasets, overall temperature variability of background and fires can be addressed using this regional cut-off. However, the summer time ASTER data could not delineate fire pixels for one specific mine (Bhulanbararee) as opposed to the winter time Landsat-8 data. The contrast of radiant temperature of fire and background terrain elements, specific to this mine, is different from the regional contrast of fire and background, during summer. This is due to the higher solar heating of background rocky outcrops, thus, reducing their temperature contrast with fire. The specific cut-off temperature determined for this mine, to extract this fire, differs from the regional cut-off. This is derived by reducing the pixel-block size of the temperature data. It is seen that, summer-time ASTER image is useful for fire detection but required additional processing to determine a local threshold, along with the regional threshold to capture all the fires. However, the winter Landsat-8 data was better for fire detection with a regional threshold.
Wu, Zhiwei; He, Hong S; Liang, Yu; Cai, Longyan; Lewis, Bernard J
2013-10-01
Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.
NASA Astrophysics Data System (ADS)
Wu, Zhiwei; He, Hong S.; Liang, Yu; Cai, Longyan; Lewis, Bernard J.
2013-10-01
Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.
Wildland fire limits subsequent fire occurrence
Sean A. Parks; Carol Miller; Lisa M. Holsinger; Scott Baggett; Benjamin J. Bird
2016-01-01
Several aspects of wildland fire are moderated by site- and landscape-level vegetation changes caused by previous fire, thereby creating a dynamic where one fire exerts a regulatory control on subsequent fire. For example, wildland fire has been shown to regulate the size and severity of subsequent fire. However, wildland fire has the potential to influence...
FIRES: Fire Information Retrieval and Evaluation System - A program for fire danger rating analysis
Patricia L. Andrews; Larry S. Bradshaw
1997-01-01
A computer program, FIRES: Fire Information Retrieval and Evaluation System, provides methods for evaluating the performance of fire danger rating indexes. The relationship between fire danger indexes and historical fire occurrence and size is examined through logistic regression and percentiles. Historical seasonal trends of fire danger and fire occurrence can be...
Yi, Honghong; Hao, Jiming; Duan, Lei; Li, Xinghua; Guo, Xingming
2006-09-01
In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 microm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38-99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1-1 microm. In this size range, ESP and baghouse collection efficiencies are 85.79-98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.
Single element injector cold flow testing for STME swirl coaxial injector element design
NASA Technical Reports Server (NTRS)
Hulka, J.; Schneider, J. A.
1993-01-01
An oxidizer-swirled coaxial element injector is being investigated for application in the Space Transportation Main Engine (STME). Single element cold flow experiments were conducted to provide characterization of the STME injector element for future analysis, design, and optimization. All tests were conducted to quiescent, ambient backpressure conditions. Spray angle, circumferential spray uniformity, dropsize, and dropsize distribution were measured in water-only and water/nitrogen flows. Rupe mixing efficiency was measured using water/sucrose solution flows with a large grid patternator for simple comparative evaluation of mixing. Factorial designs of experiment were used for statistical evaluation of injector geometrical design features and propellant flow conditions on mixing and atomization. Increasing the free swirl angle of the liquid oxidizer had the greatest influence on increasing the mixing efficiency. The addition of gas assistance had the most significant effect on reducing oxidizer droplet size parameters and increasing droplet size distribution. Increasing the oxidizer injection velocity had the greatest influence for reducing oxidizer droplet size parameters and increasing size distribution for non-gas assisted flows. Single element and multi-element subscale hot fire testing are recommended to verify optimized designs before committing to the STME design.
Callcut, S; Knowles, J C
2002-05-01
Glass-reinforced hydroxyapatite (HA) foams were produced using reticulated foam technology using a polyurethane template with two different pore size distributions. The mechanical properties were evaluated and the structure analyzed through density measurements, image analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). For the mechanical properties, the use of a glass significantly improved the ultimate compressive strength (UCS) as did the use of a second coating. All the samples tested showed the classic three regions characteristic of an elastic brittle foam. From the density measurements, after application of a correction to compensate for the closed porosity, the bulk and apparent density showed a 1 : 1 correlation. When relative bulk density was plotted against UCS, a non-linear relationship was found characteristic of an isotropic open celled material. It was found by image analysis that the pore size distribution did not change and there was no degradation of the macrostructure when replicating the ceramic from the initial polyurethane template during processing. However, the pore size distributions did shift to a lower size by about 0.5 mm due to the firing process. The ceramic foams were found to exhibit mechanical properties typical of isotropic open cellular foams.
Lawrence F. Radke; Jamie H. Lyons; Peter V. Hobbs; Dean A. Hegg; David V. Sandberg; Darold E. Ward
1990-01-01
Detailed airborne measure ments of smoke plumes from seven prescribed burns of forest biomass residues leftover from timber harvests in Washington and Oregon are described. Measurements of particle size distributions in the plumes at 3.3 km downwind of the burns showed a prominent peak in the mass concentration for particles 0.25-0.30 µm in diameter. The total mass of...
Daniel W. Gilmore; Douglas N. Kastendick; John C. Zasada; Paula J. Anderson
2003-01-01
Fuel loadings need to be considered in two ways: 1) the total fuel loadings of various size classes and 2) their distribution across a site. Fuel treatments in this study affected both. We conclude that 1) mechanical treatments of machine piling and salvage logging reduced fine and heavy fuel loadings and 2) prescribed fire was successful in reducing fine fuel...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coletti, Chiara, E-mail: chiara.coletti@studenti.u
During the firing of bricks, mineralogical and textural transformations produce an artificial aggregate characterised by significant porosity. Particularly as regards pore-size distribution and the interconnection model, porosity is an important parameter to evaluate and predict the durability of bricks. The pore system is in fact the main element, which correlates building materials and their environment (especially in cases of aggressive weathering, e.g., salt crystallisation and freeze-thaw cycles) and determines their durability. Four industrial bricks with differing compositions and firing temperatures were analysed with “direct” and “indirect” techniques, traditional methods (mercury intrusion porosimetry, hydric tests, nitrogen adsorption) and new analytical approachesmore » based on digital image reconstruction of 2D and 3D models (back-scattered electrons and computerised X-ray micro-Tomography, respectively). The comparison of results from different analytical methods in the “overlapping ranges” of porosity and the careful reconstruction of a cumulative curve, allowed overcoming their specific limitations and achieving better knowledge on the pore system of bricks. - Highlights: •Pore-size distribution and structure of the pore system in four commercial bricks •A multi-analytical approach combining “direct” and “indirect” techniques •Traditional methods vs. new approaches based on 2D/3D digital image reconstruction •The use of “overlapping ranges” to overcome the limitations of various techniques.« less
Han, Fang; Wang, Zhijie; Fan, Hong
2017-01-01
This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy consumption is composed of two parts: neuronal basic energy consumption and neuronal spike emission energy consumption. A parameter to model the relative importance of energy consumption is introduced in the definition of the information efficiency. Then, we designed a combination of exponential functions to describe the optimum firing rate distribution based on the analysis of the dependency of the mutual information and the energy consumption on the shape of the functions of the firing rate distributions. Furthermore, we developed a rapid algorithm to search the parameter values of the optimum firing rate distribution function. Finally, we found with the rapid algorithm that a combination of two different exponential functions with two free parameters can describe the optimum firing rate distribution accurately. We also found that if the energy consumption is relatively unimportant (important) compared to the mutual information or the neuronal basic energy consumption is relatively large (small), the curve of the optimum firing rate distribution will be relatively flat (steep), and the corresponding optimum tuning curve exhibits a form of sigmoid if the stimuli distribution is normal. PMID:28270760
C. Alina Cansler; Donald. McKenzie
2014-01-01
Warmer and drier climate over the past few decades has brought larger fire sizes and increased annual area burned in forested ecosystems of western North America, and continued increases in annual area burned are expected due to climate change. As warming continues, fires may also increase in severity and produce larger contiguous patches of severely burned areas. We...
Nesmith, Jonathan C. B.; Das, Adrian J.; O'Hara, Kevin L.; van Mantgem, Phillip J.
2015-01-01
Tree mortality is a vital component of forest management in the context of prescribed fires; however, few studies have examined the effect of prefire tree health on postfire mortality. This is especially relevant for sugar pine (Pinus lambertiana Douglas), a species experiencing population declines due to a suite of anthropogenic factors. Using data from an old-growth mixed-conifer forest in Sequoia National Park, we evaluated the effects of fire, tree size, prefire radial growth, and crown condition on postfire mortality. Models based only on tree size and measures of fire damage were compared with models that included tree size, fire damage, and prefire tree health (e.g., measures of prefire tree radial growth or crown condition). Immediately following the fire, the inclusion of different metrics of prefire tree health produced variable improvements over the models that included only tree size and measures of fire damage, as models that included measures of crown condition performed better than fire-only models, but models that included measures of prefire radial growth did not perform better. However, 5 years following the fire, sugar pine mortality was best predicted by models that included measures of both fire damage and prefire tree health, specifically, diameter at breast height (DBH, 1.37 m), crown scorch, 30-year mean growth, and the number of sharp declines in growth over a 30-year period. This suggests that factors that influence prefire tree health (e.g., drought, competition, pathogens, etc.) may partially determine postfire mortality, especially when accounting for delayed mortality following fire.
Control of the multimillennial wildfire size in boreal North America by spring climatic conditions
Ali, Adam A.; Blarquez, Olivier; Girardin, Martin P.; Hély, Christelle; Tinquaut, Fabien; El Guellab, Ahmed; Valsecchi, Verushka; Terrier, Aurélie; Bremond, Laurent; Genries, Aurélie; Gauthier, Sylvie; Bergeron, Yves
2012-01-01
Wildfire activity in North American boreal forests increased during the last decades of the 20th century, partly owing to ongoing human-caused climatic changes. How these changes affect regional fire regimes (annual area burned, seasonality, and number, size, and severity of fires) remains uncertain as data available to explore fire–climate–vegetation interactions have limited temporal depth. Here we present a Holocene reconstruction of fire regime, combining lacustrine charcoal analyses with past drought and fire-season length simulations to elucidate the mechanisms linking long-term fire regime and climatic changes. We decomposed fire regime into fire frequency (FF) and biomass burned (BB) and recombined these into a new index to assess fire size (FS) fluctuations. Results indicated that an earlier termination of the fire season, due to decreasing summer radiative insolation and increasing precipitation over the last 7.0 ky, induced a sharp decrease in FF and BB ca. 3.0 kyBP toward the present. In contrast, a progressive increase of FS was recorded, which is most likely related to a gradual increase in temperatures during the spring fire season. Continuing climatic warming could lead to a change in the fire regime toward larger spring wildfires in eastern boreal North America. PMID:23213207
A synopsis of large or disastrous wildland fires
Robert E. Martin; David B. Sapsis
1995-01-01
Wildland fires have occurred for centuries in North America and other selected countries and can be segregated into three periods: prehistoric (presuppression) fires, suppression period fires, and fire management period fires. Prehistoric fires varied in size and damage but were probably viewed fatalistically. Suppression period fires were based on policy that excluded...
Quantifying the historic and future distribution of fire in Alaskan tundra ecosystems
NASA Astrophysics Data System (ADS)
Young, A. M.; Higuera, P. E.; Duffy, P. A.
2012-12-01
During the past 60 years fire has been relatively rare and small in size within tundra ecosystems. However, historical observations and paleoecological evidence indicates that fire regimes vary widely across Alaskan tundra, in both space and time. These lines of evidence suggest that fire occupies a highly specified niche or ecological space in Alaskan tundra, which may change significantly with future climate warming. The objective of this research was to quantify the relationships between fire occurrence and different seasonal climate variables, and to begin to make inferences about future distributions of fire across the tundra landscape. The results of this research will ultimately contribute to the goal of summarizing the linkages that exist among climate, vegetation, and fire in the historical record, and for making predictions concerning fire disturbance in tundra ecosystems throughout the next century. Historic tundra fires occurred non-randomly across space, and a relationship exists between fire occurrence and warm, dry climates. We quantified this relationship with generalized boosting models (GBM) using datasets of downscaled temperature and precipitation (2 km, 1971-2000), and historic records of tundra area burned (1950-2010). The GBM used six seasonal climate variables, focused on growing season temperature and precipitation, to predict the probability of fire occurrence over the 1950-2010 time period. To understand implications of these historic relationships given ongoing climate warming, we constructed future climatologies of temperature and precipitation for the five GCMs which performed best in Alaska under the IPCC AR4 A1B (middle-of-the-road) emissions scenario for the time period 2021-2050. The GBM performed well predicting the observed spatial distribution of tundra area burned, capturing key regions which experienced the most fire activity from 1950-2010. The mean temperature of the warmest month (MeanMaxTemp) was the most influential variable in the GBM, and partial dependence plots revealed a strong non-linear relationship between the probability of fire and MeanMaxTemp, with a distinct temperature threshold of approximately 12.0 oC. Climate projections in Alaskan tundra (2021-2050) from the five GCMs was on average 2.1 oC warmer (SD = 0.3 oC) than the 1971-2000 mean. During the 1971-2000 period, 62% of tundra existed above the 12.0 oC threshold. In contrast, four of the five GCMs predicted more tundra area will exist above this same temperature threshold during the 2021-2050 period (mean=77%, min=48%, max=93%), with large increases occurring on the North Slope. Ongoing work includes applying this GBM to future climate conditions to provide quantitative estimates of future tundra burning. Our results suggest that the ecological space that currently supports tundra burning will become more common during the next century. A more flammable tundra landscape could contribute to increased land surface temperatures through feedbacks between fire, increased carbon flux from the soil to atmosphere, and decreased albedo through vegetation succession. Given the rapid environmental changes projected for the Arctic throughout the next century, it is imperative that we understand when and where fire regimes are changing, not only across Alaskan tundra but across the global tundra biome as well.
Particle and Smoke Detection on ISS for Next Generation Smoke Detectors
NASA Technical Reports Server (NTRS)
Urban, David L.; Ruff, Gary; Yuan, Zeng-guang; Sheredy, William; Funk, Greg
2007-01-01
Rapid fire detection requires the ability to differentiate fire signatures from background conditions and nuisance sources. Proper design of a fire detector requires detailed knowledge of all of these signal sources so that a discriminating detector can be designed. Owing to the absence of microgravity smoke data, all current spacecraft smoke detectors were designed based upon normal-g conditions. The removal of buoyancy reduces the velocities in the high temperature zones in flames, increasing the residence time of smoke particles and consequently allowing longer growth time for the particles. Recent space shuttle experiments confirmed that, in some cases, increased particles sizes are seen in low-gravity and that the relative performance of the ISS (International Space Station) and space-shuttle smoke-detectors changes in low-gravity; however, sufficient particle size information to design new detectors was not obtained. To address this issue, the SAME (Smoke Aerosol Measurement Experiment) experiment is manifested to fly on the ISS in 2007. The SAME experiment will make measurements of the particle size distribution of the smoke particulate from several typical spacecraft materials providing quantitative design data for spacecraft smoke detectors. A precursor experiment (DAFT: Dust Aerosol measurement Feasibility Test) flew recently on the ISS and provided the first measurement of the background smoke particulate levels on the ISS. These background levels are critical to the design of future smoke detectors. The ISS cabin was found to be a very clean environment with particulate levels substantially below the space shuttle and typical ground-based environments.
NASA Astrophysics Data System (ADS)
Osumi, Ayumu; Ito, Youichi
2012-05-01
A fire site holds important information about the cause of fire outbreak; for instance, a concrete wall can provide a wealth of information and the distribution of fire damage of the wall is particularly valuable. If the distribution of fire damage on concrete walls can be used to trace the flow of fire, it would be possible to identify the fire origin and to clarify the cause of fire outbreak. In this study, we considered a new method based on aerial ultrasonic waves and developed a system that adopts this method for detecting fire damage of concrete walls at fire sites.
NASA Astrophysics Data System (ADS)
Baker, Patrick; Oborne, Lisa
2015-04-01
Large, high-intensity fires have direct and long-lasting effects on forest ecosystems and present a serious threat to human life and property. However, even within the most catastrophic fires there is important variability in local-scale intensity that has important ramifications for forest mortality and regeneration. Quantifying this variability is difficult due to the rarity of catastrophic fire events, the extreme conditions at the time of the fires, and their large spatial extent. Instead fire severity is typically measured or estimated from observed patterns of vegetation mortality; however, differences in species- and size-specific responses to fires often makes fire severity a poor proxy for fire intensity. We developed a statistical method using simple, plot-based measurements of individual tree mortality to simultaneously estimate plot-level fire intensity and species-specific mortality patterns as a function of tree size. We applied our approach to an area of forest burned in the catastrophic Black Saturday fires that occurred near Melbourne, Australia, in February 2009. Despite being the most devastating fire in the past 70 years and our plots being located in the area that experienced some of the most intense fires in the 350,000 ha fire complex, we found that the estimated fire intensity was highly variable at multiple spatial scales. All eight tree species in our study differed in their susceptibility to fire-induced mortality, particularly among the largest size classes. We also found that seedling height and species richness of the post-fire seedling communities were both positively correlated with fire intensity. Spatial variability in disturbance intensity has important, but poorly understood, consequences for the short- and long-term dynamics of forests in the wake of catastrophic wildfires. Our study provides a tool to estimate fire intensity after a fire has passed, allowing new opportunities for linking spatial variability in fire intensity to forest ecosystem dynamics.
Quantitative assessment of building fire risk to life safety.
Guanquan, Chu; Jinhua, Sun
2008-06-01
This article presents a quantitative risk assessment framework for evaluating fire risk to life safety. Fire risk is divided into two parts: probability and corresponding consequence of every fire scenario. The time-dependent event tree technique is used to analyze probable fire scenarios based on the effect of fire protection systems on fire spread and smoke movement. To obtain the variation of occurrence probability with time, Markov chain is combined with a time-dependent event tree for stochastic analysis on the occurrence probability of fire scenarios. To obtain consequences of every fire scenario, some uncertainties are considered in the risk analysis process. When calculating the onset time to untenable conditions, a range of fires are designed based on different fire growth rates, after which uncertainty of onset time to untenable conditions can be characterized by probability distribution. When calculating occupant evacuation time, occupant premovement time is considered as a probability distribution. Consequences of a fire scenario can be evaluated according to probability distribution of evacuation time and onset time of untenable conditions. Then, fire risk to life safety can be evaluated based on occurrence probability and consequences of every fire scenario. To express the risk assessment method in detail, a commercial building is presented as a case study. A discussion compares the assessment result of the case study with fire statistics.
46 CFR 108.425 - Fire hoses and associated equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... size diameter; (2) Of 50 foot nominal hose size length; and (3) Lined commercial fire hose that meets... inch (64 millimeter) hose sizes, i.e., 9 threads per inch for 11/2 inch hose, and 71/2 threads per inch...
46 CFR 108.425 - Fire hoses and associated equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... size diameter; (2) Of 50 foot nominal hose size length; and (3) Lined commercial fire hose that meets... inch (64 millimeter) hose sizes, i.e., 9 threads per inch for 11/2 inch hose, and 71/2 threads per inch...
Field Study on the formation and emission characteristics of PM2.5 in coal fired power plant unit
NASA Astrophysics Data System (ADS)
Xia, Yongjun; Huang, Guohui; Zhu, Yunpeng; Wang, Qian
2018-05-01
Particulate matter(PM) measurements were performed at the inlet and outlet of Fabric filter(FF) and the outlet of limestone-gypsum wet flue gas desulfurization (WFGD) tower at a 220MW pulverized coal fired power plant unit, and the PM formation characteristics, the performance characteristics of FF and the influence of WFGD to PM emission were discussed. The results showed that PM were of bimodal size distribution. The concentration of PMs larger than 2.5μm reduced in the WFGD while PMs less than 2.5μm particularly the PM diameter around 0.5μm increased due to the ultrafine PM aggregation as well as new PM formation from gypsum slurry entrainment.
Manies, Kristen L.; Harden, Jennifer W.; Silva, Steven R.; Briggs, Paul H.; Schmid, Brian M.
2004-01-01
The U.S. Geological Survey project Fate of Carbon in Alaskan Landscapes (FOCAL) is studying the effect of fire and soil drainage on soil carbon storage in the boreal forest. This project has selected several sites to study within central Alaska of varying ages (time since fire) and soil drainage types. This report describes the location of these sampling sites, as well as the procedures used to describe, sample, and analyze the soils. This report also contains data tables with this information, including, but not limited to field descriptions, bulk density, particle size distribution, moisture content, carbon (C) concentration, nitrogen (N) concentration, isotopic data for C, and major, minor and trace elemental concentration.
Linking Wildfire and Climate as Drivers of Plant Species and Community-level Change
NASA Astrophysics Data System (ADS)
Newingham, B. A.; Hudak, A. T.; Bright, B. C.
2015-12-01
Plant species distributions and community shifts after fire are affected by burn severity, elevation, aspect, and climate. However, little empirical data exists on long-term (decadal) recovery after fire across these interacting factors, limiting understanding of fire regime characteristics and climate in post-fire community trajectories. We examined plant species and community responses a decade after fire across five fires in ponderosa pine, dry mixed coniferous, and moist mixed coniferous forests across the western USA. Using field data, we determined changes in plant communities one and ten years post-fire across gradients of burn severity, elevation, and aspect. Existing published work has shown that plant species distributions can be accurately predicted from physiologically relevant climate variables using non-parametric Random Forests models; such models have also been linked to projected climate profiles in 2030, 2060, and 2090 generated from three commonly used general circulation models (GCMs). We explore the possibility that fire and climate are coupled drivers affecting plant species distributions. Climate change may not manifest as a slow shift in plant species distributions, but as sudden, localized events tied to changing fire and other disturbance regimes.
Donald A. Haines; William A. Main; Eugene F. McNamara
1978-01-01
Describes factors that contribute to forest fires in Pennsylvania. Includes an analysis of basic statistics; distribution of fires during normal, drought, and wet years; fire cause, fire activity by day-of-week; multiple-fire day; and fire climatology.
Watts, Adam C.; Kobziar, Leda N.; Snyder, James R.
2012-01-01
Fire periodically affects wetland forests, particularly in landscapes with extensive fire-prone uplands. Rare occurrence and difficulty of access have limited efforts to understand impacts of wildfires fires in wetlands. Following a 2009 wildfire, we measured tree mortality and structural changes in wetland forest patches. Centers of these circular landscape features experienced lower fire severity, although no continuous patch-size or edge effect was evident. Initial survival of the dominant tree, pondcypress (Taxodium distichum var. imbricarium), was high (>99%), but within one year of the fire approximately 23% of trees died. Delayed mortality was correlated with fire severity, but unrelated to other hypothesized factors such as patch size or edge distance. Tree diameter and soil elevation were important predictors of mortality, with smaller trees and those in areas with lower elevation more likely to die following severe fire. Depressional cypress forests typically exhibit increasing tree size towards their interiors, and differential mortality patterns were related to edge distance. These patterns result in the exaggeration of a dome-shaped profile. Our observations quantify roles of fire and hydrology in determining cypress mortality in these swamps, and imply the existence of feedbacks that maintain the characteristic shape of cypress domes.
Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.
2010-01-01
In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.
Evaluation of Low-Gravity Smoke Particulate for Spacecraft Fire Detection
NASA Technical Reports Server (NTRS)
Urban, David; Ruff, Gary A.; Mulholland George; Meyer, Marit; Yuan, Zeng guang; Cleary, Thomas; Yang, Jiann; Greenberg, Paul; Bryg, Victoria
2013-01-01
Tests were conducted on the International Space Station to evaluate the smoke particulate size from materials and conditions that are typical of those expected in spacecraft fires. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. The air flow past the sample during the heating period ranged from quiescent to 8 cm/s. The effective transport time to the measurement instruments was varied from 11 to 800 seconds to simulate different smoke transport conditions in spacecraft. The resultant aerosol was evaluated by three instruments which measured different moments of the particle size distribution. These moment diagnostics were used to determine the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment). These statistics were combined to determine the diameter of average mass and the count mean diameter and by assuming a log-normal distribution, the geometric mean diameter and the geometric standard deviations were also calculated. Smoke particle samples were collected on TEM grids using a thermal precipitator for post flight analysis. The TEM grids were analyzed to determine the particle morphology and shape parameters. The different materials produced particles with significantly different morphologies. Overall the majority of the average smoke particle sizes were found to be in the 200 to 400 nanometer range with the quiescent cases and the cases with increased transport time typically producing with substantially larger particles. The results varied between materials but the smoke particles produced in low gravity were typically twice the size of particles produced in normal gravity. These results can be used to establish design requirements for future spacecraft smoke detectors.
NASA Astrophysics Data System (ADS)
Margolis, Ellis Quinn
Fire history and fire-climate relationships of upper elevation forests of the southwestern United States are imperative for informing management decisions in the face of increased crown fire occurrence and climate change. I used dendroecological techniques to reconstruct fires and stand-replacing fire patch size in the Madrean Sky Islands and Mogollon Plateau. Reconstructed patch size (1685-1904) was compared with contemporary patch size (1996-2004). Reconstructed fires at three sites had stand-replacing patches totaling > 500 ha. No historical stand-replacing fire patches were evident in the mixed conifer/aspen forests of the Sky Islands. Maximum stand-replacing fire patch size of modern fires (1129 ha) was greater than that reconstructed from aspen (286 ha) and spruce-fir (521 ha). Undated spruce-fir patches may be evidence of larger (>2000ha) stand-replacing fire patches. To provide climatological context for fire history I used correlation and regionalization analyses to document spatial and temporal variability in climate regions, and El-Nino Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and the Atlantic Multi-decadal Oscillation (AMO) teleconnections using 273 tree-ring chronologies (1732-1979). Four regions were determined by common variability in annual ring width. The component score time series replicate spatial variability in 20th century droughts (e.g., 1950's) and pluvials (e.g., 1910's). Two regions were significantly correlated with instrumental SOI and AMO, and three with PDO. Sub-regions within the southwestern U.S. varied geographically between the instrumental (1900-1979) and the pre-instrumental periods (1732-1899). Mapped correlations between ENSO, PDO and AMO, and tree-ring indices illustrate detailed sub-regional variability in the teleconnections. I analyzed climate teleconnections, and fire-climate relationships of historical upper elevation fires from 16 sites in 8 mountain ranges. I tested for links between Palmer Drought Severity Index and tree-ring reconstructed ENSO, PDO and AMO phases (1905-1978 and 1700-1904). Upper elevation fires (115 fires, 84 fire years, 1623-1904) were compared with climate indices. ENSO, PDO, and AMO affected regional PDSI, but AMO and PDO teleconnections changed between periods. Fire occurrence was significantly related to inter-annual variability in PDSI, precipitation, ENSO, and phase combinations of ENSO and PDO, but not AMO (1700-1904). Reduced upper elevation fire (1785-1840) was coincident with a cool AMO phase.
NASA Technical Reports Server (NTRS)
Foot, J. S.
1990-01-01
A preliminary analysis of some of the narrow band radiance data measured on the U.K. Meteorological Office's C130 aircraft during the marine stratocumulus intensive field observation of First ISCCP Regional Experiment (FIRE), San Diego 29 June to 18 July 1987, is presented. The data are compared with Monte Carlo calculations of the reflectance and transmittance of the cloud based upon the observed droplet size distribution. The main scientific question being addressed is whether there is any evidence of anomalous absorption within the cloud which had been observed in similar measurements (Rozenberg et al., 1974; Twomey and Cocks, 1982; Foot, 1988). The measurements also indicate the potential for remotely sensing cloud properties. The data and method of presentation discussed here clearly separates out clouds in terms of the size of the cloud droplets. All of the daytime C130 FIRE flights have been studied and are consistent with the data presented here. There appears to be no peculiarities that might arise, for example if pollution were to be a significant factor in determining cloud absorption. Variation in the inferred size parameters, r sub e, along runs are also very small.
Influence of the input database in detecting fire space-time clusters
NASA Astrophysics Data System (ADS)
Pereira, Mário; Costa, Ricardo; Tonini, Marj; Vega Orozco, Carmen; Parente, Joana
2015-04-01
Fire incidence variability is influenced by local environmental variables such as topography, land use, vegetation and weather conditions. These induce a cluster pattern of the fire events distribution. The space-time permutation scan statistics (STPSS) method developed by Kulldorff et al. (2005) and implemented in the SaTScanTM software (http://www.satscan.org/) proves to be able to detect space-time clusters in many different fields, even when using incomplete and/or inaccurate input data. Nevertheless, the dependence of the STPSS method on the different characteristics of different datasets describing the same environmental phenomenon has not been studied yet. In this sense, the objective of this study is to assess the robustness of the STPSS for detecting real clusters using different input datasets and to justify the obtained results. This study takes advantage of the existence of two very different official fire datasets currently available for Portugal, both provided by the Institute for the Conservation of Nature and Forests. The first one is the aggregated Portuguese Rural Fire Database PRFD (Pereira et al., 2011), which is based on ground measurements and provides detailed information about the ignition and extinction date/time and the area burnt by each fire in forest, scrubs and agricultural areas. However, in the PRFD, the fire location of each fire is indicated by the name of smallest administrative unit (the parish) where the ignition occurred. Consequently, since the application of the STPSS requires the geographic coordinates of the events, the centroid of the parishes was considered. The second fire dataset is the national mapping burnt areas (NMBA), which is based on satellite measurements and delivered in shape file format. The NMBA provides a detailed spatial information (shape and size of each fire) but the temporal information is restricted to the year of occurrence. Besides these differences, the two datasets cover different periods, they comprises a quite different number of fire records and lower fire size threshold. Therefore, it was necessary to restrict both databases to a common period and fire size range. In addition, the weather conditions during the temporal dimension of the most important detected clusters were investigated since they are often very well correlated with the fire incidence. Composite analysis was used to identify and characterize the synoptic patterns of large scale climatic and dynamical meteorological fields at different levels of the atmosphere. Kulldorff, M., Heffernan, R., Hartman, J., Assunção, R., Mostashari, F., 2005. A Space-Time Permutation Scan Statistic for Disease Outbreak Detection. PLoS medicine. 2(3), 216-224. http://dx.doi.org/10.1371/journal.pmed.0020059. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I., 2011. The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, http://dx.doi.org/10.5194/nhess-11-3343-2011. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by the project SUSTAINSYS: Environmental Sustainable Agro-Forestry Systems (NORTE-07-0124-FEDER-000044), financed by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), as well as by National Funds (PIDDAC) through the Portuguese Foundation for Science and Technology (FCT/MEC).
Size-dependent enhancement of water relations during post-fire resprouting.
Schafer, Jennifer L; Breslow, Bradley P; Hollingsworth, Stephanie N; Hohmann, Matthew G; Hoffmann, William A
2014-04-01
In resprouting species, fire-induced topkill causes a reduction in height and leaf area without a comparable reduction in the size of the root system, which should lead to an increase in the efficiency of water transport after fire. However, large plants undergo a greater relative reduction in size, compared with small plants, so we hypothesized that this enhancement in hydraulic efficiency would be greatest among large growth forms. In the ecotone between long-leaf pine (Pinus palustris Mill.) savannas and wetlands, we measured stomatal conductance (gs), mid-day leaf water potential (Ψleaf), leaf-specific whole-plant hydraulic conductance (KL.p), leaf area and height of 10 species covering a range of growth forms in burned and unburned sites. As predicted, KL.p was higher in post-fire resprouts than in unburned plants, and the post-fire increase in KL.p was positively related to plant size. Specifically, large-statured species tended to undergo the greatest relative reductions in leaf area and height, and correspondingly experienced the greatest increases in KL.p. The post-fire increase in KL.p was smaller than expected, however, due to a decrease in absolute root hydraulic conductance (i.e., not scaled to leaf area). The higher KL.p in burned sites was manifested as an increase in gs rather than an increase in Ψleaf. Post-fire increases in gs should promote high rates of photosynthesis for recovery of carbohydrate reserves and aboveground biomass, which is particularly important for large-statured species that require more time to recover their pre-fire size.
Richardson, Sarah J; Laughlin, Daniel C; Lawes, Michael J; Holdaway, Robert J; Wilmshurst, Janet M; Wright, Monique; Curran, Timothy J; Bellingham, Peter J; McGlone, Matt S
2015-10-01
In fire-prone ecosystems, variation in bark thickness among species and communities has been explained by fire frequency; thick bark is necessary to protect cambium from lethal temperatures. Elsewhere this investment is deemed unnecessary, and thin bark is thought to prevail. However, in rain forest ecosystems where fire is rare, bark thickness varies widely among species and communities, and the causes of this variation remain enigmatic. We tested for functional explanations of bark thickness variation in temperate rain forest species and communities. We measured bark thickness in 82 tree species throughout New Zealand temperate rain forests that historically have experienced little fire and applied two complementary analyses. First, we examined correlations between bark traits and leaf habit, and leaf and stem traits. Second, we calculated community-weighted mean (CWM) bark thickness for 272 plots distributed throughout New Zealand to identify the environments in which thicker-barked communities occur. Conifers had higher size-independent bark thickness than evergreen angiosperms. Species with thicker bark or higher bark allocation coefficients were not associated with "slow economic" plant traits. Across 272 forest plots, communities with thicker bark occurred on infertile soils, and communities with thicker bark and higher bark allocation coefficients occurred in cooler, drier climates. In non-fire-prone temperate rain forest ecosystems, investment in bark is driven by soil resources, cool minimum temperatures, and seasonal moisture stress. The role of these factors in fire-prone ecosystems warrants testing. © 2015 Botanical Society of America.
G. R. McMeeking; J. W. Taylor; A. P. Sullivan; M. J. Flynn; S. K. Akagi; C. M. Carrico; J. L. Collett; E. Fortner; T. B. Onasch; S. M. Kreidenweis; R. J. Yokelson; C. Hennigan; A. L. Robinson; H. Coe
2010-01-01
We present SP2 observations of BC mass, size distributions and mixing state in emissions from laboratory and field biomass fires in California, USA. Biomass burning is the primary global black carbon (BC) source, but understanding of the amount emitted and its physical properties at and following emission are limited. The single particle soot photometer (SP2) uses a...
Population rate dynamics and multineuron firing patterns in sensory cortex
Okun, Michael; Yger, Pierre; Marguet, Stephan; Gerard-Mercier, Florian; Benucci, Andrea; Katzner, Steffen; Busse, Laura; Carandini, Matteo; Harris, Kenneth D.
2012-01-01
Cortical circuits encode sensory stimuli through the firing of neuronal ensembles, and also produce spontaneous population patterns in the absence of sensory drive. This population activity is often characterized experimentally by the distribution of multineuron “words” (binary firing vectors), and a match between spontaneous and evoked word distributions has been suggested to reflect learning of a probabilistic model of the sensory world. We analyzed multineuron word distributions in sensory cortex of anesthetized rats and cats, and found that they are dominated by fluctuations in population firing rate rather than precise interactions between individual units. Furthermore, cortical word distributions change when brain state shifts, and similar behavior is seen in simulated networks with fixed, random connectivity. Our results suggest that similarity or dissimilarity in multineuron word distributions could primarily reflect similarity or dissimilarity in population firing rate dynamics, and not necessarily the precise interactions between neurons that would indicate learning of sensory features. PMID:23197704
Temperate and boreal forest mega-fires: characteristics and challenges
Scott L. Stephens; Neil Burrows; Alexander Buyantuyev; Robert W. Gray; Robert E. Keane; Rick Kubian; Shirong Liu; Francisco Seijo; Lifu Shu; Kevin G. Tolhurst; Jan W. van Wagtendonk
2014-01-01
Mega-fires are often defined according to their size and intensity but are more accurately described by their socioeconomic impacts. Three factors - climate change, fire exclusion, and antecedent disturbance, collectively referred to as the "mega-fire triangle" - likely contribute to today's mega-fires. Some characteristics of mega-fires may emulate...
Fire effects in northeastern forests: oak.
Cary Rouse
1986-01-01
Effects of fire on the oak timber type are reviewed. Many oak stands of today originated under severe fire regimes. Fire can ill or injure oak trees. Factors determining direct injury or mortality from fire include: season of year; bark characteristics; size, vigor and form of tree; fire characteristics and stocking level.
Landscape characteristics of disturbed shrubsteppe habitats in southwestern Idaho (USA)
Knick, Steven T.; Rotenberry, J.T.
1997-01-01
We compared 5 zones in shrubsteppe habitats of southwestern Idaho to determine the effect of differing disturbance combinations on landscapes that once shared historically similar disturbance regimes. The primary consequence of agriculture, wildfires, and extensive fires ignited by the military during training activities was loss of native shrubs from the landscape. Agriculture created large square blocks on the landscape, and the landscape contained fewer small patches and more large shrub patches than non-agricultural areas. In contrast, fires left a more fragmented landscape. Repeated fires did not change the distribution of patch sizes, but decreased the total area of remaining shrublands and increased the distance between remaining shrub patches that provide seed sources. Military training with tracked vehicles was associated with a landscape characterized by small, closely spaced, shrub patches. Our results support the general model hypothesized for conversion of shrublands to annual grasslands by disturbance. Larger shrub patches in our region, historically resistant to fire spread and large-scale fires because of a perennial bunchgrass understory, were more fragmented than small patches. Presence of cheatgrass (Bromus tectorum), an exotic annual, was positively related to landscape patchiness and negatively related to number of shrub cells. Thus, cheatgrass dominance can contribute to further fragmentation and loss of the shrub patch by facilitating spread of subsequent fires, carried by continuous fuels, through the patch. The synergistic processes of fragmentation of shrub patches by disturbance, invasion and subsequent dominance by exotic annuals, and fire are converting shrubsteppe in southwestern Idaho to a new state dominated by exotic annual grasslands and high fire frequencies.
NASA Astrophysics Data System (ADS)
Jiang, C.-S.; Li, Z. G.; Moutinho, H. R.; Liang, L.; Ionkin, A.; Al-Jassim, M. M.
2012-04-01
We investigated the quality of the n+-p diffused junction beneath the front-side Ag contact of multicrystalline Si solar cells by characterizing the uniformities of electrostatic potential and doping concentration across the junction using the atomic force microscopy-based electrical imaging techniques of scanning Kelvin probe force microscopy and scanning capacitance microscopy. We found that Ag screen-printing metallization fired at the over-fire temperature significantly degrades the junction uniformity beneath the Ag contact grid, whereas metallization at the optimal- and under-fire temperatures does not cause degradation. Ag crystallites with widely distributed sizes were found at the Ag-grid/emitter-Si interface of the over-fired cell, which is associated with the junction damage beneath the Ag grid. Large crystallites protrude into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent re-crystallization with incorporation of Ag and other impurities and with formation of crystallographic defects during quenching. The effect of this junction damage on solar cell performance is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, C. S.; Li, Z. G.; Moutinho, H. R.
2012-04-15
We investigated the quality of the n+-p diffused junction beneath the front-side Ag contact of multicrystalline Si solar cells by characterizing the uniformities of electrostatic potential and doping concentration across the junction using the atomic force microscopy-based electrical imaging techniques of scanning Kelvin probe force microscopy and scanning capacitance microscopy. We found that Ag screen-printing metallization fired at the over-fire temperature significantly degrades the junction uniformity beneath the Ag contact grid, whereas metallization at the optimal- and under-fire temperatures does not cause degradation. Ag crystallites with widely distributed sizes were found at the Ag-grid/emitter-Si interface of the over-fired cell, whichmore » is associated with the junction damage beneath the Ag grid. Large crystallites protrude into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent re-crystallization with incorporation of Ag and other impurities and with formation of crystallographic defects during quenching. The effect of this junction damage on solar cell performance is discussed.« less
NASA Astrophysics Data System (ADS)
López-Pérez, M.; Correa-Metrio, A.
2013-05-01
Analysis of charcoal particles from lacustrine sediments is a useful tool to understand fire regimes through time, and their relationships with climate and vegetation. However, the extent of the relationship between charcoal particles and their origin in terms of the spatial and temporal extent of the fire events is poorly known in the tropics. Modern sediments were collected from lakes in the Yucatan Peninsula and Central Mexico, 51 and 22 lakes respectively, to analyze their charcoal concentration and its relationships with modern fire events. Number of modern fire events was derived from the public source Fire Information for Resource Management System (FIRMS) for concentric spatial rings that ranged from 1 to 30 km of radius. The association between charcoal and fires was evaluated through the construction of linear models to explain charcoal concentration as a function of the number of fires recorded. Additionally, charcoal particles were stratified according to size to determine the association between fire distance and charcoal size classes. The relationship between total charcoal concentration and fire events was stronger for central Mexico than for the Yucatan Peninsula, which is probably the result of differences in vegetation cover. The highest determination coefficients were obtained for charcoal particle sizes ranging between 0.2 and 0.8 mm2, and for fire event distances of between 0 and 15 km from the lake. Overall, the analyses presented here offer useful tools to quantitatively and spatially reconstruct past regional fire dynamics in Central Mexico and the Yucatan Peninsula.
NASA Technical Reports Server (NTRS)
Sheredy, William A.
2003-01-01
The Characterization of Smoke Particulate for Spacecraft Fire Detection, or Smoke, microgravity experiment is planned to be performed in the Microgravity Science Glovebox Facility on the International Space Station (ISS). This investigation, which is being developed by the NASA Glenn Research Center, ZIN Technologies, and the National Institute of Standards and Technologies (NIST), is based on the results and experience gained from the successful Comparative Soot Diagnostics experiment, which was flown as part of the USMP-3 (United States Microgravity Payload 3) mission on space shuttle flight STS-75. The Smoke experiment is designed to determine the particle size distributions of the smokes generated from a variety of overheated spacecraft materials and from microgravity fires. The objective is to provide the data that spacecraft designers need to properly design and implement fire detection in spacecraft. This investigation will also evaluate the performance of the smoke detectors currently in use aboard the space shuttle and ISS for the test materials in a microgravity environment.
A Small Angle Scattering Sensor System for the Characterization of Combustion Generated Particulate
NASA Technical Reports Server (NTRS)
Feikema, Douglas A.; Kim, W.; Sivathanu, Yudaya
2007-01-01
One of the critical issues for the US space program is fire safety of the space station and future launch vehicles. A detailed understanding of the scattering signatures of particulate is essential for the development of a false alarm free fire detection system. This paper describes advanced optical instrumentation developed and applied for fire detection. The system is being designed to determine four important physical properties of disperse fractal aggregates and particulates including size distribution, number density, refractive indices, and fractal dimension. Combustion generated particulate are the primary detection target; however, in order to discriminate from other particulate, non-combustion generated particles should also be characterized. The angular scattering signature is measured and analyzed using two photon optical laser scattering. The Rayleigh-Debye-Gans (R-D-G) scattering theory for disperse fractal aggregates is utilized. The system consists of a pulsed laser module, detection module and data acquisition system and software to analyze the signals. The theory and applications are described.
Garcia-Menendez, Fernando; Hu, Yongtao; Odman, Mehmet T
2014-09-15
Air quality forecasts generated with chemical transport models can provide valuable information about the potential impacts of fires on pollutant levels. However, significant uncertainties are associated with fire-related emission estimates as well as their distribution on gridded modeling domains. In this study, we explore the sensitivity of fine particulate matter concentrations predicted by a regional-scale air quality model to the spatial and temporal allocation of fire emissions. The assessment was completed by simulating a fire-related smoke episode in which air quality throughout the Atlanta metropolitan area was affected on February 28, 2007. Sensitivity analyses were carried out to evaluate the significance of emission distribution among the model's vertical layers, along the horizontal plane, and into hourly inputs. Predicted PM2.5 concentrations were highly sensitive to emission injection altitude relative to planetary boundary layer height. Simulations were also responsive to the horizontal allocation of fire emissions and their distribution into single or multiple grid cells. Additionally, modeled concentrations were greatly sensitive to the temporal distribution of fire-related emissions. The analyses demonstrate that, in addition to adequate estimates of emitted mass, successfully modeling the impacts of fires on air quality depends on an accurate spatiotemporal allocation of emissions. Copyright © 2014 Elsevier B.V. All rights reserved.
Fire patterns of South Eastern Queensland in a global context: A review
Philip Le C. F. Stewart; Patrick T. Moss
2015-01-01
Fire is an important driver in ecosystem evolution, composition, structure and distribution, and is vital for maintaining ecosystems of the Great Sandy Region (GSR). Charcoal records for the area dating back over 40, 000 years provide evidence of the great changes in vegetation composition, distribution and abundance in the region over time as a result of fire. Fires...
Noise in Attractor Networks in the Brain Produced by Graded Firing Rate Representations
Webb, Tristan J.; Rolls, Edmund T.; Deco, Gustavo; Feng, Jianfeng
2011-01-01
Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribution that is usually investigated. In integrate-and-fire simulations of an attractor decision-making network, we show that the noise is indeed greater for a given sparseness of the representation for graded, exponential, than for binary firing rate distributions. The greater noise was measured by faster escaping times from the spontaneous firing rate state when the decision cues are applied, and this corresponds to faster decision or reaction times. The greater noise was also evident as less stability of the spontaneous firing state before the decision cues are applied. The implication is that spiking-related noise will continue to be a factor that influences processes such as decision-making, signal detection, short-term memory, and memory recall even with the quite large networks found in the cerebral cortex. In these networks there are several thousand recurrent collateral synapses onto each neuron. The greater noise with graded firing rate distributions has the advantage that it can increase the speed of operation of cortical circuitry. PMID:21931607
Testing electroexplosive devices by programmed pulsing techniques
NASA Technical Reports Server (NTRS)
Rosenthal, L. A.; Menichelli, V. J.
1976-01-01
A novel method for testing electroexplosive devices is proposed wherein capacitor discharge pulses, with increasing energy in a step-wise fashion, are delivered to the device under test. The size of the energy increment can be programmed so that firing takes place after many, or after only a few, steps. The testing cycle is automatically terminated upon firing. An energy-firing contour relating the energy required to the programmed step size describes the single-pulse firing energy and the possible sensitization or desensitization of the explosive device.
The influence of solid rocket motor retro-burns on the space debris environment
NASA Astrophysics Data System (ADS)
Stabroth, Sebastian; Homeister, Maren; Oswald, Michael; Wiedemann, Carsten; Klinkrad, Heiner; Vörsmann, Peter
The ESA space debris population model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) considers firings of solid rocket motors (SRM) as a debris source with the associated generation of slag and dust particles. The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit. The current model version, MASTER-2005, is based on the simulation of 1076 orbital SRM firings which contributed to the long-term debris environment. A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope (HST) solar array measurements very well. However, the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility (LDEF) surfaces. This points into the direction of some past SRM firings not included in the current event database. The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules. Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere. Thus, they produce no long-term effect on the debris environment. However, a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces. In this paper, the influence of SRM retro-burns on the short- and long-term debris environment is analysed. The existing firing database is updated with gathered information of some 800 Russian retro-firings. Each firing is simulated with the MASTER population generation module. The resulting population is compared against the existing background population of SRM slag and dust particles in terms of spatial density and flux predictions.
Supersaturation, droplet spectra, and turbulent mixing in clouds
NASA Technical Reports Server (NTRS)
Gerber, H.
1990-01-01
Much effort has recently gone into explaining the observed broad precoalescence size distribution of droplets in cloud and fogs, because this differs from the results of condensational growth calculations which lead to much narrower distributions. A good example of droplet size-distribution broadening was observed on flight 17 (25 July) of the NRL tethered balloon during the 1987 FIRE San Nicolas Island IFO. These observations caused the interactions between cloud microphysics and turbulent mixing to be re-examined. The findings of Broadwell and Breidenthal (1982) who conducted laboratory and theoretical studies of mixing in shear flow, and those of Baker et al. (1984) who applied the earlier work to mixing in clouds, were used. Rather than looking at the 25 July case at SNI, earlier fog observations made at SUNY (6 Oct. 1982) which also indicated that shear-induced mixing was taking place, and which had a better collection of microphysical measurements including more precise supersaturation measurements and detailed vertical profiles of meteorological parameters were chosen instead.
The role of fire in structuring sagebrush habitats and bird communities
Knick, S.T.; Holmes, A.L.; Miller, R.F.; Saab, Victoria A.; Powell, Hugo D.W.
2005-01-01
Fire is a dominant and highly visible disturbance in sagebrush (Artemisia spp.) ecosystems. In lower elevation, xeric sagebrush communities, the role of fire has changed in recent decades from an infrequent disturbance maintaining a landscape mosaic and facilitating community processes to frequent events that alter sagebrush communities to exotic vegetation, from which restoration is unlikely. Because of cheatgrass invasion, fire-return intervals in these sagebrush ecosystems have decreased from an historical pattern (pre-European settlement) of 30 to >100 yr to 5-15 yr. In other sagebrush communities, primarily higher elevation ecosystems, the lack of fire has allowed transitions to greater dominance by sagebrush, loss of herbaceous understory, and expansion of juniper-pinyon woodlands. Response by birds living in sagebrush habitats to fire was related to the frequency, size, complexity (or patchiness), and severity of the burns. Small-scale fires that left patchy distributions of sagebrush did not influence bird populations. However, large-scale fires that resulted in large grassland expanses and isolated existing sagebrush patches reduced the probability of occupancy by sagebrush-obligate species. Populations of birds also declined in sagebrush ecosystems with increasing dominance by juniper (Juniperus spp.) and pinyon (Pinus spp.) woodlands. Our understanding of the effects of fire on sagebrush habitats and birds in these systems is limited. Almost all studies of fire effects on birds have been opportunistic, correlative, and lacking controls. We recommend using the large number of prescribed burns to develop strong inferences about cause-and-effect relationships. Prescribed burning is complicated and highly contentious, particularly in low-elevation, xeric sagebrush communities. Therefore, we need to use the unique opportunities provided by planned burns to understand the spatial and temporal influence of fire on sagebrush landscapes and birds. In particular, we need to develop larger-scale and longer-term research to identify the underlying mechanisms that produce the patterns of bird responses to fire in sagebrush ecosystems.
Persiani, Anna Maria; Maggi, Oriana
2013-01-01
Experimental fires, of both low and high intensity, were lit during summer 2000 and the following 2 y in the Castel Volturno Nature Reserve, southern Italy. Soil samples were collected Jul 2000-Jul 2002 to analyze the soil fungal community dynamics. Species abundance distribution patterns (geometric, logarithmic, log normal, broken-stick) were compared. We plotted datasets with information both on species richness and abundance for total, xerotolerant and heat-stimulated soil microfungi. The xerotolerant fungi conformed to a broken-stick model for both the low- and high intensity fires at 7 and 84 d after the fire; their distribution subsequently followed logarithmic models in the 2 y following the fire. The distribution of the heat-stimulated fungi changed from broken-stick to logarithmic models and eventually to a log-normal model during the post-fire recovery. Xerotolerant and, to a far greater extent, heat-stimulated soil fungi acquire an important functional role following soil water stress and/or fire disturbance; these disturbances let them occupy unsaturated habitats and become increasingly abundant over time.
Sah, Jay P.; Ross, Michael S.; Snyder, James R.; ...
2010-01-01
In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated withmore » tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.« less
Advanced analysis of forest fire clustering
NASA Astrophysics Data System (ADS)
Kanevski, Mikhail; Pereira, Mario; Golay, Jean
2017-04-01
Analysis of point pattern clustering is an important topic in spatial statistics and for many applications: biodiversity, epidemiology, natural hazards, geomarketing, etc. There are several fundamental approaches used to quantify spatial data clustering using topological, statistical and fractal measures. In the present research, the recently introduced multi-point Morisita index (mMI) is applied to study the spatial clustering of forest fires in Portugal. The data set consists of more than 30000 fire events covering the time period from 1975 to 2013. The distribution of forest fires is very complex and highly variable in space. mMI is a multi-point extension of the classical two-point Morisita index. In essence, mMI is estimated by covering the region under study by a grid and by computing how many times more likely it is that m points selected at random will be from the same grid cell than it would be in the case of a complete random Poisson process. By changing the number of grid cells (size of the grid cells), mMI characterizes the scaling properties of spatial clustering. From mMI, the data intrinsic dimension (fractal dimension) of the point distribution can be estimated as well. In this study, the mMI of forest fires is compared with the mMI of random patterns (RPs) generated within the validity domain defined as the forest area of Portugal. It turns out that the forest fires are highly clustered inside the validity domain in comparison with the RPs. Moreover, they demonstrate different scaling properties at different spatial scales. The results obtained from the mMI analysis are also compared with those of fractal measures of clustering - box counting and sand box counting approaches. REFERENCES Golay J., Kanevski M., Vega Orozco C., Leuenberger M., 2014: The multipoint Morisita index for the analysis of spatial patterns. Physica A, 406, 191-202. Golay J., Kanevski M. 2015: A new estimator of intrinsic dimension based on the multipoint Morisita index. Pattern Recognition, 48, 4070-4081.
Individual Aerosol Particle Types Produced by Savanna Burning
NASA Astrophysics Data System (ADS)
Posfai, M.; Simonics, R.; Li, J.; Hobbs, P. V.; Buseck, P. R.; Buseck, P. R.
2001-12-01
We used analytical transmission electron microscopy (TEM) to study individual aerosol particles that were collected on the University of Washington Convair-580 research aircraft over southern Africa during the Safari2000 Dry Season Experiment. Our goals were to study the compositions, morphologies, and mixing states of carbonaceous particles, in order to better understand the physical and chemical properties of biomass smoke on the individual-particle level. The compositions of single particles were determined using energy-dispersive x-ray spectrometry (EDS) and electron energy-loss spectroscopy (EELS). Energy-loss maps obtained with the TEM are useful for studying the spatial distribution of light elements such as carbon within the particles; thus, they provide a detailed picture of complex particles. Carbonaceous particles were assigned into three main groups on the basis of morphology and composition: "organic particles with inorganic inclusions," "tar balls," and "soot." Soot is recognized by its characteristic morphology and microstructure. The distinction between "organic particles with inorganic inclusions" and "tar balls" is somewhat arbitrary, since the two criteria that are used for their distinction (composition and aspect ratio) change continually. The relative concentrations of the three major particle types vary with the type of fire and distance from fire. In the plume of a smoldering fire west of Beria (August 31) the relative concentration of tar balls increased with aging of the plume. Tar balls have a fairly narrow size distribution with a maximum between 100 and 200 nm (diameter). The inorganic K-salt inclusions (KCl, K2SO4, KNO3) within "organic particles" should make these particles hygroscopic, regardless of the properties of the organic compounds. Aging causes the conversion of KCl into K2SO4, KNO3. Aerosol production from flaming and smoldering fires was compared over Kruger National Park on August 17; more soot and more Cl-rich inclusions in organic particles were produced by the flaming fire than by the smoldering fire. Further sets of samples from other flights of Safari2000 are being studied.
Angela White; Patricia Manley; Gina Tarbill; T. W. Richardson; R. E. Russell; H. D. Safford; S. Z. Dobrowski
2016-01-01
Fire is a natural process and the dominant disturbance shaping plant and animal communities in many coniferous forests of the western US. Given that fire size and severity are predicted to increase in the future, it has become increasingly important to understand how wildlife responds to fire and post-fire management. The Angora Fire...
H.K. Preisler; R.E. Burgan; J.C. Eidenshink; J.M. Klaver; R.W. Klaver
2009-01-01
The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i)...
1989-01-01
This Uruguayan Decree sets forth regulations on the prevention and fighting of forest fires. Among other things, it does the following: 1) requires all public and private organizations, as well as all persons, to assist personally in and provide vehicles, machines, and tools for the fighting of forest fires; 2) requires the owners of property containing forests to maintain instruction in fighting fires for an adequate number of employees; 3) requires all forests to be kept cleared of vegetation capable of spreading fires and to have fire walls; 4) requires owners of forests larger than 30 hectares in size to present to the Forest Directorate an annual plan for forest fire defense; and 5) requires owners of forests larger than 30 hectares in size to maintain specified equipment for fighting fires. Persons violating the provisions of this Decree are subject to fines.
Anthropometric Procedures for Protective Equipment Sizing and Design
Hsiao, Hongwei
2015-01-01
Objectives This article presented four anthropometric theories (univariate, bivariate/probability distribution, multivariate, and shape-based methods) for protective equipment design decisions. Background While the significance of anthropometric information for product design is well recognized, designers continue to face challenges in selecting efficient anthropometric data processing methods and translating the acquired information into effective product designs. Methods For this study, 100 farm tractor operators, 3,718 respirator users, 951 firefighters, and 816 civilian workers participated in four studies on the design of tractor roll-over protective structures (ROPS), respirator test panels, fire truck cabs, and fall-arrest harnesses, respectively. Their anthropometry and participant-equipment interfaces were evaluated. Results Study 1 showed a need to extend the 90-cm vertical clearance for tractor ROPS in the current industrial standards to 98.3 to 101.3 cm. Study 2 indicated that current respirator test panel would have excluded 10% of the male firefighter population; a systematic adjustment to the boundaries of test panel cells was suggested. Study 3 provided 24 principal component analysis-based firefighter body models to facilitate fire truck cab design. Study 4 developed an improved gender-based fall-arrest harness sizing scheme to supplant the current unisex system. Conclusions This article presented four anthropometric approaches and a six-step design paradigm for ROPS, respirator test panel, fire truck cab, and fall-arrest harness applications, which demonstrated anthropometric theories and practices for defining protective equipment fit and sizing schemes. Applications The study provided a basis for equipment designers, standards writers, and industry manufacturers to advance anthropometric applications for product design and improve product efficacy. PMID:23516791
Dymond, Caren C; Field, Robert D; Roswintiarti, Orbita; Guswanto
2005-04-01
Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and Indonesia have two new sources of information to initiate fire prevention and suppression activities.
Deviation from Power Law Behavior in Landslide Phenomenon
NASA Astrophysics Data System (ADS)
Li, L.; Lan, H.; Wu, Y.
2013-12-01
Power law distribution of magnitude is widely observed in many natural hazards (e.g., earthquake, floods, tornadoes, and forest fires). Landslide is unique as the size distribution of landslide is characterized by a power law decrease with a rollover in the small size end. Yet, the emergence of the rollover, i.e., the deviation from power law behavior for small size landslides, remains a mystery. In this contribution, we grouped the forces applied on landslide bodies into two categories: 1) the forces proportional to the volume of failure mass (gravity and friction), and 2) the forces proportional to the area of failure surface (cohesion). Failure occurs when the forces proportional to volume exceed the forces proportional to surface area. As such, given a certain mechanical configuration, the failure volume to failure surface area ratio must exceed a corresponding threshold to guarantee a failure. Assuming all landslides share a uniform shape, which means the volume to surface area ratio of landslide regularly increase with the landslide volume, a cutoff of landslide volume distribution in the small size end can be defined. However, in realistic landslide phenomena, where heterogeneities of landslide shape and mechanical configuration are existent, a simple cutoff of landslide volume distribution does not exist. The stochasticity of landslide shape introduce a probability distribution of the volume to surface area ratio with regard to landslide volume, with which the probability that the volume to surface ratio exceed the threshold can be estimated regarding values of landslide volume. An experiment based on empirical data showed that this probability can induce the power law distribution of landslide volume roll down in the small size end. We therefore proposed that the constraints on the failure volume to failure surface area ratio together with the heterogeneity of landslide geometry and mechanical configuration attribute for the deviation from power law behavior in landslide phenomenon. Figure shows that a rollover of landslide size distribution in the small size end is produced as the probability for V/S (the failure volume to failure surface ratio of landslide) exceeding the mechanical threshold applied to the power law distribution of landslide volume.
Ultrafine and respirable particle exposure during vehicle fire suppression
Fent, Kenneth W.
2015-01-01
Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters’ potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator’s shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 107 particles per cm3, 170 mg m−3 respirable particle mass, 4700 μm2 cm−3 active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 104 particles per cm3, 0.36 mg m−3 respirable particle mass, 92 μm2 cm−3 active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 105 particles per cm3, 2.7 mg m−3 respirable particle mass, 320 μm2 cm−3 active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction and the relative position of the fire crew to the stationary burning vehicle played a primary role in fire crews’ potential for exposure. We recommend that firefighters wear self-contained breathing apparatus during all phases of the vehicle fire response to significantly reduce their potential for particulate, vapor, and gaseous exposures. PMID:26308547
Ultrafine and respirable particle exposure during vehicle fire suppression.
Evans, Douglas E; Fent, Kenneth W
2015-10-01
Vehicle fires are a common occurrence, yet few studies have reported exposures associated with burning vehicles. This article presents an assessment of firefighters' potential for ultrafine and respirable particle exposure during vehicle fire suppression training. Fires were initiated within the engine compartment and passenger cabins of three salvaged vehicles, with subsequent water suppression by fire crews. Firefighter exposures were monitored with an array of direct reading particle and air quality instruments. A flexible metallic duct and blower drew contaminants to the instrument array, positioned at a safe distance from the burning vehicles, with the duct inlet positioned at the nozzle operator's shoulder. The instruments measured the particle number, active surface area, respirable particle mass, photoelectric response, aerodynamic particle size distributions, and air quality parameters. Although vehicle fires were suppressed quickly (<10 minutes), firefighters may be exposed to short duration, high particle concentration episodes during fire suppression, which are orders of magnitude greater than the ambient background concentration. A maximum transient particle concentration of 1.21 × 10(7) particles per cm(3), 170 mg m(-3) respirable particle mass, 4700 μm(2) cm(-3) active surface area and 1400 (arbitrary units) in photoelectric response were attained throughout the series of six fires. Expressed as fifteen minute time-weighted averages, engine compartment fires averaged 5.4 × 10(4) particles per cm(3), 0.36 mg m(-3) respirable particle mass, 92 μm(2) cm(-3) active particle surface area and 29 (arbitrary units) in photoelectric response. Similarly, passenger cabin fires averaged 2.04 × 10(5) particles per cm(3), 2.7 mg m(-3) respirable particle mass, 320 μm(2) cm(-3) active particle surface area, and 34 (arbitrary units) in photoelectric response. Passenger cabin fires were a greater potential source of exposure than engine compartment fires. The wind direction and the relative position of the fire crew to the stationary burning vehicle played a primary role in fire crews' potential for exposure. We recommend that firefighters wear self-contained breathing apparatus during all phases of the vehicle fire response to significantly reduce their potential for particulate, vapor, and gaseous exposures.
NASA Astrophysics Data System (ADS)
Ghil, M.; Spyratos, V.; Bourgeron, P. S.
2007-12-01
The late summer of 2007 has seen again a large number of catastrophic forest fires in the Western United States and Southern Europe. These fires arose in or spread to human habitats at the so-called wildland-urban interface (WUI). Within the conterminous United States alone, the WUI occupies just under 10 percent of the surface and contains almost 40 percent of all housing units. Recent dry spells associated with climate variability and climate change make the impact of such catastrophic fires a matter of urgency for decision makers, scientists and the general public. In order to explore the qualitative influence of the presence of houses on fire spread, we considered only uniform landscapes and fire spread as a simple percolation process, with given house densities d and vegetation flammabilities p. Wind, topography, fuel heterogeneities, firebrands and weather affect actual fire spread. The present theoretical results would therefore, need to be integrated into more detailed fire models before practical, quantitative applications of the present results. Our simple fire-spread model, along with housing and vegetation data, shows that fire-size probability distributions can be strongly modified by the density d and flammability of houses. We highlight a sharp transition zone in the parameter space of vegetation flammability p and house density d. The sharpness of this transition is related to the critical thresholds that arise in percolation theory for an infinite domain; it is their translation into our model's finite-area domain, which is a more realistic representation of actual fire landscapes. Many actual fire landscapes in the United States appear to have spreading properties close to this transition zone. Hence, and despite having neglected additional complexities, our idealized model's results indicate that more detailed models used for assessing fire risk in the WUI should integrate the density and flammability of houses in these areas. Furthermore, our results imply that fire proofing houses and their immediate surroundings within the WUI would not only reduce the houses' flammability and increase the security of the inhabitants, but also reduce fire risk for the entire landscape.
Moody, John A.; Nyman, Peter
2013-01-01
Wildfire affects hillslope erosion through increased surface runoff and increased sediment availability, both of which contribute to large post-fire erosion events. Relations between soil detachment rate, soil depth, flow and root properties, and fire impacts are poorly understood and not represented explicitly in commonly used post-fire erosion models. Detachment rates were measured on intact soil cores using a modified tilting flume. The cores were mounted flush with the flume-bed and a measurement was made on the surface of the core. The core was extruded upward, cut off, and another measurement was repeated at a different depth below the original surface of the core. Intact cores were collected from one site burned by the 2010 Fourmile Canyon (FMC) fire in Colorado and from one site burned by the 2010 Pozo fire in California. Each site contained contrasting vegetation and soil types. Additional soil samples were collected alongside the intact cores and were analyzed in the laboratory for soil properties (organic matter, bulk density, particle-size distribution) and for root properties (root density and root-length density). Particle-size distribution and root properties were different between sites, but sites were similar in terms of bulk density and organic matter. Soil detachment rates had similar relations with non-uniform shear stress and non-uniform unit stream power. Detachment rates within single sampling units displayed a relatively weak and inconsistent relation to flow variables. When averaged across all clusters, the detachment rate displayed a linear relation to shear stress, but variability in soil properties meant that the shear stress accounted for only a small proportion of the overall variability in detachment rates (R2 = 0.23; R2 is the coefficient of determination). Detachment rate was related to root-length density in some clusters (R2 values up to 0.91) and unrelated in others (R2 values 2 value improved and the range of exponents became narrower by applying a multivariate regression model where boundary shear stress and root-length density were included as explanatory variables. This suggests that an erodibility parameter which incorporates the effects of both flow and root properties on detachment could improve the representation of sediment availability after wildfire.
Owen P. Cramer
1959-01-01
Hard-hitting fire-fighting crews and effective fire prevention held down this year's fire losses despite critical weather." Have you ever read such a statement and wondered how much of the apparently good record was really due to weather conditions?
Estelle Arbellay; Markus Stoffel; Elaine K. Sutherland; Kevin T. Smith; Donald A. Falk
2014-01-01
Resin ducts (RDs) are features present in most conifer species as defence structures against pests and pathogens; however, little is known about RD expression in trees following fire injury. This study investigates changes in RD size and density in fire scars of Douglas fir (Pseudotsuga menziesii) and western larch (Larix occidentalis) as a means to evaluate the...
Sean A. Parks; Lisa M. Holsinger; Carol Miller; Cara R. Nelson
2015-01-01
Theory suggests that natural fire regimes can result in landscapes that are both self-regulating and resilient to fire. For example, because fires consume fuel, they may create barriers to the spread of future fires, thereby regulating fire size. Top-down controls such as weather, however, can weaken this effect. While empirical examples demonstrating this pattern-...
Controls on carbon consumption during Alaskan wildland fires
Eric S. Kasischke; Elizabeth E. Hoy
2012-01-01
A method was developed to estimate carbon consumed during wildland fires in interior Alaska based on medium-spatial scale data (60 m cell size) generated on a daily basis. Carbon consumption estimates were developed for 41 fire events in the large fire year of 2004 and 34 fire events from the small fire years of 2006-2008. Total carbon consumed during the large fire...
Grabinski, Christin M; Methner, Mark M; Jackson, Jerimiah M; Moore, Alexander L; Flory, Laura E; Tilly, Trevor; Hussain, Saber M; Ott, Darrin K
2017-06-01
U.S. Air Force small arms firing ranges began using copper-based, lead-free frangible ammunition in the early 2000s due to environmental and health concerns related to the use of lead-based ammunition. Exposure assessments at these firing ranges have routinely detected chemicals and metals in amounts much lower than their mass-based occupational exposure limits, yet, instructors report work-related health concerns including respiratory distress, nausea, and headache. The objective of this study at one firing range was to characterize the aerosol emissions produced by weapons during firing events and evaluate the ventilation system's effectiveness in controlling instructor exposure to these emissions. The ventilation system was assessed by measuring the range static air pressure differential and the air velocity at the firing line. Air flow patterns were near the firing line. Instructor exposure was sampled using a filter-based air sampling method for metals and a wearable, real-time ultrafine particle counter. Area air sampling was simultaneously performed to characterize the particle size distribution, morphology, and composition. In the instructor's breathing zone, the airborne mass concentration of copper was low (range = <1 µg/m 3 to 16 µg/m 3 ), yet the ultrafine (nanoscale) particle number concentration increased substantially during each firing event. Ultrafine particles contained some copper and were complex in morphology and composition. The ventilation assessment found that the average velocity across all shooting lanes was acceptable compared to the recommended guideline (20% of the ideal 0.38 m/s (75 ft/min). However, uniform, downrange airflow pattern requirements were not met. These results suggest that the mass-based occupational exposure limits, as applied to this environment, may not be protective enough to eliminate health complaints reported by instructors whose full-time job involves training personnel on weapons that fire lead-free frangible ammunition. Using an ultrafine particle counter appears to be an alternative method of assessing ventilation effectiveness in removing ultrafine particulate produced during firing events.
Spatial distribution of ozone over Indonesia (Study case: Forest fire event 2015)
NASA Astrophysics Data System (ADS)
Muslimah, Sri; Buce Saleh, Muhamad; Hidayat, Rahmat
2018-05-01
Tropospheric ozone is known as surface ozone and caused several health impact. The objective of this study was to analysis spatial distribution of tropospheric ozone over Indonesia case study forest fire event in 2015. Monthly observation measured by Ozone Monitoring Instrument (OMI) have been analysed from January – December 2015 to study spatial distribution of tropospheric ozone related to forest fire event 2015. The study discovered high level of tropospheric column ozone (TCO) from October to November 2015. The result shows increasing average of TCO from September to October almost 6 DU. Meanwhile, monthly number of hotspot is higher in September 2015 with total number 257 hotspot which is acquired by Moderate Resolution Imaging Spectrometer (MODIS) Terra version 6.1 with confidence level same or more than 90%. The hotspot distribution compared with spatial TCO distribution and shows interesting time lag with respect to hotspot distribution, one month. Further study for daily comparison of TCO and forest fire event needed. This result suggested that the tropospheric ozone over the Indonesian region increases in 2015 were remarkable and corresponded to forest fire event.
Variable synaptic strengths controls the firing rate distribution in feedforward neural networks.
Ly, Cheng; Marsat, Gary
2018-02-01
Heterogeneity of firing rate statistics is known to have severe consequences on neural coding. Recent experimental recordings in weakly electric fish indicate that the distribution-width of superficial pyramidal cell firing rates (trial- and time-averaged) in the electrosensory lateral line lobe (ELL) depends on the stimulus, and also that network inputs can mediate changes in the firing rate distribution across the population. We previously developed theoretical methods to understand how two attributes (synaptic and intrinsic heterogeneity) interact and alter the firing rate distribution in a population of integrate-and-fire neurons with random recurrent coupling. Inspired by our experimental data, we extend these theoretical results to a delayed feedforward spiking network that qualitatively capture the changes of firing rate heterogeneity observed in in-vivo recordings. We demonstrate how heterogeneous neural attributes alter firing rate heterogeneity, accounting for the effect with various sensory stimuli. The model predicts how the strength of the effective network connectivity is related to intrinsic heterogeneity in such delayed feedforward networks: the strength of the feedforward input is positively correlated with excitability (threshold value for spiking) when firing rate heterogeneity is low and is negatively correlated with excitability with high firing rate heterogeneity. We also show how our theory can be used to predict effective neural architecture. We demonstrate that neural attributes do not interact in a simple manner but rather in a complex stimulus-dependent fashion to control neural heterogeneity and discuss how it can ultimately shape population codes.
Factors in adoption of a fire department wellness program: champ-and-chief model.
Kuehl, Hannah; Mabry, Linda; Elliot, Diane L; Kuehl, Kerry S; Favorite, Kim C
2013-04-01
To identify and evaluate determinants of fire departments' wellness program adoption. The Promoting Healthy Lifestyles: Alternative Models' Effects fire service wellness program was offered for free to all medium-sized fire departments in Oregon and Washington. An invitation to participate was mailed to key fire department decision makers (chief, union president, and wellness officer). These key decision makers from 12 sites that adopted the program and 24 matched nonadopting sites were interviewed and results were analyzed to define adoption determinants. Three adoption requirements were identified: (1) mailer connection, (2) local firefighter wellness champion, and (3) willing fire chief, whereas a fourth set of organizational factors had little or no impact on adoption including previous and ongoing wellness activities, financial pressures, and resistance to change. Findings identified determinants of medium-sized fire service wellness program adoption.
Identifying the location of fire refuges in wet forest ecosystems.
Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B
2015-12-01
The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential that within these envelopes, forest is protected from logging, roads, and other developments so that the ecological processes related to the establishment and subsequent use of fire refuges are maintained.
NASA Astrophysics Data System (ADS)
Li, Tao; Xie, Wei
2017-04-01
The spiral tunnel arises as a new form of tunnel, with great differences in fire development pattern when compared with traditional straight line tunnel, this paper takes method of numerical simulation, based on computation fluid dynamics theory and fire-turbulence numerical simulation theory, establishing a full-scale spiral tunnel model, and applies CFX simulation software to research full-scale spiral tunnel fire and its ventilation condition. The results indicate that with increasing tunnel slope, high temperature area gradually extends to downstream area, high temperature mainly distributes near fire source area, and symmetrically distributes among the fire center point; With increasing tunnel slope, the highest temperature underneath tunnel arch rises first followed by a downward trend and then rising again, which strengthens chimney effect, and promotes more fresh cold air flow into the tunnel, suppressing fire smoke backflow and simultaneously accelerating fire smoke spread to downstream area; Fire plume presents vertical slender shape with 1% or 3% tunnel slope, and burning flame hits tunnel arch and then extending all around into the ceiling jet flow, when tunnel slope increases to 5% or 7%, fire plume cross section grows bigger and wider with unstable burning flame swaying in all directions, integrally incline to fire downstream.
NASA Astrophysics Data System (ADS)
Li, Xiang; Jiang, Li; Hoa, Le Phuoc; Lyu, Yan; Xu, Tingting; Yang, Xin; Iinuma, Yoshiteru; Chen, Jianmin; Herrmann, Hartmut
2016-11-01
In this study, measurements of size-resolved sugar and nitrophenol concentrations and their distributions during Shanghai haze episodes were performed. The primary goal was to track their possible source categories and investigate the contribution of biological and biomass burning aerosols to urban haze events through regional transport. The results showed that levoglucosan had the highest concentration (40-852 ng m-3) followed by 4-nitrophenol (151-768 ng m-3), sucrose (38-380 ng m-3), 4-nitrocatechol (22-154 ng m-3), and mannitol (5-160 ng m-3). Size distributions exhibited over 90% of levoglucosan and 4-nitrocatechol to the total accumulated in the fine-particle size fraction (<2.1 μm), particularly in heavier haze periods. The back trajectories further supported the fact that levoglucosan was linked to biomass-burning particles, with higher values of associated with air masses passing from biomass burning areas (fire spots) before reaching Shanghai. Other primary saccharide and nitrophenol species showed an unusually large peak in the coarse-mode size fraction (>2.1 μm), which can be correlated with emissions from local sources (biological emission). Principal component analysis (PCA) and positive matrix factorization (PMF) revealed four probable sources (biomass burning: 28%, airborne pollen: 25%, fungal spores: 24%, and combustion emission: 23%) responsible for urban haze events. Taken together, these findings provide useful insight into size-resolved source apportionment analysis via molecular markers for urban haze pollution events in Shanghai.
Comparative Analysis of Fusion Center Outreach to Fire and EMS Agencies
2015-12-01
ANALYSIS OF FUSION CENTER OUTREACH TO FIRE AND EMS AGENCIES by Scott E. Goldstein December 2015 Thesis Advisor: Fathali Moghaddam Second...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE COMPARATIVE ANALYSIS OF FUSION CENTER OUTREACH TO FIRE AND EMS AGENCIES 5...public release; distribution is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Fire and EMS responders have had little
Wildfire cluster detection using space-time scan statistics
NASA Astrophysics Data System (ADS)
Tonini, M.; Tuia, D.; Ratle, F.; Kanevski, M.
2009-04-01
The aim of the present study is to identify spatio-temporal clusters of fires sequences using space-time scan statistics. These statistical methods are specifically designed to detect clusters and assess their significance. Basically, scan statistics work by comparing a set of events occurring inside a scanning window (or a space-time cylinder for spatio-temporal data) with those that lie outside. Windows of increasing size scan the zone across space and time: the likelihood ratio is calculated for each window (comparing the ratio "observed cases over expected" inside and outside): the window with the maximum value is assumed to be the most probable cluster, and so on. Under the null hypothesis of spatial and temporal randomness, these events are distributed according to a known discrete-state random process (Poisson or Bernoulli), which parameters can be estimated. Given this assumption, it is possible to test whether or not the null hypothesis holds in a specific area. In order to deal with fires data, the space-time permutation scan statistic has been applied since it does not require the explicit specification of the population-at risk in each cylinder. The case study is represented by Florida daily fire detection using the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product during the period 2003-2006. As result, statistically significant clusters have been identified. Performing the analyses over the entire frame period, three out of the five most likely clusters have been identified in the forest areas, on the North of the country; the other two clusters cover a large zone in the South, corresponding to agricultural land and the prairies in the Everglades. Furthermore, the analyses have been performed separately for the four years to analyze if the wildfires recur each year during the same period. It emerges that clusters of forest fires are more frequent in hot seasons (spring and summer), while in the South areas they are widely present along the whole year. The analysis of fires distribution to evaluate if they are statistically more frequent in some area or/and in some period of the year, can be useful to support fire management and to focus on prevention measures.
NASA Astrophysics Data System (ADS)
Hyer, E. J.; Reid, J. S.
2006-12-01
As more forecast models aim to include aerosol and chemical species, there is a need for source functions for biomass burning emissions that are accurate, robust, and operable in real-time. NAAPS is a global aerosol forecast model running every six hours and forecasting distributions of biomass burning, industrial sulfate, dust, and sea salt aerosols. This model is run operationally by the U.S. Navy as an aid to planning. The smoke emissions used as input to the model are calculated from the data collected by the FLAMBE system, driven by near-real-time active fire data from GOES WF_ABBA and MODIS Rapid Response. The smoke source function uses land cover data to predict properties of detected fires based on literature data from experimental burns. This scheme is very sensitive to the choice of land cover data sets. In areas of rapid land cover change, the use of static land cover data can produce artifactual changes in emissions unrelated to real changes in fire patterns. In South America, this change may be as large as 40% over five years. We demonstrate the impact of a modified land cover scheme on FLAMBE emissions and NAAPS forecasts, including a fire size algorithm developed using MODIS burned area data. We also describe the effects of corrections to emissions estimates for cloud and satellite coverage. We outline areas where existing data sources are incomplete and improvements are required to achieve accurate modeling of biomass burning emissions in real time.
NASA Astrophysics Data System (ADS)
Sebastián-López, Ana; Urbieta, Itziar R.; de La Fuente Blanco, David; García Mateo, Rubén.; Moreno Rodríguez, José Manuel; Eftichidis, George; Varela, Vassiliki; Cesari, Véronique; Mário Ribeiro, Luís.; Viegas, Domingos Xavier; Lanorte, Antonio; Lasaponara, Rosa; Camia, Andrea; San Miguel, Jesús
2010-05-01
Forest fires burn at the local scale, but their massive occurrence causes effects which have global dimensions. Furthermore climate change projections associate global warming to a significant increase in forest fire activity. Warmer and drier conditions are expected to increase the frequency, duration and intensity of fires, and greater amounts of fuel associated with forest areas in decline may cause more frequent and larger fires. These facts create the need for establishing strategies for harmonizing fire danger rating, fire risk assessment, and fire prevention policies at a supranational level. Albeit forest fires are a permanent threat for European ecosystems, particularly in the south, there is no commonly accepted fuel classification scheme adopted for operational use by the Member States of the EU. The European Commission (EC) DG Environment and JRC have launched a set of studies following a resolution of the European Parliament on the further development and enhancement of the European Forest Fire Information System (EFFIS), the EC focal point for information on forest fires in Europe. One of the studies that are being funded is the FUELMAP project. The objective of FUELMAP is to develop a novel fuel classification system and a new European fuel map that will be based on a comprehensive classification of fuel complexes representing the various vegetation types across EU27, plus Switzerland, Croatia and Turkey. The overall work plan is grounded on a throughout knowledge of European forest landscapes and the key features of fuel situations occurring in natural areas. The method makes extended use of existing databases available in the Member States and European Institutions. Specifically, our proposed classification combines relevant information on ecoregions, land cover and uses, potential and actual vegetation, and stand structure. GIS techniques are used in order to define the geographic extent of the classification units and for identifying the main driving factors that determine the spatial distribution of the resulting fuel complexes. Furthermore, relevant parameters influencing fire potential and effects such as fuel load, live/dead ratio, and fuels' size classes' distribution are considered. National- and local-scale datasets (vegetation maps, forest inventory plots, fuel maps...) will be also studied and compared. Local ground- truth data will be used to assess the accuracy of the classification and will contribute, along with literature values and experts' opinion, to characterize the fuels' physical properties. The resulting classification aims to support the characterization of the fire potential, serve as input in fire emissions models, and be used to assess the expected impact of fire in the European landscapes. The work plan includes the development of a GIS software tool to automatically update the fuel map from modified (up-to-date) input data layers. The fuel map of Europe is mainly intended to support the implementation of the EFFIS modules that can be enhanced by the use of improved information on forest fuel properties and spatial distribution, though it is also envisaged that the results of the project might be useful for other relevant applications at different spatial scales. To this purpose, the classification will be designed with a hierarchical and flexible structure for describing heterogeneous landscapes. The work is on-going and this presentation shows the first results towards the envisaged European fuel map.
Data reduction and analysis of graphite fiber release experiments
NASA Technical Reports Server (NTRS)
Lieberman, P.; Chovit, A. R.; Sussholz, B.; Korman, H. F.
1979-01-01
The burn and burn/explode effects on aircraft structures were examined in a series of fifteen outdoor tests conducted to verify the results obtained in previous burn and explode tests of carbon/graphite composite samples conducted in a closed chamber, and to simulate aircraft accident scenarios in which carbon/graphite fibers would be released. The primary effects that were to be investigaged in these tests were the amount and size distribution of the conductive fibers released from the composite structures, and how these various sizes of fibers transported downwind. The structures included plates, barrels, aircraft spoilers and a cockpit. The heat sources included a propane gas burner and 20 ft by 20 ft and 40 ft by 60 ft JP-5 pool fires. The larger pool fire was selected to simulate an aircraft accident incident. The passive instrumentation included sticky paper and sticky bridal veil over an area 6000 ft downwind and 3000 ft crosswind. The active instrumentation included instrumented meteorological towers, movies, infrared imaging cameras, LADAR, high voltage ball gages, light emitting diode gages, microwave gages and flame velocimeter.
Basunia, S; Landsberger, S
2001-10-01
Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched approximately 6 times more than the usual soil concentration levels. Toxicity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be approximately 12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.
The Influence of Solid Rocket Motor Retro-Burns on the Space Debris Environment
NASA Astrophysics Data System (ADS)
Stabroth, S.; Homeister, M.; Oswald, M.; Wiedemann, C.; Klinkrad, H.; Vörsmann, P.
The ESA space debris population model MASTER Meteoroid and Space Debris Terrestrial Environment Reference considers firings of solid rocket motors SRM as a debris source with the associated generation of slag and dust particles The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit The current model version MASTER-2005 is based on the simulation of 1 076 orbital SRM firings which contributed to the long-term debris environment A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope HST solar array measurements very well However the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility LDEF surfaces This points into the direction of some past SRM firings not included in the current event database The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere Thus they produce no long-term effect on the debris environment However a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces In this paper the influence of SRM retro-burns on the short- and long-term debris environment is analysed The existing firing database is updated with gathered
Size distributions and failure initiation of submarine and subaerial landslides
ten Brink, Uri S.; Barkan, R.; Andrews, B.D.; Chaytor, J.D.
2009-01-01
Landslides are often viewed together with other natural hazards, such as earthquakes and fires, as phenomena whose size distribution obeys an inverse power law. Inverse power law distributions are the result of additive avalanche processes, in which the final size cannot be predicted at the onset of the disturbance. Volume and area distributions of submarine landslides along the U.S. Atlantic continental slope follow a lognormal distribution and not an inverse power law. Using Monte Carlo simulations, we generated area distributions of submarine landslides that show a characteristic size and with few smaller and larger areas, which can be described well by a lognormal distribution. To generate these distributions we assumed that the area of slope failure depends on earthquake magnitude, i.e., that failure occurs simultaneously over the area affected by horizontal ground shaking, and does not cascade from nucleating points. Furthermore, the downslope movement of displaced sediments does not entrain significant amounts of additional material. Our simulations fit well the area distribution of landslide sources along the Atlantic continental margin, if we assume that the slope has been subjected to earthquakes of magnitude ??? 6.3. Regions of submarine landslides, whose area distributions obey inverse power laws, may be controlled by different generation mechanisms, such as the gradual development of fractures in the headwalls of cliffs. The observation of a large number of small subaerial landslides being triggered by a single earthquake is also compatible with the hypothesis that failure occurs simultaneously in many locations within the area affected by ground shaking. Unlike submarine landslides, which are found on large uniformly-dipping slopes, a single large landslide scarp cannot form on land because of the heterogeneous morphology and short slope distances of tectonically-active subaerial regions. However, for a given earthquake magnitude, the total area affected by subaerial landslides is comparable to that calculated by slope stability analysis for submarine landslides. The area distribution of subaerial landslides from a single event may be determined by the size distribution of the morphology of the affected area, not by the initiation process. ?? 2009 Elsevier B.V.
Influence of fuels, weather and the built environment on the exposure of property to wildfire
Penman, Trent D.; Collins, Luke S.; Syphard, Alexandra D.; Keeley, Jon E.; Bradstock, Ross A.
2014-01-01
Wildfires can pose a significant risk to people and property. Billions of dollars are spent investing in fire management actions in an attempt to reduce the risk of loss. One of the key areas where money is spent is through fuel treatment – either fuel reduction (prescribed fire) or fuel removal (fuel breaks). Individual treatments can influence fire size and the maximum distance travelled from the ignition and presumably risk, but few studies have examined the landscape level effectiveness of these treatments. Here we use a Bayesian Network model to examine the relative influence of the built and natural environment, weather, fuel and fuel treatments in determining the risk posed from wildfire to the wildland-urban interface. Fire size and distance travelled was influenced most strongly by weather, with exposure to fires most sensitive to changes in the built environment and fire parameters. Natural environment variables and fuel load all had minor influences on fire size, distance travelled and exposure of assets. These results suggest that management of fuels provided minimal reductions in risk to assets and adequate planning of the changes in the built environment to cope with the expansion of human populations is going to be vital for managing risk from fire under future climates.
Mega-fire Recovery in Dry Conifer Forests of the Interior West
NASA Astrophysics Data System (ADS)
Malone, S. L.; Fornwalt, P.; Chambers, M. E.; Battaglia, M.
2015-12-01
Wildfire is a complex landscape process with great uncertainty in whether trends in size and severity are shifting trajectories for ecosystem recovery that are outside of the historical range of variability. Considering that wildfire size and severity is likely to increase into the future with a drier climate, it is important that we understand wildfire effects and ecosystem recovery. To evaluate how ecosystems recover from wildfire we measured spatial patterns in regeneration and mapped tree refugia within mega-fire perimeters (Hayman, Jasper, Bobcat, and Grizzly Gulch) in ponderosa pine (Pinus ponderosa) dominated forest. On average, high severity fire effects accounted for > 15% of burned area and increased with fire size. Areas with high severity fire effects contained 1 - 15% tree refugia cover, compared to 37 - 70% observed in low severity areas . Large high severity patches with low coverage of tree refugia, were more frequent in larger fires and regeneration distances required to initiate forest recovery far exceeded 1.5 canopy height or 200 m, distances where the vast majority of regeneration is likely to arise. Using a recovery model driven by distance, we estimate recovery times between 300 to > 1000 years for these mega-fires. In Western dry conifer forests, large patches of stand replacing fire are likely to lead to uneven aged forest and very long recovery times.
Influence of Fuels, Weather and the Built Environment on the Exposure of Property to Wildfire
Penman, Trent D.; Collins, Luke; Syphard, Alexandra D.; Keeley, Jon E.; Bradstock, Ross A.
2014-01-01
Wildfires can pose a significant risk to people and property. Billions of dollars are spent investing in fire management actions in an attempt to reduce the risk of loss. One of the key areas where money is spent is through fuel treatment – either fuel reduction (prescribed fire) or fuel removal (fuel breaks). Individual treatments can influence fire size and the maximum distance travelled from the ignition and presumably risk, but few studies have examined the landscape level effectiveness of these treatments. Here we use a Bayesian Network model to examine the relative influence of the built and natural environment, weather, fuel and fuel treatments in determining the risk posed from wildfire to the wildland-urban interface. Fire size and distance travelled was influenced most strongly by weather, with exposure to fires most sensitive to changes in the built environment and fire parameters. Natural environment variables and fuel load all had minor influences on fire size, distance travelled and exposure of assets. These results suggest that management of fuels provided minimal reductions in risk to assets and adequate planning of the changes in the built environment to cope with the expansion of human populations is going to be vital for managing risk from fire under future climates. PMID:25360741
The Alberta smoke plume observation study
NASA Astrophysics Data System (ADS)
Anderson, Kerry; Pankratz, Al; Mooney, Curtis; Fleetham, Kelly
2018-02-01
A field project was conducted to observe and measure smoke plumes from wildland fires in Alberta. This study used handheld inclinometer measurements and photos taken at lookout towers in the province. Observations of 222 plumes were collected from 21 lookout towers over a 6-year period from 2010 to 2015. Observers reported the equilibrium and maximum plume heights based on the plumes' final levelling heights and the maximum lofting heights, respectively. Observations were tabulated at the end of each year and matched to reported fires. Fire sizes at assessment times and forest fuel types were reported by the province. Fire weather conditions were obtained from the Canadian Wildland Fire Information System (CWFIS). Assessed fire sizes were adjusted to the appropriate size at plume observation time using elliptical fire-growth projections. Though a logical method to collect plume observations in principle, many unanticipated issues were uncovered as the project developed. Instrument limitations and environmental conditions presented challenges to the investigators, whereas human error and the subjectivity of observations affected data quality. Despite these problems, the data set showed that responses to fire behaviour conditions were consistent with the physical processes leading to plume rise. The Alberta smoke plume observation study data can be found on the Canadian Wildland Fire Information System datamart (Natural Resources Canada, 2018) at http://cwfis.cfs.nrcan.gc.ca/datamart.
Vegetation fire proneness in Europe
NASA Astrophysics Data System (ADS)
Pereira, Mário; Aranha, José; Amraoui, Malik
2015-04-01
Fire selectivity has been studied for vegetation classes in terms of fire frequency and fire size in a few European regions. This analysis is often performed along with other landscape variables such as topography, distance to roads and towns. These studies aims to assess the landscape sensitivity to forest fires in peri-urban areas and land cover changes, to define landscape management guidelines and policies based on the relationships between landscape and fires in the Mediterranean region. Therefore, the objectives of this study includes the: (i) analysis of the spatial and temporal variability statistics within Europe; and, (ii) the identification and characterization of the vegetated land cover classes affected by fires; and, (iii) to propose a fire proneness index. The datasets used in the present study comprises: Corine Land Cover (CLC) maps for 2000 and 2006 (CLC2000, CLC2006) and burned area (BA) perimeters, from 2000 to 2013 in Europe, provided by the European Forest Fire Information System (EFFIS). The CLC is a part of the European Commission programme to COoRdinate INformation on the Environment (Corine) and it provides consistent, reliable and comparable information on land cover across Europe. Both the CLC and EFFIS datasets were combined using geostatistics and Geographical Information System (GIS) techniques to access the spatial and temporal evolution of the types of shrubs and forest affected by fires. Obtained results confirms the usefulness and efficiency of the land cover classification scheme and fire proneness index which allows to quantify and to compare the propensity of vegetation classes and countries to fire. As expected, differences between northern and southern Europe are notorious in what concern to land cover distribution, fire incidence and fire proneness of vegetation cover classes. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by the project SUSTAINSYS: Environmental Sustainable Agro-Forestry Systems (NORTE-07-0124-FEDER-000044), financed by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), as well as by National Funds (PIDDAC) through the Portuguese Foundation for Science and Technology (FCT/MEC).
[Vertical distribution of fuels in Pinus yunnanensis forest and related affecting factors].
Wang, San; Niu, Shu-Kui; Li, De; Wang, Jing-Hua; Chen, Feng; Sun, Wu
2013-02-01
In order to understand the effects of fuel loadings spatial distribution on forest fire kinds and behaviors, the canopy fuels and floor fuels of Pinus yunnanensis forests with different canopy density, diameter at breast height (DBH), tree height, and stand age and at different altitude, slope grade, position, and aspect in Southwest China were taken as test objects, with the fuel loadings and their spatial distribution characteristics at different vertical layers compared and the fire behaviors in different stands analyzed. The relationships between the fuel loadings and the environmental factors were also analyzed by canonical correspondence analysis (CCA). In different stands, there existed significant differences in the vertical distribution of fuels. Pinus yunnanensis-Qak-Syzygium aromaticum, Pinus yunnanensis-oak, and Pinus yunnanensis forests were likely to occur floor fire but not crown fire, while Pinus yunnanensis-Platycladus orientalis, Pinus yunnanensis-Keteleeria fortune, and Keteleeria fortune-Pinus yunnanensis were not only inclined to occur floor fire, but also, the floor fire could be easily transformed into crown fire. The crown fuels were mainly affected by the stand age, altitude, DBH, and tree height, while the floor fuels were mainly by the canopy density, slope grade, altitude, and stand age.
Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution
NASA Astrophysics Data System (ADS)
Dewi Ayu Kusumaningtyas, Sheila; Aldrian, Edvin
2016-07-01
Forest and land fires in Riau province of Sumatera increase along with the rapid deforestation, land clearing, and are induced by dry climate. Forest and land fires, which occur routinely every year, cause trans-boundary air pollution up to Singapore. Economic losses were felt by Indonesia and Singapore as the affected country thus creates tensions among neighboring countries. A high concentration of aerosols are emitted from fire which degrade the local air quality and reduce visibility. This study aimed to analyze the impact of the June 2013 smoke haze event on the environment and air quality both in Riau and Singapore as well as to characterize the aerosol properties in Singapore during the fire period. Air quality parameters combine with aerosols from Aerosol Robotic Network (AERONET) data and some environmental parameters, i.e. rainfall, visibility, and hotspot numbers are investigated. There are significant relationships between aerosol and environmental parameters both in Riau and Singapore. From Hysplit modeling and a day lag correlation, smoke haze in Singapore is traced back to fire locations in Riau province after propagated one day. Aerosol characterization through aerosol optical depth (AOD), Ångstrom parameter and particle size distribution indicate the presence of fine aerosols in a great number in Singapore, which is characteristic of biomass burning aerosols. Fire and smoke haze even impaired economic activity both in Riau and Singapore, thus leaving some accounted economic losses as reported by some agencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, C. S.; Li, Z. G.; Moutinho, H. R.
2012-06-01
We report on the effect of front-side Ag metallization on the underlying n+-p junction of multicrystalline Si solar cells. The junction quality beneath the contacts was investigated by characterizing the uniformities of the electrostatic potential and doping concentration across the junction, using scanning Kelvin probe force microscopy and scanning capacitance microscopy. We investigated cells with a commercial Ag paste (DuPont PV159) and fired at furnace setting temperatures of 800 degrees, 840 degrees, and 930 degrees C, which results in actual cell temperatures ~100 degrees C lower than the setting temperature and the three cells being under-, optimal-, and over-fired. Wemore » found that the uniformity of the junction beneath the Ag contact was significantly degraded by the over-firing, whereas the junction retained good uniformity with the optimal- and under-fire temperatures. Further, Ag crystallites with widely distributed sizes from <100 nm to several μm were found at the Ag/Si interface of the over-fired cell. Large crystallites were imaged as protrusions into Si deeper than the junction depth. However, the junction was not broken down; instead, it was reformed on the entire front of the crystallite/Si interface. We propose a mechanism of the junction-quality degradation, based on emitter Si melting at the temperature around the Ag-Si eutectic point during firing, and subsequent recrystallization with incorporation of impurities in the Ag paste and with formation of crystallographic defects during quenching.« less
Effectiveness of Prescribed Fire as a Fuel Treatment in Californian Coniferous Forests
Nicole M. Vaillant; JoAnn Fites-Kaufman; Scott L. Stephens
2006-01-01
Effective fire suppression for the past century has altered forest structure and increased fuel loads. Prescribed fire as a fuels treatment can reduce wildfire size and severity. This study investigates how prescribed fire affects fuel loads, forest structure, potential fire behavior, and modeled tree mortality at 80th, 90th, and 97.5th percentile fire weather...
Jian Yang; Hong S. He; Brian R. Sturtevant; Brian R. Miranda; Eric J. Gustafson
2008-01-01
We compared four fire spread simulation methods (completely random, dynamic percolation. size-based minimum travel time algorithm. and duration-based minimum travel time algorithm) and two fire occurrence simulation methods (Poisson fire frequency model and hierarchical fire frequency model) using a two-way factorial design. We examined these treatment effects on...
Penman, T D; Collins, L; Price, O F; Bradstock, R A; Metcalf, S; Chong, D M O
2013-12-15
Large budgets are spent on both suppression and fuel treatments in order to reduce the risk of wildfires. There is little evidence regarding the relative contribution of fire weather, suppression and fuel treatments in determining the risk posed from wildfires. Here we undertake a simulation study in the Sydney Basin, Australia, to examine this question using a fire behaviour model (Phoenix Rapidfire). Results of the study indicate that fire behaviour is most strongly influenced by fire weather. Suppression has a greater influence on whether a fire reaches 5 ha in size compared to fuel treatments. In contrast, fuel treatments have a stronger effect on the fire size and maximum distance the fire travels. The study suggests that fire management agencies will receive additional benefits from fuel treatment if they are located in areas which suppression resources can respond rapidly and attempt to contain the fires. No combination of treatments contained all fires, and the proportion of uncontained fires increased under more severe fire weather when the greatest number of properties are lost. Our study highlights the importance of alternative management strategies to reduce the risk of property loss. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Estimation of wildfire size and risk changes due to fuels treatments
M. A. Cochrane; C. J. Moran; M. C. Wimberly; A. D. Baer; M. A. Finney; K. L. Beckendorf; J. Eidenshink; Z. Zhu
2012-01-01
Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of...
A method for determining fire history in coniferous forests in the Mountain West
Stephen F. Arno; Kathy M. Sneck
1977-01-01
Describes a method for determining historic fire frequency, intensity, and size from cross sections collected from fire-scarred trees and tree age classes determined through increment borings. Tells how to interpret the influence of fire in stand composition and structure and how to identify effects of modern fire suppression.
Flammability across the gymnosperm phylogeny: the importance of litter particle size.
Cornwell, William K; Elvira, Alba; van Kempen, Lute; van Logtestijn, Richard S P; Aptroot, André; Cornelissen, J Hans C
2015-04-01
Fire is important to climate, element cycles and plant communities, with many fires spreading via surface litter. The influence of species on the spread of surface fire is mediated by their traits which, after senescence and abscission, have 'afterlife' effects on litter flammability. We hypothesized that differences in litter flammability among gymnosperms are determined by litter particle size effects on litterbed packing. We performed a mesocosm fire experiment comparing 39 phylogenetically wide-ranging gymnosperms, followed by litter size and shape manipulations on two chemically contrasting species, to isolate the underlying mechanism. The first-order control on litter flammability was, indeed, litter particle size in both experiments. Most gymnosperms were highly flammable, but a prominent exception was the non-Pinus Pinaceae, in which small leaves abscised singly produced dense, non-flammable litterbeds. There are two important implications: first, ecosystems dominated by gymnosperms that drop small leaves separately will develop dense litter layers, which will be less prone to and inhibit the spread of surface litter fire. Second, some of the needle-leaved species previously considered to be flammable in single-leaf experiments were among the least flammable in litter fuel beds, highlighting the role of the litter traits of species in affecting surface fire regimes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Lynch, Amanda H.; Abramson, David; Görgen, Klaus; Beringer, Jason; Uotila, Petteri
2007-10-01
Fires in the Australian savanna have been hypothesized to affect monsoon evolution, but the hypothesis is controversial and the effects have not been quantified. A distributed computing approach allows the development of a challenging experimental design that permits simultaneous variation of all fire attributes. The climate model simulations are distributed around multiple independent computer clusters in six countries, an approach that has potential for a range of other large simulation applications in the earth sciences. The experiment clarifies that savanna burning can shape the monsoon through two mechanisms. Boundary-layer circulation and large-scale convergence is intensified monotonically through increasing fire intensity and area burned. However, thresholds of fire timing and area are evident in the consequent influence on monsoon rainfall. In the optimal band of late, high intensity fires with a somewhat limited extent, it is possible for the wet season to be significantly enhanced.
Miettinen, Jukka; Shi, Chenghua; Liew, Soo Chin
2017-10-01
In this paper, we analyze the spatio-temporal distribution of vegetation fires in Peninsular Malaysia, Sumatra, and Borneo in the severe El Niño year of 2015, concentrating on the distribution of fires between mineral soils and peatland areas, and between land cover types in peatland areas. The results reveal that 53% of all Moderate Resolution Imaging Spectroradiometer (MODIS) fire detections were recorded in peatlands that cover only 12% of the study area. However, fire occurrence in the peatland areas was highly dependent on land cover type. Pristine peat swamp forests (PSF) experienced only marginal fire activity (30 fire detections per 1000 km 2 ) compared to deforested undeveloped peatlands (831-915 fire detections per 1000 km 2 ). Our results also highlight the extreme fire vulnerability of the southern Sumatran and Bornean peatlands under strong El Niño conditions: 71% of all peatland hotspots were detected in the provinces of South Sumatra and Central Kalimantan, which contain 29% of peatlands in the study area. Degraded PSF and all deforested peatland land cover types, including managed areas, in the two provinces were severely affected, demonstrating how difficult it is to protect even managed drained agricultural areas from unwanted fires during dry periods. Our results thereby advocate rewetting and rehabilitation as the primary management option for highly fire prone degraded undeveloped peatland areas, whenever feasible, as a means to reduce fire risk during future dry episodes.
NASA Astrophysics Data System (ADS)
Miettinen, Jukka; Shi, Chenghua; Liew, Soo Chin
2017-10-01
In this paper, we analyze the spatio-temporal distribution of vegetation fires in Peninsular Malaysia, Sumatra, and Borneo in the severe El Niño year of 2015, concentrating on the distribution of fires between mineral soils and peatland areas, and between land cover types in peatland areas. The results reveal that 53% of all Moderate Resolution Imaging Spectroradiometer (MODIS) fire detections were recorded in peatlands that cover only 12% of the study area. However, fire occurrence in the peatland areas was highly dependent on land cover type. Pristine peat swamp forests (PSF) experienced only marginal fire activity (30 fire detections per 1000 km2) compared to deforested undeveloped peatlands (831-915 fire detections per 1000 km2). Our results also highlight the extreme fire vulnerability of the southern Sumatran and Bornean peatlands under strong El Niño conditions: 71% of all peatland hotspots were detected in the provinces of South Sumatra and Central Kalimantan, which contain 29% of peatlands in the study area. Degraded PSF and all deforested peatland land cover types, including managed areas, in the two provinces were severely affected, demonstrating how difficult it is to protect even managed drained agricultural areas from unwanted fires during dry periods. Our results thereby advocate rewetting and rehabilitation as the primary management option for highly fire prone degraded undeveloped peatland areas, whenever feasible, as a means to reduce fire risk during future dry episodes.
Jiménez-Morillo, Nicasio T; Spangenberg, Jorge E; Miller, Ana Z; Jordán, Antonio; Zavala, Lorena M; González-Vila, Francisco J; González-Pérez, José A
2017-11-01
Soil water repellency (hydrophobicity) prevents water from wetting or infiltrating soils, triggering changes in the ecosystems. Fire may develop, enhance or destroy hydrophobicity in previously wettable or water-repellent soils. Soil water repellency is mostly influenced by the quality and quantity of soil organic matter, particularly the lipid fraction. Here we report the results of a study on the effect of fire on the distribution of soil lipids and their role in the hydrophobicity grade of six particle size fractions (2-1, 1-0.5, 0.5-0.25, 0.25-0.1, 0.1-0.05 and <0.05mm) of an Arenosol under Quercus suber canopy at the Doñana National Park (SW-Spain). Hydrophobicity was determined using water drop penetration time test. Field emission scanning electron microscopy (FESEM) was used to assess the presence and morphology of the inorganic and organic soil components in the particle size fractions. Soil lipids were Soxhlet extracted with a dichloromethane-methanol mixture. Fatty acids (FAs) and neutral lipids were separated, derivatized, identified and quantified by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. The hydrophobicity values of soil samples and fractions were statistically different (P < 0.05), for both, the unburnt and burnt soils, and particle size fractions. All samples displayed a similar distribution of FAs, straight-chain saturated acids in the C 14 -C 32 range, and neutral lipids (n-alkan-1-ols, n-alkanes), only differing in their relative abundances. Among possible biogeochemical mechanisms responsible for the changes in soil lipids, the observed depletion of long chain FAs (C ≥24 ) in the coarse fraction is best explained by thermal cracking caused by the heat of the fire. The enrichment of long chain FAs observed in other fractions suggests possible exogenous additions of charred, lipid-rich, material, like cork suberin or other plant-derived macromolecules (cutins). Principal component analysis was used to study the relationships between hydrophobicity with soil organic matter and its different components. Extractable organic matter (EOM) and specifically long chain FAs content were positively correlated to soil hydrophobicity. Therefore, the latter could be used as biomarkers surrogated to hydrophobicity in sandy soils. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nikonovas, T.; North, P. R. J.; Doerr, S. H.
2015-07-01
Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground-based remote sensing provides detailed aerosol characterisation, but does not contain information on source. Here, a method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from Moderate Resolution Imaging Spectroradiometer (MODIS) and Along Track Scanning Radiometer (AATSR). It is applied to AERONET stations located in or near northern temperate and boreal forests for the period 2002-2013. The results from 629 fire attributions indicate significant differences in size distributions and particle optical properties between different land cover types and plume age. Smallest fine mode median radius (Rfv) are attributed to plumes from cropland and/or natural vegetation mosaic (0.143 μm) and grassland (0.157 μm) fires. North American evergreen needleleaf forest emissions show a significantly smaller Rfv (0.164 μm) than plumes from Eurasian mixed forests (0.193 μm) and plumes attributed to the land cover types with sparse tree cover - open shrubland (0.185 μm) and woody savannas (0.184 μm). The differences in size distributions are related to inferred variability in plume concentrations between the land cover types. Significant differences are observed between day and night emissions, with daytime emissions showing larger particle sizes. Smoke is predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0.95 except the cropland emissions which have an SSA(440) value of 0.9. Plumes aged for 4 days or older have median Rfv larger by ~0.02 μm compared to young smoke. Differences in size were consistent with a decrease in the Ångström Exponent and increase in the asymmetry parameter. Only an insignificant increase in SSA(λ) with ageing was found.
Russell A. Parsons; William Mell; Peter McCauley
2010-01-01
Crown fire poses challenges to fire managers and can endanger fire fighters. Understanding of how fire interacts with tree crowns is essential to informed decisions about crown fire. Current operational crown fire predictions in the United States assume homogeneous crown fuels. While a new class of research fire models, which model fire behavior with computational...
NASA Astrophysics Data System (ADS)
Bao, Yi; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda
2017-10-01
In this study, Brillouin scattering-based distributed fiber optic sensor is implemented to measure temperature distributions and detect cracks in concrete structures subjected to fire for the first time. A telecommunication-grade optical fiber is characterized as a high temperature sensor with pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA), and implemented to measure spatially-distributed temperatures in reinforced concrete beams in fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9%. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.
Ignition behavior of magnesium powder layers on a plate heated at constant temperature.
Chunmiao, Yuan; Dezheng, Huang; Chang, Li; Gang, Li
2013-02-15
The minimum temperature at which dust layers or deposits ignite is considered to be very important in industries where smoldering fires could occur. Experiments were conducted on the self-ignition behavior of magnesium powder layers. The estimated effective thermal conductivity k for modeling is 0.17 W m(-1)K(-1). The minimum ignition temperature (MIT) of magnesium powder layers for four different particle sizes: 6, 47, 104 and 173 μm, are also determined in these experiments. A model was developed describing temperature distribution and its change over time while considering the melting and boiling of magnesium powder. Parameter analysis shown that increasing particle size from 6 to 173 μm increased MIT from 710 to 760 K, and increased thickness of the dust layer led to a decreased MIT. The calculation termination time more than 5000 s didn't significantly impact MIT. Comparing predicted and experimental data showed satisfactory agreement for MIT of magnesium powder layers at various particle sizes. According to the ignition process of magnesium powder layer, a meaningful definition for the most sensitive ignition position (MSIP) was proposed and should be taken into consideration when preventing smoldering fires induced by hot plates. Copyright © 2012 Elsevier B.V. All rights reserved.
Liu, Zhihua; Wimberly, Michael C
2016-01-15
We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.
Characterizing crown fuel distribution for conifers in the interior western United States
Seth Ex; Frederick W. Smith; Tara Keyser
2015-01-01
Canopy fire hazard evaluation is essential for prioritizing fuel treatments and for assessing potential risk to firefighters during suppression activities. Fire hazard is usually expressed as predicted potential fire behavior, which is sensitive to the methodology used to quantitatively describe fuel profiles: methodologies that assume that fuel is distributed...
NASA Astrophysics Data System (ADS)
Jiménez, Santiago; Barroso, Jorge; Pina, Antonio; Ballester, Javier
2016-05-01
In spite of the relevance of residential heating burners in the global emission of soot particles to the atmosphere, relatively little information on their properties (concentration, size distribution) is available in the literature, and even less regarding the dependence of those properties on the operating conditions. Instead, the usual procedure to characterize those emissions is to measure the smoke opacity by several methods, among which the blackening of a paper after filtering a fixed amount of gas (Bacharach test) is predominant. In this work, the size distributions of the particles generated in the combustion of a variety of gaseous and liquid fuels in a laboratory facility equipped with commercial burners have been measured with a size classifier coupled to a particle counter in a broad range of operating conditions (air excesses), with simultaneous determination of the Bacharach index. The shape and evolution of the distribution with progressively smaller oxygen concentrations depends essentially on the state of the fuel: whereas the combustion of the gases results in monomodal distributions that 'shift' towards larger diameters, in the case of the gas-oils an ultrafine mode is always observed, and a secondary mode of coarse particle grows in relevance. In both cases, there is a strong, exponential correlation between the total mass concentration and the Bacharach opacity index, quite similar for both groups of fuels. The empirical expressions proposed may allow other researchers to at least estimate the emissions of numerous combustion facilities routinely characterized by their smoke opacities.
NASA Astrophysics Data System (ADS)
Filizzola, Carolina; Belloni, Antonella; Benigno, Giuseppe; Biancardi, Alberto; Corrado, Rosita; Coviello, Irina; De Costanzo, Giovanni; Genzano, Nicola; Lacava, Teodosio; Lisi, Mariano; Marchese, Francesco; Mazzeo, Giuseppe; Merzagora, Cinzio; Paciello, Rossana; Pergola, Nicola; Sannazzaro, Filomena; Serio, Salvatore; Tramutoli, Valerio
2013-04-01
Every year, hundreds of thousands of hectares of European forests are destroyed by fires. Due to the particular topography, landscape and demographic distribution in Europe (very different from typical scenarios of China, USA, Canada and Australia), rapidity in fire sighting is still the determining factor in limiting damages to people and goods. Moreover, the possibility of early fire detection means also potentially to reduce the size of the event to be faced, the necessary fire fighting resources and, therefore, even the reaction times. In such a context, integration of satellite technologies (mainly high temporal resolution data) and traditional surveillance systems within the fire fighting procedures seems to positively impact on the effectiveness of active fire fighting as demonstrated by recent experiences over Italian territory jointly performed by University of Basilicata, IMAA-CNR and Local Authorities. Real time implementation was performed since 2007, during fire seasons, over several Italian regions with different fire regimes and features, in order to assess the actual potential of different satellite-based fire detection products to support regional and local authorities in efficiently fighting fires and better mitigating their negative effects. Real-time campaigns were carried out in strict collaboration with end-users within the framework of specific projects (i.e. the AVVISA, AVVISTA and AVVISA-Basilicata projects) funded by Civil Protection offices of Regione Lombardia, Provincia Regionale di Palermo and Regione Basilicata in charge of fire risk management and mitigation. A tailored training program was dedicated to the personnel of Regional Civil Protection offices in order to ensure the full understanding and the better integration of satellite based products and tools within the existing fire fighting protocols. In this work, outcomes of these practices are shown and discussed, especially highlighting the impact that a real time satellite system may have in assisting and complementing traditional surveillance systems to mitigate damages due to fires. In particular, the usefulness of satellite technology in an operational context was demonstrated mainly in reference to: i) the possibility of identifying fires at an early stage (so avoiding that small hotbeds could extend and become dangerous for citizens and destructive for environmental protected areas) as well as ii) the possibility to have an effective territorial control (e.g. discovering illegal burning fires such as unauthorized cleaning fires, and permitting local authorities to rapidly intervene and catch red-handed pyromaniacs).
Litter and dead wood dynamics in ponderosa pine forests along a 160-year chronosequence.
Hall, S A; Burke, I C; Hobbs, N T
2006-12-01
Disturbances such as fire play a key role in controlling ecosystem structure. In fire-prone forests, organic detritus comprises a large pool of carbon and can control the frequency and intensity of fire. The ponderosa pine forests of the Colorado Front Range, USA, where fire has been suppressed for a century, provide an ideal system for studying the long-term dynamics of detrital pools. Our objectives were (1) to quantify the long-term temporal dynamics of detrital pools; and (2) to determine to what extent present stand structure, topography, and soils constrain these dynamics. We collected data on downed dead wood, litter, duff (partially decomposed litter on the forest floor), stand structure, topographic position, and soils for 31 sites along a 160-year chronosequence. We developed a compartment model and parameterized it to describe the temporal trends in the detrital pools. We then developed four sets of statistical models, quantifying the hypothesized relationship between pool size and (1) stand structure, (2) topography, (3) soils variables, and (4) time since fire. We contrasted how much support each hypothesis had in the data using Akaike's Information Criterion (AIC). Time since fire explained 39-80% of the variability in dead wood of different size classes. Pool size increased to a peak as material killed by the fire fell, then decomposed rapidly to a minimum (61-85 years after fire for the different pools). It then increased, presumably as new detritus was produced by the regenerating stand. Litter was most strongly related to canopy cover (r2 = 77%), suggesting that litter fall, rather than decomposition, controls its dynamics. The temporal dynamics of duff were the hardest to predict. Detrital pool sizes were more strongly related to time since fire than to environmental variables. Woody debris peak-to-minimum time was 46-67 years, overlapping the range of historical fire return intervals (1 to > 100 years). Fires may therefore have burned under a wide range of fuel conditions, supporting the hypothesis that this region's fire regime was mixed severity.
Forest fire spatial pattern analysis in Galicia (NW Spain).
Fuentes-Santos, I; Marey-Pérez, M F; González-Manteiga, W
2013-10-15
Knowledge of fire behaviour is of key importance in forest management. In the present study, we analysed the spatial structure of forest fire with spatial point pattern analysis and inference techniques recently developed in the Spatstat package of R. Wildfires have been the primary threat to Galician forests in recent years. The district of Fonsagrada-Ancares is one of the most seriously affected by fire in the region and, therefore, the central focus of the study. Our main goal was to determine the spatial distribution of ignition points to model and predict fire occurrence. These data are of great value in establishing enhanced fire prevention and fire fighting plans. We found that the spatial distribution of wildfires is not random and that fire occurrence may depend on ownership conflicts. We also found positive interaction between small and large fires and spatial independence between wildfires in consecutive years. Copyright © 2013 Elsevier Ltd. All rights reserved.
Forecasting distribution of numbers of large fires
Haiganoush K. Preisler; Jeff Eidenshink; Stephen Howard; Robert E. Burgan
2015-01-01
Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the...
NASA Astrophysics Data System (ADS)
Ehrlich, C.; Noll, G.; Kalkoff, W.-D.; Baumbach, G.; Dreiseidler, A.
Emission measurement programmes were carried out at industrial plants in several regions of Germany to determine the fine dust in the waste gases; the PM 10, PM 2.5 and PM 1.0 fractions were sampled using a cascade impactor technique. The installations tested included plants used for: combustion (brown coal, heavy fuel oil, wood), cement production, glass production, asphalt mixing, and processing plants for natural stones and sand, ceramics, metallurgy, chemical production, spray painting, wood processing/chip drying, poultry farming and waste treatment. In addition waste gas samples were taken from small-scale combustion units, like domestic stoves, firing lignite briquettes or wood. In total 303 individual measurement results were obtained during 106 different measurement campaigns. In the study it was found that in more than 70% of the individual emission measurement results from industrial plants and domestic stoves the PM 10 portion amounted to more than 90% and the PM 2.5 portion between 50% and 90% of the total PM (particulate matter) emission. For thermal industrial processes the PM 1.0 portion constituted between 20% and 60% of the total PM emission. Typical particle size distributions for different processes were presented as cumulative frequency distributions and as frequency distributions. The particle size distributions determined for the different plant types show interesting similarities and differences depending on whether the processes are thermal, mechanical, chemical or mixed. Consequently, for the groups of plant investigated, a major finding of this study has been that the particle size distribution is a characteristic of the industrial process. Attempts to correlate particle size distributions of different plants to different gas cleaning technologies did not lead to usable results.
NASA Technical Reports Server (NTRS)
Youngblood, Wallace W.
1990-01-01
Viewgraphs of increased fire and toxic contaminant detection responsivity by use of distributed, aspirating sensors for space station are presented. Objectives of the concept described are (1) to enhance fire and toxic contaminant detection responsivity in habitable regions of space station; (2) to reduce system weight and complexity through centralized detector/monitor systems; (3) to increase fire signature information from selected locations in a space station module; and (4) to reduce false alarms.
Northwest California National Forests fire severity monitoring 1987-2008
Jay D. Miller; Carl N. Skinner; Hugh D. Safford; Eric E. Knapp; Carlos M. Ramirez
2012-01-01
Research in the last several years has indicated that the frequency of large fires is on the rise in western US forests. Although fire size and frequency are important, they do not necessarily provide information concerning the effects of fire on ecosystems, as ecosystems differ in ecological and evolutionary relationships with fire. Our study focused on the four...
Christopher D. O' Connor; Donald A. Falk; Ann M. Lynch; Thomas W. Swetnam
2014-01-01
In recent decades fire size and severity have been increasing in high elevation forests of the American Southwest. Ecological outcomes of these increases are difficult to gauge without an historical context for the role of fire in these systems prior to interruption by Euro-American land uses. Across the gradient of forest types in the Pinaleño Mountains, a Sky Island...
Robert E. Keane; Stacy A. Drury; Eva C. Karau; Paul F. Hessburg; Keith M. Reynolds
2010-01-01
This paper presents modeling methods for mapping fire hazard and fire risk using a research model called FIREHARM (FIRE Hazard and Risk Model) that computes common measures of fire behavior, fire danger, and fire effects to spatially portray fire hazard over space. FIREHARM can compute a measure of risk associated with the distribution of these measures over time using...
Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China
Liu, Meifang; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong
2017-01-01
Grassland fire is one of the most important disturbance factors of the natural ecosystem. Climate factors influence the occurrence and development of grassland fire. An analysis of the climate conditions of fire occurrence can form the basis for a study of the temporal and spatial variability of grassland fire. The purpose of this paper is to study the effects of monthly time scale climate factors on the occurrence of grassland fire in HulunBuir, located in the northeast of the Inner Mongolia Autonomous Region in China. Based on the logistic regression method, we used the moderate-resolution imaging spectroradiometer (MODIS) active fire data products named thermal anomalies/fire daily L3 Global 1km (MOD14A1 (Terra) and MYD14A1 (Aqua)) and associated climate data for HulunBuir from 2000 to 2010, and established the model of grassland fire climate index. The results showed that monthly maximum temperature, monthly sunshine hours and monthly average wind speed were all positively correlated with the fire climate index; monthly precipitation, monthly average temperature, monthly average relative humidity, monthly minimum relative humidity and the number of days with monthly precipitation greater than or equal to 5 mm were all negatively correlated with the fire climate index. We used the active fire data from 2011 to 2014 to validate the fire climate index during this time period, and the validation result was good (Pearson’s correlation coefficient was 0.578), which showed that the fire climate index model was suitable for analyzing the occurrence of grassland fire in HulunBuir. Analyses were conducted on the temporal and spatial distribution of the fire climate index from January to December in the years 2011–2014; it could be seen that from March to May and from September to October, the fire climate index was higher, and that the fire climate index of the other months is relatively low. The zones with higher fire climate index are mainly distributed in Xin Barag Youqi, Xin Barag Zuoqi, Zalantun Shi, Oroqen Zizhiqi, and Molidawa Zizhiqi; the zones with medium fire climate index are mainly distributed in Chen Barag Qi, Ewenkizu Zizhiqi, Manzhouli Shi, and Arun Qi; and the zones with lower fire climate index are mainly distributed in Genhe Shi, Ergun city, Yakeshi Shi, and Hailar Shi. The results of this study will contribute to the quantitative assessment and management of early warning and forecasting for mid-to long-term grassland fire risk in HulunBuir. PMID:28304336
PROPAGATOR: a synchronous stochastic wildfire propagation model with distributed computation engine
NASA Astrophysics Data System (ADS)
D´Andrea, M.; Fiorucci, P.; Biondi, G.; Negro, D.
2012-04-01
PROPAGATOR is a stochastic model of forest fire spread, useful as a rapid method for fire risk assessment. The model is based on a 2D stochastic cellular automaton. The domain of simulation is discretized using a square regular grid with cell size of 20x20 meters. The model uses high-resolution information such as elevation and type of vegetation on the ground. Input parameters are wind direction, speed and the ignition point of fire. The simulation of fire propagation is done via a stochastic mechanism of propagation between a burning cell and a non-burning cell belonging to its neighbourhood, i.e. the 8 adjacent cells in the rectangular grid. The fire spreads from one cell to its neighbours with a certain base probability, defined using vegetation types of two adjacent cells, and modified by taking into account the slope between them, wind direction and speed. The simulation is synchronous, and takes into account the time needed by the burning fire to cross each cell. Vegetation cover, slope, wind speed and direction affect the fire-propagation speed from cell to cell. The model simulates several mutually independent realizations of the same stochastic fire propagation process. Each of them provides a map of the area burned at each simulation time step. Propagator simulates self-extinction of the fire, and the propagation process continues until at least one cell of the domain is burning in each realization. The output of the model is a series of maps representing the probability of each cell of the domain to be affected by the fire at each time-step: these probabilities are obtained by evaluating the relative frequency of ignition of each cell with respect to the complete set of simulations. Propagator is available as a module in the OWIS (Opera Web Interfaces) system. The model simulation runs on a dedicated server and it is remote controlled from the client program, NAZCA. Ignition points of the simulation can be selected directly in a high-resolution, three-dimensional graphical representation of the Italian territory within NAZCA. The other simulation parameters, namely wind speed and direction, number of simulations, computing grid size and temporal resolution, can be selected from within the program interface. The output of the simulation is showed in real-time during the simulation, and are also available off-line and on the DEWETRA system, a Web GIS-based system for environmental risk assessment, developed according to OGC-INSPIRE standards. The model execution is very fast, providing a full prevision for the scenario in few minutes, and can be useful for real-time active fire management and suppression.
Campaign datasets for Biomass Burning Observation Project (BBOP)
Kleinman,Larry; Mei,Fan; Arnott,William; Buseck,Peter; Chand,Duli; Comstock,Jennifer; Dubey,Manvendra; Lawson,Paul; Long,Chuck; Onasch,Timothy; Sedlacek,Arthur; Senum,Gunnar; Shilling,John; Springston,Stephen; Tomlinson,Jason; Wang,Jian
2014-04-24
This field campaign will address multiple uncertainties in aerosol intensive properties, which are poorly represented in climate models, by means of aircraft measurements in biomass burning plumes. Key topics to be investigated are: 1. Aerosol mixing state and morphology 2. Mass absorption coefficients (MACs) 3. Chemical composition of non-refractory material associated with light-absorbing carbon (LAC) 4. Production rate of secondary organic aerosol (SOA) 5. Microphysical processes relevant to determining aerosol size distributions and single scattering albedo (SSA) 6. CCN activity. These topics will be investigated through measurements near active fires (0-5 hours downwind), where limited observations indicate rapid changes in aerosol properties, and in biomass burning plumes aged >5 hours. Aerosol properties and their time evolution will be determined as a function of fire type, defined according to fuel and the mix of flaming and smoldering combustion at the source.
Patterns in woody vegetation structure across African savannas
NASA Astrophysics Data System (ADS)
Axelsson, Christoffer R.; Hanan, Niall P.
2017-07-01
Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP) modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs), which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality), soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr-1) to the wettest (1200-1400 mm yr-1) end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand content suggesting that maximal savanna tree sizes do not occur in either coarse sands or heavy clays. When examining the occurrence of PVPs, we found that the same factors that contribute to the formation of PVPs also correlate with higher levels of woody plant aggregation elsewhere in savannas and that rainfall seasonality plays a key role for the underlying processes.
Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong
2016-06-06
We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.
Michael Glenn Meek
2007-01-01
Overgrazing and fire suppression has left much rangeland in poor condition for various wildlife species. Prescribed fire is one range improvement practice used to restore degraded wildlife habitat. I determined the effect of prescribed fire on whitetailed deer (Odocoileus virginianus) spatial and temporal distribution, in the presence of cattle...
Lanzerstorfer, Christof
2015-04-01
For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass combustion plants were investigated. In fly ash from straw combustion high concentrations of (K) were found, whereas in the fly ash from wood combustion the concentrations of Ca and Mg were higher. The average concentration of PO4(3-) was similar in both types of fly ashes. In all wood fly ashes some measured heavy metal concentrations were above the limits for utilization. The straw fly ashes were much less contaminated and can be utilized. For wood fly ash most parameters showed little variation, except from one fly ash where the dust pre-separator is in poor condition. The average values were: mass median diameter 4.3±0.8 μm, spread of particle size distribution 19±11, particle density 2620±80 kg/m3 and angle of repose 50°±1°. The density of the straw fly ashes is lower (2260±80 kg/m3) and the spread of the size distribution is higher (72±24). For one straw combustion fly ash the values of the mass median diameter and the angle of repose were similar to the values of wood combustion fly ash, for the other straw fly ash the values differed considerably. While the particle size of this fly ash was much smaller, surprisingly the angle of repose was also lower. This can be attributed to the formation of small agglomerates in this fly ash, which were not disintegrated without a certain stress. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Sachs, M. K.; Yoder, M. R.; Turcotte, D. L.; Rundle, J. B.; Malamud, B. D.
2012-05-01
Extreme events that change global society have been characterized as black swans. The frequency-size distributions of many natural phenomena are often well approximated by power-law (fractal) distributions. An important question is whether the probability of extreme events can be estimated by extrapolating the power-law distributions. Events that exceed these extrapolations have been characterized as dragon-kings. In this paper we consider extreme events for earthquakes, volcanic eruptions, wildfires, landslides and floods. We also consider the extreme event behavior of three models that exhibit self-organized criticality (SOC): the slider-block, forest-fire, and sand-pile models. Since extrapolations using power-laws are widely used in probabilistic hazard assessment, the occurrence of dragon-king events have important practical implications.
Lei, Yuming; Suresh, Nina L; Rymer, William Z; Hu, Xiaogang
2018-01-01
Muscle force generation involves recruitment and firing rate modulation of motor units (MUs). The control of MUs in producing multidirectional forces remains unclear. We studied MU recruitment and firing properties, recorded from the first dorsal interosseous muscle, for 3 different directions of contraction: abduction; abduction/flexion combination; and flexion. MUs were recruited systematically at higher threshold force during flexion. Larger MUs were recruited and firing rates of MUs were lower during abduction. There was an orderly recruitment of MUs according to MU size regardless of contraction direction, obeying the "size principle." Firing rates of earlier-recruited MUs were consistently higher than later-recruited MUs, affirming the "onion-skin" property. Our findings suggest that the size principle and onion-skin organization together provide a general description of MU recruitment patterns and firing properties. The directional alternations of MU control properties likely reflect changes in neural drive to the muscle. Muscle Nerve 57: E85-E93, 2018. © 2017 Wiley Periodicals, Inc.
Modeling the effects of vegetation heterogeneity on wildland fire behavior
NASA Astrophysics Data System (ADS)
Atchley, A. L.; Linn, R.; Sieg, C.; Middleton, R. S.
2017-12-01
Vegetation structure and densities are known to drive fire-spread rate and burn severity. Many fire-spread models incorporate an average, homogenous fuel density in the model domain to drive fire behavior. However, vegetation communities are rarely homogenous and instead present significant heterogeneous structure and fuel densities in the fires path. This results in observed patches of varied burn severities and mosaics of disturbed conditions that affect ecological recovery and hydrologic response. Consequently, to understand the interactions of fire and ecosystem functions, representations of spatially heterogeneous conditions need to be incorporated into fire models. Mechanistic models of fire disturbance offer insight into how fuel load characterization and distribution result in varied fire behavior. Here we use a physically-based 3D combustion model—FIRETEC—that solves conservation of mass, momentum, energy, and chemical species to compare fire behavior on homogenous representations to a heterogeneous vegetation distribution. Results demonstrate the impact vegetation heterogeneity has on the spread rate, intensity, and extent of simulated wildfires thus providing valuable insight in predicted wildland fire evolution and enhanced ability to estimate wildland fire inputs into regional and global climate models.
Karin L. Riley; Rachel A. Loehman
2016-01-01
Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st- century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains....
NASA Technical Reports Server (NTRS)
Brass, J. A.; Riggan, P. J.; Ambrosia, V. G.; Lockwood, R. N.; Pereira, J. A.; Higgins, R. G.; Peterson, David L. (Technical Monitor)
1995-01-01
Remotely sensed estimations of regional and global emissions from biomass combustion have been used to characterize fire behavior, determine fire intensity, and estimate burn area. Highly temporal, low resolution satellite data have been used to calculate estimates of fire numbers and area burned. These estimates of fire activity and burned area have differed dramatically, resulting in a wide range of predictions on the ecological and environmental impacts of fires. As part of the Brazil/United States Fire Initiative, an aircraft campaign was initiated in 1992 and continued in 1994. This multi-aircraft campaign was designed to assist in the characterization of fire activity, document fire intensity and determine area burned over prescribed, agricultural and wildland fires in the savanna and forests of central Brazil. Using a unique, multispectral scanner (AIRDAS), designed specifically for fire characterization, a variety of fires and burned areas were flown with a high spatial and high thermal resolution scanner. The system was used to measure flame front size, rate of spread, ratio of smoldering to flaming fronts and fire intensity. In addition, long transects were flown to determine the size of burned areas within the cerrado and transitional ecosystems. The authors anticipate that the fire activity and burned area estimates reported here will lead to enhanced information for precise regional trace gas prediction.
Laboratory and Numerical Modeling of Smoke Characteristics for Superfog Formation
NASA Astrophysics Data System (ADS)
Bartolome, C.; Lu, V.; Tsui, K.; Princevac, M.; Venkatram, A.; Mahalingam, S.; Achtemeier, G.; Weise, D.
2011-12-01
Land management techniques in wildland areas include prescribed fires to promote biodiversity and reduce risk of severe wildfires across the United States. Several fatal car pileups have been associated with smoke-related visibility reduction from prescribed burns. Such events have occurred in year 2000 on the interstate highways I-10 and I-95, 2001 on the I-4, 2006 on the I-95, and 2008 on the I-4 causing numerous fatalities, injuries, and damage to property. In some of the cases visibility reduction caused by smoke and fog combinations traveling over roadways have been reported to be less than 3 meters, defined as superfog. Our research focuses on delineating the conditions that lead to formation of the rare phenomena of superfog and creating a tool to enable land managers to effectively plan prescribed burns and prevent tragic events. It is hypothesized that the water vapor from combustion, live fuels, soil moisture, and ambient air condense onto the cloud condensation nuclei (CCN) particles emitted from low intensity smoldering fires. Physical and numerical modeling has been used to investigate these interactions. A physical model in the laboratory has been developed to characterize the properties of smoke resulting from smoldering pine needle litters at the PSW Forest Service in Riverside, CA. Temporal measurements of temperature, relative humidity, sensible heat flux, radiation heat flux, convective heat flux, particulate matter concentrations and visibilities have been measured for specific cases. The size distribution and number concentrations of the fog droplets formed inside the chamber by mixing cool dry and moist warm air masses to produce near superfog visibilities were measured by a Phase Doppler Particle Analyzer. Thermodynamic modeling of smoke and ambient air was conducted to estimate liquid water contents (LWC) available to condense into droplets and form significant reductions in visibility. The results show that LWC of less than 2 g m-3 can be sufficient for superfog formation. Sensitivity modeling of the size distribution and number concentrations of the fog droplets suggested that distributions centered on droplets with less than 1μm, limited distribution size spread and number concentrations of 105 CCN per cubic centimeter could readily form superfog. A modified Kohler theory predicts significant impact of CCN concentration on the ability to readily condense numerous droplets and reduce visibility. In this presentation modeled and measured effects of the pollutant CCN concentration, LWC and droplet size distribution on visibility will be discussed.
Spiny plants, mammal browsers, and the origin of African savannas.
Charles-Dominique, Tristan; Davies, T Jonathan; Hempson, Gareth P; Bezeng, Bezeng S; Daru, Barnabas H; Kabongo, Ronny M; Maurin, Olivier; Muasya, A Muthama; van der Bank, Michelle; Bond, William J
2016-09-20
Savannas first began to spread across Africa during the Miocene. A major hypothesis for explaining this vegetation change is the increase in C4 grasses, promoting fire. We investigated whether mammals could also have contributed to savanna expansion by using spinescence as a marker of mammal herbivory. Looking at the present distribution of 1,852 tree species, we established that spinescence is mainly associated with two functional types of mammals: large browsers and medium-sized mixed feeders. Using a dated phylogeny for the same tree species, we found that spinescence evolved at least 55 times. The diversification of spiny plants occurred long after the evolution of Afrotherian proboscideans and hyracoids. However, it is remarkably congruent with diversification of bovids, the lineage including the antelope that predominantly browse these plants today. Our findings suggest that herbivore-adapted savannas evolved several million years before fire-maintained savannas and probably, in different environmental conditions. Spiny savannas with abundant mammal herbivores occur in drier climates and on nutrient-rich soils, whereas fire-maintained savannas occur in wetter climates on nutrient-poor soils.
Spiny plants, mammal browsers, and the origin of African savannas
Charles-Dominique, Tristan; Davies, T. Jonathan; Hempson, Gareth P.; Bezeng, Bezeng S.; Kabongo, Ronny M.; Maurin, Olivier; Muasya, A. Muthama; van der Bank, Michelle; Bond, William J.
2016-01-01
Savannas first began to spread across Africa during the Miocene. A major hypothesis for explaining this vegetation change is the increase in C4 grasses, promoting fire. We investigated whether mammals could also have contributed to savanna expansion by using spinescence as a marker of mammal herbivory. Looking at the present distribution of 1,852 tree species, we established that spinescence is mainly associated with two functional types of mammals: large browsers and medium-sized mixed feeders. Using a dated phylogeny for the same tree species, we found that spinescence evolved at least 55 times. The diversification of spiny plants occurred long after the evolution of Afrotherian proboscideans and hyracoids. However, it is remarkably congruent with diversification of bovids, the lineage including the antelope that predominantly browse these plants today. Our findings suggest that herbivore-adapted savannas evolved several million years before fire-maintained savannas and probably, in different environmental conditions. Spiny savannas with abundant mammal herbivores occur in drier climates and on nutrient-rich soils, whereas fire-maintained savannas occur in wetter climates on nutrient-poor soils. PMID:27601649
Performance of concrete members subjected to large hydrocarbon pool fires
Zwiers, Renata I.; Morgan, Bruce J.
1989-01-01
The authors discuss an investigation to determine analytically if the performance of concrete beams and columns in a hydrocarbon pool test fire would differ significantly from their performance in a standard test fire. The investigation consisted of a finite element analysis to obtain temperature distributions in typical cross sections, a comparison of the resulting temperature distribution in the cross section, and a strength analysis of a beam based on temperature distribution data. Results of the investigation are reported.
Seasonal Distribution of African Savanna Fires
NASA Technical Reports Server (NTRS)
Cahoon, Donald R.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; O'Neill, Katherine P.
1992-01-01
Savannas consist of a continuous layer of grass interspersed with scattered trees or shrubs, and cover approx. 10 million square kilometers of tropical Africa. African savanna fires, almost all resulting from human activities, may produce as much as a third of the total global emissions from biomass burning. Little is known, however, about the frequency and location of these fires, and the area burned each year. Emissions from African savanna burning are known to be transported over the mid-Atlantic, south Pacific and Indian oceans; but to study fully the transport of regional savanna burning and the seasonality of the atmospheric circulation must be considered simultaneously. Here we describe the temporal and spatial distribution of savanna fires over the entire African continent, as determined from night-time satellite imagery. We find that, contrary to expectations, most fires are left to burn uncontrolled, so that there is no strong diurnal cycle in the fire frequency. The knowledge gained from this study regarding the distribution and variability of fires will aid monitoring of the climatically important trace gases emitted from burning biomass.
Mediterranean maquis fuel model development and mapping to support fire modeling
NASA Astrophysics Data System (ADS)
Bacciu, V.; Arca, B.; Pellizzaro, G.; Salis, M.; Ventura, A.; Spano, D.; Duce, P.
2009-04-01
Fuel load data and fuel model maps represent a critical issue for fire spread and behaviour modeling. The availability of accurate input data at different spatial and temporal scales can allow detailed analysis and predictions of fire hazard and fire effects across a landscape. Fuel model data are used in spatially explicit fire growth models to attain fire behaviour information for fuel management in prescribed fires, fire management applications, firefighters training, smoke emissions, etc. However, fuel type characteristics are difficult to be parameterized due to their complexity and variability: live and dead materials with different size contribute in different ways to the fire spread and behaviour. In the last decades, a strong help was provided by the use of remote sensing imagery at high spatial and spectral resolution. Such techniques are able to capture fine scale fuel distributions for accurate fire growth projections. Several attempts carried out in Europe were devoted to fuel classification and map characterization. In Italy, fuel load estimation and fuel model definition are still critical issues to be addressed due to the lack of detailed information. In this perspective, the aim of the present work was to propose an integrated approach based on field data collection, fuel model development and fuel model mapping to provide fuel models for the Mediterranean maquis associations. Field data needed for the development of fuel models were collected using destructive and non destructive measurements in experimental plots located in Northern Sardinia (Italy). Statistical tests were used to identify the main fuel types that were classified into four custom fuel models. Subsequently, a supervised classification by the Maximum Likelihood algorithm was applied on IKONOS images to identify and map the different types of maquis vegetation. The correspondent fuel model was then associated to each vegetation type to obtain the fuel model map. The results show the potential of this approach in achieving a reasonable accuracy in fuel model development and mapping; fine scale fuel model maps can be potentially helpful to obtain realistic predictions of fire behaviour and fire effects.
Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA
James A. Lutz; Jan W. van Wagtendonk; Andrea E. Thode; Jay D. Miller; Jerry F. Franklin
2009-01-01
Continental-scale studies of western North America have attributed recent increases in annual area burned and fire size to a warming climate, but these studies have focused on large fires and have left the issues of fire severity and ignition frequency unaddressed. Lightning ignitions, any of which could burn a large area given appropriate conditions for fire spread,...
Estimation of wildfire size and risk changes due to fuels treatments
Cochrane, M.A.; Moran, C.J.; Wimberly, M.C.; Baer, A.D.; Finney, M.A.; Beckendorf, K.L.; Eidenshink, J.; Zhu, Z.
2012-01-01
Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of more than a million hectares of land, quantitative assessments of the effectiveness of existing fuel treatments at reducing the size of actual wildfires or how they might alter the risk of burning across landscapes are currently lacking. Here, we present a method for estimating spatial probabilities of burning as a function of extant fuels treatments for any wildland fire-affected landscape. We examined the landscape effects of more than 72 000 ha of wildland fuel treatments involved in 14 large wildfires that burned 314 000 ha of forests in nine US states between 2002 and 2010. Fuels treatments altered the probability of fire occurrence both positively and negatively across landscapes, effectively redistributing fire risk by changing surface fire spread rates and reducing the likelihood of crowning behaviour. Trade offs are created between formation of large areas with low probabilities of increased burning and smaller, well-defined regions with reduced fire risk.
NASA Astrophysics Data System (ADS)
Brock, C. A.; Wollny, A. G.; Cooper, O. R.; Fehsenfeld, F. C.; de Gouw, J. A.; Hudson, P. K.; Matthew, B. M.; Middlebrook, A. M.; Murphy, D. M.; Simsons, C.; Stohl, A.; Warneke, C.; Peltier, R.; Sulivan, A.; Weber, R. J.; Wilson, J. C.
2004-12-01
During the Intercontinental Transport and Chemical Transformation - New England Air Quality Study (ITCT-NEAQS 2004) in July and August 2004 several forest fires plumes were observed over the northeastern U.S. and southeastern Canada. Satellite data and trajectory analyses indicate that the plumes originated from forest fires burning in Alaska and western Canada. In-situ measurements of the aged forest fire smoke were made on board the NOAA WP-3D research aircraft during several flights over a period of 2 weeks. Concentrations of volatile organic compounds (VOCs) and the chemical composition of single aerosol particles in air masses containing forest fire smoke show significant differences compared to background air or to pollution from urban and industrial sources and unambiguously identify the smoke plumes. Particle size distributions from 0.004 to 8 um were measured with one second resolution in the aged forest fire smoke. The smoke was characterized by mass-weighted diameters between 0.6 and 1 um--much larger than secondary particles typical of urban and industrial sources. Particle volume concentrations were among the highest seen within the ITCT-NEAQS 2004 project, and regional visibility and air quality were significantly affected by the transported smoke. Quantitative compositional measurements were made of the non-refractory fraction of submicron particles, as well as of submicron inorganic ionic compounds and water soluble organic mass, within the forest fire plumes. The submicron aerosol particles in the biomass plumes were largely carbonaceous with very little sulfate, ammonium, or nitrate. A fraction of this carbonaceous material was soluble in water and likely contained oxygenated organic species.
NASA Technical Reports Server (NTRS)
Chovit, A. R.; Lieberman, P.; Freeman, D. E.; Beggs, W. C.; Millavec, W. A.
1980-01-01
Carbon fiber sampling instruments were developed: passive collectors made of sticky bridal veil mesh, and active instruments using a light emitting diode (LED) source. These instruments measured the number or number rate of carbon fibers released from carbon/graphite composite material when the material was burned in a 10.7 m (35 ft) dia JP-4 pool fire for approximately 20 minutes. The instruments were placed in an array suspended from a 305 m by 305 m (1000 ft by 1000 ft) Jacob's Ladder net held vertically aloft by balloons and oriented crosswind approximately 140 meters downwind of the pool fire. Three tests were conducted during which released carbon fiber data were acquired. These data were reduced and analyzed to obtain the characteristics of the released fibers including their spatial and size distributions and estimates of the number and total mass of fibers released. The results of the data analyses showed that 2.5 to 3.5 x 10 to the 8th power single carbon fibers were released during the 20 minute burn of 30 to 50 kg mass of initial, unburned carbon fiber material. The mass released as single carbon fibers was estimated to be between 0.1 and 0.2% of the initial, unburned fiber mass.
Monthly fire behavior patterns
Mark J. Schroeder; Craig C. Chandler
1966-01-01
From tabulated frequency distributions of fire danger indexes for a nationwide network of 89 stations, the probabilities of four types of fire behavior ranging from 'fire out' to 'critical' were calculated for each month and are shown in map form.
Donald A. Haines; William A. Main; John S. Crosby
1973-01-01
Describes factors that contribute to forest fires on two of the State of Missouri's Protection Districts and the Clark National Forest. Includes an analysis of fire cause, annual distribution, weather, and activity by day of week; also discusses multiple-fire day.
Changes in fire weather distributions: effects on predicted fire behavior
Lucy A. Salazar; Larry S. Bradshaw
1984-01-01
Data that represent average worst fire weather for a particular area are used to index daily fire danger; however, they do not account for different locations or diurnal weather changes that significantly affect fire behavior potential. To study the effects that selected changes in weather databases have on computed fire behavior parameters, weather data for the...
Patrick H. Freeborn; Mark A. Cochrane; W. Matt Jolly
2015-01-01
Daily National Fire Danger Rating System (NFDRS) indices are typically associated with the number and final size of newly discovered fires, or averaged over time and associated with the likelihood and total burned area of large fires. Herein we used a decade (2003-12) of NFDRS indices and US Forest Service (USFS) fire reports to examine daily relationships between fire...
W. J. Bond; Robert Keane
2017-01-01
Fire is both a natural and anthropogenic disturbance influencing the distribution, structure, and functioning of terrestrial ecosystems around the world. Many plants and animals depend on fire for their continued existence. Others species, such as rainforest plants species, are extremely intolerant of burning and need protection from fire. The properties of a fire...
Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA
Lutz, J.A.; van Wagtendonk, J.W.; Thode, A.E.; Miller, J.D.; Franklin, J.F.
2009-01-01
Continental-scale studies of western North America have attributed recent increases in annual area burned and fire size to a warming climate, but these studies have focussed on large fires and have left the issues of fire severity and ignition frequency unaddressed. Lightning ignitions, any of which could burn a large area given appropriate conditions for fire spread, could be the first indication of more frequent fire. We examined the relationship between snowpack and the ignition and size of fires that occurred in Yosemite National Park, California (area 3027 km2), between 1984 and 2005. During this period, 1870 fires burned 77 718 ha. Decreased spring snowpack exponentially increased the number of lightning-ignited fires. Snowpack mediated lightning-ignited fires by decreasing the proportion of lightning strikes that caused lightning-ignited fires and through fewer lightning strikes in years with deep snowpack. We also quantified fire severity for the 103 fires >40 ha with satellite fire-severity indices using 23 years of Landsat Thematic Mapper data. The proportion of the landscape that burned at higher severities and the complexity of higher-severity burn patches increased with the log10 of annual area burned. Using one snowpack forecast, we project that the number of lightning-ignited fires will increase 19.1% by 2020 to 2049 and the annual area burned at high severity will increase 21.9%. Climate-induced decreases in snowpack and the concomitant increase in fire severity suggest that existing assumptions may be understated-fires may become more frequent and more severe. ?? IAWF 2009.
Crew Exploration Vehicle Environmental Control and Life Support Fire Protection Approach
NASA Technical Reports Server (NTRS)
Lewis, John F.; Barido, Richard; Tuan, George C.
2007-01-01
As part of preparing for the Crew Exploration Vehicle (CEV), the National Aeronautics and Space Administration (NASA) worked on developing the requirements to manage the fire risk. The new CEV poses unique challenges to current fire protection systems. The size and configuration of the vehicle resembles the Apollo capsule instead of the current Space Shuttle or the International Space Station. The smaller free air volume and fully cold plated avionic bays of the CEV requires a different approach in fire protection than the ones currently utilized. The fire protection approach discussed in this paper incorporates historical lessons learned and fire detection and suppression system design philosophy spanning from Apollo to the International Space Station. Working with NASA fire and materials experts, this approach outlines the best requirements for both the closed out area of the vehicle, such as the avionics bay, and the crew cabin area to address the unique challenges due to the size and configuration of the CEV.
NASA Astrophysics Data System (ADS)
Parente, Joana; Pereira, Mário; Amraoui, Malik; Tedim, Fantina
2017-04-01
The European Mediterranean countries, such as Portugal, Spain, France, Italy and Greece, have the higher incidence of fire. Of these countries, Portugal present the highest average number of fires (NF) and one of the highest burnt area (BA), in spite of its relatively smaller land area. The study period is focused in the recent years of 2012 - 2014, when a total of 59 257 fires were recorded and the fire cause is known for more than 50% of the fire records. All fires with known causes were then classified into intentional (40% of the total number of fires) and negligent (60%), leading to a total of 45% of fires related with human factors and activities. Taking into account these values the authors believe it's necessary to better understand the fire regime of this type of fires for a better fire prevention, firefighting and crisis management. Accordingly, the use of statistical analysis and GIS techniques were used to assess the spatial distribution of the human caused fires in each of the NUTS (Nomenclature of Territorial Units for Statistics level I, which divides Portugal in 5 basic economic regions, namely Norte, Centro, Area Metropolitana de Lisboa, Alentejo, and Algarve. The number of fires distribution increases with latitude, making north of Portugal the region with the highest number of fires. The analysis will also aims to assess the role of the most important human and biophysical drivers of the spatial distribution, namely the population density, land use land cover (LULC), distance to communication routes (roads and railways) and topographic variables (altitude, slope). The results show that: a) population density is highly and positively correlated with the agglomeration of fire ignitions, but doesn't imply highest burned area; b) burnt area increase with the distance to roads and altitude; and, c) 58% of the fires occurred on agriculture areas and 33% of fires occurred in forest and scrubs areas. Acknowledgements: This work was supported by: (i) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; (ii) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF for providing the fire data.
Pellegrini, Adam F A; Anderegg, William R L; Paine, C E Timothy; Hoffmann, William A; Kartzinel, Tyler; Rabin, Sam S; Sheil, Douglas; Franco, Augusto C; Pacala, Stephen W
2017-03-01
Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire-tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models. © 2017 John Wiley & Sons Ltd/CNRS.
Growing season burns for control of hardwoods in longleaf pine stands
William D. Boyer
1990-01-01
Summer fires in existing longleaf pine stands carry undue risk of pine mortality. One summer fire caused as much mortality among pines in the l- through 4-inch d.b.h. classes as two successive summer fires among hardwoods of the same size. Mortality among mature pines was also excessive. Hardwood top-kill following a spring fire seemed affected more by fire intensity...
Ana Carolina Monmany; William Gould; Maria Jose Andrade-Nunez; Grizelle Gonzalez; Maya Quinones
2017-01-01
Global estimates of fire frequency indicate that over 70% of active fires occur in the tropics, and the size and frequency of fires are increasing every year. The majority of fires in the tropics are an unintended consequence of current land-use practices that promotes the establishment of grass and shrubland communities, which are more flammable and more adapted to...
Robert L. Olson; David N. Bengston
2015-01-01
We live in a world on fire. In just the past few years, major wildland fires have struck at least 13 U.S. states, as well as Indonesia, Australia, China, southern Europe, Russia, Canada, Bolivia, and other parts of the world. Wildland fires are increasing in number, size, and intensity. In particular, there has been an increase in large fire eventsâmegafiresâthat...
Wildfire atlas of the northeastern and north central states.
Donald A. Haines; Von J. Johnson; William A. Main
1975-01-01
Describes patterns of forest fire activity across the northeastern and north central United States. Gives average dates of greening ad curing of herbaceous plants, medium size of fires in various fuels, and annual profiles of peak fire activity. It also examines combinations of major fire cause and day-of-week activity.
How to predict the spread and intensity of forest and range fires
Richard C. Rothermel
1983-01-01
This manual documents procedures for estimating the rate of forward spread, intensity, flame length, and size of fires burning in forests and rangelands. Contains instructions for obtaining fuel and weather data, calculating fire behavior, and interpreting the results for application to actual fire problems. This is a companion publication to "
Factors influencing large wildland fire suppression expenditures
Jingjing Liang; Dave E. Calkin; Krista M. Gebert; Tyron J. Venn; Robin P. Silverstein
2008-01-01
There is an urgent and immediate need to address the excessive cost of large fires. Here, we studied large wildland fire suppression expenditures by the US Department of Agriculture Forest Service. Among 16 potential nonmanagerial factors, which represented fire size and shape, private properties, public land attributes, forest and fuel conditions, and geographic...
A new type of shotgun ammunition produces unique wound characteristics.
Nelson, Craig L; Winston, David C
2007-01-01
The Tucson Police Department, Tucson, AZ, has begun using the Polyshok Impact Reactive Projectile (IRP), a new type of shotgun ammunition that includes a lead bead core that travels within single, plastic-encased projectile. On impact, the core is released to distribute over a small area, thereby disintegrating on impact to reduce the likelihood of exit or collateral damage on missed shots. After a brief review of shotgun slug ballistics and wound characteristics and a discussion of the mechanism of the Polyshok IRP, we report the first death in the United States from this ammunition. Findings included a single entrance wound with plastic ammunition components and small lead particles recovered from the body, the combination of which normally would suggest a close-range shooting with birdshot. However, the characteristics of this ammunition create different patterns than are found with slugs or shot, so that a medical examiner unfamiliar with the Polyshok IRP could draw inaccurate conclusions about ammunition and range of fire. Because the single projectile fired from this ammunition is composed of both plastic and lead, plastic components are likely to be found within the wound at any range of fire, unlike traditional shot or slug ammunition. Also, the small size of lead particles found spread through the wound cavity would ordinarily suggest a small-size shot, whereas the external appearance of the wound (a single entrance with no dispersion of shot) and the pattern of tissue destruction are more consistent with the patterns of injury associated with shotgun slugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skippon, S.M.; Tagaki, Y.
1996-09-01
The evaporation of fuel droplets is an important factor in determining the quality of mixture preparation in lean-burn engines, particularly when using open-valve injection timing, which results in large in-cylinder droplet populations. Interferometric Laser Imaging for Droplet Sizing (ILIDS) has been used to measure the in-cylinder droplet size distribution and fuel volume in the droplet phase as a function of crank angle for a typical full boiling range gasoline and three single component fuels with different boiling points: iso-pentane, iso-octane, and xylene, representing the volatilities of the light end, mid-range and heavy ends of a typical gasoline. The measurements weremore » made under firing conditions, with both open and closed valve injection timing, and at two different coolant temperatures, representing simulated cold start and fully warmed up conditions. A specially built single cylinder research engine was used, equipped with a transparent sapphire cylinder to provide all-round sidewall optical access to the cylinder interior. The engine had a four-valve leanburn head, swirl control valve and air-assisted injector. The experimental arrangements for ILIDS in a firing engine, and the optical access engine itself, are discussed in detail. The results showed significant differences in the rates of evaporation of the three fuel components: iso-pentane evaporated fully very early in the induction stroke, iso-octane droplets persisted longer, and xylene droplets persisted to the end of the compression stroke.« less
Coal-Fired Boilers at Navy Bases, Navy Energy Guidance Study, Phase II and III.
1979-05-01
several sizes were performed. Central plants containing four equal-sized boilers and central flue gas desulfurization facilities were shown to be less...Conceptual design and parametric cost studies of steam and power generation systems using coal-fired stoker boilers and stack gas scrubbers in
A high-resolution modelling approach on spatial wildfire distribution in the Tyrolean Alps
NASA Astrophysics Data System (ADS)
Malowerschnig, Bodo; Sass, Oliver
2013-04-01
Global warming will cause increasing danger of wildfires in Austria, which can have long-lasting consequences on woodland ecosystems. The protective effect of forest can be severely diminished, leading to natural hazards like avalanches and rockfall. However, data on wildfire frequency and distribution have been sparse and incomplete for Austria. Long-lasting postfire degradation under adverse preconditions (steep slopes, limestone) was a common phenomenon in parts of the Tyrolean Alps several decades ago and should become relevant again under a changing fire frequency. The FIRIA project compiles historical wildfire data, information on fuel loads, fire weather indices (FWI) and vegetation recovery patterns. The governing climatic, topographic and socio-economic factors of forest fire distribution were assessed to trigger a distribution model of currently fire-prone areas in Tyrol. By collecting data from different sources like old newspapers archives and fire-fighter databases, we were able to build up a fire database of wildfire occurrences containing more than 1400 forest fires since the 15th century in Tyrol. For the period from 1993 to 2011, the database is widely complete and covers 482 fires. Using a non-parametrical statistical method it was possible to select the best suited fire weather index (FWI) for the prediction. The testing of 19 FWI's shows that it is necessary to use two discriminative indices to differentiate between summer and winter season. Together with compiled topographic, socio-economic, infrastructure and forest maps, the dataset was the base for a multifactorial analysis, performed by comparing the maximum entropy approach (Maxent) with an ensemble classifier (Random Forests). Both approaches have their background in the spatial habitat distribution and are easy to adapt to the requirements of a wildfire ignition model. The aim of this modelling approach was to determine areas which are particularly prone to wildfire. Due to the pronounced relief curvature we based our model on 100 x 100 m cells to identify individual slopes and their topography. The first provisional result is a map of fire probability under current climate conditions (fire hot-spots). Our modelling approach indicates the fire weather index as the main driver, which is followed closely by socioeconomic (population density) and infrastructure factors (roads density, aerial railways, building density). The leverage of the forest community or its management is rather low; the same applies to topographic influences like aspect or sea level. The derived fire hot-spots are either placed close to the valley ground or around touristic infrastructure, with an overall preference for inner alpine areas and south-facing slopes. In the next step, the impact of climate change on the distribution and frequency of fires will be assessed by calculating a climate change model adapted to the 1x1km INCA dataset and based on different regional climate change models. Finally, a selection of fire-hot-spots from the previous modelling steps will be used for enhanced 3D-modelling approaches of natural hazards after wildfire-driven deforestation.
Staver, A Carla; Archibald, Sally; Levin, Simon
2011-05-01
Savannas are known as ecosystems with tree cover below climate-defined equilibrium values. However, a predictive framework for understanding constraints on tree cover is lacking. We present (a) a spatially extensive analysis of tree cover and fire distribution in sub-Saharan Africa, and (b) a model, based on empirical results, demonstrating that savanna and forest may be alternative stable states in parts of Africa, with implications for understanding savanna distributions. Tree cover does not increase continuously with rainfall, but rather is constrained to low (<50%, "savanna") or high tree cover (>75%, "forest"). Intermediate tree cover rarely occurs. Fire, which prevents trees from establishing, differentiates high and low tree cover, especially in areas with rainfall between 1000 mm and 2000 mm. Fire is less important at low rainfall (<1000 mm), where rainfall limits tree cover, and at high rainfall (>2000 mm), where fire is rare. This pattern suggests that complex interactions between climate and disturbance produce emergent alternative states in tree cover. The relationship between tree cover and fire was incorporated into a dynamic model including grass, savanna tree saplings, and savanna trees. Only recruitment from sapling to adult tree varied depending on the amount of grass in the system. Based on our empirical analysis and previous work, fires spread only at tree cover of 40% or less, producing a sigmoidal fire probability distribution as a function of grass cover and therefore a sigmoidal sapling to tree recruitment function. This model demonstrates that, given relatively conservative and empirically supported assumptions about the establishment of trees in savannas, alternative stable states for the same set of environmental conditions (i.e., model parameters) are possible via a fire feedback mechanism. Integrating alternative stable state dynamics into models of biome distributions could improve our ability to predict changes in biome distributions and in carbon storage under climate and global change scenarios.
Quantifying Fire Impact on Alaskan Tundra from Satellite Observations and Field Measurements
NASA Astrophysics Data System (ADS)
Loboda, T. V.; Chen, D.; He, J.; Jenkins, L. K.
2017-12-01
Wildfire is a major disturbance agent in Alaskan tundra. The frequency and extent of fire events obtained from paleo, management, and satellite records may yet underestimate the scope of tundra fire impact. Field measurements, collected within the NASA's ABoVE campaign, revealed unexpectedly shallow organic soils ( 15 cm) across all sampled sites of the Noatak valley with no significant difference between recently burned and unburned sites. In typical small and medium-sized tundra burns vegetation recovers rapidly and scars are not discernable in 30 m optical satellite imagery by the end of the first post-fire season. However, field observations indicate that vegetation and subsurface characteristics within fire scars of different ages vary across the landscape. In this study we develop linkages between fire-induced changes to tundra and satellite-based observations from optical, thermal, and microwave imagers to enable extrapolation of in-situ observations to cover the full extent of Alaskan tundra. Our results show that recent ( 30 years) fire history can be reconstructed from optical observations (R2 0.65, p<0.001) within a specific narrow temporal window or thermal signatures (R2 0.54, p < 0.001), in both cases controlled for slope and southern exposure. Using microwave SAR imagery fire history can be determined for 4 years post fire primarily due to increased soil moisture at burned sites. Field measurements suggest that the relatively quick SAR signal dissipation results from more even distribution of surface moisture through the soil column with increases in Active Layer Thickness (ALT). Similar to previous long-term field studies we find an increase in shrub fraction and shrub height within burns over time at the landscape scale; however, the strength and significance of the relationship between shrub fraction and time since fire is governed by burn severity with more severe burns predictably (p < 0.01) resulting in higher post-fire shrub cover. Although reasonably well-correlated to each other when adjusted for topography (R2 0.35, p < 0.001), neither ALT nor soil temperature can be directly linked to optical or thermal brightness observations with acceptable statistical significance, necessitating a more complex modeling environment for wall-to-wall mapping of subsurface parameters.
Factors associated with long-term species composition in dry tropical forests of Central India
NASA Astrophysics Data System (ADS)
Agarwala, M.; DeFries, R. S.; Qureshi, Q.; Jhala, Y. V.
2016-10-01
The long-term future of species composition in forests depends on regeneration. Many factors can affect regeneration, including human use, environmental conditions, and species’ traits. This study examines the influence of these factors in a tropical deciduous forest of Central India, which is heavily used by local, forest-dependent residents for livestock grazing, fuel-wood extraction, construction and other livelihood needs. We measure size-class proportions (the ratio of abundance of a species at a site in a higher size class to total abundance in both lower and higher size classes) for 39 tree species across 20 transects at different intensities of human use. The size-class proportions for medium to large trees and for small to medium-sized trees were negatively associated with species that are used for local construction, while size class proportions for saplings to small trees were positively associated with those species that are fire resistant and negatively associated with livestock density. Results indicate that grazing and fire prevent non-fire resistant species from reaching reproductive age, which can alter the long term composition and future availability of species that are important for local use and ecosystem services. Management efforts to reduce fire and forest grazing could reverse these impacts on long-term forest composition.
Numerical simulation study on the distribution law of smoke flow velocity in horizontal tunnel fire
NASA Astrophysics Data System (ADS)
Liu, Yejiao; Tian, Zhichao; Xue, Junhua; Wang, Wencai
2018-02-01
According to the fluid similarity theory, the simulation experiment system of mining tunnel fire is established. The grid division of experimental model roadway is carried on by GAMBIT software. By setting the boundary and initial conditions of smoke flow during fire period in FLUENT software, using RNG k-Ɛ two-equation turbulence model, energy equation and SIMPLE algorithm, the steady state numerical simulation of smoke flow velocity in mining tunnel is done to obtain the distribution law of smoke flow velocity in tunnel during fire period.
46 CFR 122.612 - Fire protection equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...
46 CFR 122.612 - Fire protection equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...
46 CFR 122.612 - Fire protection equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...
46 CFR 122.612 - Fire protection equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...
46 CFR 122.612 - Fire protection equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... marked in clearly legible letters “FIRE ALARM”. (f) An alarm for an automatic sprinkler system must be... fixed gas fire extinguishing system must be located in a conspicuous place at or near each pull box and... “carbon dioxide.” (c) Each distribution line valve of a fixed gas fire extinguishing system and the fire...
Happonen, Matti; Mylläri, Fanni; Karjalainen, Panu; Frey, Anna; Saarikoski, Sanna; Carbone, Samara; Hillamo, Risto; Pirjola, Liisa; Häyrinen, Anna; Kytömäki, Jorma; Niemi, Jarkko V; Keskinen, Jorma; Rönkkö, Topi
2013-12-17
Heavy fuel oil (HFO) is a commonly used fuel in industrial heating and power generation and for large marine vessels. In this study, the fine particle emissions of a 47 MW oil-fired boiler were studied at 30 MW power and with three different fuels. The studied fuels were HFO, water emulsion of HFO, and water emulsion of HFO mixed with light fuel oil (LFO). With all the fuels, the boiler emitted considerable amounts of particles smaller than 200 nm in diameter. Further, these small particles were quite hygroscopic even as fresh and, in the case of HFO+LFO emulsion, the hygroscopic growth of the particles was dependent on particle size. The use of emulsions and the addition of LFO to the fuel had a reducing effect on the hygroscopic growth of particles. The use of emulsions lowered the sulfate content of the smallest particles but did not affect significantly the sulfate content of particles larger than 42 nm and, further, the addition of LFO considerably increased the black carbon content of particulate matter. The results indicate that even the fine particles emitted from HFO based combustion can have a significant effect on cloud formation, visibility, and air quality.
Teichert, Holger; Fernholz, Thomas; Ebert, Volker
2003-04-20
We present what is to our knowledge the first near-infrared diode-laser-based absorption spectrometer that is suitable for simultaneous in situ measurement of carbon monoxide, water vapor, and temperature in the combustion chamber (20-m diameter, 13-m path length) of a 600-MW lignite-fired power plant. A fiber-coupled distributed-feedback diode-laser module at 1.56 microm served for CO detection, and a Fabry-Perot diode laser at 813 nm was used to determine H2O concentrations and temperature from multiline water spectra. Despite severe light losses (transmission, <10(-8)) and strong background radiation we achieved a resolution of 1.9 x 10(-4) (1sigma) fractional absorption, equivalent to 200 parts in 10(6) by volume of CO (at 1450 K, 10(5) Pa) with 30-s averaging time.
Solid propellant exhausted aluminum oxide and hydrogen chloride - Environmental considerations
NASA Technical Reports Server (NTRS)
Cofer, W. R., III; Winstead, E. L.; Purgold, G. C.; Edahl, R. A.
1993-01-01
Measurements of gaseous hydrogen chloride (HCl) and particulate aluminum oxide (Al2O3) were made during penetrations of five Space Shuttle exhaust clouds and one static ground test firing of a shuttle booster. Instrumented aircraft were used to penetrate exhaust clouds and to measure and/or collect samples of exhaust for subsequent analyses. The focus was on the primary solid rocket motor exhaust products, HCl and Al2O3, from the Space Shuttle's solid boosters. Time-dependent behavior of HCl was determined for the exhaust clouds. Composition, morphology, surface chemistry, and particle size distributions were determined for the exhausted Al2O3. Results determined for the exhaust cloud from the static test firing were complicated by having large amounts of entrained alkaline ground debris (soil) in the lofted cloud. The entrained debris may have contributed to neutralization of in-cloud HCl.
Evans, David D.; Mulholland, George W.; Baum, Howard R.; Walton, William D.; McGrattan, Kevin B.
2001-01-01
For more than a decade NIST conducted research to understand, measure and predict the important features of burning oil on water. Results of that research have been included in nationally recognized guidelines for approval of intentional burning. NIST measurements and predictions have played a major role in establishing in situ burning as a primary oil spill response method. Data are given for pool fire burning rates, smoke yield, smoke particulate size distribution, smoke aging, and polycyclic aromatic hydrocarbon content of the smoke for crude and fuel oil fires with effective diameters up to 17.2 m. New user-friendly software, ALOFT, was developed to quantify the large-scale features and trajectory of wind blown smoke plumes in the atmosphere and estimate the ground level smoke particulate concentrations. Predictions using the model were tested successfully against data from large-scale tests. ALOFT software is being used by oil spill response teams to help assess the potential impact of intentional burning. PMID:27500022
NASA Astrophysics Data System (ADS)
Wegrzyński, Wojciech; Konecki, Marek
2018-01-01
This paper presents results of CFD and scale modelling of the flow of heat and smoke inside and outside of a compartment, in case of fire. Estimation of mass flow out of a compartment is critical, as it is the boundary condition in further considerations related to the exhaust of the smoke from a building - also in analysis related to the performance of natural ventilation in wind conditions. Both locations of the fire and the size of compartment were addressed as possible variables, which influence the mass and the temperature of smoke that leaves the room engulfed in fire. Results of the study show small to none influence of both size of the compartment and the location of the fire, on the mass flow of smoke exiting the room. On the same time, both of these parameters influence the temperature of the smoke - in larger compartments lower average temperatures of the smoke layer, but higher maximum values were observed. Results of this study may be useful also in the determination of the worst case scenarios for structural analysis, or in the investiga tion of the spread of fire through the compartment. Based on the results presented in this study, researchers can attribute an expert judgement choice of fire location, as a single scenario that is representative of a larger amount of probable scenarios.
Erin K. Noonan-Wright; Tonja S. Opperman
2015-01-01
In response to federal wildfire policy changes, risk-informed decision-making by way of improved decision support, is increasingly becoming a component of managing wildfires. As fire incidents escalate in size and complexity, the Wildland Fire Decision Support System (WFDSS) provides support with different analytical tools as fire conditions change. We demonstrate the...
Paulo Barbosa; Andrea Camia; Jan Kucera; Giorgio Libertá; Ilaria Palumbo; Jesus San-Miguel-Ayanz; Guido Schmuck
2009-01-01
An analysis on the number of forest fires and burned area distribution as retrieved by the European Forest Fire Information System (EFFIS) database is presented. On average, from 2000 to 2005 about...
Kirkpatrick, C.; Conway, C.J.; Jones, P.B.
2006-01-01
The frequency of wild and prescribed fires in montane forests of the southwestern United States has increased after a century of fire suppression and subsequent fuels accumulation. To assess the effects of recent fires (median time since fire = 6 yr) on the montane forest bird community, we surveyed birds in 8 Sky Island mountain ranges in southeastern Arizona, USA, and examined how the distribution (i.e., presence-absence) of 65 species and relative abundance of 16 species correlated with evidence of severe and less severe fire at >1,500 survey points. We detected associations between fire and bird presence-absence for 17% of the 65 species analyzed and between fire and bird relative abundance for 25% of the 16 species analyzed. Most species (73%) were positively associated with burned areas and displayed stronger associations (i.e., more extreme odds ratios) with survey points that had evidence of severe as opposed to less severe fire. Positive associations with severe fire were strong (>3 to 1 odds) for western wood-pewee (Contopus sordidulus) and house wren (Troglodytes aedon), and negative associations with severe fire were strong for warbling vireo (Vireo gilvus) and red-breasted nuthatch (Sitta canadensis). Although recent fires appear to have had a positive effect on the distribution and relative abundance of several montane forest bird species in the region, these species are not the open-woodland birds that we would have expected to have benefited from fire based on previous research. Nevertheless, our results confirm associations between fire and bird presence-absence and relative abundance reported previously for 7 species of birds. Our results also provide new information for Grace's warbler (Dendroica graciae) and greater pewee (C. pertinax), 2 species for which fire data were formerly lacking. Managers can use these data to make and test predictions about the effects of future fires, both severe and less severe, on montane forest birds in the southwestern United States.
Large forest fires in Canada, 1959-1997
NASA Astrophysics Data System (ADS)
Stocks, B. J.; Mason, J. A.; Todd, J. B.; Bosch, E. M.; Wotton, B. M.; Amiro, B. D.; Flannigan, M. D.; Hirsch, K. G.; Logan, K. A.; Martell, D. L.; Skinner, W. R.
2002-01-01
A Large Fire Database (LFDB), which includes information on fire location, start date, final size, cause, and suppression action, has been developed for all fires larger than 200 ha in area for Canada for the 1959-1997 period. The LFDB represents only 3.1% of the total number of Canadian fires during this period, the remaining 96.9% of fires being suppressed while <200 ha in size, yet accounts for ˜97% of the total area burned, allowing a spatial and temporal analysis of recent Canadian landscape-scale fire impacts. On average ˜2 million ha burned annually in these large fires, although more than 7 million ha burned in some years. Ecozones in the boreal and taiga regions experienced the greatest areas burned, with an average of 0.7% of the forested land burning annually. Lightning fires predominate in northern Canada, accounting for 80% of the total LFDB area burned. Large fires, although small in number, contribute substantially to area burned, most particularly in the boreal and taiga regions. The Canadian fire season runs from late April through August, with most of the area burned occurring in June and July due primarily to lightning fire activity in northern Canada. Close to 50% of the area burned in Canada is the result of fires that are not actioned due to their remote location, low values-at-risk, and efforts to accommodate the natural role of fire in these ecosystems. The LFDB is updated annually and is being expanded back in time to permit a more thorough analysis of long-term trends in Canadian fire activity.
Large forest fires in Canada, 1959-1997
NASA Astrophysics Data System (ADS)
Stocks, B. J.; Mason, J. A.; Todd, J. B.; Bosch, E. M.; Wotton, B. M.; Amiro, B. D.; Flannigan, M. D.; Hirsch, K. G.; Logan, K. A.; Martell, D. L.; Skinner, W. R.
2003-01-01
A Large Fire Database (LFDB), which includes information on fire location, start date, final size, cause, and suppression action, has been developed for all fires larger than 200 ha in area for Canada for the 1959-1997 period. The LFDB represents only 3.1% of the total number of Canadian fires during this period, the remaining 96.9% of fires being suppressed while <200 ha in size, yet accounts for ~97% of the total area burned, allowing a spatial and temporal analysis of recent Canadian landscape-scale fire impacts. On average ~2 million ha burned annually in these large fires, although more than 7 million ha burned in some years. Ecozones in the boreal and taiga regions experienced the greatest areas burned, with an average of 0.7% of the forested land burning annually. Lightning fires predominate in northern Canada, accounting for 80% of the total LFDB area burned. Large fires, although small in number, contribute substantially to area burned, most particularly in the boreal and taiga regions. The Canadian fire season runs from late April through August, with most of the area burned occurring in June and July due primarily to lightning fire activity in northern Canada. Close to 50% of the area burned in Canada is the result of fires that are not actioned due to their remote location, low values-at-risk, and efforts to accommodate the natural role of fire in these ecosystems. The LFDB is updated annually and is being expanded back in time to permit a more thorough analysis of long-term trends in Canadian fire activity.
Assessing accuracy of point fire intervals across landscapes with simulation modelling
Russell A. Parsons; Emily K. Heyerdahl; Robert E. Keane; Brigitte Dorner; Joseph Fall
2007-01-01
We assessed accuracy in point fire intervals using a simulation model that sampled four spatially explicit simulated fire histories. These histories varied in fire frequency and size and were simulated on a flat landscape with two forest types (dry versus mesic). We used three sampling designs (random, systematic grids, and stratified). We assessed the sensitivity of...
Fire resistance of wood members with directly applied protection
Robert H. White
2009-01-01
Fire-resistive wood construction is achieved either by having the structural elements be part of fire-rated assemblies or by using elements of sufficient size that the elements themselves have the required fire-resistance ratings. For exposed structural wood elements, the ratings in the United States are calculated using either the T.T. Lie method or the National...
Changing spatial patterns of stand-replacing fire in California conifer forests
Jens T. Stevens; Brandon M. Collins; Jay D. Miller; Malcolm P. North; Scott L. Stephens
2017-01-01
Stand-replacing fire has profound ecological impacts in conifer forests, yet there is continued uncertainty over how best to describe the scale of stand-replacing effects within individual fires, and how these effects are changing over time. In forests where regeneration following stand-replacing fire depends on seed dispersal from surviving trees, the size and shape...
Human and biophysical factors influencing modern fire disturbance in northern Wisconsin
Brian R. Sturtevant; David T. Cleland
2007-01-01
Humans cause most wildfires in northern Wisconsin, but interactions between human and biophysical variables affecting fire starts and size are not well understood. We applied classification tree analyses to a 16-year fire database from northern Wisconsin to evaluate the relative importance of human v. biophysical variables affecting fire occurrence within (1) all cover...
NASA Astrophysics Data System (ADS)
Paugam, Ronan; Wooster, Martin; Johnston, Joshua; Gastellu-Etchegorry, Jean-Philippe
2014-05-01
Among the different alternative of remote sensing technologies for estimating global fire carbon emission, the thermally-based measures of fire radiative power (FRP; and its temporal integration, fire radiative energy or FRE) has the potential to capture the spatial and temporal variability of fire occurrence. It was shown that a strong linear relationship exists between the total amount of thermal radiant energy emitted by a fire over its lifetime (the FRE) and the amount of fuel burned. Since all vegetation is 50(±5)% carbon, it is therefore in theory a potentially simple matter to measure the FRE and estimate the carbon release. In a fire inventory like the Global Fire Assimilation System (GFAS), the total carbon emission is derived from a gridded FRE product forced by the MODIS observation, using Ct = β x FRE x Ef, where β is a conversion factor initially estimated from small scale experiment as β=0.368 and later derived for different bio dome by comparison with the Global Fire Emission Database (GFED). The sensitivities of the above equation to (i) different types of fire activity (ie, flaming, smoldering, torching), (ii) sensor view angles or (iii) soot/smoke absorption have not yet been well studied. The investigation of these types of sensitivity, and of the information content of thermal IR observations of actively burning fires in general, is one of the primary subjects of this study. Our approach is based on a combination of observational work and simulations conducted via the linkage of different fire models and the 3D radiative transfer (RT) model DART operating in the thermal domain. The radiation properties of a fire as seen from above its plume (e.g. space/air borne sensor) depend on the temperature distribution, the gas concentration (mainly CO2, H2O), and the amount, shape, distribution and optical properties of the soot particles in the flame (where they are emitting) and in the cooling plume (where they are mainly absorbing). While gas and soot radiative properties can be estimated from the literature, their concentration and temperature are calculated from output of fire models. Due to the large range of length scale involved in fire dynamics, a twofold approach is use to model the fire scene with (i) first the multi-phases model WFDS which can handle fire size ranging from a 1m2 to 1ha with a particular focus on flame-plume interaction, (ii) and then the meso scale model WRF-fire which can handle larger fires and the interaction plume-atmosphere (e.g. pyroconvection). In the former case, as the Radiative Transfer is WFDS is based on a Gray Body assumption (WFDS only focuses on fire dynamics) the main challenge is to derive the radiative properties of the different component of the fire scene (soot and gas) for the different bands (optical and IR) solved in DART to re-process a multispectral RT. In the later case, because WRF-fire is running at a resolution of tens of meters, pyrolysis and combustion processes cannot be resolved and to predict the fire front dynamics, the use of an empirical model based on the Rothermel equation and the level set method is required. In this later case, it is therefore necessary to use empirical relationship to determine: (i) the 3D structure of the flame defined by: flame length, flame height and fire front depth derived from Rate of Spread and residence time, (ii) the gas and soot concentration profile within the flame, and (iii) the convective flux generated by the flame. The development of these empirical relationships presents one of the main challenges of this work. Thought this work is still undergoing, first results show the potential impact of view angle on the evaluation of FRP.
Global Pyrogeography: the Current and Future Distribution of Wildfire
Krawchuk, Meg A.; Moritz, Max A.; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine
2009-01-01
Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global vegetation-climate change dynamics and conservation planning. PMID:19352494
Development of moldable carbonaceous materials for ablative rocket nozzles.
NASA Technical Reports Server (NTRS)
Lockhart, R. J.; Bortz, S. A.; Schwartz, M. A.
1972-01-01
Description of a materials system developed for use as low-cost ablative nozzles for NASA's 260-in. solid rocket motor. Petroleum coke and carbon black fillers were employed; high density was achieved by controlling particle size distribution. An alumina catalyzed furfuryl ester resin which produced high carbon residues after pyrolysis was employed as the binder. Staple carbon fibers improved the strength and crack resistance of molded bodies. In static firing tests of two subscale nozzles, this material compared favorably in erosion rate with several other ablative systems.
Yang, Jian; Weisberg, Peter J.; Shinneman, Douglas; Dilts, Thomas E.; Earnst, Susan L.; Scheller, Robert M
2015-01-01
Content Changing aspen distribution in response to climate change and fire is a major focus of biodiversity conservation, yet little is known about the potential response of aspen to these two driving forces along topoclimatic gradients. Objective This study is set to evaluate how aspen distribution might shift in response to different climate-fire scenarios in a semi-arid montane landscape, and quantify the influence of fire regime along topoclimatic gradients. Methods We used a novel integration of a forest landscape succession and disturbance model (LANDIS-II) with a fine-scale climatic water deficit approach to simulate dynamics of aspen and associated conifer and shrub species over the next 150 years under various climate-fire scenarios. Results Simulations suggest that many aspen stands could persist without fire for centuries under current climate conditions. However, a simulated 2–5 °C increase in temperature caused a substantial reduction of aspen coverage at lower elevations and a modest increase at upper elevations, leading to an overall reduction of aspen range at the landscape level. Increasing fire activity may favor aspen increase at its upper elevation limits adjacent to coniferous forest, but may also favor reduction of aspen at lower elevation limits adjacent to xeric shrubland. Conclusions Our study highlights the importance of incorporating fine-scale terrain effects on climatic water deficit and ecohydrology when modeling species distribution response to climate change. This modeling study suggests that climate mitigation and adaptation strategies that use fire would benefit from consideration of spatial context at landscape scales.
Russo, Lucia; Russo, Paola; Siettos, Constantinos I.
2016-01-01
Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire. PMID:27780249
Russo, Lucia; Russo, Paola; Siettos, Constantinos I
2016-01-01
Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.
Zhang, Jiwei; Newhall, Katherine; Zhou, Douglas; Rangan, Aaditya
2014-04-01
Randomly connected populations of spiking neurons display a rich variety of dynamics. However, much of the current modeling and theoretical work has focused on two dynamical extremes: on one hand homogeneous dynamics characterized by weak correlations between neurons, and on the other hand total synchrony characterized by large populations firing in unison. In this paper we address the conceptual issue of how to mathematically characterize the partially synchronous "multiple firing events" (MFEs) which manifest in between these two dynamical extremes. We further develop a geometric method for obtaining the distribution of magnitudes of these MFEs by recasting the cascading firing event process as a first-passage time problem, and deriving an analytical approximation of the first passage time density valid for large neuron populations. Thus, we establish a direct link between the voltage distributions of excitatory and inhibitory neurons and the number of neurons firing in an MFE that can be easily integrated into population-based computational methods, thereby bridging the gap between homogeneous firing regimes and total synchrony.
Effects of topologies on signal propagation in feedforward networks
NASA Astrophysics Data System (ADS)
Zhao, Jia; Qin, Ying-Mei; Che, Yan-Qiu
2018-01-01
We systematically investigate the effects of topologies on signal propagation in feedforward networks (FFNs) based on the FitzHugh-Nagumo neuron model. FFNs with different topological structures are constructed with same number of both in-degrees and out-degrees in each layer and given the same input signal. The propagation of firing patterns and firing rates are found to be affected by the distribution of neuron connections in the FFNs. Synchronous firing patterns emerge in the later layers of FFNs with identical, uniform, and exponential degree distributions, but the number of synchronous spike trains in the output layers of the three topologies obviously differs from one another. The firing rates in the output layers of the three FFNs can be ordered from high to low according to their topological structures as exponential, uniform, and identical distributions, respectively. Interestingly, the sequence of spiking regularity in the output layers of the three FFNs is consistent with the firing rates, but their firing synchronization is in the opposite order. In summary, the node degree is an important factor that can dramatically influence the neuronal network activity.
Effects of topologies on signal propagation in feedforward networks.
Zhao, Jia; Qin, Ying-Mei; Che, Yan-Qiu
2018-01-01
We systematically investigate the effects of topologies on signal propagation in feedforward networks (FFNs) based on the FitzHugh-Nagumo neuron model. FFNs with different topological structures are constructed with same number of both in-degrees and out-degrees in each layer and given the same input signal. The propagation of firing patterns and firing rates are found to be affected by the distribution of neuron connections in the FFNs. Synchronous firing patterns emerge in the later layers of FFNs with identical, uniform, and exponential degree distributions, but the number of synchronous spike trains in the output layers of the three topologies obviously differs from one another. The firing rates in the output layers of the three FFNs can be ordered from high to low according to their topological structures as exponential, uniform, and identical distributions, respectively. Interestingly, the sequence of spiking regularity in the output layers of the three FFNs is consistent with the firing rates, but their firing synchronization is in the opposite order. In summary, the node degree is an important factor that can dramatically influence the neuronal network activity.
Two centuries of fire in a southwestern Virginia Pinus pungens community
E. K. Sutherland; H. Grissino-Mayer; C. A. Woodhouse; W. W. Covington; S. Horn; L. Huckaby; R. Kerr; J. Kush; M. Moore; T. Plumb
1995-01-01
Fire exclusion in fire-dependent forest communities can alter stand structure and composition. The objective was to construct a fire history of two Pinus pungens Lamb. communities growing in southwestern Virgina. Treering analysis of fire-scarred P. pungens specimens and a tree survey were used to determine species composition and age distributions. From 1798-1944,...
NASA Astrophysics Data System (ADS)
Keyser, A.; Westerling, A. L.; Jones, G.; Peery, M. Z.
2017-12-01
Sierra Nevada forests have experienced an increase in very large fires with significant areas of high burn severity, such as the Rim (2013) and King (2014) fires, that have impacted habitat of endangered species such as the California spotted owl. In order to support land manager forest management planning and risk assessment activities, we used historical wildfire histories from the Monitoring Trends in Burn Severity project and gridded hydroclimate and land surface characteristics data to develope statistical models to simulate the frequency, location and extent of high severity burned area in Sierra Nevada forest wildfires as functions of climate and land surface characteristics. We define high severity here as BA90 area: the area comprising patches with ninety percent or more basal area killed within a larger fire. We developed a system of statistical models to characterize the probability of large fire occurrence, the probability of significant BA90 area present given a large fire, and the total extent of BA90 area in a fire on a 1/16 degree lat/lon grid over the Sierra Nevada. Repeated draws from binomial and generalized pareto distributions using these probabilities generated a library of simulated histories of high severity fire for a range of near (50 yr) future climate and fuels management scenarios. Fuels management scenarios were provided by USFS Region 5. Simulated BA90 area was then downscaled to 30 m resolution using a statistical model we developed using Random Forest techniques to estimate the probability of adjacent 30m pixels burning with ninety percent basal kill as a function of fire size and vegetation and topographic features. The result is a library of simulated high resolution maps of BA90 burned areas for a range of climate and fuels management scenarios with which we estimated conditional probabilities of owl nesting sites being impacted by high severity wildfire.
King, David A.; Bachelet, Dominique M.; Symstad, Amy J.
2013-01-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects.
King, David A; Bachelet, Dominique M; Symstad, Amy J
2013-12-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine-prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects.
King, David A; Bachelet, Dominique M; Symstad, Amy J
2013-01-01
Large shifts in species ranges have been predicted under future climate scenarios based primarily on niche-based species distribution models. However, the mechanisms that would cause such shifts are uncertain. Natural and anthropogenic fires have shaped the distributions of many plant species, but their effects have seldom been included in future projections of species ranges. Here, we examine how the combination of climate and fire influence historical and future distributions of the ponderosa pine–prairie ecotone at the edge of the Black Hills in South Dakota, USA, as simulated by MC1, a dynamic global vegetation model that includes the effects of fire, climate, and atmospheric CO2 concentration on vegetation dynamics. For this purpose, we parameterized MC1 for ponderosa pine in the Black Hills, designating the revised model as MC1-WCNP. Results show that fire frequency, as affected by humidity and temperature, is central to the simulation of historical prairies in the warmer lowlands versus woodlands in the cooler, moister highlands. Based on three downscaled general circulation model climate projections for the 21st century, we simulate greater frequencies of natural fire throughout the area due to substantial warming and, for two of the climate projections, lower relative humidity. However, established ponderosa pine forests are relatively fire resistant, and areas that were initially wooded remained so over the 21st century for most of our future climate x fire management scenarios. This result contrasts with projections for ponderosa pine based on climatic niches, which suggest that its suitable habitat in the Black Hills will be greatly diminished by the middle of the 21st century. We hypothesize that the differences between the future predictions from these two approaches are due in part to the inclusion of fire effects in MC1, and we highlight the importance of accounting for fire as managed by humans in assessing both historical species distributions and future climate change effects. PMID:24455138
Manual Fire Suppression Methods on Typical Machinery Space Spray Fires
1990-07-31
Aqueous Film Forming Foam Manuscnpt approved April 25, 1990. ( AFFF ), has been incorporated in machinery space fire protection systems to...distribution unlimited. 13. ABSTRACT (Maximum 200 words) A series of tests was conducted to evaluate the effectiveness of Aqueous Film Forming Foami ( AFFF ...machinery space fire protection systems to control running fuel and fuel spray fires (PKP side of TAFES), and bilge fires ( aqueous film forming foam
Polo, John A.; Hallgren, S.W.; Leslie,, David M.
2013-01-01
Dead woody material, long ignored or viewed as a nuisance for forest management, has gained appreciation for its many roles in the forest including wildlife habitat, nutrient storage and cycling, energy for trophic webs, protection of soil, fuel for fire and carbon storage. The growing interest in managing dead woody material has created strong demand for greater understanding of factors controlling amounts and turnover. Prescribed burning, an important management tool, may have strong effects of dead woody material given fire’s capacity to create and consume dead woody material. We determined effects of long-term understory prescribed burning on standing and down woody material in upland oak forests in south-central North America. We hypothesized that as frequency of fire increased in these stands the amount of deadwood would decrease and the fine woody material would decrease more rapidly than coarse woody material. The study was conducted in forests dominated by post oak (Quercus stellata) and blackjack oak (Quercus marilandica) in wildlife management areas where understory prescribed burning had been practiced for over 20 years and the range of burn frequencies was 0 (unburned) fires per decade (FPD) to 4.6 FPD. The amount of deadwood was low compared with more productive forests in southeastern North America. The biomass (24.7 Mg ha-1) and carbon stocks (11.7 Mg ha-1) were distributed among standing dead (22%), coarse woody debris (CWD, dia. > 7.5 cm., 12%), fine woody debris (FWD, dia. < 7.5 cm., 23%), and forest floor (43%). There was no evidence that understory prescribed burning influenced the amount and size distribution of standing and down dead woody material. There were two explanations for the lack of a detectable effect. First, a high incidence of severe weather including ice storms and strong winds that produce large amounts of deadwood intermittently in an irregular pattern across the landscape may preclude detecting a strong effect of understory prescribed burning. Second, fire suppression during the first one-half of the 20th Century may have led to encroachment of woody plants into forest gaps and savannas creating a patchwork of young and old stands that produced deadwood of different sizes and at different rates.
USDA-ARS?s Scientific Manuscript database
Axillary buds play a fundamental role in perennial population persistence through regeneration of bud banks. However, fire could affect bud bank dynamics by altering the size and cycles of dormant and active periods. We examined impacts of fire return interval (1.5, 3, or 6 yr) and season of fire ...
33 CFR 145.05 - Classification of fire extinguishers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Classification of fire... SECURITY (CONTINUED) OUTER CONTINENTAL SHELF ACTIVITIES FIRE-FIGHTING EQUIPMENT § 145.05 Classification of....05(c)—Portable and Semiportable Extinguishers Classification Type Size Soda-acid and water, gallons...
How long will my reservoir be contaminated following a post-fire erosion event?
NASA Astrophysics Data System (ADS)
Schärer, Christine; Yeates, Peter; Sheridan, Gary; Doerr, Stefan; Nyman, Petter; Langhans, Christoph; Haydon, Shane; Santin, Cristina
2017-04-01
Post fire erosion processes such as debris flows can generate large volumes of sediment, contaminating streams and reservoirs for extended periods. Recent research has enabled the magnitude of the generated load to be reasonably estimated, but what happens once this load of sediment and ash reaches the reservoir? Water treatment plants typically have a threshold contaminant level, above which the treatment capacity is exceeded and the water becomes undeliverable. As hydrologists, soils scientists and geomorphologists we think in terms of volumes of water and masses of sediment, but for water managers the metric that really matters is "How many days will my reservoir be unable to supply water, and what is the chance of that occurring?" Answering this question is difficult as it involves modelling the weather, the fire regime, the post fire hydrology and erosion processes, and finally the hydrodynamics of the reservoir so to be able to predict the propagation of the contaminant plume from the entry point to the reservoir take off point. These models are numerically intensive, and this study develops a new method to combine these models in a way that allows them to be implemented within a Monte Carlo simulation. The new approach was applied to the case study of the Upper Yarra reservoir in south east Australia, the main water supply for Melbourne's 4M residents. The results indicate that following fire water managers should be prepared for post-fire reservoir contamination events extending from several months to more than a year. The duration of the contamination events was found to be extremely sensitive to the quantity, size distribution, and density of the <5um particles of ash and soil, which makes up a small fraction of the total debris flow load.
NASA Astrophysics Data System (ADS)
Wurihan; Zhang, H.; Zhang, Z.; Guo, X.; Zhao, J.; Duwala; Shan, Y.; Hongying
2018-04-01
Fire disturbance plays an important role in maintaining ecological balance, biodiversity and self-renewal. In this paper, the spatio-temporal pattern of fire disturbances in eastern Mongolia are studied by using the ArcGIS spatial analysis method, using the MCD45A1 data of MODIS fire products with long time series. It provides scientific basis and reference for the regional ecological environment security construction and international ecological security. Research indicates: (1) The fire disturbance in eastern Mongolia has obvious high and low peak interleaving phenomenon in the year, and the seasonal change is obvious. (2) The distribution pattern of fire disturbance in eastern Mongolia is aggregated, which indicates that the fire disturbance is not random and it is caused by certain influence. (3) Fire disturbance is mainly distributed in the eastern province of Mongolia, the border between China and Mongolia and the northern forest area of Sukhbaatar province. (4) The fire disturbance in the eastern part of the study area is strong and the southwest is weaker. The spreading regularity of fire disturbances in eastern Mongolia is closer to the natural level of ecosystem.
Prescribed fire effects on activity and movement of cattle in mesic sagebrush steppe
USDA-ARS?s Scientific Manuscript database
Prescribed fire has long been used worldwide for livestock and wildlife management. The efficacy of prescribed fire for manipulating grazing animal distribution and diet quality has been well studied in many ecosystems but prescribed-fire effects on activity budgets and movement path characteristic...
Riley, Karin L.; Loehman, Rachel A.
2016-01-01
Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of frequency and severity, and depending on the extent to which ecosystems are adapted) may maintain or restore ecosystem functionality; however, in areas that are highly departed from historical fire regimes or where there is disequilibrium between climate and vegetation, ecosystems may be rapidly and persistently altered by wildfires, especially those that burn under extreme conditions.
On the Dynamics of the Spontaneous Activity in Neuronal Networks
Bonifazi, Paolo; Ruaro, Maria Elisabetta; Torre, Vincent
2007-01-01
Most neuronal networks, even in the absence of external stimuli, produce spontaneous bursts of spikes separated by periods of reduced activity. The origin and functional role of these neuronal events are still unclear. The present work shows that the spontaneous activity of two very different networks, intact leech ganglia and dissociated cultures of rat hippocampal neurons, share several features. Indeed, in both networks: i) the inter-spike intervals distribution of the spontaneous firing of single neurons is either regular or periodic or bursting, with the fraction of bursting neurons depending on the network activity; ii) bursts of spontaneous spikes have the same broad distributions of size and duration; iii) the degree of correlated activity increases with the bin width, and the power spectrum of the network firing rate has a 1/f behavior at low frequencies, indicating the existence of long-range temporal correlations; iv) the activity of excitatory synaptic pathways mediated by NMDA receptors is necessary for the onset of the long-range correlations and for the presence of large bursts; v) blockage of inhibitory synaptic pathways mediated by GABAA receptors causes instead an increase in the correlation among neurons and leads to a burst distribution composed only of very small and very large bursts. These results suggest that the spontaneous electrical activity in neuronal networks with different architectures and functions can have very similar properties and common dynamics. PMID:17502919
Temperate and boreal forest mega-fires: characteristics and challenges
Stephens, Scott L.; Burrows, Neil; Buyantuyev, Alexander; Gray, Robert W.; Keane, Robert E.; Kubian, Rick; Liu, Shirong; Seijo, Francisco; Shu, Lifu; Tolhurst, Kevin G.; Van Wagtendonk, Jan W.
2014-01-01
Mega-fires are often defined according to their size and intensity but are more accurately described by their socioeconomic impacts. Three factors – climate change, fire exclusion, and antecedent disturbance, collectively referred to as the “mega-fire triangle” – likely contribute to today's mega-fires. Some characteristics of mega-fires may emulate historical fire regimes and can therefore sustain healthy fire-prone ecosystems, but other attributes decrease ecosystem resiliency. A good example of a program that seeks to mitigate mega-fires is located in Western Australia, where prescribed burning reduces wildfire intensity while conserving ecosystems. Crown-fire-adapted ecosystems are likely at higher risk of frequent mega-fires as a result of climate change, as compared with other ecosystems once subject to frequent less severe fires. Fire and forest managers should recognize that mega-fires will be a part of future wildland fire regimes and should develop strategies to reduce their undesired impacts.
Donald N. Matthews
1940-01-01
Fire fighting is still largely a hand-work job in the heavy cover and fuel conditions and rugged topography of the Douglas fir region, in spite of recent advances that have been made in %he use of machinery. Controlling a fire in this region requires immense amounts of work per unit of fire perimeter, so that large numbers of men are required to attack all but the...
Acute ethanol effects on neural encoding of reward size and delay in the nucleus accumbens
Gutman, Andrea L.
2016-01-01
Acute ethanol administration can cause impulsivity, resulting in increased preference for immediately available rewards over delayed but more valuable alternatives. The manner in which reward size and delay are represented in neural firing is not fully understood, and very little is known about ethanol effects on this encoding. To address this issue, we used in vivo electrophysiology to characterize neural firing in the core of the nucleus accumbens (NAcc) in rats responding for rewards that varied in size or delay after vehicle or ethanol administration. The NAcc is a central element in the circuit that governs decision-making and importantly, promotes choice of delayed rewards. We found that NAcc firing in response to reward-predictive cues encoded anticipated reward value after vehicle administration, but ethanol administration disrupted this encoding, resulting in a loss of discrimination between immediate and delayed rewards in cue-evoked neural responses. In addition, NAcc firing occurring at the time of the operant response (lever pressing) was inversely correlated with behavioral response latency, such that increased firing rates were associated with decreased latencies to lever press. Ethanol administration selectively attenuated this lever press-evoked firing when delayed but not immediate rewards were expected. These effects on neural firing were accompanied by increased behavioral latencies to respond for delayed rewards. Our results suggest that ethanol effects on NAcc cue- and lever press-evoked encoding may contribute to ethanol-induced impulsivity. PMID:27169507
Particle size effects on viscosity of silver pastes: A manufacturer's view
NASA Technical Reports Server (NTRS)
Provance, J.; Allison, K.
1983-01-01
Particles from a variety of silver powders were investigated by scanning electron microscopy and particle size analyses. Particle size distribution curves and volume population graphs were prepared for these silver powders and for glass powders with optimum, extra fine and coarse particle sizes. The viscosity at a given shear rate and slope of viscosity over a range of shear rates were determined for thick film pastes made with these powders. Because of particle anomalies and variations, the need for flexibility to achieve the best printing qualities for silver pastes was evident. It was established that print quality, dried and fired film density and optimum contact of silver particles with silicon, important for cell electrical output, could be achieved by adjusting the slope of viscosity that fell outside of the range, -0.550 to -0.650. This was accomplished through organic vehicle technology that permitted a change in the slope of viscosity, up or down, while maintaining a constant silver and total solids content.
A new parameterization of the post-fire snow albedo effect
NASA Astrophysics Data System (ADS)
Gleason, K. E.; Nolin, A. W.
2013-12-01
Mountain snowpack serves as an important natural reservoir of water: recharging aquifers, sustaining streams, and providing important ecosystem services. Reduced snowpacks and earlier snowmelt have been shown to affect fire size, frequency, and severity in the western United States. In turn, wildfire disturbance affects patterns of snow accumulation and ablation by reducing canopy interception, increasing turbulent fluxes, and modifying the surface radiation balance. Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of pyrogenic carbon particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. Although the post-fire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. The objective of this study was to parameterize the post-fire snow albedo effect due to BWD deposition on snow to better represent forest fire disturbance in modeling of snow-dominated hydrologic regimes. Based on empirical results from winter experiments, in-situ snow monitoring, and remote sensing data from a recent forest fire in the Oregon High Cascades, we characterized the post-fire snow albedo effect, and developed a simple parameterization of snowpack albedo decay in the post-fire forest environment. We modified the recession coefficient in the algorithm: α = α0 + K exp (-nr) where α = snowpack albedo, α0 = minimum snowpack albedo (≈0.4), K = constant (≈ 0.44), -n = number of days since last major snowfall, r = recession coefficient [Rohrer and Braun, 1994]. Our parameterization quantified BWD deposition and snow albedo decay rates and related these forest disturbance effects to radiative heating and snow melt rates. We validated our parameterization of the post-fire snow albedo effect at the plot scale using a physically-based, spatially-distributed snow accumulation and melt model, and in-situ eddy covariance and snow monitoring data. This research quantified wildfire impacts to snow dynamics in the Oregon High Cascades, and provided a new parameterization of post-fire drivers to changes in high elevation winter water storage.
Li, Yiping; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong
2017-02-23
Grassland, as one of the most important ecosystems on Earth, experiences fires that affect the local ecology, economy and society. Notably, grassland fires occur frequently each year in northeastern China. Fire occurrence is a complex problem with multiple causes, such as natural factors, human activities and land use. This paper investigates the disruptive effects of grassland fire in the northeastern Inner Mongolia Autonomous Region of China. In this study, we relied on thermal anomaly detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to identify fire occurrences, and land use data were acquired by Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM). We discussed the relationship between land use and the spatial distribution of grassland fires. The results showed that the impact of land use on grassland fires was significant. Spatially, approximately 80% of grassland fires were clustered within 10 km of cultivated land, and grassland fires generally occurred in areas of intense human activity. The correlation between the spatial distribution of grassland fires and the land use degree in 2000, 2005 and 2010 was high, with R² values of 0.686, 0.716, 0.633, respectively ( p < 0.01). These results highlight the importance of the relationship between land use and grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region. This study provides significance for local fire management and prevention.
Li, Yiping; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong
2017-01-01
Grassland, as one of the most important ecosystems on Earth, experiences fires that affect the local ecology, economy and society. Notably, grassland fires occur frequently each year in northeastern China. Fire occurrence is a complex problem with multiple causes, such as natural factors, human activities and land use. This paper investigates the disruptive effects of grassland fire in the northeastern Inner Mongolia Autonomous Region of China. In this study, we relied on thermal anomaly detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to identify fire occurrences, and land use data were acquired by Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM). We discussed the relationship between land use and the spatial distribution of grassland fires. The results showed that the impact of land use on grassland fires was significant. Spatially, approximately 80% of grassland fires were clustered within 10 km of cultivated land, and grassland fires generally occurred in areas of intense human activity. The correlation between the spatial distribution of grassland fires and the land use degree in 2000, 2005 and 2010 was high, with R2 values of 0.686, 0.716, 0.633, respectively (p < 0.01). These results highlight the importance of the relationship between land use and grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region. This study provides significance for local fire management and prevention. PMID:28241476
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, M.; Mohapatra, P.; Patel, S.K.
2009-07-01
In the present investigation, fired pellets were made by mixing hematite iron ore fines of -100, -16+18, and -8+10 mesh size in different ratios and studies on their reduction kinetics in Lakhanpur, Orient OC-2 and Belpahar coals were carried out at temperatures ranging from 850{sup o}C to 1000{sup o}C with a view toward promoting the massive utilization of fines in ironmaking. The rate of reduction in all the fired iron ore pellets increased markedly with an increase in temperature up to 1000{sup o}C, and it was more intense in the first 30min. The values of activation energy, calculated from integralmore » and differential approaches, for the reduction of fired pellets (prepared from iron ore fines of -100 mesh size) in coals were found to be in the range 131-148 and 130-181 kJ mol{sup -1} (for =0.2 to 0.8), indicating the process is controlled by a carbon gasification reaction. The addition of selected larger size particles in the matrix of -100 mesh size fines up to the extent studied decreased the activation energy and slightly increased the reduction rates of resultant fired pellets. In comparison to coal, the reduction of fired pellets in char was characterized by significantly lower reduction rates and higher activation energy.« less
Bao, Yi; Hoehler, Matthew S; Smith, Christopher M; Bundy, Matthew; Chen, Genda
2017-10-01
In this study, distributed fiber optic sensors based on pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA) are characterized and deployed to measure spatially-distributed temperatures in reinforced concrete specimens exposed to fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9 %. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.
Wei Min Hao; Narasimhan K. Larkin
2014-01-01
Biomass burning is a major source of greenhouse gases, aerosols, black carbon, and atmospheric pollutants that affects regional and global climate and air quality. The spatial and temporal extent of fires and the size of burned areas are critical parameters in the estimation of fire emissions. Tremendous efforts have been made in the past 12 years to characterize the...
Fire behavior, fuel treatments, and fire suppression on the Hayman Fire
Mark A. Finney; Roberta Bartlette; Larry Bradshaw; Kelly Close; Brandon M. Collins; Paul Gleason; Wei Min Hao; Paul Langowski; John McGinely; Charles W. McHugh; Erik Martinson; Phillip N. Omi; Wayne Shepperd; Karl Zeller
2003-01-01
The Hayman Fire started on June 8, 2002, about 1.5 miles southwest of Tappan Mountain on the south side of County Highway 77, in Park County, Colorado (fig. 1). It was first reported at about 1 acre in size at approximately 1655 hours (appendix C). An aggressive initial attack response consisted of air tankers, helicopters, engines, and ground crews, but they were...
Jay D. Miller; Brandom M. Collins; James A. Lutz; Scott L. Stephens; Jan W. van Wagtendonk; Donald A. Yasuda
2012-01-01
Recent research has indicated that in most of the western United States, fire size is increasing, large fires are becoming more frequent, and in at least some locations percentage of high-severity fire is also increasing. These changes in the contemporary fire regime are largely attributed to both changing climate and land management practices, including suppression of...
Christopher A. Dicus; Kevin J. Osborne
2015-01-01
When managing for fire across a large landscape, the types of fuel treatments, the locations of treatments, and the percentage of the landscape being treated should all interact to impact not only potential fire size, but also carbon dynamics across that landscape. To investigate these interactions, we utilized a forest growth model (FVS-FFE) and fire simulation...
D.J. Kitchen; J.M. Blair; M.A. Callaham
2009-01-01
Management practices, such as fire andmowing, can affect the distribution and quality of roots and soil C and N in grasslands. We examined long-term (13 years) effects of annual fire and mowing on fine (<2 mm) roots and soil C and N content in a native tallgrass prairie at Konza Prairie Biological Station in northeastern Kansas, USA. Using 90 cm deep soil cores...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-12
... Status Materials Science Technology, Inc. (Specialty Elastomers and Fire Retardant Chemicals) Conroe... specialty elastomer manufacturing and distribution facility of Materials Science Technology, Inc., located... and distribution of specialty elastomers and fire retardant chemicals at the facility of Materials...
Santa Ana Winds and Fire Regimes of Southern California National Forests
NASA Astrophysics Data System (ADS)
Bendix, J.
2015-12-01
In Southern California, it has long been understood that foehn-type Santa Ana winds are an important factor in the occurrence of large wildfires. Although a variety of anecdotal observations and statistical analyses have confirmed the importance of these winds to wildfire, particularly in the Fall months when Santa Ana winds overlap with dry fuels from summer drought, many of the details of those winds' impacts on fire remain obscure. This paper uses data regarding individual fires from California's Fire and Resource Assessment Program database and a compilation of Santa Ana Wind days (SAW days) published by Abatzoglou et al. in 2013 to assess the relationship of Santa Ana winds to fire occurrence and size in Southern California. The analysis included 474 fires larger than 20 ha (~50 acres).that burned on the four Southern California national forests (Angeles, Cleveland, Los Padres and San Bernardino) between 1948 and 2010. Overall, just 10.3% of the fires started on SAW days, and 14.4% experienced at least one SAW day between start and containment dates. The impact of Santa Ana winds is greater, however, with increasing fire size. For fires > 4000 ha, 18.4% began on SAW days, with 30.4% experiencing at least one SAW day before containment. And 20% of fires > 20000 ha started on SAW days, with 50% including one or more SAW days. Fires beginning on SAW days were larger, with a mean of 6239 ha compared to 2150 ha for fires that began on non-SAW days. Only 2% of the fires that began on SAW days were started by lightning, suggesting that the impact of Santa Ana winds on Southern California fire regimes may be enhanced by humans' role in ignitions.
Fire and birds in the southwestern United States
Carl E. Bock; William M. Block
2005-01-01
Fire is an important ecological force in many southwestern ecosystems, but frequencies, sizes, and intensities of fire have been altered historically by grazing, logging, exotic vegetation, and suppression. Prescribed burning should be applied widely, but under experimental conditions that facilitate studying its impacts on birds and other components of biodiversity....
University of Minnesota Duluth Engineering Design Challenge
2015-03-23
on overall weight, size, lifting capacity, and ease of transporting. Many initial designs were considered including fire hose lift bags, hydraulic...Many initial designs were considered including fire hose lift bags, hydraulic lifts, a scissor lift, a spring loaded pawl tri-pod, and a pulley lift...26 Fire Hose
Estimation of Wild Fire Risk Area based on Climate and Maximum Entropy in Korean Peninsular
NASA Astrophysics Data System (ADS)
Kim, T.; Lim, C. H.; Song, C.; Lee, W. K.
2015-12-01
The number of forest fires and accompanying human injuries and physical damages has been increased by frequent drought. In this study, forest fire danger zone of Korea is estimated to predict and prepare for future forest fire hazard regions. The MaxEnt (Maximum Entropy) model is used to estimate the forest fire hazard region which estimates the probability distribution of the status. The MaxEnt model is primarily for the analysis of species distribution, but its applicability for various natural disasters is getting recognition. The detailed forest fire occurrence data collected by the MODIS for past 5 years (2010-2014) is used as occurrence data for the model. Also meteorology, topography, vegetation data are used as environmental variable. In particular, various meteorological variables are used to check impact of climate such as annual average temperature, annual precipitation, precipitation of dry season, annual effective humidity, effective humidity of dry season, aridity index. Consequently, the result was valid based on the AUC(Area Under the Curve) value (= 0.805) which is used to predict accuracy in the MaxEnt model. Also predicted forest fire locations were practically corresponded with the actual forest fire distribution map. Meteorological variables such as effective humidity showed the greatest contribution, and topography variables such as TWI (Topographic Wetness Index) and slope also contributed on the forest fire. As a result, the east coast and the south part of Korea peninsula were predicted to have high risk on the forest fire. In contrast, high-altitude mountain area and the west coast appeared to be safe with the forest fire. The result of this study is similar with former studies, which indicates high risks of forest fire in accessible area and reflects climatic characteristics of east and south part in dry season. To sum up, we estimated the forest fire hazard zone with existing forest fire locations and environment variables and had meaningful result with artificial and natural effect. It is expected to predict future forest fire risk with future climate variables as the climate changes.
Ten-Year Analysis of the Forest Fire Smoke in the Russian Far East
2005-07-25
factor when we monitor the environmental pollution by wide distribution of fire smoke. We examined the relation among the forest fire, smoke, and precipitation, and showed the importance role of precipitation.
Fiber optic distributed temperature sensing for fire source localization
NASA Astrophysics Data System (ADS)
Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong
2017-08-01
A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.
A burning story: The role of fire in the history of life
Pausas, J.G.; Keeley, J.E.
2009-01-01
Ecologists, biogeographers, and paleobotanists have long thought that climate and soils controlled the distribution of ecosystems, with the role of fire getting only limited appreciation. Here we review evidence from different disciplines demonstrating that wildfire appeared concomitant with the origin of terrestrial plants and played an important role throughout the history of life. The importance of fire has waxed and waned in association with changes in climate and paleoatmospheric conditions. Well before the emergence of humans on Earth, fire played a key role in the origins of plant adaptations as well as in the distribution of ecosystems. Humans initiated a new stage in ecosystem fire, using it to make the Earth more suited to their lifestyle. However, as human populations have expanded their use of fire, their actions have come to dominate some ecosystems and change natural processes in ways that threaten the sustainability of some landscapes. ?? 2009 by American Institute of Biological Sciences.
Evidence, exaggeration, and error in historical accounts of chaparral wildfires in California.
Goforth, Brett R; Minnich, Richard A
2007-04-01
For more than half a century, ecologists and historians have been integrating the contemporary study of ecosystems with data gathered from historical sources to evaluate change over broad temporal and spatial scales. This approach is especially useful where ecosystems were altered before formal study as a result of natural resources management, land development, environmental pollution, and climate change. Yet, in many places, historical documents do not provide precise information, and pre-historical evidence is unavailable or has ambiguous interpretation. There are similar challenges in evaluating how the fire regime of chaparral in California has changed as a result of fire suppression management initiated at the beginning of the 20th century. Although the firestorm of October 2003 was the largest officially recorded in California (approximately 300,000 ha), historical accounts of pre-suppression wildfires have been cited as evidence that such a scale of burning was not unprecedented, suggesting the fire regime and patch mosaic in chaparral have not substantially changed. We find that the data do not support pre-suppression megafires, and that the impression of large historical wildfires is a result of imprecision and inaccuracy in the original reports, as well as a parlance that is beset with hyperbole. We underscore themes of importance for critically analyzing historical documents to evaluate ecological change. A putative 100 mile long by 10 mile wide (160 x 16 km) wildfire reported in 1889 was reconstructed to an area of chaparral approximately 40 times smaller by linking local accounts to property tax records, voter registration rolls, claimed insurance, and place names mapped with a geographical information system (GIS) which includes data from historical vegetation surveys. We also show that historical sources cited as evidence of other large chaparral wildfires are either demonstrably inaccurate or provide anecdotal information that is immaterial in the appraisal of pre-suppression fire size. Since historical evidence is inadequate for reconstructing a statistical distribution of pre-suppression fire sizes to compare with post-suppression data, other more propitious methods of evaluating change are discussed.
Smoke, Clouds, and Radiation-Brazil (SCAR-B) Experiment
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Hobbs, P. V.; Kirchoff, V. W. J. H.; Artaxo, P.; Remer, L. A.; Holben, B. N.; King, M. D.; Ward, D. E.; Prins, E. M.; Longo, K. M.;
1998-01-01
The Smoke, Clouds, and Radiation-Brazil (SCAR-B) field project took place in the Brazilian Amazon and cerrado regions in August-September 1995 as a collaboration between Brazilian and American scientists. SCAR-B, a comprehensive experiment to study biomass burning, emphasized measurements of surface biomass, fires, smoke aerosol and trace gases, clouds, and radiation. their climatic effects, and remote sensing from aircraft and satellites. It included aircraft and ground-based in situ measurements of smoke emission factors and the compositions, sizes, and optical properties of the smoke particles; studies of the formation of ozone; the transport and evolution of smoke; and smoke interactions with water vapor and clouds. This overview paper introduces SCAR-B and summarizes some of the main results obtained so far. (1) Fires: measurements of the size distribution of fires, using the 50 m resolution MODIS Airborne Simulator, show that most of the fires are small (e.g. 0.005 square km), but the satellite sensors (e.g., AVHRR and MODIS with I km resolution) can detect fires in Brazil which are responsible for 60-85% of the burned biomass: (2) Aerosol: smoke particles emitted from fires increase their radius by as much as 60%, during their first three days in the atmosphere due to condensation and coagulation, reaching a mass median radius of 0.13-0.17 microns: (3) Radiative forcing: estimates of the globally averaged direct radiative forcing due to smoke worldwide, based on the properties of smoke measured in SCAR-B (-O.l to -0.3 W m(exp -2)), are smaller than previously modeled due to a lower single-scattering albedo (0.8 to 0.9), smaller scattering efficiency (3 square meters g(exp -2) at 550 nm), and low humidification factor; and (4) Effect on clouds: a good relationship was found between cloud condensation nuclei and smoke volume concentrations, thus an increase in the smoke emission is expected to affect cloud properties. In SCAR-B, new techniques were developed for deriving the absorption and refractive index of smoke from ground-based remote sensing. Future spaceborne radiometers (e.g., MODIS on the Earth Observing System), simulated on aircraft, proved to be very useful for monitoring smoke properties, surface properties, and the impacts of smoke on radiation and climate.
Arbellay, Estelle; Stoffel, Markus; Sutherland, Elaine K.; Smith, Kevin T.; Falk, Donald A.
2014-01-01
Background and Aims Fire scars have been widely used as proxies for the reconstruction of fire history; however, little is known about the impact of fire injury on wood anatomy. This study investigates changes in tracheid and ray traits in fire scars of Douglas fir (Pseudotsuga menziesii), western larch (Larix occidentalis) and ponderosa pine (Pinus ponderosa), and discusses their ecophysiological implications for tree recovery from fire. Methods Transverse and tangential microsections were prepared for light microscopy and image analysis. Measurements of tracheids and rays were made in the three spatial dimensions: axially (at different section heights), radially (in different rings) and tangentially (with increasing distance from the wound margin). Key Results Changes were strongest in the first year after fire injury, with a decrease in tracheid size (by 25–30 %) and an increase in tracheid density (by 21–53 %) for the three species. In addition, an increase in ray size (by 5–27 %) and an increase in ray density (by 19–36 %) were found in P. menziesii and L. occidentalis. Changes were comparable along the fire-injured stem and were often most marked close to the fire scar. Conclusions The differentiation after fire injury of narrower and more numerous tracheids expresses a trade-off between hydraulic safety and hydraulic efficiency, while that of larger and more numerous rays serves compartmentalization and wound closure, mechanical strength and defence responses. Pinus ponderosa does not generally produce more ray tissue after fire injury and thus appears to be more adapted to fire. PMID:24941999
Continued warming could transform Greater Yellowstone fire regimes by mid-21st century
Westerling, Anthony L.; Turner, Monica G.; Smithwick, Erica A. H.; Romme, William H.; Ryan, Michael G.
2011-01-01
Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated by conifer forests and characterized by infrequent, high-severity fire. We developed a suite of statistical models that related monthly climate data (1972–1999) to the occurrence and size of fires >200 ha in the northern Rocky Mountains; these models were cross-validated and then used with downscaled (∼12 km × 12 km) climate projections from three global climate models to predict fire occurrence and area burned in the GYE through 2099. All models predicted substantial increases in fire by midcentury, with fire rotation (the time to burn an area equal to the landscape area) reduced to <30 y from the historical 100–300 y for most of the GYE. Years without large fires were common historically but are expected to become rare as annual area burned and the frequency of regionally synchronous fires increase. Our findings suggest a shift to novel fire–climate–vegetation relationships in Greater Yellowstone by midcentury because fire frequency and extent would be inconsistent with persistence of the current suite of conifer species. The predicted new fire regime would transform the flora, fauna, and ecosystem processes in this landscape and may indicate similar changes for other subalpine forests. PMID:21788495
Kim, Steve M; Ganguli, Surya; Frank, Loren M
2012-08-22
Hippocampal place cells convey spatial information through a combination of spatially selective firing and theta phase precession. The way in which this information influences regions like the subiculum that receive input from the hippocampus remains unclear. The subiculum receives direct inputs from area CA1 of the hippocampus and sends divergent output projections to many other parts of the brain, so we examined the firing patterns of rat subicular neurons. We found a substantial transformation in the subicular code for space from sparse to dense firing rate representations along a proximal-distal anatomical gradient: neurons in the proximal subiculum are more similar to canonical, sparsely firing hippocampal place cells, whereas neurons in the distal subiculum have higher firing rates and more distributed spatial firing patterns. Using information theory, we found that the more distributed spatial representation in the subiculum carries, on average, more information about spatial location and context than the sparse spatial representation in CA1. Remarkably, despite the disparate firing rate properties of subicular neurons, we found that neurons at all proximal-distal locations exhibit robust theta phase precession, with similar spiking oscillation frequencies as neurons in area CA1. Our findings suggest that the subiculum is specialized to compress sparse hippocampal spatial codes into highly informative distributed codes suitable for efficient communication to other brain regions. Moreover, despite this substantial compression, the subiculum maintains finer scale temporal properties that may allow it to participate in oscillatory phase coding and spike timing-dependent plasticity in coordination with other regions of the hippocampal circuit.
Regime Shifts and Weakened Environmental Gradients in Open Oak and Pine Ecosystems
Hanberry, Brice B.; Dey, Dan C.; He, Hong S.
2012-01-01
Fire suppression allows tree species that are intolerant of fire stress to increase their distribution, potentially resulting in disruption of historical species-environmental relationships. To measure changes between historical General Land Office surveys (1815 to 1850) and current USDA Forest Inventory and Assessment surveys (2004 to 2008), we compared composition, distribution, and site factors of 21 tree species or species groups in the Missouri Ozarks. We used 24 environmental variables and random forests as a classification method to model distributions. Eastern redcedar, elms, maples, and other fire-sensitive species have increased in dominance in oak forests, with concurrent reductions by oak species; specific changes varied by ecological subsection. Ordinations displayed loss of separation between formerly distinctive oak and fire-sensitive tree species groups. Distribution maps showed decreased presence of disturbance-dependent oak and pine species and increased presence of fire-sensitive species that generally expanded from subsections protected from fire along rivers to upland areas, except for eastern redcedar, which expanded into these subsections. Large scale differences in spatial gradients between past and present communities paralleled reduced influence of local topographic gradients in the varied relief of the Missouri Ozarks, as fire-sensitive species have moved to higher, drier, and sunnier sites away from riverine corridors. Due to changes in land use, landscapes in the Missouri Ozarks, eastern United States, and world-wide are changing from open oak and pine-dominated ecosystems to novel oak-mixed species forests, although at fine scales, forests are becoming more diverse in tree species today. Fire suppression weakened the influence by environmental gradients over species dominance, allowing succession from disturbance-dependent oaks to an alternative state of fire-sensitive species. Current and future research and conservation that rely on historical relationships and ecological principles based on disturbance across the landscape will need to incorporate modern interactions among species for resources into management plans and projections. PMID:22848467
Regime shifts and weakened environmental gradients in open oak and pine ecosystems.
Hanberry, Brice B; Dey, Dan C; He, Hong S
2012-01-01
Fire suppression allows tree species that are intolerant of fire stress to increase their distribution, potentially resulting in disruption of historical species-environmental relationships. To measure changes between historical General Land Office surveys (1815 to 1850) and current USDA Forest Inventory and Assessment surveys (2004 to 2008), we compared composition, distribution, and site factors of 21 tree species or species groups in the Missouri Ozarks. We used 24 environmental variables and random forests as a classification method to model distributions. Eastern redcedar, elms, maples, and other fire-sensitive species have increased in dominance in oak forests, with concurrent reductions by oak species; specific changes varied by ecological subsection. Ordinations displayed loss of separation between formerly distinctive oak and fire-sensitive tree species groups. Distribution maps showed decreased presence of disturbance-dependent oak and pine species and increased presence of fire-sensitive species that generally expanded from subsections protected from fire along rivers to upland areas, except for eastern redcedar, which expanded into these subsections. Large scale differences in spatial gradients between past and present communities paralleled reduced influence of local topographic gradients in the varied relief of the Missouri Ozarks, as fire-sensitive species have moved to higher, drier, and sunnier sites away from riverine corridors. Due to changes in land use, landscapes in the Missouri Ozarks, eastern United States, and world-wide are changing from open oak and pine-dominated ecosystems to novel oak-mixed species forests, although at fine scales, forests are becoming more diverse in tree species today. Fire suppression weakened the influence by environmental gradients over species dominance, allowing succession from disturbance-dependent oaks to an alternative state of fire-sensitive species. Current and future research and conservation that rely on historical relationships and ecological principles based on disturbance across the landscape will need to incorporate modern interactions among species for resources into management plans and projections.
NASA Astrophysics Data System (ADS)
Middlebrook, A. M.; Adler, G. A.; Coggon, M.; De Gouw, J. A.; Franchin, A.; Gilman, J.; Koss, A.; Krechmer, J. E.; Lamb, K.; Manfred, K.; Roberts, J. M.; Schwarz, J. P.; Sekimoto, K.; Selimovic, V.; Stockwell, C.; Wagner, N.; Warneke, C.; Washenfelder, R. A.; Womack, C.; Yokelson, R. J.; Yuan, B.
2017-12-01
During the 2016 NOAA FIREX project at the Missoula Fire Sciences Laboratory, small fires of known fuel type and properties were ignited to characterize their direct emissions with a large variety of new sampling methods. Two types of experiments were employed: sampling smoke directly from the exhaust stack throughout the lifecycle of the fires (stack burns) or sampling when the exhaust vent was closed to fill the room with smoke (room burns). For both types of burns, photo-oxidation chambers were at times used to mimic aging in the atmosphere. During all these experiments, we measured the non-refractory components of the smoke particles using an Aerodyne compact time-of-flight aerosol mass spectrometer (AMS) with a light scattering module and diluted the sample line as little as possible (usually by a factor of 10) without overwhelming our instrument. For the stack burns, our AMS was placed near the top of the exhaust stack to capture the composition and size distribution during the rapidly changing stages of the fires. We found that the chemical composition of the aerosols varied with fuel type and combustion conditions on time scales of a few minutes as the fuels went through different stages of heating and combustion. For the room burns, we obtained additional measurements with the light-scattering module aimed at understanding how well smoke particles are measured with the AMS, along with characterization of their physical properties. We will present a summary of our results, with connections to their relevance for constraining model treatments of fire emissions on the atmosphere.
Climatic stress increases forest fire severity across the western United States
van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Knapp, Eric E.; Flint, Alan; Flint, Lorraine
2013-01-01
Pervasive warming can lead to chronic stress on forest trees, which may contribute to mortality resulting from fire-caused injuries. Longitudinal analyses of forest plots from across the western US show that high pre-fire climatic water deficit was related to increased post-fire tree mortality probabilities. This relationship between climate and fire was present after accounting for fire defences and injuries, and appeared to influence the effects of crown and stem injuries. Climate and fire interactions did not vary substantially across geographical regions, major genera and tree sizes. Our findings support recent physiological evidence showing that both drought and heating from fire can impair xylem conductivity. Warming trends have been linked to increasing probabilities of severe fire weather and fire spread; our results suggest that warming may also increase forest fire severity (the number of trees killed) independent of fire intensity (the amount of heat released during a fire).
A human-driven decline in global burned area
NASA Astrophysics Data System (ADS)
Andela, N.; Morton, D. C.; Chen, Y.; van der Werf, G.; Giglio, L.; Kasibhatla, P. S.; Randerson, J. T.
2016-12-01
Fire is an important and dynamic ecosystem process that influences many aspects of the global Earth system. Here, we used several different satellite datasets to assess trends in global burned area during 1998 to 2014. Global burned area decreased by about 21.6 ± 8.5% over the period from 1998-2014, with large regional declines observed in savanna and grassland ecosystems in northern Africa, Eurasia, and South America. The decrease in burned area remained robust after removing the influence of climate (16.0 ± 6.0%), implicating human activity as a likely driver. To further investigate the mechanisms contributing to regional and global trends, we conducted several kinds of analysis, including separation of burned area into ignition and fire size components and geospatial analysis of fire trends in relationship with demographic and land use variables. We found that fire number was a more important factor contributing to burned area trends than fire size, suggesting a reduction in the use of fire for management purposes. Concurrent decreases in fire size also contributed to the trend outside of North and South America, suggesting a role for greater landscape fragmentation. From our geospatial analysis, we developed a conceptual model that incorporates a range of drivers for human-driven changes in biomass burning that can be used to guide global fire models, currently unable to reproduce these large scale recent trends. Patterns of agricultural expansion and land use intensification are likely to further contribute to declining burned area trends in future decades, with important consequences for Earth system processes mediated by surface albedo, greenhouse gas emissions, and aerosols. Our results also highlight the vulnerability of savannas and grassland to land use changes with unprecedented global scale consequences for vegetation structure and the carbon cycle.
The climate space of fire regimes in north-western North America
Whitman, Ellen; Batllori, Enric; Parisien, Marc-André; Miller, Carol; Coop, Jonathan D.; Krawchuk, Meg A.; Chong, Geneva W.; Haire, Sandra L.
2015-01-01
Aim. Studies of fire activity along environmental gradients have been undertaken, but the results of such studies have yet to be integrated with fire-regime analysis. We characterize fire-regime components along climate gradients and a gradient of human influence. Location. We focus on a climatically diverse region of north-western North America extending from northern British Columbia, Canada, to northern Utah and Colorado, USA.Methods. We used a multivariate framework to collapse 12 climatic variables into two major climate gradients and binned them into 73 discrete climate domains. We examined variation in fire-regime components (frequency, size, severity, seasonality and cause) across climate domains. Fire-regime attributes were compiled from existing databases and Landsat imagery for 1897 large fires. Relationships among the fire-regime components, climate gradients and human influence were examined through bivariate regressions. The unique contribution of human influence was also assessed.Results. A primary climate gradient of temperature and summer precipitation and a secondary gradient of continentality and winter precipitation in the study area were identified. Fire occupied a distinct central region of such climate space, within which fire-regime components varied considerably. We identified significant interrelations between fire-regime components of fire size, frequency, burn severity and cause. The influence of humans was apparent in patterns of burn severity and ignition cause.Main conclusions. Wildfire activity is highest where thermal and moisture gradients converge to promote fuel production, flammability and ignitions. Having linked fire-regime components to large-scale climate gradients, we show that fire regimes – like the climate that controls them – are a part of a continuum, expanding on models of varying constraints on fire activity. The observed relationships between fire-regime components, together with the distinct role of climatic and human influences, generate variation in biotic communities. Thus, future changes to climate may lead to ecological changes through altered fire regimes.
Discrete Deterministic and Stochastic Petri Nets
NASA Technical Reports Server (NTRS)
Zijal, Robert; Ciardo, Gianfranco
1996-01-01
Petri nets augmented with timing specifications gained a wide acceptance in the area of performance and reliability evaluation of complex systems exhibiting concurrency, synchronization, and conflicts. The state space of time-extended Petri nets is mapped onto its basic underlying stochastic process, which can be shown to be Markovian under the assumption of exponentially distributed firing times. The integration of exponentially and non-exponentially distributed timing is still one of the major problems for the analysis and was first attacked for continuous time Petri nets at the cost of structural or analytical restrictions. We propose a discrete deterministic and stochastic Petri net (DDSPN) formalism with no imposed structural or analytical restrictions where transitions can fire either in zero time or according to arbitrary firing times that can be represented as the time to absorption in a finite absorbing discrete time Markov chain (DTMC). Exponentially distributed firing times are then approximated arbitrarily well by geometric distributions. Deterministic firing times are a special case of the geometric distribution. The underlying stochastic process of a DDSPN is then also a DTMC, from which the transient and stationary solution can be obtained by standard techniques. A comprehensive algorithm and some state space reduction techniques for the analysis of DDSPNs are presented comprising the automatic detection of conflicts and confusions, which removes a major obstacle for the analysis of discrete time models.
Assessment of Fire Occurrence and Future Fire Potential in Arctic Alaska
NASA Astrophysics Data System (ADS)
French, N. H. F.; Jenkins, L. K.; Loboda, T. V.; Bourgeau-Chavez, L. L.; Whitley, M. A.
2014-12-01
An analysis of the occurrence of fire in Alaskan tundra was completed using the relatively complete historical record of fire for the region from 1950 to 2013. Spatial fire data for Alaskan tundra regions were obtained from the Alaska Large Fire Database for the region defined from vegetation and ecoregion maps. A detailed presentation of fire records available for assessing the fire regime of the tundra regions of Alaska as well as results evaluating fire size, seasonality, and general geographic and temporal trends is included. Assessment of future fire potential was determined for three future climate scenarios at four locations across the Alaskan tundra using the Canadian Forest Fire Weather Index (FWI). Canadian Earth System Model (CanESM2) weather variables were used for historical (1850-2005) and future (2006-2100) time periods. The database includes 908 fire points and 463 fire polygons within the 482,931 km2 of Alaskan tundra. Based on the polygon database 25,656 km2 (6,340,000 acres) has burned across the six tundra ecoregions since 1950. Approximately 87% of tundra fires start in June and July across all ecoregions. Combining information from the polygon and points data records, the estimated average fire size for fire in the Alaskan Arctic region is 28.1 km2 (7,070 acres), which is much smaller than in the adjacent boreal forest region, averaging 203 km2 for high fire years. The largest fire in the database is the Imuruk Basin Fire which burned 1,680 km2 in 1954 in the Seward Peninsula region (Table 1). Assessment of future fire potential shows that, in comparison with the historical fire record, fire occurrence in Alaskan tundra is expected to increase under all three climate scenarios. Occurrences of high fire weather danger (>10 FWI) are projected to increase in frequency and magnitude in all regions modeled. The changes in fire weather conditions are expected to vary from one region to another in seasonal occurrence as well as severity and frequency of high fire weather danger. While the Alaska Large Fire Database represents the best data available for the Alaskan Arctic, and is superior to many other regions around the world, particularly Arctic regions, these fire records need to be used with some caution due to the mixed origin and minimal validation of the data; this is reviewed in the presentation.
Fontaine, Joseph B; Kennedy, Patricia L
2012-07-01
Management in fire-prone ecosystems relies widely upon application of prescribed fire and/or fire surrogate (e.g., forest thinning) treatments to maintain biodiversity and ecosystem function. Recently, published literature examining wildlife response to fire and fire management has increased rapidly. However, none of this literature has been synthesized quantitatively, precluding assessment of consistent patterns of wildlife response among treatment types. Using meta-analysis, we examined the scientific literature on vertebrate demographic responses to burn severity (low/moderate, high), fire surrogates (forest thinning), and fire and fire surrogate combined treatments in the most extensively studied fire-prone, forested biome (forests of the United States). Effect sizes (magnitude of response) and their 95% confidence limits (response consistency) were estimated for each species-by-treatment combination with two or more observations. We found 41 studies of 119 bird and 17 small-mammal species that examined short-term responses (< or =4 years) to thinning, low/moderate- and high-severity fire, and thinning plus prescribed fire; data on other taxa and at longer time scales were too sparse to permit quantitative assessment. At the stand scale (<50 ha), thinning and low/moderate-severity fire demonstrated similar response patterns in these forests. Combined thinning plus prescribed fire produced a higher percentage of positive responses. High-severity fire provoked stronger responses, with a majority of species possessing higher or lower effect sizes relative to fires of lower severity. In the short term and at fine spatial scales, fire surrogate forest-thinning treatments appear to effectively mimic low/moderate-severity fire, whereas low/moderate-severity fire is not a substitute for high-severity fire. The varied response of taxa to each of the four conditions considered makes it clear that the full range of fire-based disturbances (or their surrogates) is necessary to maintain a full complement of vertebrate species, including fire-sensitive taxa. This is especially true for high-severity fire, where positive responses from many avian taxa suggest that this disturbance (either as wildfire or prescribed fire) should be included in management plans where it is consistent with historic fire regimes and where maintenance of regional vertebrate biodiversity is a goal.
Rocky Mountain Research Station USDA Forest Service
2004-01-01
Many managers and policymakers guided by the National Environmental Policy Act process want to understand the scientific principles on which they can base fuel treatments for reducing the size and severity of wildfires. These Forest Structure and Fire Hazard fact sheets discuss how to estimate fire hazard, how to visualize fuel treatments, and how the role of...
Fire, red squirrels, whitebark pine, and Yellowstone grizzly bears
Podruzny, Shannon; Reinhart, Daniel P.; Mattson, David J.
1999-01-01
Whitebark pine (Pinus albicaulis) habitats are important to Yellowstone grizzly bears (Ursus arctos) as refugia and sources of food. Ecological relationships between whitebark pine, red squirrels (Tamiasciurus hudsonicus), and grizzly bear use of pine seeds on Mt. Washburn in Yellowstone National Park, Wyoming, were examined during 1984-86. Following large-scale fires in 1988, we repeated the study in 1995-97 to examine the effects of fire on availability of whitebark pine seed in red squirrel middens and on bear use of middens. Half of the total length of the original line transects burned. We found no red squirrel middens in burned areas. Post-fire linear-abundance (no./km) of active squirrel middens that were pooled from burned and unburned areas decreased 27% compared to pre-fire abundance, but increased in unburned portions of some habitat types. Mean size of active middens decreased 54% post-fire. Use of pine seeds by bears (linear abundance of excavated middens) in pooled burned and unburned habitats decreased by 64%, likely due to the combined effects of reduced midden availability and smaller midden size. We discourage any further large-scale losses of seed producing trees from management-prescribed fires or timber harvesting until the effects of fire on ecological relationships in the whitebark pine zone are better understood.
NASA Astrophysics Data System (ADS)
Seo, H.; Kim, Y.; Kim, H. J.
2017-12-01
Every year wild fire brings about 400Mha of land burned therefore 2Pg of carbon emissions from the surface occur. In this way fire not only affects the carbon circulation but also has an effect on the terrestrial ecosystems. This study aims to understand role of fire on the geographic vegetation distribution and the terrestrial carbon balances within the NCAR CESM framework, specifically with the CLM-BGC and CLM-BGC-DV. Global climate data from Climate Research Unit (CRU)-National Centers for Environmental Prediction (NCEP) data ranging from 1901 to 2010 are used to drive the land models. First, by comparing fire-on and fire-off simulations with the CLM-BGC-DV, the fire impacts in dynamic vegetation are quantified by the fractional land areas of the different plant functional types. In addition, we examine how changes in vegetation distribution affect the total sum of the burned areas and the carbon balances. This study would provide the limits of and suggestions for the fire and dynamic vegetation modules of the CLM-BGC. AcknowledgementsThis work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800) and by the Korea Meteorological Administration R&D Program under Grant KMIPA 2015-6180. This work was also supported by the Yonsei University Future-leading Research Initiative of 2015(2016-22-0061).
Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J
2009-04-24
Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.
Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Carlson, Jean M.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth S.; Doyle, John C.; Harrison, Sandy P.; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Marston, J. Brad; Moritz, Max A.; Prentice, I. Colin; Roos, Christopher I.; Scott, Andrew C.; Swetnam, Thomas W.; van der Werf, Guido R.; Pyne, Stephen
2009-01-01
Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.
The ability of winter grazing to reduce wildfire size, intensity ...
A recent study by Davies et al. sought to test whether winter grazing could reduce wildfire size, fire behavior metrics, and fire-induced plant mortality in shrub-grasslands. The authors concluded that ungrazed rangelands may experience more fire-induced mortality of native perennial bunchgrasses. The authors also presented several statements regarding the benefits of winter grazing on post-fire plant community responses. However, this commentary will show that the study by Davies et al. has underlying methodological flaws, lacks data necessary to support their conclusions, and does not provide an accurate discussion on the effect of grazing on rangeland ecosystems. Importantly, Davies et al. presented no data on the post-fire mortality of the perennial bunchgrasses or on the changes in plant community composition following their experimental fires. Rather, Davies et al. inferred these conclusions based off their observed fire behavior metrics of maximum temperature and a term described as the “heat load”. However, neither metric is appropriate for elucidating the heat flux impacts on plants. This lack of post-fire data, several methodological flaws, and the use of inadequate metrics describing heat cast doubts on the authors’ ability to support their stated conclusions. This article is a commentary highlights the scientific shortcomings in a forthcoming paper by Davies et al. in the International Journal of Wildland Fire. The study has methodological flaw
NASA Astrophysics Data System (ADS)
Nieradzik, L. P.; Haverd, V. E.; Briggs, P.; Meyer, C. P.; Canadell, J.
2015-12-01
Fires play a major role in the carbon-cycle and the development of global vegetation, especially on the continent of Australia, where vegetation is prone to frequent fire occurences and where regional composition and stand-age distribution is regulated by fire. Furthermore, the probable changes of fire behaviour under a changing climate are still poorly understood and require further investigation.In this presentation we introduce the fire-model BLAZE (BLAZe induced land-atmosphere flux Estimator), designed for a novel approach to simulate fire-frequencies, fire-intensities, fire related fluxes and the responses in vegetation. Fire frequencies are prescribed using SIMFIRE (Knorr et al., 2014) or GFED3 (e.g. Giglio et al., 2013). Fire-Line-Intensity (FLI) is computed from meteorological information and fuel loads which are state variables within the C-cycle component of CABLE (Community Atmosphere-Biosphere-Land Exchange model). This FLI is used as an input to the tree-demography model POP(Population-Order-Physiology; Haverd et al., 2014). Within POP the fire-mortality depends on FLI and tree height distribution. Intensity-dependent combustion factors (CF) are then generated for and applied to live and litter carbon pools as well as the transfers from live pools to litter caused by fire. Thus, both fire and stand characteristics are taken into account which has a legacy effect on future events. Gross C-CO2 emissions from Australian wild fires are larger than Australian territorial fossil fuel emissions. However, the net effect of fire on the Australian terrestrial carbon budget is unknown. We address this by applying the newly-developed fire module, integrated within the CABLE land surface model, and optimised for the Australian region, to a reassessment of the Australian Terrestrial Carbon Budget.
Research on distributed temperature sensor (DTS) applied in underground tunnel
NASA Astrophysics Data System (ADS)
Hu, Chuanlong; Wang, Jianfeng; Zhang, Zaixuan; Shen, Changyu; Jin, Yongxing; Jin, Shangzhong
2011-11-01
A distributed temperature sensor (DTS) system with a sensing distance of 4 km was developed for applications in tunnel temperature measurement and fire alarm. Characteristics of DTS and experiment results are introduced. The results show that DTS system can play an important role in tunnel fire alarm.
MODELING THE IMPACTS OF FIRE FLOWS ON DISTRIBUTION SYSTEM WATER QUALITY, DESIGN AND OPERATION
In most water distribution systems, a significant amount of the piping and storage capacity is used to provide adequate quantities of water during fire conditions. This increased capacity results in higher capital costs and potential negative impacts on water quality due to longe...
Random versus maximum entropy models of neural population activity
NASA Astrophysics Data System (ADS)
Ferrari, Ulisse; Obuchi, Tomoyuki; Mora, Thierry
2017-04-01
The principle of maximum entropy provides a useful method for inferring statistical mechanics models from observations in correlated systems, and is widely used in a variety of fields where accurate data are available. While the assumptions underlying maximum entropy are intuitive and appealing, its adequacy for describing complex empirical data has been little studied in comparison to alternative approaches. Here, data from the collective spiking activity of retinal neurons is reanalyzed. The accuracy of the maximum entropy distribution constrained by mean firing rates and pairwise correlations is compared to a random ensemble of distributions constrained by the same observables. For most of the tested networks, maximum entropy approximates the true distribution better than the typical or mean distribution from that ensemble. This advantage improves with population size, with groups as small as eight being almost always better described by maximum entropy. Failure of maximum entropy to outperform random models is found to be associated with strong correlations in the population.
Rapid response of soil fungal communities to low and high intensity fire
NASA Astrophysics Data System (ADS)
Smith, Jane E.; Cowan, Ariel D.; Reazin, Chris; Jumpponen, Ari
2016-04-01
Contemporary fires have created high-severity burn areas exceeding historical distributions in forests in the western United States. Until recently, the response of soil ecosystems to high intensity burns has been largely unknown. In complementary studies, we investigated the environmental effect of extreme soil heating, such that occurs with the complete combustion of large down wood during wildfires, on soil fungi and nutrients. We used TRFLP and next generation sequencing (Illumina MiSeq) to investigate the fungal communities. During the burning of large down wood, temperatures lethal to fungi were detected at 0-cm, 5-cm, and 10-cm depths in soils compared to 0-cm depth in soils receiving low intensity broadcast burns. We compared the soil fungal diversity in ten high intensity burned plots paired with adjacent low intensity burned plots before and one week after at 0-10 cm soil depth. Nonmetric Multidimensional Scaling (NMS) ordinations and analyses of taxon frequencies reveal a substantial community turnover and corresponding near complete replacement of the dominant basidiomycetes by ascomycetes in high intensity burns. These coarse-level taxonomic responses were primarily attributable to a few fire-responsive (phoenicoid) fungi, particularly Pyronema sp. and Morchella sp., whose frequencies increased more than 100-fold following high intensity burns. Pinus ponderosa seedlings planted one week post-burn were harvested after four months for EMF root tip analysis. We found: a) greater differences in soil properties and nutrients in high intensity burned soils compared to low intensity burned and unburned soils; b) no differences in EMF richness and diversity; and c) weak differences in community composition based on relative abundance between unburned and either burn treatments. These results confirm the combustion of large downed wood can alter the soil environment directly beneath it. However, an EMF community similar to low burned soils recolonized high burned soils within one growing season. Community results from both burn treatments suggest an increase in patchy spatial distribution of EMF. The importance of incorporating mixed fire effects in fuel management practices will help to provide EMF refugia for dry forest regeneration. Our studies highlight the strong and rapid fungal community responses to fires and differences among fires of different severities. We theorize that quick initiation of EMF recolonization is possible depending on the size of high burn patches, proximity of low and unburned soil, and survival of nearby hosts.
Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.
Improved estimates of biomass burning emissions in the southeast United States
NASA Astrophysics Data System (ADS)
Nowell, H.; Holmes, C.; Elsner, J.; Hiers, J. K.; Robertson, K.
2017-12-01
Biomass burning is a major source of gas and particle emissions that affects air quality, human health, and climate. Prescribed burns in the southeastern United States consume more biomass and cover a larger area than fires in the rest of the United States combined. Although fires can be detected remotely from thermal infrared emission and changes to surface reflectance, there are multiple issues that make satellite detections difficult in the eastern United States. These include small fire sizes, short duration, low intensity, canopy coverage, and rapid vegetation regrowth. Some attempts have been made to compensate for this bias, for example the small fire product in the Global Fire Emission Database (GFED4.1s) product. The accuracy of GFED and other remotely sensed global fire emission inventories are largely unknown, outside of a few field studies, mainly because there are few independent datasets of fire extent. The Florida Forest Service (FFS) has extensive records on fire type, size, location, and time for both prescribed and wild fires, which have not previously been used to evaluate fire area and emissions. For our study period of 2004 to 2016, we compared FFS burn authorization data against GFED4.1s burned area. When averaged across the state of Florida, there is 4 times more land burned than detected from satellite sensors. When comparing FFS data against high quality records from Apalachicola National Forest, Avon Park Air Force Range, Eglin Air Force Base, Tall Timbers Research Station, and Tyndall Air Force base, the areal discrepancy between these records and FFS reports are +/- 15%, well below the 4 times detection discrepancy between satellites and FFS reports. We have developed a method to statistically correct this satellite bias in fire detections. Treating the FFS burn authorizations as accurate, we have found this bias ratio can be predicted from fire size, land cover type, leaf area, and month. The regression model incorporating these factors can predict greater than 80% of variance in bias ratio across Florida during the summer months with correlations around 0.6 on average. This improved estimate of burned area in Florida will be used in global circulation models to determine the true contribution of prescribed wild fires in the southeast United States to gas and particle emissions.
Characterizing sources of emissions from wildland fires
Roger D. Ottmar; Ana Isabel Miranda; David V. Sandberg
2009-01-01
Smoke emissions from wildland fire can be harmful to human health and welfare, impair visibility, and contribute to greenhouse gas emissions. The generation of emissions and heat release need to be characterized to estimate the potential impacts of wildland fire smoke. This requires explicit knowledge of the source, including size of the area burned, burn period,...
78 FR 2947 - Manti-La Sal National Forest, Utah; Maverick Point Forest Health Project
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-15
... class structure via use of timber harvesting and prescribed fire. Project activities also seek to.... Over the last 20 years drought conditions have increased; fire size, severity, and total acres burned... fire regimes have been significantly altered from their historical range. The risk of losing key...
Fuel treatments and fire severity: A meta-analysis
Erik J. Martinson; Philip N. Omi
2013-01-01
We employed meta-analysis and information theory to synthesize findings reported in the literature on the effects of fuel treatments on subsequent fire intensity and severity. Data were compiled from 19 publications that reported observed fire responses from 62 treated versus untreated contrasts. Effect sizes varied widely and the most informative grouping of studies...
Arjan J. H. Meddens; Crystal A. Kolden; James A. Lutz; John T. Abatzoglou; Andrew T. Hudak
2018-01-01
A warming climate, fire exclusion, and land cover changes are altering the conditions that produced historical fire regimes and facilitating increased recent wildfire activity in the northwestern United States. Understanding the impacts of changing fire regimes on forest recruitment and succession, species distributions, carbon cycling, and ecosystem services is...
Fire and fish dynamics in a changing climate
Lisa Holsinger; Robert Keane
2011-01-01
Wildland fire is a natural disturbance that affects the distribution and abundance of native fishes in the Rocky Mountain West (Rieman and others 2003). Fire can remove riparian vegetation, increasing direct solar radiation to the stream surface and leading to warmer summer water temperatures (fig. 1). Fire can also consume vegetation and organic biomass on the forest...
USDA-ARS?s Scientific Manuscript database
Context: Fire is an important driver of ecological processes in semiarid systems and serves a vital role in shrub-grass interactions. In desert grasslands of the Southwestern US, the loss of fire has been implicated as a primary cause of shrub encroachment. Where fires can currently be re-introduced...
Capstone Depleted Uranium Aerosols: Generation and Characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray
2004-10-19
In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.
Ramalho, Cristina E; Ottewell, Kym M; Chambers, Brian K; Yates, Colin J; Wilson, Barbara A; Bencini, Roberta; Barrett, Geoff
2018-01-01
The rapid and large-scale urbanization of peri-urban areas poses major and complex challenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the influence of urban encroachment, fire, and fauna crossing structures, with and without accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expanding city of Perth, Australia. We surveyed two metapopulations over one and a half years, and parameterized the PVA models using largely field-collected data. The models revealed that spatial isolation imposed by housing and road encroachment has major impacts on I. obesulus. Although the species is known to persist in small metapopulations at moderate levels of habitat fragmentation, the models indicate that these populations become highly vulnerable to demographic decline, genetic deterioration, and local extinction under increasing habitat connectivity loss. Isolated metapopulations were also predicted to be highly sensitive to fire, with large-scale fires having greater negative impacts on population abundance than small-scale ones. To reduce the risk of decline and local extirpation of I. obesulus and other small- to medium-sized ground-dwelling mammals in urbanizing, fire prone landscapes, we recommend that remnant vegetation and vegetated, structurally-complex corridors between habitat patches be retained. Well-designed road underpasses can be effective to connect habitat patches and reduce the probability of inbreeding and genetic differentiation; however, adjustment of fire management practices to limit the size of unplanned fires and ensure the retention of long unburnt vegetation will also be required to ensure persistence. Our study supports the evidence that in rapidly urbanizing landscapes, a pro-active conservation approach is required that manages species at the metapopulation level and that prioritizes metapopulations and habitat with greater long-term probability of persistence and conservation capacity, respectively. This strategy may help us prevent future declines and local extirpations, and currently relatively common species from becoming rare.
Ottewell, Kym M.; Chambers, Brian K.; Yates, Colin J.; Wilson, Barbara A.; Bencini, Roberta; Barrett, Geoff
2018-01-01
The rapid and large-scale urbanization of peri-urban areas poses major and complex challenges for wildlife conservation. We used population viability analysis (PVA) to evaluate the influence of urban encroachment, fire, and fauna crossing structures, with and without accounting for inbreeding effects, on the metapopulation viability of a medium-sized ground-dwelling mammal, the southern brown bandicoot (Isoodon obesulus), in the rapidly expanding city of Perth, Australia. We surveyed two metapopulations over one and a half years, and parameterized the PVA models using largely field-collected data. The models revealed that spatial isolation imposed by housing and road encroachment has major impacts on I. obesulus. Although the species is known to persist in small metapopulations at moderate levels of habitat fragmentation, the models indicate that these populations become highly vulnerable to demographic decline, genetic deterioration, and local extinction under increasing habitat connectivity loss. Isolated metapopulations were also predicted to be highly sensitive to fire, with large-scale fires having greater negative impacts on population abundance than small-scale ones. To reduce the risk of decline and local extirpation of I. obesulus and other small- to medium-sized ground-dwelling mammals in urbanizing, fire prone landscapes, we recommend that remnant vegetation and vegetated, structurally-complex corridors between habitat patches be retained. Well-designed road underpasses can be effective to connect habitat patches and reduce the probability of inbreeding and genetic differentiation; however, adjustment of fire management practices to limit the size of unplanned fires and ensure the retention of long unburnt vegetation will also be required to ensure persistence. Our study supports the evidence that in rapidly urbanizing landscapes, a pro-active conservation approach is required that manages species at the metapopulation level and that prioritizes metapopulations and habitat with greater long-term probability of persistence and conservation capacity, respectively. This strategy may help us prevent future declines and local extirpations, and currently relatively common species from becoming rare. PMID:29444118
Spatial and temporal distribution of tropical biomass burning
NASA Astrophysics Data System (ADS)
Hao, Wei Min; Liu, Mei-Huey
1994-12-01
A database for the spatial and temporal distribution of the amount of biomass burned in tropical America, Africa, and Asia during the late 1970s is presented with a resolution of 5° latitude × 5° longitude. The sources of burning in each grid cell have been quantified. Savanna fires, shifting cultivation, deforestation, fuel wood use, and burning of agricultural residues contribute about 50, 24, 10, 11, and 5%, respectively, of total biomass burned in the tropics. Savanna fires dominate in tropical Africa, and forest fires dominate in tropical Asia. A similar amount of biomass is burned from forest and savanna fires in tropical America. The distribution of biomass burned monthly during the dry season has been derived for each grid cell using the seasonal cycles of surface ozone concentrations. Land use changes during the last decade could have a profound impact on the amount of biomass burned and the amount of trace gases and aerosol particles emitted.
The Organization of Foraging in the Fire Ant, Solenopsis invicta
Tschinkel, Walter R.
2011-01-01
Although natural selection in ants acts most strongly at the colony, or superorganismal level, foraging patterns have rarely been studied at that level, focusing instead on the behavior of individual foragers or groups of foragers. The experiments and observations in this paper reveal in broad strokes how colonies of the fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), allocate their available labor to foraging, how they disperse that force within their territory, and how this force changes with colony size, season and worker age. Territory area is positively related to colony size and the number of foragers, more so during the spring than fall. Changes of colony size and territory area are driven by seasonal variation of sexual and worker production, which in turn drive seasonal variation of worker age-distribution. During spring sexual production, colonies shrink because worker production falls below replacement. This loss is proportional to colony size, causing forager density in the spring to be negatively related to colony and territory size. In the fall, colonies emphasize worker production, bringing colony size back up. However, because smaller colonies curtailed spring worker production less than larger ones, their fall forager populations are proportionally greater, causing them to gain territory at the expense of large colonies. Much variation of territory area remains unexplained and can probably be attributed to pressure from neighboring colonies. Boundaries between territories are characterized by “no ants' zones” mostly devoid of fire ants. The forager population can be divided into a younger group of recruitable workers that wait for scouts to activate them to help retrieve large food finds. About one-third of the recruits wait near openings in the foraging tunnels that underlie the entire territory, while two-thirds wait in the nest. Recruitment to food is initially very rapid and local from the foraging tunnels, while sustained recruitment gradually involves the recruits waiting in the nest. As recruits age, they become scouts searching for food on the surface, and die about two weeks later. Foraging tunnels decrease in cross-sectional area with distance from the nest, in keeping with the gradual bleeding off of workers to the surface with distance. Foragers lack route-faithfulness, and having been marked and released at one point within the territory, they can be recaptured at any other point a day later. The size of the territory actually occupied may be limited during dry weather, resulting in very large no-ants' zones. PMID:21529150
Quantifying post-fire fallen trees using multi-temporal lidar
NASA Astrophysics Data System (ADS)
Bohlin, Inka; Olsson, Håkan; Bohlin, Jonas; Granström, Anders
2017-12-01
Massive tree-felling due to root damage is a common fire effect on burnt areas in Scandinavia, but has so far not been analyzed in detail. Here we explore if pre- and post-fire lidar data can be used to estimate the proportion of fallen trees. The study was carried out within a large (14,000 ha) area in central Sweden burnt in August 2014, where we had access to airborne lidar data from both 2011 and 2015. Three data-sets of predictor variables were tested: POST (post-fire lidar metrics), DIF (difference between post- and pre-fire lidar metrics) and combination of those two (POST_DIF). Fractional logistic regression was used to predict the proportion of fallen trees. Training data consisted of 61 plots, where the number of fallen and standing trees was calculated both in the field and with interpretation of drone images. The accuracy of the best model was tested based on 100 randomly selected validation plots with a size of 25 × 25 m. Our results showed that multi-temporal lidar together with field-collected training data can be used for quantifying post-fire tree felling over large areas. Several height-, density- and intensity metrics correlated with the proportion of fallen trees. The best model combined metrics from both datasets (POST_DIF), resulting in a RMSE of 0.11. Results were slightly poorer in the validation plots with RMSE of 0.18 using pixel size of 12.5 m and RMSE of 0.15 using pixel size of 6.25 m. Our model performed least well for stands that had been exposed to high-intensity crown fire. This was likely due to the low amount of echoes from the standing black tree skeletons. Wall-to-wall maps produced with this model can be used for landscape level analysis of fire effects and to explore the relationship between fallen trees and forest structure, soil type, fire intensity or topography.
The influence of residue removal and prescribed fire on distributions of forest nutrients.
Little; S.N.; G.O. Klock
1985-01-01
The effects of two levels of residue removal (removal of all woody material larger than 15 x 180 cm and 10 x 120 cm) on the distribution of nitrogen and sulfur on the forest site and the added effects of post-harvest prescribed fire on those distributions were studied at two sites in the Cascade Range in Oregon. Nutrients lost from increased removal of residue were...
Madani, Nima; Kimball, John S.; Nazeri, Mona; Kumar, Lalit; Affleck, David L. R.
2016-01-01
Species distribution modeling has been widely used in studying habitat relationships and for conservation purposes. However, neglecting ecological knowledge about species, e.g. their seasonal movements, and ignoring the proper environmental factors that can explain key elements for species survival (shelter, food and water) increase model uncertainty. This study exemplifies how these ecological gaps in species distribution modeling can be addressed by modeling the distribution of the emu (Dromaius novaehollandiae) in Australia. Emus cover a large area during the austral winter. However, their habitat shrinks during the summer months. We show evidence of emu summer habitat shrinkage due to higher fire frequency, and low water and food availability in northern regions. Our findings indicate that emus prefer areas with higher vegetation productivity and low fire recurrence, while their distribution is linked to an optimal intermediate (~0.12 m3 m-3) soil moisture range. We propose that the application of three geospatial data products derived from satellite remote sensing, namely fire frequency, ecosystem productivity, and soil water content, provides an effective representation of emu general habitat requirements, and substantially improves species distribution modeling and representation of the species’ ecological habitat niche across Australia. PMID:26799732
Madani, Nima; Kimball, John S; Nazeri, Mona; Kumar, Lalit; Affleck, David L R
2016-01-01
Species distribution modeling has been widely used in studying habitat relationships and for conservation purposes. However, neglecting ecological knowledge about species, e.g. their seasonal movements, and ignoring the proper environmental factors that can explain key elements for species survival (shelter, food and water) increase model uncertainty. This study exemplifies how these ecological gaps in species distribution modeling can be addressed by modeling the distribution of the emu (Dromaius novaehollandiae) in Australia. Emus cover a large area during the austral winter. However, their habitat shrinks during the summer months. We show evidence of emu summer habitat shrinkage due to higher fire frequency, and low water and food availability in northern regions. Our findings indicate that emus prefer areas with higher vegetation productivity and low fire recurrence, while their distribution is linked to an optimal intermediate (~0.12 m3 m(-3)) soil moisture range. We propose that the application of three geospatial data products derived from satellite remote sensing, namely fire frequency, ecosystem productivity, and soil water content, provides an effective representation of emu general habitat requirements, and substantially improves species distribution modeling and representation of the species' ecological habitat niche across Australia.
RDF (Refuse Derived Fuel) Utilization in a Navy Stoker Coal-Fired Boiler.
1984-10-01
the energy production in any coal-fired boiler conversion consideration. The selection of the actual RDF to be used in a converted boiler should be... industrial boilers by gathering information from the Navy Energy and Environmental Support Activity, engineering field divi- sions, and field...activities. Currently the Navy has 27 industrial size boilers firing coal as a primary fuel and 10 firing coal as a secondary fuel. The four principal factors
Radiative Characteristics of Aerosol During Extreme Fire Event over Siberia in Summer 2012
NASA Technical Reports Server (NTRS)
Zhuravleva, Tatiana B.; Kabanov, Dmitriy M.; Nasrtdinov, Ilmir M.; Russkova, Tatiana V.; Sakerin, Sergey M.; Smirnov, Alexander; Holben, Brent N.
2017-01-01
Microphysical and optical properties of aerosol were studied during a mega-fire event in summer 2012 over Siberia using ground-based measurements of spectral solarradiation at the AERONET site in Tomsk and satellite observations. The data were analyzed using multi-year (2003-2013) measurements of aerosol characteristics under back-ground conditions and for less intense fires, differing in burning biomass type, stage of fire, remoteness from observation site, etc. (ordinary smoke). In June-August 2012, the average aerosol optical depth (AOD, 500 nm) had been 0.95+/-0.86, about a factor of 6 larger than background values (0.16+/-0.08), and a factor of 2.5 larger than in ordinary smoke. The AOD values were extremely high on 24-28 July and reached 3-5. A comparison with satellite observations showed that ground-based measurements in the region of Tomsk not only reflect the local AOD features, but are also characteristic for the territory of Western Siberia as a whole. Single scattering albedo (SSA, 440 nm) in this period ranged from 0.91 to 0.99 with an average of approx. 0.96 in the entire wavelength range of 440-1020 nm. The increase in absorptance of aerosol particles (SSA(440 nm)=0.92) and decrease in SSA with wavelength observed in ordinary smoke agree with the data from multi-year observations in analogous situations in the boreal zone of USA and Canada. Volume aerosol size distribution in extreme and ordinary smoke had a bimodal character with significant prevalence of fine-mode particles, but in summer 2012 the mean median radius and the width of the fine-mode distribution somewhat increased. In contrast to data from multi-year observations, in summer 2012 an increase in the volume concentration and median radius of the coarse mode was observed with growing AOD.
C. Yue; P. Ciais; P. Cadule; K. Thonicke; S. Archibald; B. Poulter; W. M. Hao; S. Hantson; F. Mouillot; P. Friedlingstein; F. Maignan; N. Viovy
2014-01-01
Fire is an important global ecological process that influences the distribution of biomes, with consequences for carbon, water, and energy budgets. Therefore it is impossible to appropriately model the history and future of the terrestrial ecosystems and the climate system without including fire. This study incorporates the process-based prognostic fire module SPITFIRE...
Climate change, fire management, and ecological services in the southwestern US
Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.
2014-01-01
The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem services. We conclude with an assessment of the role of fire management in an increasingly flammable Southwest.
Materials Science Research Rack-1 Fire Suppressant Distribution Test Report
NASA Technical Reports Server (NTRS)
Wieland, P. O.
2002-01-01
Fire suppressant distribution testing was performed on the Materials Science Research Rack-1 (MSRR-1), a furnace facility payload that will be installed in the U.S. Lab module of the International Space Station. Unlike racks that were tested previously, the MSRR-1 uses the Active Rack Isolation System (ARIS) to reduce vibration on experiments, so the effects of ARIS on fire suppressant distribution were unknown. Two tests were performed to map the distribution of CO2 fire suppressant throughout a mockup of the MSRR-1 designed to have the same component volumes and flowpath restrictions as the flight rack. For the first test, the average maximum CO2 concentration for the rack was 60 percent, achieved within 45 s of discharge initiation, meeting the requirement to reach 50 percent throughout the rack within 1 min. For the second test, one of the experiment mockups was removed to provide a worst-case configuration, and the average maximum CO2 concentration for the rack was 58 percent. Comparing the results of this testing with results from previous testing leads to several general conclusions that can be used to evaluate future racks. The MSRR-1 will meet the requirements for fire suppressant distribution. Primary factors that affect the ability to meet the CO2 distribution requirements are the free air volume in the rack and the total area and distribution of openings in the rack shell. The length of the suppressant flowpath and degree of tortuousness has little correlation with CO2 concentration. The total area of holes in the rack shell could be significantly increased. The free air volume could be significantly increased. To ensure the highest maximum CO2 concentration, the PFE nozzle should be inserted to the stop on the nozzle.
14 CFR 23.1195 - Fire extinguishing systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., and the discharge distribution must be adequate to extinguish fires. An individual “one shot” system... to extinguish fires. An individual “one shot” system may be used, except for engine(s) embedded in the fuselage, where a “two shot” system is required. ...
Informing the network: Improving communication with interface communities during wildland fire
Taylor, J.G.; Gillette, S.C.; Hodgson, R.W.; Downing, J.L.; Burns, M.R.; Chavez, D.J.; Hogan, J.T.
2007-01-01
An interagency research team studied fire communications that took place during different stages of two wildfires in southern California: one small fire of short duration and one large fire of long duration. This "quick- response" research showed that pre-fire communication planning was particularly effective for smaller fire events and parts of that planning proved invaluable for the large fire event as well. Information seeking by the affected public relied on locally convenient sources during the small fire. During the large fire, widespread evacuations disrupted many of the local informal communication networks. Residents' needs were for "real-time, " place-specific information: precise location, severity, size, and direction of spread of the fires. Fire management agencies must contribute real-time, place-specific fire information when it is most needed by the affected public, as they try to make sense out of the chaos of a wildland fire. Disseminating fire information as broadly as possible through multiple pathways will maximize the probability of the public finding the information they need. ?? Society for Human Ecology.
Arbellay, Estelle; Stoffel, Markus; Sutherland, Elaine K; Smith, Kevin T; Falk, Donald A
2014-08-01
Fire scars have been widely used as proxies for the reconstruction of fire history; however, little is known about the impact of fire injury on wood anatomy. This study investigates changes in tracheid and ray traits in fire scars of Douglas fir (Pseudotsuga menziesii), western larch (Larix occidentalis) and ponderosa pine (Pinus ponderosa), and discusses their ecophysiological implications for tree recovery from fire. Transverse and tangential microsections were prepared for light microscopy and image analysis. Measurements of tracheids and rays were made in the three spatial dimensions: axially (at different section heights), radially (in different rings) and tangentially (with increasing distance from the wound margin). Changes were strongest in the first year after fire injury, with a decrease in tracheid size (by 25-30 %) and an increase in tracheid density (by 21-53 %) for the three species. In addition, an increase in ray size (by 5-27 %) and an increase in ray density (by 19-36 %) were found in P. menziesii and L. occidentalis. Changes were comparable along the fire-injured stem and were often most marked close to the fire scar. The differentiation after fire injury of narrower and more numerous tracheids expresses a trade-off between hydraulic safety and hydraulic efficiency, while that of larger and more numerous rays serves compartmentalization and wound closure, mechanical strength and defence responses. Pinus ponderosa does not generally produce more ray tissue after fire injury and thus appears to be more adapted to fire. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
SCAR-B fires in the tropics: Properties and remote sensing from EOS-MODIS
NASA Astrophysics Data System (ADS)
Kaufman, Yoram J.; Kleidman, Richard G.; King, Michael D.
1998-12-01
Two moderate resolution imaging spectroradiometer (MODIS) instruments are planned for launch in 1999 and 2000 on the NASA Earth Observing System (EOS) AM-1 and EOS PM-1 satellites. The MODIS instrument will sense fires with designated 3.9 and 11 μm channels that saturate at high temperatures (450 and 400 K, respectively). MODIS data will be used to detect fires, to estimate the rate of emission of radiative energy from the fire, and to estimate the fraction of biomass burned in the smoldering phase. The rate of emission of radiative energy is a measure of the rate of combustion of biomass in the fires. In the Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment the NASA ER-2 aircraft flew the MODIS airborne simulator (MAS) to measure the fire thermal and mid-IR signature with a 50 m spatial resolution. These data are used to observe the thermal properties and sizes of fires in the cerrado grassland and Amazon forests of Brazil and to simulate the performance of the MODIS 1 km resolution fire observations. Although some fires saturated the MAS 3.9 μm channel, all the fires were well within the MODIS instrument saturation levels. Analysis of MAS data over different ecosystems, shows that the fire size varied from single MAS pixels (50×50 m) to over 1 km2. The 1×1 km resolution MODIS instrument can observe only 30-40% of these fires, but the observed fires are responsible for 80 to nearly 100% of the emitted radiative energy and therefore for 80 to 100% of the rate of biomass burning in the region. The rate of emission of radiative energy from the fires correlated very well with the formation of fire burn scars (correlation coefficient = 0.97). This new remotely sensed quantity should be useful in regional estimates of biomass consumption.
Evaluated community fire safety interventions in the United States: a review of current literature.
Ta, Van M; Frattaroli, Shannon; Bergen, Gwendolyn; Gielen, Andrea Carlson
2006-06-01
The purpose of the study was to assess the state of fire prevention research, provide an updated synthesis of evaluated fire prevention programs, and discuss the role of fire fighters and data systems in prevention efforts. The review included all evaluations of U.S. based fire prevention interventions published between January 1998 and September 2004 and any earlier articles about U.S. fire prevention interventions not included in two prior review articles. We retrieved information from each identified study including evaluation findings, involvement of fire service personnel and use of existing data systems. We identified twelve articles: seven reported on smoke alarm interventions, three on multi-faceted programs, and two other programs. Five programs involved fire service personnel in the design, implementation, and/or evaluation, and three used existing data systems. Studies reviewed suggest that canvassing and smoke alarm installations are the most effective means of distributing alarms and increasing the functional status of distributed alarms. The functionality of smoke alarms, an issue noted in earlier reviews, remains a problem. Programs involving partnerships with fire departments have indicated success in preventing fires and deaths, improving smoke alarm ownership and functional status, and improving children's fire safety knowledge. Using existing data systems to target and to evaluate interventions was effective. In the years since prior reviews, some improvements in the rigor of evaluation designs have been made, but there is still a need for high quality evaluations that will inform fire injury prevention efforts.
Income, housing, and fire injuries: a census tract analysis.
Shai, Donna
2006-01-01
This study investigates the social and demographic correlates of nonfatal structural fire injury rates for the civilian population for Philadelphia census tracts during 1993-2001. The author analyzed 1,563 fire injuries by census tract using the 1990 census (STF 3) and unpublished data from the Office of the Fire Marshal of the Philadelphia Fire Department. Injury rates were calculated per 1,000 residents of a given census tract. Multiple regression was used to determine significant variables in predicting fire injuries in a given census tract over a nine-year period and interaction effects between two of these variables-age of housing and income. Multiple regression analysis indicates that older housing (prior to 1940), low income, the prevalence of vacant houses, and the ability to speak English have significant independent effects on fire injury rates in Philadelphia. In addition, the results show a significant interaction between older housing and low income. Given the finding of very high rates of fire injuries in census tracts that are both low income and have older housing, fire prevention units can take preventative measures. Fire protection devices, especially smoke alarms, should be distributed in the neighborhoods most at risk. Multiple occupancy dwellings should have sprinkler systems and fire extinguishers. Laws concerning the maintenance of older rental housing need to be strictly enforced. Vacant houses should be effectively boarded up or renovated for residential use. Fire prevention material should be distributed in a number of languages to meet local needs.
DiGuiseppi, Carolyn; Roberts, Ian; Wade, Angie; Sculpher, Mark; Edwards, Phil; Godward, Catherine; Pan, Huiqi; Slater, Suzanne
2002-01-01
Objective To measure the effect of giving out free smoke alarms on rates of fires and rates of fire related injury in a deprived multiethnic urban population. Design Cluster randomised controlled trial. Setting Forty electoral wards in two boroughs of inner London, United Kingdom. Participants Primarily households including elderly people or children and households that are in housing rented from the borough council. Intervention 20 050 smoke alarms, fittings, and educational brochures distributed free and installed on request. Main outcome measures Rates of fires and related injuries during two years after the distribution; alarm ownership, installation, and function. Results Giving out free smoke alarms did not reduce injuries related to fire (rate ratio 1.3; 95% confidence interval 0.9 to 1.9), admissions to hospital and deaths (1.3; 0.7 to 2.3), or fires attended by the fire brigade (1.1; 0.96 to 1.3). Similar proportions of intervention and control households had installed alarms (36/119 (30%) v 35/109 (32%); odds ratio 0.9; 95% confidence interval 0.5 to 1.7) and working alarms (19/118 (16%) v 18/108 (17%); 0.9; 0.4 to 1.8). Conclusions Giving out free smoke alarms in a deprived, multiethnic, urban community did not reduce injuries related to fire, mostly because few alarms had been installed or were maintained. What is already known on this topicIn the United Kingdom, residential fires caused 466 deaths and 14 600 non-fatal injuries in 1999The risk of death from fire is associated with socioeconomic classOne study reported an 80% decline in hospitalisations and deaths from residential fires after free smoke alarms were distributed in an area at high risk, but these results may not apply in other settings, and evidence from randomised controlled trials is lackingWhat this study addsGiving out free smoke alarms in a multiethnic poor urban population did not reduce injuries related to fire or firesGiving smoke alarms away may be a waste of resources and of little benefit unless alarm installation and maintenance is assured PMID:12411355
Vertical distribution of aerosols over the Maritime Continent during El Niño
NASA Astrophysics Data System (ADS)
Blake Cohen, Jason; Loong Ng, Daniel Hui; Lun Lim, Alan Wei; Chua, Xin Rong
2018-05-01
The vertical distribution of aerosols over Southeast Asia, a critical factor impacting aerosol lifetime, radiative forcing, and precipitation, is examined for the 2006 post El Niño fire burning season. Combining these measurements with remotely sensed land, fire, and meteorological measurements, and fire plume modeling, we have reconfirmed that fire radiative power (FRP) is underestimated over Southeast Asia by MODIS measurements. These results are derived using a significantly different approach from other previously attempted approaches found in the literature. The horizontally constrained Maritime Continent's fire plume median height, using the maximum variance of satellite observed aerosol optical depth as the spatial and temporal constraint, is found to be 2.04 ± 1.52 km during the entirety of the 2006 El Niño fire season, and 2.19±1.50 km for October 2006. This is 0.83 km (0.98 km) higher than random sampling and all other past studies. Additionally, it is determined that 61 (+6-10) % of the bottom of the smoke plume and 83 (+8-11) % of the median of the smoke plume is in the free troposphere during the October maximum; while 49 (+7-9) % and 75 (+12-12) % of the total aerosol plume and the median of the aerosol plume, are correspondingly found in the free troposphere during the entire fire season. This vastly different vertical distribution will have impacts on aerosol lifetime and dispersal. Application of a simple plume rise model using measurements of fire properties underestimates the median plume height by 0.26 km over the entire fire season and 0.34 km over the maximum fire period. It is noted that the model underestimation over the bottom portions of the plume are much larger. The center of the plume can be reproduced when fire radiative power is increased by 20 % (with other parts of the plume ranging from an increase of 0 to 60 % depending on the portion of the plume and the length of the fire season considered). However, to reduce the biases found, improvements including fire properties under cloudy conditions, representation of small-scale convection, and inclusion of aerosol direct and semi-direct effects are required.
An Active Fire Temperature Retrieval Model Using Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Quigley, K. W.; Roberts, D. A.; Miller, D.
2017-12-01
Wildfire is both an important ecological process and a dangerous natural threat that humans face. In situ measurements of wildfire temperature are notoriously difficult to collect due to dangerous conditions. Imaging spectrometry data has the potential to provide some of the most accurate and highest temporally-resolved active fire temperature retrieval information for monitoring and modeling. Recent studies on fire temperature retrieval have used have used Multiple Endmember Spectral Mixture Analysis applied to Airborne Visible applied to Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) bands to model fire temperatures within the regions marked to contain fire, but these methods are less effective at coarser spatial resolutions, as linear mixing methods are degraded by saturation within the pixel. The assumption of a distribution of temperatures within pixels allows us to model pixels with an effective maximum and likely minimum temperature. This assumption allows a more robust approach to modeling temperature at different spatial scales. In this study, instrument-corrected radiance is forward-modeled for different ranges of temperatures, with weighted temperatures from an effective maximum temperature to a likely minimum temperature contributing to the total radiance of the modeled pixel. Effective maximum fire temperature is estimated by minimizing the Root Mean Square Error (RMSE) between modeled and measured fires. The model was tested using AVIRIS collected over the 2016 Sherpa Fire in Santa Barbara County, California,. While only in situ experimentation would be able to confirm active fire temperatures, the fit of the data to modeled radiance can be assessed, as well as the similarity in temperature distributions seen on different spatial resolution scales. Results show that this model improves upon current modeling methods in producing similar effective temperatures on multiple spatial scales as well as a similar modeled area distribution of those temperatures.
Callcott, Anne-Marie A.; Porter, Sanford D.; Weeks, Ronald D.; “Fudd” Graham, L. C.; Johnson, Seth J.; Gilbert, Lawrence E.
2011-01-01
Natural enemies of the imported fire ants, Solenopsis invicta Buren S. richteri Forel (Hymenoptera: Formicidae), and their hybrid, include a suite of more than 20 fire ant decapitating phorid flies from South America in the genus Pseudacteon. Over the past 12 years, many researchers and associates have cooperated in introducing several species as classical or self-sustaining biological control agents in the United States. As a result, two species of flies, Pseudacteon tricuspis Borgmeier and P. curvatus Borgmeier (Diptera: Phoridae), are well established across large areas of the southeastern United States. Whereas many researchers have published local and state information about the establishment and spread of these flies, here distribution data from both published and unpublished sources has been compiled for the entire United States with the goal of presenting confirmed and probable distributions as of the fall of 2008. Documented rates of expansion were also used to predict the distribution of these flies three years later in the fall of 2011. In the fall of 2008, eleven years after the first successful release, we estimate that P. tricuspis covered about 50% of the fire ant quarantined area and that it will occur in almost 65% of the quarantine area by 2011. Complete coverage of the fire ant quarantined area will be delayed or limited by this species' slow rate of spread and frequent failure to establish in more northerly portions of the fire ant range and also, perhaps, by its preference for red imported fire ants (S. invicta). Eight years after the first successful release of P. curvatus, two biotypes of this species (one biotype occurring predominantly in the black and hybrid imported fire ants and the other occurring in red imported fire ants) covered almost 60% of the fire ant quarantined area. We estimate these two biotypes will cover almost 90% of the quarantine area by 2011 and 100% by 2012 or 2013. Strategic selection of several distributional gaps for future releases will accelerate complete coverage of quarantine areas. However, some gaps may be best used for the release of additional species of decapitating flies because establishment rates may be higher in areas without competing species. PMID:21526930
Effect of Particle Size Distribution on Wall Heat Flux in Pulverized-Coal Furnaces and Boilers
NASA Astrophysics Data System (ADS)
Lu, Jun
A mathematical model of combustion and heat transfer within a cylindrical enclosure firing pulverized coal has been developed and tested against two sets of measured data (one is 1993 WSU/DECO Pilot test data, the other one is the International Flame Research Foundation 1964 Test (Beer, 1964)) and one independent code FURN3D from the Argonne National Laboratory (Ahluwalia and IM, 1992). The model called PILC assumes that the system is a sequence of many well-stirred reactors. A char burnout model combining diffusion to the particle surface, pore diffusion, and surface reaction is employed for predicting the char reaction, heat release, and evolution of char. The ash formation model included relates the ash particle size distribution to the particle size distribution of pulverized coal. The optical constants of char and ash particles are calculated from dispersion relations derived from reflectivity, transmissivity and extinction measurements. The Mie theory is applied to determine the extinction and scattering coefficients. The radiation heat transfer is modeled using the virtual zone method, which leads to a set of simultaneous nonlinear algebraic equations for the temperature field within the furnace and on its walls. This enables the heat fluxes to be evaluated. In comparisons with the experimental data and one independent code, the model is successful in predicting gas temperature, wall temperature, and wall radiative flux. When the coal with greater fineness is burnt, the particle size of pulverized coal has a consistent influence on combustion performance: the temperature peak was higher and nearer to burner, the radiation flux to combustor wall increased, and also the absorption and scattering coefficients of the combustion products increased. The effect of coal particle size distribution on absorption and scattering coefficients and wall heat flux is significant. But there is only a small effect on gas temperature and fuel fraction burned; it is speculated that this may be a characteristic special to the test combustor used.
Large-scale patterns of forest fire occurrence in the Conterminous United States and Alaska, 2001-08
Kevin M. Potter
2012-01-01
Wildland fire represents an important ecological mechanism in many forest ecosystems. It shapes the distributions of species, maintains the structure and function of fire-prone communities, and is a significant evolutionary force (Bond and Keeley 2005). At the same time, fire outside the historic range of frequency and intensity can have extensive economic and...
Large-scale patterns of forest fire occurrence in the conterminous United States and Alaska, 2009
Kevin M. Potter
2013-01-01
Wildland fire represents an important ecological mechanism in many forest ecosystems. It shapes the distributions of species, maintains the structure and function of fire-prone communities, and is a significant evolutionary force (Bond and Keeley 2005). At the same time, fire outside the historic range of frequency and intensity can have extensive economic and...
FIRE's Guide to Free Speech on Campus. Second Edition. FIRE's Guides to Student Rights on Campus
ERIC Educational Resources Information Center
Silverglate, Harvey A.; French, David; Lukianoff, Greg
2012-01-01
Since its first publication in 2005, the Foundation for Individual Rights in Education (FIRE) has distributed more than 138,000 print and online copies of its "Guide to Free Speech on Campus." In that time, FIRE's commitment to advocating on behalf of the essential rights discussed in the pages that follow has remained unwavering;…