40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2010 CFR
2010-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2011 CFR
2011-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility...-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... Activities; Submission to OMB for Review and Approval; Comment Request; NSPS for Fossil Fuel Fired Steam... www.regulations.gov . Title: NSPS for Fossil Fuel Fired Steam Generating Units(Renewal). ICR Numbers.... Respondents/Affected Entities: Owners or operators of fossil fuel fired steam generating units. Estimated...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired... 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities. 921150 Fossil...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-16
... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility... Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial... electric utility steam generating units (EGUs) and standards of performance for fossil-fuel-fired electric...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-19
... Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial... before March 1, 2005, means a 24-hour period during which fossil fuel is combusted in a steam-generating...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Applicability. The provisions of this section shall apply to each owner or operator of the fossil fuel-fired... the fossil fuel-fired, steam-generating equipment at the NGS, or the auxiliary steam boilers at the... of fires in the boiler with fuel oil, to the time when the electrostatic precipitator is sufficiently...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Applicability. The provisions of this section shall apply to each owner or operator of the fossil fuel-fired... the fossil fuel-fired, steam-generating equipment at the NGS, or the auxiliary steam boilers at the... of fires in the boiler with fuel oil, to the time when the electrostatic precipitator is sufficiently...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Applicability. The provisions of this section shall apply to each owner or operator of the fossil fuel-fired... the fossil fuel-fired, steam-generating equipment at the NGS, or the auxiliary steam boilers at the... of fires in the boiler with fuel oil, to the time when the electrostatic precipitator is sufficiently...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired electric utility steam...
40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2012 CFR
2012-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired... fossil fuel. If the affected facility (i.e. heat recovery steam generator) is subject to this subpart...
40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2014 CFR
2014-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired... fossil fuel. If the affected facility (i.e. heat recovery steam generator) is subject to this subpart...
40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2011 CFR
2011-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired...) heat input of fossil fuel. If the heat recovery steam generator is subject to this subpart, only...
40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired...) heat input of fossil fuel. If the heat recovery steam generator is subject to this subpart, only...
40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2013 CFR
2013-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired... fossil fuel. If the affected facility (i.e. heat recovery steam generator) is subject to this subpart...
An experimental study was conducted to determine the reliability of the Method 5 procedure for providing particulate emission data from an oil-fired steam generator. The study was concerned with determining whether any 'false' particulate resulted from the collection process of f...
40 CFR 60.45Da - Standard for mercury (Hg).
Code of Federal Regulations, 2010 CFR
2010-07-01
...-fired electric utility steam generating unit that burns only lignite, you must not discharge into the... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Electric Utility... for mercury (Hg). (a) For each coal-fired electric utility steam generating unit other than an IGCC...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... having the primary purpose of recovering thermal energy in the form of steam or hot water. Controlled... the energy assessment. Electric utility steam generating unit (EGU) means a fossil fuel-fired... for sale. A fossil fuel-fired unit that cogenerates steam and electricity and supplies more than one...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... having the primary purpose of recovering thermal energy in the form of steam or hot water. Controlled... the energy assessment. Electric utility steam generating unit (EGU) means a fossil fuel-fired... for sale. A fossil fuel-fired unit that cogenerates steam and electricity and supplies more than one...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17, 1971 § 60... provisions of this subpart apply are: (1) Each fossil-fuel-fired steam generating unit of more than 73 megawatts (MW) heat input rate (250 million British thermal units per hour (MMBtu/hr)). (2) Each fossil-fuel...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17, 1971 § 60... provisions of this subpart apply are: (1) Each fossil-fuel-fired steam generating unit of more than 73 megawatts (MW) heat input rate (250 million British thermal units per hour (MMBtu/hr)). (2) Each fossil-fuel...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... controlled flame combustion and having the primary purpose of recovering thermal energy in the form of steam... on its floor. Electric utility steam generating unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that produces electricity for sale. A fossil fuel-fired...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... controlled flame combustion and having the primary purpose of recovering thermal energy in the form of steam... on its floor. Electric utility steam generating unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that produces electricity for sale. A fossil fuel-fired...
40 CFR 51.308 - Regional haze program requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for fossil-fuel fired power plants having a total generating capacity greater than 750 megawatts must...-eligible fossil fuel-fired steam electric plants in the State to install, operate, and maintain BART for... fossil fuel-fired steam electric plants in the State to install, operate, and maintain BART for the...
40 CFR 51.308 - Regional haze program requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for fossil-fuel fired power plants having a total generating capacity greater than 750 megawatts must...-eligible fossil fuel-fired steam electric plants in the State to install, operate, and maintain BART for... fossil fuel-fired steam electric plants in the State to install, operate, and maintain BART for the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...
Code of Federal Regulations, 2014 CFR
2014-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...
Code of Federal Regulations, 2013 CFR
2013-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... gas to a steam generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more...
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
40 CFR 52.1170 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... compounds form existing automobile, truck, and business machine plastic part coating lines 4/27/93 9/7/94... Continuous emission monitoring, fossil fuel-fired steam generators 3/19/02 6/1/06, 71 FR 31093 R 336.2102... 336.2175 Data reduction procedures for fossil fuel-fired steam generators 11/15/04 6/1/06, 71 FR 31093...
40 CFR 52.145 - Visibility protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... paragraph is applicable to the fossil fuel-fired, steam-generating equipment designated as Units 1, 2, and 3... applicable. Unit-Week of Maintenance means a period of 7 days during which a fossil fuel-fired steam... means million British thermal unit(s). Operating hour means any hour that fossil fuel is fired in the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... Emission Standards for Hazardous Air Pollutants From Coal- and Oil-Fired Electric Utility Steam Generating...-Institutional, and Small Industrial-Commercial- Institutional Steam Generating Units Correction Proposed rule...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of creating useful heat. Fossil fuel and wood residue-fired steam... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators § 60.41...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of creating useful heat. Fossil fuel and wood residue-fired steam... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators § 60.41...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of creating useful heat. Fossil fuel and wood residue-fired steam... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators § 60.41...
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
40 CFR 52.2087 - Original identification of plan section.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Content in Fuels” and 13, “Particulate Emissions from Fossil Fired Steam or Hot Water Generating Units..., “Sulfur Content of Fuels” and 13, “Particulate Emissions from Fossil Fuel Fired Steam or Hot Water... incorporated by reference in its present form on July 6, 1984 at paragraph (c)(22), above. The entire...
40 CFR 52.145 - Visibility protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... paragraph is applicable to the fossil fuel-fired, steam-generating equipment designated as Units 1, 2, and 3... applicable. Unit-Week of Maintenance means a period of 7 days during which a fossil fuel-fired steam... operator shall discharge or cause the discharge of sulfur oxides into the atmosphere in excess of 42 ng/J...
40 CFR 52.145 - Visibility protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... paragraph is applicable to the fossil fuel-fired, steam-generating equipment designated as Units 1, 2, and 3... applicable. Unit-Week of Maintenance means a period of 7 days during which a fossil fuel-fired steam... operator shall discharge or cause the discharge of sulfur oxides into the atmosphere in excess of 42 ng/J...
Feasibility of a medium-size central cogenerated energy facility, energy management memorandum
NASA Astrophysics Data System (ADS)
Porter, R. W.
1982-09-01
The thermal-economic feasibility was studied of a medium-size central cogenerated energy facility designed to serve five varied industries. Generation options included one dual-fuel diesel and one gas turbine, both with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired-boiler cases, also low-sulphur coal and municipal refuse. The fired-boiler cogeneration systems employed back-pressure steam turbines. For coal and refuse, the option of steam only without cogeneration was also assessed. The refuse-fired cases utilized modular incinerators. The options provided for a wide range of steam and electrical capacities. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which could be displaced was assumed sold to Commonwealth Edison Company under PURPA (Public Utility Regulator Policies Act). The facility was assumed operated by a mutually owned corporation formed by the cogenerated power users. The economic analysis was predicted on currently applicable energy-investment tax credits and accelerated depreciation for a January 1985 startup date. Based on 100% equity financing, the results indicated that the best alternative was the modular-incinerator cogeneration system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more efficient...
Code of Federal Regulations, 2010 CFR
2010-07-01
... that 12-month period at the maximum design heat input capacity. In the case of steam generating units... generating unit. Combustion research means the experimental firing of any fuel or combination of fuels in a steam generating unit for the purpose of conducting research and development of more efficient...
Supplementary steam - A viable hydrogen power generation concept
NASA Technical Reports Server (NTRS)
Wright, D. E.; Lee, J. C.
1979-01-01
Technical and economic aspects of a supplementary steam generation for peaking power applications are discussed. Preliminary designs of the hydrogen/oxygen combustors to be used for such applications are described. The integration of the hydrogen/oxygen steam-generating equipment into a typical coal-fired steam station is studied. The basic steam generation system was designed as a 20 MW supplementary system to be added to the existing 160 MW system. An analysis of the operating and design requirements of the supplementary system is conducted. Estimates were made for additional steam and fuel supply lines and for additional control required to operate the combustors and to integrate the combustor system into the facility.
2011-09-15
E-2 Test Stand team members at Stennis Space Center conducted their first series of tests on a three-module chemical steam generator unit Sept. 15. All three modules successfully fired during the tests. The chemical steam generator is a critical component for the A-3 Test Stand under construction at Stennis.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-01
...- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel... Performance for Fossil-Fuel- Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiter, C.
1998-07-01
The use of coal power generation applications is currently enjoying a renaissance. New highly efficient and cost-effective plant concepts together with environmental protection technologies are the main factors in this development. In addition, coal is available on the world market at attractive prices and in many places it is more readily available than gas. At the economical leading edge, standard power plant concepts have been developed to meet the requirements of emerging power markets. These concepts incorporate the high technological state-of-the-art and are designed to achieve lowest life-cycle costs. Low capital cost, fuel costs and operating costs in combination withmore » shortest lead times are the main assets that make these plants attractive especially for IPPs and Developers. Other aspects of these comprehensive concepts include turnkey construction and the willingness to participate in BOO/BOT projects. One of the various examples of such a concept, the 2 x 610-MW Paiton Private Power Project Phase II in Indonesia, is described in this paper. At the technological leading edge, Siemens has always made a major contribution and was pacemaker for new developments in steam power plant technology. Modern coal-fired steam power plants use computer-optimized process and plant design as well as advanced materials, and achieve efficiencies exceeding 45%. One excellent example of this high technology is the world's largest lignite-fired steam power plant Schwarze Pumpe in Germany, which is equipped with two 800 MW Siemens steam turbine generators with supercritical steam parameters. The world's largest 50-Hz single-shaft turbine generator with supercritical steam parameters rated at 1025 MW for the Niederaussem lignite-fired steam power plant in Germany is a further example of the sophisticated Siemens steam turbine technology and sets a new benchmark in this field.« less
Breckinridge Project, initial effort
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-01-01
The project cogeneration plant supplies electric power, process steam and treated boiler feedwater for use by the project plants. The plant consists of multiple turbine generators and steam generators connected to a common main steam header. The major plant systems which are required to produce steam, electrical power and treated feedwater are discussed individually. The systems are: steam, steam generator, steam generator fuel, condensate and feedwater deaeration, condensate and blowdown collection, cooling water, boiler feedwater treatment, coal handling, ash handling (fly ash and bottom ash), electrical, and control system. The plant description is based on the Phase Zero design basismore » established for Plant 31 in July of 1980 and the steam/condensate balance as presented on Drawing 31-E-B-1. Updating of steam requirements as more refined process information becomes available has generated some changes in the steam balance. Boiler operation with these updated requirements is reflected on Drawing 31-D-B-1A. The major impact of updating has been that less 600 psig steam generated within the process units requires more extraction steam from the turbine generators to close the 600 psig steam balance. Since the 900 psig steam generation from the boilers was fixed at 1,200,000 lb/hr, the additional extraction steam required to close the 600 psig steam balance decreased the quantity of electrical power available from the turbine generators. In the next phase of engineering work, the production of 600 psig steam will be augmented by increasing convection bank steam generation in the Plant 3 fired heaters by 140,000 to 150,000 lb/hr. This modification will allow full rated power generation from the turbine generators.« less
75 FR 33238 - Basin Electric Power Cooperative: Deer Creek Station
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
... include a new natural gas-fired combustion turbine set, a heat recovery steam generator (HRSG), and a steam turbine generator set. DATES: Written comments on this Final EIS will be accepted on or before... at: http://www.usda.gov/rus/water/ees/eis.htm . Copies of the Final EIS will also be available for...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-28
...-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial... copy form. The hearing schedules, including lists of speakers, will be posted on EPA's Web Sites http...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuehn, S.E.
1995-03-01
This article examines why the diesel engine is a very attractive choice for producing power in the combined-cycle configuration. The medium-speed diesel is already one of the most efficient simple cycle sources of electricity, especially with lower grade fuels. Large units have heat-rate efficiencies as high as 45%, equating to a heat rate of 7,580 Btu/k Whr, and no other power production prime mover can match this efficiency. Diesels also offer designers fuel flexibility and can burn an extreme variety of fuels without sacrificing many of its positive operating attributes. Diesels are the first building block in a highly efficientmore » combined cycle system that relies on the hot gas and oxygen in the diesel`s exhaust to combust either natural gas, light distillate oil, heavy oil or coal, in a boiler. By using a fired boiler, steam can be generated at sufficient temperature and pressure to operate a Rankine steam cycle efficiently. Diesel combined-cycle plants can be configured in much the same way a gas turbine plant would be. However, the diesel combined-cycle scheme requires supplemental firing to generate appropriate steam conditions. The most efficient cycle, therefore, would not be achieved until combustion air and supplemental fuel are minimized to levels that satisfy steam conditions, steam generation and power generation constraints.« less
Thermodynamic analysis of a new conception of supplementary firing in a combined cycle
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Bartela, Łukasz; Balicki, Adrian
2010-10-01
The paper analyzes a new concept of integration of combined cycle with the installation of supplementary firing. The whole system was enclosed by thermodynamic analysis, which consists of a gas-steam unit with triple-pressure heat recovery steam generator. The system uses a determined model of the gas turbine and the assumptions relating to the construction features of steam-water part were made. The proposed conception involves building of supplementary firing installation only on part of the exhaust stream leaving the gas turbine. In the proposed solution superheater was divided into two sections, one of which was located on the exhaust gases leaving the installation of supplementary firing. The paper presents the results of the analyses of which the main aim was to demonstrate the superiority of the new thermodynamic concept of the supplementary firing over the classical one. For this purpose a model of a system was built, in which it was possible to carry out simulations of the gradual transition from a classically understood supplementary firing to the supplementary firing completely modified. For building of a model the GateCycle™ software was used.
46 CFR 35.40-10 - Steam, foam, or CO2 fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Steam, foam, or CO2 fire smothering apparatus-TB/ALL. 35... Posting and Marking Requirements-TB/ALL. § 35.40-10 Steam, foam, or CO2 fire smothering apparatus—TB/ALL. Steam, foam, or CO2 fire smothering apparatus shall be marked “STEAM FIRE APPARATUS” or “FOAM FIRE...
46 CFR 35.40-10 - Steam, foam, or CO2 fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Steam, foam, or CO2 fire smothering apparatus-TB/ALL. 35... Posting and Marking Requirements-TB/ALL. § 35.40-10 Steam, foam, or CO2 fire smothering apparatus—TB/ALL. Steam, foam, or CO2 fire smothering apparatus shall be marked “STEAM FIRE APPARATUS” or “FOAM FIRE...
Feasibility of a small central cogenerated energy facility: Energy management memorandum
NASA Astrophysics Data System (ADS)
Porter, R. N.
1982-10-01
The thermal economic feasibility of a small cogenerated energy facility designed to serve several industries in the Stockyards area was investigated. Cogeneration options included two dual fuel diesels and two gas turbines, all with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired boiler cases, also low sulphur coal and municipal refuse. For coal and refuse, the option of steam only without cogeneration was also assessed. The fired boiler cogeneration systems employed back pressure steam turbines. The refuse fired cases utilized electrical capacities, 8500 to 52,400 lbm/hr and 0 to 9.9 MW (e), respectively. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which was displaced was sold to Commonwealth Edison Company under PURPA (Public Utility Regulatory Policies Act). The facility was operated by a mutually owned corporation formed by the cogenerated power users.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the purpose of providing steam to a steam-electric generator that would produce electrical energy for... divided solid or liquid material, other than uncombined water, as measured by the reference methods..., magnetohydrodynamics, direct and indirect coal-fired turbines, integrated gasification fuel cells, or as determined by...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the purpose of providing steam to a steam-electric generator that would produce electrical energy for... divided solid or liquid material, other than uncombined water, as measured by the reference methods..., magnetohydrodynamics, direct and indirect coal-fired turbines, integrated gasification fuel cells, or as determined by...
Code of Federal Regulations, 2012 CFR
2012-07-01
... the purpose of providing steam to a steam-electric generator that would produce electrical energy for... divided solid or liquid material, other than uncombined water, as measured by the reference methods..., magnetohydrodynamics, direct and indirect coal-fired turbines, integrated gasification fuel cells, or as determined by...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-12
... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial...- and Oil-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial...
Thermal energy storage for power generation applications
NASA Astrophysics Data System (ADS)
Drost, M. K.; Antoniak, Zen I.; Brown, D. R.
1990-03-01
Studies strongly indicate that the United States will face widespread electrical power constraints in the 1990s. In many cases, the demand for increased power will occur during peak and intermediate demand periods. While natural gas is currently plentiful and economically attractive for meeting peak and intermediate loads, the development of a coal-fired peaking option would give utilities insurance against unexpected supply shortages or cost increases. This paper discusses a conceptual evaluation of using thermal energy storage (TES) to improve the economics of coal-fired peak and intermediate load power generation. The use of TES can substantially improve the economic attractiveness of meeting peak and intermediate loads with coal-fired power generation. In this case, conventional pulverized coal combustion equipment is continuously operated to heat molten nitrate salt, which is then stored. During peak demand periods, hot salt is withdrawn from storage and used to generate steam for a Rankine steam power cycle. This allows the coal-fired salt heater to be approximately one-third the size of a coal-fired boiler in a conventional cycling plant. The general impact is to decouple the generation of thermal energy from its conversion to electricity. The present study compares a conventional cycling pulverized coal-fired power plant to a pulverized coal-fired plant using nitrate salt TES. The study demonstrates that a coal-fired salt heater is technically feasible and should be less expensive than a similar coal-fired boiler. The results show the use of nitrate salt TES reduced the levelized cost of power by between 5 and 24 percent, depending on the operating schedule.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-10
... SSF diesel generator during a fire for which the SSF is credited. This modification along with... SSF equipment in the event of a failure of the SSF diesel generator during a fire for which the SSF is... provide water to the steam generators of all three units sufficient to remove decay heat following...
NASA Technical Reports Server (NTRS)
Retallick, F. D.
1980-01-01
Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.
Prospects for the development of coal-steam plants in Russia
NASA Astrophysics Data System (ADS)
Tumanovskii, A. G.
2017-06-01
Evaluation of the technical state of the modern coal-fired power plants and quality of coal consumed by Russian thermal power plants (TPP) is provided. Measures aimed at improving the economic and environmental performance of operating 150-800 MW coal power units are considered. Ways of efficient use of technical methods of NO x control and electrostatic precipitators' upgrade for improving the efficiency of ash trapping are summarized. Examples of turbine and boiler equipment efficiency upgrading through its deep modernization are presented. The necessity of the development and introduction of new technologies in the coal-fired power industry is shown. Basic technical requirements for a 660-800 MW power unit with the steam conditions of 28 MPa, 600/600°C are listed. Design solutions taking into account features of Russian coal combustion are considered. A field of application of circulating fluidized bed (CFB) boilers and their effectiveness are indicated. The results of development of a new generation coal-fired TPP, including a steam turbine with an increased efficiency of the compartments and disengaging clutch, an elevated steam conditions boiler, and a highly efficient NO x /SO2 and ash particles emission control system are provided. In this case, the resulting ash and slag are not to be sent to the ash dumps and are to be used to a maximum advantage. Technical solutions to improve the efficiency of coal gasification combined cycle plants (CCP) are considered. A trial plant based on a 16 MW gas turbine plant (GTP) and an air-blown gasifier is designed as a prototype of a high-power CCP. The necessity of a state-supported technical reequipment and development program of operating coal-fired power units, as well as putting into production of new generation coal-fired power plants, is noted.
40 CFR 63.11237 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or... this definition. Coal subcategory includes any boiler that burns any solid fossil fuel and no more than... included in this definition. Electric utility steam generating unit (EGU) means a fossil fuel-fired...
40 CFR 63.11237 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... controlled flame combustion in which water is heated to recover thermal energy in the form of steam and/or... this definition. Coal subcategory includes any boiler that burns any solid fossil fuel and no more than... included in this definition. Electric utility steam generating unit (EGU) means a fossil fuel-fired...
Code of Federal Regulations, 2013 CFR
2013-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...
40 CFR 51.308 - Regional haze program requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for fossil-fuel fired power plants having a total generating capacity greater than 750 megawatts must...) and (e) of this section. The progress reports must be in the form of implementation plan revisions... Federal Implementation Plan need not require BART-eligible fossil fuel-fired steam electric plants in the...
Coal-Fired Boilers at Navy Bases, Navy Energy Guidance Study, Phase II and III.
1979-05-01
several sizes were performed. Central plants containing four equal-sized boilers and central flue gas desulfurization facilities were shown to be less...Conceptual design and parametric cost studies of steam and power generation systems using coal-fired stoker boilers and stack gas scrubbers in
Credit BG. View looking southwest at Test Stand "D" complex. ...
Credit BG. View looking southwest at Test Stand "D" complex. In the background at left is the Steam Generator Plant 4280/E-81 built in 1972 to house four gas-fired Clayton flash boilers. The boilers were later supplemented by the electrically heated steam accumulator (sphere) to supply steam to the various ejectors at Test Stand "D" vacuum test cells - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
Soviet steam generator technology: fossil fuel and nuclear power plants. [Glossary included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosengaus, J.
1987-01-01
In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins withmore » a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references.« less
Methods to Develop Inhalation Cancer Risk Estimates for ...
This document summarizes the approaches and rationale for the technical and scientific considerations used to derive inhalation cancer risks for emissions of chromium and nickel compounds from electric utility steam generating units. The purpose of this document is to discuss the methods used to develop inhalation cancer risk estimates associated with emissions of chromium and nickel compounds from coal- and oil-fired electric utility steam generating units (EGUs) in support of EPA's recently proposed Air Toxics Rule.
46 CFR 167.55-5 - Marking of fire and emergency equipment.
Code of Federal Regulations, 2013 CFR
2013-10-01
.../2-inch red letters: “General Alarm—When Bell Rings Go to Your Station.” (c) Steam, foam or CO 2 fire smothering apparatus. Steam, foam or CO2 fire smothering apparatus shall be marked “Steam Fire Apparatus” or “Foam Fire Apparatus” or “CO2 Fire Apparatus”, as appropriate, in not less than 2-inch red letters. The...
46 CFR 167.55-5 - Marking of fire and emergency equipment.
Code of Federal Regulations, 2011 CFR
2011-10-01
.../2-inch red letters: “General Alarm—When Bell Rings Go to Your Station.” (c) Steam, foam or CO 2 fire smothering apparatus. Steam, foam or CO2 fire smothering apparatus shall be marked “Steam Fire Apparatus” or “Foam Fire Apparatus” or “CO2 Fire Apparatus”, as appropriate, in not less than 2-inch red letters. The...
46 CFR 167.55-5 - Marking of fire and emergency equipment.
Code of Federal Regulations, 2010 CFR
2010-10-01
.../2-inch red letters: “General Alarm—When Bell Rings Go to Your Station.” (c) Steam, foam or CO 2 fire smothering apparatus. Steam, foam or CO2 fire smothering apparatus shall be marked “Steam Fire Apparatus” or “Foam Fire Apparatus” or “CO2 Fire Apparatus”, as appropriate, in not less than 2-inch red letters. The...
46 CFR 167.55-5 - Marking of fire and emergency equipment.
Code of Federal Regulations, 2012 CFR
2012-10-01
.../2-inch red letters: “General Alarm—When Bell Rings Go to Your Station.” (c) Steam, foam or CO 2 fire smothering apparatus. Steam, foam or CO2 fire smothering apparatus shall be marked “Steam Fire Apparatus” or “Foam Fire Apparatus” or “CO2 Fire Apparatus”, as appropriate, in not less than 2-inch red letters. The...
46 CFR 167.55-5 - Marking of fire and emergency equipment.
Code of Federal Regulations, 2014 CFR
2014-10-01
.../2-inch red letters: “General Alarm—When Bell Rings Go to Your Station.” (c) Steam, foam or CO 2 fire smothering apparatus. Steam, foam or CO2 fire smothering apparatus shall be marked “Steam Fire Apparatus” or “Foam Fire Apparatus” or “CO2 Fire Apparatus”, as appropriate, in not less than 2-inch red letters. The...
THE CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-07-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysismore » production was completed to produce lignin for co-fire testing. During this quarter, TVA completed the washing and dewatering of the lignin material produced from the MSW hydrolysis. Seven drums of lignin material were washed to recover the acid and sugar from the lignin and provide an improved fuel for steam generation. Samples of both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation. After sample evaluation, EERC approved sending the material and all of the necessary fuel for testing was shipped to EERC. EERC has requested and will receive coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio based fuels is scheduled to begin in August of 2001. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam. The preliminary steam price will be determined in the next quarter.« less
Solar process steam for a pharmaceutical company in Jordan
NASA Astrophysics Data System (ADS)
Berger, M.; Mokhtar, M.; Zahler, C.; Al-Najami, M. M. R.; Krüger, D.; Hennecke, K.
2016-05-01
This paper presents details of the recent installation of a linear Fresnel collector to provide saturated steam for process heat usage through Direct Steam Generation (DSG) for industrial use in the Jordanian pharmaceuticals manufacturing company RAM Pharma, where first solar steam has been provided in March 2015. This commercial DSG project also represents the first solar DSG plant in MENA. During sunshine, the system achieves a solar fraction of 100 %, and the conventional steam boiler is not needed. In the evening the fossil fired backup takes over automatically and replaces the solar collector in operation. Operational experience, details of the control strategy, and measurement data are presented in the paper.
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2002-04-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility hydrolysis production has been completed to produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material was used atmore » EERC as baseline material and for mixing with the bio-fuel for combustion testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary co-fire test results indicate that the blending of lignin and bio-solids with the Colbert coal blend generally reduces NO{sub x} emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. The final co-fire testing report is being prepared at EERC and will be completed by the end of the second quarter of 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for the steam supply system was completed. The cost estimate and output and heat rate impacts have been used to determine a preliminary price for the exported steam. TVA is further evaluating the impacts of adding lignin to the coal fuel blend and how the steam cost is impacted by proximity of the Masada biomass facility.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
... Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial- Commercial-Institutional, and... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility.... Electronic files should avoid the use of special characters, any form of encryption, and be free of any...
1. Credit BG. View looking southeast down onto roof and ...
1. Credit BG. View looking southeast down onto roof and the north and west facades of Steam Generator Plant, Building 4280/E-81. Vents on roof were from gas-fired steam generators. Pipes emerging from north facade are for steam. Elevated narrow tray is for electrical cables. To lower left of image (immediate north of 4280/E-81) is concrete-lined pond originally built to neutralize rocket engine exhaust compounds; it was only used as a cooling pond. To the lower right of this image are concrete pads which held two 7,500 gallon feedwater tanks for the boilers in 4280/E-81; these tanks were transferred to another federal space science organization and removed from the JPL compound in 1994. Beyond 4280/E-81 to the upper left is a reclamation pond. ... - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Steam Generator Plant, Edwards Air Force Base, Boron, Kern County, CA
40 CFR 62.4681 - Effective date.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...
40 CFR 62.4681 - Effective date.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...
40 CFR 62.4681 - Effective date.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...
40 CFR 62.4681 - Effective date.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...
40 CFR 62.4681 - Effective date.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Louisiana Mercury Emissions from Coal... the plan applicable to mercury budget units at coal-fired electric steam generating units and coal...
46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Steam, foam, carbon dioxide, or clean agent fire... TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB/ALL. Each steam, foam, carbon dioxide, or clean agent...
46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Steam, foam, carbon dioxide, or clean agent fire... TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB/ALL. Each steam, foam, carbon dioxide, or clean agent...
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-10-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysis production was completed tomore » produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio-based fuels is scheduled to begin in October of 2001. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam.« less
40 CFR 60.4151 - Establishment of accounts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60.4151 Establishment of... obligation to review or evaluate the sufficiency of such documents, if submitted. (2) Authorization of Hg...
Basic Information about Mercury
... Since mercury occurs naturally in coal and other fossil fuels, when people burn these fuels for energy, ... coal-fired boilers in many industries to generate forms of thermal heat like steam The burning of ...
Assessment of steam-injected gas turbine systems and their potential application
NASA Technical Reports Server (NTRS)
Stochl, R. J.
1982-01-01
Results were arrived at by utilizing and expanding on information presented in the literature. The results were analyzed and compared with those for simple gas turbine and combined cycles for both utility power generation and industrial cogeneration applications. The efficiency and specific power of simple gas turbine cycles can be increased as much as 30 and 50 percent, respectively, by the injection of steam into the combustor. Steam-injected gas turbines appear to be economically competitive with both simple gas turbine and combined cycles for small, clean-fuel-fired utility power generation and industrial cogeneration applications. For large powerplants with integrated coal gasifiers, the economic advantages appear to be marginal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Testing and Initial... liquid oil-fired unit, and you use quarterly stack testing for HCl and HF plus site-specific parameter monitoring to demonstrate continuous performance, you must also establish a site-specific operating limit, in...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Testing and Initial... liquid oil-fired unit, and you use quarterly stack testing for HCl and HF plus site-specific parameter monitoring to demonstrate continuous performance, you must also establish a site-specific operating limit, in...
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-04-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of municipal solid waste (MSW) feed material was procured. During this quarter (first quarter of 2001), shredding of the feed material was completedmore » and final feed conditioning was completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. Pilot facility modifications continued to improve facility operations and performance during the first quarter of 2001. Samples of the co-fire fuel material were sent to the co-fire facility for evaluation. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system is being developed.« less
40 CFR 60.4154 - Compliance with Hg budget emissions limitation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Times for Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60.4154 Compliance.... (f) Administrator's action on submissions. (1) The Administrator may review and conduct independent...
40 CFR 60.4154 - Compliance with Hg budget emissions limitation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Times for Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60.4154 Compliance.... (f) Administrator's action on submissions. (1) The Administrator may review and conduct independent...
NASA Technical Reports Server (NTRS)
Smith, M.; Nichols, L. D.; Seikel, G. R.
1974-01-01
Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.
40 CFR 60.4113 - Certificate of representation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Coal-Fired Electric Steam Generating Units Hg Designated Representative for Hg Budget Sources § 60.4113... authority nor the Administrator shall be under any obligation to review or evaluate the sufficiency of such...
40 CFR 60.4113 - Certificate of representation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Coal-Fired Electric Steam Generating Units Hg Designated Representative for Hg Budget Sources § 60.4113... authority nor the Administrator shall be under any obligation to review or evaluate the sufficiency of such...
40 CFR 60.4152 - Responsibilities of Hg authorized account representative.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60... Allowance Tracking System account, all submissions to the Administrator pertaining to the account, including...
1980-06-01
43 3000 TYPICAL MID-1978 COSTS, all overhead included 2000- Type of System: Double alkali flue gas desulfurization plus baghouse particulate removal...Figures 5, 6, and 8 also provide cost estimating data for oil- and natural gas -fired steam turbine systems. Figure 5 shows the steam- generating station of...to the ownership and operation of the system. For systems burning oil or natural gas , fuel will typically constitute 65-90% of the total life cycle
Cogeneration Technology Alternatives Study (CTAS). Volume 1: Summary report
NASA Technical Reports Server (NTRS)
Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.
1980-01-01
Large savings can be made in industry by cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed-cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum-based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules for determining performance and cost in individual plants and on a national level. It was found that: (1) atmospheric and pressurized fluidized bed steam turbine systems were the most attractive of the direct coal-fired systems; and (2) open-cycle gas turbines with heat recovery steam generators and combined-cycles with NO(x) emission reduction and moderately increased firing temperatures were the most attractive of the coal-derived liquid-fired systems.
40 CFR 60.4157 - Closing of general accounts.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60.4157 Closing of general... Tracking System accounts. (b) If a general account has no allowance transfers in or out of the account for...
Multifuel industrial steam generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mesko, J.E.
An inefficient, unreliable steam generation and distribution system at the Red River Army Depot (Texarkana, Tex.), a major industrial facility of the federal government, was replaced with a modern, multifuel-burning steam plant. In the new plant, steam is generated by three high-pressure field-erected boilers burning 100 percent coal, 100 percent refuse, or any combination of the two, while maintaining particulate emissions, SO{sub 2} concentration, and NO{sub x} and chlorine levels at or better than clean air standards. The plant, which has been in operation since 1986, is now part of the Army's Energy/Environment Showcase for demonstrating innovative technology to publicmore » and private operators. When the project began, the Red River depot faced several operational problems. Existing No. 2 oil- and gas- fired boilers in three separate boiler plants were inefficient, unreliable, and difficult to maintain. Extra boilers often had to be leased to provide for needed capacity. In addition, the facility had large quantities of waste to dispose of.« less
Energy Conversion Alternatives Study (ECAS)
NASA Technical Reports Server (NTRS)
1977-01-01
ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.
40 CFR 60.4171 - Initial certification and recertification procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and Compliance Times for Coal-Fired Electric Steam Generating Units Monitoring and Reporting § 60.4171... disapproval under paragraph (c)(3)(iv)(C) of this section. The 120-day review period shall not begin before...
40 CFR 60.4171 - Initial certification and recertification procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and Compliance Times for Coal-Fired Electric Steam Generating Units Monitoring and Reporting § 60.4171... disapproval under paragraph (c)(3)(iv)(C) of this section. The 120-day review period shall not begin before...
40 CFR 52.2070 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fuel fired steam or hot water generating units 10/5/1982 3/29/1983, 48 FR 13026 Air Pollution Control... organic solvent emissions from six paper coating lines. (A) Letter from the RIDEM dated November 5, 1985...
MERCURY SPECIATION AND CAPTURE
In December 2000, the U.S. Environmental Protection Agency (USEPA) announced its intent to regulate mercury emissions from coal-fired electric utility steam generating plants. Maximum achievable control technology (MACT) requirements are to be proposed by December 2003 and finali...
40 CFR 60.4420 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... combustion turbine which recovers heat from the exhaust gases to heat water or another medium, generate steam... turbines used to pump water in the case of fire or flood, etc. Emergency stationary combustion turbines do... mechanical output from the turbine/generator set. For combined heat and power units, the gross useful work...
40 CFR 60.4420 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... combustion turbine which recovers heat from the exhaust gases to heat water or another medium, generate steam... turbines used to pump water in the case of fire or flood, etc. Emergency stationary combustion turbines do... mechanical output from the turbine/generator set. For combined heat and power units, the gross useful work...
40 CFR 52.145 - Visibility protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... paragraph is applicable to the fossil fuel-fired, steam-generating equipment designated as Units 1, 2, and 3... which are subject to the emission limitation in paragraph (d)(2) of this section, that has accumulated...-generating unit is under repair, and no coal is combusted in the unit. (2) Emission limitation. No owner or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-03
Holston Army Ammunition Plant (HSAAP) in Holston, Tennessee, manufactures explosives from raw materials. The facility comprises two separate areas designated Area `A11 and Area 11B`. Each area is served by a steam plant which produces steam for production processes, equipment operation, space heating, domestic water heating, steam tracing, and product storage heating requirements. The purpose of this study is to identify and evaluate the technical and economic feasibility of alternative methods of meeting the steam requirements of the Area 11A11 industrial complex. The following items were specifically requested to be evaluated. Evaluate the use of two new gas-fired packaged boilersmore » sized to meet the requirements of the industrial complex. The new boilers would be installed adjacent to the existing steam plant and would utilize the existing smokestacks and steam distribution system. Evaluate using the existing steam distribution system rather than locating multiple boilers at various sites. Existing steam driven chillers will be replaced with electric driven equipment. Evaluate this impact on the steam system requirements. Field survey and test two existing gas-fired packaged boilers located at the Volunteer Army Ammunition Plant in Chattanooga, Tennessee. The two boilers were last used about 1980 and are presently laid away. The boilers are approximately the same capacity and operating characteristics as the ones at HSAAP. Relocation of the existing boilers and ancillary equipment (feedwater pumps, generators, fans, etc.) would be required as well as repairs or modifications necessary to meet current operating conditions and standards.« less
Experience with 850-MW fossil-fired units in peaking service
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, B.G.
1978-01-01
Experience with the peaking operation of two 850-MW gross generation units at the Martins Creek Steam Electric Station in Pennsylvania is described. The design, operation, and performance of these oil-fueled units are discussed. (LCL)
75 FR 6654 - Agency Information Collection Activities OMB Responses
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
... Establish Mandatory Reporting of Greenhouse Gases (Change: Add two forms); 40 CFR parts 86, 89, 90, 94, 98... Fossil-Fuel-Fired Steam Generating Units; 40 CFR part 60, subpart A and 40 CFR part 60, subpart D; was...
A novel direct-fired porous-medium boiler
NASA Astrophysics Data System (ADS)
Prasartkaew, Boonrit
2018-01-01
Nowadays, power and heat generation systems pay an important role in all economic sectors. These systems are mainly based on combustion reaction and operated under the second law of thermodynamics. A conventional boilers, a main component of heat and power generators, have thermal efficiency in the range of 70 to 85%, mainly owing to they have flue gas heat loss. This paper proposes a novel type of boiler, called a Direct-fired Porous-medium Boiler (DPB). Due to being operated without flue gas heat loss, its thermal efficiency cloud be approximately close to 100%. The steam produced from the proposed boiler; however, is not pure water steam. It is the composite gases of steam and combustion-product-gases. This paper aims at presenting the working concept and reporting the experimental results on the performance of the proposed boiler. The experiments of various operating parameters were performed and collected data were used for the performance analysis. The experimental results demonstrated that the proposed boiler can be operated as well as the conceptual design and then it is promising. It can be possibly further developed to be a high efficiency boiler by means of reducing or suppressing the surface heat loss with better insulator and/or refractory lined.
Liquid-metal magnetohydrodynamic system evaluation. [coal-fired designs
NASA Technical Reports Server (NTRS)
Holman, R. R.; Lippert, T. E.
1976-01-01
The present study emphasizes a direct coal-fired design using a bubbly two-component flow of sodium and argon in the MHD generator and a Rankine steam-bottoming plant. Two basic cycles were studied, corresponding to argon temperatures of 922 and 1089 K at the duct inlet. The MHD duct system consisted of multiple ducts arranged in clusters and separated by iron magnet pole pieces. The ducts, each with an output of about 100 MW, were parallel to the flow, but were connected in series electrically to provide a higher MHD voltage. With channel efficiencies of 80%, a pump efficiency of 90%, and a 45% efficient steam-bottoming plant, the overall efficiency of the 1089 K liquid-metal MHD power plant was 43%.
46 CFR 35.40-10 - Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Steam, foam, carbon dioxide, or clean agent fire smothering apparatus-TB/ALL. 35.40-10 Section 35.40-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Posting and Marking Requirements-TB/ALL § 35.40-10 Steam, foam, carbon dioxide, or clean agent fire smothering apparatus—TB...
46 CFR 167.45-5 - Steam fire pumps or their equivalent.
Code of Federal Regulations, 2010 CFR
2010-10-01
... nautical school ships shall be provided with powerful pumps available for use as fire pumps. When of less... 167.45-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS PUBLIC NAUTICAL SCHOOL SHIPS Special Firefighting and Fire Prevention Requirements § 167.45-5 Steam fire pumps or...
Development of Flexi-Burn™ CFB Power Plant to Meet the Challenge of Climate Change
NASA Astrophysics Data System (ADS)
Hackt, Horst; Fant, Zhen; Seltzert, Andrew; Hotta, Arto; Erikssoni, Timo; Sippu, Ossi
Carbon-dioxide capture and storage (CCS) offers the potential for major reductions in carbon- dioxide emissions of fossil fuel-based power generation in the fairly short term, and oxyfuel combustion is one of the identified CCS technology options. Foster Wheeler (FW) is working on reduction of carbon-dioxide with its integrated Flexi-Burn™ CFB technology. The proven high efficiency circulating fluidized-bed (CFB) technology, when coupled with air separation units and carbon purification units, offers a solution for carbon dioxide reduction both in re-powering and in greenfield power plants. CFB technology has the advantages over pulverized coal technology of a more uniform furnace heat flux, increased fuel flexibility and offers the opportunity to further reduce carbon dioxide emissions by co-firing coal with bio-fuels. Development and design of an integrated Flexi-Bum™ CFB steam generator and balance of plant system was conducted for both air mode and oxyfuel mode. Through proper configuration and design, the same steam generator can be switched from air mode to oxyfuel mode without the need for unit shutdown for modifications. The Flexi-Burn™ CFB system incorporates features to maximize plant efficiency and power output when operating in the oxy-firing mode through firing more fuel in the same boiler.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-03
... Valley Electric Association (GVEA) since 1967. Healy Unit 2 is a 50 MW coal- fired steam generator owned by AIDEA, which underwent test operation for two years as part of DOE's Clean Coal Technology Program... RUS. The RUS Electric Program is authorized to make loans and loan guarantees that finance the...
Workshop proceedings: U-bend tube cracking in steam generators
NASA Astrophysics Data System (ADS)
Shoemaker, C. E.
1981-06-01
A design to reduce the rate of tube failure in high pressure feedwater heaters, a number of failed drawn and stress relieved Monel 400 U-bend tubes removed from three high pressure feedwater heaters was examined. Steam extracted from the turbine is used to preheat the boiler feedwater in fossil fuel fired steam plants to improve thermal efficiency. This is accomplished in a series of heaters between the condenser hot well and the boiler. The heaters closest to the boiler handle water at high pressure and temperature. Because of the severe service conditions, high pressure feedwater heaters are frequently tubed with drawn and stress relieved Monel 400.
New Source Performance Standards
ERIC Educational Resources Information Center
Jenkins, Richard E.; McCutchen, Gary D.
1972-01-01
This feature article outlines the concept and procedures followed in establishing performance standards for new emission sources and summarizes the standards that have been established to date. Five source catagories are enumerated: fossil fuel-fired steam generators, municipal incinerators, Portland cement plants, nitric acid plants, and sulfuric…
Integration of solar process heat into an existing thermal desalination plant in Qatar
NASA Astrophysics Data System (ADS)
Dieckmann, S.; Krishnamoorthy, G.; Aboumadi, M.; Pandian, Y.; Dersch, J.; Krüger, D.; Al-Rasheed, A. S.; Krüger, J.; Ottenburger, U.
2016-05-01
The water supply of many countries in the Middle East relies mainly on water desalination. In Qatar, the water network is completely fed with water from desalination plants. One of these power and desalination plants is located in Ras Abu Fontas, 20 km south of the capital Doha. The heat required for thermal desalination is provided by steam which is generated in waste heat recovery boilers (HRB) connected to gas turbines. Additionally, gas fired boilers or auxiliary firing in the HRBs are used in order to decouple the water generation from the electricity generation. In Ras Abu Fontas some auxiliary boilers run 24/7 because the HRB capacity does not match the demand of the desalination units. This paper contains the techno-economic analysis of two large-scale commercial solar field options, which could reduce the fuel consumption significantly. Both options employ parabolic trough technology with a nominal saturated steam output of 350 t/h at 15 bar (198°C, 240 MW). The first option uses direct steam generation without storage while the second relies on common thermal oil in combination with a molten salt thermal storage with 6 hours full-load capacity. The economic benefit of the integration of solar power depends mainly on the cost of the fossil alternative, and thus the price (respectively opportunity costs) of natural gas. At a natural gas price of 8 US-/MMBtu the internal rate of return on equity (IRR) is expected at about 5%.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators for..., matrix material, clay, and other organic and inorganic material. Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators for..., matrix material, clay, and other organic and inorganic material. Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of...
CONTROL OF MERCURY EMISSIONS FROM COAL-FIRED ELECTRIC UTILITY BOILERS: INTERIM REPORT
The report provides additional information on mercury (Hg) emissions control following the release of "Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units--Final Report to Congress" in February 1998. Chapters 1-3 describe EPA's December 2000 de...
40 CFR 60.4162 - Notification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4162 Notification. (a) Notification of recordation. Within 5 business days of recordation of a Hg allowance transfer under § 60.4161, the Administrator will notify the...
40 CFR 60.4162 - Notification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4162 Notification. (a) Notification of recordation. Within 5 business days of recordation of a Hg allowance transfer under § 60.4161, the Administrator will notify the...
Indirect-cycle FBR cooled by supercritical steam-concept and design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshiaki, Oka; Tatjana, Jevremovic; Sei-ichi, Koshizuka
1993-01-01
Neutronic and thermal-hydraulic design of an in direct-cycle supercritical steam-cooled fast breeder reactor (SCFBR-I) is carried out to find a way to make low-cost FBRs (Ref. 1). The advantages of supercritical steam cooling are high thermal efficiency, low pumping power, simplified system (no primary steam generators and no Loeffler boilers), and the use of experienced technology in fossil-fired power plants. The design goals are fissile fuel breeding (compound system doubling time below 30 yr), 1000-M(electric) class out-put, high fuel discharge burnup, and a long refueling period. The coolant void reactivity should be negative throughout fuel lifetime because the loss-of-coolant accidentmore » is the design-basis accident. These goals have never been satisfied simultaneously in previous SCFBRs.« less
The EPA has completed a national-scale risk assessment for mercury to inform the appropriate and necessary determination for electric utility steam generating unites in the United States (U.S. EGU's), persuant to Section 112(n)(1)(A) of the Clean Air Act. This document describes...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humme, J.T.; Tanaka, M.T.; Yokota, M.H.
1979-07-01
The purpose of this study was to determine the feasibility of geothermal resource utilization at the Puna Sugar Company cane sugar processing plant, located in Keaau, Hawaii. A proposed well site area was selected based on data from surface exploratory surveys. The liquid dominated well flow enters a binary thermal arrangement, which results in an acceptable quality steam for process use. Hydrogen sulfide in the well gases is incinerated, leaving sulfur dioxide in the waste gases. The sulfur dioxide in turn is recovered and used in the cane juice processing at the sugar factory. The clean geothermal steam from themore » binary system can be used directly for process requirements. It replaces steam generated by the firing of the waste fibrous product from cane sugar processing. The waste product, called bagasse, has a number of alternative uses, but an evaluation clearly indicated it should continue to be employed for steam generation. This steam, no longer required for process demands, can be directed to increased electric power generation. Revenues gained by the sale of this power to the utility, in addition to other savings developed through the utilization of geothermal energy, can offset the costs associated with hydrothermal utilization.« less
Use of circulating-fluidized-bed combustors in compressed-air energy storage systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhamkin, M.; Patel, M.
1990-07-01
This report presents the result of a study conducted by Energy Storage and Power Consultants (ESPC), with the objective to develop and analyze compressed air energy storage (CAES) power plant concepts which utilize coal-fired circulating fluidized bed combustors (CFBC) for heating air during generating periods. The use of a coal-fired CFBC unit for indirect heating of the compressed air, in lieu of the current turbomachinery combustors, would eliminate the need for expensive premium fuels by a CAES facility. The CAES plant generation heat rate is approximately one-half of that for a conventional steam condensing power plant. Therefore, the required CFBCmore » heat generation capacity and capital costs would be lower per kW of power generation capacity. Three CAES/CFBC concepts were identified as the most promising, and were optimized using specifically developed computerized procedures. These concepts utilize various configurations of reheat turbomachinery trains specifically developed for CAES application as parts of the integrated CAES/CFBC plant concepts. The project team concluded that the optimized CAES/CFBC integrated plant concepts present a potentially attractive alternative to conventional steam generation power plants using CFBC or pulverized coal-fired boilers. A comparison of the results from the economic analysis performed on three concepts suggests that one of them (Concept 3) is the preferred concept. This concept has a two shaft turbomachinery train arrangement, and provides for load management functions by the compressor-electric motor train, and continuous base load operation of the turboexpander-electric generator train and the CFBC unit. 6 refs., 30 figs., 14 tabs.« less
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuels consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented. Two nocogeneration base cases are included: coal fired and residual fired process boilers.
NASA Technical Reports Server (NTRS)
1981-01-01
The Refuse-fired Steam Generating Facility was jointly sponsored by Hampton, NASA Langley and Langley Air Force Base. The facility disposes of all solid waste from the NASA Center, the Air Force Base, the Army's Fort Monroe and other federal installations in the area, and accommodates about 70 percent of Hampton's municipal waste. Incinerated refuse is reduced to a readily-disposable ash whose volume is one-seventh that of the solid waste brought to the plant. The energy produced in the burning process is converted to steam for use in research and administrative facilities at Langley Research Center. Plant is expected to produce some 300 million pounds of steam annually, about 85 percent of Langley Research Center's needs.
40 CFR Table 9 to Subpart Uuuuu of... - Applicability of General Provisions to Subpart UUUUU
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Fired Electric Utility Steam Generating Units Pt. 63, Subpt. UUUUU, Table 9 Table 9 to Subpart UUUUU of... Review and Notification Requirements Yes. § 63.6(a), (b)(1)-(b)(5), (b)(7), (c), (f)(2)-(3), (g), (h)(2...
40 CFR Table 9 to Subpart Uuuuu of... - Applicability of General Provisions to Subpart UUUUU
Code of Federal Regulations, 2014 CFR
2014-07-01
...-Fired Electric Utility Steam Generating Units Pt. 63, Subpt. UUUUU, Table 9 Table 9 to Subpart UUUUU of... Review and Notification Requirements Yes. § 63.6(a), (b)(1)-(b)(5), (b)(7), (c), (f)(2)-(3), (g), (h)(2...
40 CFR Table 9 to Subpart Uuuuu of... - Applicability of General Provisions to Subpart UUUUU
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Fired Electric Utility Steam Generating Units Pt. 63, Subpt. UUUUU, Table 9 Table 9 to Subpart UUUUU of... Review and Notification Requirements Yes. § 63.6(a), (b)(1)-(b)(5), (b)(7), (c), (f)(2)-(3), (g), (h)(2...
40 CFR 60.4161 - EPA recordation.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4161 EPA recordation. (a) Within 5 business days (except as provided in paragraph (b) of this section) of receiving a Hg allowance transfer, the...
40 CFR 60.4161 - EPA recordation.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4161 EPA recordation. (a) Within 5 business days (except as provided in paragraph (b) of this section) of receiving a Hg allowance transfer, the...
NASA Technical Reports Server (NTRS)
Amos, D. J.; Foster-Pegg, R. W.; Lee, R. M.
1976-01-01
The energy conversion efficiency of gas-steam turbine cycles was investigated for selected combined cycle power plants. Results indicate that it is possible for combined cycle gas-steam turbine power plants to have efficiencies several point higher than conventional steam plants. Induction of low pressure steam into the steam turbine is shown to improve the plant efficiency. Post firing of the boiler of a high temperature combined cycle plant is found to increase net power but to worsen efficiency. A gas turbine pressure ratio of 12 to 1 was found to be close to optimum at all gas turbine inlet temperatures that were studied. The coal using combined cycle plant with an integrated low-Btu gasifier was calculated to have a plant efficiency of 43.6%, a capitalization of $497/kW, and a cost of electricity of 6.75 mills/MJ (24.3 mills/kwh). This combined cycle plant should be considered for base load power generation.
11. RW Meyer Sugar Mill: 18761889. Locomotive=type, firetube, portable boiler, ...
11. RW Meyer Sugar Mill: 1876-1889. Locomotive=type, fire-tube, portable boiler, model No. 1, Manufactured by Ames Iron Works, Oswego, New York, 1879. 120 lbs./sq. in. working pressure, 66 sq. ft. heating surface in tubes. View: the boiler provided steam for steam engine which in turn powered the centrifugals. View shows front fire box, end of boiler. Below fire-box,used for removing ashes, is a door. Circular openings at the rear of the fire-box are where fire-tubes connected with furnace. Column to right of fire-box carried pressure and water level gauges. Fluted chimney-type structure is steam-port, safety valve, and whistle. Weights originally sat on the arm extending from the top of the port and controlled the boiler pressure. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
Code of Federal Regulations, 2010 CFR
2010-07-01
... limitation for the unit. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or... in the measurement units required by subpart H of this part. Boiler means an enclosed fossil or other... generation or steam production. Combustion turbine means an enclosed fossil or other fuel-fired device that...
Code of Federal Regulations, 2014 CFR
2014-07-01
... limitation for the unit. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or... in the measurement units required by subpart H of this part. Boiler means an enclosed fossil or other... generation or steam production. Combustion turbine means an enclosed fossil or other fuel-fired device that...
Code of Federal Regulations, 2012 CFR
2012-07-01
... limitation for the unit. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or... in the measurement units required by subpart H of this part. Boiler means an enclosed fossil or other... generation or steam production. Combustion turbine means an enclosed fossil or other fuel-fired device that...
Code of Federal Regulations, 2011 CFR
2011-07-01
... limitation for the unit. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or... in the measurement units required by subpart H of this part. Boiler means an enclosed fossil or other... generation or steam production. Combustion turbine means an enclosed fossil or other fuel-fired device that...
Code of Federal Regulations, 2013 CFR
2013-07-01
... limitation for the unit. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or... in the measurement units required by subpart H of this part. Boiler means an enclosed fossil or other... generation or steam production. Combustion turbine means an enclosed fossil or other fuel-fired device that...
40 CFR 60.4160 - Submission of Hg allowance transfers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4160 Submission of Hg allowance transfers. An Hg authorized account representative seeking recordation of a Hg allowance transfer... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Submission of Hg allowance transfers...
40 CFR 60.4160 - Submission of Hg allowance transfers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4160 Submission of Hg allowance transfers. An Hg authorized account representative seeking recordation of a Hg allowance transfer... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Submission of Hg allowance transfers...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Greg, G.; Virkar, Anil, V.; Bandopadhyay, Sukumar
2009-06-30
Developing safe, reliable, cost-effective, and efficient hydrogen-electricity co-generation systems is an important step in the quest for national energy security and minimized reliance on foreign oil. This project aimed to, through materials research, develop a cost-effective advanced technology cogenerating hydrogen and electricity directly from distributed natural gas and/or coal-derived fuels. This advanced technology was built upon a novel hybrid module composed of solid-oxide fuel-assisted electrolysis cells (SOFECs) and solid-oxide fuel cells (SOFCs), both of which were in planar, anode-supported designs. A SOFEC is an electrochemical device, in which an oxidizable fuel and steam are fed to the anode and cathode,more » respectively. Steam on the cathode is split into oxygen ions that are transported through an oxygen ion-conducting electrolyte (i.e. YSZ) to oxidize the anode fuel. The dissociated hydrogen and residual steam are exhausted from the SOFEC cathode and then separated by condensation of the steam to produce pure hydrogen. The rationale was that in such an approach fuel provides a chemical potential replacing the external power conventionally used to drive electrolysis cells (i.e. solid oxide electrolysis cells). A SOFC is similar to the SOFEC by replacing cathode steam with air for power generation. To fulfill the cogeneration objective, a hybrid module comprising reversible SOFEC stacks and SOFC stacks was designed that planar SOFECs and SOFCs were manifolded in such a way that the anodes of both the SOFCs and the SOFECs were fed the same fuel, (i.e. natural gas or coal-derived fuel). Hydrogen was produced by SOFECs and electricity was generated by SOFCs within the same hybrid system. A stand-alone 5 kW system comprising three SOFEC-SOFC hybrid modules and three dedicated SOFC stacks, balance-of-plant components (including a tailgas-fired steam generator and tailgas-fired process heaters), and electronic controls was designed, though an overall integrated system assembly was not completed because of limited resources. An inexpensive metallic interconnects fabrication process was developed in-house. BOP components were fabricated and evaluated under the forecasted operating conditions. Proof-of-concept demonstration of cogenerating hydrogen and electricity was performed, and demonstrated SOFEC operational stability over 360 hours with no significant degradation. Cost analysis was performed for providing an economic assessment of the cost of hydrogen production using the targeted hybrid technology, and for guiding future research and development.« less
40 CFR 63.9983 - Are any EGUs not subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., recirculated flue gases or exhaust gases from other sources (such as stationary gas turbines, internal... subject to this subpart. (a) Any unit designated as a stationary combustion turbine, other than an... utility steam generating unit that is not a coal- or oil-fired EGU and combusts natural gas for more than...
40 CFR 63.9983 - Are any EGUs not subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., recirculated flue gases or exhaust gases from other sources (such as stationary gas turbines, internal... subject to this subpart. (a) Any unit designated as a stationary combustion turbine, other than an... utility steam generating unit that is not a coal- or oil-fired EGU and combusts natural gas for more than...
40 CFR 63.9983 - Are any EGUs not subject to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., recirculated flue gases or exhaust gases from other sources (such as stationary gas turbines, internal... subject to this subpart. (a) Any unit designated as a stationary combustion turbine, other than an... utility steam generating unit that is not a coal- or oil-fired EGU and combusts natural gas for more than...
40 CFR 60.42 - Standard for particulate matter (PM).
Code of Federal Regulations, 2013 CFR
2013-07-01
... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel (excluding...
40 CFR 60.42 - Standard for particulate matter (PM).
Code of Federal Regulations, 2012 CFR
2012-07-01
... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel (excluding...
40 CFR 60.42 - Standard for particulate matter (PM).
Code of Federal Regulations, 2014 CFR
2014-07-01
... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel (excluding...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2013 CFR
2013-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2014 CFR
2014-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2010 CFR
2010-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2012 CFR
2012-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2011 CFR
2011-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 63.7575 - What definitions apply to this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Liquid fossil fuel means petroleum, distillate oil, residual oil and any form of liquid fuel derived from... primary purpose of recovering thermal energy in the form of steam or hot water. Waste heat boilers are... unit means a fossil fuel-fired combustion unit of more than 25 megawatts that serves a generator that...
40 CFR 60.4124 - Hg budget permit revisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Hg budget permit revisions. 60.4124... Coal-Fired Electric Steam Generating Units Permits § 60.4124 Hg budget permit revisions. Except as provided in § 60.4123(b), the permitting authority will revise the Hg Budget permit, as necessary, in...
40 CFR 60.4121 - Submission of Hg budget permit applications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Submission of Hg budget permit... Times for Coal-Fired Electric Steam Generating Units Permits § 60.4121 Submission of Hg budget permit applications. (a) Duty to apply. The Hg designated representative of any Hg Budget source required to have a...
40 CFR 63.10009 - May I use emissions averaging to comply with this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Fired Electric Utility Steam Generating Units Testing and Initial Compliance Requirements § 63.10009 May... TBtu, as appropriate for the pollutant) or gross electrical output basis (MWh or GWh, as appropriate... lb/gross electrical output, Hermi = Hourly emissions rate (e.g., lb/MMBtu, lb/MWh) from CEMS or...
40 CFR 60.4420 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... combustion turbine which recovers heat from the exhaust gases to heat water or another medium, generate steam... turbines used to pump water in the case of fire or flood, etc. Emergency stationary combustion turbines do... Stationary Combustion Turbines Definitions § 60.4420 What definitions apply to this subpart? As used in this...
40 CFR 60.4420 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... combustion turbine which recovers heat from the exhaust gases to heat water or another medium, generate steam... turbines used to pump water in the case of fire or flood, etc. Emergency stationary combustion turbines do... Stationary Combustion Turbines Definitions § 60.4420 What definitions apply to this subpart? As used in this...
40 CFR 60.4420 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... combustion turbine which recovers heat from the exhaust gases to heat water or another medium, generate steam... turbines used to pump water in the case of fire or flood, etc. Emergency stationary combustion turbines do... Stationary Combustion Turbines Definitions § 60.4420 What definitions apply to this subpart? As used in this...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfmeyer, J.C.; Jowers, C.; Weinstein, R.E.
As the power industry moves toward increased competition, low operating costs become increasingly important for continued profitability. This paper provides an overview of the plant concept evaluation of using an emerging coal-fired technology for repowering one of Duke Energy steam generating stations. The paper describes the results of a US Department of Energy (DOE) conceptual design evaluation of an early commercial repowering application of advanced circulating pressurized fluidized bed combustion combined cycle technology (APFBC). The paper provides a review of the DOE study and summarizes the preliminary results. It shows the prospects for APFBC repowering, and discusses how this mightmore » be an attractive option for a wide range of existing power plants, when added baseload coal-fired generation is needed. This paper presents an APFBC concept under development by DOE and equipment manufacturers. This all-coal technology has projected energy efficiency in the 42 to 46% HHV (43 to 48% LHV) range and environmental emissions superior to New Source Performance Standards (NSPS). A DOE-sponsored Clean Coal Technology (CCT) demonstration program will pioneer the first commercial APFBC demonstration in year 2001. That 170 MWe APFBC CCT demonstration will use all new equipment, and become the City of Lakeland's C.D. McIntosh, Jr. steam plant Unit 4. This paper's concept evaluation is for a larger implementation. A Westinghouse W501F combustion turbine modified for APFBC operation is considered for use to produce a 300+MWe class APFBC combined cycle. At this size, APFBC has a wide application for repowering many existing units in America, Here, APFBC would repower an existing generation station, the Duke Energy Company's Dan River steam station. Repowering concepts are presented for APFBC repowering of Unit 3. The existing coal-fired Unit 3 has an output of about 150 MWe. When repowered with APFBC, this unit is boosted to about 280 MWe output, with high-energy efficiency.« less
Small, modular, low-cost coal-fired power plants for the international market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zauderer, B.; Frain, B.; Borck, B.
1997-12-31
This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermalmore » rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.« less
NASA Astrophysics Data System (ADS)
Gupta, Sunay; Guédez, Rafael; Laumert, Björn
2017-06-01
Solar thermal enhanced oil recovery (S-EOR) is an advanced technique of using concentrated solar power (CSP) technology to generate steam and recover oil from maturing oil reservoirs. The generated steam is injected at high pressure and temperature into the reservoir wells to facilitate oil production. There are three common methods of steam injection in enhanced oil recovery - continuous steam injection, cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD). Conventionally, this steam is generated through natural gas (NG) fired boilers with associated greenhouse gas emissions. However, pilot projects in the USA (Coalinga, California) and Oman (Miraah, Amal) demonstrated the use of S-EOR to meet their steam requirements despite the intermittent nature of solar irradiation. Hence, conventional steam based EOR projects under the Sunbelt region can benefit from S-EOR with reduced operational expenditure (OPEX) and increased profitability in the long term, even with the initial investment required for solar equipment. S-EOR can be realized as an opportunity for countries not owning any natural gas resources to make them less energy dependent and less sensible to gas price fluctuations, and for countries owning natural gas resources to reduce their gas consumption and export it for a higher margin. In this study, firstly, the market potential of S-EOR was investigated worldwide by covering some of the major ongoing steam based EOR projects as well as future projects in pipeline. A multi-criteria analysis was performed to compare local conditions and requirements of all the oil fields based on a defined set of parameters. Secondly, a modelling approach for S-EOR was designed to identify cost reduction opportunities and optimum solar integration techniques, and the Issaran oil field in Egypt was selected for a case study to substantiate the approach. This modelling approach can be consulted to develop S-EOR projects for any steam flooding based oil fields. The model was developed for steam flooding requirements in Issaran oil field using DYESOPT, KTH's in-house tool for techno-economic modelling in CSP.
40 CFR 60.40Da - Applicability and designation of affected facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... than 73 megawatts (MW) (250 million British thermal units per hour (MMBtu/hr)) heat input of fossil... capable of combusting more than 73 MW (250 MMBtu/h) heat input of fossil fuel (either alone or in... reconstruction after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...
40 CFR 60.40Da - Applicability and designation of affected facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... than 73 megawatts (MW) (250 million British thermal units per hour (MMBtu/hr)) heat input of fossil... capable of combusting more than 73 MW (250 MMBtu/h) heat input of fossil fuel (either alone or in... reconstruction after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...
40 CFR 60.42 - Standard for particulate matter (PM).
Code of Federal Regulations, 2011 CFR
2011-07-01
... Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17, 1971 § 60.42... PM in excess of 43 nanograms per joule (ng/J) heat input (0.10 lb/MMBtu) derived from fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one six-minute...
40 CFR 60.40Da - Applicability and designation of affected facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... than 73 megawatts (MW) (250 million British thermal units per hour (MMBtu/hr)) heat input of fossil... capable of combusting more than 73 MW (250 MMBtu/h) heat input of fossil fuel (either alone or in... reconstruction after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...
40 CFR 60.42 - Standard for particulate matter (PM).
Code of Federal Regulations, 2010 CFR
2010-07-01
... Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17, 1971 § 60.42... PM in excess of 43 nanograms per joule (ng/J) heat input (0.10 lb/MMBtu) derived from fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one six-minute...
40 CFR 60.40Da - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... British thermal units per hour (MMBtu/hr)) heat input of fossil fuel (either alone or in combination with... MMBtu/hr) heat input of fossil fuel (either alone or in combination with any other fuel); and (2) The... after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...
40 CFR 60.40Da - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... British thermal units per hour (MMBtu/hr)) heat input of fossil fuel (either alone or in combination with... MMBtu/hr) heat input of fossil fuel (either alone or in combination with any other fuel); and (2) The... after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...
40 CFR 52.1920 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Allowable particulate matter emission rates from combined wood fuel and fossil fuel fired steam generating... 7709 Subsection (o) only. 595:20-3-42 Responsibility for signs, forms, etc. 05/26/1994 02/29/1996 61 FR... 05/26/1994 02/29/1996 61 FR 7709 Subsection (a) only. 595:20-7-3 Rejection receipt—Form VID 44 05/26...
40 CFR 52.1920 - Identification of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Allowable particulate matter emission rates from combined wood fuel and fossil fuel fired steam generating... 7709 Subsection (o) only. 595:20-3-42 Responsibility for signs, forms, etc. 05/26/1994 02/29/1996 61 FR... 05/26/1994 02/29/1996 61 FR 7709 Subsection (a) only. 595:20-7-3 Rejection receipt—Form VID 44 05/26...
40 CFR 60.4176 - Additional requirements to provide heat input data.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Additional requirements to provide heat... Compliance Times for Coal-Fired Electric Steam Generating Units Monitoring and Reporting § 60.4176 Additional requirements to provide heat input data. The owner or operator of a Hg Budget unit that monitors and reports Hg...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-06
... nitrogen (NO X ) emissions from biomass fuel-fired boilers. We are proposing action on a local rule that... Submitted PCAPCD 233 Biomass Boilers......... 12/10/09 05/07/10 On June 8, 2010, the submittal for PCAPCD... from biomass boilers and steam generators. EPA's technical support document (TSD) has more information...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Emission Limitations and Work... this subpart only if your EGU: (1) Has a system using wet or dry flue gas desulfurization technology... operate the wet or dry flue gas desulfurization technology installed on the unit consistent with § 63...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Emission Limitations and Work... this subpart only if your EGU: (1) Has a system using wet or dry flue gas desulfurization technology... operate the wet or dry flue gas desulfurization technology installed on the unit consistent with § 63...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units Emission Limitations and Work... this subpart only if your EGU: (1) Has a system using wet or dry flue gas desulfurization technology... operate the wet or dry flue gas desulfurization technology installed on the unit consistent with § 63...
NASA Astrophysics Data System (ADS)
Pham, John Dinh Chuong
In the twenty first century, global warming and climate change have become environmental issues worldwide. There is a need to reduce greenhouse gas emissions from thermal power plants through improved efficiency. This need is shared by both developed and developing countries. It is particularly important in rapidly developing economies (for example, Vietnam, South Korea, and China) where there is very significant need to increase generation capacity. This thesis addresses improving thermal power plant efficiency through an improved planning process that emphasizes integrated design. With the integration of planning and design considerations of key components in thermal electrical generation, along with the selection of appropriate up-to-date technologies, greater efficiency and reduction of emissions could be achieved. The major barriers to the integration of overall power plant optimization are the practice of individual island tendering packages, and the lack of coordinating efforts between major original equipment manufacturers (OEM). This thesis assesses both operational and design aspects of thermal power plants to identify opportunities for energy saving and the associated reduction of CO2 emissions. To demonstrate the potential of the integrated planning design approach, three advanced thermal power plants, using anthracite coal, oil and gas as their respective fuel, were developed as a case study. The three plant formulations and simulations were performed with the cooperation of several leading companies in the power industry including Babcock & Wilcox, Siemens KWU, Siemens-Westinghouse Power Corporation, Hitachi, Alstom Air Preheater, TLT-Covent, and ABB Flakt. The first plant is a conventional W-Flame anthracite coal-fired unit for base load operation. The second is a supercritical oil-fired plant with advanced steam condition, for two shifting and cycling operations. The third plant is a gas-fired combined cycle unit employing a modern steam-cooled gas turbine and a three-pressure heat recovery steam generator with reheat, for base load and load following operations. The oil-fired and gas-fired plants showed excellent gross thermal efficiency, 49.6 and 59.4 percent, respectively. Regarding the anthracite plant, based on a traditional subcritical pressure steam cycle, the unit gross efficiency was calculated at 42.3 percent. These efficiency values represent an increase of over 2 percent compared to the comparable plant class, operating today. This 2 percent efficiency gained translates into approximately 35,000 tonnes of greenhouse gas reduction, and a saving of 16,000 tonnes of coal, per year (based on 300MWe coal-fired plant). The positive results from the three simulations have demonstrated that by integrating planning and design optimization, significant gain of efficiency in thermal power plants is possible. This establishes the need for improved planning processes. It starts with a pre-planning process, before project tendering, to identify applicable operational issues and design features to enhance efficiency and reduce emissions. It should also include a pre-contract period to provide an opportunity for all OEM finalists to consolidate and fine-tune their designs for compatibility with those of others to achieve optimal performance. The inclusion of a period for final consolidation and integrated design enables the original goals of greater overall plant efficiency and greenhouse gas emissions reduction to be achieved beyond those available from current planning and contracting procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woerner, W.L.
1994-12-31
The steam production potential of older biomass-fired boilers currently in operation may be significantly increased through the application of a commercially available gasifier. A large percentage of boiler systems in lumber mills and similar applications were initially designed to generate steam through convection heat transfer, and have been horse power rated at approximately 7 to 10 square feet of heating surface to the horse power. This paper deals with the before and after performance characteristics of the first gasifier retrofit installation based on an AED designed unit currently commercially available.
Promises of advanced technology realized at Martin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanekamp, R.
1996-09-01
The 2,488-MW Martin station is a gas/oil-fired facility that embodies today`s demand for flexible operations, technological advances, and reduced production costs. Martin station first rose up from the Everglades in the early 1980s, with the construction of two 814-MW oil-fired steam plants, Units 1 and 2. Natural-gas-firing capability was added to the balanced-draft, natural-circulation boilers in 1986, increasing the station`s fuel flexibility. Martin then leaped into the headlines in the early 1990s when it added combined-cycle (CC) Units 3 and 4. With this 860-MW expansion, FP and L boldly became the fleet leader for the advanced, 2350F-class 7FA gas turbines.more » Further pushing he technology envelope, the CC includes a three-pressure reheat steam system that raises net plant efficiency for Units 3 and 4 to 54%, on a lower-heating-value (LHV) basis. Incorporating the reheat cycle required significant redesign of the gas-turbine/heat-recovery steam generator (HRSG) train, in order to maintain a rapid startup capability without exceeding metallurgical limits. Perhaps even more important than the technological achievements, Martin stands out from the crowd for its people power, which ensured that the promises of advanced technology actually came to fruition. This station`s aggressive, empowered O and M team shows that you can pioneer technology, reduce operating costs, and deliver high availability--all at the same time.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2300 Section 29.2300 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2300 Steam... machine or other steam-conditioning equipment. [37 FR 13521, July 11, 1972. Redesignated at 51 FR 40406...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-10
... Unit 2 of the Healy Power Plant to demonstrate emissions control technologies. In 1994, the DOE... Electric Association (GVEA) since 1967. Healy Unit 2 is a 50 MW coal-fired steam generator owned by AIDEA... RUS. The RUS Electric Program is authorized to make loans and loan guarantees that finance electric...
4. VIEW LOOKING WEST DOWN CENTRAL AVENUE AT THE INTERSECTION ...
4. VIEW LOOKING WEST DOWN CENTRAL AVENUE AT THE INTERSECTION WITH SEVENTH STREET. THE PLANT HAS MOST OF THE AMENITIES OF A SMALL TOWN - WATER SUPPLY, WASTE WATER TREATMENT, POLICE FORCE, FIRE DEPARTMENT, FOOD SERVICES, HOSPITAL, COMMUNICATIONS NETWORK, STEAM GENERATION, VEHICLE MAINTENANCE, TRANSPORTATION, AND A GOVERNMENT. - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO
40 CFR 52.1920 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... from combined wood fuel and fossil fuel fired steam generating units 6/1/2000 12/29/2008, 73 FR 79400... 05/26/1994 02/29/1996 61 FR 7709 Subsection (o) only. 595:20-3-42 Responsibility for signs, forms... Rejection receipt—Form VID 44 05/26/1994 02/29/1996 61 FR 7709 595:20-7-4 Station monthly report—Form VID 21...
40 CFR 52.1920 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... from combined wood fuel and fossil fuel fired steam generating units 6/1/2000 12/29/2008, 73 FR 79400... 05/26/1994 02/29/1996 61 FR 7709 Subsection (o) only. 595:20-3-42 Responsibility for signs, forms... Rejection receipt—Form VID 44 05/26/1994 02/29/1996 61 FR 7709 595:20-7-4 Station monthly report—Form VID 21...
40 CFR 52.1920 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... from combined wood fuel and fossil fuel fired steam generating units 6/1/2000 12/29/2008, 73 FR 79400... 05/26/1994 02/29/1996 61 FR 7709 Subsection (o) only. 595:20-3-42 Responsibility for signs, forms... Rejection receipt—Form VID 44 05/26/1994 02/29/1996 61 FR 7709 595:20-7-4 Station monthly report—Form VID 21...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-23
... W.A. Parish Plant in Fort Bend County, Texas. A new 80-MW natural gas-fired turbine, currently under... the CO 2 capture facility, the combustion turbine and heat recovery steam generator (CT/HRSG) area... maintenance power sources or by new metered service from a local retail provider. Potential construction...
40 CFR Table 3 to Subpart Uuuuu of... - Work Practice Standards
Code of Federal Regulations, 2013 CFR
2013-07-01
... startup You must operate all CMS during startup. Startup means either the first-ever firing of fuel in a... for any purpose. Startup ends when any of the steam from the boiler is used to generate electricity for sale over the grid or for any other purpose (including on site use). For startup of a unit, you...
40 CFR Table 3 to Subpart Uuuuu of... - Work Practice Standards
Code of Federal Regulations, 2012 CFR
2012-07-01
... startup You must operate all CMS during startup. Startup means either the first-ever firing of fuel in a... for any purpose. Startup ends when any of the steam from the boiler is used to generate electricity for sale over the grid or for any other purpose (including on site use). For startup of a unit, you...
40 CFR Table 3 to Subpart Uuuuu of... - Work Practice Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
... startup You must operate all CMS during startup. Startup means either the first-ever firing of fuel in a... for any purpose. Startup ends when any of the steam from the boiler is used to generate electricity for sale over the grid or for any other purpose (including on site use). For startup of a unit, you...
40 CFR Table 1 to Subpart Uuuuu of... - Emission Limits for New or Reconstructed EGUs
Code of Federal Regulations, 2012 CFR
2012-07-01
... Reconstructed EGUs 1 Table 1 to Subpart UUUUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...-Fired Electric Utility Steam Generating Units Pt. 63, Subpt. UUUUU, Table 1 Table 1 to Subpart UUUUU of Part 63—Emission Limits for New or Reconstructed EGUs As stated in § 63.9991, you must comply with the...
40 CFR Table 1 to Subpart Uuuuu of... - Emission Limits for New or Reconstructed EGUs
Code of Federal Regulations, 2014 CFR
2014-07-01
... Reconstructed EGUs 1 Table 1 to Subpart UUUUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...-Fired Electric Utility Steam Generating Units Pt. 63, Subpt. UUUUU, Table 1 Table 1 to Subpart UUUUU of Part 63—Emission Limits for New or Reconstructed EGUs As stated in § 63.9991, you must comply with the...
40 CFR Table 1 to Subpart Uuuuu of... - Emission Limits for New or Reconstructed EGUs
Code of Federal Regulations, 2013 CFR
2013-07-01
... Reconstructed EGUs 1 Table 1 to Subpart UUUUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...-Fired Electric Utility Steam Generating Units Pt. 63, Subpt. UUUUU, Table 1 Table 1 to Subpart UUUUU of Part 63—Emission Limits for New or Reconstructed EGUs As stated in § 63.9991, you must comply with the...
2007-09-13
Tests begun at Stennis Space Center's E Complex Sept. 13 evaluated a liquid oxygen lead for engine start performance, part of the A-3 Test Facility Subscale Diffuser Risk Mitigation Project at SSC's E-3 Test Facility. Phase 1 of the subscale diffuser project, completed Sept. 24, was a series of 18 hot-fire tests using a 1,000-pound liquid oxygen and gaseous hydrogen thruster to verify maximum duration and repeatability for steam generation supporting the A-3 Test Stand project. The thruster is a stand-in for NASA's developing J-2X engine, to validate a 6 percent scale version of A-3's exhaust diffuser. Testing the J-2X at altitude conditions requires an enormous diffuser. Engineers will generate nearly 4,600 pounds per second of steam to reduce pressure inside A-3's test cell to simulate altitude conditions. A-3's exhaust diffuser has to be able to withstand regulated pressure, temperatures and the safe discharge of the steam produced during those tests. Before the real thing is built, engineers hope to work out any issues on the miniature version. Phase 2 testing is scheduled to begin this month.
9. RW Meyer Sugar Mill: 18761889. Locomotivetype, firetube, portable boiler, ...
9. RW Meyer Sugar Mill: 1876-1889. Locomotive-type, fire-tube, portable boiler, No. 1 model. Manufactured by Ames Iron Works, Oswego, New York, 1879. 120 lbs/sq. inch working pressure, 66 sq. ft. heating surface in tubes. View: from side. The boiler provided steam for steam engine which in turn powered the mill's centrifugals. The section on the left side included the firebox with its surrounding water-legs. The fluted chimney-type structure is the steam port, safety valve, and whistle. Column projecting from side was part of steam pressure and water gauge. Pipe running above boiler carried steam to the engine. Pipe running below boiler provided the boiler feed-water. Cylindrical section included 22 fire-tube surrounded by water. The far right ... - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
40 CFR 52.520 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Forms and Instructions 2/9/93 11/7/9459 FR 46157 62-210.920 Air General Permit Forms 9/4/2006 06/01/0974... 13883 62-252.900 Form 2/2/93 7/21/9762 FR 38918 Chapter 62-256 Open Burning and Frost Protection Fires... 62-296.405 Fossil Fuel Steam Generators with more than 250 million Btu per Hour Heat Input 3/13/96 6...
40 CFR 52.520 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Forms and Instructions 2/9/93 11/7/9459 FR 46157 62-210.920 Air General Permit Forms 9/4/2006 06/01/0974....900 Form 2/2/93 7/21/9762 FR 38918 Chapter 62-256Open Burning and Frost Protection Fires 62-256.100... Fossil Fuel Steam Generators with more than 250 million Btu per Hour Heat Input 3/13/96 6/16/9964 FR...
Boiler burden reduced at Bedford site.
Horsley, Chris
2011-10-01
With the NHS aiming to reduce its 2007 carbon footprint by 10% by 2015, Chris Horsley, managing director of Babcock Wanson UK, a provider of industrial boilers and burners, thermal oxidisers, air treatment, water treatment, and associated services, looks at how one NHS Trust has approached the challenge, and considerably reduced its carbon emissions, by refurbishing its boiler house and moving from oil to gas-fired steam generation.
Emissions During Co-Firing of RDF-5 with Coal in a 22 t/h Steam Bubbling Fluidized Bed Boiler
NASA Astrophysics Data System (ADS)
Wan, Hou-Peng; Chen, Jia-Yuan; Juch, Ching-I.; Chang, Ying-Hsi; Lee, Hom-Ti
The co-firing of biomass and fossil fuel in the same power plant is one of the most important issues when promoting the utilization of renewable energy in the world. Recently, the co-firing of coal together with biomass fuel, such as "densified refuse derived fuel" (d-RDF or RDF-5) or RPF (refuse paper & plastic fuel) from waste, has been considered as an environmentally sound and economical approach to both waste remediation and energy production in the world. Because of itscomplex characteristics when compared to fossil fuel, potential problems, such as combustion system stability, the corrosion of heat transfer tubes, the qualities of the ash, and the emissionof pollutants, are major concerns when co-firing the biomass fuel with fossil fuel in a traditional boiler. In this study, co-firing of coal with RDF-5 was conducted in a 22t/h bubbling fluidized bed (BFB) steam boiler to investigate the feasibility of utilizing RDF-5 as a sustainable fuels in a commercial coal-fired steam BFB boiler. The properties of the fly ash, bottom ash, and the emission of pollutants are analyzed and discussed in this study.
NASA Astrophysics Data System (ADS)
Miles, Jonathan J.
2001-03-01
The campus of a comprehensive, residential university is in many respects a small city unto itself. All the amenities and services one would expect in a typical community are readily available on a college campus, including residences, athletic and dining facilities, libraries, and stores. A large campus, therefore, requires a reliable energy plant to provide steam, hot water, chilled water, and electricity. James Madison University supports two power plants: a vintage steam plant and a modern resource recovery facility comprising two solid-waste incinerators and two gas-fired units for steam generation, three steam-driven absorption- chilling units, and a single steam-driven generator for peak electricity production. Infrared imaging, as a teaching tool, was introduced in the Program of Integrated Science and Technology at James Madison University in 1997. The Infrared Development and Thermal Testing Laboratory was established at the university later in 1997 with government and industry support, and it is presently equipped with infrared imagers and scanners, single-point detectors, and data-acquisition systems. A study was conducted between 1998 and 1999 to test the economic feasibility of implementing an IR-based predictive maintenance program in the university steam plant. This paper describes the opportunities created at James Madison University to develop IR-based predictive maintenance programs that enhance the operation of the university energy plants; to establish IR-related research and development activities that support government and industry activities; and to enhance a science- and technology-based curriculum by way of unique, IR-based laboratory experiences and demonstrations.
1989-06-01
Calhoun the Estrella and the Arizona. The Calhoun fired on the Queen of the West, hitting a steam line and setting her on fire. Soon after she exploded...of most of Taylor’s forces from the region, four Union gunboats, the Calhoun the Estrella the Arizona and the Clifton, steamed up the Atchafalaya
ASU nitrogen sweep gas in hydrogen separation membrane for production of HRSG duct burner fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panuccio, Gregory J.; Raybold, Troy M.; Jamal, Agil
2013-04-02
The present invention relates to the use of low pressure N2 from an air separation unit (ASU) for use as a sweep gas in a hydrogen transport membrane (HTM) to increase syngas H2 recovery and make a near-atmospheric pressure (less than or equal to about 25 psia) fuel for supplemental firing in the heat recovery steam generator (HRSG) duct burner.
NASA Astrophysics Data System (ADS)
Su, Yun; Li, Jun
2016-12-01
Steam burns severely threaten the life of firefighters in the course of their fire-ground activities. The aim of this paper was to characterize thermal protective performance of flame-retardant fabrics exposed to hot steam and low-level thermal radiation. An improved testing apparatus based on ASTM F2731-11 was developed in order to simulate the routine fire-ground conditions by controlling steam pressure, flow rate and temperature of steam box. The thermal protective performance of single-layer and multi-layer fabric system with/without an air gap was studied based on the calibrated tester. It was indicated that the new testing apparatus effectively evaluated thermal properties of fabric in hot steam and thermal radiation. Hot steam significantly exacerbated the skin burn injuries while the condensed water on the skin’s surface contributed to cool down the skin tissues during the cooling. Also, the absorbed thermal energy during the exposure and the cooling was mainly determined by the fabric’s configuration, the air gap size, the exposure time and the existence of hot steam. The research provides a effective method to characterize the thermal protection of fabric in complex conditions, which will help in optimization of thermal protection performance of clothing and reduction of steam burn.
Lichen deterioration about a coal-fired steam electric generating plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, E.L.; Zeyen, R.J.
1979-01-01
A survey of three common epiphytic species of foliose lichens was conducted about a coal-fired steam electric station in North-Central Minnesota during the summer of 1977 to assess general lichen health on a gradient basis from a point-source of air pollution. Health, as judged by abnormal form and color, of nearly 3500 lichen specimens was recorded in 35 vegetation survey plots from a total of 291 trees. Lichen discoloration and degeneration decreased with increased distance from the power plant, and little deterioration was observed beyond 3 miles. Within the plant vicinity, lichen damage was noted on tree boles facing themore » plant which were impacted with fly ash. Maximum damage of lichens followed the pattern of prevailing winds (NW-SE). Sulfur analysis of lichen thalli was not correleated with visible damage distribution tended to decrease at the most distant plots (30 mi. from source). Considering the sensitivity of foliose lichens to declining air quality (especially SO/sub 2/ pollution), pollution sources in the rural environment are bound to affect lichen communities, as this study indicates. More sophisticated lichen surveys coupled with future monitoring of pollution would be a valuable contribution to the general environmental impact assessment of coal-fired electrical energy production. 19 references, 3 figures, 1 table.« less
NASA Astrophysics Data System (ADS)
1981-09-01
Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.
Total cost of 46-Mw Borax cogen system put at $30M
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Biasi, V.
1983-03-01
The cogeneration system, designed around a W-251B gas turbine power plant exhausting into a Deltak waste heat boiler to produce ''free'' process steam from the gas turbine exhaust, is discussed. The design includes water injection for NO/sub x/ control, self-cleaning inlet air filters, evaporative coolers, supercharger, and supplementary firing of the waste heat boiler. Once the system is operational Borax will be able to generate all of the electricity needed for on-site operations and a large share of process steam needs--plus still have 22-23 Mw surplus electric power to sell, so that the installation should pay for itself in lessmore » than 5 years of service.« less
NASA Technical Reports Server (NTRS)
1981-01-01
Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.
46 CFR 167.45-1 - Steam, carbon dioxide, Halon 1301, and clean agent fire extinguishing systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... holds, paint lockers, and similar spaces. However, although existing steam smothering systems may be... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...
46 CFR 167.45-1 - Steam, carbon dioxide, Halon 1301, and clean agent fire extinguishing systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... holds, paint lockers, and similar spaces. However, although existing steam smothering systems may be... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...
46 CFR 167.45-1 - Steam, carbon dioxide, Halon 1301, and clean agent fire extinguishing systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... holds, paint lockers, and similar spaces. However, although existing steam smothering systems may be... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This final report of Phase I of the study presents Task 4, Technical Review and Assessment. The most-promising district-heating concept identified in the Phase I study for the Public Service Electric and Gas Company, Newark, New Jersey, is a hot-water system in which steam is extracted from an existing turbine and used to drive a new, small backpressure turbine-generator. The backpressure turbine provides heat for district heating and simultaneously provides additional electric-generating capacity to partially offset the capacity lost due to the steam extraction. This approach is the most-economical way to retrofit the stations studied for district heating while minimizingmore » electric-capacity loss. Nine fossil-fuel-fired stations within the PSE and G system were evaluated for possibly supplying heat for district heating and cooling in cogeneration operations, but only three were selected to supply the district-heating steam. They are Essex, Hudson, and Bergen. Plant retrofit, thermal distribution schemes, consumer-conversion scheme, and consumer-metering system are discussed. Extensive technical information is provided in 16 appendices, additional tables, figures, and drawings. (MCW)« less
Innovation for Pollution Control
NASA Technical Reports Server (NTRS)
1986-01-01
Kinetic Controls Inc.'s refuse-fired steam generating facility led to the development of an air pollution equipment control device. The device is currently marketed by two NASA/Langley Research Center employees. It automatically senses and compensates for the changes in smoke composition when refuse is used as a fuel by adjusting the precipitator's voltage and current to permit maximum collection of electrically charged dust particles. The control adapts to any electrostatic precipitator and should have extensive commercial applications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Fire doors. 230.82 Section 230.82 Transportation... Signals, Sanders and Lights § 230.82 Fire doors. (a) General provisions. Each steam locomotive shall have a fire door which shall latch securely when closed and which shall be maintained in a safe and...
Analysis on Operating Parameter Design to Steam Methane Reforming in Heat Application RDE
NASA Astrophysics Data System (ADS)
Dibyo, Sukmanto; Sunaryo, Geni Rina; Bakhri, Syaiful; Zuhair; Irianto, Ign. Djoko
2018-02-01
The high temperature reactor has been developed with various power capacities and can produce electricity and heat application. One of heat application is used for hydrogen production. Most hydrogen production occurs by steam reforming that operated at high temperature. This study aims to analyze the feasibility of heat application design of RDE reactor in the steam methane reforming for hydrogen production using the ChemCAD software. The outlet temperature of cogeneration heat exchanger is analyzed to be applied as a feed of steam reformer. Furthermore, the additional heater and calculating amount of fuel usage are described. Results show that at a low mass flow rate of feed, its can produce a temperature up to 480°C. To achieve the temperature of steam methane reforming of 850°C the additional fired heater was required. By the fired heater, an amount of fuel usage is required depending on the Reformer feed temperature produced from the heat exchanger of the cogeneration system.
NASA Astrophysics Data System (ADS)
Wang, Lanjing; Shao, Wenjing; Wang, Zhiyue; Fu, Wenfeng; Zhao, Wensheng
2018-02-01
Taking the MEA chemical absorption carbon capture system with 85% of the carbon capture rate of a 660MW ultra-super critical unit as an example,this paper puts forward a new type of turbine which dedicated to supply steam to carbon capture system. The comparison of the thermal systems of the power plant under different steam supply schemes by using the EBSILON indicated optimal extraction scheme for Steam Extraction System in Carbon Capture System. The results show that the cycle heat efficiency of the unit introduced carbon capture turbine system is higher than that of the usual scheme without it. With the introduction of the carbon capture turbine, the scheme which extracted steam from high pressure cylinder’ s steam input point shows the highest cycle thermal efficiency. Its indexes are superior to other scheme, and more suitable for existing coal-fired power plant integrated post combustion carbon dioxide capture system.
Method for providing oxygen ion vacancies in lanthanide oxides
Kay, D. Alan R.; Wilson, William G.
1989-12-05
A method for desulfurization of fuel gases resulting from the incomplete combustion of sulfur containing hydrocarbons whereby the gases are treated with lanthanide oxides containing large numbers of oxygen-ion vacancies providing ionic porosity which enhances the ability of the lanthanide oxides to react more rapidly and completely with the sulfur in the fuel gases whereby the sulfur in such gases is reduced to low levels suitable for fuels for firing into boilers of power plants generating electricity with steam turbine driven generators, gas turbines, fuel cells and precursors for liquid fuels such as methanol and the like.
H2-O2 combustion powered steam-MHD central power systems
NASA Technical Reports Server (NTRS)
Seikel, G. R.; Smith, J. M.; Nichols, L. D.
1974-01-01
Estimates are made for both the performance and the power costs of H2-O2 combustion powered steam-MHD central power systems. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city.
1992-11-01
heat transfer surfaces located in the path of the exiting combustion gases generate additional steam. Flue gas particulates entrained in the combustion...anid the overall heat transfer surface anid boiler volume can be reduced. After the hot flue gas exits thie bed, it enters the external COnv.ctfion...rates, underfeed stoker fired combustors emit little smoke, and only a low concentration of particulates entrained in the flue gas . Under these
Compositional characteristics of the Fire Clay coal bed in a portion of eastern Kentucky
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hower, J.C.; Andrews, W.M. Jr.; Rimmer, S.M.
The Fire Clay (Hazard No. 4) coal bed (Middle Pennsylvanian Breathitt Formation) is one of the most extensively mined coal in eastern Kentucky. The coal is used for metallurgical and steam end uses and, with its low sulfur content, should continue to be a prime steam coal. This study focuses on the petrology, mineralogy, ash geochemistry, and palynology of the coal in an eight 7.5-min quadrangle area of Leslie, Perry, Knott, and Letcher counties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hack, Horst; Purgert, Robert Michael
Following the successful completion of a 15-year effort to develop and test materials that would allow coal-fired power plants to be operated at advanced ultra-supercritical (A-USC) steam conditions, a United States-based consortium is presently engaged in a project to build an A-USC component test facility (ComTest). A-USC steam cycles have the potential to improve cycle efficiency, reduce fuel costs, and reduce greenhouse gas emissions. Current development and demonstration efforts are focused on enabling the construction of A-USC plants, operating with steam temperatures as high as 1400°F (760°C) and steam pressures up to 5000 psi (35 MPa), which can potentially increasemore » cycle efficiencies to 47% HHV (higher heating value), or approximately 50% LHV (lower heating value), and reduce CO 2 emissions by roughly 25%, compared to today’s U.S. fleet. A-USC technology provides a lower-cost method to reduce CO 2 emissions, compared to CO 2 capture technologies, while retaining a viable coal option for owners of coal generation assets. Among the goals of the ComTest facility are to validate that components made from advanced nickel-based alloys can operate and perform under A-USC conditions, to accelerate the development of a U.S.-based supply chain for the full complement of A-USC components, and to decrease the uncertainty of cost estimates for future A-USC power plants. The configuration of the ComTest facility would include the key A-USC technology components that were identified for expanded operational testing, including a gas-fired superheater, high-temperature steam piping, steam turbine valve, and cycling header component. Membrane walls in the superheater have been designed to operate at the full temperatures expected in a commercial A-USC boiler, but at a lower (intermediate) operating pressure. This superheater has been designed to increase the temperature of the steam supplied by the host utility boiler up to 1400°F (760°C). The steam turbine stop and control valve component has been designed to operate at full A-USC temperatures, and would be tested both in throttling operation and to accumulate accelerated, repetitive stroke cycles. A cycling header component has been designed to confirm the suitability of new high-temperature nickel alloys to cycling operation, expected of future coal-fired power plants. Current test plans would subject these components to A-USC operating conditions for at least 8,000 hours by September 2020. The ComTest project is managed by Energy Industries of Ohio, and technically directed by the Electric Power Research Institute, Inc., with General Electric designing the A-USC components. This consortium is completing the Detailed Engineering phase of the project, with procurement scheduled to begin in late 2017. The effort is primarily funded by the U.S. Department of Energy, through the National Energy Technology Laboratory, along with the Ohio Development Services Agency. This presentation outlines the motivation for the project, explains the project’s structure and schedule, and provides technical details on the design of the ComTest facility.« less
EPA and DOJ announced a Clean Air Act settlement with Minnesota Power, an ALLETE company based in Duluth, that will cover its three coal-fired power plants and one biomass-and-coal-fired steam and electricity cogeneration plan
DB Riley-low emission boiler system (LEBS): Superior power for the 21st century
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beittel, R.; Ruth, L.A.
1997-12-31
In conjunction with the US Department of Energy, DB Riley, Inc., is developing a highly advanced coal-fired power-generation plant called the Low Emission Boiler Systems (LEBS). By the year 2000, LEBS will provide the US electric power industry with a reliable, efficient, cost-effective, environmentally superior alternative to current technologies. LEBS incorporates significant advances in coal combustion, supercritical steam boiler design, environmental control, and materials development. The system will include a state-of-the-art steam cycle operating at supercritical steam conditions; a slagging combustor that produces vitrified ash by-products; low nitrogen oxide (NOx) burners; a new, dry, regenerable flue gas cleanup system (coppermore » oxide process) for simultaneously capturing sulfur dioxide (SO{sub 2}) and nitrogen oxides (NOx); a pulse-jet fabric filter for particulate capture; and a low-temperature heat-recovery system. The copper oxide flue gas cleanup system, which has been under development at DOE`s Pittsburgh field center, removes over 98% of SO{sub 2} and 95% of NOx from flue gas. A new moving-bed design provides efficient sorbent utilization that lowers the cleanup process cost. The captured SO{sub 2} can be converted to valuable by-products such as sulfuric acid and/or element sulfur, and the process generates no waste.« less
Solar thermal repowering systems integration. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubberly, L. J.; Gormely, J. E.; McKenzie, A. W.
1979-08-01
This report is a solar repowering integration analysis which defines the balance-of-plant characteristics and costs associated with the solar thermal repowering of existing gas/oil-fired electric generating plants. Solar repowering interface requirements for water/steam and salt or sodium-cooled central receivers are defined for unit sizes ranging from 50 MWe non-reheat to 350 MWe reheat. Finally balance-of-plant cost estimates are presented for each of six combinations of plant type, receiver type and percent solar repowering.
Thermal gain of CHP steam generator plants and heat supply systems
NASA Astrophysics Data System (ADS)
Ziganshina, S. K.; Kudinov, A. A.
2016-08-01
Heating calculation of the surface condensate heat recovery unit (HRU) installed behind the BKZ-420-140 NGM boiler resulting in determination of HRU heat output according to fire gas value parameters at the heat recovery unit inlet and its outlet, heated water quantity, combustion efficiency per boiler as a result of installation of HRU, and steam condensate discharge from combustion products at its cooling below condensing point and HRU heat exchange area has been performed. Inspection results of Samara CHP BKZ-420-140 NGM power boilers and field tests of the surface condensate heat recovery unit (HRU) made on the bimetal calorifier base KCk-4-11 (KSk-4-11) installed behind station no. 2 Ulyanovsk CHP-3 DE-10-14 GM boiler were the basis of calculation. Integration of the surface condensation heat recovery unit behind a steam boiler rendered it possible to increase combustion efficiency and simultaneously decrease nitrogen oxide content in exit gases. Influence of the blowing air moisture content, the excess-air coefficient in exit gases, and exit gases temperature at the HRU outlet on steam condensate amount discharge from combustion products at its cooling below condensing point has been analyzed. The steam condensate from HRU gases is offered as heat system make-up water after degasification. The cost-effectiveness analysis of HRU installation behind the Samara CHP BKZ-420-140 NGM steam boiler with consideration of heat energy and chemically purified water economy has been performed. Calculation data for boilers with different heat output has been generalized.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
Various advanced energy conversion systems (ECS) are compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented for coal fired process boilers. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented.
49 CFR 229.105 - Steam generator number.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Steam generator number. 229.105 Section 229.105..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.105 Steam generator number. An identification number shall be marked on the steam generator's...
NASA Astrophysics Data System (ADS)
Ivanov, A. A.; Ermakov, A. N.; Shlyakhov, R. A.
2010-12-01
In this work are given results of analyzing processes of production of nitrogen oxides (NO x ) and afterburning of CO when firing natural gas at combined-cycle gas-turbine plants. It is shown that for suppressing emissions of the said microcomponents it is necessary to lower temperature in hot local zones of the flame in which NOx is formed, and, in so doing, to avoid chilling of cold flame zones that prevents afterburning of CO. The required lowering of the combustion temperature can be provided by combustion of mixtures of methane with steam, with high mixing uniformity that ensures the same and optimum fraction of the steam "ballast" in each microvolume of the flame. In addition to chilling, the steam ballast makes it possible to maintain a fairly high concentration of hydroxil radicals in the flame zone as well, and this provides high burning out of fuel and reduction in carbon monoxide emissions (active steam ballast). Due to this fact the fraction of steam when firing its mixtures with methane in a gas-turbine plant can be increased up to the weight ratio 4: 1. In this case, the concentrations of NO x and CO in emissions can be reduced to ultra-low values (less than 3 ppm).
Mathematical modeling of control system for the experimental steam generator
NASA Astrophysics Data System (ADS)
Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita
2016-03-01
A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.
Indirect-fired gas turbine bottomed with fuel cell
Micheli, P.L.; Williams, M.C.; Parsons, E.L.
1995-09-12
An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.
Indirect-fired gas turbine bottomed with fuel cell
Micheli, Paul L.; Williams, Mark C.; Parsons, Edward L.
1995-01-01
An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.
Design Evolution and Verification of the A-3 Chemical Steam Generator
NASA Technical Reports Server (NTRS)
Kirchner, Casey K.
2009-01-01
Following is an overview of the Chemical Steam Generator system selected to provide vacuum conditions for a new altitude test facility, the A-3 Test Stand at Stennis Space Center (SSC) in Bay St. Louis, MS. A-3 will serve as NASA s primary facility for altitude testing of the J-2X rocket engine, to be used as the primary propulsion device for the upper stages of the Ares launch vehicles. The Chemical Steam Generators (CSGs) will produce vacuum conditions in the test cell through the production and subsequent supersonic ejection of steam into a diffuser downstream of the J-2X engine nozzle exit. The Chemical Steam Generators chosen have a rich heritage of operation at rocket engine altitude test facilities since the days of the Apollo program and are still in use at NASA White Sands Test Facility (WSTF) in New Mexico. The generators at WSTF have been modified to a degree, but are still very close to the heritage design. The intent for the A-3 implementation is to maintain this heritage design as much as possible, making minimal updates only where necessary to substitute for obsolete parts and to increase reliability. Reliability improvements are especially desired because the proposed system will require 27 generators, which is nine times the largest system installed in the 1960s. Improvements were suggested by the original design firm, Reaction Motors, by NASA SSC and NASA WSTF engineers, and by the A-3 test stand design contractor, Jacobs Technology, Inc. (JTI). This paper describes the range of improvements made to the design to date, starting with the heritage generator and the minor modifications made over time at WSTF, to the modernized configuration which will be used at A-3. The paper will discuss NASA s investment in modifications to SSC s E-2 test facility fire a full-scale Chemical Steam Generator in advance of the larger steam system installation at A-3. Risk mitigation testing will be performed in early 2009 at this test facility to verify that the CSGs operate as expected. The generator which will undergo this testing is of the most recent A-3 configuration, and will be instrumented far in excess of what is normally required for operation. The extra data will allow for easier troubleshooting and more complete knowledge of expected generator performance. In addition, the early testing will give SSC personnel experience in operating the CSG systems, which will expedite the process of installation and activation at A-3. Each Chemical Steam Generator is supported by a complement of valves, instruments, and flow control devices, with the entire assembly called a "module." The generators will be installed in groups of three, historically called "units". A module is so called because of its modular ability to be replaced or serviced without disturbing the other two modules installed on the same unit. A module is pictured in Figure 1, shown with its generator secured by white bands in its shipping (vs. installed) configuration. The heritage system at WSTF is composed of a single unit (three generator modules), pictured in Figure 2 as it was installed in 1965. In contrast, A-3 will have nine units operating in parallel to achieve vacuum conditions appropriate for testing the J-2X engine. Each of the combustors operates in two modes and achieves the so-called "full-steam" mode after all three of its stages ignite. Ignition of the first stage is achieved by exciting a spark plug; the second stage and main stage are lit by the flame front of the previous stage. The main stage burns approximately 97% of the total propellant flow and uses the heat energy to vaporize water into superheated steam. While the main stage remains unlit, the combustor is in so-called "idle" mode. In the WSTF system, this idle mode is not optimized for water usage, and does not need to be, as the water is pumped from a large reservoir. The water supply at A-3 will be contained in tanks with finite volume, so water optimization is preferred for the modnized configuration. Multiple solutions for this issue have been proposed, with the leading concept being a change to the operational definition of "idle mode," with the generator running in a lower heat flux condition.
Steam generator support system
Moldenhauer, J.E.
1987-08-25
A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.
Steam generator support system
Moldenhauer, James E.
1987-01-01
A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.
Start-up control system and vessel for LMFBR
Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.
1987-01-01
A reflux condensing start-up system includes a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.
Start-up control system and vessel for LMFBR
Durrant, Oliver W.; Kakarala, Chandrasekhara R.; Mandel, Sheldon W.
1987-01-01
A reflux condensing start-up system comprises a steam generator, a start-up vessel connected parallel to the steam generator, a main steam line connecting steam outlets of the steam generator and start-up vessel to a steam turbine, a condenser connected to an outlet of the turbine and a feedwater return line connected between the condenser and inlets of the steam generator and start-up vessel. The start-up vessel has one or more heaters at the bottom thereof for heating feedwater which is supplied over a start-up line to the start-up vessel. Steam is thus generated to pressurize the steam generator before the steam generator is supplied with a heat transfer medium, for example liquid sodium, in the case of a liquid metal fast breeder reactor. The start-up vessel includes upper and lower bulbs with a smaller diameter mid-section to act as water and steam reservoirs. The start-up vessel can thus be used not only in a start-up operation but as a mixing tank, a water storage tank and a level control at low loads for controlling feedwater flow.
46 CFR 34.13-1 - Application-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Application-T/ALL. 34.13-1 Section 34.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Steam Smothering Systems § 34.13-1 Application—T/ALL. Steam smothering fire extinguishing systems are not permitted on...
46 CFR 34.13-1 - Application-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Application-T/ALL. 34.13-1 Section 34.13-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Steam Smothering Systems § 34.13-1 Application—T/ALL. Steam smothering fire extinguishing systems are not permitted on...
Coping with carbon: a near-term strategy to limit carbon dioxide emissions from power stations.
Breeze, Paul
2008-11-13
Burning coal to generate electricity is one of the key sources of atmospheric carbon dioxide emissions; so, targeting coal-fired power plants offers one of the easiest ways of reducing global carbon emissions. Given that the world's largest economies all rely heavily on coal for electricity production, eliminating coal combustion is not an option. Indeed, coal consumption is likely to increase over the next 20-30 years. However, the introduction of more efficient steam cycles will improve the emission performance of these plants over the short term. To achieve a reduction in carbon emissions from coal-fired plant, however, it will be necessary to develop and introduce carbon capture and sequestration technologies. Given adequate investment, these technologies should be capable of commercial development by ca 2020.
The State-of-the-Art of Materials Technology Used for Fossil and Nuclear Power Plants in China
NASA Astrophysics Data System (ADS)
Weng, Yuqing
Combined with the development of energy in China during the past 30 years, this paper clarified that high steam parameters ultra-supercritical (USC) coal-fired power plants and 1000MW nuclear power plants are the most important method to optimize energy structure and achieve national goals of energy saving and CO2 emission in China. Additionally, requirement of materials technology in high steam parameters USC coal-fired power plants and 1000MW nuclear power plants, current research and major development of relevant materials technology in China were briefly described in this paper.
Horizontal steam generator thermal-hydraulics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ubra, O.; Doubek, M.
1995-09-01
Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. Themore » 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.« less
Simulating Building Fires for Movies
NASA Technical Reports Server (NTRS)
Rodriguez, Ricardo C.; Johnson, Randall P.
1987-01-01
Fire scenes for cinematography staged at relatively low cost in method that combines several existing techniques. Nearly realistic scenes, suitable for firefighter training, produced with little specialized equipment. Sequences of scenes set up quickly and easily, without compromising safety because model not burned. Images of fire, steam, and smoke superimposed on image of building to simulate burning of building.
46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-generating pressure vessels (modifies U-1(g)). 54... ENGINEERING PRESSURE VESSELS General Requirements § 54.01-10 Steam-generating pressure vessels (modifies U-1(g)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as...
More on duel purpose solar-electric power plants
NASA Astrophysics Data System (ADS)
Hall, F. F.
Rationale for such plants is reviewed and plant elements are listed. Dual purpose solar-electric plants would generate both electricity and hydrogen gas for conversion to ammonia or methanol or direct use as a fuel of unsurpassed specific power and cleanliness. By-product oxygen would also be sold to owners of hydrogen age equipment. Evolved gasses at high pressure could be fired in compressorless gas turbines, boilerless steam-turbines or fuel-cell-inverter hydrogen-electric power drives of high thermal efficiency as well as in conventional internal combustion engines.
A steam inerting system for hydrogen disposal for the Vandenberg Shuttle
NASA Technical Reports Server (NTRS)
Belknap, Stuart B.
1988-01-01
A two-year feasibility and test program to solve the problem of unburned confined hydrogen at the Vandenberg Space Launch Complex Six (SLC-6) during Space Shuttle Main Engine (SSME) firings is discussed. A novel steam inerting design was selected for development. Available sound suppression water is superheated to flash to steam at the duct entrance. Testing, analysis, and design during 1987 showed that the steam inerting system (SIS) solves the problem and meets other flight-critical system requirements. The SIS design is complete and available for installation at SLC-6 to support shuttle or derivative vehicles.
49 CFR 229.105 - Steam generator number.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 4 2013-10-01 2013-10-01 false Steam generator number. 229.105 Section 229.105....105 Steam generator number. An identification number shall be marked on the steam generator's separator and that number entered on FRA Form F 6180-49A. ...
49 CFR 229.105 - Steam generator number.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 4 2014-10-01 2014-10-01 false Steam generator number. 229.105 Section 229.105....105 Steam generator number. An identification number shall be marked on the steam generator's separator and that number entered on FRA Form F 6180-49A. ...
Nachbar, Henry D.
1992-12-01
A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in "x", "y", and "z" directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.
Nachbar, Henry D.
1992-01-01
A robot arm apparatus is provided for inspecting and/or maintaining an interior of a steam generator which has an outside wall and a port for accessing the interior of the steam generator. The robot arm apparatus includes a flexible movable conduit for conveying inspection and/or maintenance apparatus from outside the steam generator to the interior of the steam generator. The flexible conduit has a terminal working end which is translated into and around the interior of the steam generator. Three motors located outside the steam generator are employed for moving the terminal working end inside the steam generator in "x", "y", and "z" directions, respectively. Commonly conducted inspection and maintenance operations include visual inspection for damaged areas, water jet lancing for cleaning sludge deposits, core boring for obtaining sludge deposits, and scrubbing of internal parts.
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-01-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter. Initial pilot facility shakedown was completed during the fourth quarter. During pilot plant shakedown operations, several production batch test runs were performed. These pilot tests were coupled with laboratory testing to confirm pilot results. In initial batches of operations, cellulose to glucose conversionsmore » of 62.5% and 64.8% were observed in laboratory hydrolysis. As part of this testing, lignin dewatering was tested using laboratory and vendor-supplied filtration equipment. Dewatering tests reported moisture contents in the lignin of between 50% and 60%. Dewatering parameters and options will continue to be investigated during lignin production. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. Shredding of the feed material was completed and final drying of the feed is expected to be completed by late January. Once feed drying is completed, pilot facility production will begin to produce lignin for co-fire testing. Facility modifications are expected to continue to improve facility operations and performance during the first quarter of 2001. The TVA-Colbert facility continues to make progress in evaluating the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system continues.« less
1300°F 800 MWe USC CFB Boiler Design Study
NASA Astrophysics Data System (ADS)
Robertson, Archie; Goidich, Steve; Fan, Zhen
Concern about air emissions and the effect on global warming is one of the key factors for developing and implementing new advanced energy production solutions today. One state-of-the-art solution is circulating fluidized bed (CFB) combustion technology combined with a high efficiency once-through steam cycle. Due to this extremely high efficiency, the proven CFB technology offers a good solution for CO2 reduction. Its excellent fuel flexibility further reduces CO2 emissions by co-firing coal with biomass. Development work is under way to offer CFB technology up to 800MWe capacities with ultra-supercritical (USC) steam parameters. In 2009 a 460MWe once-through supercritical (OTSC) CFB boiler designed and constructed by Foster Wheeler will start up. However, scaling up the technology further to 600-800MWe with net efficiency of 45-50% is needed to meet the future requirements of utility operators. To support the move to these larger sizes, an 800MWe CFB boiler conceptual design study was conducted and is reported on herein. The use of USC conditions (˜11 00°F steam) was studied and then the changes, that would enable the unit to generate 1300°F steam, were identified. The study has shown that by using INTREX™ heat exchangers in a unique internal-external solids circulation arrangement, Foster Wheeler's CFB boiler configuration can easily accommodate 1300°F steam and will not require a major increase in heat transfer surface areas.
1982-07-01
waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed
NASA Astrophysics Data System (ADS)
Huang, Jun-Lin; Zhou, Ke-Yi; Wang, Xin-Meng; Tu, Yi-You; Xu, Jian-Qun
2014-07-01
Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru; J Richard Hess; Richard D. Boardman
2012-06-01
There is a growing interest internationally to use more biomass for power generation, given the potential for significant environmental benefits and long-term fuel sustainability. However, the use of biomass alone for power generation is subject to serious challenges, such as feedstock supply reliability, quality, and stability, as well as comparative cost, except in situations in which biomass is locally sourced. In most countries, only a limited biomass supply infrastructure exists. Alternatively, co-firing biomass alongwith coal offers several advantages; these include reducing challenges related to biomass quality, buffering the system against insufficient feedstock quantity, and mitigating the costs of adapting existingmore » coal power plants to feed biomass exclusively. There are some technical constraints, such as low heating values, low bulk density, and grindability or size-reduction challenges, as well as higher moisture, volatiles, and ash content, which limit the co-firing ratios in direct and indirect co-firing. To achieve successful co-firing of biomass with coal, biomass feedstock specifications must be established to direct pretreatment options in order to modify biomass materials into a format that is more compatible with coal co-firing. The impacts on particle transport systems, flame stability, pollutant formation, and boiler-tube fouling/corrosion must also be minimized by setting feedstock specifications, which may include developing new feedstock composition by formulation or blending. Some of the issues, like feeding, co-milling, and fouling, can be overcome by pretreatment methods including washing/leaching, steam explosion, hydrothermal carbonization, and torrefaction, and densification methods such as pelletizing and briquetting. Integrating formulation, pretreatment, and densification will help to overcome issues related to physical and chemical composition, storage, and logistics to successfully co-fire higher percentages of biomass ( > 40%) with coal.« less
Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendler, O J; Takeuchi, K; Young, M Y
1986-10-01
The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.
Impacts of geothermal energy developments on hydrological environment in hot spring areas
NASA Astrophysics Data System (ADS)
Taniguchi, M.
2015-12-01
Water-energy nexus such as geothermal energy developments and its impacts on groundwater, river water, and coastal water is one of the key issues for the sustainable society. This is because the demand of both water and energy resources will be increasing in near future, and the tradeoff between both resources and conflict between stakeholders will be arisen. Geothermal power generation, hot springs heat power generation, and steam power generation, are developing in hot spring areas in Ring of Fire countries including Japan, as renewable and sustainable energy. Impacts of the wasted hot water after using hot springs heat and steam power generation on ecosystem in the rivers have been observed in Beppu, Oita prefecture, Japan. The number of the fish species with wasted hot water in the Hirata river is much less than that without wasted hot water in Hiyakawa river although the dominant species of tilapia was found in the Hirata river with wasted hot water. The water temperature in Hirata rive is increased by wasted hot water by 10 degree C. The impacts of the developments of steam power generations on hot spring water and groundwater in downstream are also evaluated in Beppu. The decreases in temperature and volume of the hot spring water and groundwater after the development are concerning. Stakeholder analysis related to hot spa and power generation business and others in Beppu showed common interests in community development among stakeholders and gaps in prerequisite knowledge and recognition of the geothermal resource in terms of economic/non-economic value and utilization as power generation/hot-spring. We screened stakeholders of four categories (hot spring resorts inhabitants, industries, supporters, environmentalists), and set up three communities consisting of 50 persons of the above categories. One remarkable result regarding the pros and cons of geothermal power in general terms was that the supporter count increased greatly while the neutralities count decreased greatly after deliberation, suggesting a response from providing scientific evidence on the issue.
Tomlinson, Leroy Omar; Smith, Raub Warfield
2002-01-01
In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.
Final Report: Laboratory Development of a High Capacity Gas-Fired Paper Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow
2005-09-30
Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laperrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. naturalmore » gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300 deg F range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400 deg F were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.« less
Laboratory Development of A High Capacity Gas-Fired paper Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chudnovsky, Yaroslav; Kozlov, Aleksandr; Sherrow, Lester
2005-09-30
Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laparrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. naturalmore » gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300ºF range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400ºF were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.« less
2013-08-01
corrosion can be found on tubes , tubesheets, and in steam- drums, most often near the waterline in steam boilers . Oxygen pitting can also occur anywhere...components present in the feedwater onto wetted boiler surfaces including fire- tubes and water- tubes . Since scale is a good insulator, the thicker...steel surfaces of a steam boiler . However, heavier scale accumulates on the lower steel surfaces of the tubes , mud-drum, and boiler shell. SLUDGE
Locating hot and cold-legs in a nuclear powered steam generation system
Ekeroth, D.E.; Corletti, M.M.
1993-11-16
A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet. 2 figures.
Locating hot and cold-legs in a nuclear powered steam generation system
Ekeroth, Douglas E.; Corletti, Michael M.
1993-01-01
A nuclear reactor steam generator includes a reactor vessel for heating water and a steam generator with a pump casing at the lowest point on the steam generator. A cold-leg pipe extends horizontally between the steam generator and the reactor vessel to return water from the steam generator to the reactor vessel. The bottom of the cold-leg pipe is at a first height above the bottom of the reactor vessel. A hot-leg pipe with one end connected to the steam generator and a second end connected to the reactor vessel has a first pipe region extending downwardly from the steam generator to a location between the steam generator and the reactor vessel at which a bottom of the hot-leg pipe is at a second height above the bottom of the reactor vessel. A second region extends from that location in a horizontal direction at the second height to the point at which the hot-leg pipe connects to the reactor vessel. A pump is attached to the casing at a location below the first and second heights and returns water from the steam generator to the reactor vessel over the cold-leg. The first height is greater than the second height and the bottom of the steam generator is at a height above the bottom of the reactor vessel that is greater than the first and second heights. A residual heat recovery pump is below the hot-leg and has an inlet line from the hot-leg that slopes down continuously to the pump inlet.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-27
... of Technical Specifications Task Force Traveler TSTF-510, Revision 2, ``Revision to Steam Generator..., Revision 2, ``Revision to Steam Generator [(SG)] Program Inspection Frequencies and Tube Sample Selection..., ``Steam Generator (SG) Program,'' Specification 5.6.7, ``Steam Generator Tube Inspection Report,'' and the...
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2017-01-17
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2015-12-29
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
2. RICE THRESHING MILL WITH CHIMNEY STACK. Fire burned on ...
2. RICE THRESHING MILL WITH CHIMNEY STACK. Fire burned on top of water pipe at base of chimney stack and steam went thru pipes to boiler on south side of wall. - Mansfield Plantation, Rice Threshing Mill, U.S. Route 701 vicinity, Georgetown, Georgetown County, SC
46 CFR 167.45-1 - Steam, carbon dioxide, and halon fire extinguishing systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... accepted in lieu of the inert gas system for the protection of cargo holds, paint lockers, and similar... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...
46 CFR 167.45-1 - Steam, carbon dioxide, and halon fire extinguishing systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... accepted in lieu of the inert gas system for the protection of cargo holds, paint lockers, and similar... to each cargo-oil deep tank, lamp locker, oil room, and like compartments, which lamp locker, oil... lamp lockers, oil rooms, and like compartments may be taken from the nearest steam supply line...
Vessel structural support system
Jenko, James X.; Ott, Howard L.; Wilson, Robert M.; Wepfer, Robert M.
1992-01-01
Vessel structural support system for laterally and vertically supporting a vessel, such as a nuclear steam generator having an exterior bottom surface and a side surface thereon. The system includes a bracket connected to the bottom surface. A support column is pivotally connected to the bracket for vertically supporting the steam generator. The system also includes a base pad assembly connected pivotally to the support column for supporting the support column and the steam generator. The base pad assembly, which is capable of being brought to a level position by turning leveling nuts, is anchored to a floor. The system further includes a male key member attached to the side surface of the steam generator and a female stop member attached to an adjacent wall. The male key member and the female stop member coact to laterally support the steam generator. Moreover, the system includes a snubber assembly connected to the side surface of the steam generator and also attached to the adjacent wall for dampening lateral movement of the steam generator. In addition, the system includes a restraining member of "flat" attached to the side surface of the steam generator and a bumper attached to the adjacent wall. The flat and the bumper coact to further laterally support the steam generator.
Status of steam generator tubing integrity at Jaslovske Bohunice NPP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cepcek, S.
1997-02-01
Steam generator represents one of the most important component of nuclear power plants. Especially, loss of tubing integrity of steam generators can lead to the primary coolant leak to secondary circuit and in worse cases to the unit shut down or to the PTS events occurrence. Therefore, to ensure the steam generator tubing integrity and the current knowledge about tube degradation propagation and development is of the highest importance. In this paper the present status of steam generator tubing integrity in operated NPP in Slovak Republic is presented.
40 CFR 63.9990 - What are the subcategories of EGUs?
Code of Federal Regulations, 2012 CFR
2012-07-01
... coal or gasified solid oil-derived fuel. For purposes of compliance, monitoring, recordkeeping, and...) National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam... equal to 8,300 Btu/lb, and (2) EGUs designed for low rank virgin coal. (b) Oil-fired EGUs are...
40 CFR 63.9990 - What are the subcategories of EGUs?
Code of Federal Regulations, 2013 CFR
2013-07-01
... coal or gasified solid oil-derived fuel. For purposes of compliance, monitoring, recordkeeping, and...) National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam... equal to 8,300 Btu/lb, and (2) EGUs designed for low rank virgin coal. (b) Oil-fired EGUs are...
40 CFR 63.9990 - What are the subcategories of EGUs?
Code of Federal Regulations, 2014 CFR
2014-07-01
... coal or gasified solid oil-derived fuel. For purposes of compliance, monitoring, recordkeeping, and...) National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam... equal to 8,300 Btu/lb, and (2) EGUs designed for low rank virgin coal. (b) Oil-fired EGUs are...
40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine... continuous emission monitoring system (CEMS) consisting of a NOX monitor and a diluent gas (oxygen (O2) or... rate, temperature, and pressure, to continuously measure the total thermal energy output in British...
40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?
Code of Federal Regulations, 2014 CFR
2014-07-01
... monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine... continuous emission monitoring system (CEMS) consisting of a NOX monitor and a diluent gas (oxygen (O2) or... rate, temperature, and pressure, to continuously measure the total thermal energy output in British...
40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine... continuous emission monitoring system (CEMS) consisting of a NOX monitor and a diluent gas (oxygen (O2) or... rate, temperature, and pressure, to continuously measure the total thermal energy output in British...
40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine... continuous emission monitoring system (CEMS) consisting of a NOX monitor and a diluent gas (oxygen (O2) or... rate, temperature, and pressure, to continuously measure the total thermal energy output in British...
40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?
Code of Federal Regulations, 2013 CFR
2013-07-01
... monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine... continuous emission monitoring system (CEMS) consisting of a NOX monitor and a diluent gas (oxygen (O2) or... rate, temperature, and pressure, to continuously measure the total thermal energy output in British...
NASA Astrophysics Data System (ADS)
Grzeszczak, Jan; Grela, Łukasz; Achter, Thomas
2017-12-01
The paper covers problems of the owners of a fleet of long-operated conventional power plants that are going to be decommissioned soon in result of failing to achieve new admissible emissions levels or exceeding pressure elements design lifetime. Energoprojekt-Katowice SA, Siemens AG and Rafako SA presents their joint concept of the solution which is a 2on1 concept - replacing two unit by two ultra-supercritical boilers feeding one turbine. Polish market has been taken as an example.
This document may be of assistance in applying the Title V air operating permit regulations. This document is part of the Title V Petition Database available at www2.epa.gov/title-v-operating-permits/title-v-petition-database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Economic assessment of coal-burning locomotives: Topical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-02-01
The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurrymore » as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.« less
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.
STEAM GENERATOR FOR NUCLEAR REACTOR
Kinyon, B.W.; Whitman, G.D.
1963-07-16
The steam generator described for use in reactor powergenerating systems employs a series of concentric tubes providing annular passage of steam and water and includes a unique arrangement for separating the steam from the water. (AEC)
Electric power generating plant having direct-coupled steam and compressed-air cycles
Drost, M.K.
1981-01-07
An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.
Electric power generating plant having direct coupled steam and compressed air cycles
Drost, Monte K.
1982-01-01
An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.
Steam generator design for solar towers using solar salt as heat transfer fluid
NASA Astrophysics Data System (ADS)
González-Gómez, Pedro Ángel; Petrakopoulou, Fontina; Briongos, Javier Villa; Santana, Domingo
2017-06-01
Since the operation of a concentrating solar power plant depends on the intermittent character of solar energy, the steam generator is subject to daily start-ups, stops and load variations. Faster start-up and load changes increase the plant flexibility and the daily energy production. However, it involves high thermal stresses on thick-walled components. Continuous operational conditions may eventually lead to a material failure. For these reasons, it is important to evaluate the transient behavior of the proposed designs in order to assure the reliability. The aim of this work is to analyze different steam generator designs for solar power tower plants using molten salt as heat transfer fluid. A conceptual steam generator design is proposed and associated heat transfer areas and steam drum size are calculated. Then, dynamic models for the main parts of the steam generator are developed to represent its transient performance. A temperature change rate that ensures safe hot start-up conditions is studied for the molten salt. The thermal stress evolution on the steam drum is calculated as key component of the steam generator.
Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant
NASA Astrophysics Data System (ADS)
Kotowicz, Janusz; Bartela, Łukasz; Mikosz, Dorota
2014-12-01
The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.
Oxygen-hydrogen torch is a small-scale steam generator
NASA Technical Reports Server (NTRS)
Maskell, C. E.
1966-01-01
Standard oxygen-hydrogen torch generates steam for corrosion-rate analysis of various metals. The steam is generated through local combustion inside a test chamber under constant temperature and pressure control.
Modeling and Simulation of U-tube Steam Generator
NASA Astrophysics Data System (ADS)
Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei
2018-03-01
The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.
Observations of rapid-fire event tremor at Lascar volcano, Chile
Asch, Guenter; Wylegalla, K.; Hellweg, M.; Seidl, D.; Rademacher, H.
1996-01-01
During the Proyecto de Investigacio??n Sismolo??gica de la Cordillera Occidental (PISCO '94) in the Atacama desert of Northern Chile, a continuously recording broadband seismic station was installed to the NW of the currently active volcano, Lascar. For the month of April, 1994, an additional network of three, short period, three-component stations was deployed around the volcano to help discriminate its seismic signals from other local seismicity. During the deployment, the volcanic activity at Lascar appeared to be limited mainly to the emission of steam and SO2. Tremor from Lascar is a random, ??rapid-fire?? series of events with a wide range of amplitudes and a quasi-fractal structure. The tremor is generated by an ensemble of independent elementary sources clustered in the volcanic edifice. In the short-term, the excitation of the sources fluctuates strongly, while the long-term power spectrum is very stationary.
High Temperature Behavior of Cr3C2-NiCr Coatings in the Actual Coal-Fired Boiler Environment
NASA Astrophysics Data System (ADS)
Bhatia, Rakesh; Sidhu, Hazoor Singh; Sidhu, Buta Singh
2015-03-01
Erosion-corrosion is a serious problem observed in steam-powered electricity generation plants, and industrial waste incinerators. In the present study, four compositions of Cr3C2-(Ni-20Cr) alloy coating powder were deposited by high-velocity oxy-fuel spray technique on T-91 boiler tube steel. The cyclic studies were performed in a coal-fired boiler at 1123 K ± 10 K (850 °C ± 10 °C). X-ray diffraction, scanning electron microscopy/energy dispersive X-ray analysis and elemental mapping analysis techniques were used to analyze the corrosion products. All the coatings deposited on T-91 boiler tube steel imparted hot corrosion resistance. The 65 pctCr3C2 -35 pct (Ni-20Cr)-coated T-91 steel sample performed better than all other coated samples in the given environment.
Compressed Air Quality, A Case Study In Paiton Coal Fired Power Plant Unit 1 And 2
NASA Astrophysics Data System (ADS)
Indah, Nur; Kusuma, Yuriadi; Mardani
2018-03-01
The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. Compressed air generation is not only sufficient in quantity (flow rate) but also meets the required air quality standards. compressed air at Steam Power Plant is used for; service air, Instrument air, and for fly Ash. This study aims to measure some important parameters related to air quality, followed by potential disturbance analysis, equipment breakdown or reduction of energy consumption from existing compressed air conditions. These measurements include counting the number of dust particles, moisture content, relative humidity, and also compressed air pressure. From the measurements, the compressed air pressure generated by the compressor is about 8.4 barg and decreased to 7.7 barg at the furthest point, so the pressure drop is 0.63 barg, this number satisfies the needs in the end user. The measurement of the number of particles contained in compressed air, for particle of 0.3 micron reaches 170,752 particles, while for the particle size 0.5 micron reaches 45,245 particles. Measurements of particles conducted at several points of measurement. For some point measurements the number of dust particle exceeds the standard set by ISO 8573.1-2010 and also NACE Code, so it needs to be improved on the air treatment process. To see the amount of moisture content in compressed air, it is done by measuring pressure dew point temperature (PDP). Measurements were made at several points with results ranging from -28.4 to 30.9 °C. The recommendation of improving compressed air quality in steam power plant, Paiton unit 1 and 2 has the potential to extend the life of instrumentation equipment, improve the reliability of equipment, and reduce the amount of energy consumption up to 502,579 kWh per year.
Steam generator for liquid metal fast breeder reactor
Gillett, James E.; Garner, Daniel C.; Wineman, Arthur L.; Robey, Robert M.
1985-01-01
Improvements in the design of internal components of J-shaped steam generators for liquid metal fast breeder reactors. Complex design improvements have been made to the internals of J-shaped steam generators which improvements are intended to reduce tube vibration, tube jamming, flow problems in the upper portion of the steam generator, manufacturing complexities in tube spacer attachments, thermal stripping potentials and difficulties in the weld fabrication of certain components.
Actual operation and regulatory activities on steam generator replacement in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saeki, Hitoshi
1997-02-01
This paper summarizes the operating reactors in Japan, and the status of the steam generators in these plants. It reviews plans for replacement of existing steam generators, and then goes into more detail on the planning and regulatory steps which must be addressed in the process of accomplishing this maintenance. The paper also reviews the typical steps involved in the process of removal and replacement of steam generators.
Thermochemically recuperated and steam cooled gas turbine system
Viscovich, Paul W.; Bannister, Ronald L.
1995-01-01
A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-08
.... NPF-38 for the Waterford Steam Electric Station, Unit 3, located in St. Charles Parish, Louisiana. In view of the originally planned steam generator (SG) replacement during the spring 2011 refueling outage... to TS 6.5.9, ``Steam Generator (SG) Program,'' and TS 6.9.1.5, ``Steam Generator Tube Inspection...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, H.G.; Reilly, B.P.
1995-03-01
The North Anna Power Station is located on the southern shore of Lake Anna in Louisa County, approximately forty miles northwest of Richmond, Virginia. The two 910 Mw nuclear units located on this site are owned by Virginia Electric and Power Company (Virginia Power) and Old Dominion Electric Cooperative and operated by Virginia Power. Fuel was loaded into Unit 1 in December 1977, and it began commercial operation in June 1978. Fuel was loaded into Unit 2 in April 1980 and began commercial operation in December 1980. Each nuclear unit includes a three-coolant-loop pressurized light water reactor nuclear steam supplymore » system that was furnished by Westinghouse Electric Corporation. Included within each system were three Westinghouse Model 51 steam generators with alloy 600, mill-annealed tubing material. Over the years of operation of Unit 1, various corrosion-related phenomena had occurred that affected the steam generators tubing and degraded their ability to fulfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators tubing and degraded their ability to fullfill their heat transfer function. Advanced inspection and repair techniques helped extend the useful life of the steam generators, but projections based on the results of the inspections indicated that the existing steam generators would not last their design life and must be repaired. To this end Virginia Power determined that a steam generator replacement (SGR) program was necessary to remove the old steam generator tube bundles and lower shell sections, including the channel heads (collectively called the lower assemblies), and replace them with new lower assemblies incorporating design features that will prevent the degradation problems that the old steam generators had experienced.« less
McDermott, D.J.; Schrader, K.J.; Schulz, T.L.
1994-05-03
The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.
McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.
1994-01-01
The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.
Hockey-stick steam generator for LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallinan, G.J.; Svedlund, P.E.
1981-01-01
This paper presents the criteria and evaluation leading to the selection of the Hockey Stick Steam Generator Concept and subsequent development of that concept for LMFBR application. The selection process and development of the Modular Steam Generator (MSG) is discussed, including the extensive test programs that culminated in the manufacture and test of a 35 MW(t) Steam Generator. The design of the CRBRP Steam Generator is described, emphasizing the current status and a review of the critical structural areas. CRBRP steam generator development tests are evaluated, with a discussion of test objectives and rating of the usefulness of test resultsmore » to the CRBRP prototype design. Manufacturing experience and status of the CRBRP prototype and plant units is covered. The scaleup of the Hockey Stick concept to large commercial plant application is presented, with an evaluation of scaleup limitations, transient effects, and system design implications.« less
Thermochemically recuperated and steam cooled gas turbine system
Viscovich, P.W.; Bannister, R.L.
1995-07-11
A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.
40 CFR Appendix Y to Part 51 - Guidelines for BART Determinations Under the Regional Haze Rule
Code of Federal Regulations, 2012 CFR
2012-07-01
... establishing BART emission limitations for fossil-fuel fired power plants having a capacity in excess of 750...: (1) Fossil-fuel fired steam electric plants of more than 250 million British thermal units (BTU) per...) Sintering plants, (20) Secondary metal production facilities, (21) Chemical process plants, (22) Fossil-fuel...
40 CFR Appendix Y to Part 51 - Guidelines for BART Determinations Under the Regional Haze Rule
Code of Federal Regulations, 2014 CFR
2014-07-01
... establishing BART emission limitations for fossil-fuel fired power plants having a capacity in excess of 750...: (1) Fossil-fuel fired steam electric plants of more than 250 million British thermal units (BTU) per...) Sintering plants, (20) Secondary metal production facilities, (21) Chemical process plants, (22) Fossil-fuel...
40 CFR Appendix Y to Part 51 - Guidelines for BART Determinations Under the Regional Haze Rule
Code of Federal Regulations, 2011 CFR
2011-07-01
... establishing BART emission limitations for fossil-fuel fired power plants having a capacity in excess of 750...: (1) Fossil-fuel fired steam electric plants of more than 250 million British thermal units (BTU) per...) Sintering plants, (20) Secondary metal production facilities, (21) Chemical process plants, (22) Fossil-fuel...
40 CFR Appendix Y to Part 51 - Guidelines for BART Determinations Under the Regional Haze Rule
Code of Federal Regulations, 2010 CFR
2010-07-01
... establishing BART emission limitations for fossil-fuel fired power plants having a capacity in excess of 750...: (1) Fossil-fuel fired steam electric plants of more than 250 million British thermal units (BTU) per...) Sintering plants, (20) Secondary metal production facilities, (21) Chemical process plants, (22) Fossil-fuel...
40 CFR Appendix Y to Part 51 - Guidelines for BART Determinations Under the Regional Haze Rule
Code of Federal Regulations, 2013 CFR
2013-07-01
... establishing BART emission limitations for fossil-fuel fired power plants having a capacity in excess of 750...: (1) Fossil-fuel fired steam electric plants of more than 250 million British thermal units (BTU) per...) Sintering plants, (20) Secondary metal production facilities, (21) Chemical process plants, (22) Fossil-fuel...
Yin, Xiangyu; Zhang, Yue; Guo, Qiuquan; Cai, Xiaobing; Xiao, Junfeng; Ding, Zhifeng; Yang, Jun
2018-04-04
Solar steam generation is one of the most promising solar-energy-harvesting technologies to address the issue of water shortage. Despite intensive efforts to develop high-efficiency solar steam generation devices, challenges remain in terms of the relatively low solar thermal efficiency, complicated fabrications, high cost, and difficulty in scaling up. Herein, a double-network hydrogel with a porous structure (p-PEGDA-PANi) is demonstrated for the first time as a flexible, recyclable, and efficient photothermal platform for low-cost and scalable solar steam generation. As a novel photothermal platform, the p-PEGDA-PANi involves all necessary properties of efficient broadband solar absorption, exceptional hydrophilicity, low heat conductivity, and porous structure for high-efficiency solar steam generation. As a result, the hydrogel-based solar steam generator exhibits a maximum solar thermal efficiency of 91.5% with an evaporation rate of 1.40 kg m -2 h -1 under 1 sun illumination, which is comparable to state-of-the-art solar steam generation devices. Furthermore, the good durability and environmental stability of the p-PEGDA-PANi hydrogel enables a convenient recycling and reusing process toward real-life applications. The present research not only provides a novel photothermal platform for solar energy harvest but also opens a new avenue for the application of the hydrogel materials in solar steam generation.
Comparative evaluation of surface and downhole steam-generation techniques
NASA Astrophysics Data System (ADS)
Hart, C.
The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.
Optimization of steam generators of NPP with WWER in operation with variable load
NASA Astrophysics Data System (ADS)
Parchevskii, V. M.; Shchederkina, T. E.; Gur'yanova, V. V.
2017-11-01
The report addresses the issue of the optimal water level in the horizontal steam generators of NPP with WWER. On the one hand, the level needs to be kept at the lower limit of the allowable range, as gravity separation, steam will have the least humidity and the turbine will operate with higher efficiency. On the other hand, the higher the level, the greater the supply of water in the steam generator, and therefore the higher the security level of the unit, because when accidents involving loss of cooling of the reactor core, the water in the steam generators, can be used for cooling. To quantitatively compare the damage from higher level to the benefit of improving the safety was assessed of the cost of one cubic meter of water in the steam generators, the formulated objective function of optimal levels control. This was used two-dimensional separation characteristics of steam generators. It is demonstrated that the security significantly shifts the optimal values of the levels toward the higher values, and this bias is greater the lower the load unit.
Conversion of alkali metal sulfate to the carbonate
Sheth, A.C.
1979-10-01
A process is described for converting potassium sulfate to potassium carbonate in which a mixture of potassium sulfate and calcium oxide are reacted at a temperature in the range of between about 700/sup 0/C and about 800/sup 0/C with a gaseous mixture having a minor amount of hydrogen and/or carbon monoxide in a diluent with the calcium oxide being present in an amount not greater than about 20 percent by weight of the potassium sulfate to produce an aqueous mixture of potassium sulfide, potassium bisulfide, potassium hydroxide and calcium sulfide and a gaseous mixture of steam and hydrogen sulfide. The potassium and calcium salts are quenched to produce an aqueous slurry of soluble potassium salts and insoluble calcium salts and a gaseous mixture of steam and hydrogen sulfide. The insoluble calcium salts are then separated from the aqueous solution of soluble potassium salts. The calcium salts are dried to produce calcium sulfide, calcium bisulfide and steam, and then, the calcium sulfide and calcium bisulfide are converted to the oxide and recycled. The soluble potassium salts are carbonated to produce potassium carbonate which is concentrated and the precipitated crystals separated. the sulfur-containing compounds are further treated. This process was developed for desulfurization and reprocessing of spent seed from open-cycle coal-fired MHD generators for reuse.
Materials Performance in USC Steam Portland
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.R. Holcomb; J. Tylczak; R. Hu
2011-04-26
Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interestmore » include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.« less
Steam generator on-line efficiency monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.K.; Kaya, A.; Keyes, M.A. IV
1987-08-04
This patent describes a system for automatically and continuously determining the efficiency of a combustion process in a fossil-fuel fired vapor generator for utilization by an automatic load control system that controls the distribution of a system load among a plurality of vapor generators, comprising: a first function generator, connected to an oxygen transducer for sensing the level of excess air in the flue gas, for generating a first signal indicative of the total air supplied for combustion in percent by weight; a second function generator, connected to a combustibles transducer for sensing the level of combustibles in the fluemore » gas, for generating a second signal indicative of the percent combustibles present in the flue gas; means for correcting the first signal, connected to the first and second function generators, when the oxygen transducer is of a type that operates at a temperature level sufficient to cause the unburned combustibles to react with the oxygen present in the flue gas; an ambient air temperature transducer for generating a third signal indicative of the temperature of the ambient air supplied to the vapor generator for combustion.« less
Apparatus and methods for supplying auxiliary steam in a combined cycle system
Gorman, William G.; Carberg, William George; Jones, Charles Michael
2002-01-01
To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.
Consonni, S; Giugliano, M; Grosso, M
2005-01-01
This two-part paper assesses four strategies for energy recovery from municipal solid waste (MSW) by dedicated waste-to-energy (WTE) plants generating electricity through a steam cycle. The feedstock is the residue after materials recovery (MR), assumed to be 35% by weight of the collected MSW. In strategy 1, the MR residue is fed directly to a grate combustor. In strategy 2, the MR residue is first subjected to light mechanical treatment. In strategies 3 and 4, the MR residue is converted into RDF, which is combusted in a fluidized bed combustor. To examine the relevance of scale, we considered a small waste management system (WMS) serving 200,000 people and a large WMS serving 1,200,000 people. A variation of strategy 1 shows the potential of cogeneration with district heating. The assessment is carried out by a Life Cycle Analysis where the electricity generated by the WTE plant displaces electricity generated by fossil fuel-fired steam plants. Part A focuses on mass and energy balances, while Part B focuses on emissions and costs. Results show that treating the MR residue ahead of the WTE plant reduces energy recovery. The largest energy savings are achieved by combusting the MR residue "as is" in large scale plants; with cogeneration, primary energy savings can reach 2.5% of total societal energy use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rintoul, B.
1973-02-01
While production generally is declining elsewhere in California, the Kern River field continues to post gains. The field last year produced at an all-time high for the second year in a row, putting out at least 1.5 million bbl more than in its previous peak year. There is every reason to believe that gains will continue through this year. Steam is in the factor that underlies Kern River's resurgence, and Getty Oil Co., the field's premier steamer, recently added to its already imposing array of steam-generating equipment a pair of large boilers, each capable of generating 240 million btus permore » hr. Along with expansion of the steaming effort the company also expanded its water-treating facilities, making sure there will be plenty of feed water to fuel the steam generators at work in the field. The new boilers are being used to furnish steam to 136 wells in a steam displacement project. The purpose of going to a larger generator has been to gain higher efficiency. The components that have made Getty Oil the leading steamer at Kern River and the field, in turn, the world capital for oil-field steam operations include shallow wells, steam generators and--since 1969--a computer. The entire project is described in detail.« less
This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.
Thermal energy storage and transport
NASA Technical Reports Server (NTRS)
Hausz, W.
1980-01-01
The extraction of thermal energy from large LWR and coal fired plants for long distance transport to industrial and residential/commercial users is analyzed. Transport of thermal energy as high temperature water is shown to be considerably cheaper than transport as steam, hot oil, or molten salt over a wide temperature range. The delivered heat is competitive with user-generated heat from oil, coal, or electrode boilers at distances well over 50 km when the pipeline operates at high capacity factor. Results indicate that thermal energy storage makes meeting of even very low capacity factor heat demands economic and feasible and gives the utility flexibility to meet coincident electricity and heat demands effectively.
French Regulatory practice and experience feedback on steam generator tube integrity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandon, G.
1997-02-01
This paper summarizes the way the French Safety Authority applies regulatory rules and practices to the problem of steam generator tube cracking in French PWR reactors. There are 54 reactors providing 80% of French electrical consumption. The Safety Authority closely monitors the performance of tubes in steam generators, and requires application of a program which deals with problems prior to the actual development of leakage. The actual rules regarding such performance are flexible, responding to the overall performance of operating steam generators. In addition there is an inservice inspection service to examine tubes during shutdown, and to monitor steam generatorsmore » for leakage during operation, with guidelines for when generators must be pulled off line.« less
US PWR steam generator management: An overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welty, C.S. Jr.
1997-02-01
This paper provides an overview on the status of steam generator management activities in US PWRs, and includes: (1) an overview of the impact of steam generator problems; (2) a brief discussion of historical damage trends and the current damage mechanism of most concern; (3) a discussion of the elements of {open_quotes}steam generator management{close_quotes}; and (4) a description of the approach being followed to implement a degradation-specific protocol for tubing inspection and repair. This paper was prepared in conjunction with another paper presented during the Plenary Session of this Conference, {open_quotes}Steam Generator Degradation: Current Mitigation Strategies for Controlling Corrosion{close_quotes}, andmore » is provided as a supplement to that material.« less
Li, Yiju; Gao, Tingting; Yang, Zhi; Chen, Chaoji; Luo, Wei; Song, Jianwei; Hitz, Emily; Jia, Chao; Zhou, Yubing; Liu, Boyang; Yang, Bao; Hu, Liangbing
2017-07-01
Using solar energy to generate steam is a clean and sustainable approach to addressing the issue of water shortage. The current challenge for solar steam generation is to develop easy-to-manufacture and scalable methods which can convert solar irradiation into exploitable thermal energy with high efficiency. Although various material and structure designs have been reported, high efficiency in solar steam generation usually can be achieved only at concentrated solar illumination. For the first time, 3D printing to construct an all-in-one evaporator with a concave structure for high-efficiency solar steam generation under 1 sun illumination is used. The solar-steam-generation device has a high porosity (97.3%) and efficient broadband solar absorption (>97%). The 3D-printed porous evaporator with intrinsic low thermal conductivity enables heat localization and effectively alleviates thermal dissipation to the bulk water. As a result, the 3D-printed evaporator has a high solar steam efficiency of 85.6% under 1 sun illumination (1 kW m -2 ), which is among the best compared with other reported evaporators. The all-in-one structure design using the advanced 3D printing fabrication technique offers a new approach to solar energy harvesting for high-efficiency steam generation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2010-11-10
Fire and steam signal a successful test firing of Orbital Sciences Corporation's Aerojet AJ26 rocket engine at John C. Stennis Space Center. AJ26 engines will be used to power Orbital's Taurus II space vehicle on commercial cargo flights to the International Space Station. On Nov. 10, operators at Stennis' E-1 Test Stand conducted a 10-second test fire of the engine, the first of a series of three verification tests. Orbital has partnered with NASA to provide eight missions to the ISS by 2015.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... High-High, Nominal Trip Setpoint (NTSP) and Allowable Value. The Steam Generator Water Level High-High... previously evaluated is not increased. The Steam Generator Water Level High-High function revised values..., Steam Generator Water Level High-High, Nominal Trip Setpoint (NTSP) and Allowable Value. Function 5c...
Solar augmentation for process heat with central receiver technology
NASA Astrophysics Data System (ADS)
Kotzé, Johannes P.; du Toit, Philip; Bode, Sebastian J.; Larmuth, James N.; Landman, Willem A.; Gauché, Paul
2016-05-01
Coal fired boilers are currently one of the most widespread ways to deliver process heat to industry. John Thompson Boilers (JTB) offer industrial steam supply solutions for industry and utility scale applications in Southern Africa. Transport cost add significant cost to the coal price in locations far from the coal fields in Mpumalanga, Gauteng and Limpopo. The Helio100 project developed a low cost, self-learning, wireless heliostat technology that requires no ground preparation. This is attractive as an augmentation alternative, as it can easily be installed on any open land that a client may have available. This paper explores the techno economic feasibility of solar augmentation for JTB coal fired steam boilers by comparing the fuel savings of a generic 2MW heliostat field at various locations throughout South Africa.
A high-temperature gas-and-steam turbine plant operating on combined fuel
NASA Astrophysics Data System (ADS)
Klimenko, A. V.; Milman, O. O.; Shifrin, B. A.
2015-11-01
A high-temperature gas-steam turbine plant (GSTP) for ultrasupercritical steam conditions is proposed based on an analysis of prospects for the development of power engineering around the world and in Russia up to 2040. The performance indicators of a GSTP using steam from a coal-fired boiler with a temperature of 560-620°C with its superheating to 1000-1500°C by firing natural gas with oxygen in a mixingtype steam superheater are analyzed. The thermal process circuit and design of a GSTP for a capacity of 25 MW with the high- and intermediate-pressure high-temperature parts with the total efficiency equal to 51.7% and the natural gas utilization efficiency equal to 64-68% are developed. The principles of designing and the design arrangement of a 300 MW GSTP are developed. The effect of economic parameters (the level and ratio of prices for solid fuel and gas, and capital investments) on the net cost of electric energy is determined. The net cost of electric energy produced by the GSTP is lower than that produced by modern combined-cycle power plants in a wide variation range of these parameters. The components of a high-temperature GSTP the development of which determines the main features of such installations are pointed out: a chamber for combusting natural gas and oxygen in a mixture with steam, a vacuum device for condensing steam with a high content of nondensables, and a control system. The possibility of using domestically available gas turbine technologies for developing the GSTP's intermediate-pressure high-temperature part is pointed out. In regard of its environmental characteristics, the GSTP is more advantageous as compared with modern condensing power plants: it allows a flow of concentrated carbon dioxide to be obtained at its outlet, which can be reclaimed; in addition, this plant requires half as much consumption of fresh water.
26. Photocopy of diagram (from Bernhardt Skrotzki's Electric GenerationSteam Stations, ...
26. Photocopy of diagram (from Bernhardt Skrotzki's Electric Generation--Steam Stations, New York, New York, 1956, figure I-1) THE GENERAL WAY IN WHICH ELECTRICITY IS CREATED THROUGH THE STEAM GENERATION PROCESS - Portland General Electric Company, Station "L", 1841 Southeast Water Street, Portland, Multnomah County, OR
Multifunctional Porous Graphene for High-Efficiency Steam Generation by Heat Localization.
Ito, Yoshikazu; Tanabe, Yoichi; Han, Jiuhui; Fujita, Takeshi; Tanigaki, Katsumi; Chen, Mingwei
2015-08-05
Multifunctional nanoporous graphene is realized as a heat generator to convert solar illumination into high-energy steam. The novel 3D nanoporous graphene demonstrates a highly energy-effective steam generation with an energy conversation of 80%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Commercially Available Activated Carbon Fiber Felt Enables Efficient Solar Steam Generation.
Li, Haoran; He, Yurong; Hu, Yanwei; Wang, Xinzhi
2018-03-21
Sun-driven steam generation is now possible and has the potential to help meet future energy needs. Current technologies often use solar condensers to increase solar irradiance. More recently, a technology for solar steam generation that uses heated surface water and low optical concentration is reported. In this work, a commercially available activated carbon fiber felt is used to generate steam efficiently under one sun illumination. The evaporation rate and solar conversion efficiency reach 1.22 kg m -2 h -1 and 79.4%, respectively. The local temperature of the evaporator with a floating activated carbon fiber felt reaches 48 °C. Apart from the high absorptivity (about 94%) of the material, the evaporation performance is enhanced thanks to the well-developed pores for improved water supply and steam escape and the low thermal conductivity, which enables reduced bulk water temperature increase. This study helps to find a promising material for solar steam generation using a water evaporator that can be produced economically (∼6 $/m 2 ) with long-term stability.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
...-2011-02; Aging Management Program for Steam Generators AGENCY: Nuclear Regulatory Commission. ACTION... License Renewal Interim Staff Guidance (LR-ISG), LR-ISG-2011-02, ``Aging Management Program for Steam... using Revision 3 of NEI 97-06 to manage steam generator aging. The Draft LR-ISG revises the NRC staff's...
NASA Astrophysics Data System (ADS)
Schastlivtsev, A. I.; Borzenko, V. I.
2017-11-01
The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krupowicz, J.J.; Scott, D.B.; Fink, G.C.
Corrosion results obtained from the post-test non-destructive and destructive examinations of an alternative materials model steam generator are described in this final report. The model operated under representative thermal and hydraulic and accelerated (high seawater contaminant concentration) steam generator secondary water chemistry conditions. Total exposure consisted of 114 steaming days under all volatile treatment (AVT) chemistry conditions followed by 282 fault steaming days at a 30 ppM chloride concentration in the secondary bulk water. Various support plate and lattice strip support designs incorporated Types 347, 405, 409 and SCR-3 stainless steels; Alloys 600 and 690; and carbon steel. Heat transfermore » tube materials included Alloy 600 in various heat treated conditions, Alloy 690, and Alloy 800. All tubing materials in this test exhibited moderate pitting, primarily in the sludge pile region above the tubesheet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krupowicz, J.J.; Scott, D.B.; Rentler, R.M.
Corrosion results obtained from the post-test non-destructive and destructive examinations of an alternative materials model steam generator are described in this final report. The model operated under representative thermal and hydraulic and accelerated (high fresh water contaminant concentration) steam generator secondary water chemistry conditions. Total exposure consisted of 114 steaming days under all volatile treatment (AVT) chemistry conditions followed by 358 fault steaming days at a 40 ppM sulfate concentration in the secondary bulk water. Various support plate and lattice strip support designs incorporated Types 347, 405, 409 and SCR-3 stainless steels; Alloys 600 and 690; and carbon steel. Heatmore » transfer tube materials included Alloy 600 in various heat treated conditions, Alloy 690, and Alloy 800. All tubing materials in this test exhibited significant general corrosion beneath thick surface deposits.« less
Enviro-Friendly Hydrogen Generation from Steel Mill-Scale via Metal-Steam Reforming
ERIC Educational Resources Information Center
Azad, Abdul-Majeed; Kesavan, Sathees
2006-01-01
An economically viable and environmental friendly method of generating hydrogen for fuel cells is by the reaction of certain metals with steam, called metal-steam reforming (MSR). This technique does not generate any toxic by-products nor contributes to the undesirable greenhouse effect. From the standpoint of favorable thermodynamics, total…
75 FR 68294 - Revisions to the California State Implementation Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-05
... matter emissions from boilers, steam generators and process heaters greater than 5.0 MMbtu/hour. We are... Advance Emission 10/16/08 03/17/09 Reduction Options for Boilers, Steam Generators and Process Heaters..., steam generators and process heaters with a total rated heat input greater than 5 MMBtu/ hour. EPA's...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, K.; MacNeil, C.; Odar, S.
1997-02-01
This paper describes the chemical cleaning of the four steam generators at the Point Lepreau facility, which was accomplished as a part of a normal service outage. The steam generators had been in service for twelve years. Sludge samples showed the main elements were Fe, P and Na, with minor amounts of Ca, Mg, Mn, Cr, Zn, Cl, Cu, Ni, Ti, Si, and Pb, 90% in the form of Magnetite, substantial phosphate, and trace amounts of silicates. The steam generators were experiencing partial blockage of broached holes in the TSPs, and corrosion on tube ODs in the form of pittingmore » and wastage. In addition heat transfer was clearly deteriorating. More than 1000 kg of magnetite and 124 kg of salts were removed from the four steam generators.« less
Design and Activation of a LOX/GH Chemical Steam Generator
NASA Technical Reports Server (NTRS)
Saunders, G. P.; Mulkey, C. A.; Taylor, S. A.
2009-01-01
The purpose of this paper is to give a detailed description of the design and activation of the LOX/GH fueled chemical steam generator installed in Cell 2 of the E3 test facility at Stennis Space Center, MS (SSC). The steam generator uses a liquid oxygen oxidizer with gaseous hydrogen fuel. The combustion products are then quenched with water to create steam at pressures from 150 to 450 psig at temperatures from 350 to 750 deg F (from saturation to piping temperature limits).
Production of food grade (culinary) steam with geothermal (geo-heat) for industrial use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehlage, E.F.
1980-09-01
It may be assumed that geothermal steam (dry or flashed) will be sterile but not necessarily clean enough for direct incorporation into foods, beverages, and pharmaceuticals. The use of a purification by unfired geo-heat steam generators can produce a food grade or culinary steam supply for critical use even when combined with fossil fuel used as a booster. Low conductivity, i.e., pure food grade steam requires careful water conditioning outside the generator.
49 CFR 176.138 - Deck stowage.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., machinery exhaust, galley uptake, locker used for combustible stores, or other potential sources of ignition. They must be clear of walkways and cargo working areas, fire hydrants, steam pipes, and means of access...
Evaluation of on-line chelant addition to PWR steam generators. Steam generator cleaning project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tvedt, T.J.; Wallace, S.L.; Griffin, F. Jr.
1983-09-01
The investigation of chelating agents for continuous water treatment of secondary loops of PWR steam generators were conducted in two general areas: the study of the chemistry of chelating agents and the study of materials compatability with chelating agents. The thermostability of both EDTA and HEDTA metal chelates in All Volatile Treatment (AVT) water chemistry were shown to be greater than or equal to the thermostability of EDTA metal chelates in phosphate-sulfite water chemistry. HEDTA metal chelates were shown to have a much greater stability than EDTA metal chelates. Using samples taken from the EDTA metal chelate thermostability study andmore » from the Commonwealth Research Corporation (CRC) model steam generators (MSG), EDTA decomposition products were determined. Active metal surfaces were shown to become passivated when exposed to EDTA and HEDTA concentrations as high as 0.1% w/w in AVT. Trace amounts of iron in the water were found to increase the rate of passivation. Material balance and visual inspection data from CRC model steam generators showed that metal was transported through and cleaned from the MSG's. The Inconel 600 tubes of the salt water fouled model steam generators experienced pitting corrosion. Results of this study demonstrates the feasibility of EDTA as an on-line water treatment additive to maintain nuclear steam generators in a clean condition.« less
Highly Flexible and Efficient Solar Steam Generation Device.
Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing
2017-08-01
Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using Waste Heat for External Processes (English/Chinese) (Fact Sheet) (in Chin3se; English)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used inmore » petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.« less
The pre-conceptual design of the nuclear island of ASTRID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saez, M.; Menou, S.; Uzu, B.
The CEA is involved in a substantial effort on the ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) pre-conceptual design in cooperation with EDF, as experienced Sodium-cooled Fast Reactor (SFR) operator, AREVA, as experienced SFR Nuclear Island engineering company and components designer, ALSTOM POWER as energy conversion system designer and COMEX NUCLEAIRE as mechanical systems designer. The CEA is looking for other partnerships, in France and abroad. The ASTRID preliminary design is based on a sodium-cooled pool reactor of 1500 MWth generating about 600 MWe, which is required to guarantee the representativeness of the reactor core and the main componentsmore » with regard to future commercial reactors. ASTRID lifetime target is 60 years. Two Energy Conversion Systems are studied in parallel until the end of 2012: Rankine steam cycle or Brayton gas based energy conversion cycle. ASTRID design is guided by the following major objectives: improved safety, simplification of structures, improved In Service Inspection and Repair (ISIR), improved manufacturing conditions for cost reduction and increased quality, reduction of risks related to sodium fires and water/sodium reaction, and improved robustness against external hazards. The core is supported by a diagrid, which lay on a strong back to transfer the weight to the main vessel. AREVA is involved in a substantial effort in order to improve the core support structure in particular regarding the ISIR and the connection to primary pump. In the preliminary design, the primary system is formed by the main vessel and the upper closure comprising the reactor roof, two rotating plugs - used for fuel handling - and the components plugs located in the roof penetrations. The Above Core Structure deflects the sodium flow in the hot pool and provides support to core instrumentation and guidance of the control rod drive mechanisms. The number of the major components in the main vessel, primary pumps, Intermediate Heat Exchangers, and Decay Heat Exchangers are now under consideration. Under normal conditions, power release is achieved using the steam/water plant (in case of Rankine steam cycle) or the gas plant (in case of Brayton gas cycle). The diverse design and operating modes of Decay Heat Removal systems provide protection against common cause failures. A Decay Heat Removal system through the reactor vault is in particular studied with the objective to complement Direct Reactor Cooling systems. At this stage of the studies, the secondary system comprises four independent sodium loops (two and three sodium loops configurations are also investigated). Each loop includes one mechanical pump (or a large capacity Annular Linear Induction Electromagnetic Pump), and three modular Steam Generator Units characterized by once through straight tube units with a ferritic tube bundle; nevertheless, helical coil steam generator with tubes made of Alloy 800, and inverted type steam generator with a ferritic tube bundle are also investigated. The limited power of each modular Steam Generator Unit allows the whole secondary loop to withstand a large water/sodium reaction consecutive to the postulated simultaneous rupture of all the heat exchange tubes of one module. The arrangement of the components is based on the 'Regain' concept, in which the secondary pump is situated at a low level in the circuit; conventional arrangement, as SUPERPHENIX type, is a back-up option. Alternative arrangements based on gas cycles are also studied together with Na-gas heat exchanger design. This paper presents a status of the ASTRID pre-conceptual design. The most promising options are highlighted as well as less risky and back-up options. (authors)« less
NASA Astrophysics Data System (ADS)
Aminov, R. Z.; Khrustalev, V. A.; Portyankin, A. V.
2015-02-01
The effectiveness of combining nuclear power plants equipped with water-cooled water-moderated power-generating reactors (VVER) with other sources of energy within unified power-generating complexes is analyzed. The use of such power-generating complexes makes it possible to achieve the necessary load pickup capability and flexibility in performing the mandatory selective primary and emergency control of load, as well as participation in passing the night minimums of electric load curves while retaining high values of the capacity utilization factor of the entire power-generating complex at higher levels of the steam-turbine part efficiency. Versions involving combined use of nuclear power plants with hydrogen toppings and gas turbine units for generating electricity are considered. In view of the fact that hydrogen is an unsafe energy carrier, the use of which introduces additional elements of risk, a procedure for evaluating these risks under different conditions of implementing the fuel-and-hydrogen cycle at nuclear power plants is proposed. Risk accounting technique with the use of statistical data is considered, including the characteristics of hydrogen and gas pipelines, and the process pipelines equipment tightness loss occurrence rate. The expected intensities of fires and explosions at nuclear power plants fitted with hydrogen toppings and gas turbine units are calculated. In estimating the damage inflicted by events (fires and explosions) occurred in nuclear power plant turbine buildings, the US statistical data were used. Conservative scenarios of fires and explosions of hydrogen-air mixtures in nuclear power plant turbine buildings are presented. Results from calculations of the introduced annual risk to the attained net annual profit ratio in commensurable versions are given. This ratio can be used in selecting projects characterized by the most technically attainable and socially acceptable safety.
40 CFR 63.7522 - Can I use emission averaging to comply with this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... steam generation by boiler, i, in units of pounds. Cf = Conversion factor, calculated from the most recent compliance test, in units of million Btu of heat input per pounds of steam generated. (f) You must... emission rate using the actual steam generation from the large solid fuel boilers participating in the...
40 CFR 63.7522 - Can I use emission averaging to comply with this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... steam generation by boiler, i, in units of pounds. Cf = Conversion factor, calculated from the most recent compliance test, in units of million Btu of heat input per pounds of steam generated. (f) You must... emission rate using the actual steam generation from the large solid fuel boilers participating in the...
40 CFR 63.7522 - Can I use emission averaging to comply with this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... steam generation by boiler, i, in units of pounds. Cf = Conversion factor, calculated from the most recent compliance test, in units of million Btu of heat input per pounds of steam generated. (f) You must... emission rate using the actual steam generation from the large solid fuel boilers participating in the...
2. Credit BG. Looking west at east facade of Steam ...
2. Credit BG. Looking west at east facade of Steam Generator Plant, Building 4280/E-81; steam generators have been removed as part of dismantling program for Test Stand 'D.' Metal cylindrical objects to left of door were roof vents. The steam-driven ejector system for Dv Cell is clearly visible on the east side of Test Stand 'D' tower. The X-stage ejector is vertically installed at the bottom left of the tower, Y-stage is horizontally positioned close to the tower top, and the Z- and Z-1 stages are attached to the top of the interstage condenser. Light-colored piping is thermally insulated steam line. - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Steam Generator Plant, Edwards Air Force Base, Boron, Kern County, CA
46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).
Code of Federal Regulations, 2012 CFR
2012-10-01
... known as “Evaporators” or “Heat Exchangers” are not classified as unfired steam boilers. They shall be... this part. (c) An evaporator in which steam is generated shall be fitted with an efficient water level...
46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).
Code of Federal Regulations, 2011 CFR
2011-10-01
... known as “Evaporators” or “Heat Exchangers” are not classified as unfired steam boilers. They shall be... this part. (c) An evaporator in which steam is generated shall be fitted with an efficient water level...
46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).
Code of Federal Regulations, 2014 CFR
2014-10-01
... known as “Evaporators” or “Heat Exchangers” are not classified as unfired steam boilers. They shall be... this part. (c) An evaporator in which steam is generated shall be fitted with an efficient water level...
46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).
Code of Federal Regulations, 2013 CFR
2013-10-01
... known as “Evaporators” or “Heat Exchangers” are not classified as unfired steam boilers. They shall be... this part. (c) An evaporator in which steam is generated shall be fitted with an efficient water level...
8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM ...
8. TURBINE DECK (UPPER FLOOR) INSIDE STEAM PLANT, SHOWING STEAM TURBINES AND GENERATORS, LOOKING NORTH. November 13, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ
8. RW Meyer Sugar Mill: 18761889. Simple, singlecylinder, horizontal, reciprocating ...
8. RW Meyer Sugar Mill: 1876-1889. Simple, single-cylinder, horizontal, reciprocating steam engine, model No. 1, 5' x 10', 6 hp, 175 rpm. Manufactured by Ames Iron Works, Oswego, New York, 1879. View: Steam engine powered the mill's centrifugals. It received steam from the locomotive type, fire-tube portable boiler in the background. The engine's water pump which pumped water from the feed-water clarifying cistern, in between the boiler and engine, through a pre-heat system and on to the boiler, is seen in front of the fluted cylinder. The fly-ball governor, missing its balls, the steam port, and manual throttle valve are above and behind the cylinder. The flywheel, drive shaft, and pulley are on the left side of the engine bed. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI
40 CFR 69.12 - Continuing exemptions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Authority's two sixty-six megawatt oil-fired steam units which comprise the Cabras Power Plant from sulfur... requirements related to SO2. EPA shall review such information under the procedures it has established and...
40 CFR 69.12 - Continuing exemptions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Authority's two sixty-six megawatt oil-fired steam units which comprise the Cabras Power Plant from sulfur... requirements related to SO2. EPA shall review such information under the procedures it has established and...
40 CFR 69.12 - Continuing exemptions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Authority's two sixty-six megawatt oil-fired steam units which comprise the Cabras Power Plant from sulfur... requirements related to SO2. EPA shall review such information under the procedures it has established and...
Numerical Simulation and Analyses of the Loss of Feedwater Transient at the Unit 4 of Kola NPP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevanovic, Vladimir D.; Stosic, Zoran V.; Kiera, Michael
2002-07-01
A three-dimensional numerical simulation of the loss-of-feed water transient at the horizontal steam generator of the Kola nuclear power plant is performed. Presented numerical results show transient change of integral steam generator parameters, such as steam generation rate, water mass inventory, outlet reactor coolant temperature, as well as detailed distribution of shell side thermal-hydraulic parameters: swell and collapsed levels, void fraction distributions, mass flux vectors, etc. Numerical results are compared with measurements at the Kola NPP. The agreement is satisfactory, while differences are close to or below the measurement uncertainties. Obtained numerical results are the first ones that give completemore » insight into the three-dimensional and transient horizontal steam generator thermal-hydraulics. Also, the presented results serve as benchmark tests for the assessment and further improvement of one-dimensional models of horizontal steam generator built with safety codes. (authors)« less
Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.
Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng
2001-04-01
Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.
Boiler briquette coal versus raw coal: Part I--Stack gas emissions.
Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J
2001-04-01
Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.
Hydrogen turbine power conversion system assessment
NASA Technical Reports Server (NTRS)
Wright, D. E.; Lucci, A. D.; Campbell, J.; Lee, J. C.
1978-01-01
A three part technical study was conducted whereby parametric technical and economic feasibility data were developed on several power conversion systems suitable for the generation of central station electric power through the combustion of hydrogen and the use of the resulting heat energy in turbogenerator equipment. The study assessed potential applications of hydrogen-fueled power conversion systems and identified the three most promising candidates: (1) Ericsson Cycle, (2) gas turbine, and (3) direct steam injection system for fossil fuel as well as nuclear powerplants. A technical and economic evaluation was performed on the three systems from which the direct injection system (fossil fuel only) was selected for a preliminary conceptual design of an integrated hydrogen-fired power conversion system.
45. William E. Barrett, Photographer, August 1975. EARLY STEAM GENERATING ...
45. William E. Barrett, Photographer, August 1975. EARLY STEAM GENERATING UNIT USED TO PRODUCE ELECTRICITY FOR MANUFACTURING OPERATIONS AND FOR THE TOWN OF RAINELLE. STEAM ENGINE IS A HAMILTON CORLISS. - Meadow River Lumber Company, Highway 60, Rainelle, Greenbrier County, WV
Heat transfer with hockey-stick steam generator. [LMFBR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, E; Gabler, M J
1977-11-01
The hockey-stick modular design concept is a good answer to future needs for reliable, economic LMFBR steam generators. The concept was successfully demonstrated in the 30 Mwt MSG test unit; scaled up versions are currently in fabrication for CRBRP usage, and further scaling has been accomplished for PLBR applications. Design and performance characteristics are presented for the three generations of hockey-stick steam generators. The key features of the design are presented based on extensive analytical effort backed up by extensive ancillary test data. The bases for and actual performance evaluations are presented with emphasis on the CRBRP design. The designmore » effort on these units has resulted in the development of analytical techniques that are directly applicable to steam generators for any LMFBR application. In conclusion, the hockey-stick steam generator concept has been proven to perform both thermally and hydraulically as predicted. The heat transfer characteristics are well defined, and proven analytical techniques are available as are personnel experienced in their use.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Automation of steam generator services at public service electric & gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruickshank, H.; Wray, J.; Scull, D.
1995-03-01
Public Service Electric & Gas takes an aggressive approach to pursuing new exposure reduction techniques. Evaluation of historic outage exposure shows that over the last eight refueling outages, primary steam generator work has averaged sixty-six (66) person-rem, or, approximately tewenty-five percent (25%) of the general outage exposure at Salem Station. This maintenance evolution represents the largest percentage of exposure for any single activity. Because of this, primary steam generator work represents an excellent opportunity for the development of significant exposure reduction techniques. A study of primary steam generator maintenance activities demonstrated that seventy-five percent (75%) of radiation exposure was duemore » to work activities of the primary steam generator platform, and that development of automated methods for performing these activities was worth pursuing. Existing robotics systems were examined and it was found that a new approach would have to be developed. This resulted in a joint research and development project between Westinghouse and Public Service Electric & Gas to develop an automated system of accomplishing the Health Physics functions on the primary steam generator platform. R.O.M.M.R.S. (Remotely Operated Managed Maintenance Robotics System) was the result of this venture.« less
Reliable steam generators: how KWU solved beginning problems for its customers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggers, B.; Engl, G.; Froehlich, K.
This paper describes improvements in inspection and maintenance techniques, the adaptation of a secondary-side concept, and the optimization of water chemistry to achieve the highest possible operational reliability of steam generator performance. In the late 1970s and the early 1980s steam generators of several pressurized water reactors delivered by Kraftwerk Union (KWU) experienced corrosion-induced tube-wall degradation. As a result of these findings and the similar experience in US plants, KWU initiated a systematic program to retain the operational history of the plants at their historically outstanding level. By a combination of improvement in the balance of plant, reduction of themore » phosphate conditioning, and even a change to an all-volatile treatment as well as by the performance of tubesheet lancing, the tube degradation in KWU steam generators is nearly halted and no other known corrosion mechanisms exist that could impair the life expectancy of the steam generators. Nevertheless, repair and cleaning techniques have been developed and are available for application, if necessary, such as tube plugging, tube sleeving, or even partial tube replacement as well as chemical cleaning of the steam generator's secondary side.« less
Steam drum design for direct steam generation
NASA Astrophysics Data System (ADS)
Willwerth, Lisa; Müller, Svenja; Krüger, Joachim; Succo, Manuel; Feldhoff, Jan Fabian; Tiedemann, Jörg; Pandian, Yuvaraj; Krüger, Dirk; Hennecke, Klaus
2017-06-01
For the direct steam generation in solar fields, the recirculation concept has been demonstrated in several installations. Water masses in the solar field vary during transient phases, such as passing clouds. The volume of the steam drum can serve as a buffer during such transients by taking in excess water and providing water storage. The saturated steam mass flow to the superheating section or the consumer can be maintained almost constant during short transients; therefore the steam drum plays a key role for constant steam supply. Its buffer effect depends on the right sizing of the steam drum for the prevailing situations. Due to missing experiences, steam drums have been sized under conservative assumptions and are thereby usually oversized. With this paper, experiences on the steam drum of the 5 MWel TSE1 power plant are discussed for optimized future plant design. The results are also of relevance for process heat installations, in which saturated steam is produced by the solar field.
Hydrogen-based power generation from bioethanol steam reforming
NASA Astrophysics Data System (ADS)
Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.
2015-12-01
This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.
Hydrogen-based power generation from bioethanol steam reforming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasnadi-Asztalos, Zs., E-mail: tazsolt@chem.ubbcluj.ro; Cormos, C. C., E-mail: cormos@chem.ubbcluj.ro; Agachi, P. S.
This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production frommore » renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.« less
29 CFR 1926.151 - Fire prevention.
Code of Federal Regulations, 2011 CFR
2011-07-01
... hazardous locations. (5) The nozzle of air, inert gas, and steam lines or hoses, when used in the cleaning... nearest unit shall not exceed 100 feet. (d) Indoor storage. (1) Storage shall not obstruct, or adversely...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virtanen, E.; Haapalehto, T.; Kouhia, J.
1995-09-01
Three experiments were conducted to study the behavior of the new horizontal steam generator construction of the PACTEL test facility. In the experiments the secondary side coolant level was reduced stepwise. The experiments were calculated with two computer codes RELAP5/MOD3.1 and APROS version 2.11. A similar nodalization scheme was used for both codes to that the results may be compared. Only the steam generator was modelled and the rest of the facility was given as a boundary condition. The results show that both codes calculate well the behaviour of the primary side of the steam generator. On the secondary sidemore » both codes calculate lower steam temperatures in the upper part of the heat exchange tube bundle than was measured in the experiments.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-11
...- Institutional Steam Generating Units (Renewal) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... for Small Industrial- Commercial-Institutional Steam Generating Units (40 CFR Part 60, Subpart Dc.... Respondents/affected entities: Owners or operators of small industrial-commercial-institutional steam...
Downhole steam generator using low pressure fuel and air supply
Fox, Ronald L.
1983-01-01
An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.
Control system for fluid heated steam generator
Boland, J.F.; Koenig, J.F.
1984-05-29
A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.
Control system for fluid heated steam generator
Boland, James F.; Koenig, John F.
1985-01-01
A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.
Micro Chemical Oxygen-Iodine Laser (COIL)
2007-10-01
required to form a good o-ring seal. Steam generator design A pumping system based on steam ejectors was designed during the course of the previous HEL-JTO...options for the steam generator design . The first is to catalyze the decomposition of hydrogen peroxide through the use of a standard solid
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-14
... Approval; Comment Request; NSPS for Electric Utility Steam Generating (Renewal) AGENCY: Environmental... the electronic docket, go to http://www.regulations.gov . Title: NSPS for Electric Utility Steam.../Affected Entities: Owners or operators of electric utility steam generating units. Estimated Number of...
75 FR 45080 - Revisions to the California State Implementation Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-02
... revisions concern oxides of nitrogen (NO X ) emissions from boilers, steam generators and process heaters... 1--Submitted Rule Local agency Rule No. Rule title Adopted Submitted SJVUAPCD 4308 Boilers, Steam... regulations that control NO X emissions. Rule 4308 limits NO X and CO emissions from boilers, steam generators...
Techno-economic assessment of pellets produced from steam pretreated biomass feedstock
Shahrukh, Hassan; Oyedun, Adetoyese Olajire; Kumar, Amit; ...
2016-03-10
Minimum production cost and optimum plant size are determined for pellet plants for three types of biomass feedstock e forest residue, agricultural residue, and energy crops. The life cycle cost from harvesting to the delivery of the pellets to the co-firing facility is evaluated. The cost varies from 95 to 105 t -1 for regular pellets and 146–156 t -1 for steam pretreated pellets. The difference in the cost of producing regular and steam pretreated pellets per unit energy is in the range of 2e3 GJ -1. The economic optimum plant size (i.e., the size at which pellet production costmore » is minimum) is found to be 190 kt for regular pellet production and 250 kt for steam pretreated pellet. Furthermore, sensitivity and uncertainty analyses were carried out to identify sensitivity parameters and effects of model error.« less
MHD retrofit of steam power plants. Feasibility study. Summary and conclusions, Part I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-07-01
The US Department of Energy Division of Magnetohydrodynamics (DOE/MHD) initiated this study to evaluate the feasibility of a retrofit option to reduce the time and cost of commercializing MHD. The MHD retrofit option will integrate a nominal 260 megawatt thermal (MWt) MHD topping cycle into an existing or scheduled private utility steam plant; this facility will test both the MHD system and the combined operation of the MHD/steam plant. The 260 MWt input level was determined to be the size which could most effectively demonstrate and verify the engineering design and operational characteristics of a coal-fired, open-cycle, MHD power plant.more » Details are presented. A goal of the MHD program is to have operational by the year 2003 a commercial size, fully integrated MHD plant. This would be accomplished by demonstrating commercial scale, baseload performance of a fully integrated, MHD/steam power plant. (WHK)« less
Method and apparatus for enhanced heat recovery from steam generators and water heaters
Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin
2006-06-27
A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.
Intelligent Chemistry Management System (ICMS)--A new approach to steam generator chemistry control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barto, R.J.; Farrell, D.M.; Noto, F.A.
1986-04-01
The Intelligent Chemistry Management System (ICMS) is a new tool which assists in steam generator chemistry control. Utilizing diagnostic capabilities, the ICMS will provide utility and industrial boiler operators, system chemists, and plant engineers with a tool for monitoring, diagnosing, and controlling steam generator system chemistry. By reducing the number of forced outages through early identification of potentially detrimental conditions, suggestion of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result. The system monitors water and steam quality at a number of critical locations in the plant.
Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants
NASA Astrophysics Data System (ADS)
Tumanovskii, A. G.; Shvarts, A. L.; Somova, E. V.; Verbovetskii, E. Kh.; Avrutskii, G. D.; Ermakova, S. V.; Kalugin, R. N.; Lazarev, M. V.
2017-02-01
The article presents a review of developments of modern high-capacity coal-fired over-supercritical (OSC) and ultra-supercritical (USC) steam power plants and their implementation. The basic engineering solutions are reported that ensure the reliability, economic performance, and low atmospheric pollution levels. The net efficiency of the power plants is increased by optimizing the heat balance, improving the primary and auxiliary equipment, and, which is the main thing, by increasing the throttle conditions. As a result of the enhanced efficiency, emissions of hazardous substances into the atmosphere, including carbon dioxide, the "greenhouse" gas, are reduced. To date, the exhaust steam conditions in the world power industry are p 0 ≈ 30 MPa and t 0 = 610/620°C. The efficiency of such power plants reaches 47%. The OSC plants are being operated in Germany, Denmark, Japan, China, and Korea; pilot plants are being developed in Russia. Currently, a project of a power plant for the ultra-supercritical steam conditions p 0 ≈ 35 MPa and t 0 = 700/720°C with efficiency of approximately 50% is being studied in the EU within the framework of the Thermie AD700 program, project AD 700PF. Investigations in this field have also been launched in the United States, Japan, and China. Engineering solutions are also being sought in Russia by the All-Russia Thermal Engineering Research Institute (VTI) and the Moscow Power Engineering Institute. The stated steam parameter level necessitates application of new materials, namely, nickel-base alloys. Taking into consideration high costs of nickel-base alloys and the absence in Russia of technologies for their production and manufacture of products from these materials for steam-turbine power plants, the development of power plants for steam parameters of 32 MPa and 650/650°C should be considered to be the first stage in creating the USC plants as, to achieve the above parameters, no expensive alloys are require. To develop and construct OSC and USC head power plants, joint efforts of the government, experts in power industry and metallurgy, scientific institutions, and equipment manufacturers are required.
NASA Astrophysics Data System (ADS)
Diglio, Giuseppe; Hanak, Dawid P.; Bareschino, Piero; Mancusi, Erasmo; Pepe, Francesco; Montagnaro, Fabio; Manovic, Vasilije
2017-10-01
Sorption-enhanced steam methane reforming (SE-SMR) is a promising alternative for H2 production with inherent CO2 capture. This study evaluates the techno-economic performance of SE-SMR in a network of fixed beds and its integration with a solid oxide fuel cell (SE-SMR-SOFC) for power generation. The analysis revealed that both proposed systems are characterised by better economic performance than the reference systems. In particular, for SE-SMR the levelised cost of hydrogen is 1.6 €ṡkg-1 and the cost of CO2 avoided is 29.9 €ṡtCO2-1 (2.4 €ṡkg-1 and 50 €ṡtCO2-1, respectively, for SMR with CO2 capture) while for SE-SMR-SOFC the levelised cost of electricity is 0.078 €ṡkWh-1 and the cost of CO2 avoided is 36.9 €ṡtCO2-1 (0.080 €ṡkWh-1 and 80 €ṡtCO2-1, respectively, for natural gas-fired power plant with carbon capture). The sensitivity analysis showed that the specific cost of fuel and the capital cost of fuel cell mainly affect the economic performance of SE-SMR and SE-SMR-SOFC, respectively. The daily revenue of the SE-SMR-SOFC system is higher than that of the natural gas-fired power plant if the difference between the carbon tax and the CO2 transport and storage cost is > 6 €ṡtCO2-1.
Susceptibility of steam generator tubes in secondary conditions: Effects of lead and sulphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez Briceno, D.; Garcia, M.S.; Castano, M.L.
1997-02-01
IGA/SCC on the secondary side of steam generators is increasing every year, and represents the cause of some steam generator replacements. Until recently, caustic and acidic environments have been accepted as causes of IGA/SCC, particulary in certain environments: in sludge pile on the tube sheet; at support crevices; in free span. Lead and sulfur have been identified as significant impurities. Present thoughts are that some IGA/SCC at support crevices may have occurred in nearly neutral or mildly alkaline environments. Here the authors present experimental work aimed at studying the influence of lead and sulfur on the behaviour of steam generatormore » tube alloys in different water environments typical of steam generators. Most test results ran for at least 2000 hours, and involved visual and detailed surface analysis during and following the test procedures.« less
Car companies look to generate power from waste heat
NASA Astrophysics Data System (ADS)
Schirber, Michael
2008-04-01
You might think that the steam engine is an outdated technology that had its heyday centuries ago, but in fact steam is once again a hot topic with vehicle manufacturers. Indeed, the next generation of hybrid cars and trucks may incorporate some form of steam power. Honda, for example, has just released details of a new prototype hybrid car that recharges its battery using a steam engine that exploits waste heat from the exhaust pipe.
PARTIAL ECONOMIC STUDY OF STEAM COOLED HEAVY WATER MODERATED REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1960-04-01
Steam-cooled reactors are compared with CAHDU for costs of Calandria tubes, pressure tubes. heavy water moderator, heavy water reflector, fuel supply, heat exchanger, and turbine generator. A direct-cycle lightsteam-cooled heavy- water-moderated pressure-tube reactor formed the basic reactor design for the study. Two methods of steam circulation through the reactor were examined. In both cases the steam was generated outside the reactor and superheated in the reactor core. One method consisted of a series of reactor and steam generator passes. The second method consisted of the Loeffler cycle and its modifications. The fuel was assumed to be natural cylindrical UO/sub 2/more » pellets sheathed in a hypothetical material with the nuclear properties of Zircaloy, but able to function at temperatures to 900 deg F. For the conditions assumed, the longer the rod, the higher the outlet temperature and therefore the higher the efficiency. The turbine cycle efficiency was calculated on the assumption that suitable steam generators are available. As the neutron losses to the pressure tubes were significant, an economic analysis of insulated pressure tubes is included. A description of the physics program for steam-cooled reactors is included. Results indicated that power from the steam-cooled reactor would cost 1.4 mills/ kwh compared with 1.25 mills/kwh for CANDU. (M.C.G.)« less
Rapid Generation of Superheated Steam Using a Water-containing Porous Material
NASA Astrophysics Data System (ADS)
Mori, Shoji; Okuyama, Kunito
Heat treatment by superheated steam has been utilized in several industrial fields including sterilization, desiccation, and cooking. In particular, cooking by superheated steam is receiving increased attention because it has advantages of reducing the salt and fat contents in foods as well as suppressing the oxidation of vitamin C and fat. In this application, quick startup and cut-off responses are required. Most electrically energized steam generators require a relatively long time to generate superheated steam due to the large heat capacities of the water in container and of the heater. Zhao and Liao (2002) introduced a novel process for rapid vaporization of subcooled liquid, in which a low-thermal-conductivity porous wick containing water is heated by a downward-facing grooved heating block in contact with the upper surface of the wick structure. They showed that saturated steam is generated within approximately 30 seconds from room-temperature water at a heat flux 41.2 kW⁄m2. In order to quickly generate superheated steam of approximately 300°C, which is required for cooking, the heat capacity of the heater should be as small as possible and the imposed heat flux should be so high enough that the porous wick is able to dry out in the vicinity of the contact with the heater and that the resulting heater temperature becomes much higher than the saturation temperature. The present paper proposes a simple structured generator to quickly produce superheated steam. Only a fine wire heater is contacted spirally on the inside wall in a hollow porous material. The start-up, cut-off responses and the rate of energy conversion for input power are investigated experimentally. Superheated steam of 300°C is produced in approximately 19 seconds from room-temperature water for an input power of 300 W. The maximum rate of energy conversion in the steady state is approximately 0.9.
Case Study for the ARRA-Funded Ground Source Heat Pump Demonstration at Ball State University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Im, Piljae; Liu, Xiaobing; Henderson, Jr., Hugh
With funding provided by the American Recovery and Reinvestment Act (ARRA), 26 ground-source heat pump (GSHP) projects were competitively selected in 2009 to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. One of the selected demonstration projects is a district central GSHP system installed at Ball State University (BSU) in Muncie, IN. Prior to implementing the district GSHP system, 47 major buildings in BSU were served by a central steam plant with four coal-fired and three natural-gas-fired steam boilers. Cooling was provided by five water-cooled centrifugal chillers at the District Energy Station Southmore » (DESS). The new district GSHP system replaced the existing coal-fired steam boilers and conventional water-cooled chillers. It uses ground-coupled heat recovery (HR) chillers to meet the simultaneous heating and cooling demands of the campus. The actual performance of the GSHP system was analyzed based on available measured data from August 2015 through July 2016, construction drawings, maintenance records, personal communications, and construction costs. Since Phase 1 was funded in part by the ARRA grant, it is the focus of this case study. The annual energy consumption of the GSHP system was calculated based on the available measured data and other related information. It was compared with the performance of a baseline scenario— a conventional water-cooled chiller and natural-gas-fired boiler system, both of which meet the minimum energy efficiencies allowed by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013). The comparison was made to determine source energy savings, energy cost savings, and CO2 emission reductions achieved by the GSHP system. A cost analysis was performed to evaluate the simple payback of the GSHP system. The following sections summarize the results of the analysis, the lessons learned, and recommendations for improvement in the operation of this district GSHP system.« less
Credit BG. Test Stand "D" tower as seen looking northeast ...
Credit BG. Test Stand "D" tower as seen looking northeast (See caption for CA-163-F-18). To the right of the view is the stainless steel dome top for Dv Cell (see CA-163-F-22 for view into cell), behind which rests a spherical accumulator--an electrically heated steam generator for powering the vacuum system at "C" and Test Stand "D." Part of the ejector system can be seen on the right corner of the tower, other connections include electrical ducts (thin, flat metal members) and fire protection systems. Note the stand in the foreground with lights used to indicate safety status of the stand during tests - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
NASA Technical Reports Server (NTRS)
1981-01-01
Problems related to combustion generated pollution are explored, taking into account the mechanism of NO formation from nitrogen compounds in hydrogen flames studied by laser fluorescence, the structure and similarity of nitric oxide production in turbulent diffusion flames, the effect of steam addition on NO formation, and the formation of NO2 by laminar flames. Other topics considered are concerned with propellant combustion, fluidized bed combustion, the combustion of droplets and sprays, premixed flame studies, fire studies, and flame stabilization. Attention is also given to coal flammability, chemical kinetics, turbulent combustion, soot, coal combustion, the modeling of combustion processes, combustion diagnostics, detonations and explosions, ignition, internal combustion engines, combustion studies, and furnaces.
NASA Technical Reports Server (NTRS)
Marston, C. H.; Alyea, F. N.; Bender, D. J.; Davis, L. K.; Dellinger, T. C.; Hnat, J. G.; Komito, E. H.; Peterson, C. A.; Rogers, D. A.; Roman, A. J.
1980-01-01
The performance and cost of moderate technology coal-fired open cycle MHD/steam power plant designs which can be expected to require a shorter development time and have a lower development cost than previously considered mature OCMHD/steam plants were determined. Three base cases were considered: an indirectly-fired high temperature air heater (HTAH) subsystem delivering air at 2700 F, fired by a state of the art atmospheric pressure gasifier, and the HTAH subsystem was deleted and oxygen enrichment was used to obtain requisite MHD combustion temperature. Coal pile to bus bar efficiencies in ease case 1 ranged from 41.4% to 42.9%, and cost of electricity (COE) was highest of the three base cases. For base case 2 the efficiency range was 42.0% to 45.6%, and COE was lowest. For base case 3 the efficiency range was 42.9% to 44.4%, and COE was intermediate. The best parametric cases in bases cases 2 and 3 are recommended for conceptual design. Eventual choice between these approaches is dependent on further evaluation of the tradeoffs among HTAH development risk, O2 plant integration, and further refinements of comparative costs.
ECKG Kladno project: First IPP in the Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rode, J.R.; Tichy, O.J.
1999-07-01
The Energy Center Kladno project is the first independent power producer (IPP) project to be financed in the Czech Republic, one of Europe's most rapidly evolving markets. The total financing is $401 million and is structured in three currencies; Czech crowns, German marks, and US dollars. This paper will focus on: Enhanced technology to meet energy demands; Execution to meet the ambitious; and Overall project status. The coal and gas fired plant will produce a total of 343 MW to provide electricity and heat to the town of Kladno, west of Prague. The new plant will be located within themore » existing ECK facility and the project encompasses demolition, upgrading, and rebuilding. The base load will be from two coal-fired 135 MW circulating fluidized bed (CFB) boilers and peaking capacity from the gas-fired combustion (66 MW) turbine. The CFB's will fire a range of low sulfur brown coal supplied from the local mining company Ceskomoravske Doly (CMD). The new CFB's were designed to meet the overall steam demands specified by ECKG. The CFB's design features include in-furnace heat transfer surface and a split backpass that utilizes a biasing damper to allow for control of both the superheat and reheat steam temperatures. The various CFB auxiliary systems will be discussed in the paper as well as the flue gas particulate collection equipment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pointer, William David; Shaver, Dillon; Liu, Yang
The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluidmore » dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.« less
Potential ability of zeolite to generate high-temperature vapor using waste heat
NASA Astrophysics Data System (ADS)
Fukai, Jun; Wijayanta, Agung Tri
2018-02-01
In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.
Jiang, Feng; Liu, He; Li, Yiju; Kuang, Yudi; Xu, Xu; Chen, Chaoji; Huang, Hao; Jia, Chao; Zhao, Xinpeng; Hitz, Emily; Zhou, Yubing; Yang, Ronggui; Cui, Lifeng; Hu, Liangbing
2018-01-10
The global fresh water shortage has driven enormous endeavors in seawater desalination and wastewater purification; among these, solar steam generation is effective in extracting fresh water by efficient utilization of naturally abundant solar energy. For solar steam generation, the primary focus is to design new materials that are biodegradable, sustainable, of low cost, and have high solar steam generation efficiency. Here, we designed a bilayer aerogel structure employing naturally abundant cellulose nanofibrils (CNFs) as basic building blocks to achieve sustainability and biodegradability as well as employing a carbon nanotube (CNT) layer for efficient solar utilization with over 97.5% of light absorbance from 300 to 1200 nm wavelength. The ultralow density (0.0096 g/cm 3 ) of the aerogel ensures that minimal material is required, reducing the production cost while at the same time satisfying the water transport and thermal-insulation requirements due to its highly porous structure (99.4% porosity). Owing to its rationally designed structure and thermal-regulation performance, the bilayer CNF-CNT aerogel exhibits a high solar-energy conversion efficiency of 76.3% and 1.11 kg m -2 h -1 at 1 kW m -2 (1 Sun) solar irradiation, comparable or even higher than most of the reported solar steam generation devices. Therefore, the all-nanofiber aerogel presents a new route for designing biodegradable, sustainable, and scalable solar steam generation devices with superb performance.
Geothermal steam condensate reinjection
NASA Technical Reports Server (NTRS)
Chasteen, A. J.
1974-01-01
Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.
Lambkins Roar as the Top High School in the 27th Colorado Science Bowl |
round of the competition. As they readied to answer rapid-fire physics, math, biology, astronomy, energy group, which is an offshoot of his school's STEAM (science, technology, engineering, art, and math
Pretest analysis document for Semiscale Test S-FS-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, T.H.
This report documents the pretest analysis calculation completed with the RELAP5/MOD2/CY21 code for Semiscale Test S-FS-1. The test will simulate the double-ended offset shear of the main steam line at the exit of the broken loop steam generator (downstream of the flow restrictor) and the subsequent plant recovery. The recovery portion of the test consists of a plant stabilization phase and a plant cooldown phase. The recovery procedures involve normal charging/letdown operation, pressurizer heater operation, secondary steam and feed of the unaffected steam generator, and pressurizer auxiliary spray. The test will be terminated after the unaffected steam generator and pressurizermore » pressures and liquid levels are stable, and the average priamry fluid temperature is stable at about 480 K (405/sup 0/F) for at least 10 minutes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rintoul, B.
1970-09-15
The newest addition to Getty Oil Co.'s imposing array of steam equipment at Kern River is a 240-million-btu-per-hr boiler. This boiler is almost 5 times more powerful than the previous largest piece of steam-generating hardware in use in the field. The huge boiler went into operation in Aug. on the Canfield Fee property on Sec. 29, 28S-28E. It is being used to furnish steam for 60 wells in a displacement project. The components that have made Getty Oil Co. the leading steamer at Kern River and the field, in turn, the world capital for oil-field steam operations include shallow wells,more » steam generators, and--since last year--a computer. There are more than 4,500 oil wells in the Kern River field, including more than 2,600 on Getty Oil properties. Getty Oil's steam operations involve 2,469 producing wells and 151 injection wells, including 2,167 producing wells in stimulation projects and 302 producing wells in displacement projects. The Kern River drilling program for 1970 consists of 313 wells of which 179 are steam-injection wells for the expansion of displacement projects. Wells are shallow, drilled mainly to the Kern River Series sands at an average depth of 900 ft, with a few drilled to the China Grade zone at an average depth of 1,300 ft. To furnish steam for the massive Kern River program, Getty Oil has assembled a force of 96 steam generators.« less
NASA Astrophysics Data System (ADS)
Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.
2018-05-01
Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.
2. Credit PEM. View of Martinsburg Power Company steam generating ...
2. Credit PEM. View of Martinsburg Power Company steam generating plant. From right to left: original 1889 generating building, transformer room, new generating room and, adjacent to draft stack is boiler room addition. Photo c. 1911. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV
N-16 monitors: Almaraz NPP experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adrada, J.
1997-02-01
Almaraz Nuclear Power Plant has installed N-16 monitors - one per steam generator - to control the leakage rate through the steam generator tubes after the application of leak before break (LBB) criteria for the top tube sheet (TTS). After several years of operation with the N-16 monitors, Almaraz NPP experience may be summarized as follows: N-16 monitors are very useful to follow the steam generator leak rate trend and to detect an incipient tube rupture; but they do not provide an exact absolute leak rate value, mainly when there are small leaks. The evolution of the measured N-16 leakmore » rates varies along the fuel cycle, with the same trend for the 3 steam generators. This behaviour is associated with the primary water chemistry evolution along the cycle.« less
Oxygen transport membrane reactor based method and system for generating electric power
Kelly, Sean M.; Chakravarti, Shrikar; Li, Juan
2017-02-07
A carbon capture enabled system and method for generating electric power and/or fuel from methane containing sources using oxygen transport membranes by first converting the methane containing feed gas into a high pressure synthesis gas. Then, in one configuration the synthesis gas is combusted in oxy-combustion mode in oxygen transport membranes based boiler reactor operating at a pressure at least twice that of ambient pressure and the heat generated heats steam in thermally coupled steam generation tubes within the boiler reactor; the steam is expanded in steam turbine to generate power; and the carbon dioxide rich effluent leaving the boiler reactor is processed to isolate carbon. In another configuration the synthesis gas is further treated in a gas conditioning system configured for carbon capture in a pre-combustion mode using water gas shift reactors and acid gas removal units to produce hydrogen or hydrogen-rich fuel gas that fuels an integrated gas turbine and steam turbine system to generate power. The disclosed method and system can also be adapted to integrate with coal gasification systems to produce power from both coal and methane containing sources with greater than 90% carbon isolation.
Development of Creep-Resistant, Alumina-Forming Ferrous Alloys for High-Temperature Structural Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Yukinori; Brady, Michael P.; Muralidharan, Govindarajan
This paper overviews recent advances in developing novel alloy design concepts of creep-resistant, alumina-forming Fe-base alloys, including both ferritic and austenitic steels, for high-temperature structural applications in fossil-fired power generation systems. Protective, external alumina-scales offer improved oxidation resistance compared to chromia-scales in steam-containing environments at elevated temperatures. Alloy design utilizes computational thermodynamic tools with compositional guidelines based on experimental results accumulated in the last decade, along with design and control of the second-phase precipitates to maximize high-temperature strengths. The alloys developed to date, including ferritic (Fe-Cr-Al-Nb-W base) and austenitic (Fe-Cr-Ni-Al-Nb base) alloys, successfully incorporated the balanced properties of steam/water vapor-oxidationmore » and/or ash-corrosion resistance and improved creep strength. Development of cast alumina-forming austenitic (AFA) stainless steel alloys is also in progress with successful improvement of higher temperature capability targeting up to ~1100°C. Current alloy design approach and developmental efforts with guidance of computational tools were found to be beneficial for further development of the new heat resistant steel alloys for various extreme environments.« less
Development of the CCP-200 mathematical model for Syzran CHPP using the Thermolib software package
NASA Astrophysics Data System (ADS)
Usov, S. V.; Kudinov, A. A.
2016-04-01
Simplified cycle diagram of the CCP-200 power generating unit of Syzran CHPP containing two gas turbines PG6111FA with generators, two steam recovery boilers KUP-110/15-8.0/0.7-540/200, and one steam turbine Siemens SST-600 (one-cylinder with two variable heat extraction units of 60/75 MW in heatextraction and condensing modes, accordingly) with S-GEN5-100 generators was presented. Results of experimental guarantee tests of the CCP-200 steam-gas unit are given. Brief description of the Thermolib application for the MatLab Simulink software package is given. Basic equations used in Thermolib for modeling thermo-technical processes are given. Mathematical models of gas-turbine plant, heat-recovery steam generator, steam turbine and integrated plant for power generating unit CCP-200 of Syzran CHPP were developed with the help of MatLab Simulink and Thermolib. The simulation technique at different ambient temperature values was used in order to get characteristics of the developed mathematical model. Graphic comparison of some characteristics of the CCP-200 simulation model (gas temperature behind gas turbine, gas turbine and combined cycle plant capacity, high and low pressure steam consumption and feed water consumption for high and low pressure economizers) with actual characteristics of the steam-gas unit received at experimental (field) guarantee tests at different ambient temperature are shown. It is shown that the chosen degrees of complexity, characteristics of the CCP-200 simulation model, developed by Thermolib, adequately correspond to the actual characteristics of the steam-gas unit received at experimental (field) guarantee tests; this allows considering the developed mathematical model as adequate and acceptable it for further work.
Cost analysis of a coal-fired power plant using the NPV method
NASA Astrophysics Data System (ADS)
Kumar, Ravinder; Sharma, Avdhesh Kr.; Tewari, P. C.
2015-12-01
The present study investigates the impact of various factors affecting coal-fired power plant economics of 210 MW subcritical unit situated in north India for electricity generation. In this paper, the cost data of various units of thermal power plant in terms of power output capacity have been fitted using power law with the help of the data collected from a literature search. To have a realistic estimate of primary components or equipment, it is necessary to include the latest cost of these components. The cost analysis of the plant was carried out on the basis of total capital investment, operating cost and revenue. The total capital investment includes the total direct plant cost and total indirect plant cost. Total direct plant cost involves the cost of equipment (i.e. boiler, steam turbine, condenser, generator and auxiliary equipment including condensate extraction pump, feed water pump, etc.) and other costs associated with piping, electrical, civil works, direct installation cost, auxiliary services, instrumentation and controls, and site preparation. The total indirect plant cost includes the cost of engineering and set-up. The net present value method was adopted for the present study. The work presented in this paper is an endeavour to study the influence of some of the important parameters on the lifetime costs of a coal-fired power plant. For this purpose, parametric study with and without escalation rates for a period of 35 years plant life was evaluated. The results predicted that plant life, interest rate and the escalation rate were observed to be very sensitive on plant economics in comparison to other factors under study.
Thermal chemical recuperation method and system for use with gas turbine systems
Yang, W.C.; Newby, R.A.; Bannister, R.L.
1999-04-27
A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.
Thermal chemical recuperation method and system for use with gas turbine systems
Yang, Wen-Ching; Newby, Richard A.; Bannister, Ronald L.
1999-01-01
A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.
Estimating probable flaw distributions in PWR steam generator tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorman, J.A.; Turner, A.P.L.
1997-02-01
This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regardingmore » uncertainties and assumptions in the data and analyses.« less
NUCLEAR FLASH TYPE STEAM GENERATOR
Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.
1962-09-01
A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)
Concentrating solar power (CSP) power cycle improvements through application of advanced materials
NASA Astrophysics Data System (ADS)
Siefert, John A.; Libby, Cara; Shingledecker, John
2016-05-01
Concentrating solar power (CSP) systems with thermal energy storage (TES) capability offer unique advantages to other renewable energy technologies in that solar radiation can be captured and stored for utilization when the sun is not shining. This makes the technology attractive as a dispatchable resource, and as such the Electric Power Research Institute (EPRI) has been engaged in research and development activities to understand and track the technology, identify key technical challenges, and enable improvements to meet future cost and performance targets to enable greater adoption of this carbon-free energy resource. EPRI is also involved with technically leading a consortium of manufacturers, government labs, and research organizations to enable the next generation of fossil fired power plants with advanced ultrasupercritical (A-USC) steam temperatures up to 760°C (1400°F). Materials are a key enabling technology for both of these seemingly opposed systems. This paper discusses how major strides in structural materials for A-USC fossil fired power plants may be translated into improved CSP systems which meet target requirements.
Downhole steam generator using low-pressure fuel and air supply
Fox, R.L.
1981-01-07
For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)
Determination of tube-to-tube support interaction characteristics. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haslinger, K.H.
Tube-to-tube support interaction characteristics were determined on a multi-span tube geometry representative of the hot-leg side of the C-E, System 80 steam generator design. Results will become input for an autoclave type wear test program on steam generator tubes, performed by Kraftwerk Union (KWU). Correlation of test data reported here with similar data obtained from the wear tests will be performed in an attempt to make predictions about the long-term fretting behavior of steam generator tubes.
Performance of equipment used in high-pressure steam floods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, M.E.; Bramley, B.G.
1966-01-01
Recovery of low-gravity, high-viscosity crude oil from relatively shallow reservoirs is becoming feasible through the application of steam flooding. Pan American Petroleum Corp. initiated a pilot steam flood with a 5.36 million btu/hr, 1,500-psi steam generator at the Winkleman Dome Field in West Central Wyoming in March, 1964. After 1 yr of operation, this steamer was replaced with a larger unit capable of 12 million-btu/hr, 2,500-psi steam generators, one at the Salt Creek Shannon Field and another at the Fourbear Field, both in Wyoming. This paper discusses the equipment used in high-pressure steam flooding and reviews some of the problemsmore » that have been encountered in the application of the equipment. Where determined, a suggested solution is presented.« less
Firing of pulverized solvent refined coal
Lennon, Dennis R.; Snedden, Richard B.; Foster, Edward P.; Bellas, George T.
1990-05-15
A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.
40. William E. Barrett, Photographer, August 1975. ROOF OF POWERHOUSE ...
40. William E. Barrett, Photographer, August 1975. ROOF OF POWERHOUSE SHOWING HOPPERS FOR SAWDUST USED TO FIRE STEAM BOILERS. DUCTS AT LEFT LEAD FROM PLANNING MILL AND OTHER MANUFACTURING OPERATIONS. - Meadow River Lumber Company, Highway 60, Rainelle, Greenbrier County, WV
Exhaust heated hydrogen and oxygen producing catalytic converter for combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, E.T.
1977-07-26
A steam generator is provided in operative association with a source of water and the exhaust system of a combustion engine including an air induction system provided with primary fuel inlet structure and supplemental fuel inlet structure. The steam generator derives its heat for converting water into steam from the exhaust system of the combustion engine and the steam generator includes a steam outlet communicated with and opening into one end of an elongated tubular housing disposed in good heat transfer relation with the exhaust system of the combustion engine and having a gas outlet at its other end communicatedmore » with the supplemental fuel inlet of the induction system. The tubular housing has iron filings disposed therein and is in such heat transfer relation with the exhaust system of the combustion engine so as to elevate the temperature of steam passing therethrough and to heat the iron filings to the extent that passage of the heated steam over the heated filings will result in hydrogen and oxygen gas being produced in the tubular housing for subsequent passage to the supplemental fuel inlet of the combustion engine induction system.« less
The Streaming Potential Generated by Flow of Wet Steam in Capillary Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsden, S.S. Jr.; Tyran, Craig K.
1986-01-21
For a constant pressure differential, the flow of wet steam generated electric potentials which increased with time and did not reach equilibrium values. These potentials were found to increase to values greater than 100 volts. The reason for this kind of potential build-up behavior was the presence of tiny flowing water slugs which were interspersed with electrically nonconductive steam vapor slugs. The measured electric potential for wet steam increased with pressure differential, but the relationship was not linear. The increase in potential with pressure drop was attributed both to an increase in fluid flow rate and changes in the wetmore » steam quality.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolstad, J.W.; Haarman, R.A.
The results of two transients involving the loss of a steam generator in a single-pass, steam generator, pressurized water reactor have been analyzed using a state-of-the-art, thermal-hydraulic computer code. Computed results include the formation of a steam bubble in the core while the pressurizer is solid. Calculations show that continued injection of high pressure water would have stopped the scenario. These are similar to the happenings at Three Mile Island.
Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine
Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel
2002-01-01
The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuvelliez, Ch.; Roussel, G.
1997-02-01
An EPRI report gives a method for predicting a conservative value of the total primary-to-secondary leak rate which may occur during, a postulated steam generator depressurization accident such as a Main Steam Line Break (MSLB) in a steam generator with axial through-wall ODSCC at the TSP intersections. The Belgian utility defined an alternative method deviating somewhat from the EPRI method. When reviewing this proposed method, the Belgian safety authorities performed some calculations to investigate its conservatism. This led them to recommend some modifications to the EPRI method which should reduce its undue conservatism while maintaining the objective of conservatism inmore » the offsite dose calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hold, A.
An advanced nonlinear transient model for calculating steady-state and dynamic behaviors of characteristic parameters of a Kraftwerk Union-type vertical natural-circulation U-tube steam generator and its main steam system is presented. This model has been expanded due to the increasing need for safety-related accident research studies. It now takes into consideration the possibilities of dryout and superheating along the secondary side of the steam generator. The resulting theoretical model is the basis of the digital code UTSG-2, which can be used both by itself and in combination with other pressurized water reactor transient codes, such as ALMOD-3.4, AMOD-4, and ATHLET.
Mushrooms as Efficient Solar Steam-Generation Devices.
Xu, Ning; Hu, Xiaozhen; Xu, Weichao; Li, Xiuqiang; Zhou, Lin; Zhu, Shining; Zhu, Jia
2017-07-01
Solar steam generation is emerging as a promising technology, for its potential in harvesting solar energy for various applications such as desalination and sterilization. Recent studies have reported a variety of artificial structures that are designed and fabricated to improve energy conversion efficiencies by enhancing solar absorption, heat localization, water supply, and vapor transportation. Mushrooms, as a kind of living organism, are surprisingly found to be efficient solar steam-generation devices for the first time. Natural and carbonized mushrooms can achieve ≈62% and ≈78% conversion efficiencies under 1 sun illumination, respectively. It is found that this capability of high solar steam generation is attributed to the unique natural structure of mushroom, umbrella-shaped black pileus, porous context, and fibrous stipe with a small cross section. These features not only provide efficient light absorption, water supply, and vapor escape, but also suppress three components of heat losses at the same time. These findings not only reveal the hidden talent of mushrooms as low-cost materials for solar steam generation, but also provide inspiration for the future development of high-performance solar thermal conversion devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND ...
60. BOILER CHAMBER No. 1, D LOOP STEAM GENERATOR AND MAIN COOLANT PUMP LOOKING NORTHEAST (LOCATION OOO) - Shippingport Atomic Power Station, On Ohio River, 25 miles Northwest of Pittsburgh, Shippingport, Beaver County, PA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhamkin, M.; Swensen, E.C.; Abitante, P.A.
1990-10-01
A study was performed to evaluate the performance and cost characteristics of two alternative CAES-plant concepts which utilize the low-pressure expander's exhaust-gas heat for the generation of steam in a heat recovery steam generator (HRSG). Both concepts result in increased net-power generation relative to a conventional CAES plant with a recuperator. The HRSG-generated steam produces additional power in either a separate steam-turbine bottoming cycle (CAESCC) or by direct injection into and expansion through the CAES-turboexpander train (CAESSI). The HRSG, which is a proven component of combined-cycle and cogeneration plants, replaces the recuperator of a conventional CAES plant, which has demonstratedmore » the potential for engineering and operating related problems and higher costs than were originally estimated. To enhance the credibility of the results, the analyses performed were based on the performance, operational and cost data of the 110-MW CAES plant currently under construction for the Alabama Electric Cooperative (AEC). The results indicate that CAESCC- and CAESSI-plant concepts are attractive alternatives to the conventional CAES plant with recuperator, providing greater power generation, up to 44-MW relative to the AEC CAES plant, with competitive operating and capital costs. 5 refs., 43 figs., 26 tabs.« less
Innovation on Energy Power Technology (1)
NASA Astrophysics Data System (ADS)
Nagano, Susumu; Kakishima, Masayoshi
After the last war, the output of single Steam Turbine Generator produced by the own technology in Japan returned to a prewar level. Electric power companies imported the large-capacity high efficiency Steam Turbine Generator from the foreign manufacturers in order to support the sudden increase of electric power demand. On the other hand, they decided to produce those in our own country to improve industrial technology. The domestic production of large-capacity 125MW Steam Turbine Generator overcome much difficulty and did much contribution for the later domestic technical progress.
Evaluation of steam generator WWER 440 tube integrity criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Splichal, K.; Otruba, J.; Burda, J.
1997-02-01
The main corrosion damage in WWER steam generators under operating conditions has been observed on the outer surface of these tubes. An essential operational requirement is to assure a low probability of radioactive primary water leakage, unstable defect development and rupture of tubes. In the case of WWER 440 steam generators the above requirements led to the development of permissible limits for data evaluation of the primary-to-secondary leak measurements and determination of acceptable values for plugging of heat exchange tubes based on eddy current test (ECT) inspections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, J.C.
This report discusses the comparisons of a RELAP5 posttest calculation of the recovery portion of the Semiscale Mod-2B test S-SG-1 to the test data. The posttest calculation was performed with the RELAP5/MOD2 cycle 36.02 code without updates. The recovery procedure that was calculated mainly consisted of secondary feed and steam using auxiliary feedwater injection and the atmospheric dump valve of the unaffected steam generator (the steam generator without the tube rupture). A second procedure was initiated after the trends of the secondary feed and steam procedure had been established, and this was to stop the safety injection that had beenmore » provided by two trains of both the charging and high pressure injection systems. The Semiscale Mod-2B configuration is a small scale (1/1705), nonnuclear, instrumented, model of a Westinghouse four-loop pressurized water reactor power plant. S-SG-1 was a single-tube, cold-side, steam generator tube rupture experiment. The comparison of the posttest calculation and data included comparing the general trends and the driving mechanisms of the responses, the phenomena, and the individual responses of the main parameters.« less
Estimation of water level and steam temperature using ensemble Kalman filter square root (EnKF-SR)
NASA Astrophysics Data System (ADS)
Herlambang, T.; Mufarrikoh, Z.; Karya, D. F.; Rahmalia, D.
2018-04-01
The equipment unit which has the most vital role in the steam-powered electric power plant is boiler. Steam drum boiler is a tank functioning to separate fluida into has phase and liquid phase. The existence in boiler system has a vital role. The controlled variables in the steam drum boiler are water level and the steam temperature. If the water level is higher than the determined level, then the gas phase resulted will contain steam endangering the following process and making the resulted steam going to turbine get less, and the by causing damages to pipes in the boiler. On the contrary, if less than the height of determined water level, the resulted height will result in dry steam likely to endanger steam drum. Thus an error was observed between the determined. This paper studied the implementation of the Ensemble Kalman Filter Square Root (EnKF-SR) method in nonlinear model of the steam drum boiler equation. The computation to estimate the height of water level and the temperature of steam was by simulation using Matlab software. Thus an error was observed between the determined water level and the steam temperature, and that of estimated water level and steam temperature. The result of simulation by Ensemble Kalman Filter Square Root (EnKF-SR) on the nonlinear model of steam drum boiler showed that the error was less than 2%. The implementation of EnKF-SR on the steam drum boiler r model comprises of three simulations, each of which generates 200, 300 and 400 ensembles. The best simulation exhibited the error between the real condition and the estimated result, by generating 400 ensemble. The simulation in water level in order of 0.00002145 m, whereas in the steam temperature was some 0.00002121 kelvin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.
1987-01-01
Analysis results for multiple steam generator blow down caused by an auxiliary feedwater steam-line break performed with the RETRAN-02 MOD 003 computer code are presented to demonstrate the capabilities of the RETRAN code to predict system transient response for verifying changes in operational procedures and supporting plant equipment modifications. A typical four-loop Westinghouse pressurized water reactor was modeled using best-estimate versus worst case licensing assumptions. This paper presents analyses performed to evaluate the necessity of implementing an auxiliary feedwater steam-line isolation modification. RETRAN transient analysis can be used to determine core cooling capability response, departure from nucleate boiling ratio (DNBR)more » status, and reactor trip signal actuation times.« less
AFB/open cycle gas turbine conceptual design study
NASA Technical Reports Server (NTRS)
Dickinson, T. W.; Tashjian, R.
1983-01-01
Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.
AFB/open cycle gas turbine conceptual design study
NASA Astrophysics Data System (ADS)
Dickinson, T. W.; Tashjian, R.
1983-09-01
Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.
Preliminary assessment of alternative PFBC power plant systems. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysocki, J.; Rogali, R.
1980-07-01
This report presents the design and and economic comparisons of the following nominal 1000 MWe PFBC power plants for both eastern and western coal: Curtiss-Wright PFBC power plants with an air-cooled design; General Electric RFBC power plants with a steam-cooled design; and AEP/Stal-Laval PFBC power plants with a steam-cooled design. In addition, reference pulverized coal-fired (PCF) power plants are included for comparison purposes. The results of the analysis indicate: (1) The steam-cooled PFBC designs show potential savings of 10% and 11% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost; (2) the air-cooled PFBCmore » designs show potential savings of 1% and 2% over PCF plants for eastern and western coal, respectively, in terms of busbar power cost.« less
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.
2011-03-01
The main stages and processes through which deposits are generated, migrate, and precipitate in the metal-secondary coolant system of power units at nuclear power plants are analyzed and determined. It is shown that substances produced by the mechanism of general erosion-corrosion are the main source of the ionic-colloid form of iron, which is the main component of deposits in a steam generator. Ways for controlling the formation of deposits in a nuclear power plant's steam generator are proposed together with methods for estimating their efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglund, T.; Ranney, J.T.; Babb, C.L.
2000-10-01
The initial design criteria of the MSW to ethanol facility have been completed along with preliminary site identification and layouts for the processing facility. These items are the first step in evaluating the feasibility of this co-located facility. Pilot facility design and modification are underway for the production and dewatering of the lignin fuel. Major process equipment identification has been completed and several key unit operations will be accomplished on rental equipment. Equipment not available for rental or at TVA has been ordered and facility modification and shakedown will begin in October. The study of the interface and resulting impactsmore » on the TVA Colbert facility are underway. The TVA Colbert fossil plant is fully capable of providing a reliable steam supply for the proposed Masada waste processing facility. The preferred supply location in the Colbert steam cycle has been identified as have possible steam pipeline routes to the Colbert boundary. Additional analysis is underway to fully predict the impact of the steam supply on Colbert plant performance and to select a final steam pipeline route.« less
Pressure Reducer for Coal Gasifiers
NASA Technical Reports Server (NTRS)
Kendall, James M., Sr.
1983-01-01
Quasi-porous-plug pressure reducer is designed for gases containing abrasive particles. Gas used to generate high pressure steam to drive electric power generators. In giving up heat to steam, gas drops in temperature. Device used for coal gasification plants.
Microfabricated rankine cycle steam turbine for power generation and methods of making the same
NASA Technical Reports Server (NTRS)
Muller, Norbert (Inventor); Lee, Changgu (Inventor); Frechette, Luc (Inventor)
2009-01-01
In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.
Simulating Porous Magnetite Layer Deposited on Alloy 690TT Steam Generator Tubes
Jeon, Soon-Hyeok; Son, Yeong-Ho; Choi, Won-Ik; Song, Geun Dong; Hur, Do Haeng
2018-01-01
In nuclear power plants, the main corrosion product that is deposited on the outside of steam generator tubes is porous magnetite. The objective of this study was to simulate porous magnetite that is deposited on thermally treated (TT) Alloy 690 steam generator tubes. A magnetite layer was electrodeposited on an Alloy 690TT substrate in an Fe(III)-triethanolamine solution. After electrodeposition, the dense magnetite layer was immersed to simulate porous magnetite deposits in alkaline solution for 50 days at room temperature. The dense morphology of the magnetite layer was changed to a porous structure by reductive dissolution reaction. The simulated porous magnetite layer was compared with flakes of steam generator tubes, which were collected from the secondary water system of a real nuclear power plant during sludge lancing. Possible nuclear research applications using simulated porous magnetite specimens are also proposed. PMID:29301316
Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation.
Xue, Guobin; Liu, Kang; Chen, Qian; Yang, Peihua; Li, Jia; Ding, Tianpeng; Duan, Jiangjiang; Qi, Bei; Zhou, Jun
2017-05-03
Solar-enabled steam generation has attracted increasing interest in recent years because of its potential applications in power generation, desalination, and wastewater treatment, among others. Recent studies have reported many strategies for promoting the efficiency of steam generation by employing absorbers based on carbon materials or plasmonic metal nanoparticles with well-defined pores. In this work, we report that natural wood can be utilized as an ideal solar absorber after a simple flame treatment. With ultrahigh solar absorbance (∼99%), low thermal conductivity (0.33 W m -1 K -1 ), and good hydrophilicity, the flame-treated wood can localize the solar heating at the evaporation surface and enable a solar-thermal efficiency of ∼72% under a solar intensity of 1 kW m -2 , and it thus represents a renewable, scalable, low-cost, and robust material for solar steam applications.
NASA Astrophysics Data System (ADS)
Bergant, Marcos A.; Yawny, Alejandro A.; Perez Ipiña, Juan E.
2017-04-01
The structural integrity of steam generator tubes is a relevant issue concerning nuclear plant safety. In the present work, J-resistance curves of Inconel 690 and Incoloy 800 nuclear steam generator tubes with circumferential and longitudinal through wall cracks were obtained at room temperature and 300 °C using recently developed non-standard specimens' geometries. It was found that Incoloy 800 tubes exhibited higher J-resistance curves than Inconel 690 for both crack orientations. For both materials, circumferential cracks resulted into higher fracture resistance than longitudinal cracks, indicating a certain degree of texture anisotropy introduced by the tube fabrication process. From a practical point of view, temperature effects have found to be negligible in all cases. The results obtained in the present work provide a general framework for further application to structural integrity assessments of cracked tubes in a variety of nuclear steam generator designs.
Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea
2015-03-01
The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes - Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) - were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities--incineration or gasification--co-generation is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net electric efficiency may reach values up to 30-31%. In small-medium plants, net electric efficiency is constrained by scale effect and remains at values around 20-24%. Other types of technical solutions--gasification with syngas use in internally fired devices, pyrolysis and plasma gasification--are less common or studied at pilot or demonstrative scale and, in any case, offer at present similar or lower levels of energy efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.
40 CFR 69.12 - Continuing exemptions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... “the Act”, the Administrator of the Environmental Protection Agency (EPA) exempts the Guam Power Authority's two sixty-six megawatt oil-fired steam units which comprise the Cabras Power Plant from sulfur... limited to strict implementation of both the monitoring (wind direction and ambient SO2 concentration) and...
40 CFR 69.12 - Continuing exemptions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... “the Act”, the Administrator of the Environmental Protection Agency (EPA) exempts the Guam Power Authority's two sixty-six megawatt oil-fired steam units which comprise the Cabras Power Plant from sulfur... limited to strict implementation of both the monitoring (wind direction and ambient SO2 concentration) and...
Apparatus and method for acoustic monitoring of steam quality and flow
Sinha, Dipen N.; Pantea, Cristian
2016-09-13
An apparatus and method for noninvasively monitoring steam quality and flow and in pipes or conduits bearing flowing steam, are described. By measuring the acoustic vibrations generated in steam-carrying conduits by the flowing steam either by direct contact with the pipe or remotely thereto, converting the measured acoustic vibrations into a frequency spectrum characteristic of the natural resonance vibrations of the pipe, and monitoring the amplitude and/or the frequency of one or more chosen resonance frequencies, changes in the steam quality in the pipe are determined. The steam flow rate and the steam quality are inversely related, and changes in the steam flow rate are calculated from changes in the steam quality once suitable calibration curves are obtained.
NASA Astrophysics Data System (ADS)
Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl; Ambat, Rajan
2015-11-01
The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3 resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment with solution containing HNO3 caused dissolution of Cu and Si from the intermetallic particles in the aluminium substrate. The growth rate of oxide layer was observed to be a function of MnO4- and NO3- ions present in the aqueous solution. The NO3- ions exhibit higher affinity towards the intermetallic particles resulting in poor coverage by the steam generated oxide layer compared to the coating formed using MnO4- ions. Further, increase in the concentration of NO3- ions in the solution retards precipitation of the steam generated aluminium hydroxide layer.
Transmit-receive eddy current probes for defect detection and sizing in steam generator tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obrutsky, L.S.; Cecco, V.S.; Sullivan, S.P.
1997-02-01
Inspection of steam generator tubes in aging Nuclear Generating Stations is increasingly important. Defect detection and sizing, especially in defect prone areas such as the tubesheet, support plates and U-bend regions, are required to assess the fitness-for-service of the steam generators. Information about defect morphology is required to address operational integrity issues, i.e., risk of tube rupture, number of tubes at risk, consequential leakage. A major challenge continues to be the detection and sizing of circumferential cracks. Utilities around the world have experienced this type of tube failure. Conventional in-service inspection, performed with eddy current bobbin probes, is ineffectual inmore » detecting circumferential cracks in tubing. It has been demonstrated in CANDU steam generators, with deformation, magnetite and copper deposits that multi-channel probes with transmit-receive eddy current coils are superior to those using surface impedance coils. Transmit-receive probes have strong directional properties, permitting probe optimization according to crack orientation. They are less sensitive to lift-off noise and magnetite deposits and possess good discrimination to internal defects. A single pass C3 array transmit-receive probe developed by AECL can detect and size circumferential stress corrosion cracks as shallow as 40% through-wall. Since its first trial in 1992, it has been used routinely for steam generator in-service inspection of four CANDU plants, preventing unscheduled shutdowns due to leaking steam generator tubes. More recently, a need has surfaced for simultaneous detection of both circumferential and axial cracks. The C5 probe was designed to address this concern. It combines transmit-receive array probe technology for equal sensitivity to axial and circumferential cracks with a bobbin probe for historical reference. This paper will discuss the operating principles of transmit-receive probes, along with inspection results.« less
B-1 and B-3 Test Stands at NASA’s Plum Brook Station
1966-09-21
Operation of the High Energy Rocket Engine Research Facility (B-1), left, and Nuclear Rocket Dynamics and Control Facility (B-3) at the National Aeronautics and Space Administration’s (NASA) Plum Brook Station in Sandusky, Ohio. The test stands were constructed in the early 1960s to test full-scale liquid hydrogen fuel systems in simulated altitude conditions. Over the next decade each stand was used for two major series of liquid hydrogen rocket tests: the Nuclear Engine for Rocket Vehicle Application (NERVA) and the Centaur second-stage rocket program. The different components of these rocket engines could be studied under flight conditions and adjusted without having to fire the engine. Once the preliminary studies were complete, the entire engine could be fired in larger facilities. The test stands were vertical towers with cryogenic fuel and steam ejector systems. B-1 was 135 feet tall, and B-3 was 210 feet tall. Each test stand had several levels, a test section, and ground floor shop areas. The test stands relied on an array of support buildings to conduct their tests, including a control building, steam exhaust system, and fuel storage and pumping facilities. A large steam-powered altitude exhaust system reduced the pressure at the exhaust nozzle exit of each test stand. This allowed B-1 and B-3 to test turbopump performance in conditions that matched the altitudes of space.
The Effects of Alarm Display, Processing, and Availability on Crew Performance
2000-11-01
snow Instrumentation line leakage Small LOCA Steam generator tube rupture Small feedwater leakage inside containment Cycling of main steam...implemented. • Due to primary pressure controller failure, pressure heater banks cycle between on and off. 8.00 CF1 CF2 CF3 CF4 CF5...temperatures after the high-pressure pre- heaters flows into the steam generators number of active emergency feedwater pumps openings of the condensate
Design with constructal theory: Steam generators, turbines and heat exchangers
NASA Astrophysics Data System (ADS)
Kim, Yong Sung
This dissertation shows that the architecture of steam generators, steam turbines and heat exchangers for power plants can be predicted on the basis of the constructal law. According to constructal theory, the flow architecture emerges such that it provides progressively greater access to its currents. Each chapter shows how constructal theory guides the generation of designs in pursuit of higher performance. Chapter two shows the tube diameters, the number of riser tubes, the water circulation rate and the rate of steam production are determined by maximizing the heat transfer rate from hot gases to riser tubes and minimizing the global flow resistance under the fixed volume constraint. Chapter three shows how the optimal spacing between adjacent tubes, the number of tubes for the downcomer and the riser and the location of the flow reversal for the continuous steam generator are determined by the intersection of asymptotes method, and by minimizing the flow resistance under the fixed volume constraints. Chapter four shows that the mass inventory for steam turbines can be distributed between high pressure and low pressure turbines such that the global performance of the power plant is maximal under the total mass constraint. Chapter five presents the more general configuration of a two-stream heat exchanger with forced convection of the hot side and natural circulation on the cold side. Chapter six demonstrates that segmenting a tube with condensation on the outer surface leads to a smaller thermal resistance, and generates design criteria for the performance of multi-tube designs.
43 CFR 3275.14 - What aspects of my geothermal operations must I measure?
Code of Federal Regulations, 2014 CFR
2014-10-01
... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...
43 CFR 3275.14 - What aspects of my geothermal operations must I measure?
Code of Federal Regulations, 2011 CFR
2011-10-01
... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...
43 CFR 3275.14 - What aspects of my geothermal operations must I measure?
Code of Federal Regulations, 2013 CFR
2013-10-01
... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...
43 CFR 3275.14 - What aspects of my geothermal operations must I measure?
Code of Federal Regulations, 2012 CFR
2012-10-01
... wellhead pressure. (b) For all electrical generation facilities, you must measure: (1) Steam and/or hot... steam and/or hot water exiting the facility. (c) For direct use facilities, you must measure: (1) Flow of steam and/or hot water; and (2) Temperature of the steam or water entering the facility. (d) We...
Materials for advanced ultrasupercritical steam turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purgert, Robert; Shingledecker, John; Saha, Deepak
The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbinemore » throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using traditional sand foundry practices, and a techno-economic study of an A-USC plant including cost estimates for an A-USC turbine which showed A-USC to be economically attractive for partial carbon and capture compared to today’s USC technology. Based on this successful materials research and a review with U.S. utility stakeholders, a new project to develop a component test facility (ComTest) including the world’s first A-USC turbine has been proposed to continue the technology development.« less
Steam Turbine Materials for Ultrasupercritical Coal Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viswanathan, R.; Hawk, J.; Schwant, R.
The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that needmore » to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today's high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.« less
Fuel supply system and method for coal-fired prime mover
Smith, William C.; Paulson, Leland E.
1995-01-01
A coal-fired gas turbine engine is provided with an on-site coal preparation and engine feeding arrangement. With this arrangement, relatively large dry particles of coal from an on-site coal supply are micro-pulverized and the resulting dry, micron-sized, coal particulates are conveyed by steam or air into the combustion chamber of the engine. Thermal energy introduced into the coal particulates during the micro-pulverizing step is substantially recovered since the so-heated coal particulates are fed directly from the micro-pulverizer into the combustion chamber.
COAL-FIRED POWER PLANT ASH UTILIZATION IN THE TVA REGION
The report gives results of a study: (1) to summarize (a) production of coal ash nationally and by TVA's 12 major ash-producing steam/electric power plants, and (b) the physical/chemical characteristics of coal ash that affect ash disposal and/or use; (2) to review reported metho...
40 CFR 51.166 - Prevention of significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pollutant: Fossil fuel-fired steam electric plants of more than 250 million British thermal units per hour... ethanol by natural fermentation included in NAICS codes 325193 or 312140), fossil-fuel boilers (or... that produce ethanol by natural fermentation included in NAICS codes 325193 or 312140; (u) Fossil-fuel...
40 CFR 52.21 - Prevention of significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... regulated NSR pollutant: Fossil fuel-fired steam electric plants of more than 250 million British thermal... ethanol by natural fermentation included in NAICS codes 325193 or 312140), fossil-fuel boilers (or... that produce ethanol by natural fermentation included in NAICS codes 325193 or 312140; (u) Fossil-fuel...
40 CFR 51.166 - Prevention of significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pollutant: Fossil fuel-fired steam electric plants of more than 250 million British thermal units per hour... ethanol by natural fermentation included in NAICS codes 325193 or 312140), fossil-fuel boilers (or... that produce ethanol by natural fermentation included in NAICS codes 325193 or 312140; (u) Fossil-fuel...
40 CFR 52.21 - Prevention of significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... regulated NSR pollutant: Fossil fuel-fired steam electric plants of more than 250 million British thermal... ethanol by natural fermentation included in NAICS codes 325193 or 312140), fossil-fuel boilers (or... that produce ethanol by natural fermentation included in NAICS codes 325193 or 312140; (u) Fossil-fuel...
40 CFR Appendix S to Part 51 - Emission Offset Interpretative Ruling
Code of Federal Regulations, 2011 CFR
2011-07-01
... included in NAICS codes 325193 or 312140; (u) Fossil-fuel boilers (or combination thereof) totaling more... fiber processing plants; (y) Charcoal production plants; (z) Fossil fuel-fired steam electric plants of... and PM10 emissions shall include gaseous emissions from a source or activity which condense to form...
40 CFR Appendix S to Part 51 - Emission Offset Interpretative Ruling
Code of Federal Regulations, 2013 CFR
2013-07-01
... included in NAICS codes 325193 or 312140; (u) Fossil-fuel boilers (or combination thereof) totaling more... fiber processing plants; (y) Charcoal production plants; (z) Fossil fuel-fired steam electric plants of... source or activity, which condense to form particulate matter at ambient temperatures. On or after...