A hyperbolastic type-I diffusion process: Parameter estimation by means of the firefly algorithm.
Barrera, Antonio; Román-Román, Patricia; Torres-Ruiz, Francisco
2018-01-01
A stochastic diffusion process, whose mean function is a hyperbolastic curve of type I, is presented. The main characteristics of the process are studied and the problem of maximum likelihood estimation for the parameters of the process is considered. To this end, the firefly metaheuristic optimization algorithm is applied after bounding the parametric space by a stagewise procedure. Some examples based on simulated sample paths and real data illustrate this development. Copyright © 2017 Elsevier B.V. All rights reserved.
A multi-group firefly algorithm for numerical optimization
NASA Astrophysics Data System (ADS)
Tong, Nan; Fu, Qiang; Zhong, Caiming; Wang, Pengjun
2017-08-01
To solve the problem of premature convergence of firefly algorithm (FA), this paper analyzes the evolution mechanism of the algorithm, and proposes an improved Firefly algorithm based on modified evolution model and multi-group learning mechanism (IMGFA). A Firefly colony is divided into several subgroups with different model parameters. Within each subgroup, the optimal firefly is responsible for leading the others fireflies to implement the early global evolution, and establish the information mutual system among the fireflies. And then, each firefly achieves local search by following the brighter firefly in its neighbors. At the same time, learning mechanism among the best fireflies in various subgroups to exchange information can help the population to obtain global optimization goals more effectively. Experimental results verify the effectiveness of the proposed algorithm.
Firefly Algorithm, Lévy Flights and Global Optimization
NASA Astrophysics Data System (ADS)
Yang, Xin-She
Nature-inspired algorithms such as Particle Swarm Optimization and Firefly Algorithm are among the most powerful algorithms for optimization. In this paper, we intend to formulate a new metaheuristic algorithm by combining Lévy flights with the search strategy via the Firefly Algorithm. Numerical studies and results suggest that the proposed Lévy-flight firefly algorithm is superior to existing metaheuristic algorithms. Finally implications for further research and wider applications will be discussed.
NASA Astrophysics Data System (ADS)
Gandomi, A. H.; Yang, X.-S.; Talatahari, S.; Alavi, A. H.
2013-01-01
A recently developed metaheuristic optimization algorithm, firefly algorithm (FA), mimics the social behavior of fireflies based on the flashing and attraction characteristics of fireflies. In the present study, we will introduce chaos into FA so as to increase its global search mobility for robust global optimization. Detailed studies are carried out on benchmark problems with different chaotic maps. Here, 12 different chaotic maps are utilized to tune the attractive movement of the fireflies in the algorithm. The results show that some chaotic FAs can clearly outperform the standard FA.
NASA Astrophysics Data System (ADS)
Umbarkar, A. J.; Balande, U. T.; Seth, P. D.
2017-06-01
The field of nature inspired computing and optimization techniques have evolved to solve difficult optimization problems in diverse fields of engineering, science and technology. The firefly attraction process is mimicked in the algorithm for solving optimization problems. In Firefly Algorithm (FA) sorting of fireflies is done by using sorting algorithm. The original FA is proposed with bubble sort for ranking the fireflies. In this paper, the quick sort replaces bubble sort to decrease the time complexity of FA. The dataset used is unconstrained benchmark functions from CEC 2005 [22]. The comparison of FA using bubble sort and FA using quick sort is performed with respect to best, worst, mean, standard deviation, number of comparisons and execution time. The experimental result shows that FA using quick sort requires less number of comparisons but requires more execution time. The increased number of fireflies helps to converge into optimal solution whereas by varying dimension for algorithm performed better at a lower dimension than higher dimension.
Arterial cannula shape optimization by means of the rotational firefly algorithm
NASA Astrophysics Data System (ADS)
Tesch, K.; Kaczorowska, K.
2016-03-01
This article presents global optimization results of arterial cannula shapes by means of the newly modified firefly algorithm. The search for the optimal arterial cannula shape is necessary in order to minimize losses and prepare the flow that leaves the circulatory support system of a ventricle (i.e. blood pump) before it reaches the heart. A modification of the standard firefly algorithm, the so-called rotational firefly algorithm, is introduced. It is shown that the rotational firefly algorithm allows for better exploration of search spaces which results in faster convergence and better solutions in comparison with its standard version. This is particularly pronounced for smaller population sizes. Furthermore, it maintains greater diversity of populations for a longer time. A small population size and a low number of iterations are necessary to keep to a minimum the computational cost of the objective function of the problem, which comes from numerical solution of the nonlinear partial differential equations. Moreover, both versions of the firefly algorithm are compared to the state of the art, namely the differential evolution and covariance matrix adaptation evolution strategies.
Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network
Hao, Chuangbo; Song, Ping; Yang, Cheng; Liu, Xiongjun
2017-01-01
Data acquisition is the foundation of soft sensor and data fusion. Distributed data acquisition and its synchronization are the important technologies to ensure the accuracy of soft sensors. As a research topic in bionic science, the firefly-inspired algorithm has attracted widespread attention as a new synchronization method. Aiming at reducing the design difficulty of firefly-inspired synchronization algorithms for Wireless Sensor Networks (WSNs) with complex topologies, this paper presents a firefly-inspired synchronization algorithm based on a multiscale discrete phase model that can optimize the performance tradeoff between the network scalability and synchronization capability in a complex wireless sensor network. The synchronization process can be regarded as a Markov state transition, which ensures the stability of this algorithm. Compared with the Miroll and Steven model and Reachback Firefly Algorithm, the proposed algorithm obtains better stability and performance. Finally, its practicality has been experimentally confirmed using 30 nodes in a real multi-hop topology with low quality links. PMID:28282899
Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network.
Hao, Chuangbo; Song, Ping; Yang, Cheng; Liu, Xiongjun
2017-03-08
Data acquisition is the foundation of soft sensor and data fusion. Distributed data acquisition and its synchronization are the important technologies to ensure the accuracy of soft sensors. As a research topic in bionic science, the firefly-inspired algorithm has attracted widespread attention as a new synchronization method. Aiming at reducing the design difficulty of firefly-inspired synchronization algorithms for Wireless Sensor Networks (WSNs) with complex topologies, this paper presents a firefly-inspired synchronization algorithm based on a multiscale discrete phase model that can optimize the performance tradeoff between the network scalability and synchronization capability in a complex wireless sensor network. The synchronization process can be regarded as a Markov state transition, which ensures the stability of this algorithm. Compared with the Miroll and Steven model and Reachback Firefly Algorithm, the proposed algorithm obtains better stability and performance. Finally, its practicality has been experimentally confirmed using 30 nodes in a real multi-hop topology with low quality links.
Rayleigh wave nonlinear inversion based on the Firefly algorithm
NASA Astrophysics Data System (ADS)
Zhou, Teng-Fei; Peng, Geng-Xin; Hu, Tian-Yue; Duan, Wen-Sheng; Yao, Feng-Chang; Liu, Yi-Mou
2014-06-01
Rayleigh waves have high amplitude, low frequency, and low velocity, which are treated as strong noise to be attenuated in reflected seismic surveys. This study addresses how to identify useful shear wave velocity profile and stratigraphic information from Rayleigh waves. We choose the Firefly algorithm for inversion of surface waves. The Firefly algorithm, a new type of particle swarm optimization, has the advantages of being robust, highly effective, and allows global searching. This algorithm is feasible and has advantages for use in Rayleigh wave inversion with both synthetic models and field data. The results show that the Firefly algorithm, which is a robust and practical method, can achieve nonlinear inversion of surface waves with high resolution.
Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul
2014-01-01
This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem. PMID:25054184
Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul
2014-01-01
This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem.
An effective hybrid firefly algorithm with harmony search for global numerical optimization.
Guo, Lihong; Wang, Gai-Ge; Wang, Heqi; Wang, Dinan
2013-01-01
A hybrid metaheuristic approach by hybridizing harmony search (HS) and firefly algorithm (FA), namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods.
A Novel Hybrid Firefly Algorithm for Global Optimization.
Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao
Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate.
A Novel Hybrid Firefly Algorithm for Global Optimization
Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao
2016-01-01
Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate. PMID:27685869
Machining Parameters Optimization using Hybrid Firefly Algorithm and Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Farahlina Johari, Nur; Zain, Azlan Mohd; Haszlinna Mustaffa, Noorfa; Udin, Amirmudin
2017-09-01
Firefly Algorithm (FA) is a metaheuristic algorithm that is inspired by the flashing behavior of fireflies and the phenomenon of bioluminescent communication and the algorithm is used to optimize the machining parameters (feed rate, depth of cut, and spindle speed) in this research. The algorithm is hybridized with Particle Swarm Optimization (PSO) to discover better solution in exploring the search space. Objective function of previous research is used to optimize the machining parameters in turning operation. The optimal machining cutting parameters estimated by FA that lead to a minimum surface roughness are validated using ANOVA test.
An Effective Hybrid Firefly Algorithm with Harmony Search for Global Numerical Optimization
Guo, Lihong; Wang, Gai-Ge; Wang, Heqi; Wang, Dinan
2013-01-01
A hybrid metaheuristic approach by hybridizing harmony search (HS) and firefly algorithm (FA), namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods. PMID:24348137
Adaptive firefly algorithm: parameter analysis and its application.
Cheung, Ngaam J; Ding, Xue-Ming; Shen, Hong-Bin
2014-01-01
As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem - protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise.
Adaptive Firefly Algorithm: Parameter Analysis and its Application
Shen, Hong-Bin
2014-01-01
As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm — adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter selections affecting the performance of AdaFa. When applied to the real-world problem — protein tertiary structure prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise. PMID:25397812
Bacanin, Nebojsa; Tuba, Milan
2014-01-01
Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.
2014-01-01
Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results. PMID:24991645
Firefly Mating Algorithm for Continuous Optimization Problems
Ritthipakdee, Amarita; Premasathian, Nol; Jitkongchuen, Duangjai
2017-01-01
This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima. PMID:28808442
Firefly Mating Algorithm for Continuous Optimization Problems.
Ritthipakdee, Amarita; Thammano, Arit; Premasathian, Nol; Jitkongchuen, Duangjai
2017-01-01
This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.
NASA Astrophysics Data System (ADS)
Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed
2017-01-01
For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.
NASA Astrophysics Data System (ADS)
Ningrum, R. W.; Surarso, B.; Farikhin; Safarudin, Y. M.
2018-03-01
This paper proposes the combination of Firefly Algorithm (FA) and Chen Fuzzy Time Series Forecasting. Most of the existing fuzzy forecasting methods based on fuzzy time series use the static length of intervals. Therefore, we apply an artificial intelligence, i.e., Firefly Algorithm (FA) to set non-stationary length of intervals for each cluster on Chen Method. The method is evaluated by applying on the Jakarta Composite Index (IHSG) and compare with classical Chen Fuzzy Time Series Forecasting. Its performance verified through simulation using Matlab.
Naturally Inspired Firefly Controller For Stabilization Of Double Inverted Pendulum
NASA Astrophysics Data System (ADS)
Srikanth, Kavirayani; Nagesh, Gundavarapu
2015-12-01
A double inverted pendulum plant as an established model that is analyzed as part of this work was tested under the influence of time delay, where the controller was fine tuned using a firefly algorithm taking into considering the fitness function of variation of the cart position and to minimize the cart position displacement and still stabilize it effectively. The naturally inspired algorithm which imitates the fireflies definitely is an energy efficient method owing to the inherent logic of the way the fireflies respond collectively and has shown that critical time delays makes the system healthy.
Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed
2017-01-05
For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration. Copyright © 2016 Elsevier B.V. All rights reserved.
Bouc-Wen hysteresis model identification using Modified Firefly Algorithm
NASA Astrophysics Data System (ADS)
Zaman, Mohammad Asif; Sikder, Urmita
2015-12-01
The parameters of Bouc-Wen hysteresis model are identified using a Modified Firefly Algorithm. The proposed algorithm uses dynamic process control parameters to improve its performance. The algorithm is used to find the model parameter values that results in the least amount of error between a set of given data points and points obtained from the Bouc-Wen model. The performance of the algorithm is compared with the performance of conventional Firefly Algorithm, Genetic Algorithm and Differential Evolution algorithm in terms of convergence rate and accuracy. Compared to the other three optimization algorithms, the proposed algorithm is found to have good convergence rate with high degree of accuracy in identifying Bouc-Wen model parameters. Finally, the proposed method is used to find the Bouc-Wen model parameters from experimental data. The obtained model is found to be in good agreement with measured data.
A new approach to optic disc detection in human retinal images using the firefly algorithm.
Rahebi, Javad; Hardalaç, Fırat
2016-03-01
There are various methods and algorithms to detect the optic discs in retinal images. In recent years, much attention has been given to the utilization of the intelligent algorithms. In this paper, we present a new automated method of optic disc detection in human retinal images using the firefly algorithm. The firefly intelligent algorithm is an emerging intelligent algorithm that was inspired by the social behavior of fireflies. The population in this algorithm includes the fireflies, each of which has a specific rate of lighting or fitness. In this method, the insects are compared two by two, and the less attractive insects can be observed to move toward the more attractive insects. Finally, one of the insects is selected as the most attractive, and this insect presents the optimum response to the problem in question. Here, we used the light intensity of the pixels of the retinal image pixels instead of firefly lightings. The movement of these insects due to local fluctuations produces different light intensity values in the images. Because the optic disc is the brightest area in the retinal images, all of the insects move toward brightest area and thus specify the location of the optic disc in the image. The results of implementation show that proposed algorithm could acquire an accuracy rate of 100 % in DRIVE dataset, 95 % in STARE dataset, and 94.38 % in DiaRetDB1 dataset. The results of implementation reveal high capability and accuracy of proposed algorithm in the detection of the optic disc from retinal images. Also, recorded required time for the detection of the optic disc in these images is 2.13 s for DRIVE dataset, 2.81 s for STARE dataset, and 3.52 s for DiaRetDB1 dataset accordingly. These time values are average value.
Calculation of a double reactive azeotrope using stochastic optimization approaches
NASA Astrophysics Data System (ADS)
Mendes Platt, Gustavo; Pinheiro Domingos, Roberto; Oliveira de Andrade, Matheus
2013-02-01
An homogeneous reactive azeotrope is a thermodynamic coexistence condition of two phases under chemical and phase equilibrium, where compositions of both phases (in the Ung-Doherty sense) are equal. This kind of nonlinear phenomenon arises from real world situations and has applications in chemical and petrochemical industries. The modeling of reactive azeotrope calculation is represented by a nonlinear algebraic system with phase equilibrium, chemical equilibrium and azeotropy equations. This nonlinear system can exhibit more than one solution, corresponding to a double reactive azeotrope. The robust calculation of reactive azeotropes can be conducted by several approaches, such as interval-Newton/generalized bisection algorithms and hybrid stochastic-deterministic frameworks. In this paper, we investigate the numerical aspects of the calculation of reactive azeotropes using two metaheuristics: the Luus-Jaakola adaptive random search and the Firefly algorithm. Moreover, we present results for a system (with industrial interest) with more than one azeotrope, the system isobutene/methanol/methyl-tert-butyl-ether (MTBE). We present convergence patterns for both algorithms, illustrating - in a bidimensional subdomain - the identification of reactive azeotropes. A strategy for calculation of multiple roots in nonlinear systems is also applied. The results indicate that both algorithms are suitable and robust when applied to reactive azeotrope calculations for this "challenging" nonlinear system.
Thermal buckling optimisation of composite plates using firefly algorithm
NASA Astrophysics Data System (ADS)
Kamarian, S.; Shakeri, M.; Yas, M. H.
2017-07-01
Composite plates play a very important role in engineering applications, especially in aerospace industry. Thermal buckling of such components is of great importance and must be known to achieve an appropriate design. This paper deals with stacking sequence optimisation of laminated composite plates for maximising the critical buckling temperature using a powerful meta-heuristic algorithm called firefly algorithm (FA) which is based on the flashing behaviour of fireflies. The main objective of present work was to show the ability of FA in optimisation of composite structures. The performance of FA is compared with the results reported in the previous published works using other algorithms which shows the efficiency of FA in stacking sequence optimisation of laminated composite structures.
A clustering method of Chinese medicine prescriptions based on modified firefly algorithm.
Yuan, Feng; Liu, Hong; Chen, Shou-Qiang; Xu, Liang
2016-12-01
This paper is aimed to study the clustering method for Chinese medicine (CM) medical cases. The traditional K-means clustering algorithm had shortcomings such as dependence of results on the selection of initial value, trapping in local optimum when processing prescriptions form CM medical cases. Therefore, a new clustering method based on the collaboration of firefly algorithm and simulated annealing algorithm was proposed. This algorithm dynamically determined the iteration of firefly algorithm and simulates sampling of annealing algorithm by fitness changes, and increased the diversity of swarm through expansion of the scope of the sudden jump, thereby effectively avoiding premature problem. The results from confirmatory experiments for CM medical cases suggested that, comparing with traditional K-means clustering algorithms, this method was greatly improved in the individual diversity and the obtained clustering results, the computing results from this method had a certain reference value for cluster analysis on CM prescriptions.
The construction of support vector machine classifier using the firefly algorithm.
Chao, Chih-Feng; Horng, Ming-Huwi
2015-01-01
The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy.
The Construction of Support Vector Machine Classifier Using the Firefly Algorithm
Chao, Chih-Feng; Horng, Ming-Huwi
2015-01-01
The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not considered the feature selection, because the SVM, together with feature selection, is not suitable for the application in a multiclass classification, especially for the one-against-all multiclass SVM. In experiments, binary and multiclass classifications are explored. In the experiments on binary classification, ten of the benchmark data sets of the University of California, Irvine (UCI), machine learning repository are used; additionally the firefly-SVM is applied to the multiclass diagnosis of ultrasonic supraspinatus images. The classification performance of firefly-SVM is also compared to the original LIBSVM method associated with the grid search method and the particle swarm optimization based SVM (PSO-SVM). The experimental results advocate the use of firefly-SVM to classify pattern classifications for maximum accuracy. PMID:25802511
Escalated convergent artificial bee colony
NASA Astrophysics Data System (ADS)
Jadon, Shimpi Singh; Bansal, Jagdish Chand; Tiwari, Ritu
2016-03-01
Artificial bee colony (ABC) optimisation algorithm is a recent, fast and easy-to-implement population-based meta heuristic for optimisation. ABC has been proved a rival algorithm with some popular swarm intelligence-based algorithms such as particle swarm optimisation, firefly algorithm and ant colony optimisation. The solution search equation of ABC is influenced by a random quantity which helps its search process in exploration at the cost of exploitation. In order to find a fast convergent behaviour of ABC while exploitation capability is maintained, in this paper basic ABC is modified in two ways. First, to improve exploitation capability, two local search strategies, namely classical unidimensional local search and levy flight random walk-based local search are incorporated with ABC. Furthermore, a new solution search strategy, namely stochastic diffusion scout search is proposed and incorporated into the scout bee phase to provide more chance to abandon solution to improve itself. Efficiency of the proposed algorithm is tested on 20 benchmark test functions of different complexities and characteristics. Results are very promising and they prove it to be a competitive algorithm in the field of swarm intelligence-based algorithms.
NASA Astrophysics Data System (ADS)
Mendes Platt, Gustavo; Pinheiro Domingos, Roberto; Oliveira de Andrade, Matheus
2014-01-01
The calculation of reactive azeotropes is an important task in the preliminary design and simulation of reactive distillation columns. Classically, homogeneous nonreactive azeotropes are vapor-liquid coexistence conditions where phase compositions are equal. For homogeneous reactive azeotropes, simultaneous phase and chemical equilibria occur concomitantly with equality of compositions (in the Ung-Doherty transformed space). The modeling of reactive azeotrope calculation is represented by a nonlinear algebraic system with phase equilibrium, chemical equilibrium and azeotropy equations. This nonlinear system can exhibit more than one solution, corresponding to a double reactive azeotrope. In a previous paper (Platt et al 2013 J. Phys.: Conf. Ser. 410 012020), we investigated some numerical aspects of the calculation of reactive azeotropes in the isobutene + methanol + methyl-tert-butyl-ether (with two reactive azeotropes) system using two metaheuristics: the Luus-Jaakola adaptive random search and the Firefly algorithm. Here, we use a hybrid structure (stochastic + deterministic) in order to produce accurate results for both azeotropes. After identifying the neighborhood of the reactive azeotrope, the nonlinear algebraic system is solved using Newton's method. The results indicate that using metaheuristics and some techniques devoted to the calculation of multiple minima allows both azeotropic coordinates in this reactive system to be obtains. In this sense, we provide a comprehensive analysis of a useful framework devoted to solving nonlinear systems, particularly in phase equilibrium problems.
Wireless sensor placement for structural monitoring using information-fusing firefly algorithm
NASA Astrophysics Data System (ADS)
Zhou, Guang-Dong; Yi, Ting-Hua; Xie, Mei-Xi; Li, Hong-Nan
2017-10-01
Wireless sensor networks (WSNs) are promising technology in structural health monitoring (SHM) applications for their low cost and high efficiency. The limited wireless sensors and restricted power resources in WSNs highlight the significance of optimal wireless sensor placement (OWSP) during designing SHM systems to enable the most useful information to be captured and to achieve the longest network lifetime. This paper presents a holistic approach, including an optimization criterion and a solution algorithm, for optimally deploying self-organizing multi-hop WSNs on large-scale structures. The combination of information effectiveness represented by the modal independence and the network performance specified by the network connectivity and network lifetime is first formulated to evaluate the performance of wireless sensor configurations. Then, an information-fusing firefly algorithm (IFFA) is developed to solve the OWSP problem. The step sizes drawn from a Lévy distribution are adopted to drive fireflies toward brighter individuals. Following the movement with Lévy flights, information about the contributions of wireless sensors to the objective function as carried by the fireflies is fused and applied to move inferior wireless sensors to better locations. The reliability of the proposed approach is verified via a numerical example on a long-span suspension bridge. The results demonstrate that the evaluation criterion provides a good performance metric of wireless sensor configurations, and the IFFA outperforms the simple discrete firefly algorithm.
Application of firefly algorithm to the dynamic model updating problem
NASA Astrophysics Data System (ADS)
Shabbir, Faisal; Omenzetter, Piotr
2015-04-01
Model updating can be considered as a branch of optimization problems in which calibration of the finite element (FE) model is undertaken by comparing the modal properties of the actual structure with these of the FE predictions. The attainment of a global solution in a multi dimensional search space is a challenging problem. The nature-inspired algorithms have gained increasing attention in the previous decade for solving such complex optimization problems. This study applies the novel Firefly Algorithm (FA), a global optimization search technique, to a dynamic model updating problem. This is to the authors' best knowledge the first time FA is applied to model updating. The working of FA is inspired by the flashing characteristics of fireflies. Each firefly represents a randomly generated solution which is assigned brightness according to the value of the objective function. The physical structure under consideration is a full scale cable stayed pedestrian bridge with composite bridge deck. Data from dynamic testing of the bridge was used to correlate and update the initial model by using FA. The algorithm aimed at minimizing the difference between the natural frequencies and mode shapes of the structure. The performance of the algorithm is analyzed in finding the optimal solution in a multi dimensional search space. The paper concludes with an investigation of the efficacy of the algorithm in obtaining a reference finite element model which correctly represents the as-built original structure.
Efficient Stochastic Rendering of Static and Animated Volumes Using Visibility Sweeps.
von Radziewsky, Philipp; Kroes, Thomas; Eisemann, Martin; Eisemann, Elmar
2017-09-01
Stochastically solving the rendering integral (particularly visibility) is the de-facto standard for physically-based light transport but it is computationally expensive, especially when displaying heterogeneous volumetric data. In this work, we present efficient techniques to speed-up the rendering process via a novel visibility-estimation method in concert with an unbiased importance sampling (involving environmental lighting and visibility inside the volume), filtering, and update techniques for both static and animated scenes. Our major contributions include a progressive estimate of partial occlusions based on a fast sweeping-plane algorithm. These occlusions are stored in an octahedral representation, which can be conveniently transformed into a quadtree-based hierarchy suited for a joint importance sampling. Further, we propose sweep-space filtering, which suppresses the occurrence of fireflies and investigate different update schemes for animated scenes. Our technique is unbiased, requires little precomputation, is highly parallelizable, and is applicable to a various volume data sets, dynamic transfer functions, animated volumes and changing environmental lighting.
NASA Astrophysics Data System (ADS)
Kumar, Rishi; Mevada, N. Ramesh; Rathore, Santosh; Agarwal, Nitin; Rajput, Vinod; Sinh Barad, AjayPal
2017-08-01
To improve Welding quality of aluminum (Al) plate, the TIG Welding system has been prepared, by which Welding current, Shielding gas flow rate and Current polarity can be controlled during Welding process. In the present work, an attempt has been made to study the effect of Welding current, current polarity, and shielding gas flow rate on the tensile strength of the weld joint. Based on the number of parameters and their levels, the Response Surface Methodology technique has been selected as the Design of Experiment. For understanding the influence of input parameters on Ultimate tensile strength of weldment, ANOVA analysis has been carried out. Also to describe and optimize TIG Welding using a new metaheuristic Nature - inspired algorithm which is called as Firefly algorithm which was developed by Dr. Xin-She Yang at Cambridge University in 2007. A general formulation of firefly algorithm is presented together with an analytical, mathematical modeling to optimize the TIG Welding process by a single equivalent objective function.
Extension of the firefly algorithm and preference rules for solving MINLP problems
NASA Astrophysics Data System (ADS)
Costa, M. Fernanda P.; Francisco, Rogério B.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.
2017-07-01
An extension of the firefly algorithm (FA) for solving mixed-integer nonlinear programming (MINLP) problems is presented. Although penalty functions are nowadays frequently used to handle integrality conditions and inequality and equality constraints, this paper proposes the implementation within the FA of a simple rounded-based heuristic and four preference rules to find and converge to MINLP feasible solutions. Preliminary numerical experiments are carried out to validate the proposed methodology.
NASA Astrophysics Data System (ADS)
Rochoux, M. C.; Ricci, S.; Lucor, D.; Cuenot, B.; Trouvé, A.
2014-05-01
This paper is the first part in a series of two articles and presents a data-driven wildfire simulator for forecasting wildfire spread scenarios, at a reduced computational cost that is consistent with operational systems. The prototype simulator features the following components: a level-set-based fire propagation solver FIREFLY that adopts a regional-scale modeling viewpoint, treats wildfires as surface propagating fronts, and uses a description of the local rate of fire spread (ROS) as a function of environmental conditions based on Rothermel's model; a series of airborne-like observations of the fire front positions; and a data assimilation algorithm based on an ensemble Kalman filter (EnKF) for parameter estimation. This stochastic algorithm partly accounts for the non-linearities between the input parameters of the semi-empirical ROS model and the fire front position, and is sequentially applied to provide a spatially-uniform correction to wind and biomass fuel parameters as observations become available. A wildfire spread simulator combined with an ensemble-based data assimilation algorithm is therefore a promising approach to reduce uncertainties in the forecast position of the fire front and to introduce a paradigm-shift in the wildfire emergency response. In order to reduce the computational cost of the EnKF algorithm, a surrogate model based on a polynomial chaos (PC) expansion is used in place of the forward model FIREFLY in the resulting hybrid PC-EnKF algorithm. The performance of EnKF and PC-EnKF is assessed on synthetically-generated simple configurations of fire spread to provide valuable information and insight on the benefits of the PC-EnKF approach as well as on a controlled grassland fire experiment. The results indicate that the proposed PC-EnKF algorithm features similar performance to the standard EnKF algorithm, but at a much reduced computational cost. In particular, the re-analysis and forecast skills of data assimilation strongly relate to the spatial and temporal variability of the errors in the ROS model parameters.
NASA Astrophysics Data System (ADS)
Rochoux, M. C.; Ricci, S.; Lucor, D.; Cuenot, B.; Trouvé, A.
2014-11-01
This paper is the first part in a series of two articles and presents a data-driven wildfire simulator for forecasting wildfire spread scenarios, at a reduced computational cost that is consistent with operational systems. The prototype simulator features the following components: an Eulerian front propagation solver FIREFLY that adopts a regional-scale modeling viewpoint, treats wildfires as surface propagating fronts, and uses a description of the local rate of fire spread (ROS) as a function of environmental conditions based on Rothermel's model; a series of airborne-like observations of the fire front positions; and a data assimilation (DA) algorithm based on an ensemble Kalman filter (EnKF) for parameter estimation. This stochastic algorithm partly accounts for the nonlinearities between the input parameters of the semi-empirical ROS model and the fire front position, and is sequentially applied to provide a spatially uniform correction to wind and biomass fuel parameters as observations become available. A wildfire spread simulator combined with an ensemble-based DA algorithm is therefore a promising approach to reduce uncertainties in the forecast position of the fire front and to introduce a paradigm-shift in the wildfire emergency response. In order to reduce the computational cost of the EnKF algorithm, a surrogate model based on a polynomial chaos (PC) expansion is used in place of the forward model FIREFLY in the resulting hybrid PC-EnKF algorithm. The performance of EnKF and PC-EnKF is assessed on synthetically generated simple configurations of fire spread to provide valuable information and insight on the benefits of the PC-EnKF approach, as well as on a controlled grassland fire experiment. The results indicate that the proposed PC-EnKF algorithm features similar performance to the standard EnKF algorithm, but at a much reduced computational cost. In particular, the re-analysis and forecast skills of DA strongly relate to the spatial and temporal variability of the errors in the ROS model parameters.
A firefly algorithm for solving competitive location-design problem: a case study
NASA Astrophysics Data System (ADS)
Sadjadi, Seyed Jafar; Ashtiani, Milad Gorji; Ramezanian, Reza; Makui, Ahmad
2016-12-01
This paper aims at determining the optimal number of new facilities besides specifying both the optimal location and design level of them under the budget constraint in a competitive environment by a novel hybrid continuous and discrete firefly algorithm. A real-world application of locating new chain stores in the city of Tehran, Iran, is used and the results are analyzed. In addition, several examples have been solved to evaluate the efficiency of the proposed model and algorithm. The results demonstrate that the performed method provides good-quality results for the test problems.
2011-04-01
Sensitive Dual Color In Vivo Bioluminescence Imaging Using a New Red Codon Optimized Firefly Luciferase and a Green Click Beetle Luciferase Laura...20 nm). Spectral unmixing algorithms were applied to the images where good separation of signals was observed. Furthermore, HEK293 cells that...spectral emissions using a suitable spectral unmixing algorithm . This new D-luciferin-dependent reporter gene couplet opens up the possibility in the future
Endmember extraction from hyperspectral image based on discrete firefly algorithm (EE-DFA)
NASA Astrophysics Data System (ADS)
Zhang, Chengye; Qin, Qiming; Zhang, Tianyuan; Sun, Yuanheng; Chen, Chao
2017-04-01
This study proposed a novel method to extract endmembers from hyperspectral image based on discrete firefly algorithm (EE-DFA). Endmembers are the input of many spectral unmixing algorithms. Hence, in this paper, endmember extraction from hyperspectral image is regarded as a combinational optimization problem to get best spectral unmixing results, which can be solved by the discrete firefly algorithm. Two series of experiments were conducted on the synthetic hyperspectral datasets with different SNR and the AVIRIS Cuprite dataset, respectively. The experimental results were compared with the endmembers extracted by four popular methods: the sequential maximum angle convex cone (SMACC), N-FINDR, Vertex Component Analysis (VCA), and Minimum Volume Constrained Nonnegative Matrix Factorization (MVC-NMF). What's more, the effect of the parameters in the proposed method was tested on both synthetic hyperspectral datasets and AVIRIS Cuprite dataset, and the recommended parameters setting was proposed. The results in this study demonstrated that the proposed EE-DFA method showed better performance than the existing popular methods. Moreover, EE-DFA is robust under different SNR conditions.
Firefly Algorithm for Structural Search.
Avendaño-Franco, Guillermo; Romero, Aldo H
2016-07-12
The problem of computational structure prediction of materials is approached using the firefly (FF) algorithm. Starting from the chemical composition and optionally using prior knowledge of similar structures, the FF method is able to predict not only known stable structures but also a variety of novel competitive metastable structures. This article focuses on the strengths and limitations of the algorithm as a multimodal global searcher. The algorithm has been implemented in software package PyChemia ( https://github.com/MaterialsDiscovery/PyChemia ), an open source python library for materials analysis. We present applications of the method to van der Waals clusters and crystal structures. The FF method is shown to be competitive when compared to other population-based global searchers.
A Firefly Algorithm-based Approach for Pseudo-Relevance Feedback: Application to Medical Database.
Khennak, Ilyes; Drias, Habiba
2016-11-01
The difficulty of disambiguating the sense of the incomplete and imprecise keywords that are extensively used in the search queries has caused the failure of search systems to retrieve the desired information. One of the most powerful and promising method to overcome this shortcoming and improve the performance of search engines is Query Expansion, whereby the user's original query is augmented by new keywords that best characterize the user's information needs and produce more useful query. In this paper, a new Firefly Algorithm-based approach is proposed to enhance the retrieval effectiveness of query expansion while maintaining low computational complexity. In contrast to the existing literature, the proposed approach uses a Firefly Algorithm to find the best expanded query among a set of expanded query candidates. Moreover, this new approach allows the determination of the length of the expanded query empirically. Experimental results on MEDLINE, the on-line medical information database, show that our proposed approach is more effective and efficient compared to the state-of-the-art.
de Paula, Lauro C. M.; Soares, Anderson S.; de Lima, Telma W.; Delbem, Alexandre C. B.; Coelho, Clarimar J.; Filho, Arlindo R. G.
2014-01-01
Several variable selection algorithms in multivariate calibration can be accelerated using Graphics Processing Units (GPU). Among these algorithms, the Firefly Algorithm (FA) is a recent proposed metaheuristic that may be used for variable selection. This paper presents a GPU-based FA (FA-MLR) with multiobjective formulation for variable selection in multivariate calibration problems and compares it with some traditional sequential algorithms in the literature. The advantage of the proposed implementation is demonstrated in an example involving a relatively large number of variables. The results showed that the FA-MLR, in comparison with the traditional algorithms is a more suitable choice and a relevant contribution for the variable selection problem. Additionally, the results also demonstrated that the FA-MLR performed in a GPU can be five times faster than its sequential implementation. PMID:25493625
de Paula, Lauro C M; Soares, Anderson S; de Lima, Telma W; Delbem, Alexandre C B; Coelho, Clarimar J; Filho, Arlindo R G
2014-01-01
Several variable selection algorithms in multivariate calibration can be accelerated using Graphics Processing Units (GPU). Among these algorithms, the Firefly Algorithm (FA) is a recent proposed metaheuristic that may be used for variable selection. This paper presents a GPU-based FA (FA-MLR) with multiobjective formulation for variable selection in multivariate calibration problems and compares it with some traditional sequential algorithms in the literature. The advantage of the proposed implementation is demonstrated in an example involving a relatively large number of variables. The results showed that the FA-MLR, in comparison with the traditional algorithms is a more suitable choice and a relevant contribution for the variable selection problem. Additionally, the results also demonstrated that the FA-MLR performed in a GPU can be five times faster than its sequential implementation.
Basic firefly algorithm for document clustering
NASA Astrophysics Data System (ADS)
Mohammed, Athraa Jasim; Yusof, Yuhanis; Husni, Husniza
2015-12-01
The Document clustering plays significant role in Information Retrieval (IR) where it organizes documents prior to the retrieval process. To date, various clustering algorithms have been proposed and this includes the K-means and Particle Swarm Optimization. Even though these algorithms have been widely applied in many disciplines due to its simplicity, such an approach tends to be trapped in a local minimum during its search for an optimal solution. To address the shortcoming, this paper proposes a Basic Firefly (Basic FA) algorithm to cluster text documents. The algorithm employs the Average Distance to Document Centroid (ADDC) as the objective function of the search. Experiments utilizing the proposed algorithm were conducted on the 20Newsgroups benchmark dataset. Results demonstrate that the Basic FA generates a more robust and compact clusters than the ones produced by K-means and Particle Swarm Optimization (PSO).
An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.
Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V
2013-01-01
The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test.
An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters
Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N. V.
2013-01-01
The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test. PMID:23469172
Clustering PPI data by combining FA and SHC method.
Lei, Xiujuan; Ying, Chao; Wu, Fang-Xiang; Xu, Jin
2015-01-01
Clustering is one of main methods to identify functional modules from protein-protein interaction (PPI) data. Nevertheless traditional clustering methods may not be effective for clustering PPI data. In this paper, we proposed a novel method for clustering PPI data by combining firefly algorithm (FA) and synchronization-based hierarchical clustering (SHC) algorithm. Firstly, the PPI data are preprocessed via spectral clustering (SC) which transforms the high-dimensional similarity matrix into a low dimension matrix. Then the SHC algorithm is used to perform clustering. In SHC algorithm, hierarchical clustering is achieved by enlarging the neighborhood radius of synchronized objects continuously, while the hierarchical search is very difficult to find the optimal neighborhood radius of synchronization and the efficiency is not high. So we adopt the firefly algorithm to determine the optimal threshold of the neighborhood radius of synchronization automatically. The proposed algorithm is tested on the MIPS PPI dataset. The results show that our proposed algorithm is better than the traditional algorithms in precision, recall and f-measure value.
Clustering PPI data by combining FA and SHC method
2015-01-01
Clustering is one of main methods to identify functional modules from protein-protein interaction (PPI) data. Nevertheless traditional clustering methods may not be effective for clustering PPI data. In this paper, we proposed a novel method for clustering PPI data by combining firefly algorithm (FA) and synchronization-based hierarchical clustering (SHC) algorithm. Firstly, the PPI data are preprocessed via spectral clustering (SC) which transforms the high-dimensional similarity matrix into a low dimension matrix. Then the SHC algorithm is used to perform clustering. In SHC algorithm, hierarchical clustering is achieved by enlarging the neighborhood radius of synchronized objects continuously, while the hierarchical search is very difficult to find the optimal neighborhood radius of synchronization and the efficiency is not high. So we adopt the firefly algorithm to determine the optimal threshold of the neighborhood radius of synchronization automatically. The proposed algorithm is tested on the MIPS PPI dataset. The results show that our proposed algorithm is better than the traditional algorithms in precision, recall and f-measure value. PMID:25707632
Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue
Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan
2015-01-01
Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method. PMID:25873987
Motion estimation using the firefly algorithm in ultrasonic image sequence of soft tissue.
Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan
2015-01-01
Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.
Unequal-area, fixed-shape facility layout problems using the firefly algorithm
NASA Astrophysics Data System (ADS)
Ingole, Supriya; Singh, Dinesh
2017-07-01
In manufacturing industries, the facility layout design is a very important task, as it is concerned with the overall manufacturing cost and profit of the industry. The facility layout problem (FLP) is solved by arranging the departments or facilities of known dimensions on the available floor space. The objective of this article is to implement the firefly algorithm (FA) for solving unequal-area, fixed-shape FLPs and optimizing the costs of total material handling and transportation between the facilities. The FA is a nature-inspired algorithm and can be used for combinatorial optimization problems. Benchmark problems from the previous literature are solved using the FA. To check its effectiveness, it is implemented to solve large-sized FLPs. Computational results obtained using the FA show that the algorithm is less time consuming and the total layout costs for FLPs are better than the best results achieved so far.
Liu, Aiming; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi
2017-01-01
Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain–computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain–computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain–computer interface systems. PMID:29117100
Liu, Aiming; Chen, Kun; Liu, Quan; Ai, Qingsong; Xie, Yi; Chen, Anqi
2017-11-08
Motor Imagery (MI) electroencephalography (EEG) is widely studied for its non-invasiveness, easy availability, portability, and high temporal resolution. As for MI EEG signal processing, the high dimensions of features represent a research challenge. It is necessary to eliminate redundant features, which not only create an additional overhead of managing the space complexity, but also might include outliers, thereby reducing classification accuracy. The firefly algorithm (FA) can adaptively select the best subset of features, and improve classification accuracy. However, the FA is easily entrapped in a local optimum. To solve this problem, this paper proposes a method of combining the firefly algorithm and learning automata (LA) to optimize feature selection for motor imagery EEG. We employed a method of combining common spatial pattern (CSP) and local characteristic-scale decomposition (LCD) algorithms to obtain a high dimensional feature set, and classified it by using the spectral regression discriminant analysis (SRDA) classifier. Both the fourth brain-computer interface competition data and real-time data acquired in our designed experiments were used to verify the validation of the proposed method. Compared with genetic and adaptive weight particle swarm optimization algorithms, the experimental results show that our proposed method effectively eliminates redundant features, and improves the classification accuracy of MI EEG signals. In addition, a real-time brain-computer interface system was implemented to verify the feasibility of our proposed methods being applied in practical brain-computer interface systems.
Design optimization of steel frames using an enhanced firefly algorithm
NASA Astrophysics Data System (ADS)
Carbas, Serdar
2016-12-01
Mathematical modelling of real-world-sized steel frames under the Load and Resistance Factor Design-American Institute of Steel Construction (LRFD-AISC) steel design code provisions, where the steel profiles for the members are selected from a table of steel sections, turns out to be a discrete nonlinear programming problem. Finding the optimum design of such design optimization problems using classical optimization techniques is difficult. Metaheuristic algorithms provide an alternative way of solving such problems. The firefly algorithm (FFA) belongs to the swarm intelligence group of metaheuristics. The standard FFA has the drawback of being caught up in local optima in large-sized steel frame design problems. This study attempts to enhance the performance of the FFA by suggesting two new expressions for the attractiveness and randomness parameters of the algorithm. Two real-world-sized design examples are designed by the enhanced FFA and its performance is compared with standard FFA as well as with particle swarm and cuckoo search algorithms.
NASA Astrophysics Data System (ADS)
Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K.
2015-03-01
The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/closed state of tie/sectionalizing switches. Finding optimal switch combination is a complicated problem as there are many switching combinations possible in a distribution system. Hence optimization techniques are finding greater importance in reducing the complexity of reconfiguration problem. This paper presents the application of firefly algorithm (FA) for optimal reconfiguration of radial distribution system with distributed generators (DG). The algorithm is tested on IEEE 33 bus system installed with DGs and the results are compared with binary genetic algorithm. It is found that binary FA is more effective than binary genetic algorithm in achieving real power loss reduction and improving voltage profile and hence enhancing the performance of radial distribution system. Results are found to be optimum when DGs are added to the test system, which proved the impact of DGs on distribution system.
Kumar, Manjeet; Rawat, Tarun Kumar; Aggarwal, Apoorva
2017-03-01
In this paper, a new meta-heuristic optimization technique, called interior search algorithm (ISA) with Lèvy flight is proposed and applied to determine the optimal parameters of an unknown infinite impulse response (IIR) system for the system identification problem. ISA is based on aesthetics, which is commonly used in interior design and decoration processes. In ISA, composition phase and mirror phase are applied for addressing the nonlinear and multimodal system identification problems. System identification using modified-ISA (M-ISA) based method involves faster convergence, single parameter tuning and does not require derivative information because it uses a stochastic random search using the concepts of Lèvy flight. A proper tuning of control parameter has been performed in order to achieve a balance between intensification and diversification phases. In order to evaluate the performance of the proposed method, mean square error (MSE), computation time and percentage improvement are considered as the performance measure. To validate the performance of M-ISA based method, simulations has been carried out for three benchmarked IIR systems using same order and reduced order system. Genetic algorithm (GA), particle swarm optimization (PSO), cat swarm optimization (CSO), cuckoo search algorithm (CSA), differential evolution using wavelet mutation (DEWM), firefly algorithm (FFA), craziness based particle swarm optimization (CRPSO), harmony search (HS) algorithm, opposition based harmony search (OHS) algorithm, hybrid particle swarm optimization-gravitational search algorithm (HPSO-GSA) and ISA are also used to model the same examples and simulation results are compared. Obtained results confirm the efficiency of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Continuous Firefly Algorithm for Optimal Tuning of Pid Controller in Avr System
NASA Astrophysics Data System (ADS)
Bendjeghaba, Omar
2014-01-01
This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.
Firefly as a novel swarm intelligence variable selection method in spectroscopy.
Goodarzi, Mohammad; dos Santos Coelho, Leandro
2014-12-10
A critical step in multivariate calibration is wavelength selection, which is used to build models with better prediction performance when applied to spectral data. Up to now, many feature selection techniques have been developed. Among all different types of feature selection techniques, those based on swarm intelligence optimization methodologies are more interesting since they are usually simulated based on animal and insect life behavior to, e.g., find the shortest path between a food source and their nests. This decision is made by a crowd, leading to a more robust model with less falling in local minima during the optimization cycle. This paper represents a novel feature selection approach to the selection of spectroscopic data, leading to more robust calibration models. The performance of the firefly algorithm, a swarm intelligence paradigm, was evaluated and compared with genetic algorithm and particle swarm optimization. All three techniques were coupled with partial least squares (PLS) and applied to three spectroscopic data sets. They demonstrate improved prediction results in comparison to when only a PLS model was built using all wavelengths. Results show that firefly algorithm as a novel swarm paradigm leads to a lower number of selected wavelengths while the prediction performance of built PLS stays the same. Copyright © 2014. Published by Elsevier B.V.
Synchronous Firefly Algorithm for Cluster Head Selection in WSN.
Baskaran, Madhusudhanan; Sadagopan, Chitra
2015-01-01
Wireless Sensor Network (WSN) consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs) and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH) offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC.
Genome-Wide Analysis of Translational Control in Tuberous Sclerosis Complex
2012-07-01
particular non-AUG codons in the 5’UTR. However, these data was “noisy” and required a machine-learning algorithm to identify TIS codons. We develop...To investigate how nutrient signaling affects the folding of nascent chains, we used firefly luciferase (Luc) as a reporter because of its high...folding as the structural basis for the rapid de novo folding of firefly luciferase. Nat Struct Biol 6(7):697-705. 12. Gupta R, Kasturi P, Bracher A
A firefly algorithm for optimum design of new-generation beams
NASA Astrophysics Data System (ADS)
Erdal, F.
2017-06-01
This research addresses the minimum weight design of new-generation steel beams with sinusoidal openings using a metaheuristic search technique, namely the firefly method. The proposed algorithm is also used to compare the optimum design results of sinusoidal web-expanded beams with steel castellated and cellular beams. Optimum design problems of all beams are formulated according to the design limitations stipulated by the Steel Construction Institute. The design methods adopted in these publications are consistent with BS 5950 specifications. The formulation of the design problem considering the above-mentioned limitations turns out to be a discrete programming problem. The design algorithms based on the technique select the optimum universal beam sections, dimensional properties of sinusoidal, hexagonal and circular holes, and the total number of openings along the beam as design variables. Furthermore, this selection is also carried out such that the behavioural limitations are satisfied. Numerical examples are presented, where the suggested algorithm is implemented to achieve the minimum weight design of these beams subjected to loading combinations.
Firefly Algorithm in detection of TEC seismo-ionospheric anomalies
NASA Astrophysics Data System (ADS)
Akhoondzadeh, Mehdi
2015-07-01
Anomaly detection in time series of different earthquake precursors is an essential introduction to create an early warning system with an allowable uncertainty. Since these time series are more often non linear, complex and massive, therefore the applied predictor method should be able to detect the discord patterns from a large data in a short time. This study acknowledges Firefly Algorithm (FA) as a simple and robust predictor to detect the TEC (Total Electron Content) seismo-ionospheric anomalies around the time of the some powerful earthquakes including Chile (27 February 2010), Varzeghan (11 August 2012) and Saravan (16 April 2013). Outstanding anomalies were observed 7 and 5 days before the Chile and Varzeghan earthquakes, respectively and also 3 and 8 days prior to the Saravan earthquake.
NASA Astrophysics Data System (ADS)
Javad Kazemzadeh-Parsi, Mohammad; Daneshmand, Farhang; Ahmadfard, Mohammad Amin; Adamowski, Jan; Martel, Richard
2015-01-01
In the present study, an optimization approach based on the firefly algorithm (FA) is combined with a finite element simulation method (FEM) to determine the optimum design of pump and treat remediation systems. Three multi-objective functions in which pumping rate and clean-up time are design variables are considered and the proposed FA-FEM model is used to minimize operating costs, total pumping volumes and total pumping rates in three scenarios while meeting water quality requirements. The groundwater lift and contaminant concentration are also minimized through the optimization process. The obtained results show the applicability of the FA in conjunction with the FEM for the optimal design of groundwater remediation systems. The performance of the FA is also compared with the genetic algorithm (GA) and the FA is found to have a better convergence rate than the GA.
Synchronous Firefly Algorithm for Cluster Head Selection in WSN
Baskaran, Madhusudhanan; Sadagopan, Chitra
2015-01-01
Wireless Sensor Network (WSN) consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs) and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH) offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC. PMID:26495431
Computational Discovery of Materials Using the Firefly Algorithm
NASA Astrophysics Data System (ADS)
Avendaño-Franco, Guillermo; Romero, Aldo
Our current ability to model physical phenomena accurately, the increase computational power and better algorithms are the driving forces behind the computational discovery and design of novel materials, allowing for virtual characterization before their realization in the laboratory. We present the implementation of a novel firefly algorithm, a population-based algorithm for global optimization for searching the structure/composition space. This novel computation-intensive approach naturally take advantage of concurrency, targeted exploration and still keeping enough diversity. We apply the new method in both periodic and non-periodic structures and we present the implementation challenges and solutions to improve efficiency. The implementation makes use of computational materials databases and network analysis to optimize the search and get insights about the geometric structure of local minima on the energy landscape. The method has been implemented in our software PyChemia, an open-source package for materials discovery. We acknowledge the support of DMREF-NSF 1434897 and the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research under Contract 54075-ND10.
Support vector machine firefly algorithm based optimization of lens system.
Shamshirband, Shahaboddin; Petković, Dalibor; Pavlović, Nenad T; Ch, Sudheer; Altameem, Torki A; Gani, Abdullah
2015-01-01
Lens system design is an important factor in image quality. The main aspect of the lens system design methodology is the optimization procedure. Since optimization is a complex, nonlinear task, soft computing optimization algorithms can be used. There are many tools that can be employed to measure optical performance, but the spot diagram is the most useful. The spot diagram gives an indication of the image of a point object. In this paper, the spot size radius is considered an optimization criterion. Intelligent soft computing scheme support vector machines (SVMs) coupled with the firefly algorithm (FFA) are implemented. The performance of the proposed estimators is confirmed with the simulation results. The result of the proposed SVM-FFA model has been compared with support vector regression (SVR), artificial neural networks, and generic programming methods. The results show that the SVM-FFA model performs more accurately than the other methodologies. Therefore, SVM-FFA can be used as an efficient soft computing technique in the optimization of lens system designs.
Simulation of optical signaling among nano-bio-sensors: enhancing of bioimaging contrast.
SalmanOgli, A; Behzadi, S; Rostami, A
2014-09-01
In this article, the nanoparticle-dye systems is designed and simulated to illustrate the possibility of enhancement in optical imaging contrast. For this, the firefly optimization technique is used as an optical signaling mechanism among agents (nanoparticle-dye) because fireflies attract together due to their flashing light and optical signaling that is produced by a process of bioluminescence (also it has been investigated that other parameters such as neural response and brain function have essential role in attracting fireflies to each other). The first parameter is coincided with our work, because the nanoparticle-dye systems have ability to augment of received light and its amplification cause that the designed complex system act as a brightness particle. This induced behavior of nanoparticles can be considered as an optical communication and signaling. Indeed by functionalization of nanoparticles and then due to higher brightness of the tumor site because of active targeting, the other particles can be guided to reach toward the target point and the signaling among agents is done by optical relation similar to firefly nature. Moreover, the fundamental of this work is the use of surface plasmon resonance and plasmons hybridization, in which photonic signals can be manipulated on the nanoscale and can be used in biomedical applications such as electromagnetic field enhancement. Finally, it can be mentioned that by simultaneously using plasmon hybridization, near-field augmentation, and firefly algorithm, the optical imaging contrast can be impressively improved.
Goudarzi, Shidrokh; Haslina Hassan, Wan; Abdalla Hashim, Aisha-Hassan; Soleymani, Seyed Ahmad; Anisi, Mohammad Hossein; Zakaria, Omar M.
2016-01-01
This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF–FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model’s performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF–FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF–FFA model can be applied as an efficient technique for the accurate prediction of vertical handover. PMID:27438600
Goudarzi, Shidrokh; Haslina Hassan, Wan; Abdalla Hashim, Aisha-Hassan; Soleymani, Seyed Ahmad; Anisi, Mohammad Hossein; Zakaria, Omar M
2016-01-01
This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF-FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model's performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF-FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF-FFA model can be applied as an efficient technique for the accurate prediction of vertical handover.
Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)
2013-10-01
also has human firefly luciferase cloned within the same reporter system allowing for intra-plasmid normalization of transfection eliminating problems...collaboration with Dr. Wei Li, a Bioinformaticist from Baylor College of Medicine whose lab specializes in developing complex algorithms to analyze genome...wide sequencing data. Dr. Wei Li and his postdoctoral fellow, Dr. Zheng Xia developed a customized algorithm that is able to detect and quantify
NASA Astrophysics Data System (ADS)
ChePa, Noraziah; Hashim, Nor Laily; Yusof, Yuhanis; Hussain, Azham
2016-08-01
Flood evacuation centre is defined as a temporary location or area of people from disaster particularly flood as a rescue or precautionary measure. Gazetted evacuation centres are normally located at secure places which have small chances from being drowned by flood. However, due to extreme flood several evacuation centres in Kelantan were unexpectedly drowned. Currently, there is no study done on proposing a decision support aid to reallocate victims and resources of the evacuation centre when the situation getting worsens. Therefore, this study proposes a decision aid model to be utilized in realizing an adaptive emergency evacuation centre management system. This study undergoes two main phases; development of algorithm and models, and development of a web-based and mobile app. The proposed model operates using Firefly multi-objective optimization algorithm that creates an optimal schedule for the relocation of victims and resources for an evacuation centre. The proposed decision aid model and the adaptive system can be applied in supporting the National Security Council's respond mechanisms for handling disaster management level II (State level) especially in providing better management of the flood evacuating centres.
On Processing Hexagonally Sampled Images
2011-07-01
Mersereau’s HDFT: Mersereau encountered an “insurmountable difficulty” when attempting to develop a fast algorithm to compute the hexagonal DFT...WNR GND 1-bit output CS1 . ------. (input for analog) j(-- -: I (analog out) ADC ,. __ I I I I l ______ l Power to Firefly C1 ~2 TT
C-5M Super Galaxy Utilization with Joint Precision Airdrop System
2012-03-22
System Notes FireFly 900-2,200 Steerable Parafoil Screamer 500-2,200 Steerable Parafoil w/additional chutes to slow touchdown Dragonfly...setting . This initial feasible solution provides the Nonlinear Program algorithm a starting point to continue its calculations. The model continues...provides the NLP with a starting point of 1. This provides the NLP algorithm a point within the feasible region to begin its calculations in an attempt
Optimized extreme learning machine for urban land cover classification using hyperspectral imagery
NASA Astrophysics Data System (ADS)
Su, Hongjun; Tian, Shufang; Cai, Yue; Sheng, Yehua; Chen, Chen; Najafian, Maryam
2017-12-01
This work presents a new urban land cover classification framework using the firefly algorithm (FA) optimized extreme learning machine (ELM). FA is adopted to optimize the regularization coefficient C and Gaussian kernel σ for kernel ELM. Additionally, effectiveness of spectral features derived from an FA-based band selection algorithm is studied for the proposed classification task. Three sets of hyperspectral databases were recorded using different sensors, namely HYDICE, HyMap, and AVIRIS. Our study shows that the proposed method outperforms traditional classification algorithms such as SVM and reduces computational cost significantly.
Identifying People with Soft-Biometrics at Fleet Week
2013-03-01
onboard sensors. This included: Color Camera: Located in the right eye, Octavia stored 640x480 RGB images at ~4 Hz from a Point Grey Firefly camera. A...Face Detection The Fleet Week experiments demonstrated the potential of soft biometrics for recognition, but all of the existing algorithms currently
2012-10-01
use of R packages implemented in Bioconductor. Each dataset was normalized from raw data using the Frozen RMA (fRMA) algorithm . We applied the same...because development of the specific algorithms and fine tuning of the analytic strategy to accomplish this task was not immediately straightforward. We...express firefly luciferase using a retrovirus that encodes a fusion of luciferase and neomycin phosphotransferase (LucNeo), will be implanted and followed
NASA Astrophysics Data System (ADS)
Bay, Annick; Mayer, Alexandre
2014-09-01
The efficiency of light-emitting diodes (LED) has increased significantly over the past few years, but the overall efficiency is still limited by total internal reflections due to the high dielectric-constant contrast between the incident and emergent media. The bioluminescent organ of fireflies gave incentive for light-extraction enhance-ment studies. A specific factory-roof shaped structure was shown, by means of light-propagation simulations and measurements, to enhance light extraction significantly. In order to achieve a similar effect for light-emitting diodes, the structure needs to be adapted to the specific set-up of LEDs. In this context simulations were carried out to determine the best geometrical parameters. In the present work, the search for a geometry that maximizes the extraction of light has been conducted by using a genetic algorithm. The idealized structure considered previously was generalized to a broader variety of shapes. The genetic algorithm makes it possible to search simultaneously over a wider range of parameters. It is also significantly less time-consuming than the previous approach that was based on a systematic scan on parameters. The results of the genetic algorithm show that (1) the calculations can be performed in a smaller amount of time and (2) the light extraction can be enhanced even more significantly by using optimal parameters determined by the genetic algorithm for the generalized structure. The combination of the genetic algorithm with the Rigorous Coupled Waves Analysis method constitutes a strong simulation tool, which provides us with adapted designs for enhancing light extraction from light-emitting diodes.
Oba, Yuichi; Yoshida, Naoki; Kanie, Shusei; Ojika, Makoto; Inouye, Satoshi
2013-01-01
Bioluminescence in fireflies and click beetles is produced by a luciferase-luciferin reaction. The luminescence property and protein structure of firefly luciferase have been investigated, and its cDNA has been used for various assay systems. The chemical structure of firefly luciferin was identified as the D-form in 1963 and studies on the biosynthesis of firefly luciferin began early in the 1970's. Incorporation experiments using (14)C-labeled compounds were performed, and cysteine and benzoquinone/hydroquinone were proposed to be biosynthetic component for firefly luciferin. However, there have been no clear conclusions regarding the biosynthetic components of firefly luciferin over 30 years. Incorporation studies were performed by injecting stable isotope-labeled compounds, including L-[U-(13)C3]-cysteine, L-[1-(13)C]-cysteine, L-[3-(13)C]-cysteine, 1,4-[D6]-hydroquinone, and p-[2,3,5,6-D]-benzoquinone, into the adult lantern of the living Japanese firefly Luciola lateralis. After extracting firefly luciferin from the lantern, the incorporation of stable isotope-labeled compounds into firefly luciferin was identified by LC/ESI-TOF-MS. The positions of the stable isotope atoms in firefly luciferin were determined by the mass fragmentation of firefly luciferin. We demonstrated for the first time that D- and L-firefly luciferins are biosynthesized in the lantern of the adult firefly from two L-cysteine molecules with p-benzoquinone/1,4-hydroquinone, accompanied by the decarboxylation of L-cysteine.
Time-ordered product expansions for computational stochastic system biology.
Mjolsness, Eric
2013-06-01
The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie's stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems.
Evolution of synchronization and desynchronization in digital organisms.
Knoester, David B; McKinley, Philip K
2011-01-01
We present a study in the evolution of temporal behavior, specifically synchronization and desynchronization, through digital evolution and group selection. In digital evolution, a population of self-replicating computer programs exists in a user-defined computational environment and is subject to instruction-level mutations and natural selection. Group selection links the survival of the individual to the survival of its group, thus encouraging cooperation. Previous approaches to engineering synchronization and desynchronization algorithms have taken inspiration from nature: In the well-known firefly model, the only form of communication between agents is in the form of flash messages among neighbors. Here we demonstrate that populations of digital organisms, provided with a similar mechanism and minimal information about their environment, are capable of evolving algorithms for synchronization and desynchronization, and that the evolved behaviors are robust to message loss. We further describe how the evolved behavior for synchronization mimics that of the well-known Ermentrout model for firefly synchronization in biology. In addition to discovering self-organizing behaviors for distributed computing systems, this result indicates that digital evolution may be used to further our understanding of synchronization in biology.
NASA Astrophysics Data System (ADS)
Jaafar, Hazriq Izzuan; Latif, Norfaneysa Abd; Kassim, Anuar Mohamed; Abidin, Amar Faiz Zainal; Hussien, Sharifah Yuslinda Syed; Aras, Mohd Shahrieel Mohd
2015-05-01
Advanced manufacturing technology made Gantry Crane System (GCS) is one of the suitable heavy machinery transporters and frequently employed in handling with huge materials. The interconnection of trolley movement and payload oscillation has a technical impact which needs to be considered. Once the trolley moves to the desired position with high speed, this will induce undesirable's payload oscillation. This frequent unavoidable load swing causes an efficiency drop, load damages and even accidents. In this paper, a new control strategy of Firefly Algorithm (FA) will be developed to obtain five optimal controller parameters (PID and PD) via Priority-based Fitness Scheme (PFS). Combinations of these five parameters are utilized for controlling trolley movement and minimizing the angle of payload oscillation. This PFS is prioritized based on steady-state error (SSE), overshoot (OS) and settling time (Ts) according to the needs and circumstances. Lagrange equation will be chosen for modeling and simulation will be conducted by using related software. Simulation results show that the proposed control strategy is efficient to control the trolley movement to the desired position and minimize the angle of payload oscillation.
Alvarez, M Lucrecia
2014-01-01
Different target prediction algorithms have been developed to provide a list of candidate target genes for a given animal microRNAs (miRNAs). However, these computational approaches provide both false-positive and false-negative predictions. Therefore, the target genes of a specific miRNA identified in silico should be experimentally validated. In this chapter, we describe a step-by-step protocol for the experimental validation of a direct miRNA target using a faster Dual Firefly-Renilla Luciferase Reporter Assay. We describe how to construct reporter plasmids using the simple, fast, and highly efficient cold fusion cloning technology, which does not require ligase, phosphatase, or restriction enzymes. In addition, we provide a protocol for co-transfection of reporter plasmids with either miRNA mimics or miRNA inhibitors in human embryonic kidney 293 (HEK293) cells, as well as a description on how to measure Firefly and Renilla luciferase activity using the Dual-Glo Luciferase Assay kit. As an example of the use of this technology, we will validate glucose-6-phosphate dehydrogenase (G6PD) as a direct target of miR-1207-5p.
Advanced FIREFLY Assessment Generalized Mechanization Requirements Report
1979-06-01
Systems; Fire Control Computers ; Weapon Control 20. ABSTRACT (Continue on reverse side If necessary end tdentify by blockc number) -The requirements for...airborne digital computer which can be specialized to per- form successfully in a variety of tactical aircraft with differing avionics sensors, fire...AGG ........................................... 27 13 Time of Flight Computation Using a Modified (China Lake) Numerical Integration Algorithm
Multiscale stochastic simulations of chemical reactions with regulated scale separation
NASA Astrophysics Data System (ADS)
Koumoutsakos, Petros; Feigelman, Justin
2013-07-01
We present a coupling of multiscale frameworks with accelerated stochastic simulation algorithms for systems of chemical reactions with disparate propensities. The algorithms regulate the propensities of the fast and slow reactions of the system, using alternating micro and macro sub-steps simulated with accelerated algorithms such as τ and R-leaping. The proposed algorithms are shown to provide significant speedups in simulations of stiff systems of chemical reactions with a trade-off in accuracy as controlled by a regulating parameter. More importantly, the error of the methods exhibits a cutoff phenomenon that allows for optimal parameter choices. Numerical experiments demonstrate that hybrid algorithms involving accelerated stochastic simulations can be, in certain cases, more accurate while faster, than their corresponding stochastic simulation algorithm counterparts.
ECG based Myocardial Infarction detection using Hybrid Firefly Algorithm.
Kora, Padmavathi
2017-12-01
Myocardial Infarction (MI) is one of the most frequent diseases, and can also cause demise, disability and monetary loss in patients who suffer from cardiovascular disorder. Diagnostic methods of this ailment by physicians are typically invasive, even though they do not fulfill the required detection accuracy. Recent feature extraction methods, for example, Auto Regressive (AR) modelling; Magnitude Squared Coherence (MSC); Wavelet Coherence (WTC) using Physionet database, yielded a collection of huge feature set. A large number of these features may be inconsequential containing some excess and non-discriminative components that present excess burden in computation and loss of execution performance. So Hybrid Firefly and Particle Swarm Optimization (FFPSO) is directly used to optimise the raw ECG signal instead of extracting features using the above feature extraction techniques. Provided results in this paper show that, for the detection of MI class, the FFPSO algorithm with ANN gives 99.3% accuracy, sensitivity of 99.97%, and specificity of 98.7% on MIT-BIH database by including NSR database also. The proposed approach has shown that methods that are based on the feature optimization of the ECG signals are the perfect to diagnosis the condition of the heart patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Ebtehaj, Isa; Bonakdari, Hossein
2016-01-01
Sediment transport without deposition is an essential consideration in the optimum design of sewer pipes. In this study, a novel method based on a combination of support vector regression (SVR) and the firefly algorithm (FFA) is proposed to predict the minimum velocity required to avoid sediment settling in pipe channels, which is expressed as the densimetric Froude number (Fr). The efficiency of support vector machine (SVM) models depends on the suitable selection of SVM parameters. In this particular study, FFA is used by determining these SVM parameters. The actual effective parameters on Fr calculation are generally identified by employing dimensional analysis. The different dimensionless variables along with the models are introduced. The best performance is attributed to the model that employs the sediment volumetric concentration (C(V)), ratio of relative median diameter of particles to hydraulic radius (d/R), dimensionless particle number (D(gr)) and overall sediment friction factor (λ(s)) parameters to estimate Fr. The performance of the SVR-FFA model is compared with genetic programming, artificial neural network and existing regression-based equations. The results indicate the superior performance of SVR-FFA (mean absolute percentage error = 2.123%; root mean square error =0.116) compared with other methods.
Numerical model updating technique for structures using firefly algorithm
NASA Astrophysics Data System (ADS)
Sai Kubair, K.; Mohan, S. C.
2018-03-01
Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.
Fast stochastic algorithm for simulating evolutionary population dynamics
NASA Astrophysics Data System (ADS)
Tsimring, Lev; Hasty, Jeff; Mather, William
2012-02-01
Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.
NASA Technical Reports Server (NTRS)
Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan
2010-01-01
For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.
NASA Astrophysics Data System (ADS)
Turnbull, Heather; Omenzetter, Piotr
2018-03-01
vDifficulties associated with current health monitoring and inspection practices combined with harsh, often remote, operational environments of wind turbines highlight the requirement for a non-destructive evaluation system capable of remotely monitoring the current structural state of turbine blades. This research adopted a physics based structural health monitoring methodology through calibration of a finite element model using inverse techniques. A 2.36m blade from a 5kW turbine was used as an experimental specimen, with operational modal analysis techniques utilised to realize the modal properties of the system. Modelling the experimental responses as fuzzy numbers using the sub-level technique, uncertainty in the response parameters was propagated back through the model and into the updating parameters. Initially, experimental responses of the blade were obtained, with a numerical model of the blade created and updated. Deterministic updating was carried out through formulation and minimisation of a deterministic objective function using both firefly algorithm and virus optimisation algorithm. Uncertainty in experimental responses were modelled using triangular membership functions, allowing membership functions of updating parameters (Young's modulus and shear modulus) to be obtained. Firefly algorithm and virus optimisation algorithm were again utilised, however, this time in the solution of fuzzy objective functions. This enabled uncertainty associated with updating parameters to be quantified. Varying damage location and severity was simulated experimentally through addition of small masses to the structure intended to cause a structural alteration. A damaged model was created, modelling four variable magnitude nonstructural masses at predefined points and updated to provide a deterministic damage prediction and information in relation to the parameters uncertainty via fuzzy updating.
Stochastic reaction-diffusion algorithms for macromolecular crowding
NASA Astrophysics Data System (ADS)
Sturrock, Marc
2016-06-01
Compartment-based (lattice-based) reaction-diffusion algorithms are often used for studying complex stochastic spatio-temporal processes inside cells. In this paper the influence of macromolecular crowding on stochastic reaction-diffusion simulations is investigated. Reaction-diffusion processes are considered on two different kinds of compartmental lattice, a cubic lattice and a hexagonal close packed lattice, and solved using two different algorithms, the stochastic simulation algorithm and the spatiocyte algorithm (Arjunan and Tomita 2010 Syst. Synth. Biol. 4, 35-53). Obstacles (modelling macromolecular crowding) are shown to have substantial effects on the mean squared displacement and average number of molecules in the domain but the nature of these effects is dependent on the choice of lattice, with the cubic lattice being more susceptible to the effects of the obstacles. Finally, improvements for both algorithms are presented.
Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs
Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; ...
2016-04-02
We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.
Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
Hu, Zhongyi; Xiong, Tao
2013-01-01
Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature. PMID:24459425
Electricity load forecasting using support vector regression with memetic algorithms.
Hu, Zhongyi; Bao, Yukun; Xiong, Tao
2013-01-01
Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on its parameters; this study proposed a firefly algorithm (FA) based memetic algorithm (FA-MA) to appropriately determine the parameters of SVR forecasting model. In the proposed FA-MA algorithm, the FA algorithm is applied to explore the solution space, and the pattern search is used to conduct individual learning and thus enhance the exploitation of FA. Experimental results confirm that the proposed FA-MA based SVR model can not only yield more accurate forecasting results than the other four evolutionary algorithms based SVR models and three well-known forecasting models but also outperform the hybrid algorithms in the related existing literature.
NASA Astrophysics Data System (ADS)
Ghorbani, M. A.; Deo, Ravinesh C.; Yaseen, Zaher Mundher; H. Kashani, Mahsa; Mohammadi, Babak
2017-08-01
An accurate computational approach for the prediction of pan evaporation over daily time horizons is a useful decisive tool in sustainable agriculture and hydrological applications, particularly in designing the rural water resource systems, water use allocations, utilization and demand assessments, and the management of irrigation systems. In this study, a hybrid predictive model (Multilayer Perceptron-Firefly Algorithm (MLP-FFA)) based on the FFA optimizer that is embedded within the MLP technique is developed and evaluated for its suitability for the prediction of daily pan evaporation. To develop the hybrid MLP-FFA model, the pan evaporation data measured between 2012 and 2014 for two major meteorological stations (Talesh and Manjil) located at Northern Iran are employed to train and test the predictive model. The ability of the hybrid MLP-FFA model is compared with the traditional MLP and support vector machine (SVM) models. The results are evaluated using five performance criteria metrics: root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe efficiency (NS), and the Willmott's Index (WI). Taylor diagrams are also used to examine the similarity between the observed and predicted pan evaporation data in the test period. Results show that an optimal MLP-FFA model outperforms the MLP and SVM model for both tested stations. For Talesh, a value of WI = 0.926, NS = 0.791, and RMSE = 1.007 mm day-1 is obtained using MLP-FFA model, compared with 0.912, 0.713, and 1.181 mm day-1 (MLP) and 0.916, 0.726, and 1.153 mm day-1 (SVM), whereas for Manjil, a value of WI = 0.976, NS = 0.922, and 1.406 mm day-1 is attained that contrasts 0.972, 0.901, and 1.583 mm day-1 (MLP) and 0.971, 0.893, and 1.646 mm day-1 (SVM). The results demonstrate the importance of the Firefly Algorithm applied to improve the performance of the MLP-FFA model, as verified through its better predictive performance compared to the MLP and SVM model.
Algorithm refinement for stochastic partial differential equations: II. Correlated systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, Francis J.; Garcia, Alejandro L.; Tartakovsky, Daniel M.
2005-08-10
We analyze a hybrid particle/continuum algorithm for a hydrodynamic system with long ranged correlations. Specifically, we consider the so-called train model for viscous transport in gases, which is based on a generalization of the random walk process for the diffusion of momentum. This discrete model is coupled with its continuous counterpart, given by a pair of stochastic partial differential equations. At the interface between the particle and continuum computations the coupling is by flux matching, giving exact mass and momentum conservation. This methodology is an extension of our stochastic Algorithm Refinement (AR) hybrid for simple diffusion [F. Alexander, A. Garcia,more » D. Tartakovsky, Algorithm refinement for stochastic partial differential equations: I. Linear diffusion, J. Comput. Phys. 182 (2002) 47-66]. Results from a variety of numerical experiments are presented for steady-state scenarios. In all cases the mean and variance of density and velocity are captured correctly by the stochastic hybrid algorithm. For a non-stochastic version (i.e., using only deterministic continuum fluxes) the long-range correlations of velocity fluctuations are qualitatively preserved but at reduced magnitude.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Kok Foong; Patterson, Robert I.A.; Wagner, Wolfgang
2015-12-15
Graphical abstract: -- Highlights: •Problems concerning multi-compartment population balance equations are studied. •A class of fragmentation weight transfer functions is presented. •Three stochastic weighted algorithms are compared against the direct simulation algorithm. •The numerical errors of the stochastic solutions are assessed as a function of fragmentation rate. •The algorithms are applied to a multi-dimensional granulation model. -- Abstract: This paper introduces stochastic weighted particle algorithms for the solution of multi-compartment population balance equations. In particular, it presents a class of fragmentation weight transfer functions which are constructed such that the number of computational particles stays constant during fragmentation events. Themore » weight transfer functions are constructed based on systems of weighted computational particles and each of it leads to a stochastic particle algorithm for the numerical treatment of population balance equations. Besides fragmentation, the algorithms also consider physical processes such as coagulation and the exchange of mass with the surroundings. The numerical properties of the algorithms are compared to the direct simulation algorithm and an existing method for the fragmentation of weighted particles. It is found that the new algorithms show better numerical performance over the two existing methods especially for systems with significant amount of large particles and high fragmentation rates.« less
Kanie, Shusei; Nishikawa, Toshio; Ojika, Makoto; Oba, Yuichi
2016-01-01
Firefly luciferin, the substrate for the bioluminescence reaction of luminous beetles, possesses a benzothiazole ring, which is rare in nature. Here, we demonstrate a novel one-pot reaction to give firefly luciferin in a neutral buffer from p-benzoquinone and cysteine without any synthetic reagents or enzymes. The formation of firefly luciferin was low in yield in various neutral buffers, whereas it was inhibited or completely prevented in acidic or basic buffers, in organic solvents, or under a nitrogen atmosphere. Labelling analysis of the firefly luciferin using stable isotopic cysteines showed that the benzothiazole ring was formed via the decarboxylation and carbon-sulfur bond rearrangement of cysteine. These findings imply that the biosynthesis of firefly luciferin can be developed/evolved from the non-enzymatic production of firefly luciferin using common primary biosynthetic units, p-benzoquinone and cysteine. PMID:27098929
Kanie, Shusei; Nishikawa, Toshio; Ojika, Makoto; Oba, Yuichi
2016-04-21
Firefly luciferin, the substrate for the bioluminescence reaction of luminous beetles, possesses a benzothiazole ring, which is rare in nature. Here, we demonstrate a novel one-pot reaction to give firefly luciferin in a neutral buffer from p-benzoquinone and cysteine without any synthetic reagents or enzymes. The formation of firefly luciferin was low in yield in various neutral buffers, whereas it was inhibited or completely prevented in acidic or basic buffers, in organic solvents, or under a nitrogen atmosphere. Labelling analysis of the firefly luciferin using stable isotopic cysteines showed that the benzothiazole ring was formed via the decarboxylation and carbon-sulfur bond rearrangement of cysteine. These findings imply that the biosynthesis of firefly luciferin can be developed/evolved from the non-enzymatic production of firefly luciferin using common primary biosynthetic units, p-benzoquinone and cysteine.
NASA Astrophysics Data System (ADS)
Roslan, Norzeana; Sulaiman, Norela
2015-09-01
This study was conducted to study the firefly species found in Tasik Chini, the soil factors that suitable for larval development fireflies flashes, and the sociological aspects of the community's availability to engage in firefly ecotourism. This was achieved through firefly sampling, soil analysis, abiotic data collection and by questionnaire surveys from local community perceptions and knowledge on fireflies and ecotourism. Fireflies sampling were conducted from December 2011 to January 2013 at Kampung Melai and Kampung Cenahan. Three non-synchronize fireflies genus were found, namely Colophotia sp., Pygoluciola sp., and Pyrocoelia sp. A total of 25 questionnaires were given to four groups of respondents consisting orang asli (5 respondents), boat operator (2 respondents), resort workers (5 respondents) and FELDA residents (13 respondents). The questionnaires were analysed using Rasch Winstep Software based on Rasch Measurement Model. Results of the survey indicated that the local community was not ready for ecotourism in their area. Meanwhile, the soil pH was very acidic and the heavy metals concentration was high, which is not good for the development of firefly larvae. In conclusion, Tasik Chini was not having the potential for ecotourism. Despite the fact, improvement of soils with soil remediation methods can be apply for enhancing larvae development and having more awareness campaign of ecotourism to local community.
NASA Astrophysics Data System (ADS)
Marchetti, Luca; Priami, Corrado; Thanh, Vo Hong
2016-07-01
This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance and accuracy of HRSSA against other state of the art algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Faming; Cheng, Yichen; Lin, Guang
2014-06-13
Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that themore » new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.« less
Lampoudi, Sotiria; Gillespie, Dan T; Petzold, Linda R
2009-03-07
The Inhomogeneous Stochastic Simulation Algorithm (ISSA) is a variant of the stochastic simulation algorithm in which the spatially inhomogeneous volume of the system is divided into homogeneous subvolumes, and the chemical reactions in those subvolumes are augmented by diffusive transfers of molecules between adjacent subvolumes. The ISSA can be prohibitively slow when the system is such that diffusive transfers occur much more frequently than chemical reactions. In this paper we present the Multinomial Simulation Algorithm (MSA), which is designed to, on the one hand, outperform the ISSA when diffusive transfer events outnumber reaction events, and on the other, to handle small reactant populations with greater accuracy than deterministic-stochastic hybrid algorithms. The MSA treats reactions in the usual ISSA fashion, but uses appropriately conditioned binomial random variables for representing the net numbers of molecules diffusing from any given subvolume to a neighbor within a prescribed distance. Simulation results illustrate the benefits of the algorithm.
Selected-node stochastic simulation algorithm
NASA Astrophysics Data System (ADS)
Duso, Lorenzo; Zechner, Christoph
2018-04-01
Stochastic simulations of biochemical networks are of vital importance for understanding complex dynamics in cells and tissues. However, existing methods to perform such simulations are associated with computational difficulties and addressing those remains a daunting challenge to the present. Here we introduce the selected-node stochastic simulation algorithm (snSSA), which allows us to exclusively simulate an arbitrary, selected subset of molecular species of a possibly large and complex reaction network. The algorithm is based on an analytical elimination of chemical species, thereby avoiding explicit simulation of the associated chemical events. These species are instead described continuously in terms of statistical moments derived from a stochastic filtering equation, resulting in a substantial speedup when compared to Gillespie's stochastic simulation algorithm (SSA). Moreover, we show that statistics obtained via snSSA profit from a variance reduction, which can significantly lower the number of Monte Carlo samples needed to achieve a certain performance. We demonstrate the algorithm using several biological case studies for which the simulation time could be reduced by orders of magnitude.
Debbarma, Sanjoy; Saikia, Lalit Chandra; Sinha, Nidul
2014-03-01
Present work focused on automatic generation control (AGC) of a three unequal area thermal systems considering reheat turbines and appropriate generation rate constraints (GRC). A fractional order (FO) controller named as I(λ)D(µ) controller based on crone approximation is proposed for the first time as an appropriate technique to solve the multi-area AGC problem in power systems. A recently developed metaheuristic algorithm known as firefly algorithm (FA) is used for the simultaneous optimization of the gains and other parameters such as order of integrator (λ) and differentiator (μ) of I(λ)D(µ) controller and governor speed regulation parameters (R). The dynamic responses corresponding to optimized I(λ)D(µ) controller gains, λ, μ, and R are compared with that of classical integer order (IO) controllers such as I, PI and PID controllers. Simulation results show that the proposed I(λ)D(µ) controller provides more improved dynamic responses and outperforms the IO based classical controllers. Further, sensitivity analysis confirms the robustness of the so optimized I(λ)D(µ) controller to wide changes in system loading conditions and size and position of SLP. Proposed controller is also found to have performed well as compared to IO based controllers when SLP takes place simultaneously in any two areas or all the areas. Robustness of the proposed I(λ)D(µ) controller is also tested against system parameter variations. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
dos Santos, A. F.; Freitas, S. R.; de Mattos, J. G. Z.; de Campos Velho, H. F.; Gan, M. A.; da Luz, E. F. P.; Grell, G. A.
2013-09-01
In this paper we consider an optimization problem applying the metaheuristic Firefly algorithm (FY) to weight an ensemble of rainfall forecasts from daily precipitation simulations with the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) over South America during January 2006. The method is addressed as a parameter estimation problem to weight the ensemble of precipitation forecasts carried out using different options of the convective parameterization scheme. Ensemble simulations were performed using different choices of closures, representing different formulations of dynamic control (the modulation of convection by the environment) in a deep convection scheme. The optimization problem is solved as an inverse problem of parameter estimation. The application and validation of the methodology is carried out using daily precipitation fields, defined over South America and obtained by merging remote sensing estimations with rain gauge observations. The quadratic difference between the model and observed data was used as the objective function to determine the best combination of the ensemble members to reproduce the observations. To reduce the model rainfall biases, the set of weights determined by the algorithm is used to weight members of an ensemble of model simulations in order to compute a new precipitation field that represents the observed precipitation as closely as possible. The validation of the methodology is carried out using classical statistical scores. The algorithm has produced the best combination of the weights, resulting in a new precipitation field closest to the observations.
Fateen, Seif-Eddeen K.; Bonilla-Petriciolet, Adrian
2014-01-01
The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design. PMID:24967430
Fateen, Seif-Eddeen K; Bonilla-Petriciolet, Adrian
2014-01-01
The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design.
Gálvez, Akemi; Iglesias, Andrés
2013-01-01
Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently.
Gálvez, Akemi; Iglesias, Andrés
2013-01-01
Fitting spline curves to data points is a very important issue in many applied fields. It is also challenging, because these curves typically depend on many continuous variables in a highly interrelated nonlinear way. In general, it is not possible to compute these parameters analytically, so the problem is formulated as a continuous nonlinear optimization problem, for which traditional optimization techniques usually fail. This paper presents a new bioinspired method to tackle this issue. In this method, optimization is performed through a combination of two techniques. Firstly, we apply the indirect approach to the knots, in which they are not initially the subject of optimization but precomputed with a coarse approximation scheme. Secondly, a powerful bioinspired metaheuristic technique, the firefly algorithm, is applied to optimization of data parameterization; then, the knot vector is refined by using De Boor's method, thus yielding a better approximation to the optimal knot vector. This scheme converts the original nonlinear continuous optimization problem into a convex optimization problem, solved by singular value decomposition. Our method is applied to some illustrative real-world examples from the CAD/CAM field. Our experimental results show that the proposed scheme can solve the original continuous nonlinear optimization problem very efficiently. PMID:24376380
Zhang, Jian; Gao, Bo; Chai, Haiting; Ma, Zhiqiang; Yang, Guifu
2016-08-26
DNA-binding proteins (DBPs) play fundamental roles in many biological processes. Therefore, the developing of effective computational tools for identifying DBPs is becoming highly desirable. In this study, we proposed an accurate method for the prediction of DBPs. Firstly, we focused on the challenge of improving DBP prediction accuracy with information solely from the sequence. Secondly, we used multiple informative features to encode the protein. These features included evolutionary conservation profile, secondary structure motifs, and physicochemical properties. Thirdly, we introduced a novel improved Binary Firefly Algorithm (BFA) to remove redundant or noisy features as well as select optimal parameters for the classifier. The experimental results of our predictor on two benchmark datasets outperformed many state-of-the-art predictors, which revealed the effectiveness of our method. The promising prediction performance on a new-compiled independent testing dataset from PDB and a large-scale dataset from UniProt proved the good generalization ability of our method. In addition, the BFA forged in this research would be of great potential in practical applications in optimization fields, especially in feature selection problems. A highly accurate method was proposed for the identification of DBPs. A user-friendly web-server named iDbP (identification of DNA-binding Proteins) was constructed and provided for academic use.
Scalable domain decomposition solvers for stochastic PDEs in high performance computing
Desai, Ajit; Khalil, Mohammad; Pettit, Chris; ...
2017-09-21
Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less
Scalable domain decomposition solvers for stochastic PDEs in high performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, Ajit; Khalil, Mohammad; Pettit, Chris
Stochastic spectral finite element models of practical engineering systems may involve solutions of linear systems or linearized systems for non-linear problems with billions of unknowns. For stochastic modeling, it is therefore essential to design robust, parallel and scalable algorithms that can efficiently utilize high-performance computing to tackle such large-scale systems. Domain decomposition based iterative solvers can handle such systems. And though these algorithms exhibit excellent scalabilities, significant algorithmic and implementational challenges exist to extend them to solve extreme-scale stochastic systems using emerging computing platforms. Intrusive polynomial chaos expansion based domain decomposition algorithms are extended here to concurrently handle high resolutionmore » in both spatial and stochastic domains using an in-house implementation. Sparse iterative solvers with efficient preconditioners are employed to solve the resulting global and subdomain level local systems through multi-level iterative solvers. We also use parallel sparse matrix–vector operations to reduce the floating-point operations and memory requirements. Numerical and parallel scalabilities of these algorithms are presented for the diffusion equation having spatially varying diffusion coefficient modeled by a non-Gaussian stochastic process. Scalability of the solvers with respect to the number of random variables is also investigated.« less
Takeuchi, Hiroyuki; Morita, Ritsuko; Shirai, Yoko; Nakagawa, Yoshihisa; Terashima, Teruya; Ushikubo, Shun; Matsuo, Tatsuhiro
2014-01-01
Effects of dietary firefly squid on serum and liver lipid levels were investigated. Male Wistar rats were fed a diet containing 5% freeze-dried firefly squid or Japanese flying squid for 2 weeks. There was no significant difference in the liver triacylglycerol level between the control and Japanese flying squid groups, but the rats fed the firefly squid diet had a significantly lower liver triacylglycerol content than those fed the control diet. No significant difference was observed in serum triacylglycerol levels between the control and firefly squid groups. The rats fed the firefly squid had a significantly lower activity of liver glucose-6-phosphate dehydrogenase compared to the rats fed the control diet. There was no significant difference in liver fatty acid synthetase activity among the three groups. Hepatic gene expression and lipogenic enzyme activity were investigated; a DNA microarray showed that the significantly enriched gene ontology category of down-regulated genes in the firefly squid group was "lipid metabolic process". The firefly squid group had lower mRNA level of glucose-6-phosphate dehydrogenase compared to the controls. These results suggest that an intake of firefly squid decreases hepatic triacylglycerol in rats, and the reduction of mRNA level and enzyme activity of glucose-6-phosphate dehydrogenase might be related to the mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yunlong; Wang, Aiping; Guo, Lei
This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.
An efficient hybrid method for stochastic reaction-diffusion biochemical systems with delay
NASA Astrophysics Data System (ADS)
Sayyidmousavi, Alireza; Ilie, Silvana
2017-12-01
Many chemical reactions, such as gene transcription and translation in living cells, need a certain time to finish once they are initiated. Simulating stochastic models of reaction-diffusion systems with delay can be computationally expensive. In the present paper, a novel hybrid algorithm is proposed to accelerate the stochastic simulation of delayed reaction-diffusion systems. The delayed reactions may be of consuming or non-consuming delay type. The algorithm is designed for moderately stiff systems in which the events can be partitioned into slow and fast subsets according to their propensities. The proposed algorithm is applied to three benchmark problems and the results are compared with those of the delayed Inhomogeneous Stochastic Simulation Algorithm. The numerical results show that the new hybrid algorithm achieves considerable speed-up in the run time and very good accuracy.
Scenario Decomposition for 0-1 Stochastic Programs: Improvements and Asynchronous Implementation
Ryan, Kevin; Rajan, Deepak; Ahmed, Shabbir
2016-05-01
We recently proposed scenario decomposition algorithm for stochastic 0-1 programs finds an optimal solution by evaluating and removing individual solutions that are discovered by solving scenario subproblems. In our work, we develop an asynchronous, distributed implementation of the algorithm which has computational advantages over existing synchronous implementations of the algorithm. Improvements to both the synchronous and asynchronous algorithm are proposed. We also test the results on well known stochastic 0-1 programs from the SIPLIB test library and is able to solve one previously unsolved instance from the test set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, Luca, E-mail: marchetti@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; University of Trento, Department of Mathematics
This paper introduces HRSSA (Hybrid Rejection-based Stochastic Simulation Algorithm), a new efficient hybrid stochastic simulation algorithm for spatially homogeneous biochemical reaction networks. HRSSA is built on top of RSSA, an exact stochastic simulation algorithm which relies on propensity bounds to select next reaction firings and to reduce the average number of reaction propensity updates needed during the simulation. HRSSA exploits the computational advantage of propensity bounds to manage time-varying transition propensities and to apply dynamic partitioning of reactions, which constitute the two most significant bottlenecks of hybrid simulation. A comprehensive set of simulation benchmarks is provided for evaluating performance andmore » accuracy of HRSSA against other state of the art algorithms.« less
NASA Astrophysics Data System (ADS)
Pinto da Silva, Luís; Esteves da Silva, Joaquim C. G.
2014-01-01
Firefly bioluminescence presents a light emitting profile with a form of a flash, due to the firefly luciferase-catalyzed formation of inhibitory products. These impair the binding of the substrate luciferin to the active site of the enzyme. However, this luciferase catalyzed pathways may not be the only ones responsible for the flash profile. The oxidation and isomerisation of the substrate luciferin lead to the formation of compounds that are also known inhibitors of firefly bioluminescence. So, the objective of this Letter was to analyze if these reactions could be capable of interfering with the bioluminescence reaction.
Solving Fractional Programming Problems based on Swarm Intelligence
NASA Astrophysics Data System (ADS)
Raouf, Osama Abdel; Hezam, Ibrahim M.
2014-04-01
This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to solve any type of FPPs. The solution results employing the SI algorithms are compared with a number of exact and metaheuristic solution methods used for handling FPPs. Swarm Intelligence can be denoted as an effective technique for solving linear or nonlinear, non-differentiable fractional objective functions. Problems with an optimal solution at a finite point and an unbounded constraint set, can be solved using the proposed approach. Numerical examples are given to show the feasibility, effectiveness, and robustness of the proposed algorithm. The results obtained using the two SI algorithms revealed the superiority of the proposed technique among others in computational time. A better accuracy was remarkably observed in the solution results of the industrial application problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tong; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au
As all-atom molecular dynamics method is limited by its enormous computational cost, various coarse-grained strategies have been developed to extend the length scale of soft matters in the modeling of mechanical behaviors. However, the classical thermostat algorithm in highly coarse-grained molecular dynamics method would underestimate the thermodynamic behaviors of soft matters (e.g. microfilaments in cells), which can weaken the ability of materials to overcome local energy traps in granular modeling. Based on all-atom molecular dynamics modeling of microfilament fragments (G-actin clusters), a new stochastic thermostat algorithm is developed to retain the representation of thermodynamic properties of microfilaments at extra coarse-grainedmore » level. The accuracy of this stochastic thermostat algorithm is validated by all-atom MD simulation. This new stochastic thermostat algorithm provides an efficient way to investigate the thermomechanical properties of large-scale soft matters.« less
RES: Regularized Stochastic BFGS Algorithm
NASA Astrophysics Data System (ADS)
Mokhtari, Aryan; Ribeiro, Alejandro
2014-12-01
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
Stochastic optimization algorithms for barrier dividend strategies
NASA Astrophysics Data System (ADS)
Yin, G.; Song, Q. S.; Yang, H.
2009-01-01
This work focuses on finding optimal barrier policy for an insurance risk model when the dividends are paid to the share holders according to a barrier strategy. A new approach based on stochastic optimization methods is developed. Compared with the existing results in the literature, more general surplus processes are considered. Precise models of the surplus need not be known; only noise-corrupted observations of the dividends are used. Using barrier-type strategies, a class of stochastic optimization algorithms are developed. Convergence of the algorithm is analyzed; rate of convergence is also provided. Numerical results are reported to demonstrate the performance of the algorithm.
The NSF Firefly Cubesat: Progress and status
NASA Astrophysics Data System (ADS)
Rowland, D. E.; Weatherwax, A. T.; Klenzing, J. H.; Hill, J.
2009-12-01
Firefly is a science investigation into the linkage between lightning and Terrestrial Gamma ray Flashes (TGFs). Firefly combines a gamma ray / electron scintillation detector, VLF radio receiver, and optical photometers to perform the first simultaneous measurements of lightning and TGFs from a single platform. Firefly will push the boundaries of TGF detection and build on the successes of past missions such as RHESSI, CGRO, AGILE, and Fermi by pursuing focused TGF science. In particular, Firefly will address the following science questions: a) What types of lightning do and do not produce TGFs? b) What is the occurrence rate of weak TGFs? c) How strong are TGFs, and to what extent were previous measurements affected by pileup and detector limitations? d) What is the relative timing of gamma ray, optical, and VLF signatures of TGFs? e) What are the characteristics of energetic electrons associated with TGFs? Firefly is scheduled for launch in August 2010, and will be delivered to the launch vehicle in spring 2010. We will present an update on the Firefly status, student training activities, tools we have developed for the community, and lessons learned.
Oba, Yuichi; Ojika, Makoto; Inouye, Satoshi
2004-03-31
This is the first identification of a long-chain fatty acyl-CoA synthetase in Drosophila by enzymatic characterization. The gene product of CG6178 (CG6178) in Drosophila melanogaster genome, which has a high sequence similarity to firefly luciferase, has been expressed and characterized. CG6178 showed long-chain fatty acyl-CoA synthetic activity in the presence of ATP, CoA and Mg(2+), suggesting a fatty acyl adenylate is an intermediate. Recently, it was revealed that firefly luciferase has two catalytic functions, monooxygenase (luciferase) and AMP-mediated CoA ligase (fatty acyl-CoA synthetase). However, unlike firefly luciferase, CG6178 did not show luminescence activity in the presence of firefly luciferin, ATP, CoA and Mg(2+). The enzymatic properties of CG6178 including substrate specificity, pH dependency and optimal temperature were close to those of firefly luciferase and rat fatty acyl-CoA synthetase. Further, phylogenic analyses strongly suggest that the firefly luciferase gene may have evolved from a fatty acyl-CoA synthetase gene as a common ancestral gene.
Simulation of quantum dynamics based on the quantum stochastic differential equation.
Li, Ming
2013-01-01
The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm.
NASA Astrophysics Data System (ADS)
Akhmedova, Sh; Semenkin, E.
2017-02-01
Previously, a meta-heuristic approach, called Co-Operation of Biology-Related Algorithms or COBRA, for solving real-parameter optimization problems was introduced and described. COBRA’s basic idea consists of a cooperative work of five well-known bionic algorithms such as Particle Swarm Optimization, the Wolf Pack Search, the Firefly Algorithm, the Cuckoo Search Algorithm and the Bat Algorithm, which were chosen due to the similarity of their schemes. The performance of this meta-heuristic was evaluated on a set of test functions and its workability was demonstrated. Thus it was established that the idea of the algorithms’ cooperative work is useful. However, it is unclear which bionic algorithms should be included in this cooperation and how many of them. Therefore, the five above-listed algorithms and additionally the Fish School Search algorithm were used for the development of five different modifications of COBRA by varying the number of component-algorithms. These modifications were tested on the same set of functions and the best of them was found. Ways of further improving the COBRA algorithm are then discussed.
Metaheuristic Optimization and its Applications in Earth Sciences
NASA Astrophysics Data System (ADS)
Yang, Xin-She
2010-05-01
A common but challenging task in modelling geophysical and geological processes is to handle massive data and to minimize certain objectives. This can essentially be considered as an optimization problem, and thus many new efficient metaheuristic optimization algorithms can be used. In this paper, we will introduce some modern metaheuristic optimization algorithms such as genetic algorithms, harmony search, firefly algorithm, particle swarm optimization and simulated annealing. We will also discuss how these algorithms can be applied to various applications in earth sciences, including nonlinear least-squares, support vector machine, Kriging, inverse finite element analysis, and data-mining. We will present a few examples to show how different problems can be reformulated as optimization. Finally, we will make some recommendations for choosing various algorithms to suit various problems. References 1) D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evolutionary Computation, Vol. 1, 67-82 (1997). 2) X. S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, (2008). 3) X. S. Yang, Mathematical Modelling for Earth Sciences, Dunedin Academic Press, (2008).
The Role of AhR in Breast Cancer Development
2004-07-01
The renilla luciferase vectorphRL-TK (0.05 rtg) was co-transfected with firefly luciferase reporter constructs (0.1 ptg pGudLuc, 0.5-1.0 [tg wildtype...Glo Luciferase system (Promega, Madison, WI ) which allowed sequential reading of the firefly and renilla signals. Cells were lysed according to the...Madison, WI ). The renilla signal was read after quenching the firefly output, thus allowing normalization between sample wells. The normalized firefly
Samant, Asawari; Ogunnaike, Babatunde A; Vlachos, Dionisios G
2007-05-24
The fundamental role that intrinsic stochasticity plays in cellular functions has been shown via numerous computational and experimental studies. In the face of such evidence, it is important that intracellular networks are simulated with stochastic algorithms that can capture molecular fluctuations. However, separation of time scales and disparity in species population, two common features of intracellular networks, make stochastic simulation of such networks computationally prohibitive. While recent work has addressed each of these challenges separately, a generic algorithm that can simultaneously tackle disparity in time scales and population scales in stochastic systems is currently lacking. In this paper, we propose the hybrid, multiscale Monte Carlo (HyMSMC) method that fills in this void. The proposed HyMSMC method blends stochastic singular perturbation concepts, to deal with potential stiffness, with a hybrid of exact and coarse-grained stochastic algorithms, to cope with separation in population sizes. In addition, we introduce the computational singular perturbation (CSP) method as a means of systematically partitioning fast and slow networks and computing relaxation times for convergence. We also propose a new criteria of convergence of fast networks to stochastic low-dimensional manifolds, which further accelerates the algorithm. We use several prototype and biological examples, including a gene expression model displaying bistability, to demonstrate the efficiency, accuracy and applicability of the HyMSMC method. Bistable models serve as stringent tests for the success of multiscale MC methods and illustrate limitations of some literature methods.
NASA Astrophysics Data System (ADS)
Selva Bhuvaneswari, K.; Geetha, P.
2017-05-01
Magnetic resonance imaging segmentation refers to a process of assigning labels to set of pixels or multiple regions. It plays a major role in the field of biomedical applications as it is widely used by the radiologists to segment the medical images input into meaningful regions. In recent years, various brain tumour detection techniques are presented in the literature. The entire segmentation process of our proposed work comprises three phases: threshold generation with dynamic modified region growing phase, texture feature generation phase and region merging phase. by dynamically changing two thresholds in the modified region growing approach, the first phase of the given input image can be performed as dynamic modified region growing process, in which the optimisation algorithm, firefly algorithm help to optimise the two thresholds in modified region growing. After obtaining the region growth segmented image using modified region growing, the edges can be detected with edge detection algorithm. In the second phase, the texture feature can be extracted using entropy-based operation from the input image. In region merging phase, the results obtained from the texture feature-generation phase are combined with the results of dynamic modified region growing phase and similar regions are merged using a distance comparison between regions. After identifying the abnormal tissues, the classification can be done by hybrid kernel-based SVM (Support Vector Machine). The performance analysis of the proposed method will be carried by K-cross fold validation method. The proposed method will be implemented in MATLAB with various images.
Fouad, Marwa A; Tolba, Enas H; El-Shal, Manal A; El Kerdawy, Ahmed M
2018-05-11
The justified continuous emerging of new β-lactam antibiotics provokes the need for developing suitable analytical methods that accelerate and facilitate their analysis. A face central composite experimental design was adopted using different levels of phosphate buffer pH, acetonitrile percentage at zero time and after 15 min in a gradient program to obtain the optimum chromatographic conditions for the elution of 31 β-lactam antibiotics. Retention factors were used as the target property to build two QSRR models utilizing the conventional forward selection and the advanced nature-inspired firefly algorithm for descriptor selection, coupled with multiple linear regression. The obtained models showed high performance in both internal and external validation indicating their robustness and predictive ability. Williams-Hotelling test and student's t-test showed that there is no statistical significant difference between the models' results. Y-randomization validation showed that the obtained models are due to significant correlation between the selected molecular descriptors and the analytes' chromatographic retention. These results indicate that the generated FS-MLR and FFA-MLR models are showing comparable quality on both the training and validation levels. They also gave comparable information about the molecular features that influence the retention behavior of β-lactams under the current chromatographic conditions. We can conclude that in some cases simple conventional feature selection algorithm can be used to generate robust and predictive models comparable to that are generated using advanced ones. Copyright © 2018 Elsevier B.V. All rights reserved.
Firefly: embracing future web technologies
NASA Astrophysics Data System (ADS)
Roby, W.; Wu, X.; Goldina, T.; Joliet, E.; Ly, L.; Mi, W.; Wang, C.; Zhang, Lijun; Ciardi, D.; Dubois-Felsmann, G.
2016-07-01
At IPAC/Caltech, we have developed the Firefly web archive and visualization system. Used in production for the last eight years in many missions, Firefly gives the scientist significant capabilities to study data. Firefly provided the first completely web based FITS viewer as well as a growing set of tabular and plotting visualizers. Further, it will be used for the science user interface of the LSST telescope which goes online in 2021. Firefly must meet the needs of archive access and visualization for the 2021 LSST telescope and must serve astronomers beyond the year 2030. Recently, our team has faced the fact that the technology behind Firefly software was becoming obsolete. We were searching for ways to utilize the current breakthroughs in maintaining stability, testability, speed, and reliability of large web applications, which Firefly exemplifies. In the last year, we have ported the Firefly to cutting edge web technologies. Embarking on this massive overhaul is no small feat to say the least. Choosing the technologies that will maintain a forward trajectory in a future development project is always hard and often overwhelming. When a team must port 150,000 lines of code for a production-level product there is little room to make poor choices. This paper will give an overview of the most modern web technologies and lessons learned in our conversion from GWT based system to React/Redux based system.
Viviani, Vadim R; Oehlmeyer, T L; Arnoldi, F G C; Brochetto-Braga, M R
2005-01-01
Fireflies emit flashes in the green-yellow region of the spectrum for the purpose of sexual attraction. The bioluminescence color is determined by the luciferases. It is well known that the in vitro bioluminescence color of firefly luciferases can be shifted toward the red by lower pH and higher temperature; for this reason they are classified as pH-sensitive luciferases. However, the mechanism and structural origin of pH sensitivity in fireflies remains unknown. Here we report the cloning of a new luciferase from the Brazilian twilight active firefly Macrolampis sp2, which displays an unusual bimodal spectrum. The recombinant luciferase displays a sensitive spectrum with the peak at 569 nm and a shoulder in the red region. Comparison of the bioluminescence spectra of Macrolampis, Photinus and Cratomorphus firefly luciferases shows that the distinct colors are determined by the ratio between green and red emitters under luciferase influence. Comparison of Macrolampis luciferase with the highly similar North American Photinus pyralis luciferase (91%) showed few substitutions potentially involved with the higher spectral sensitivity in Macrolampis luciferase. Site-directed mutagenesis showed that the natural substitution E354N determines the appearance of the shoulder in the red region of Macrolampis luciferase bioluminescence spectrum, helping to identify important interactions and residues involved in the pH-sensing mechanism in firefly luciferases.
Zeynoddin, Mohammad; Bonakdari, Hossein; Azari, Arash; Ebtehaj, Isa; Gharabaghi, Bahram; Riahi Madavar, Hossein
2018-09-15
A novel hybrid approach is presented that can more accurately predict monthly rainfall in a tropical climate by integrating a linear stochastic model with a powerful non-linear extreme learning machine method. This new hybrid method was then evaluated by considering four general scenarios. In the first scenario, the modeling process is initiated without preprocessing input data as a base case. While in other three scenarios, the one-step and two-step procedures are utilized to make the model predictions more precise. The mentioned scenarios are based on a combination of stationarization techniques (i.e., differencing, seasonal and non-seasonal standardization and spectral analysis), and normality transforms (i.e., Box-Cox, John and Draper, Yeo and Johnson, Johnson, Box-Cox-Mod, log, log standard, and Manly). In scenario 2, which is a one-step scenario, the stationarization methods are employed as preprocessing approaches. In scenario 3 and 4, different combinations of normality transform, and stationarization methods are considered as preprocessing techniques. In total, 61 sub-scenarios are evaluated resulting 11013 models (10785 linear methods, 4 nonlinear models, and 224 hybrid models are evaluated). The uncertainty of the linear, nonlinear and hybrid models are examined by Monte Carlo technique. The best preprocessing technique is the utilization of Johnson normality transform and seasonal standardization (respectively) (R 2 = 0.99; RMSE = 0.6; MAE = 0.38; RMSRE = 0.1, MARE = 0.06, UI = 0.03 &UII = 0.05). The results of uncertainty analysis indicated the good performance of proposed technique (d-factor = 0.27; 95PPU = 83.57). Moreover, the results of the proposed methodology in this study were compared with an evolutionary hybrid of adaptive neuro fuzzy inference system (ANFIS) with firefly algorithm (ANFIS-FFA) demonstrating that the new hybrid methods outperformed ANFIS-FFA method. Copyright © 2018 Elsevier Ltd. All rights reserved.
Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes
NASA Technical Reports Server (NTRS)
Williams Colin P.
1999-01-01
Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.
Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time.
Dhar, Amrit; Minin, Vladimir N
2017-05-01
Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences.
Calculating Higher-Order Moments of Phylogenetic Stochastic Mapping Summaries in Linear Time
Dhar, Amrit
2017-01-01
Abstract Stochastic mapping is a simulation-based method for probabilistically mapping substitution histories onto phylogenies according to continuous-time Markov models of evolution. This technique can be used to infer properties of the evolutionary process on the phylogeny and, unlike parsimony-based mapping, conditions on the observed data to randomly draw substitution mappings that do not necessarily require the minimum number of events on a tree. Most stochastic mapping applications simulate substitution mappings only to estimate the mean and/or variance of two commonly used mapping summaries: the number of particular types of substitutions (labeled substitution counts) and the time spent in a particular group of states (labeled dwelling times) on the tree. Fast, simulation-free algorithms for calculating the mean of stochastic mapping summaries exist. Importantly, these algorithms scale linearly in the number of tips/leaves of the phylogenetic tree. However, to our knowledge, no such algorithm exists for calculating higher-order moments of stochastic mapping summaries. We present one such simulation-free dynamic programming algorithm that calculates prior and posterior mapping variances and scales linearly in the number of phylogeny tips. Our procedure suggests a general framework that can be used to efficiently compute higher-order moments of stochastic mapping summaries without simulations. We demonstrate the usefulness of our algorithm by extending previously developed statistical tests for rate variation across sites and for detecting evolutionarily conserved regions in genomic sequences. PMID:28177780
Roh, Min K; Gillespie, Dan T; Petzold, Linda R
2010-11-07
The weighted stochastic simulation algorithm (wSSA) was developed by Kuwahara and Mura [J. Chem. Phys. 129, 165101 (2008)] to efficiently estimate the probabilities of rare events in discrete stochastic systems. The wSSA uses importance sampling to enhance the statistical accuracy in the estimation of the probability of the rare event. The original algorithm biases the reaction selection step with a fixed importance sampling parameter. In this paper, we introduce a novel method where the biasing parameter is state-dependent. The new method features improved accuracy, efficiency, and robustness.
Evaluation of stochastic differential equation approximation of ion channel gating models.
Bruce, Ian C
2009-04-01
Fox and Lu derived an algorithm based on stochastic differential equations for approximating the kinetics of ion channel gating that is simpler and faster than "exact" algorithms for simulating Markov process models of channel gating. However, the approximation may not be sufficiently accurate to predict statistics of action potential generation in some cases. The objective of this study was to develop a framework for analyzing the inaccuracies and determining their origin. Simulations of a patch of membrane with voltage-gated sodium and potassium channels were performed using an exact algorithm for the kinetics of channel gating and the approximate algorithm of Fox & Lu. The Fox & Lu algorithm assumes that channel gating particle dynamics have a stochastic term that is uncorrelated, zero-mean Gaussian noise, whereas the results of this study demonstrate that in many cases the stochastic term in the Fox & Lu algorithm should be correlated and non-Gaussian noise with a non-zero mean. The results indicate that: (i) the source of the inaccuracy is that the Fox & Lu algorithm does not adequately describe the combined behavior of the multiple activation particles in each sodium and potassium channel, and (ii) the accuracy does not improve with increasing numbers of channels.
Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiu, Dongbin
2017-03-03
The focus of the project is the development of mathematical methods and high-performance computational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly efficient and scalable numerical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.
Takada, Kenta
2012-01-01
Seasonal changes in the popularity of fireflies [usually Genji-fireflies (Luciola cruciata Motschulsky) in Japan] and Japanese rhinoceros beetles [Allomyrina dichotoma (Linne)] were investigated to examine whether contemporary Japanese are interested in visible emergence of these insects as seasonal events. The popularity of fireflies and Japanese rhinoceros beetles was assessed by the Google search volume of their Japanese names, “Hotaru” and “Kabuto-mushi” in Japanese Katakana script using Google Trends. The search volume index for fireflies and Japanese rhinoceros beetles was distributed across seasons with a clear peak in only particular times of each year from 2004 to 2011. In addition, the seasonal peak of popularity for fireflies occurred at the beginning of June, whereas that for Japanese rhinoceros beetles occurred from the middle of July to the beginning of August. Thus seasonal peak of each species coincided with the peak period of the emergence of each adult stage. These findings indicated that the Japanese are interested in these insects primarily during the time when the two species are most visibly abundant. Although untested, this could suggest that fireflies and Japanese rhinoceros beetles are perceived by the general public as indicators or symbols of summer in Japan. PMID:26466535
Drawert, Brian; Lawson, Michael J; Petzold, Linda; Khammash, Mustafa
2010-02-21
We have developed a computational framework for accurate and efficient simulation of stochastic spatially inhomogeneous biochemical systems. The new computational method employs a fractional step hybrid strategy. A novel formulation of the finite state projection (FSP) method, called the diffusive FSP method, is introduced for the efficient and accurate simulation of diffusive transport. Reactions are handled by the stochastic simulation algorithm.
Long-read sequence assembly of the firefly Pyrocoelia pectoralis genome
Fu, Xinhua; Li, Jingjing; Tian, Yu; Quan, Weipeng; Zhang, Shu; Liu, Qian; Liang, Fan; Zhu, Xinlei; Zhang, Liangsheng
2017-01-01
Abstract Background Fireflies are a family of insects within the beetle order Coleoptera, or winged beetles, and they are one of the most well-known and loved insect species because of their bioluminescence. However, the firefly is in danger of extinction because of the massive destruction of its living environment. In order to improve the understanding of fireflies and protect them effectively, we sequenced the whole genome of the terrestrial firefly Pyrocoelia pectoralis. Findings Here, we developed a highly reliable genome resource for the terrestrial firefly Pyrocoelia pectoralis (E. Oliv., 1883; Coleoptera: Lampyridae) using single molecule real time (SMRT) sequencing on the PacBio Sequel platform. In total, 57.8 Gb of long reads were generated and assembled into a 760.4-Mb genome, which is close to the estimated genome size and covered 98.7% complete and 0.7% partial insect Benchmarking Universal Single-Copy Orthologs. The k-mer analysis showed that this genome is highly heterozygous. However, our long-read assembly demonstrates continuousness with a contig N50 length of 3.04 Mb and the longest contig length of 13.69 Mb. Furthermore, 135 589 SSRs and 341 Mb of repeat sequences were detected. A total of 23 092 genes were predicted; 88.44% of genes were annotated with one or more related functions. Conclusions We assembled a high-quality firefly genome, which will not only provide insights into the conservation and biodiversity of fireflies, but also provide a wealth of information to study the mechanisms of their sexual communication, bio-luminescence, and evolution. PMID:29186486
Automated Flight Routing Using Stochastic Dynamic Programming
NASA Technical Reports Server (NTRS)
Ng, Hok K.; Morando, Alex; Grabbe, Shon
2010-01-01
Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.
Koh, Wonryull; Blackwell, Kim T
2011-04-21
Stochastic simulation of reaction-diffusion systems enables the investigation of stochastic events arising from the small numbers and heterogeneous distribution of molecular species in biological cells. Stochastic variations in intracellular microdomains and in diffusional gradients play a significant part in the spatiotemporal activity and behavior of cells. Although an exact stochastic simulation that simulates every individual reaction and diffusion event gives a most accurate trajectory of the system's state over time, it can be too slow for many practical applications. We present an accelerated algorithm for discrete stochastic simulation of reaction-diffusion systems designed to improve the speed of simulation by reducing the number of time-steps required to complete a simulation run. This method is unique in that it employs two strategies that have not been incorporated in existing spatial stochastic simulation algorithms. First, diffusive transfers between neighboring subvolumes are based on concentration gradients. This treatment necessitates sampling of only the net or observed diffusion events from higher to lower concentration gradients rather than sampling all diffusion events regardless of local concentration gradients. Second, we extend the non-negative Poisson tau-leaping method that was originally developed for speeding up nonspatial or homogeneous stochastic simulation algorithms. This method calculates each leap time in a unified step for both reaction and diffusion processes while satisfying the leap condition that the propensities do not change appreciably during the leap and ensuring that leaping does not cause molecular populations to become negative. Numerical results are presented that illustrate the improvement in simulation speed achieved by incorporating these two new strategies.
Structural factoring approach for analyzing stochastic networks
NASA Technical Reports Server (NTRS)
Hayhurst, Kelly J.; Shier, Douglas R.
1991-01-01
The problem of finding the distribution of the shortest path length through a stochastic network is investigated. A general algorithm for determining the exact distribution of the shortest path length is developed based on the concept of conditional factoring, in which a directed, stochastic network is decomposed into an equivalent set of smaller, generally less complex subnetworks. Several network constructs are identified and exploited to reduce significantly the computational effort required to solve a network problem relative to complete enumeration. This algorithm can be applied to two important classes of stochastic path problems: determining the critical path distribution for acyclic networks and the exact two-terminal reliability for probabilistic networks. Computational experience with the algorithm was encouraging and allowed the exact solution of networks that have been previously analyzed only by approximation techniques.
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful. PMID:28626348
GPU-powered Shotgun Stochastic Search for Dirichlet process mixtures of Gaussian Graphical Models.
Mukherjee, Chiranjit; Rodriguez, Abel
2016-01-01
Gaussian graphical models are popular for modeling high-dimensional multivariate data with sparse conditional dependencies. A mixture of Gaussian graphical models extends this model to the more realistic scenario where observations come from a heterogenous population composed of a small number of homogeneous sub-groups. In this paper we present a novel stochastic search algorithm for finding the posterior mode of high-dimensional Dirichlet process mixtures of decomposable Gaussian graphical models. Further, we investigate how to harness the massive thread-parallelization capabilities of graphical processing units to accelerate computation. The computational advantages of our algorithms are demonstrated with various simulated data examples in which we compare our stochastic search with a Markov chain Monte Carlo algorithm in moderate dimensional data examples. These experiments show that our stochastic search largely outperforms the Markov chain Monte Carlo algorithm in terms of computing-times and in terms of the quality of the posterior mode discovered. Finally, we analyze a gene expression dataset in which Markov chain Monte Carlo algorithms are too slow to be practically useful.
Stochastic Evolutionary Algorithms for Planning Robot Paths
NASA Technical Reports Server (NTRS)
Fink, Wolfgang; Aghazarian, Hrand; Huntsberger, Terrance; Terrile, Richard
2006-01-01
A computer program implements stochastic evolutionary algorithms for planning and optimizing collision-free paths for robots and their jointed limbs. Stochastic evolutionary algorithms can be made to produce acceptably close approximations to exact, optimal solutions for path-planning problems while often demanding much less computation than do exhaustive-search and deterministic inverse-kinematics algorithms that have been used previously for this purpose. Hence, the present software is better suited for application aboard robots having limited computing capabilities (see figure). The stochastic aspect lies in the use of simulated annealing to (1) prevent trapping of an optimization algorithm in local minima of an energy-like error measure by which the fitness of a trial solution is evaluated while (2) ensuring that the entire multidimensional configuration and parameter space of the path-planning problem is sampled efficiently with respect to both robot joint angles and computation time. Simulated annealing is an established technique for avoiding local minima in multidimensional optimization problems, but has not, until now, been applied to planning collision-free robot paths by use of low-power computers.
NASA Astrophysics Data System (ADS)
Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood
2015-10-01
Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.
2014-01-01
Background Down-regulation or silencing of transgene expression can be a major hurdle to both molecular studies and biotechnology applications in many plant species. Sugarcane is particularly effective at silencing introduced transgenes, including reporter genes such as the firefly luciferase gene. Synthesizing transgene coding sequences optimized for usage in the host plant is one method of enhancing transgene expression and stability. Using specified design rules we have synthesised new coding sequences for both the firefly luciferase and Renilla luciferase reporter genes. We have tested these optimized versions for enhanced levels of luciferase activity and for increased steady state luciferase mRNA levels in sugarcane. Results The synthetic firefly luciferase (luc*) and Renilla luciferase (Renluc*) coding sequences have elevated G + C contents in line with sugarcane codon usage, but maintain 75% identity to the native firefly or Renilla luciferase nucleotide sequences and 100% identity to the protein coding sequences. Under the control of the maize pUbi promoter, the synthetic luc* and Renluc* genes yielded 60x and 15x higher luciferase activity respectively, over the native firefly and Renilla luciferase genes in transient assays on sugarcane suspension cell cultures. Using a novel transient assay in sugarcane suspension cells combining co-bombardment and qRT-PCR, we showed that synthetic luc* and Renluc* genes generate increased transcript levels compared to the native firefly and Renilla luciferase genes. In stable transgenic lines, the luc* transgene generated significantly higher levels of expression than the native firefly luciferase transgene. The fold difference in expression was highest in the youngest tissues. Conclusions We developed synthetic versions of both the firefly and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. These transgenes will be particularly useful for evaluating the expression patterns conferred by existing and newly isolated promoters in sugarcane tissues. The strategies used to design the synthetic luciferase transgenes could be applied to other transgenes that are aggressively silenced in sugarcane. PMID:24708613
Chou, Ting-Chun; Moyle, Richard L
2014-04-08
Down-regulation or silencing of transgene expression can be a major hurdle to both molecular studies and biotechnology applications in many plant species. Sugarcane is particularly effective at silencing introduced transgenes, including reporter genes such as the firefly luciferase gene.Synthesizing transgene coding sequences optimized for usage in the host plant is one method of enhancing transgene expression and stability. Using specified design rules we have synthesised new coding sequences for both the firefly luciferase and Renilla luciferase reporter genes. We have tested these optimized versions for enhanced levels of luciferase activity and for increased steady state luciferase mRNA levels in sugarcane. The synthetic firefly luciferase (luc*) and Renilla luciferase (Renluc*) coding sequences have elevated G + C contents in line with sugarcane codon usage, but maintain 75% identity to the native firefly or Renilla luciferase nucleotide sequences and 100% identity to the protein coding sequences.Under the control of the maize pUbi promoter, the synthetic luc* and Renluc* genes yielded 60x and 15x higher luciferase activity respectively, over the native firefly and Renilla luciferase genes in transient assays on sugarcane suspension cell cultures.Using a novel transient assay in sugarcane suspension cells combining co-bombardment and qRT-PCR, we showed that synthetic luc* and Renluc* genes generate increased transcript levels compared to the native firefly and Renilla luciferase genes.In stable transgenic lines, the luc* transgene generated significantly higher levels of expression than the native firefly luciferase transgene. The fold difference in expression was highest in the youngest tissues. We developed synthetic versions of both the firefly and Renilla luciferase reporter genes that resist transgene silencing in sugarcane. These transgenes will be particularly useful for evaluating the expression patterns conferred by existing and newly isolated promoters in sugarcane tissues. The strategies used to design the synthetic luciferase transgenes could be applied to other transgenes that are aggressively silenced in sugarcane.
A hierarchical exact accelerated stochastic simulation algorithm
NASA Astrophysics Data System (ADS)
Orendorff, David; Mjolsness, Eric
2012-12-01
A new algorithm, "HiER-leap" (hierarchical exact reaction-leaping), is derived which improves on the computational properties of the ER-leap algorithm for exact accelerated simulation of stochastic chemical kinetics. Unlike ER-leap, HiER-leap utilizes a hierarchical or divide-and-conquer organization of reaction channels into tightly coupled "blocks" and is thereby able to speed up systems with many reaction channels. Like ER-leap, HiER-leap is based on the use of upper and lower bounds on the reaction propensities to define a rejection sampling algorithm with inexpensive early rejection and acceptance steps. But in HiER-leap, large portions of intra-block sampling may be done in parallel. An accept/reject step is used to synchronize across blocks. This method scales well when many reaction channels are present and has desirable asymptotic properties. The algorithm is exact, parallelizable and achieves a significant speedup over the stochastic simulation algorithm and ER-leap on certain problems. This algorithm offers a potentially important step towards efficient in silico modeling of entire organisms.
Building Twilight "Light Sensors" to Study the Effects of Light Pollution on Fireflies
ERIC Educational Resources Information Center
Thancharoen, Anchana; Branham, Marc A.; Lloyd, James E.
2008-01-01
Light pollution negatively affects many nocturnal organisms. We outline two experiments that can be conducted by students to examine the effects of light pollution on firefly behavior. Inexpensive electronic light sensors, which are easy to construct and calibrate, are used to sample light levels along transects in spaces where fireflies are…
Stochastic Models of Polymer Systems
2016-01-01
SECURITY CLASSIFICATION OF: The stochastic gradient decent algorithm is the now the "algorithm of choice" for very large machine learning problems...information about the behavior of the algorithm. At the same time, we were also able to formulate various acceleration techniques in precise math terms... gradient decent, REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING
Chen, Linfeng; Shi, Xiaodi; Li, Mingzhu; Hu, Junping; Sun, Shufeng; Su, Bin; Wen, Yongqiang; Han, Dong; Jiang, Lei; Song, Yanlin
2015-01-01
Fireflies have drawn considerable attention for thousands of years due to their highly efficient bioluminescence, which is important for fundamental research and photonic applications. However, there are few reports on the reflector layer (RL) of firefly lantern, which contributes to the bright luminescence. Here we presented the detailed microstructure of the RL consisting of random hollow granules, which had high reflectance in the range from 450 nm to 800 nm. Inspired by the firefly lantern, artificial films with high reflectance in the visible region were fabricated using hollow silica microparticles mimicking the structure of the RL. Additionally, the bioinspired structures provided an efficient RL for the chemiluminescence system and could substantially enhance the initial chemiluminescence intensity. The work not only provides new insight into the bright bioluminescence of fireflies, but also is importance for the design of photonic materials for theranostics, detection, and imaging. PMID:26264643
Ebrahimi, Mehdi; Hosseinkhani, Saman; Heydari, Akbar; Khavari-Nejad, Ramazan Ali; Akbari, Jafar
2012-10-01
Firefly luciferase catalyzes production of light from luciferin in the presence of Mg(2+)-ATP and oxygen. This enzyme has wide range of applications in biotechnology and development of biosensors. The low thermal stability of wild-type firefly luciferase is a limiting factor in most applications. Improvements in activity and stability of few enzymes in the presence of ionic liquids were shown in many reports. In this study, kinetic and thermal stability of firefly luciferase from Photinus pyralis in the presence of three tetramethylguanidine-based ionic liquids was investigated. The enzyme has shown improved activity in the presence of [1, 1, 3, 3-tetramethylguanidine][acetate], but in the presence of [TMG][trichloroacetate] and [TMG][triflouroacetate] activity, it decreased or unchanged significantly. Among these ionic liquids, only [TMG][Ac] has increased the thermal stability of luciferase. Incubation of [TMG][Ac] with firefly luciferase brought about with decrease of K(m) for ATP.
Multidimensional stochastic approximation using locally contractive functions
NASA Technical Reports Server (NTRS)
Lawton, W. M.
1975-01-01
A Robbins-Monro type multidimensional stochastic approximation algorithm which converges in mean square and with probability one to the fixed point of a locally contractive regression function is developed. The algorithm is applied to obtain maximum likelihood estimates of the parameters for a mixture of multivariate normal distributions.
Badenhorst, Werner; Hanekom, Tania; Hanekom, Johan J
2016-12-01
This study presents the development of an alternative noise current term and novel voltage-dependent current noise algorithm for conductance-based stochastic auditory nerve fibre (ANF) models. ANFs are known to have significant variance in threshold stimulus which affects temporal characteristics such as latency. This variance is primarily caused by the stochastic behaviour or microscopic fluctuations of the node of Ranvier's voltage-dependent sodium channels of which the intensity is a function of membrane voltage. Though easy to implement and low in computational cost, existing current noise models have two deficiencies: it is independent of membrane voltage, and it is unable to inherently determine the noise intensity required to produce in vivo measured discharge probability functions. The proposed algorithm overcomes these deficiencies while maintaining its low computational cost and ease of implementation compared to other conductance and Markovian-based stochastic models. The algorithm is applied to a Hodgkin-Huxley-based compartmental cat ANF model and validated via comparison of the threshold probability and latency distributions to measured cat ANF data. Simulation results show the algorithm's adherence to in vivo stochastic fibre characteristics such as an exponential relationship between the membrane noise and transmembrane voltage, a negative linear relationship between the log of the relative spread of the discharge probability and the log of the fibre diameter and a decrease in latency with an increase in stimulus intensity.
Gabriel, Gabriele V M; Viviani, Vadim R
2016-12-01
Most luminescent biosensors for heavy metals are fluorescent and rely on intensity measurements, whereas a few are ratiometric and rely on spectral changes. Bioluminescent biosensors for heavy metals are less common. Firefly luciferases have been coupled to responsive promoters for mercury and arsenium, and used as light on biosensors. Firefly luciferase bioluminescence spectrum is naturally sensitive to heavy metal cations such as zinc and mercury and to pH. Although pH sensitivity of firefly luciferases was shown to be useful for ratiometric estimation of intracellular pH, its potential use for ratiometric estimation of heavy metals was never considered. Using the yellow-emitting Macrolampis sp2 firefly luciferase and site-directed mutagenesis, we show that the residues H310 and E354 constitute two critical sites for metal sensitivity that can be engineered to increase sensitivity to zinc, nickel, and mercury. A linear relationship between cation concentration and the ratio of bioluminescence intensities at 550 and 610 nm allowed, for the first time, the ratiometric estimation of heavy metals concentrations down to 0.10 mM, demonstrating the potential applicability of firefly luciferases as enzymatic and intracellular ratiometric metal biosensors.
Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation
NASA Astrophysics Data System (ADS)
Bedi, Amrit Singh; Rajawat, Ketan
2018-05-01
Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.
An improved stochastic fractal search algorithm for 3D protein structure prediction.
Zhou, Changjun; Sun, Chuan; Wang, Bin; Wang, Xiaojun
2018-05-03
Protein structure prediction (PSP) is a significant area for biological information research, disease treatment, and drug development and so on. In this paper, three-dimensional structures of proteins are predicted based on the known amino acid sequences, and the structure prediction problem is transformed into a typical NP problem by an AB off-lattice model. This work applies a novel improved Stochastic Fractal Search algorithm (ISFS) to solve the problem. The Stochastic Fractal Search algorithm (SFS) is an effective evolutionary algorithm that performs well in exploring the search space but falls into local minimums sometimes. In order to avoid the weakness, Lvy flight and internal feedback information are introduced in ISFS. In the experimental process, simulations are conducted by ISFS algorithm on Fibonacci sequences and real peptide sequences. Experimental results prove that the ISFS performs more efficiently and robust in terms of finding the global minimum and avoiding getting stuck in local minimums.
NASA Astrophysics Data System (ADS)
Zhou, Pu; Wang, Xiaolin; Li, Xiao; Chen, Zilum; Xu, Xiaojun; Liu, Zejin
2009-10-01
Coherent summation of fibre laser beams, which can be scaled to a relatively large number of elements, is simulated by using the stochastic parallel gradient descent (SPGD) algorithm. The applicability of this algorithm for coherent summation is analysed and its optimisaton parameters and bandwidth limitations are studied.
Modeling and image reconstruction in spectrally resolved bioluminescence tomography
NASA Astrophysics Data System (ADS)
Dehghani, Hamid; Pogue, Brian W.; Davis, Scott C.; Patterson, Michael S.
2007-02-01
Recent interest in modeling and reconstruction algorithms for Bioluminescence Tomography (BLT) has increased and led to the general consensus that non-spectrally resolved intensity-based BLT results in a non-unique problem. However, the light emitted from, for example firefly Luciferase, is widely distributed over the band of wavelengths from 500 nm to 650 nm and above, with the dominant fraction emitted from tissue being above 550 nm. This paper demonstrates the development of an algorithm used for multi-wavelength 3D spectrally resolved BLT image reconstruction in a mouse model. It is shown that using a single view data, bioluminescence sources of up to 15 mm deep can be successfully recovered given correct information about the underlying tissue absorption and scatter.
Exact and approximate stochastic simulation of intracellular calcium dynamics.
Wieder, Nicolas; Fink, Rainer H A; Wegner, Frederic von
2011-01-01
In simulations of chemical systems, the main task is to find an exact or approximate solution of the chemical master equation (CME) that satisfies certain constraints with respect to computation time and accuracy. While Brownian motion simulations of single molecules are often too time consuming to represent the mesoscopic level, the classical Gillespie algorithm is a stochastically exact algorithm that provides satisfying results in the representation of calcium microdomains. Gillespie's algorithm can be approximated via the tau-leap method and the chemical Langevin equation (CLE). Both methods lead to a substantial acceleration in computation time and a relatively small decrease in accuracy. Elimination of the noise terms leads to the classical, deterministic reaction rate equations (RRE). For complex multiscale systems, hybrid simulations are increasingly proposed to combine the advantages of stochastic and deterministic algorithms. An often used exemplary cell type in this context are striated muscle cells (e.g., cardiac and skeletal muscle cells). The properties of these cells are well described and they express many common calcium-dependent signaling pathways. The purpose of the present paper is to provide an overview of the aforementioned simulation approaches and their mutual relationships in the spectrum ranging from stochastic to deterministic algorithms.
Firefly, Firefly: First Grade Students Learn, Talk, and Write about Light
ERIC Educational Resources Information Center
Mesa, Jennifer; Sorensen, Kirsten
2016-01-01
Inspired by a song to be sung by her daughter's first-grade class in an upcoming musical, a parent volunteer teacher used fireflies as the focus of a science lesson to build on the children's interest and experiences. She developed a 5E lesson (Bybee et al. 2006) using the backwards-design approach (Wiggins and McTighe 2005) to ensure meaningful…
Translational Regulation of PTEN/MMAC1 Expression in Prostate Cancer
2003-05-01
the transcription of dicistronic RNA encoding Renilla luciferase as the first cistron and firefly luciferase as the second cistron. Translation of the...first cistron ( Renilla luciferase) serves as an indicator of cap-dependent translation while translation of the second cistron (firefly luciferase...cellular IRES (Sachs, 2000). These dicistronic constructs were transfected into HeLa cells and both Renilla and firefly luciferase activities were measured
Probabilistic DHP adaptive critic for nonlinear stochastic control systems.
Herzallah, Randa
2013-06-01
Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.
Computational singular perturbation analysis of stochastic chemical systems with stiffness
NASA Astrophysics Data System (ADS)
Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.
2017-04-01
Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.
Wu, Sheng; Li, Hong; Petzold, Linda R.
2015-01-01
The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy. PMID:26609185
Theoretical tuning of the firefly bioluminescence spectra by the modification of oxyluciferin
NASA Astrophysics Data System (ADS)
Cheng, Yuan-Yuan; Zhu, Jia; Liu, Ya-Jun
2014-01-01
Extending the firefly bioluminescence is of practical significance for the improved visualization of living cells and the development of a multicolor reporter. Tuning the color of bioluminescence in fireflies mainly involves the modification of luciferase and luciferin. In this Letter, we theoretically studied the emission spectra of 9 firefly oxyluciferin analogs in the gas phase and in solutions. Three density functionals, including B3LYP, CAM-B3LYP and M06-2X, were employed to theoretically predict the efficiently luminescent analogs. The reliable functionals for calculating the targeted systems were suggested. The luminescence efficiency, solvent effects, and substituent effects are discussed based on the calculated results.
NASA Astrophysics Data System (ADS)
Xiang, Suyun; Wang, Wei; Xiang, Bingren; Deng, Haishan; Xie, Shaofei
2007-05-01
The periodic modulation-based stochastic resonance algorithm (PSRA) was used to amplify and detect the weak liquid chromatography-mass spectrometry (LC-MS) signal of granisetron in plasma. In the algorithm, the stochastic resonance (SR) was achieved by introducing an external periodic force to the nonlinear system. The optimization of parameters was carried out in two steps to give attention to both the signal-to-noise ratio (S/N) and the peak shape of output signal. By applying PSRA with the optimized parameters, the signal-to-noise ratio of LC-MS peak was enhanced significantly and distorted peak shape that often appeared in the traditional stochastic resonance algorithm was corrected by the added periodic force. Using the signals enhanced by PSRA, this method extended the limit of detection (LOD) and limit of quantification (LOQ) of granisetron in plasma from 0.05 and 0.2 ng/mL, respectively, to 0.01 and 0.02 ng/mL, and exhibited good linearity, accuracy and precision, which ensure accurate determination of the target analyte.
Molecular Targeting of Prostate Cancer During Androgen Ablation: Inhibition of CHES1/FOXN3
2011-05-01
activity (Firefly luciferase) was normalized to Renilla luciferase activity. Results are presented as fold-change in PSA reporter activity...reporter (DLR) assays performed. In each sample, the CHES1-RR1/3.5 reporter activity (Firefly luciferase) was normalized to Renilla luciferase...4.0) reporter activity (Firefly luciferase) was normalized to Renilla luciferase activity. Results are presented as fold-change in BNIP3 reporter
Variation in opsin genes correlates with signaling ecology in North American fireflies
Sander, Sarah E.; Hall, David W.
2015-01-01
Genes underlying signal reception should evolve to maximize signal detection in a particular environment. In animals, opsins, the protein component of visual pigments, are predicted to evolve according to this expectation. Fireflies are known for their bioluminescent mating signals. The eyes of nocturnal species are expected to maximize detection of conspecific signal colors emitted in the typical low-light environment. This is not expected for species that have transitioned to diurnal activity in bright daytime environments. Here we test the hypothesis that opsin gene sequence plays a role in modifying firefly eye spectral sensitivity. We use genome and transcriptome sequencing in four firefly species, transcriptome sequencing in six additional species, and targeted gene sequencing in 28 other species to identify all opsin genes present in North American fireflies and to elucidate amino acid sites under positive selection. We also determine whether amino acid substitutions in opsins are linked to evolutionary changes in signal mode, signal color, and light environment. We find only two opsins, one long wavelength and one ultraviolet, in all firefly species and identify 25 candidate sites that may be involved in determining spectral sensitivity. In addition, we find elevated rates of evolution at transitions to diurnal activity, and changes in selective constraint on LW opsin associated with changes in light environment. Our results suggest that changes in eye spectral sensitivity are at least partially due to opsin sequence. Fireflies continue to be a promising system in which to investigate the evolution of signals, receptors, and signaling environments. PMID:26289828
Estimating rare events in biochemical systems using conditional sampling.
Sundar, V S
2017-01-28
The paper focuses on development of variance reduction strategies to estimate rare events in biochemical systems. Obtaining this probability using brute force Monte Carlo simulations in conjunction with the stochastic simulation algorithm (Gillespie's method) is computationally prohibitive. To circumvent this, important sampling tools such as the weighted stochastic simulation algorithm and the doubly weighted stochastic simulation algorithm have been proposed. However, these strategies require an additional step of determining the important region to sample from, which is not straightforward for most of the problems. In this paper, we apply the subset simulation method, developed as a variance reduction tool in the context of structural engineering, to the problem of rare event estimation in biochemical systems. The main idea is that the rare event probability is expressed as a product of more frequent conditional probabilities. These conditional probabilities are estimated with high accuracy using Monte Carlo simulations, specifically the Markov chain Monte Carlo method with the modified Metropolis-Hastings algorithm. Generating sample realizations of the state vector using the stochastic simulation algorithm is viewed as mapping the discrete-state continuous-time random process to the standard normal random variable vector. This viewpoint opens up the possibility of applying more sophisticated and efficient sampling schemes developed elsewhere to problems in stochastic chemical kinetics. The results obtained using the subset simulation method are compared with existing variance reduction strategies for a few benchmark problems, and a satisfactory improvement in computational time is demonstrated.
Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.
Deb, Suash; Yang, Xin-She
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730
GillesPy: A Python Package for Stochastic Model Building and Simulation.
Abel, John H; Drawert, Brian; Hellander, Andreas; Petzold, Linda R
2016-09-01
GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.
GillesPy: A Python Package for Stochastic Model Building and Simulation
Abel, John H.; Drawert, Brian; Hellander, Andreas; Petzold, Linda R.
2017-01-01
GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community. PMID:28630888
Synthesis of concentric circular antenna arrays using dragonfly algorithm
NASA Astrophysics Data System (ADS)
Babayigit, B.
2018-05-01
Due to the strong non-linear relationship between the array factor and the array elements, concentric circular antenna array (CCAA) synthesis problem is challenging. Nature-inspired optimisation techniques have been playing an important role in solving array synthesis problems. Dragonfly algorithm (DA) is a novel nature-inspired optimisation technique which is based on the static and dynamic swarming behaviours of dragonflies in nature. This paper presents the design of CCAAs to get low sidelobes using DA. The effectiveness of the proposed DA is investigated in two different (with and without centre element) cases of two three-ring (having 4-, 6-, 8-element or 8-, 10-, 12-element) CCAA design. The radiation pattern of each design cases is obtained by finding optimal excitation weights of the array elements using DA. Simulation results show that the proposed algorithm outperforms the other state-of-the-art techniques (symbiotic organisms search, biogeography-based optimisation, sequential quadratic programming, opposition-based gravitational search algorithm, cat swarm optimisation, firefly algorithm, evolutionary programming) for all design cases. DA can be a promising technique for electromagnetic problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, George; Wang, Le Yi; Zhang, Hongwei
2014-12-10
Stochastic approximation methods have found extensive and diversified applications. Recent emergence of networked systems and cyber-physical systems has generated renewed interest in advancing stochastic approximation into a general framework to support algorithm development for information processing and decisions in such systems. This paper presents a survey on some recent developments in stochastic approximation methods and their applications. Using connected vehicles in platoon formation and coordination as a platform, we highlight some traditional and new methodologies of stochastic approximation algorithms and explain how they can be used to capture essential features in networked systems. Distinct features of networked systems with randomlymore » switching topologies, dynamically evolving parameters, and unknown delays are presented, and control strategies are provided.« less
Enhanced algorithms for stochastic programming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna, Alamuru S.
1993-09-01
In this dissertation, we present some of the recent advances made in solving two-stage stochastic linear programming problems of large size and complexity. Decomposition and sampling are two fundamental components of techniques to solve stochastic optimization problems. We describe improvements to the current techniques in both these areas. We studied different ways of using importance sampling techniques in the context of Stochastic programming, by varying the choice of approximation functions used in this method. We have concluded that approximating the recourse function by a computationally inexpensive piecewise-linear function is highly efficient. This reduced the problem from finding the mean ofmore » a computationally expensive functions to finding that of a computationally inexpensive function. Then we implemented various variance reduction techniques to estimate the mean of a piecewise-linear function. This method achieved similar variance reductions in orders of magnitude less time than, when we directly applied variance-reduction techniques directly on the given problem. In solving a stochastic linear program, the expected value problem is usually solved before a stochastic solution and also to speed-up the algorithm by making use of the information obtained from the solution of the expected value problem. We have devised a new decomposition scheme to improve the convergence of this algorithm.« less
Modelling Evolutionary Algorithms with Stochastic Differential Equations.
Heredia, Jorge Pérez
2017-11-20
There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.
FERN - a Java framework for stochastic simulation and evaluation of reaction networks.
Erhard, Florian; Friedel, Caroline C; Zimmer, Ralf
2008-08-29
Stochastic simulation can be used to illustrate the development of biological systems over time and the stochastic nature of these processes. Currently available programs for stochastic simulation, however, are limited in that they either a) do not provide the most efficient simulation algorithms and are difficult to extend, b) cannot be easily integrated into other applications or c) do not allow to monitor and intervene during the simulation process in an easy and intuitive way. Thus, in order to use stochastic simulation in innovative high-level modeling and analysis approaches more flexible tools are necessary. In this article, we present FERN (Framework for Evaluation of Reaction Networks), a Java framework for the efficient simulation of chemical reaction networks. FERN is subdivided into three layers for network representation, simulation and visualization of the simulation results each of which can be easily extended. It provides efficient and accurate state-of-the-art stochastic simulation algorithms for well-mixed chemical systems and a powerful observer system, which makes it possible to track and control the simulation progress on every level. To illustrate how FERN can be easily integrated into other systems biology applications, plugins to Cytoscape and CellDesigner are included. These plugins make it possible to run simulations and to observe the simulation progress in a reaction network in real-time from within the Cytoscape or CellDesigner environment. FERN addresses shortcomings of currently available stochastic simulation programs in several ways. First, it provides a broad range of efficient and accurate algorithms both for exact and approximate stochastic simulation and a simple interface for extending to new algorithms. FERN's implementations are considerably faster than the C implementations of gillespie2 or the Java implementations of ISBJava. Second, it can be used in a straightforward way both as a stand-alone program and within new systems biology applications. Finally, complex scenarios requiring intervention during the simulation progress can be modelled easily with FERN.
Prediction of protein-protein interaction network using a multi-objective optimization approach.
Chowdhury, Archana; Rakshit, Pratyusha; Konar, Amit
2016-06-01
Protein-Protein Interactions (PPIs) are very important as they coordinate almost all cellular processes. This paper attempts to formulate PPI prediction problem in a multi-objective optimization framework. The scoring functions for the trial solution deal with simultaneous maximization of functional similarity, strength of the domain interaction profiles, and the number of common neighbors of the proteins predicted to be interacting. The above optimization problem is solved using the proposed Firefly Algorithm with Nondominated Sorting. Experiments undertaken reveal that the proposed PPI prediction technique outperforms existing methods, including gene ontology-based Relative Specific Similarity, multi-domain-based Domain Cohesion Coupling method, domain-based Random Decision Forest method, Bagging with REP Tree, and evolutionary/swarm algorithm-based approaches, with respect to sensitivity, specificity, and F1 score.
ERIC Educational Resources Information Center
Brown, Debbie
1984-01-01
Explains the flashes of light emitted by fireflies as competition, species-specific code, species identification and mating behavior and ecology. Suggests activities to conduct to study the insects and their behavior. (ERB)
Genome size of 14 species of fireflies (Insecta, Coleoptera, Lampyridae)
Liu, Gui-Chun; Dong, Zhi-Wei; He, Jin-Wu; Zhao, Ruo-Ping; Wang, Wen; Li, Xue-Yan
2017-01-01
Eukaryotic genome size data are important both as the basis for comparative research into genome evolution and as estimators of the cost and difficulty of genome sequencing programs for non-model organisms. In this study, the genome size of 14 species of fireflies (Lampyridae) (two genera in Lampyrinae, three genera in Luciolinae, and one genus in subfamily incertae sedis) were estimated by propidium iodide (PI)-based flow cytometry. The haploid genome sizes of Lampyridae ranged from 0. 42 to 1. 31 pg, a 3. 1-fold span. Genome sizes of the fireflies varied within the tested subfamilies and genera. Lamprigera and Pyrocoelia species had large and small genome sizes, respectively. No correlation was found between genome size and morphological traits such as body length, body width, eye width, and antennal length. Our data provide additional information on genome size estimation of the firefly family Lampyridae. Furthermore, this study will help clarify the cost and difficulty of genome sequencing programs for non-model organisms and will help promote studies on firefly genome evolution. PMID:29280364
Computational singular perturbation analysis of stochastic chemical systems with stiffness
Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; ...
2017-01-25
Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to notmore » only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. Furthermore, the algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.« less
Stochastic Spectral Descent for Discrete Graphical Models
Carlson, David; Hsieh, Ya-Ping; Collins, Edo; ...
2015-12-14
Interest in deep probabilistic graphical models has in-creased in recent years, due to their state-of-the-art performance on many machine learning applications. Such models are typically trained with the stochastic gradient method, which can take a significant number of iterations to converge. Since the computational cost of gradient estimation is prohibitive even for modestly sized models, training becomes slow and practically usable models are kept small. In this paper we propose a new, largely tuning-free algorithm to address this problem. Our approach derives novel majorization bounds based on the Schatten- norm. Intriguingly, the minimizers of these bounds can be interpreted asmore » gradient methods in a non-Euclidean space. We thus propose using a stochastic gradient method in non-Euclidean space. We both provide simple conditions under which our algorithm is guaranteed to converge, and demonstrate empirically that our algorithm leads to dramatically faster training and improved predictive ability compared to stochastic gradient descent for both directed and undirected graphical models.« less
ERIC Educational Resources Information Center
Mannlein, Sally
2009-01-01
Most first-graders are interested in insects. In this article, the author describes a lesson, "Dragonflies and Fireflies," which is a first-grade lesson showing drawing, symmetry, neighboring colors (analogous) and watercolor techniques.
ERIC Educational Resources Information Center
Jones, M. Gail
1993-01-01
Describes bioluminescence and the chemistry of how it occurs. Presents information for conducting the following classroom activities: (1) firefly mimic; (2) modeling deep-sea fish; (3) sea fireflies; and (4) the chemistry of light. (PR)
NASA Astrophysics Data System (ADS)
Yang, Huanhuan; Gunzburger, Max
2017-06-01
Simulation-based optimization of acoustic liner design in a turbofan engine nacelle for noise reduction purposes can dramatically reduce the cost and time needed for experimental designs. Because uncertainties are inevitable in the design process, a stochastic optimization algorithm is posed based on the conditional value-at-risk measure so that an ideal acoustic liner impedance is determined that is robust in the presence of uncertainties. A parallel reduced-order modeling framework is developed that dramatically improves the computational efficiency of the stochastic optimization solver for a realistic nacelle geometry. The reduced stochastic optimization solver takes less than 500 seconds to execute. In addition, well-posedness and finite element error analyses of the state system and optimization problem are provided.
The Automation of Stochastization Algorithm with Use of SymPy Computer Algebra Library
NASA Astrophysics Data System (ADS)
Demidova, Anastasya; Gevorkyan, Migran; Kulyabov, Dmitry; Korolkova, Anna; Sevastianov, Leonid
2018-02-01
SymPy computer algebra library is used for automatic generation of ordinary and stochastic systems of differential equations from the schemes of kinetic interaction. Schemes of this type are used not only in chemical kinetics but also in biological, ecological and technical models. This paper describes the automatic generation algorithm with an emphasis on application details.
Deng, Haishan; Shang, Erxin; Xiang, Bingren; Xie, Shaofei; Tang, Yuping; Duan, Jin-ao; Zhan, Ying; Chi, Yumei; Tan, Defei
2011-03-15
The stochastic resonance algorithm (SRA) has been developed as a potential tool for amplifying and determining weak chromatographic peaks in recent years. However, the conventional SRA cannot be applied directly to ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC/TOFMS). The obstacle lies in the fact that the narrow peaks generated by UPLC contain high-frequency components which fall beyond the restrictions of the theory of stochastic resonance. Although there already exists an algorithm that allows a high-frequency weak signal to be detected, the sampling frequency of TOFMS is not fast enough to meet the requirement of the algorithm. Another problem is the depression of the weak peak of the compound with low concentration or weak detection response, which prevents the simultaneous determination of multi-component UPLC/TOFMS peaks. In order to lower the frequencies of the peaks, an interpolation and re-scaling frequency stochastic resonance (IRSR) is proposed, which re-scales the peak frequencies via linear interpolating sample points numerically. The re-scaled UPLC/TOFMS peaks could then be amplified significantly. By introducing an external energy field upon the UPLC/TOFMS signals, the method of energy gain was developed to simultaneously amplify and determine weak peaks from multi-components. Subsequently, a multi-component stochastic resonance algorithm was constructed for the simultaneous quantitative determination of multiple weak UPLC/TOFMS peaks based on the two methods. The optimization of parameters was discussed in detail with simulated data sets, and the applicability of the algorithm was evaluated by quantitative analysis of three alkaloids in human plasma using UPLC/TOFMS. The new algorithm behaved well in the improvement of signal-to-noise (S/N) compared to several normally used peak enhancement methods, including the Savitzky-Golay filter, Whittaker-Eilers smoother and matched filtration. Copyright © 2011 John Wiley & Sons, Ltd.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... Firefly Aviation Helicopter Services, and Erickson Air-Crane); Rotorcraft Development Corporation..., Inc. (Previously Firefly Aviation Helicopter Services, and Erickson Air-Crane); Rotorcraft Development...
2006-04-01
Fig. 2B). In addition, luciferase assay on cells co-transfected with constructs expressing firefly and renilla luciferase genes showed a significant...positive cells. (C) BT474 cells were co-transfected with pGL3 plasmid expressing firefly luciferase, pRL plasmid expressing renilla luciferase, and...genes Per1 (A) and Bmal1 (B). BT474 cells were transfected with Per1 (A) and Bmal1 (B) firefly luciferase reporters, pRL plasmid expressing renilla
Identification and stochastic control of helicopter dynamic modes
NASA Technical Reports Server (NTRS)
Molusis, J. A.; Bar-Shalom, Y.
1983-01-01
A general treatment of parameter identification and stochastic control for use on helicopter dynamic systems is presented. Rotor dynamic models, including specific applications to rotor blade flapping and the helicopter ground resonance problem are emphasized. Dynamic systems which are governed by periodic coefficients as well as constant coefficient models are addressed. The dynamic systems are modeled by linear state variable equations which are used in the identification and stochastic control formulation. The pure identification problem as well as the stochastic control problem which includes combined identification and control for dynamic systems is addressed. The stochastic control problem includes the effect of parameter uncertainty on the solution and the concept of learning and how this is affected by the control's duel effect. The identification formulation requires algorithms suitable for on line use and thus recursive identification algorithms are considered. The applications presented use the recursive extended kalman filter for parameter identification which has excellent convergence for systems without process noise.
Stochastic modelling of microstructure formation in solidification processes
NASA Astrophysics Data System (ADS)
Nastac, Laurentiu; Stefanescu, Doru M.
1997-07-01
To relax many of the assumptions used in continuum approaches, a general stochastic model has been developed. The stochastic model can be used not only for an accurate description of the fraction of solid evolution, and therefore accurate cooling curves, but also for simulation of microstructure formation in castings. The advantage of using the stochastic approach is to give a time- and space-dependent description of solidification processes. Time- and space-dependent processes can also be described by partial differential equations. Unlike a differential formulation which, in most cases, has to be transformed into a difference equation and solved numerically, the stochastic approach is essentially a direct numerical algorithm. The stochastic model is comprehensive, since the competition between various phases is considered. Furthermore, grain impingement is directly included through the structure of the model. In the present research, all grain morphologies are simulated with this procedure. The relevance of the stochastic approach is that the simulated microstructures can be directly compared with microstructures obtained from experiments. The computer becomes a `dynamic metallographic microscope'. A comparison between deterministic and stochastic approaches has been performed. An important objective of this research was to answer the following general questions: (1) `Would fully deterministic approaches continue to be useful in solidification modelling?' and (2) `Would stochastic algorithms be capable of entirely replacing purely deterministic models?'
Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics.
Marquez-Lago, Tatiana T; Burrage, Kevin
2007-09-14
In cell biology, cell signaling pathway problems are often tackled with deterministic temporal models, well mixed stochastic simulators, and/or hybrid methods. But, in fact, three dimensional stochastic spatial modeling of reactions happening inside the cell is needed in order to fully understand these cell signaling pathways. This is because noise effects, low molecular concentrations, and spatial heterogeneity can all affect the cellular dynamics. However, there are ways in which important effects can be accounted without going to the extent of using highly resolved spatial simulators (such as single-particle software), hence reducing the overall computation time significantly. We present a new coarse grained modified version of the next subvolume method that allows the user to consider both diffusion and reaction events in relatively long simulation time spans as compared with the original method and other commonly used fully stochastic computational methods. Benchmarking of the simulation algorithm was performed through comparison with the next subvolume method and well mixed models (MATLAB), as well as stochastic particle reaction and transport simulations (CHEMCELL, Sandia National Laboratories). Additionally, we construct a model based on a set of chemical reactions in the epidermal growth factor receptor pathway. For this particular application and a bistable chemical system example, we analyze and outline the advantages of our presented binomial tau-leap spatial stochastic simulation algorithm, in terms of efficiency and accuracy, in scenarios of both molecular homogeneity and heterogeneity.
Barber, Jared; Tanase, Roxana; Yotov, Ivan
2016-06-01
Several Kalman filter algorithms are presented for data assimilation and parameter estimation for a nonlinear diffusion model of epithelial cell migration. These include the ensemble Kalman filter with Monte Carlo sampling and a stochastic collocation (SC) Kalman filter with structured sampling. Further, two types of noise are considered -uncorrelated noise resulting in one stochastic dimension for each element of the spatial grid and correlated noise parameterized by the Karhunen-Loeve (KL) expansion resulting in one stochastic dimension for each KL term. The efficiency and accuracy of the four methods are investigated for two cases with synthetic data with and without noise, as well as data from a laboratory experiment. While it is observed that all algorithms perform reasonably well in matching the target solution and estimating the diffusion coefficient and the growth rate, it is illustrated that the algorithms that employ SC and KL expansion are computationally more efficient, as they require fewer ensemble members for comparable accuracy. In the case of SC methods, this is due to improved approximation in stochastic space compared to Monte Carlo sampling. In the case of KL methods, the parameterization of the noise results in a stochastic space of smaller dimension. The most efficient method is the one combining SC and KL expansion. Copyright © 2016 Elsevier Inc. All rights reserved.
Optimal Control of Hybrid Systems in Air Traffic Applications
NASA Astrophysics Data System (ADS)
Kamgarpour, Maryam
Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient implementation of the proposed algorithms.
Firefly courtship as the basis of the synchronization-response principle
NASA Astrophysics Data System (ADS)
Ramírez Ávila, G. M.; Deneubourg, J.-L.; Guisset, J.-L.; Wessel, N.; Kurths, J.
2011-06-01
Response to synchronization seems to be a widespread phenomenon specially in biological systems. We highlight this phenomenon studying the courtship of flashing fireflies in which a typical collective rhythm occurring only among the males arises and it is followed by a response of the females. Based on a model issued from electronic fireflies, we explain the synchronization of the males and the active responses of the females in the courtship of mingled (both sexes) populations of fireflies. The model also explains the courtship behavior of other species whose interactions follow the same logic even if their physical features are different. Moreover, the model can make predictions on the behavior of mingled and mixed (natural and artificial) groups of such animals. This finding could be considered as the basis of a new principle, namely the synchronization-response.
Oliveira, Gabriela; Viviani, Vadim R
2018-03-01
Firefly luciferases have been used extensively as bioanalytical reagents and their cDNAs as reporter genes for biosensors and bioimaging, but they are in general unstable at temperatures above 30°C. In the past few years, efforts have been made to stabilize some firefly luciferases for better application as analytical reagents. Novel luciferases from different beetle families, displaying distinct bioluminescence colours and kinetics, may offer desirable alternatives to extend the range of applications. In the past years, our group has cloned the largest variety of luciferases from the three main families of bioluminescent beetles (Elateridae: P. termitilluminans, F. bruchi, P. angustus; Phengodidae: P. hirtus, P. vivianii; and Lampyridae: A. vivianii, C. distinctus and Macrolampis sp2) occurring in Brazilian biomes. We compared the thermostability of these recombinant luciferases and investigated their relationships with bioluminescence spectra and kinetics. The most thermostable luciferases were those of Pyrearinus termitilluminans larval click beetle (534 nm), Amydetes vivianii firefly (539 nm) and Phrixotrix vivianii railroad worm (546 nm), which are the most blue-shifted examples in each family, confirming the trend that the most blue-shifted emitting luciferases are also the most thermostable. Comparatively, commercial P. pyralis firefly luciferase was less thermostable than P. termitilluminans click beetle and A. vivianii firefly luciferases. The higher thermostability in these luciferases could be related to higher degree of hydrophobic packing and disulfide bond content (for firefly luciferases). Copyright © 2017 John Wiley & Sons, Ltd.
Control Improvement for Jump-Diffusion Processes with Applications to Finance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baeuerle, Nicole, E-mail: nicole.baeuerle@kit.edu; Rieder, Ulrich, E-mail: ulrich.rieder@uni-ulm.de
2012-02-15
We consider stochastic control problems with jump-diffusion processes and formulate an algorithm which produces, starting from a given admissible control {pi}, a new control with a better value. If no improvement is possible, then {pi} is optimal. Such an algorithm is well-known for discrete-time Markov Decision Problems under the name Howard's policy improvement algorithm. The idea can be traced back to Bellman. Here we show with the help of martingale techniques that such an algorithm can also be formulated for stochastic control problems with jump-diffusion processes. As an application we derive some interesting results in financial portfolio optimization.
2012-01-01
Background Multi-target therapeutics has been shown to be effective for treating complex diseases, and currently, it is a common practice to combine multiple drugs to treat such diseases to optimize the therapeutic outcomes. However, considering the huge number of possible ways to mix multiple drugs at different concentrations, it is practically difficult to identify the optimal drug combination through exhaustive testing. Results In this paper, we propose a novel stochastic search algorithm, called the adaptive reference update (ARU) algorithm, that can provide an efficient and systematic way for optimizing multi-drug cocktails. The ARU algorithm iteratively updates the drug combination to improve its response, where the update is made by comparing the response of the current combination with that of a reference combination, based on which the beneficial update direction is predicted. The reference combination is continuously updated based on the drug response values observed in the past, thereby adapting to the underlying drug response function. To demonstrate the effectiveness of the proposed algorithm, we evaluated its performance based on various multi-dimensional drug functions and compared it with existing algorithms. Conclusions Simulation results show that the ARU algorithm significantly outperforms existing stochastic search algorithms, including the Gur Game algorithm. In fact, the ARU algorithm can more effectively identify potent drug combinations and it typically spends fewer iterations for finding effective combinations. Furthermore, the ARU algorithm is robust to random fluctuations and noise in the measured drug response, which makes the algorithm well-suited for practical drug optimization applications. PMID:23134742
Using Firefly Tools to Enhance Archive Web Pages
NASA Astrophysics Data System (ADS)
Roby, W.; Wu, X.; Ly, L.; Goldina, T.
2013-10-01
Astronomy web developers are looking for fast and powerful HTML 5/AJAX tools to enhance their web archives. We are exploring ways to make this easier for the developer. How could you have a full FITS visualizer or a Web 2.0 table that supports paging, sorting, and filtering in your web page in 10 minutes? Can it be done without even installing any software or maintaining a server? Firefly is a powerful, configurable system for building web-based user interfaces to access astronomy science archives. It has been in production for the past three years. Recently, we have made some of the advanced components available through very simple JavaScript calls. This allows a web developer, without any significant knowledge of Firefly, to have FITS visualizers, advanced table display, and spectrum plots on their web pages with minimal learning curve. Because we use cross-site JSONP, installing a server is not necessary. Web sites that use these tools can be created in minutes. Firefly was created in IRSA, the NASA/IPAC Infrared Science Archive (http://irsa.ipac.caltech.edu). We are using Firefly to serve many projects including Spitzer, Planck, WISE, PTF, LSST and others.
Experimental tests of light-pollution impacts on nocturnal insect courtship and dispersal.
Firebaugh, Ariel; Haynes, Kyle J
2016-12-01
Though a number of effects of artificial light pollution on behavior and physiology have been described, there is little understanding of their consequences for the growth and distribution of populations. Here, we document impacts of light pollution on aspects of firefly population ecology and underlying mating behaviors. Many firefly species have a unique communication system whereby bioluminescent flashes are used in courtship displays to find and attract mates. We performed a series of manipulative field experiments in which we quantified the effects of adding artificial nighttime lighting on abundances and total flashing activity of fireflies, courtship behaviors and mating between tethered females and free-flying males, and dispersal distances of marked individuals. We show that light pollution reduces flashing activities in a dark-active firefly species (Photuris versicolor) by 69.69 % and courtship behavior and mating success in a twilight-active species (Photinus pyralis). Though courtship behavior and mating success of Photinus pyralis was reduced by light pollution, we found no effects of light pollution on male dispersal in this species. Our findings suggest that light pollution is likely to adversely impact firefly populations, and contribute to wider discussions about the ecological consequences of sensory pollution.
The nuclear factor κB inhibitor (E)-2-fluoro-4'-methoxystilbene inhibits firefly luciferase.
Braeuning, Albert; Vetter, Silvia
2012-12-01
Photinus pyralis (firefly) luciferase is widely used as a reporter system to monitor alterations in gene promoter and/or signalling pathway activities in vitro. The enzyme catalyses the formation of oxyluciferin from D-luciferin in an ATP-consuming reaction involving photon emission. The purpose of the present study was to characterize the luciferase-inhibiting potential of (E)-2-fluoro-4'-methoxystilbene, which is known as a potent inhibitor of the NF-κB (nuclear factor κB) signalling pathway that is used to modulate the NF-κB signalling pathway in vitro. Results show that (E)-2-fluoro-4'-methoxystilbene effectively inhibits firefly luciferase activity in cell lysates and living cells in a non-competitive manner with respect to the luciferase substrates D-luciferin and ATP. By contrast, the compound has no effect on Renilla and Gaussia luciferases. The mechanism of firefly luciferase inhibition by (E)-2-fluoro-4'-methoxystilbene, as well as its potency is comparable to its structure analogue resveratrol. The in vitro use of trans-stilbenes such as (E)-2-fluoro-4'-methoxystilbene or resveratrol compromises firefly luciferase reporter assays as well as ATP/luciferase-based cell viability assays.
The nuclear factor κB inhibitor (E)-2-fluoro-4′-methoxystilbene inhibits firefly luciferase
Braeuning, Albert; Vetter, Silvia
2012-01-01
Photinus pyralis (firefly) luciferase is widely used as a reporter system to monitor alterations in gene promoter and/or signalling pathway activities in vitro. The enzyme catalyses the formation of oxyluciferin from D-luciferin in an ATP-consuming reaction involving photon emission. The purpose of the present study was to characterize the luciferase-inhibiting potential of (E)-2-fluoro-4′-methoxystilbene, which is known as a potent inhibitor of the NF-κB (nuclear factor κB) signalling pathway that is used to modulate the NF-κB signalling pathway in vitro. Results show that (E)-2-fluoro-4′-methoxystilbene effectively inhibits firefly luciferase activity in cell lysates and living cells in a non-competitive manner with respect to the luciferase substrates D-luciferin and ATP. By contrast, the compound has no effect on Renilla and Gaussia luciferases. The mechanism of firefly luciferase inhibition by (E)-2-fluoro-4′-methoxystilbene, as well as its potency is comparable to its structure analogue resveratrol. The in vitro use of trans-stilbenes such as (E)-2-fluoro-4′-methoxystilbene or resveratrol compromises firefly luciferase reporter assays as well as ATP/luciferase-based cell viability assays. PMID:22789175
Two new algorithms to combine kriging with stochastic modelling
NASA Astrophysics Data System (ADS)
Venema, Victor; Lindau, Ralf; Varnai, Tamas; Simmer, Clemens
2010-05-01
Two main groups of statistical methods used in the Earth sciences are geostatistics and stochastic modelling. Geostatistical methods, such as various kriging algorithms, aim at estimating the mean value for every point as well as possible. In case of sparse measurements, such fields have less variability at small scales and a narrower distribution as the true field. This can lead to biases if a nonlinear process is simulated driven by such a kriged field. Stochastic modelling aims at reproducing the statistical structure of the data in space and time. One of the stochastic modelling methods, the so-called surrogate data approach, replicates the value distribution and power spectrum of a certain data set. While stochastic methods reproduce the statistical properties of the data, the location of the measurement is not considered. This requires the use of so-called constrained stochastic models. Because radiative transfer through clouds is a highly nonlinear process, it is essential to model the distribution (e.g. of optical depth, extinction, liquid water content or liquid water path) accurately. In addition, the correlations within the cloud field are important, especially because of horizontal photon transport. This explains the success of surrogate cloud fields for use in 3D radiative transfer studies. Up to now, however, we could only achieve good results for the radiative properties averaged over the field, but not for a radiation measurement located at a certain position. Therefore we have developed a new algorithm that combines the accuracy of stochastic (surrogate) modelling with the positioning capabilities of kriging. In this way, we can automatically profit from the large geostatistical literature and software. This algorithm is similar to the standard iterative amplitude adjusted Fourier transform (IAAFT) algorithm, but has an additional iterative step in which the surrogate field is nudged towards the kriged field. The nudging strength is gradually reduced to zero during successive iterations. A second algorithm, which we call step-wise kriging, pursues the same aim. Each time the kriging algorithm estimates a value, noise is added to it, after which this new point is accounted for in the estimation of all the later points. In this way, the autocorrelation of the step-krigged field is close to that found in the pseudo measurements. The amount of noise is determined by the kriging uncertainty. The algorithms are tested on cloud fields from large eddy simulations (LES). On these clouds, a measurement is simulated. From these pseudo-measurements, we estimated the power spectrum for the surrogates, the semi-variogram for the (stepwise) kriging and the distribution. Furthermore, the pseudo-measurement is kriged. Because we work with LES clouds and the truth is known, we can validate the algorithm by performing 3D radiative transfer calculations on the original LES clouds and on the two new types of stochastic clouds. For comparison, also the radiative properties of the kriged fields and standard surrogate fields are computed. Preliminary results show that both algorithms reproduce the structure of the original clouds well, and the minima and maxima are located where the pseudo-measurements see them. The main problem for the quality of the structure and the root mean square error is the amount of data, which is especially very limited in case of just one zenith pointing measurement.
Simulation of anaerobic digestion processes using stochastic algorithm.
Palanichamy, Jegathambal; Palani, Sundarambal
2014-01-01
The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.
Evolving cell models for systems and synthetic biology.
Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio
2010-03-01
This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.
Li, Tiejun; Min, Bin; Wang, Zhiming
2013-03-14
The stochastic integral ensuring the Newton-Leibnitz chain rule is essential in stochastic energetics. Marcus canonical integral has this property and can be understood as the Wong-Zakai type smoothing limit when the driving process is non-Gaussian. However, this important concept seems not well-known for physicists. In this paper, we discuss Marcus integral for non-Gaussian processes and its computation in the context of stochastic energetics. We give a comprehensive introduction to Marcus integral and compare three equivalent definitions in the literature. We introduce the exact pathwise simulation algorithm and give the error analysis. We show how to compute the thermodynamic quantities based on the pathwise simulation algorithm. We highlight the information hidden in the Marcus mapping, which plays the key role in determining thermodynamic quantities. We further propose the tau-leaping algorithm, which advance the process with deterministic time steps when tau-leaping condition is satisfied. The numerical experiments and its efficiency analysis show that it is very promising.
Algorithmic detectability threshold of the stochastic block model
NASA Astrophysics Data System (ADS)
Kawamoto, Tatsuro
2018-03-01
The assumption that the values of model parameters are known or correctly learned, i.e., the Nishimori condition, is one of the requirements for the detectability analysis of the stochastic block model in statistical inference. In practice, however, there is no example demonstrating that we can know the model parameters beforehand, and there is no guarantee that the model parameters can be learned accurately. In this study, we consider the expectation-maximization (EM) algorithm with belief propagation (BP) and derive its algorithmic detectability threshold. Our analysis is not restricted to the community structure but includes general modular structures. Because the algorithm cannot always learn the planted model parameters correctly, the algorithmic detectability threshold is qualitatively different from the one with the Nishimori condition.
Different types of maximum power point tracking techniques for renewable energy systems: A survey
NASA Astrophysics Data System (ADS)
Khan, Mohammad Junaid; Shukla, Praveen; Mustafa, Rashid; Chatterji, S.; Mathew, Lini
2016-03-01
Global demand for electricity is increasing while production of energy from fossil fuels is declining and therefore the obvious choice of the clean energy source that is abundant and could provide security for development future is energy from the sun. In this paper, the characteristic of the supply voltage of the photovoltaic generator is nonlinear and exhibits multiple peaks, including many local peaks and a global peak in non-uniform irradiance. To keep global peak, MPPT is the important component of photovoltaic systems. Although many review articles discussed conventional techniques such as P & O, incremental conductance, the correlation ripple control and very few attempts have been made with intelligent MPPT techniques. This document also discusses different algorithms based on fuzzy logic, Ant Colony Optimization, Genetic Algorithm, artificial neural networks, Particle Swarm Optimization Algorithm Firefly, Extremum seeking control method and hybrid methods applied to the monitoring of maximum value of power at point in systems of photovoltaic under changing conditions of irradiance.
Full color modulation of firefly luciferase through engineering with unified Stark effect.
Cai, Duanjun; Marques, Miguel A L; Nogueira, Fernando
2013-11-07
The firefly luciferase has been a unique marking tool used in various bioimaging techniques. Extensive color modulation is strongly required to meet special marking demands; however, intentional and accurate wavelength tuning has yet to be achieved. Here, we demonstrate that the color shift of the firefly chromophore (OxyLH2-1) by internal and external fields can be described as a unified Stark shift. Electrostatic microenvironmental effects on fluorescent spectroscopy are modeled in vacuo through effective electric fields by using time-dependent density functional theory. A complete visible fluorescence spectrum of firefly chromophore is depicted, which enables one to control the emission in a specific color. As an application, the widely observed pH-correlated color shift is proved to be associated with the local Stark field generated by the trace water-ions (vicinal hydronium and hydroxide ions) at active sites close to the OxyLH2-1.
Sparse Learning with Stochastic Composite Optimization.
Zhang, Weizhong; Zhang, Lijun; Jin, Zhongming; Jin, Rong; Cai, Deng; Li, Xuelong; Liang, Ronghua; He, Xiaofei
2017-06-01
In this paper, we study Stochastic Composite Optimization (SCO) for sparse learning that aims to learn a sparse solution from a composite function. Most of the recent SCO algorithms have already reached the optimal expected convergence rate O(1/λT), but they often fail to deliver sparse solutions at the end either due to the limited sparsity regularization during stochastic optimization (SO) or due to the limitation in online-to-batch conversion. Even when the objective function is strongly convex, their high probability bounds can only attain O(√{log(1/δ)/T}) with δ is the failure probability, which is much worse than the expected convergence rate. To address these limitations, we propose a simple yet effective two-phase Stochastic Composite Optimization scheme by adding a novel powerful sparse online-to-batch conversion to the general Stochastic Optimization algorithms. We further develop three concrete algorithms, OptimalSL, LastSL and AverageSL, directly under our scheme to prove the effectiveness of the proposed scheme. Both the theoretical analysis and the experiment results show that our methods can really outperform the existing methods at the ability of sparse learning and at the meantime we can improve the high probability bound to approximately O(log(log(T)/δ)/λT).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qichun; Zhou, Jinglin; Wang, Hong
In this paper, stochastic coupling attenuation is investigated for a class of multi-variable bilinear stochastic systems and a novel output feedback m-block backstepping controller with linear estimator is designed, where gradient descent optimization is used to tune the design parameters of the controller. It has been shown that the trajectories of the closed-loop stochastic systems are bounded in probability sense and the stochastic coupling of the system outputs can be effectively attenuated by the proposed control algorithm. Moreover, the stability of the stochastic systems is analyzed and the effectiveness of the proposed method has been demonstrated using a simulated example.
Stochastic Routing and Scheduling Policies for Energy Harvesting Communication Networks
NASA Astrophysics Data System (ADS)
Calvo-Fullana, Miguel; Anton-Haro, Carles; Matamoros, Javier; Ribeiro, Alejandro
2018-07-01
In this paper, we study the joint routing-scheduling problem in energy harvesting communication networks. Our policies, which are based on stochastic subgradient methods on the dual domain, act as an energy harvesting variant of the stochastic family of backpresure algorithms. Specifically, we propose two policies: (i) the Stochastic Backpressure with Energy Harvesting (SBP-EH), in which a node's routing-scheduling decisions are determined by the difference between the Lagrange multipliers associated to their queue stability constraints and their neighbors'; and (ii) the Stochastic Soft Backpressure with Energy Harvesting (SSBP-EH), an improved algorithm where the routing-scheduling decision is of a probabilistic nature. For both policies, we show that given sustainable data and energy arrival rates, the stability of the data queues over all network nodes is guaranteed. Numerical results corroborate the stability guarantees and illustrate the minimal gap in performance that our policies offer with respect to classical ones which work with an unlimited energy supply.
Stochastic Multiscale Analysis and Design of Engine Disks
2010-07-28
shown recently to fail when used with data-driven non-linear stochastic input models (KPCA, IsoMap, etc.). Need for scalable exascale computing algorithms Materials Process Design and Control Laboratory Cornell University
A Stochastic-Variational Model for Soft Mumford-Shah Segmentation
2006-01-01
In contemporary image and vision analysis, stochastic approaches demonstrate great flexibility in representing and modeling complex phenomena, while variational-PDE methods gain enormous computational advantages over Monte Carlo or other stochastic algorithms. In combination, the two can lead to much more powerful novel models and efficient algorithms. In the current work, we propose a stochastic-variational model for soft (or fuzzy) Mumford-Shah segmentation of mixture image patterns. Unlike the classical hard Mumford-Shah segmentation, the new model allows each pixel to belong to each image pattern with some probability. Soft segmentation could lead to hard segmentation, and hence is more general. The modeling procedure, mathematical analysis on the existence of optimal solutions, and computational implementation of the new model are explored in detail, and numerical examples of both synthetic and natural images are presented. PMID:23165059
An improved swarm optimization for parameter estimation and biological model selection.
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data.
Bounded-Degree Approximations of Stochastic Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Christopher J.; Pinar, Ali; Kiyavash, Negar
2017-06-01
We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identifymore » the r-best approximations among these classes, enabling robust decision making.« less
Xiang, Suyun; Wang, Wei; Xia, Jia; Xiang, Bingren; Ouyang, Pingkai
2009-09-01
The stochastic resonance algorithm is applied to the trace analysis of alkyl halides and alkyl benzenes in water samples. Compared to encountering a single signal when applying the algorithm, the optimization of system parameters for a multicomponent is more complex. In this article, the resolution of adjacent chromatographic peaks is first involved in the optimization of parameters. With the optimized parameters, the algorithm gave an ideal output with good resolution as well as enhanced signal-to-noise ratio. Applying the enhanced signals, the method extended the limit of detection and exhibited good linearity, which ensures accurate determination of the multicomponent.
Parallel, stochastic measurement of molecular surface area.
Juba, Derek; Varshney, Amitabh
2008-08-01
Biochemists often wish to compute surface areas of proteins. A variety of algorithms have been developed for this task, but they are designed for traditional single-processor architectures. The current trend in computer hardware is towards increasingly parallel architectures for which these algorithms are not well suited. We describe a parallel, stochastic algorithm for molecular surface area computation that maps well to the emerging multi-core architectures. Our algorithm is also progressive, providing a rough estimate of surface area immediately and refining this estimate as time goes on. Furthermore, the algorithm generates points on the molecular surface which can be used for point-based rendering. We demonstrate a GPU implementation of our algorithm and show that it compares favorably with several existing molecular surface computation programs, giving fast estimates of the molecular surface area with good accuracy.
Stochastic Local Search for Core Membership Checking in Hedonic Games
NASA Astrophysics Data System (ADS)
Keinänen, Helena
Hedonic games have emerged as an important tool in economics and show promise as a useful formalism to model multi-agent coalition formation in AI as well as group formation in social networks. We consider a coNP-complete problem of core membership checking in hedonic coalition formation games. No previous algorithms to tackle the problem have been presented. In this work, we overcome this by developing two stochastic local search algorithms for core membership checking in hedonic games. We demonstrate the usefulness of the algorithms by showing experimentally that they find solutions efficiently, particularly for large agent societies.
Bayesian estimation of realized stochastic volatility model by Hybrid Monte Carlo algorithm
NASA Astrophysics Data System (ADS)
Takaishi, Tetsuya
2014-03-01
The hybrid Monte Carlo algorithm (HMCA) is applied for Bayesian parameter estimation of the realized stochastic volatility (RSV) model. Using the 2nd order minimum norm integrator (2MNI) for the molecular dynamics (MD) simulation in the HMCA, we find that the 2MNI is more efficient than the conventional leapfrog integrator. We also find that the autocorrelation time of the volatility variables sampled by the HMCA is very short. Thus it is concluded that the HMCA with the 2MNI is an efficient algorithm for parameter estimations of the RSV model.
Low Frequency Predictive Skill Despite Structural Instability and Model Error
2014-09-30
Majda, based on earlier theoretical work. 1. Dynamic Stochastic Superresolution of sparseley observed turbulent systems M. Branicki (Post doc...of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by...resolving subgridscale turbulence through Dynamic Stochastic Superresolution utilizing aliased grids is a potential breakthrough for practical online
Empirical method to measure stochasticity and multifractality in nonlinear time series
NASA Astrophysics Data System (ADS)
Lin, Chih-Hao; Chang, Chia-Seng; Li, Sai-Ping
2013-12-01
An empirical algorithm is used here to study the stochastic and multifractal nature of nonlinear time series. A parameter can be defined to quantitatively measure the deviation of the time series from a Wiener process so that the stochasticity of different time series can be compared. The local volatility of the time series under study can be constructed using this algorithm, and the multifractal structure of the time series can be analyzed by using this local volatility. As an example, we employ this method to analyze financial time series from different stock markets. The result shows that while developed markets evolve very much like an Ito process, the emergent markets are far from efficient. Differences about the multifractal structures and leverage effects between developed and emergent markets are discussed. The algorithm used here can be applied in a similar fashion to study time series of other complex systems.
FIREFLY: A cubesat mission to study terrestrial gamma-ray flashes
NASA Astrophysics Data System (ADS)
Klenzing, J. H.; Rowland, D. E.; Hill, J.; Weatherwax, A. T.
2009-12-01
FIREFLY is small satellite mission to investigate the link between atmospheric lightning and terrestrial gamma-ray flashes scheduled to launch in late 2010. The instrumentation includes a Gamma-Ray Detector (GRD), VLF receiver, and photometer. GRD will measure the energy and arrival time of x-ray and gamma-ray photons, as well as the energetic electron flux by using a phoswitch-style layered scintillator. The current status of the instrumentation will be discussed, including laboratory tests and simulations of the GRD. FIREFLY is the second in a series of NSF-funded cubesats designed to study the upper atmosphere.
Stanger-Hall, Kathrin F; Lloyd, James E
2015-03-01
Animal communication is an intriguing topic in evolutionary biology. In this comprehensive study of visual signal evolution, we used a phylogenetic approach to study the evolution of the flash communication system of North American fireflies. The North American firefly genus Photinus contains 35 described species with simple ON-OFF visual signals, and information on habitat types, sympatric congeners, and predators. This makes them an ideal study system to test hypotheses on the evolution of male and female visual signal traits. Our analysis of 34 Photinus species suggests two temporal pattern generators: one for flash duration and one for flash intervals. Reproductive character displacement was a main factor for signal divergence in male flash duration among sympatric Photinus species. Male flash pattern intervals (i.e., the duration of the dark periods between signals) were positively correlated with the number of sympatric Photuris fireflies, which include predators of Photinus. Females of different Photinus species differ in their response preferences to male traits. As in other communication systems, firefly male sexual signals seem to be a compromise between optimizing mating success (sexual selection) and minimizing predation risk (natural selection). An integrative model for Photinus signal evolution is proposed. © 2015 The Author(s).
Al-Wathiqui, Nooria; Fallon, Timothy R; South, Adam; Weng, Jing-Ke; Lewis, Sara M
2016-12-22
Postcopulatory sexual selection is recognized as a key driver of reproductive trait evolution, including the machinery required to produce endogenous nuptial gifts. Despite the importance of such gifts, the molecular composition of the non-gametic components of male ejaculates and their interactions with female reproductive tracts remain poorly understood. During mating, male Photinus fireflies transfer to females a spermatophore gift manufactured by multiple reproductive glands. Here we combined transcriptomics of both male and female reproductive glands with proteomics and metabolomics to better understand the synthesis, composition and fate of the spermatophore in the common Eastern firefly, Photinus pyralis. Our transcriptome of male glands revealed up-regulation of proteases that may enhance male fertilization success and activate female immune response. Using bottom-up proteomics we identified 208 functionally annotated proteins that males transfer to the female in their spermatophore. Targeted metabolomic analysis also provided the first evidence that Photinus nuptial gifts contain lucibufagin, a firefly defensive toxin. The reproductive tracts of female fireflies showed increased gene expression for several proteases that may be involved in egg production. This study offers new insights into the molecular composition of male spermatophores, and extends our understanding of how nuptial gifts may mediate postcopulatory interactions between the sexes.
Bessho-Uehara, Manabu; Oba, Yuichi
2017-09-01
Nocturnal Japanese fireflies, Luciola parvula, emit from their lanterns a yellow light, one of the most red-shifted colors found among fireflies. Previously, we isolated and characterized two different types of luciferase gene, Luc1 and Luc2, from the fireflies Luciola cruciata and Luciola lateralis; Luc1 is responsible for the green-yellow luminescence of larval and adult lanterns, whereas Luc2 is responsible for the dim greenish glow of eggs and pupal bodies. The biological role of firefly lanterns in adults is related to sexual communication, but why the eggs and pupae glow remains uncertain. In this study, we isolated the gene Luc2 from L. parvula, and compared its expression profiles and enzymatic characteristics with those of Luc1. A semi-quantitative reverse transcription polymerase chain reaction showed that Luc1 was predominantly expressed in larvae, prepupae, pupae and adults, whereas Luc2 was expressed in eggs, prepupae, pupae and adult females. Enzymatic analyses showed that the luminescent color of Luc1 matches the visual sensitivity of L. parvula eyes, whereas that of Luc2 is very different from it. These results suggest that the biological role of Luc2 expressed in immobile stages is not intraspecific communication. Copyright © 2017 John Wiley & Sons, Ltd.
Maeda, Juri; Kato, Dai-Ichiro; Okuda, Masatoshi; Takeo, Masahiro; Negoro, Seiji; Arima, Kazunari; Ito, Yuji; Niwa, Kazuki
2017-08-01
Due to the strict enantioselectivity of firefly luciferase, only d-luciferin can be used as a substrate for bioluminescence reactions. Unfortunately, luciferin racemizes easily and accumulation of nonluminous l-luciferin has negative influences on the light emitting reaction. Thus, maintaining the enantiopurity of luciferin in the reaction mixture is one of the most important demands in bioluminescence applications using firefly luciferase. In fireflies, however, l-luciferin is the biosynthetic precursor of d-luciferin, which is produced from the L-form undergoing deracemization. This deracemization consists of three successive reactions: l-enantioselective thioesterification by luciferase, in situ epimerization, and hydrolysis by thioesterase. In this work, we introduce a deracemizative luminescence system inspired by the biosynthetic pathway of d-luciferin using a combination of firefly luciferase from Luciola cruciata (LUC-G) and fatty acyl-CoA thioesterase II from Escherichia coli (TESB). The enzymatic reaction property analysis indicated the importance of the concentration balance between LUC-G and TESB for efficient d-luciferin production and light emission. Using this deracemizative luminescence system, a highly sensitive quantitative analysis method for l-cysteine was constructed. This LUC-G-TESB combination system can improve bioanalysis applications using the firefly bioluminescence reaction by efficient deracemization of D-luciferin. Copyright © 2017 Elsevier B.V. All rights reserved.
Aguiar, J; Santurlidis, S; Nowok, J; Alexander, C; Rudnicki, D; Gispert, S; Schulz, W; Auburger, G
1999-01-19
In order to further use the spinocerebellar ataxia 2 (SCA2) promoter for transgenic mice models of "CAG repeat" neurodegeneration, different fragments of this 5' end were ligated into pGL3-Luc plasmid to obtain the better promoter-activity of the physiological promoter for SCA2. Base-par composition of the SCA2-5' region, and promoter prediction algorithms such as TSSW and TSSG, together with the high firefly luciferase expression after 48 hours of transient transfection in mammalian cells lines, showed a typical CpG island for promoter-activity. The promoter activity was specifically localized into the exon 1 of the SCA2 gene. The higher expression of firefly luciferase in the embryonal F9 cells by the use of SCA2 promoter, rather than by the use of CMV promoter may be related with the origin of the nonmethylated CpG island during the early embryogenesis. Analysis of the 5' region from HD gene revealed to a CpG island, which could be containing the physiological promoter for this gene. Copyright 1999 Academic Press.
NASA Technical Reports Server (NTRS)
Parrish, R. V.; Dieudonne, J. E.; Filippas, T. A.
1971-01-01
An algorithm employing a modified sequential random perturbation, or creeping random search, was applied to the problem of optimizing the parameters of a high-energy beam transport system. The stochastic solution of the mathematical model for first-order magnetic-field expansion allows the inclusion of state-variable constraints, and the inclusion of parameter constraints allowed by the method of algorithm application eliminates the possibility of infeasible solutions. The mathematical model and the algorithm were programmed for a real-time simulation facility; thus, two important features are provided to the beam designer: (1) a strong degree of man-machine communication (even to the extent of bypassing the algorithm and applying analog-matching techniques), and (2) extensive graphics for displaying information concerning both algorithm operation and transport-system behavior. Chromatic aberration was also included in the mathematical model and in the optimization process. Results presented show this method as yielding better solutions (in terms of resolutions) to the particular problem than those of a standard analog program as well as demonstrating flexibility, in terms of elements, constraints, and chromatic aberration, allowed by user interaction with both the algorithm and the stochastic model. Example of slit usage and a limited comparison of predicted results and actual results obtained with a 600 MeV cyclotron are given.
NASA Astrophysics Data System (ADS)
Ramos, José A.; Mercère, Guillaume
2016-12-01
In this paper, we present an algorithm for identifying two-dimensional (2D) causal, recursive and separable-in-denominator (CRSD) state-space models in the Roesser form with deterministic-stochastic inputs. The algorithm implements the N4SID, PO-MOESP and CCA methods, which are well known in the literature on 1D system identification, but here we do so for the 2D CRSD Roesser model. The algorithm solves the 2D system identification problem by maintaining the constraint structure imposed by the problem (i.e. Toeplitz and Hankel) and computes the horizontal and vertical system orders, system parameter matrices and covariance matrices of a 2D CRSD Roesser model. From a computational point of view, the algorithm has been presented in a unified framework, where the user can select which of the three methods to use. Furthermore, the identification task is divided into three main parts: (1) computing the deterministic horizontal model parameters, (2) computing the deterministic vertical model parameters and (3) computing the stochastic components. Specific attention has been paid to the computation of a stabilised Kalman gain matrix and a positive real solution when required. The efficiency and robustness of the unified algorithm have been demonstrated via a thorough simulation example.
Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks
Vestergaard, Christian L.; Génois, Mathieu
2015-01-01
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling. PMID:26517860
Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks.
Vestergaard, Christian L; Génois, Mathieu
2015-10-01
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.
Wallace, Meredith L; Anderson, Stewart J; Mazumdar, Sati
2010-12-20
Missing covariate data present a challenge to tree-structured methodology due to the fact that a single tree model, as opposed to an estimated parameter value, may be desired for use in a clinical setting. To address this problem, we suggest a multiple imputation algorithm that adds draws of stochastic error to a tree-based single imputation method presented by Conversano and Siciliano (Technical Report, University of Naples, 2003). Unlike previously proposed techniques for accommodating missing covariate data in tree-structured analyses, our methodology allows the modeling of complex and nonlinear covariate structures while still resulting in a single tree model. We perform a simulation study to evaluate our stochastic multiple imputation algorithm when covariate data are missing at random and compare it to other currently used methods. Our algorithm is advantageous for identifying the true underlying covariate structure when complex data and larger percentages of missing covariate observations are present. It is competitive with other current methods with respect to prediction accuracy. To illustrate our algorithm, we create a tree-structured survival model for predicting time to treatment response in older, depressed adults. Copyright © 2010 John Wiley & Sons, Ltd.
Hands-on Science. How Fireflies Communicate.
ERIC Educational Resources Information Center
Kepler, Lynne
1995-01-01
One creative way that elementary science educators can teach their students about animal communication is to give them glow sticks and a set of cards with descriptions of what different firefly flash signals mean. The paper describes such a project and presents related activities. (SM)
Control of Finite-State, Finite Memory Stochastic Systems
NASA Technical Reports Server (NTRS)
Sandell, Nils R.
1974-01-01
A generalized problem of stochastic control is discussed in which multiple controllers with different data bases are present. The vehicle for the investigation is the finite state, finite memory (FSFM) stochastic control problem. Optimality conditions are obtained by deriving an equivalent deterministic optimal control problem. A FSFM minimum principle is obtained via the equivalent deterministic problem. The minimum principle suggests the development of a numerical optimization algorithm, the min-H algorithm. The relationship between the sufficiency of the minimum principle and the informational properties of the problem are investigated. A problem of hypothesis testing with 1-bit memory is investigated to illustrate the application of control theoretic techniques to information processing problems.
Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics.
Strehl, Robert; Ilie, Silvana
2015-12-21
In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated on three benchmarking systems, with special focus on approximation accuracy and efficiency.
Stochastic modelling of turbulent combustion for design optimization of gas turbine combustors
NASA Astrophysics Data System (ADS)
Mehanna Ismail, Mohammed Ali
The present work covers the development and the implementation of an efficient algorithm for the design optimization of gas turbine combustors. The purpose is to explore the possibilities and indicate constructive suggestions for optimization techniques as alternative methods for designing gas turbine combustors. The algorithm is general to the extent that no constraints are imposed on the combustion phenomena or on the combustor configuration. The optimization problem is broken down into two elementary problems: the first is the optimum search algorithm, and the second is the turbulent combustion model used to determine the combustor performance parameters. These performance parameters constitute the objective and physical constraints in the optimization problem formulation. The examination of both turbulent combustion phenomena and the gas turbine design process suggests that the turbulent combustion model represents a crucial part of the optimization algorithm. The basic requirements needed for a turbulent combustion model to be successfully used in a practical optimization algorithm are discussed. In principle, the combustion model should comply with the conflicting requirements of high fidelity, robustness and computational efficiency. To that end, the problem of turbulent combustion is discussed and the current state of the art of turbulent combustion modelling is reviewed. According to this review, turbulent combustion models based on the composition PDF transport equation are found to be good candidates for application in the present context. However, these models are computationally expensive. To overcome this difficulty, two different models based on the composition PDF transport equation were developed: an improved Lagrangian Monte Carlo composition PDF algorithm and the generalized stochastic reactor model. Improvements in the Lagrangian Monte Carlo composition PDF model performance and its computational efficiency were achieved through the implementation of time splitting, variable stochastic fluid particle mass control, and a second order time accurate (predictor-corrector) scheme used for solving the stochastic differential equations governing the particles evolution. The model compared well against experimental data found in the literature for two different configurations: bluff body and swirl stabilized combustors. The generalized stochastic reactor is a newly developed model. This model relies on the generalization of the concept of the classical stochastic reactor theory in the sense that it accounts for both finite micro- and macro-mixing processes. (Abstract shortened by UMI.)
Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
Salis, Howard; Kaznessis, Yiannis
2005-02-01
The dynamical solution of a well-mixed, nonlinear stochastic chemical kinetic system, described by the Master equation, may be exactly computed using the stochastic simulation algorithm. However, because the computational cost scales with the number of reaction occurrences, systems with one or more "fast" reactions become costly to simulate. This paper describes a hybrid stochastic method that partitions the system into subsets of fast and slow reactions, approximates the fast reactions as a continuous Markov process, using a chemical Langevin equation, and accurately describes the slow dynamics using the integral form of the "Next Reaction" variant of the stochastic simulation algorithm. The key innovation of this method is its mechanism of efficiently monitoring the occurrences of slow, discrete events while simultaneously simulating the dynamics of a continuous, stochastic or deterministic process. In addition, by introducing an approximation in which multiple slow reactions may occur within a time step of the numerical integration of the chemical Langevin equation, the hybrid stochastic method performs much faster with only a marginal decrease in accuracy. Multiple examples, including a biological pulse generator and a large-scale system benchmark, are simulated using the exact and proposed hybrid methods as well as, for comparison, a previous hybrid stochastic method. Probability distributions of the solutions are compared and the weak errors of the first two moments are computed. In general, these hybrid methods may be applied to the simulation of the dynamics of a system described by stochastic differential, ordinary differential, and Master equations.
Viviani, Vadim R; Amaral, Danilo; Prado, Rogilene; Arnoldi, Frederico G C
2011-12-01
Firefly luciferases usually produce bioluminescence in the yellow-green region, with colors in the green and yellow-orange extremes of the spectrum being less common. Several firefly luciferases have already been cloned and sequenced, and site-directed mutagenesis studies have already identified important regions and residues for bioluminescence colors. However the structural determinants and mechanisms of bioluminescence colors turned out to be elusive, mainly when comparing luciferases with a high degree of divergence. Thus comparison of more similar luciferases producing colors in the two extremes of the spectrum could be revealing. The South-American fauna of fireflies remains largely unstudied, with some unique taxa that are not found anywhere else in the world and that produce a wide range of bioluminescence colors. Among them, fireflies of the genus Amydetes are especially interesting because its taxonomical status as an independent subfamily or as a tribe is not yet solved, and because they usually produce a continuous bright blue-shifted bioluminescence. In this work we cloned the cDNA for the luciferase of the Atlantic rain forest Amydetes fanestratus firefly, which is found near Sorocaba municipality (São Paulo, Brazil). Despite showing a higher degree of identity with the South-American Cratomorphus, the European Lampyris and the Asiatic Pyrocoelia, phylogenetical analysis of the luciferase sequence support the inclusion of Amydetes as an independent subfamily. Amydetes luciferase displays one of the most blue-shifted emission spectra (λ(max) = 538 nm) among beetle luciferases, with lower pH-sensitivity and higher affinity for ATP when compared to other luciferases, making this luciferase attractive for sensitive ATP and reporter assays.
Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arampatzis, Georgios, E-mail: garab@math.uoc.gr; Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003; Katsoulakis, Markos A., E-mail: markos@math.umass.edu
2014-03-28
In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo (KMC). Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-“coupled”- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that themore » new coupled process depends on the targeted observables, e.g., coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore, the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz–Kalos–Lebowitz algorithm's philosophy, where events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption, and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach. We also provide a complete implementation of the proposed sensitivity analysis algorithms, including various spatial KMC examples, in a supplementary MATLAB source code.« less
Control of Complex Dynamic Systems by Neural Networks
NASA Technical Reports Server (NTRS)
Spall, James C.; Cristion, John A.
1993-01-01
This paper considers the use of neural networks (NN's) in controlling a nonlinear, stochastic system with unknown process equations. The NN is used to model the resulting unknown control law. The approach here is based on using the output error of the system to train the NN controller without the need to construct a separate model (NN or other type) for the unknown process dynamics. To implement such a direct adaptive control approach, it is required that connection weights in the NN be estimated while the system is being controlled. As a result of the feedback of the unknown process dynamics, however, it is not possible to determine the gradient of the loss function for use in standard (back-propagation-type) weight estimation algorithms. Therefore, this paper considers the use of a new stochastic approximation algorithm for this weight estimation, which is based on a 'simultaneous perturbation' gradient approximation that only requires the system output error. It is shown that this algorithm can greatly enhance the efficiency over more standard stochastic approximation algorithms based on finite-difference gradient approximations.
Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.
Caglar, Mehmet Umut; Pal, Ranadip
2013-01-01
Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.
Mariano-Goulart, D; Fourcade, M; Bernon, J L; Rossi, M; Zanca, M
2003-01-01
Thanks to an experimental study based on simulated and physical phantoms, the propagation of the stochastic noise in slices reconstructed using the conjugate gradient algorithm has been analysed versus iterations. After a first increase corresponding to the reconstruction of the signal, the noise stabilises before increasing linearly with iterations. The level of the plateau as well as the slope of the subsequent linear increase depends on the noise in the projection data.
Stochastic search in structural optimization - Genetic algorithms and simulated annealing
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1993-01-01
An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.
Comparison of penalty functions on a penalty approach to mixed-integer optimization
NASA Astrophysics Data System (ADS)
Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.
2016-06-01
In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.
FIREFLY LUCIFERASE ATP ASSAY DEVELOPMENT FOR MONITORING BACTERIAL CONCENTRATIONS IN WATER SUPPLIES
This research program was initiated to develop a rapid, automatable system for measuring total viable microorganisms in potable drinking water supplies using the firefly luciferase ATP assay. The assay was adapted to an automatable flow system that provided comparable sensitivity...
Hirano, Takashi
2016-01-01
Firefly shows bioluminescence by "luciferin-luciferase" (L-L) reaction using luciferin, luciferase, ATP and O2. The chemical photon generation by an enzymatic reaction is widely utilized for analytical methods including biological imaging in the life science fields. To expand photondetecting analyses with firefly bioluminescence, it is important for users to understand the chemical basis of the L-L reaction. In particular, the emission color variation of the L-L reaction is one of the distinguishing characteristics for multicolor luciferase assay and in vivo imaging. From the viewpoint of fundamental chemistry, this review explains the recent progress in the studies on the molecular mechanism of emission color variation after showing the outline of the reaction mechanism of the whole L-L reaction. On the basis of the mechanism, the progresses in organic synthesis of luciferin analogs modulating their emission colors are also presented to support further developments of red/near infrared in vivo biological imaging utility of firefly bioluminescence.
NASA Astrophysics Data System (ADS)
Wang, Yu; Akiyama, Hidefumi; Terakado, Kanako; Nakatsu, Toru
2013-08-01
Firefly bioluminescence has attracted great interest because of its high quantum yield and intriguing modifiable colours. Modifications to the structure of the enzyme luciferase can change the emission colour of firefly bioluminescence, and the mechanism of the colour change has been intensively studied by biochemists, structural biologists, optical physicists, and quantum-chemistry theorists. Here, we report on the quantitative spectra of firefly bioluminescence catalysed by wild-type and four site-directed mutant luciferases. While the mutation caused different emission spectra, the spectra differed only in the intensity of the green component (λmax ~ 560 nm). In contrast, the orange (λmax ~ 610 nm) and red (λmax ~ 650 nm) components present in all the spectra were almost unaffected by the modifications to the luciferases and changes in pH. Our results reveal that the intensity of the green component is the unique factor that is influenced by the luciferase structure and other reaction conditions.
Optimisation in radiotherapy. III: Stochastic optimisation algorithms and conclusions.
Ebert, M
1997-12-01
This is the final article in a three part examination of optimisation in radiotherapy. Previous articles have established the bases and form of the radiotherapy optimisation problem, and examined certain types of optimisation algorithm, namely, those which perform some form of ordered search of the solution space (mathematical programming), and those which attempt to find the closest feasible solution to the inverse planning problem (deterministic inversion). The current paper examines algorithms which search the space of possible irradiation strategies by stochastic methods. The resulting iterative search methods move about the solution space by sampling random variates, which gradually become more constricted as the algorithm converges upon the optimal solution. This paper also discusses the implementation of optimisation in radiotherapy practice.
Phase-Space Transport of Stochastic Chaos in Population Dynamics of Virus Spread
NASA Astrophysics Data System (ADS)
Billings, Lora; Bollt, Erik M.; Schwartz, Ira B.
2002-06-01
A general way to classify stochastic chaos is presented and applied to population dynamics models. A stochastic dynamical theory is used to develop an algorithmic tool to measure the transport across basin boundaries and predict the most probable regions of transport created by noise. The results of this tool are illustrated on a model of virus spread in a large population, where transport regions reveal how noise completes the necessary manifold intersections for the creation of emerging stochastic chaos.
Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays
NASA Astrophysics Data System (ADS)
Thanh, Vo Hong; Priami, Corrado; Zunino, Roberto
2014-10-01
We propose a new exact stochastic rejection-based simulation algorithm for biochemical reactions and extend it to systems with delays. Our algorithm accelerates the simulation by pre-computing reaction propensity bounds to select the next reaction to perform. Exploiting such bounds, we are able to avoid recomputing propensities every time a (delayed) reaction is initiated or finished, as is typically necessary in standard approaches. Propensity updates in our approach are still performed, but only infrequently and limited for a small number of reactions, saving computation time and without sacrificing exactness. We evaluate the performance improvement of our algorithm by experimenting with concrete biological models.
Orio, Patricio; Soudry, Daniel
2012-01-01
Background The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled gating particles, while the DA was modeled using uncoupled gating particles. Implementations of DA with coupled particles, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. Main Contributions We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable – allowing an easy, transparent and efficient DA implementation, avoiding unnecessary approximations. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods, except when short time steps or low channel numbers were used. PMID:22629320
Tafreshi, Narges Kh; Sadeghizadeh, Majid; Emamzadeh, Rahman; Ranjbar, Bijan; Naderi-Manesh, Hossein; Hosseinkhani, Saman
2008-05-15
The bioluminescence colours of firefly luciferases are determined by assay conditions and luciferase structure. Owing to red light having lower energy than green light and being less absorbed by biological tissues, red-emitting luciferases have been considered as useful reporters in imaging technology. A set of red-emitting mutants of Lampyris turkestanicus (Iranian firefly) luciferase has been made by site-directed mutagenesis. Among different beetle luciferases, those from Phrixothrix (railroad worm) emit either green or red bioluminescence colours naturally. By substitution of three specific amino acids using site-specific mutagenesis in a green-emitting luciferase (from L. turkestanicus), the colour of emitted light was changed to red concomitant with decreasing decay rate. Different specific mutations (H245N, S284T and H431Y) led to changes in the bioluminescence colour. Meanwhile, the luciferase reaction took place with relative retention of its basic kinetic properties such as K(m) and relative activity. Structural comparison of the native and mutant luciferases using intrinsic fluorescence, far-UV CD spectra and homology modelling revealed a significant conformational change in mutant forms. A change in the colour of emitted light indicates the critical role of these conserved residues in bioluminescence colour determination among firefly luciferases. Relatively high specific activity and emission of red light might make these mutants suitable as reporters for the study of gene expression and bioluminescence imaging.
Bessho-Uehara, Manabu; Konishi, Kaori; Oba, Yuichi
2017-08-09
Two paralogous genes of firefly luciferase, Luc1 and Luc2, have been isolated from the species in two subfamilies, Luciolinae and Photurinae, of the family Lampyridae. The gene expression profiles have previously been examined only in the species of Luciolinae. Here we isolated Luc1 and Luc2 genes from the Japanese firefly Pyrocoelia atripennis. This is the first report of the presence of both Luc1 and Luc2 genes in the species of the subfamily Lampyrinae and of the exon-intron structure of Luc2 in the family Lampyridae. The luminescence of both gene products peaked at 547 nm under neutral buffer conditions, and the spectrum of Luc1, but not Luc2, was red-shifted under acidic conditions, as observed for Luc2 in the Luciolinae species. The semi-quantitative reverse transcription-polymerase chain reaction suggested that Luc1 was expressed in lanterns of all the stages except eggs, while Luc2 was expressed in the non-lantern bodies of eggs, prepupae, pupae, and female adults. These expression profiles are consistent with those in the Luciolinae species. Considering the distant phylogenetic relationship between Lampyrinae and Luciolinae in Lampyridae, we propose that fireflies generally possess two different luciferase genes and the biochemical properties and gene expression profiles for each paralog are conserved among lampyrid species.
Hybrid stochastic simulations of intracellular reaction-diffusion systems.
Kalantzis, Georgios
2009-06-01
With the observation that stochasticity is important in biological systems, chemical kinetics have begun to receive wider interest. While the use of Monte Carlo discrete event simulations most accurately capture the variability of molecular species, they become computationally costly for complex reaction-diffusion systems with large populations of molecules. On the other hand, continuous time models are computationally efficient but they fail to capture any variability in the molecular species. In this study a hybrid stochastic approach is introduced for simulating reaction-diffusion systems. We developed an adaptive partitioning strategy in which processes with high frequency are simulated with deterministic rate-based equations, and those with low frequency using the exact stochastic algorithm of Gillespie. Therefore the stochastic behavior of cellular pathways is preserved while being able to apply it to large populations of molecules. We describe our method and demonstrate its accuracy and efficiency compared with the Gillespie algorithm for two different systems. First, a model of intracellular viral kinetics with two steady states and second, a compartmental model of the postsynaptic spine head for studying the dynamics of Ca+2 and NMDA receptors.
Multi-fidelity stochastic collocation method for computation of statistical moments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xueyu, E-mail: xueyu-zhu@uiowa.edu; Linebarger, Erin M., E-mail: aerinline@sci.utah.edu; Xiu, Dongbin, E-mail: xiu.16@osu.edu
We present an efficient numerical algorithm to approximate the statistical moments of stochastic problems, in the presence of models with different fidelities. The method extends the multi-fidelity approximation method developed in . By combining the efficiency of low-fidelity models and the accuracy of high-fidelity models, our method exhibits fast convergence with a limited number of high-fidelity simulations. We establish an error bound of the method and present several numerical examples to demonstrate the efficiency and applicability of the multi-fidelity algorithm.
Integration of progressive hedging and dual decomposition in stochastic integer programs
Watson, Jean -Paul; Guo, Ge; Hackebeil, Gabriel; ...
2015-04-07
We present a method for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition (DD) algorithm of Carøe and Schultz for stochastic mixed-integer programs. Based on the correspondence between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact solution. As a result, we report computational results on server location and unit commitment instances.
The Stochastic Evolution of a Protocell: The Gillespie Algorithm in a Dynamically Varying Volume
Carletti, T.; Filisetti, A.
2012-01-01
We propose an improvement of the Gillespie algorithm allowing us to study the time evolution of an ensemble of chemical reactions occurring in a varying volume, whose growth is directly related to the amount of some specific molecules, belonging to the reactions set. This allows us to study the stochastic evolution of a protocell, whose volume increases because of the production of container molecules. Several protocell models are considered and compared with the deterministic models. PMID:22536297
An adaptive multi-level simulation algorithm for stochastic biological systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.
2015-01-14
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the efficiency of our method using a number of examples.« less
Stochastic Semidefinite Programming: Applications and Algorithms
2012-03-03
doi: 2011/09/07 13:38:21 13 TOTAL: 1 Number of Papers published in non peer-reviewed journals: Baha M. Alzalg and K. A. Ariyawansa, Stochastic...symmetric programming over integers. International Conference on Scientific Computing, Las Vegas, Nevada, July 18--21, 2011. Baha M. Alzalg. On recent...Proceeding publications (other than abstracts): PaperReceived Baha M. Alzalg, K. A. Ariyawansa. Stochastic mixed integer second-order cone programming
Methods for High-Order Multi-Scale and Stochastic Problems Analysis, Algorithms, and Applications
2016-10-17
finite volume schemes, discontinuous Galerkin finite element method, and related methods, for solving computational fluid dynamics (CFD) problems and...approximation for finite element methods. (3) The development of methods of simulation and analysis for the study of large scale stochastic systems of...laws, finite element method, Bernstein-Bezier finite elements , weakly interacting particle systems, accelerated Monte Carlo, stochastic networks 16
A global optimization algorithm inspired in the behavior of selfish herds.
Fausto, Fernando; Cuevas, Erik; Valdivia, Arturo; González, Adrián
2017-10-01
In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Zhou, Ying; Gall, Walter; Nabb, Karen Mayumi
2006-01-01
"Imagine a tenth of a mile of river front with an unbroken line of trees with fireflies on ever leaf flashing in synchronism. ... Then, if one's imagination is sufficiently vivid, he may form some conception of this amazing spectacle." So wrote the naturalist Hugh Smith. In this article we consider how one might model mathematically the…
DOT National Transportation Integrated Search
2016-10-01
This research report contains the findings of the analysis undertaken to measure the economic impact of the proposed Firefly Trail on the local economy. An input-output model was constructed to study the economic impact of the project on the local ec...
Histone Methylation and Epigenetic Silencing in Breast Cancer
2010-07-01
bars show relative luciferase expression levels (firefly versus Renilla control) in SKBR3 cells treated with a control non-targeted dsRNA (NT2) and red...luciferase expression levels (firefly versus Renilla control) in SKBR3 cells treated with a control non-targeted dsRNA (NT2) and red bars depict
Hybrid stochastic simulation of reaction-diffusion systems with slow and fast dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strehl, Robert; Ilie, Silvana, E-mail: silvana@ryerson.ca
2015-12-21
In this paper, we present a novel hybrid method to simulate discrete stochastic reaction-diffusion models arising in biochemical signaling pathways. We study moderately stiff systems, for which we can partition each reaction or diffusion channel into either a slow or fast subset, based on its propensity. Numerical approaches missing this distinction are often limited with respect to computational run time or approximation quality. We design an approximate scheme that remedies these pitfalls by using a new blending strategy of the well-established inhomogeneous stochastic simulation algorithm and the tau-leaping simulation method. The advantages of our hybrid simulation algorithm are demonstrated onmore » three benchmarking systems, with special focus on approximation accuracy and efficiency.« less
Hussain, Faraz; Jha, Sumit K; Jha, Susmit; Langmead, Christopher J
2014-01-01
Stochastic models are increasingly used to study the behaviour of biochemical systems. While the structure of such models is often readily available from first principles, unknown quantitative features of the model are incorporated into the model as parameters. Algorithmic discovery of parameter values from experimentally observed facts remains a challenge for the computational systems biology community. We present a new parameter discovery algorithm that uses simulated annealing, sequential hypothesis testing, and statistical model checking to learn the parameters in a stochastic model. We apply our technique to a model of glucose and insulin metabolism used for in-silico validation of artificial pancreata and demonstrate its effectiveness by developing parallel CUDA-based implementation for parameter synthesis in this model.
A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition
Sánchez, Daniela; Melin, Patricia
2017-01-01
A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition. PMID:28894461
A Grey Wolf Optimizer for Modular Granular Neural Networks for Human Recognition.
Sánchez, Daniela; Melin, Patricia; Castillo, Oscar
2017-01-01
A grey wolf optimizer for modular neural network (MNN) with a granular approach is proposed. The proposed method performs optimal granulation of data and design of modular neural networks architectures to perform human recognition, and to prove its effectiveness benchmark databases of ear, iris, and face biometric measures are used to perform tests and comparisons against other works. The design of a modular granular neural network (MGNN) consists in finding optimal parameters of its architecture; these parameters are the number of subgranules, percentage of data for the training phase, learning algorithm, goal error, number of hidden layers, and their number of neurons. Nowadays, there is a great variety of approaches and new techniques within the evolutionary computing area, and these approaches and techniques have emerged to help find optimal solutions to problems or models and bioinspired algorithms are part of this area. In this work a grey wolf optimizer is proposed for the design of modular granular neural networks, and the results are compared against a genetic algorithm and a firefly algorithm in order to know which of these techniques provides better results when applied to human recognition.
Improvement in detection of small wildfires
NASA Astrophysics Data System (ADS)
Sleigh, William J.
1991-12-01
Detecting and imaging small wildfires with an Airborne Scanner is done against generally high background levels. The Airborne Scanner System used is a two-channel thermal IR scanner, with one channel selected for imaging the terrain and the other channel sensitive to hotter targets. If a relationship can be determined between the two channels that quantifies the background signal for hotter targets, then an algorithm can be determined that removes the background signal in that channel leaving only the fire signal. The relationship can be determined anywhere between various points in the signal processing of the radiometric data from the radiometric input to the quantized output of the system. As long as only linear operations are performed on the signal, the relationship will only depend on the system gain and offsets within the range of interest. The algorithm can be implemented either by using a look-up table or performing the calculation in the system computer. The current presentation will describe the algorithm, its derivation, and its implementation in the Firefly Wildfire Detection System by means of an off-the-shelf commercial scanner. Improvement over the previous algorithm used and the margin gained for improving the imaging of the terrain will be demonstrated.
Improvement in detection of small wildfires
NASA Technical Reports Server (NTRS)
Sleigh, William J.
1991-01-01
Detecting and imaging small wildfires with an Airborne Scanner is done against generally high background levels. The Airborne Scanner System used is a two-channel thermal IR scanner, with one channel selected for imaging the terrain and the other channel sensitive to hotter targets. If a relationship can be determined between the two channels that quantifies the background signal for hotter targets, then an algorithm can be determined that removes the background signal in that channel leaving only the fire signal. The relationship can be determined anywhere between various points in the signal processing of the radiometric data from the radiometric input to the quantized output of the system. As long as only linear operations are performed on the signal, the relationship will only depend on the system gain and offsets within the range of interest. The algorithm can be implemented either by using a look-up table or performing the calculation in the system computer. The current presentation will describe the algorithm, its derivation, and its implementation in the Firefly Wildfire Detection System by means of an off-the-shelf commercial scanner. Improvement over the previous algorithm used and the margin gained for improving the imaging of the terrain will be demonstrated.
Klein, Daniel J.; Baym, Michael; Eckhoff, Philip
2014-01-01
Decision makers in epidemiology and other disciplines are faced with the daunting challenge of designing interventions that will be successful with high probability and robust against a multitude of uncertainties. To facilitate the decision making process in the context of a goal-oriented objective (e.g., eradicate polio by ), stochastic models can be used to map the probability of achieving the goal as a function of parameters. Each run of a stochastic model can be viewed as a Bernoulli trial in which “success” is returned if and only if the goal is achieved in simulation. However, each run can take a significant amount of time to complete, and many replicates are required to characterize each point in parameter space, so specialized algorithms are required to locate desirable interventions. To address this need, we present the Separatrix Algorithm, which strategically locates parameter combinations that are expected to achieve the goal with a user-specified probability of success (e.g. 95%). Technically, the algorithm iteratively combines density-corrected binary kernel regression with a novel information-gathering experiment design to produce results that are asymptotically correct and work well in practice. The Separatrix Algorithm is demonstrated on several test problems, and on a detailed individual-based simulation of malaria. PMID:25078087
NASA Astrophysics Data System (ADS)
Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.
2016-12-01
This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.
NASA Astrophysics Data System (ADS)
Moslemipour, Ghorbanali
2018-07-01
This paper aims at proposing a quadratic assignment-based mathematical model to deal with the stochastic dynamic facility layout problem. In this problem, product demands are assumed to be dependent normally distributed random variables with known probability density function and covariance that change from period to period at random. To solve the proposed model, a novel hybrid intelligent algorithm is proposed by combining the simulated annealing and clonal selection algorithms. The proposed model and the hybrid algorithm are verified and validated using design of experiment and benchmark methods. The results show that the hybrid algorithm has an outstanding performance from both solution quality and computational time points of view. Besides, the proposed model can be used in both of the stochastic and deterministic situations.
Searching for Extant Life on Mars - The ATP-Firefly LuciferinLuciferase Technique
NASA Astrophysics Data System (ADS)
Obousy, R. K.; Tziolas, A. C.; Kaltsas, K.; Sims, M. R.; Grant, W. D.
We have investigated the use of the ATP-Firefly Luciferin/Luciferase (FFL) enzymic photoluminescent reaction as a possible means of detecting extant life in the Martian environment. Experiments carried out by the authors illustrate the capacity of the method to successfully detect extant forms of life on Mars assuming ATP is an intrinsic part of the biochemistry of such life-forms. A photodiode based apparatus, built to test the assumptions and applicability of the ATP-Firefly Luciferase/Luciferin technique to an exobiologically inclined mission to Mars, revealed the adequate resolution and reproducibility of the methodology plus areas of improvement. Also detailed are extraction, delivery and analysis system concepts, proposed for future Mars missions.
A parallel time integrator for noisy nonlinear oscillatory systems
NASA Astrophysics Data System (ADS)
Subber, Waad; Sarkar, Abhijit
2018-06-01
In this paper, we adapt a parallel time integration scheme to track the trajectories of noisy non-linear dynamical systems. Specifically, we formulate a parallel algorithm to generate the sample path of nonlinear oscillator defined by stochastic differential equations (SDEs) using the so-called parareal method for ordinary differential equations (ODEs). The presence of Wiener process in SDEs causes difficulties in the direct application of any numerical integration techniques of ODEs including the parareal algorithm. The parallel implementation of the algorithm involves two SDEs solvers, namely a fine-level scheme to integrate the system in parallel and a coarse-level scheme to generate and correct the required initial conditions to start the fine-level integrators. For the numerical illustration, a randomly excited Duffing oscillator is investigated in order to study the performance of the stochastic parallel algorithm with respect to a range of system parameters. The distributed implementation of the algorithm exploits Massage Passing Interface (MPI).
Semenov, Mikhail A; Terkel, Dmitri A
2003-01-01
This paper analyses the convergence of evolutionary algorithms using a technique which is based on a stochastic Lyapunov function and developed within the martingale theory. This technique is used to investigate the convergence of a simple evolutionary algorithm with self-adaptation, which contains two types of parameters: fitness parameters, belonging to the domain of the objective function; and control parameters, responsible for the variation of fitness parameters. Although both parameters mutate randomly and independently, they converge to the "optimum" due to the direct (for fitness parameters) and indirect (for control parameters) selection. We show that the convergence velocity of the evolutionary algorithm with self-adaptation is asymptotically exponential, similar to the velocity of the optimal deterministic algorithm on the class of unimodal functions. Although some martingale inequalities have not be proved analytically, they have been numerically validated with 0.999 confidence using Monte-Carlo simulations.
Accelerated simulation of stochastic particle removal processes in particle-resolved aerosol models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, J.H.; Michelotti, M.D.; Riemer, N.
2016-10-01
Stochastic particle-resolved methods have proven useful for simulating multi-dimensional systems such as composition-resolved aerosol size distributions. While particle-resolved methods have substantial benefits for highly detailed simulations, these techniques suffer from high computational cost, motivating efforts to improve their algorithmic efficiency. Here we formulate an algorithm for accelerating particle removal processes by aggregating particles of similar size into bins. We present the Binned Algorithm for particle removal processes and analyze its performance with application to the atmospherically relevant process of aerosol dry deposition. We show that the Binned Algorithm can dramatically improve the efficiency of particle removals, particularly for low removalmore » rates, and that computational cost is reduced without introducing additional error. In simulations of aerosol particle removal by dry deposition in atmospherically relevant conditions, we demonstrate about 50-times increase in algorithm efficiency.« less
Glick, Meir; Rayan, Anwar; Goldblum, Amiram
2002-01-01
The problem of global optimization is pivotal in a variety of scientific fields. Here, we present a robust stochastic search method that is able to find the global minimum for a given cost function, as well as, in most cases, any number of best solutions for very large combinatorial “explosive” systems. The algorithm iteratively eliminates variable values that contribute consistently to the highest end of a cost function's spectrum of values for the full system. Values that have not been eliminated are retained for a full, exhaustive search, allowing the creation of an ordered population of best solutions, which includes the global minimum. We demonstrate the ability of the algorithm to explore the conformational space of side chains in eight proteins, with 54 to 263 residues, to reproduce a population of their low energy conformations. The 1,000 lowest energy solutions are identical in the stochastic (with two different seed numbers) and full, exhaustive searches for six of eight proteins. The others retain the lowest 141 and 213 (of 1,000) conformations, depending on the seed number, and the maximal difference between stochastic and exhaustive is only about 0.15 Kcal/mol. The energy gap between the lowest and highest of the 1,000 low-energy conformers in eight proteins is between 0.55 and 3.64 Kcal/mol. This algorithm offers real opportunities for solving problems of high complexity in structural biology and in other fields of science and technology. PMID:11792838
Albert, Jaroslav
2016-01-01
Modeling stochastic behavior of chemical reaction networks is an important endeavor in many aspects of chemistry and systems biology. The chemical master equation (CME) and the Gillespie algorithm (GA) are the two most fundamental approaches to such modeling; however, each of them has its own limitations: the GA may require long computing times, while the CME may demand unrealistic memory storage capacity. We propose a method that combines the CME and the GA that allows one to simulate stochastically a part of a reaction network. First, a reaction network is divided into two parts. The first part is simulated via the GA, while the solution of the CME for the second part is fed into the GA in order to update its propensities. The advantage of this method is that it avoids the need to solve the CME or stochastically simulate the entire network, which makes it highly efficient. One of its drawbacks, however, is that most of the information about the second part of the network is lost in the process. Therefore, this method is most useful when only partial information about a reaction network is needed. We tested this method against the GA on two systems of interest in biology--the gene switch and the Griffith model of a genetic oscillator--and have shown it to be highly accurate. Comparing this method to four different stochastic algorithms revealed it to be at least an order of magnitude faster than the fastest among them.
Pokharel, Shyam; Rana, Suresh; Blikenstaff, Joseph; Sadeghi, Amir; Prestidge, Bradley
2013-07-08
The purpose of this study is to investigate the effectiveness of the HIPO planning and optimization algorithm for real-time prostate HDR brachytherapy. This study consists of 20 patients who underwent ultrasound-based real-time HDR brachytherapy of the prostate using the treatment planning system called Oncentra Prostate (SWIFT version 3.0). The treatment plans for all patients were optimized using inverse dose-volume histogram-based optimization followed by graphical optimization (GRO) in real time. The GRO is manual manipulation of isodose lines slice by slice. The quality of the plan heavily depends on planner expertise and experience. The data for all patients were retrieved later, and treatment plans were created and optimized using HIPO algorithm with the same set of dose constraints, number of catheters, and set of contours as in the real-time optimization algorithm. The HIPO algorithm is a hybrid because it combines both stochastic and deterministic algorithms. The stochastic algorithm, called simulated annealing, searches the optimal catheter distributions for a given set of dose objectives. The deterministic algorithm, called dose-volume histogram-based optimization (DVHO), optimizes three-dimensional dose distribution quickly by moving straight downhill once it is in the advantageous region of the search space given by the stochastic algorithm. The PTV receiving 100% of the prescription dose (V100) was 97.56% and 95.38% with GRO and HIPO, respectively. The mean dose (D(mean)) and minimum dose to 10% volume (D10) for the urethra, rectum, and bladder were all statistically lower with HIPO compared to GRO using the student pair t-test at 5% significance level. HIPO can provide treatment plans with comparable target coverage to that of GRO with a reduction in dose to the critical structures.
Stochastic simulation and analysis of biomolecular reaction networks
Frazier, John M; Chushak, Yaroslav; Foy, Brent
2009-01-01
Background In recent years, several stochastic simulation algorithms have been developed to generate Monte Carlo trajectories that describe the time evolution of the behavior of biomolecular reaction networks. However, the effects of various stochastic simulation and data analysis conditions on the observed dynamics of complex biomolecular reaction networks have not recieved much attention. In order to investigate these issues, we employed a a software package developed in out group, called Biomolecular Network Simulator (BNS), to simulate and analyze the behavior of such systems. The behavior of a hypothetical two gene in vitro transcription-translation reaction network is investigated using the Gillespie exact stochastic algorithm to illustrate some of the factors that influence the analysis and interpretation of these data. Results Specific issues affecting the analysis and interpretation of simulation data are investigated, including: (1) the effect of time interval on data presentation and time-weighted averaging of molecule numbers, (2) effect of time averaging interval on reaction rate analysis, (3) effect of number of simulations on precision of model predictions, and (4) implications of stochastic simulations on optimization procedures. Conclusion The two main factors affecting the analysis of stochastic simulations are: (1) the selection of time intervals to compute or average state variables and (2) the number of simulations generated to evaluate the system behavior. PMID:19534796
Martin, Gavin J; Branham, Marc A; Whiting, Michael F; Bybee, Seth M
2017-02-01
Fireflies are some of the most captivating organisms on the planet. They have a rich history as subjects of scientific study, especially in relation to their bioluminescent behavior. Yet, the phylogenetic relationships of fireflies are still poorly understood. Here, we present the first total evidence approach to reconstruct lampyrid phylogeny using both a molecular matrix from six loci and an extensive morphological matrix. Using this phylogeny we test the hypothesis that adult bioluminescence evolved after the origin of the firefly clade. The ancestral state of adult bioluminescence is recovered as non-bioluminescent with one to six gains and five to ten subsequent losses. The monophyly of the family, as well as the subfamilies is also tested. Ototretinae, Cyphonocerinae, Luciolinae (incl. Pristolycus), Amydetinae, "cheguevarinae" sensu Jeng 2008, and Photurinae are highly supported as monophyletic. With the exception of four taxa, Lampyrinae is also recovered as monophyletic with high support. Based on phylogenetic and morphological data Lamprohiza, Phausis, and Lamprigera are transferred to Lampyridae incertae sedis. Copyright © 2016 Elsevier Inc. All rights reserved.
Gimenez, Gregory; Metcalf, Peter; Paterson, Neil G.; Sharpe, Miriam L.
2016-01-01
The Japanese firefly squid Hotaru-ika (Watasenia scintillans) produces intense blue light from photophores at the tips of two arms. These photophores are densely packed with protein microcrystals that catalyse the bioluminescent reaction using ATP and the substrate coelenterazine disulfate. The squid is the only organism known to produce light using protein crystals. We extracted microcrystals from arm tip photophores and identified the constituent proteins using mass spectrometry and transcriptome libraries prepared from arm tip tissue. The crystals contain three proteins, wsluc1–3, all members of the ANL superfamily of adenylating enzymes. They share 19 to 21% sequence identity with firefly luciferases, which produce light using ATP and the unrelated firefly luciferin substrate. We propose that wsluc1–3 form a complex that crystallises inside the squid photophores, and that in the crystal one or more of the proteins catalyses the production of light using coelenterazine disulfate and ATP. These results suggest that ANL superfamily enzymes have independently evolved in distant species to produce light using unrelated substrates. PMID:27279452
Komarov, Ivan; D'Souza, Roshan M
2012-01-01
The Gillespie Stochastic Simulation Algorithm (GSSA) and its variants are cornerstone techniques to simulate reaction kinetics in situations where the concentration of the reactant is too low to allow deterministic techniques such as differential equations. The inherent limitations of the GSSA include the time required for executing a single run and the need for multiple runs for parameter sweep exercises due to the stochastic nature of the simulation. Even very efficient variants of GSSA are prohibitively expensive to compute and perform parameter sweeps. Here we present a novel variant of the exact GSSA that is amenable to acceleration by using graphics processing units (GPUs). We parallelize the execution of a single realization across threads in a warp (fine-grained parallelism). A warp is a collection of threads that are executed synchronously on a single multi-processor. Warps executing in parallel on different multi-processors (coarse-grained parallelism) simultaneously generate multiple trajectories. Novel data-structures and algorithms reduce memory traffic, which is the bottleneck in computing the GSSA. Our benchmarks show an 8×-120× performance gain over various state-of-the-art serial algorithms when simulating different types of models.
Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm.
Chang, Joshua; Paydarfar, David
2014-12-01
Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of problems in neuroscience. Analytical techniques from optimal control theory can identify such stimuli; however, solutions to the optimization problem using indirect variational approaches can be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: (1) enables automated exploration of a wide solution space, using stochastically generated initial waveforms that converge to multiple locally optimal solutions; and (2) finds optimal stimulus waveforms that achieve a physiological outcome condition, without a priori knowledge of the optimal terminal condition of all state variables. Analysis of biological systems using stochastically-seeded gradient methods can reveal salient dynamical mechanisms underlying the optimal control of system behavior. The gradient algorithm may also have practical applications in future work, for example, finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage and diminishes off-target effects and damage to neighboring tissue.
EKF-Based Enhanced Performance Controller Design for Nonlinear Stochastic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuyang; Zhang, Qichun; Wang, Hong
In this paper, a novel control algorithm is presented to enhance the performance of tracking property for a class of non-linear dynamic stochastic systems with unmeasurable variables. To minimize the entropy of tracking errors without changing the existing closed loop with PI controller, the enhanced performance loop is constructed based on the state estimation by extended Kalman Filter and the new controller is designed by full state feedback following this presented control algorithm. Besides, the conditions are obtained for the stability analysis in the mean square sense. In the end, the comparative simulation results are given to illustrate the effectivenessmore » of proposed control algorithm.« less
Genetic Algorithm and Tabu Search for Vehicle Routing Problems with Stochastic Demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Zuhaimy, E-mail: zuhaimyi@yahoo.com, E-mail: irhamahn@yahoo.com; Irhamah, E-mail: zuhaimyi@yahoo.com, E-mail: irhamahn@yahoo.com
2010-11-11
This paper presents a problem of designing solid waste collection routes, involving scheduling of vehicles where each vehicle begins at the depot, visits customers and ends at the depot. It is modeled as a Vehicle Routing Problem with Stochastic Demands (VRPSD). A data set from a real world problem (a case) is used in this research. We developed Genetic Algorithm (GA) and Tabu Search (TS) procedure and these has produced the best possible result. The problem data are inspired by real case of VRPSD in waste collection. Results from the experiment show the advantages of the proposed algorithm that aremore » its robustness and better solution qualities.« less
Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thanh, Vo Hong, E-mail: vo@cosbi.eu; Priami, Corrado, E-mail: priami@cosbi.eu; Department of Mathematics, University of Trento
2014-10-07
We propose a new exact stochastic rejection-based simulation algorithm for biochemical reactions and extend it to systems with delays. Our algorithm accelerates the simulation by pre-computing reaction propensity bounds to select the next reaction to perform. Exploiting such bounds, we are able to avoid recomputing propensities every time a (delayed) reaction is initiated or finished, as is typically necessary in standard approaches. Propensity updates in our approach are still performed, but only infrequently and limited for a small number of reactions, saving computation time and without sacrificing exactness. We evaluate the performance improvement of our algorithm by experimenting with concretemore » biological models.« less
Kheirabadi, Mitra; Sharafian, Zohreh; Naderi-Manesh, Hossein; Heineman, Udo; Gohlke, Ulrich; Hosseinkhani, Saman
2013-12-01
Firefly bioluminescence reaction in the presence of Mg(2+), ATP and molecular oxygen is carried out by luciferase. The luciferase structure alterations or modifications of assay conditions determine the bioluminescence color of firefly luciferase. Among different beetle luciferases, Phrixothrix hirtus railroad worm emits either yellow or red bioluminescence color. Sequence alignment analysis shows that the red-emitter luciferase from Phrixothrix hirtus has an additional arginine residue at 353 that is absent in other firefly luciferases. It was reported that insertion of Arg in an important flexible loop350-359 showed changes in bioluminescence color from green to red and the optimum temperature activity was also increased. To explain the color tuning mechanism of firefly luciferase, the structure of native and a mutant (E354R/356R/H431Y) of Lampyris turkestanicus luciferase is determined at 2.7Å and 2.2Å resolutions, respectively. The comparison of structure of both types of Lampyris turkestanicus luciferases reveals that the conformation of this flexible loop is significantly changed by addition of two Arg in this region. Moreover, its surface accessibility is affected considerably and some ionic bonds are made by addition of two positive charge residues. Furthermore, we noticed that the hydrogen bonding pattern of His431 with the flexible loop is changed by replacing this residue with Tyr at this position. Juxtaposition of a flexible loop (residues 351-359) in firefly luciferase and corresponding ionic and hydrogen bonds are essential for color emission. © 2013.
Helaers, Raphaël; Milinkovitch, Michel C
2010-07-15
The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high customization for the phylogeneticist, as well as to an ergonomic interface and functionalities assisting the non-specialist for sound inference of large phylogenetic trees using nucleotide sequences. MetaPIGA v2.0 and its extensive user-manual are freely available to academics at http://www.metapiga.org.
2010-01-01
Background The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Results Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. Conclusions The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high customization for the phylogeneticist, as well as to an ergonomic interface and functionalities assisting the non-specialist for sound inference of large phylogenetic trees using nucleotide sequences. MetaPIGA v2.0 and its extensive user-manual are freely available to academics at http://www.metapiga.org. PMID:20633263
Convergence Rates of Finite Difference Stochastic Approximation Algorithms
2016-06-01
dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It
A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...
AESS: Accelerated Exact Stochastic Simulation
NASA Astrophysics Data System (ADS)
Jenkins, David D.; Peterson, Gregory D.
2011-12-01
The Stochastic Simulation Algorithm (SSA) developed by Gillespie provides a powerful mechanism for exploring the behavior of chemical systems with small species populations or with important noise contributions. Gene circuit simulations for systems biology commonly employ the SSA method, as do ecological applications. This algorithm tends to be computationally expensive, so researchers seek an efficient implementation of SSA. In this program package, the Accelerated Exact Stochastic Simulation Algorithm (AESS) contains optimized implementations of Gillespie's SSA that improve the performance of individual simulation runs or ensembles of simulations used for sweeping parameters or to provide statistically significant results. Program summaryProgram title: AESS Catalogue identifier: AEJW_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: University of Tennessee copyright agreement No. of lines in distributed program, including test data, etc.: 10 861 No. of bytes in distributed program, including test data, etc.: 394 631 Distribution format: tar.gz Programming language: C for processors, CUDA for NVIDIA GPUs Computer: Developed and tested on various x86 computers and NVIDIA C1060 Tesla and GTX 480 Fermi GPUs. The system targets x86 workstations, optionally with multicore processors or NVIDIA GPUs as accelerators. Operating system: Tested under Ubuntu Linux OS and CentOS 5.5 Linux OS Classification: 3, 16.12 Nature of problem: Simulation of chemical systems, particularly with low species populations, can be accurately performed using Gillespie's method of stochastic simulation. Numerous variations on the original stochastic simulation algorithm have been developed, including approaches that produce results with statistics that exactly match the chemical master equation (CME) as well as other approaches that approximate the CME. Solution method: The Accelerated Exact Stochastic Simulation (AESS) tool provides implementations of a wide variety of popular variations on the Gillespie method. Users can select the specific algorithm considered most appropriate. Comparisons between the methods and with other available implementations indicate that AESS provides the fastest known implementation of Gillespie's method for a variety of test models. Users may wish to execute ensembles of simulations to sweep parameters or to obtain better statistical results, so AESS supports acceleration of ensembles of simulation using parallel processing with MPI, SSE vector units on x86 processors, and/or using NVIDIA GPUs with CUDA.
A stochastic tabu search algorithm to align physician schedule with patient flow.
Niroumandrad, Nazgol; Lahrichi, Nadia
2018-06-01
In this study, we consider the pretreatment phase for cancer patients. This is defined as the period between the referral to a cancer center and the confirmation of the treatment plan. Physicians have been identified as bottlenecks in this process, and the goal is to determine a weekly cyclic schedule that improves the patient flow and shortens the pretreatment duration. High uncertainty is associated with the arrival day, profile and type of cancer of each patient. We also include physician satisfaction in the objective function. We present a MIP model for the problem and develop a tabu search algorithm, considering both deterministic and stochastic cases. Experiments show that our method compares very well to CPLEX under deterministic conditions. We describe the stochastic approach in detail and present a real application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, M V; Garanin, S G; Dolgopolov, Yu V
2014-11-30
A seven-channel fibre laser system operated by the master oscillator – multichannel power amplifier scheme is the phase locked using a stochastic parallel gradient algorithm. The phase modulators on lithium niobate crystals are controlled by a multichannel electronic unit with the microcontroller processing signals in real time. The dynamic phase locking of the laser system with the bandwidth of 14 kHz is demonstrated, the time of phasing is 3 – 4 ms. (fibre and integrated-optical structures)
Kast, Stefan M
2004-03-08
An argument brought forward by Sholl and Fichthorn against the stochastic collision-based constant temperature algorithm for molecular dynamics simulations developed by Kast et al. is refuted. It is demonstrated that the large temperature fluctuations noted by Sholl and Fichthorn are due to improperly chosen initial conditions within their formulation of the algorithm. With the original form or by suitable initialization of their variant no deficient behavior is observed.
A Pumping Algorithm for Ergodic Stochastic Mean Payoff Games with Perfect Information
NASA Astrophysics Data System (ADS)
Boros, Endre; Elbassioni, Khaled; Gurvich, Vladimir; Makino, Kazuhisa
In this paper, we consider two-person zero-sum stochastic mean payoff games with perfect information, or BWR-games, given by a digraph G = (V = V B ∪ V W ∪ V R , E), with local rewards r: E to { R}, and three types of vertices: black V B , white V W , and random V R . The game is played by two players, White and Black: When the play is at a white (black) vertex v, White (Black) selects an outgoing arc (v,u). When the play is at a random vertex v, a vertex u is picked with the given probability p(v,u). In all cases, Black pays White the value r(v,u). The play continues forever, and White aims to maximize (Black aims to minimize) the limiting mean (that is, average) payoff. It was recently shown in [7] that BWR-games are polynomially equivalent with the classical Gillette games, which include many well-known subclasses, such as cyclic games, simple stochastic games (SSG's), stochastic parity games, and Markov decision processes. In this paper, we give a new algorithm for solving BWR-games in the ergodic case, that is when the optimal values do not depend on the initial position. Our algorithm solves a BWR-game by reducing it, using a potential transformation, to a canonical form in which the optimal strategies of both players and the value for every initial position are obvious, since a locally optimal move in it is optimal in the whole game. We show that this algorithm is pseudo-polynomial when the number of random nodes is constant. We also provide an almost matching lower bound on its running time, and show that this bound holds for a wider class of algorithms. Let us add that the general (non-ergodic) case is at least as hard as SSG's, for which no pseudo-polynomial algorithm is known.
Inferring microbial interaction networks from metagenomic data using SgLV-EKF algorithm.
Alshawaqfeh, Mustafa; Serpedin, Erchin; Younes, Ahmad Bani
2017-03-27
Inferring the microbial interaction networks (MINs) and modeling their dynamics are critical in understanding the mechanisms of the bacterial ecosystem and designing antibiotic and/or probiotic therapies. Recently, several approaches were proposed to infer MINs using the generalized Lotka-Volterra (gLV) model. Main drawbacks of these models include the fact that these models only consider the measurement noise without taking into consideration the uncertainties in the underlying dynamics. Furthermore, inferring the MIN is characterized by the limited number of observations and nonlinearity in the regulatory mechanisms. Therefore, novel estimation techniques are needed to address these challenges. This work proposes SgLV-EKF: a stochastic gLV model that adopts the extended Kalman filter (EKF) algorithm to model the MIN dynamics. In particular, SgLV-EKF employs a stochastic modeling of the MIN by adding a noise term to the dynamical model to compensate for modeling uncertainties. This stochastic modeling is more realistic than the conventional gLV model which assumes that the MIN dynamics are perfectly governed by the gLV equations. After specifying the stochastic model structure, we propose the EKF to estimate the MIN. SgLV-EKF was compared with two similarity-based algorithms, one algorithm from the integral-based family and two regression-based algorithms, in terms of the achieved performance on two synthetic data-sets and two real data-sets. The first data-set models the randomness in measurement data, whereas, the second data-set incorporates uncertainties in the underlying dynamics. The real data-sets are provided by a recent study pertaining to an antibiotic-mediated Clostridium difficile infection. The experimental results demonstrate that SgLV-EKF outperforms the alternative methods in terms of robustness to measurement noise, modeling errors, and tracking the dynamics of the MIN. Performance analysis demonstrates that the proposed SgLV-EKF algorithm represents a powerful and reliable tool to infer MINs and track their dynamics.
Zeng, Nianyin; Wang, Zidong; Li, Yurong; Du, Min; Cao, Jie; Liu, Xiaohui
2013-12-01
In this paper, the expectation maximization (EM) algorithm is applied to the modeling of the nano-gold immunochromatographic assay (nano-GICA) via available time series of the measured signal intensities of the test and control lines. The model for the nano-GICA is developed as the stochastic dynamic model that consists of a first-order autoregressive stochastic dynamic process and a noisy measurement. By using the EM algorithm, the model parameters, the actual signal intensities of the test and control lines, as well as the noise intensity can be identified simultaneously. Three different time series data sets concerning the target concentrations are employed to demonstrate the effectiveness of the introduced algorithm. Several indices are also proposed to evaluate the inferred models. It is shown that the model fits the data very well.
NASA Astrophysics Data System (ADS)
McEvoy, Erica L.
Stochastic differential equations are becoming a popular tool for modeling the transport and acceleration of cosmic rays in the heliosphere. In diffusive shock acceleration, cosmic rays diffuse across a region of discontinuity where the up- stream diffusion coefficient abruptly changes to the downstream value. Because the method of stochastic integration has not yet been developed to handle these types of discontinuities, I utilize methods and ideas from probability theory to develop a conceptual framework for the treatment of such discontinuities. Using this framework, I then produce some simple numerical algorithms that allow one to incorporate and simulate a variety of discontinuities (or boundary conditions) using stochastic integration. These algorithms were then modified to create a new algorithm which incorporates the discontinuous change in diffusion coefficient found in shock acceleration (known as Skew Brownian Motion). The originality of this algorithm lies in the fact that it is the first of its kind to be statistically exact, so that one obtains accuracy without the use of approximations (other than the machine precision error). I then apply this algorithm to model the problem of diffusive shock acceleration, modifying it to incorporate the additional effect of the discontinuous flow speed profile found at the shock. A steady-state solution is obtained that accurately simulates this phenomenon. This result represents a significant improvement over previous approximation algorithms, and will be useful for the simulation of discontinuous diffusion processes in other fields, such as biology and finance.
Estimation of stochastic volatility by using Ornstein-Uhlenbeck type models
NASA Astrophysics Data System (ADS)
Mariani, Maria C.; Bhuiyan, Md Al Masum; Tweneboah, Osei K.
2018-02-01
In this study, we develop a technique for estimating the stochastic volatility (SV) of a financial time series by using Ornstein-Uhlenbeck type models. Using the daily closing prices from developed and emergent stock markets, we conclude that the incorporation of stochastic volatility into the time varying parameter estimation significantly improves the forecasting performance via Maximum Likelihood Estimation. Furthermore, our estimation algorithm is feasible with large data sets and have good convergence properties.
Stochastic Robust Mathematical Programming Model for Power System Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Cong; Changhyeok, Lee; Haoyong, Chen
2016-01-01
This paper presents a stochastic robust framework for two-stage power system optimization problems with uncertainty. The model optimizes the probabilistic expectation of different worst-case scenarios with ifferent uncertainty sets. A case study of unit commitment shows the effectiveness of the proposed model and algorithms.
Online POMDP Algorithms for Very Large Observation Spaces
2017-06-06
stochastic optimization: From sets to paths." In Advances in Neural Information Processing Systems, pp. 1585- 1593 . 2015. • Luo, Yuanfu, Haoyu Bai...and Wee Sun Lee. "Adaptive stochastic optimization: From sets to paths." In Advances in Neural Information Processing Systems, pp. 1585- 1593 . 2015
ERIC Educational Resources Information Center
To-Im, Jongdee; Klunklueng, Arunwan
2012-01-01
A firefly learning module for the sustainable development was developed for Thai secondary school students in the study province. A deeper connection between environment, social and economic dimensions, which lies at the core of sustainability, became the key issue for this learning module. Also an important dimension of the module was the…
Quantum algorithms for Gibbs sampling and hitting-time estimation
Chowdhury, Anirban Narayan; Somma, Rolando D.
2017-02-01
In this paper, we present quantum algorithms for solving two problems regarding stochastic processes. The first algorithm prepares the thermal Gibbs state of a quantum system and runs in time almost linear in √Nβ/Ζ and polynomial in log(1/ϵ), where N is the Hilbert space dimension, β is the inverse temperature, Ζ is the partition function, and ϵ is the desired precision of the output state. Our quantum algorithm exponentially improves the dependence on 1/ϵ and quadratically improves the dependence on β of known quantum algorithms for this problem. The second algorithm estimates the hitting time of a Markov chain. Formore » a sparse stochastic matrix Ρ, it runs in time almost linear in 1/(ϵΔ 3/2), where ϵ is the absolute precision in the estimation and Δ is a parameter determined by Ρ, and whose inverse is an upper bound of the hitting time. Our quantum algorithm quadratically improves the dependence on 1/ϵ and 1/Δ of the analog classical algorithm for hitting-time estimation. Finally, both algorithms use tools recently developed in the context of Hamiltonian simulation, spectral gap amplification, and solving linear systems of equations.« less
A "Hands on" Strategy for Teaching Genetic Algorithms to Undergraduates
ERIC Educational Resources Information Center
Venables, Anne; Tan, Grace
2007-01-01
Genetic algorithms (GAs) are a problem solving strategy that uses stochastic search. Since their introduction (Holland, 1975), GAs have proven to be particularly useful for solving problems that are "intractable" using classical methods. The language of genetic algorithms (GAs) is heavily laced with biological metaphors from evolutionary…
A chance-constrained stochastic approach to intermodal container routing problems.
Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.
A chance-constrained stochastic approach to intermodal container routing problems
Zhao, Yi; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost. PMID:29438389
NASA Technical Reports Server (NTRS)
Zang, Thomas A.; Mathelin, Lionel; Hussaini, M. Yousuff; Bataille, Francoise
2003-01-01
This paper describes a fully spectral, Polynomial Chaos method for the propagation of uncertainty in numerical simulations of compressible, turbulent flow, as well as a novel stochastic collocation algorithm for the same application. The stochastic collocation method is key to the efficient use of stochastic methods on problems with complex nonlinearities, such as those associated with the turbulence model equations in compressible flow and for CFD schemes requiring solution of a Riemann problem. Both methods are applied to compressible flow in a quasi-one-dimensional nozzle. The stochastic collocation method is roughly an order of magnitude faster than the fully Galerkin Polynomial Chaos method on the inviscid problem.
Stochastic Approximation Methods for Latent Regression Item Response Models
ERIC Educational Resources Information Center
von Davier, Matthias; Sinharay, Sandip
2010-01-01
This article presents an application of a stochastic approximation expectation maximization (EM) algorithm using a Metropolis-Hastings (MH) sampler to estimate the parameters of an item response latent regression model. Latent regression item response models are extensions of item response theory (IRT) to a latent variable model with covariates…
Previous exposure assessment panel studies have observed considerable seasonal, between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or air exchange rates (AER). The Stochastic Human Exposure ...
GPU Computing in Bayesian Inference of Realized Stochastic Volatility Model
NASA Astrophysics Data System (ADS)
Takaishi, Tetsuya
2015-01-01
The realized stochastic volatility (RSV) model that utilizes the realized volatility as additional information has been proposed to infer volatility of financial time series. We consider the Bayesian inference of the RSV model by the Hybrid Monte Carlo (HMC) algorithm. The HMC algorithm can be parallelized and thus performed on the GPU for speedup. The GPU code is developed with CUDA Fortran. We compare the computational time in performing the HMC algorithm on GPU (GTX 760) and CPU (Intel i7-4770 3.4GHz) and find that the GPU can be up to 17 times faster than the CPU. We also code the program with OpenACC and find that appropriate coding can achieve the similar speedup with CUDA Fortran.
A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.
Harrison, Jonathan U; Yates, Christian A
2016-09-01
Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction-diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. © 2016 The Authors.
A hybrid algorithm for coupling partial differential equation and compartment-based dynamics
Yates, Christian A.
2016-01-01
Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction–diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. PMID:27628171
Dual Luciferase Assay System for Rapid Assessment of Gene Expression in Saccharomyces cerevisiae
McNabb, David S.; Reed, Robin; Marciniak, Robert A.
2005-01-01
A new reporter system has been developed for quantifying gene expression in the yeast Saccharomyces cerevisiae. The system relies on two different reporter genes, Renilla and firefly luciferase, to evaluate regulated gene expression. The gene encoding Renilla luciferase is fused to a constitutive promoter (PGK1 or SPT15) and integrated into the yeast genome at the CAN1 locus as a control for normalizing the assay. The firefly luciferase gene is fused to the test promoter and integrated into the yeast genome at the ura3 or leu2 locus. The dual luciferase assay is performed by sequentially measuring the firefly and Renilla luciferase activities of the same sample, with the results expressed as the ratio of firefly to Renilla luciferase activity (Fluc/Rluc). The yeast dual luciferase reporter (DLR) was characterized and shown to be very efficient, requiring approximately 1 minute to complete each assay, and has proven to yield data that accurately and reproducibly reflect promoter activity. A series of integrating plasmids were generated that contain either the firefly or Renilla luciferase gene preceded by a multicloning region in two different orientations and the three reading frames to make possible the generation of translational fusions. Additionally, each set of plasmids contains either the URA3 or LEU2 marker for genetic selection in yeast. A series of S288C-based yeast strains, including a two-hybrid strain, were developed to facilitate the use of the yeast DLR assay. This assay can be readily adapted to a high-throughput platform for studies requiring numerous measurements. PMID:16151247
Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology.
Schaff, James C; Gao, Fei; Li, Ye; Novak, Igor L; Slepchenko, Boris M
2016-12-01
Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium 'sparks' as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell.
Noise-enhanced clustering and competitive learning algorithms.
Osoba, Osonde; Kosko, Bart
2013-01-01
Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation-maximization algorithm because many clustering algorithms are special cases of the expectation-maximization algorithm. Simulations show that noise also speeds up convergence in stochastic unsupervised competitive learning, supervised competitive learning, and differential competitive learning. Copyright © 2012 Elsevier Ltd. All rights reserved.
Oscillatory regulation of Hes1: Discrete stochastic delay modelling and simulation.
Barrio, Manuel; Burrage, Kevin; Leier, André; Tian, Tianhai
2006-09-08
Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.
A non-stochastic iterative computational method to model light propagation in turbid media
NASA Astrophysics Data System (ADS)
McIntyre, Thomas J.; Zemp, Roger J.
2015-03-01
Monte Carlo models are widely used to model light transport in turbid media, however their results implicitly contain stochastic variations. These fluctuations are not ideal, especially for inverse problems where Jacobian matrix errors can lead to large uncertainties upon matrix inversion. Yet Monte Carlo approaches are more computationally favorable than solving the full Radiative Transport Equation. Here, a non-stochastic computational method of estimating fluence distributions in turbid media is proposed, which is called the Non-Stochastic Propagation by Iterative Radiance Evaluation method (NSPIRE). Rather than using stochastic means to determine a random walk for each photon packet, the propagation of light from any element to all other elements in a grid is modelled simultaneously. For locally homogeneous anisotropic turbid media, the matrices used to represent scattering and projection are shown to be block Toeplitz, which leads to computational simplifications via convolution operators. To evaluate the accuracy of the algorithm, 2D simulations were done and compared against Monte Carlo models for the cases of an isotropic point source and a pencil beam incident on a semi-infinite turbid medium. The model was shown to have a mean percent error less than 2%. The algorithm represents a new paradigm in radiative transport modelling and may offer a non-stochastic alternative to modeling light transport in anisotropic scattering media for applications where the diffusion approximation is insufficient.
Generation of Two Novel Cell Lines that Stably Express hAR and Firefly Luciferase Genes for Endocrine Screening
K.L. Bobseine*1, W.R. Kelce2, P.C. Hartig*1, and L.E. Gray, Jr.1
1USEPA, NHEERL, Reproductive Toxicology Division, RTP, NC, 2Searle, Reproductive Toxicology Divi...
Stochastic Multi-Commodity Facility Location Based on a New Scenario Generation Technique
NASA Astrophysics Data System (ADS)
Mahootchi, M.; Fattahi, M.; Khakbazan, E.
2011-11-01
This paper extends two models for stochastic multi-commodity facility location problem. The problem is formulated as two-stage stochastic programming. As a main point of this study, a new algorithm is applied to efficiently generate scenarios for uncertain correlated customers' demands. This algorithm uses Latin Hypercube Sampling (LHS) and a scenario reduction approach. The relation between customer satisfaction level and cost are considered in model I. The risk measure using Conditional Value-at-Risk (CVaR) is embedded into the optimization model II. Here, the structure of the network contains three facility layers including plants, distribution centers, and retailers. The first stage decisions are the number, locations, and the capacity of distribution centers. In the second stage, the decisions are the amount of productions, the volume of transportation between plants and customers.
A game-theoretic method for cross-layer stochastic resilient control design in CPS
NASA Astrophysics Data System (ADS)
Shen, Jiajun; Feng, Dongqin
2018-03-01
In this paper, the cross-layer security problem of cyber-physical system (CPS) is investigated from the game-theoretic perspective. Physical dynamics of plant is captured by stochastic differential game with cyber-physical influence being considered. The sufficient and necessary condition for the existence of state-feedback equilibrium strategies is given. The attack-defence cyber interactions are formulated by a Stackelberg game intertwined with stochastic differential game in physical layer. The condition such that the Stackelberg equilibrium being unique and the corresponding analytical solutions are both provided. An algorithm is proposed for obtaining hierarchical security strategy by solving coupled games, which ensures the operational normalcy and cyber security of CPS subject to uncertain disturbance and unexpected cyberattacks. Simulation results are given to show the effectiveness and performance of the proposed algorithm.
Firefly: an optical lithographic system for the fabrication of holographic security labels
NASA Astrophysics Data System (ADS)
Calderón, Jorge; Rincón, Oscar; Amézquita, Ricardo; Pulido, Iván.; Amézquita, Sebastián.; Bernal, Andrés.; Romero, Luis; Agudelo, Viviana
2016-03-01
This paper introduces Firefly, an optical lithography origination system that has been developed to produce holographic masters of high quality. This mask-less lithography system has a resolution of 418 nm half-pitch, and generates holographic masters with the optical characteristics required for security applications of level 1 (visual verification), level 2 (pocket reader verification) and level 3 (forensic verification). The holographic master constitutes the main core of the manufacturing process of security holographic labels used for the authentication of products and documents worldwide. Additionally, the Firefly is equipped with a software tool that allows for the hologram design from graphic formats stored in bitmaps. The software is capable of generating and configuring basic optical effects such as animation and color, as well as effects of high complexity such as Fresnel lenses, engraves and encrypted images, among others. The Firefly technology gathers together optical lithography, digital image processing and the most advanced control systems, making possible a competitive equipment that challenges the best technologies in the industry of holographic generation around the world. In this paper, a general description of the origination system is provided as well as some examples of its capabilities.
Vongsangnak, Wanwipa; Chumnanpuen, Pramote
2016-01-01
Bioluminescence, which living organisms such as fireflies emit light, has been studied extensively for over half a century. This intriguing reaction, having its origins in nature where glowing insects can signal things such as attraction or defense, is now widely used in biotechnology with applications of bioluminescence and chemiluminescence. Luciferase, a key enzyme in this reaction, has been well characterized; however, the enzymes involved in the biosynthetic pathway of its substrate, luciferin, remains unsolved at present. To elucidate the luciferin metabolism, we performed a de novo transcriptome analysis using larvae of the firefly species, Luciola aquatilis. Here, a comparative analysis is performed with the model coleopteran insect Tribolium casteneum to elucidate the metabolic pathways in L. aquatilis. Based on a template luciferin biosynthetic pathway, combined with a range of protein and pathway databases, and various prediction tools for functional annotation, the candidate genes, enzymes, and biochemical reactions involved in luciferin metabolism are proposed for L. aquatilis. The candidate gene expression is validated in the adult L. aquatilis using reverse transcription PCR (RT-PCR). This study provides useful information on the bio-production of luciferin in the firefly and will benefit to future applications of the valuable firefly bioluminescence system. PMID:27761329
Bifunctional role of leucine 300 of firefly luciferase in structural rigidity.
Yousefi, Farzad; Ataei, Farangis; Mortazavi, Mojtaba; Hosseinkhani, Saman
2017-08-01
Firefly luciferase is susceptible to thermal inactivation, thereby its intracellular half-life decreased. Previous reports indicated that L 300 R mutation (LRR mutant) in E 354 R/Arg 356 double mutant (ERR mutant) from Lampyris turkestanicus luciferase has increased its thermal stability and rigidity through induction of some ionic bonds with Asp 270 and 271. Disruption of the deduced ionic bonds in an ultra-rigid mutant of firefly luciferase did not reverse the flexibility of the protein. In this study, we investigated the effects of this residue to find the truth behind an extraordinary increase in thermal stability and rigidity of luciferase after replacement of leucine 300 by arginine based on previous reports. For this purpose, L 300 R, L 300 K and L 300 E mutations were performed to compare the effects of these mutations on the native firefly luciferase. In spite of increase of intrinsic fluorescence of the mutants a slight increase in thermostability and retention of kinetic properties was observed. Based on our results, we can conclude that L 300 R mutation in LRR mutant accompanying with alteration in a flexible loop (352-359) increased thermostability and rigidity of luciferase. Copyright © 2017 Elsevier B.V. All rights reserved.
SASS: A symmetry adapted stochastic search algorithm exploiting site symmetry
NASA Astrophysics Data System (ADS)
Wheeler, Steven E.; Schleyer, Paul v. R.; Schaefer, Henry F.
2007-03-01
A simple symmetry adapted search algorithm (SASS) exploiting point group symmetry increases the efficiency of systematic explorations of complex quantum mechanical potential energy surfaces. In contrast to previously described stochastic approaches, which do not employ symmetry, candidate structures are generated within simple point groups, such as C2, Cs, and C2v. This facilitates efficient sampling of the 3N-6 Pople's dimensional configuration space and increases the speed and effectiveness of quantum chemical geometry optimizations. Pople's concept of framework groups [J. Am. Chem. Soc. 102, 4615 (1980)] is used to partition the configuration space into structures spanning all possible distributions of sets of symmetry equivalent atoms. This provides an efficient means of computing all structures of a given symmetry with minimum redundancy. This approach also is advantageous for generating initial structures for global optimizations via genetic algorithm and other stochastic global search techniques. Application of the SASS method is illustrated by locating 14 low-lying stationary points on the cc-pwCVDZ ROCCSD(T) potential energy surface of Li5H2. The global minimum structure is identified, along with many unique, nonintuitive, energetically favorable isomers.
An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection
Abdullah, Afnizanfaizal; Deris, Safaai; Mohamad, Mohd Saberi; Anwar, Sohail
2013-01-01
One of the key aspects of computational systems biology is the investigation on the dynamic biological processes within cells. Computational models are often required to elucidate the mechanisms and principles driving the processes because of the nonlinearity and complexity. The models usually incorporate a set of parameters that signify the physical properties of the actual biological systems. In most cases, these parameters are estimated by fitting the model outputs with the corresponding experimental data. However, this is a challenging task because the available experimental data are frequently noisy and incomplete. In this paper, a new hybrid optimization method is proposed to estimate these parameters from the noisy and incomplete experimental data. The proposed method, called Swarm-based Chemical Reaction Optimization, integrates the evolutionary searching strategy employed by the Chemical Reaction Optimization, into the neighbouring searching strategy of the Firefly Algorithm method. The effectiveness of the method was evaluated using a simulated nonlinear model and two biological models: synthetic transcriptional oscillators, and extracellular protease production models. The results showed that the accuracy and computational speed of the proposed method were better than the existing Differential Evolution, Firefly Algorithm and Chemical Reaction Optimization methods. The reliability of the estimated parameters was statistically validated, which suggests that the model outputs produced by these parameters were valid even when noisy and incomplete experimental data were used. Additionally, Akaike Information Criterion was employed to evaluate the model selection, which highlighted the capability of the proposed method in choosing a plausible model based on the experimental data. In conclusion, this paper presents the effectiveness of the proposed method for parameter estimation and model selection problems using noisy and incomplete experimental data. This study is hoped to provide a new insight in developing more accurate and reliable biological models based on limited and low quality experimental data. PMID:23593445
PDC-SGB: Prediction of effective drug combinations using a stochastic gradient boosting algorithm.
Xu, Qian; Xiong, Yi; Dai, Hao; Kumari, Kotni Meena; Xu, Qin; Ou, Hong-Yu; Wei, Dong-Qing
2017-03-21
Combinatorial therapy is a promising strategy for combating complex diseases by improving the efficacy and reducing the side effects. To facilitate the identification of drug combinations in pharmacology, we proposed a new computational model, termed PDC-SGB, to predict effective drug combinations by integrating biological, chemical and pharmacological information based on a stochastic gradient boosting algorithm. To begin with, a set of 352 golden positive samples were collected from the public drug combination database. Then, a set of 732 dimensional feature vector involving biological, chemical and pharmaceutical information was constructed for each drug combination to describe its properties. To avoid overfitting, the maximum relevance & minimum redundancy (mRMR) method was performed to extract useful ones by removing redundant subsets. Based on the selected features, the three different type of classification algorithms were employed to build the drug combination prediction models. Our results demonstrated that the model based on the stochastic gradient boosting algorithm yield out the best performance. Furthermore, it is indicated that the feature patterns of therapy had powerful ability to discriminate effective drug combinations from non-effective ones. By analyzing various features, it is shown that the enriched features occurred frequently in golden positive samples can help predict novel drug combinations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Vigelius, Matthias; Meyer, Bernd
2012-01-01
For many biological applications, a macroscopic (deterministic) treatment of reaction-drift-diffusion systems is insufficient. Instead, one has to properly handle the stochastic nature of the problem and generate true sample paths of the underlying probability distribution. Unfortunately, stochastic algorithms are computationally expensive and, in most cases, the large number of participating particles renders the relevant parameter regimes inaccessible. In an attempt to address this problem we present a genuine stochastic, multi-dimensional algorithm that solves the inhomogeneous, non-linear, drift-diffusion problem on a mesoscopic level. Our method improves on existing implementations in being multi-dimensional and handling inhomogeneous drift and diffusion. The algorithm is well suited for an implementation on data-parallel hardware architectures such as general-purpose graphics processing units (GPUs). We integrate the method into an operator-splitting approach that decouples chemical reactions from the spatial evolution. We demonstrate the validity and applicability of our algorithm with a comprehensive suite of standard test problems that also serve to quantify the numerical accuracy of the method. We provide a freely available, fully functional GPU implementation. Integration into Inchman, a user-friendly web service, that allows researchers to perform parallel simulations of reaction-drift-diffusion systems on GPU clusters is underway. PMID:22506001
Efficient Constant-Time Complexity Algorithm for Stochastic Simulation of Large Reaction Networks.
Thanh, Vo Hong; Zunino, Roberto; Priami, Corrado
2017-01-01
Exact stochastic simulation is an indispensable tool for a quantitative study of biochemical reaction networks. The simulation realizes the time evolution of the model by randomly choosing a reaction to fire and update the system state according to a probability that is proportional to the reaction propensity. Two computationally expensive tasks in simulating large biochemical networks are the selection of next reaction firings and the update of reaction propensities due to state changes. We present in this work a new exact algorithm to optimize both of these simulation bottlenecks. Our algorithm employs the composition-rejection on the propensity bounds of reactions to select the next reaction firing. The selection of next reaction firings is independent of the number reactions while the update of propensities is skipped and performed only when necessary. It therefore provides a favorable scaling for the computational complexity in simulating large reaction networks. We benchmark our new algorithm with the state of the art algorithms available in literature to demonstrate its applicability and efficiency.
NASA Astrophysics Data System (ADS)
Yeh, Cheng-Ta; Lin, Yi-Kuei; Yang, Jo-Yun
2018-07-01
Network reliability is an important performance index for many real-life systems, such as electric power systems, computer systems and transportation systems. These systems can be modelled as stochastic-flow networks (SFNs) composed of arcs and nodes. Most system supervisors respect the network reliability maximization by finding the optimal multi-state resource assignment, which is one resource to each arc. However, a disaster may cause correlated failures for the assigned resources, affecting the network reliability. This article focuses on determining the optimal resource assignment with maximal network reliability for SFNs. To solve the problem, this study proposes a hybrid algorithm integrating the genetic algorithm and tabu search to determine the optimal assignment, called the hybrid GA-TS algorithm (HGTA), and integrates minimal paths, recursive sum of disjoint products and the correlated binomial distribution to calculate network reliability. Several practical numerical experiments are adopted to demonstrate that HGTA has better computational quality than several popular soft computing algorithms.
NASA Technical Reports Server (NTRS)
Halyo, N.; Broussard, J. R.
1984-01-01
The stochastic, infinite time, discrete output feedback problem for time invariant linear systems is examined. Two sets of sufficient conditions for the existence of a stable, globally optimal solution are presented. An expression for the total change in the cost function due to a change in the feedback gain is obtained. This expression is used to show that a sequence of gains can be obtained by an algorithm, so that the corresponding cost sequence is monotonically decreasing and the corresponding sequence of the cost gradient converges to zero. The algorithm is guaranteed to obtain a critical point of the cost function. The computational steps necessary to implement the algorithm on a computer are presented. The results are applied to a digital outer loop flight control problem. The numerical results for this 13th order problem indicate a rate of convergence considerably faster than two other algorithms used for comparison.
Mofford, David M; Adams, Spencer T; Reddy, G S Kiran Kumar; Reddy, Gadarla Randheer; Miller, Stephen C
2015-07-15
Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain.
2015-01-01
Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain. PMID:26120870
NASA Technical Reports Server (NTRS)
Thomas, R. R.
1976-01-01
Two methods for eliminating luminol interference materials are described. One method eliminates interference from organic material by pre-reacting a sample with dilute hydrogen peroxide. The reaction rate resolution method for eliminating inorganic forms of interference is also described. The combination of the two methods makes the luminol system more specific for bacteria. Flow system designs for both the firefly luciferase and luminol bacteria detection systems are described. The firefly luciferase flow system incorporating nitric acid extraction and optimal dilutions has a functional sensitivity of 3 x 100,000 E. coli/ml. The luminol flow system incorporates the hydrogen peroxide pretreatment and the reaction rate resolution techniques for eliminating interference. The functional sensitivity of the luminol flow system is 1 x 10,000 E. coli/ml.
NASA Astrophysics Data System (ADS)
Alam, Rabeka; Zylstra, Joshua; Fontaine, Danielle M.; Branchini, Bruce R.; Maye, Mathew M.
2013-05-01
Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated.Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated. Electronic supplementary information (ESI) available: Experimental details, Fig. S1 and Table S1-S4. See DOI: 10.1039/c3nr01842c
Scaling Up Coordinate Descent Algorithms for Large ℓ1 Regularization Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherrer, Chad; Halappanavar, Mahantesh; Tewari, Ambuj
2012-07-03
We present a generic framework for parallel coordinate descent (CD) algorithms that has as special cases the original sequential algorithms of Cyclic CD and Stochastic CD, as well as the recent parallel Shotgun algorithm of Bradley et al. We introduce two novel parallel algorithms that are also special cases---Thread-Greedy CD and Coloring-Based CD---and give performance measurements for an OpenMP implementation of these.
Stochastic derivative-free optimization using a trust region framework
Larson, Jeffrey; Billups, Stephen C.
2016-02-17
This study presents a trust region algorithm to minimize a function f when one has access only to noise-corrupted function values f¯. The model-based algorithm dynamically adjusts its step length, taking larger steps when the model and function agree and smaller steps when the model is less accurate. The method does not require the user to specify a fixed pattern of points used to build local models and does not repeatedly sample points. If f is sufficiently smooth and the noise is independent and identically distributed with mean zero and finite variance, we prove that our algorithm produces iterates suchmore » that the corresponding function gradients converge in probability to zero. As a result, we present a prototype of our algorithm that, while simplistic in its management of previously evaluated points, solves benchmark problems in fewer function evaluations than do existing stochastic approximation methods.« less
Stochastic Leader Gravitational Search Algorithm for Enhanced Adaptive Beamforming Technique
Darzi, Soodabeh; Islam, Mohammad Tariqul; Tiong, Sieh Kiong; Kibria, Salehin; Singh, Mandeep
2015-01-01
In this paper, stochastic leader gravitational search algorithm (SL-GSA) based on randomized k is proposed. Standard GSA (SGSA) utilizes the best agents without any randomization, thus it is more prone to converge at suboptimal results. Initially, the new approach randomly choses k agents from the set of all agents to improve the global search ability. Gradually, the set of agents is reduced by eliminating the agents with the poorest performances to allow rapid convergence. The performance of the SL-GSA was analyzed for six well-known benchmark functions, and the results are compared with SGSA and some of its variants. Furthermore, the SL-GSA is applied to minimum variance distortionless response (MVDR) beamforming technique to ensure compatibility with real world optimization problems. The proposed algorithm demonstrates superior convergence rate and quality of solution for both real world problems and benchmark functions compared to original algorithm and other recent variants of SGSA. PMID:26552032
Dynamic phasing of multichannel cw laser radiation by means of a stochastic gradient algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkov, V A; Volkov, M V; Garanin, S G
2013-09-30
The phasing of a multichannel laser beam by means of an iterative stochastic parallel gradient (SPG) algorithm has been numerically and experimentally investigated. The operation of the SPG algorithm is simulated, the acceptable range of amplitudes of probe phase shifts is found, and the algorithm parameters at which the desired Strehl number can be obtained with a minimum number of iterations are determined. An experimental bench with phase modulators based on lithium niobate, which are controlled by a multichannel electronic unit with a real-time microcontroller, has been designed. Phasing of 16 cw laser beams at a system response bandwidth ofmore » 3.7 kHz and phase thermal distortions in a frequency band of about 10 Hz is experimentally demonstrated. The experimental data are in complete agreement with the calculation results. (control of laser radiation parameters)« less
Stochastic chemical kinetics : A review of the modelling and simulation approaches.
Lecca, Paola
2013-12-01
A review of the physical principles that are the ground of the stochastic formulation of chemical kinetics is presented along with a survey of the algorithms currently used to simulate it. This review covers the main literature of the last decade and focuses on the mathematical models describing the characteristics and the behavior of systems of chemical reactions at the nano- and micro-scale. Advantages and limitations of the models are also discussed in the light of the more and more frequent use of these models and algorithms in modeling and simulating biochemical and even biological processes.
Stochastic series expansion simulation of the t -V model
NASA Astrophysics Data System (ADS)
Wang, Lei; Liu, Ye-Hua; Troyer, Matthias
2016-04-01
We present an algorithm for the efficient simulation of the half-filled spinless t -V model on bipartite lattices, which combines the stochastic series expansion method with determinantal quantum Monte Carlo techniques widely used in fermionic simulations. The algorithm scales linearly in the inverse temperature, cubically with the system size, and is free from the time-discretization error. We use it to map out the finite-temperature phase diagram of the spinless t -V model on the honeycomb lattice and observe a suppression of the critical temperature of the charge-density-wave phase in the vicinity of a fermionic quantum critical point.
Algebraic, geometric, and stochastic aspects of genetic operators
NASA Technical Reports Server (NTRS)
Foo, N. Y.; Bosworth, J. L.
1972-01-01
Genetic algorithms for function optimization employ genetic operators patterned after those observed in search strategies employed in natural adaptation. Two of these operators, crossover and inversion, are interpreted in terms of their algebraic and geometric properties. Stochastic models of the operators are developed which are employed in Monte Carlo simulations of their behavior.
between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or air exchange rates (AER). The Stochastic Human Exposure and Dose Simulation (SHEDS) model is a population exposure model that uses a pro...
NASA Astrophysics Data System (ADS)
Zakynthinaki, M. S.; Stirling, J. R.
2007-01-01
Stochastic optimization is applied to the problem of optimizing the fit of a model to the time series of raw physiological (heart rate) data. The physiological response to exercise has been recently modeled as a dynamical system. Fitting the model to a set of raw physiological time series data is, however, not a trivial task. For this reason and in order to calculate the optimal values of the parameters of the model, the present study implements the powerful stochastic optimization method ALOPEX IV, an algorithm that has been proven to be fast, effective and easy to implement. The optimal parameters of the model, calculated by the optimization method for the particular athlete, are very important as they characterize the athlete's current condition. The present study applies the ALOPEX IV stochastic optimization to the modeling of a set of heart rate time series data corresponding to different exercises of constant intensity. An analysis of the optimization algorithm, together with an analytic proof of its convergence (in the absence of noise), is also presented.
Yi, Qu; Zhan-ming, Li; Er-chao, Li
2012-11-01
A new fault detection and diagnosis (FDD) problem via the output probability density functions (PDFs) for non-gausian stochastic distribution systems (SDSs) is investigated. The PDFs can be approximated by radial basis functions (RBFs) neural networks. Different from conventional FDD problems, the measured information for FDD is the output stochastic distributions and the stochastic variables involved are not confined to Gaussian ones. A (RBFs) neural network technique is proposed so that the output PDFs can be formulated in terms of the dynamic weighings of the RBFs neural network. In this work, a nonlinear adaptive observer-based fault detection and diagnosis algorithm is presented by introducing the tuning parameter so that the residual is as sensitive as possible to the fault. Stability and Convergency analysis is performed in fault detection and fault diagnosis analysis for the error dynamic system. At last, an illustrated example is given to demonstrate the efficiency of the proposed algorithm, and satisfactory results have been obtained. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Compressing random microstructures via stochastic Wang tilings.
Novák, Jan; Kučerová, Anna; Zeman, Jan
2012-10-01
This Rapid Communication presents a stochastic Wang tiling-based technique to compress or reconstruct disordered microstructures on the basis of given spatial statistics. Unlike the existing approaches based on a single unit cell, it utilizes a finite set of tiles assembled by a stochastic tiling algorithm, thereby allowing to accurately reproduce long-range orientation orders in a computationally efficient manner. Although the basic features of the method are demonstrated for a two-dimensional particulate suspension, the present framework is fully extensible to generic multidimensional media.
Oscillatory Regulation of Hes1: Discrete Stochastic Delay Modelling and Simulation
Barrio, Manuel; Burrage, Kevin; Leier, André; Tian, Tianhai
2006-01-01
Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein. PMID:16965175
Integrated Optoelectronic Networks for Application-Driven Multicore Computing
2017-05-08
hybrid photonic torus, the all-optical Corona crossbar, and the hybrid hierarchical Firefly crossbar. • The key challenges for waveguide photonics...improves SXR but with relatively higher EDP overhead. Our evaluation results indicate that the encoding schemes improve worst-case-SXR in Corona and...photonic crossbar architectures ( Corona and Firefly) indicate that our approach improves worst-case signal-to-noise ratio (SNR) by up to 51.7
Stochastic Multi-Timescale Power System Operations With Variable Wind Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hongyu; Krad, Ibrahim; Florita, Anthony
This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conductedmore » in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.« less
Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology
Gao, Fei; Li, Ye; Novak, Igor L.; Slepchenko, Boris M.
2016-01-01
Hybrid deterministic-stochastic methods provide an efficient alternative to a fully stochastic treatment of models which include components with disparate levels of stochasticity. However, general-purpose hybrid solvers for spatially resolved simulations of reaction-diffusion systems are not widely available. Here we describe fundamentals of a general-purpose spatial hybrid method. The method generates realizations of a spatially inhomogeneous hybrid system by appropriately integrating capabilities of a deterministic partial differential equation solver with a popular particle-based stochastic simulator, Smoldyn. Rigorous validation of the algorithm is detailed, using a simple model of calcium ‘sparks’ as a testbed. The solver is then applied to a deterministic-stochastic model of spontaneous emergence of cell polarity. The approach is general enough to be implemented within biologist-friendly software frameworks such as Virtual Cell. PMID:27959915
Weighted Flow Algorithms (WFA) for stochastic particle coagulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVille, R.E.L., E-mail: rdeville@illinois.edu; Riemer, N., E-mail: nriemer@illinois.edu; West, M., E-mail: mwest@illinois.edu
2011-09-20
Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangianmore » trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.« less
Error analysis of stochastic gradient descent ranking.
Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan
2013-06-01
Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.
Weighted Flow Algorithms (WFA) for stochastic particle coagulation
NASA Astrophysics Data System (ADS)
DeVille, R. E. L.; Riemer, N.; West, M.
2011-09-01
Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangian trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.
Skinner, James E; Meyer, Michael; Nester, Brian A; Geary, Una; Taggart, Pamela; Mangione, Antoinette; Ramalanjaona, George; Terregino, Carol; Dalsey, William C
2009-01-01
Objective: Comparative algorithmic evaluation of heartbeat series in low-to-high risk cardiac patients for the prospective prediction of risk of arrhythmic death (AD). Background: Heartbeat variation reflects cardiac autonomic function and risk of AD. Indices based on linear stochastic models are independent risk factors for AD in post-myocardial infarction (post-MI) cohorts. Indices based on nonlinear deterministic models have superior predictability in retrospective data. Methods: Patients were enrolled (N = 397) in three emergency departments upon presenting with chest pain and were determined to be at low-to-high risk of acute MI (>7%). Brief ECGs were recorded (15 min) and R-R intervals assessed by three nonlinear algorithms (PD2i, DFA, and ApEn) and four conventional linear-stochastic measures (SDNN, MNN, 1/f-Slope, LF/HF). Out-of-hospital AD was determined by modified Hinkle–Thaler criteria. Results: All-cause mortality at one-year follow-up was 10.3%, with 7.7% adjudicated to be AD. The sensitivity and relative risk for predicting AD was highest at all time-points for the nonlinear PD2i algorithm (p ≤0.001). The sensitivity at 30 days was 100%, specificity 58%, and relative risk >100 (p ≤0.001); sensitivity at 360 days was 95%, specificity 58%, and relative risk >11.4 (p ≤0.001). Conclusions: Heartbeat analysis by the time-dependent nonlinear PD2i algorithm is comparatively the superior test. PMID:19707283
NASA Technical Reports Server (NTRS)
Goad, Clyde C.; Chadwell, C. David
1993-01-01
GEODYNII is a conventional batch least-squares differential corrector computer program with deterministic models of the physical environment. Conventional algorithms were used to process differenced phase and pseudorange data to determine eight-day Global Positioning system (GPS) orbits with several meter accuracy. However, random physical processes drive the errors whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy, these random processes should be modeled stochastically. The conventional batch least-squares algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the correlation among data values. Differenced pseudorange, and especially differenced phase, are precise data types that can be used to improve the GPS orbit precision. To overcome these limitations and improve the accuracy of GPS orbits computed using GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It contains a correlated double difference range processing capability, first order Gauss Markov models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random walk model for the tropospheric refraction correction. The development approach was to interface the standard GEODYNII output files (measurement partials and variationals) with software modules containing the stochastic estimator, the stochastic models, and a double differenced phase range processing routine. Thus, no modifications to the original GEODYNII software were required. A schematic of the development is shown. The observational data are edited in the preprocessor and the data are passed to GEODYNII as one of its standard data types. A reference orbit is determined using GEODYNII as a batch least-squares processor and the GEODYNII measurement partial (FTN90) and variational (FTN80, V-matrix) files are generated. These two files along with a control statement file and a satellite identification and mass file are passed to the filter/smoother to estimate time-varying parameter states at each epoch, improved satellite initial elements, and improved estimates of constant parameters.
Stochastic Investigation of Natural Frequency for Functionally Graded Plates
NASA Astrophysics Data System (ADS)
Karsh, P. K.; Mukhopadhyay, T.; Dey, S.
2018-03-01
This paper presents the stochastic natural frequency analysis of functionally graded plates by applying artificial neural network (ANN) approach. Latin hypercube sampling is utilised to train the ANN model. The proposed algorithm for stochastic natural frequency analysis of FGM plates is validated and verified with original finite element method and Monte Carlo simulation (MCS). The combined stochastic variation of input parameters such as, elastic modulus, shear modulus, Poisson ratio, and mass density are considered. Power law is applied to distribute the material properties across the thickness. The present ANN model reduces the sample size and computationally found efficient as compared to conventional Monte Carlo simulation.
Boosting association rule mining in large datasets via Gibbs sampling.
Qian, Guoqi; Rao, Calyampudi Radhakrishna; Sun, Xiaoying; Wu, Yuehua
2016-05-03
Current algorithms for association rule mining from transaction data are mostly deterministic and enumerative. They can be computationally intractable even for mining a dataset containing just a few hundred transaction items, if no action is taken to constrain the search space. In this paper, we develop a Gibbs-sampling-induced stochastic search procedure to randomly sample association rules from the itemset space, and perform rule mining from the reduced transaction dataset generated by the sample. Also a general rule importance measure is proposed to direct the stochastic search so that, as a result of the randomly generated association rules constituting an ergodic Markov chain, the overall most important rules in the itemset space can be uncovered from the reduced dataset with probability 1 in the limit. In the simulation study and a real genomic data example, we show how to boost association rule mining by an integrated use of the stochastic search and the Apriori algorithm.
Online learning in optical tomography: a stochastic approach
NASA Astrophysics Data System (ADS)
Chen, Ke; Li, Qin; Liu, Jian-Guo
2018-07-01
We study the inverse problem of radiative transfer equation (RTE) using stochastic gradient descent method (SGD) in this paper. Mathematically, optical tomography amounts to recovering the optical parameters in RTE using the incoming–outgoing pair of light intensity. We formulate it as a PDE-constraint optimization problem, where the mismatch of computed and measured outgoing data is minimized with same initial data and RTE constraint. The memory and computation cost it requires, however, is typically prohibitive, especially in high dimensional space. Smart iterative solvers that only use partial information in each step is called for thereafter. Stochastic gradient descent method is an online learning algorithm that randomly selects data for minimizing the mismatch. It requires minimum memory and computation, and advances fast, therefore perfectly serves the purpose. In this paper we formulate the problem, in both nonlinear and its linearized setting, apply SGD algorithm and analyze the convergence performance.
NASA Astrophysics Data System (ADS)
Bäumer, Richard; Terrill, Richard; Wollnack, Simon; Werner, Herbert; Starossek, Uwe
2018-01-01
The twin rotor damper (TRD), an active mass damper, uses the centrifugal forces of two eccentrically rotating control masses. In the continuous rotation mode, the preferred mode of operation, the two eccentric control masses rotate with a constant angular velocity about two parallel axes, creating, under further operational constraints, a harmonic control force in a single direction. In previous theoretical work, it was shown that this mode of operation is effective for the damping of large, harmonic vibrations of a single degree of freedom (SDOF) oscillator. In this paper, the SDOF oscillator is assumed to be affected by a stochastic excitation force and consequently responds with several frequencies. Therefore, the TRD must deviate from the continuous rotation mode to ensure the anti-phasing between the harmonic control force of the TRD and the velocity of the SDOF oscillator. It is found that the required deviation from the continuous rotation mode increases with lower vibration amplitude. Therefore, an operation of the TRD in the continuous rotation mode is no longer efficient below a specific vibration-amplitude threshold. To additionally dampen vibrations below this threshold, the TRD can switch to another, more energy-consuming mode of operation, the swinging mode in which both control masses oscillate about certain angular positions. A power-efficient control algorithm is presented which uses the continuous rotation mode for large vibrations and the swinging mode for small vibrations. To validate the control algorithm, numerical and experimental investigations are performed for a single degree of freedom oscillator under stochastic excitation. Using both modes of operation, it is shown that the control algorithm is effective for the cases of free and stochastically forced vibrations of arbitrary amplitude.
New “Tau-Leap” Strategy for Accelerated Stochastic Simulation
2015-01-01
The “Tau-Leap” strategy for stochastic simulations of chemical reaction systems due to Gillespie and co-workers has had considerable impact on various applications. This strategy is reexamined with Chebyshev’s inequality for random variables as it provides a rigorous probabilistic basis for a measured τ-leap thus adding significantly to simulation efficiency. It is also shown that existing strategies for simulation times have no probabilistic assurance that they satisfy the τ-leap criterion while the use of Chebyshev’s inequality leads to a specified degree of certainty with which the τ-leap criterion is satisfied. This reduces the loss of sample paths which do not comply with the τ-leap criterion. The performance of the present algorithm is assessed, with respect to one discussed by Cao et al. (J. Chem. Phys.2006, 124, 044109), a second pertaining to binomial leap (Tian and Burrage J. Chem. Phys.2004, 121, 10356; Chatterjee et al. J. Chem. Phys.2005, 122, 024112; Peng et al. J. Chem. Phys.2007, 126, 224109), and a third regarding the midpoint Poisson leap (Peng et al., 2007; Gillespie J. Chem. Phys.2001, 115, 1716). The performance assessment is made by estimating the error in the histogram measured against that obtained with the so-called stochastic simulation algorithm. It is shown that the current algorithm displays notably less histogram error than its predecessor for a fixed computation time and, conversely, less computation time for a fixed accuracy. This computational advantage is an asset in repetitive calculations essential for modeling stochastic systems. The importance of stochastic simulations is derived from diverse areas of application in physical and biological sciences, process systems, and economics, etc. Computational improvements such as those reported herein are therefore of considerable significance. PMID:25620846
New "Tau-Leap" Strategy for Accelerated Stochastic Simulation.
Ramkrishna, Doraiswami; Shu, Che-Chi; Tran, Vu
2014-12-10
The "Tau-Leap" strategy for stochastic simulations of chemical reaction systems due to Gillespie and co-workers has had considerable impact on various applications. This strategy is reexamined with Chebyshev's inequality for random variables as it provides a rigorous probabilistic basis for a measured τ-leap thus adding significantly to simulation efficiency. It is also shown that existing strategies for simulation times have no probabilistic assurance that they satisfy the τ-leap criterion while the use of Chebyshev's inequality leads to a specified degree of certainty with which the τ-leap criterion is satisfied. This reduces the loss of sample paths which do not comply with the τ-leap criterion. The performance of the present algorithm is assessed, with respect to one discussed by Cao et al. ( J. Chem. Phys. 2006 , 124 , 044109), a second pertaining to binomial leap (Tian and Burrage J. Chem. Phys. 2004 , 121 , 10356; Chatterjee et al. J. Chem. Phys. 2005 , 122 , 024112; Peng et al. J. Chem. Phys. 2007 , 126 , 224109), and a third regarding the midpoint Poisson leap (Peng et al., 2007; Gillespie J. Chem. Phys. 2001 , 115 , 1716). The performance assessment is made by estimating the error in the histogram measured against that obtained with the so-called stochastic simulation algorithm. It is shown that the current algorithm displays notably less histogram error than its predecessor for a fixed computation time and, conversely, less computation time for a fixed accuracy. This computational advantage is an asset in repetitive calculations essential for modeling stochastic systems. The importance of stochastic simulations is derived from diverse areas of application in physical and biological sciences, process systems, and economics, etc. Computational improvements such as those reported herein are therefore of considerable significance.
Parihar, Abhinav; Jerry, Matthew; Datta, Suman; Raychowdhury, Arijit
2018-01-01
Artificial neural networks can harness stochasticity in multiple ways to enable a vast class of computationally powerful models. Boltzmann machines and other stochastic neural networks have been shown to outperform their deterministic counterparts by allowing dynamical systems to escape local energy minima. Electronic implementation of such stochastic networks is currently limited to addition of algorithmic noise to digital machines which is inherently inefficient; albeit recent efforts to harness physical noise in devices for stochasticity have shown promise. To succeed in fabricating electronic neuromorphic networks we need experimental evidence of devices with measurable and controllable stochasticity which is complemented with the development of reliable statistical models of such observed stochasticity. Current research literature has sparse evidence of the former and a complete lack of the latter. This motivates the current article where we demonstrate a stochastic neuron using an insulator-metal-transition (IMT) device, based on electrically induced phase-transition, in series with a tunable resistance. We show that an IMT neuron has dynamics similar to a piecewise linear FitzHugh-Nagumo (FHN) neuron and incorporates all characteristics of a spiking neuron in the device phenomena. We experimentally demonstrate spontaneous stochastic spiking along with electrically controllable firing probabilities using Vanadium Dioxide (VO2) based IMT neurons which show a sigmoid-like transfer function. The stochastic spiking is explained by two noise sources - thermal noise and threshold fluctuations, which act as precursors of bifurcation. As such, the IMT neuron is modeled as an Ornstein-Uhlenbeck (OU) process with a fluctuating boundary resulting in transfer curves that closely match experiments. The moments of interspike intervals are calculated analytically by extending the first-passage-time (FPT) models for Ornstein-Uhlenbeck (OU) process to include a fluctuating boundary. We find that the coefficient of variation of interspike intervals depend on the relative proportion of thermal and threshold noise, where threshold noise is the dominant source in the current experimental demonstrations. As one of the first comprehensive studies of a stochastic neuron hardware and its statistical properties, this article would enable efficient implementation of a large class of neuro-mimetic networks and algorithms. PMID:29670508
Parihar, Abhinav; Jerry, Matthew; Datta, Suman; Raychowdhury, Arijit
2018-01-01
Artificial neural networks can harness stochasticity in multiple ways to enable a vast class of computationally powerful models. Boltzmann machines and other stochastic neural networks have been shown to outperform their deterministic counterparts by allowing dynamical systems to escape local energy minima. Electronic implementation of such stochastic networks is currently limited to addition of algorithmic noise to digital machines which is inherently inefficient; albeit recent efforts to harness physical noise in devices for stochasticity have shown promise. To succeed in fabricating electronic neuromorphic networks we need experimental evidence of devices with measurable and controllable stochasticity which is complemented with the development of reliable statistical models of such observed stochasticity. Current research literature has sparse evidence of the former and a complete lack of the latter. This motivates the current article where we demonstrate a stochastic neuron using an insulator-metal-transition (IMT) device, based on electrically induced phase-transition, in series with a tunable resistance. We show that an IMT neuron has dynamics similar to a piecewise linear FitzHugh-Nagumo (FHN) neuron and incorporates all characteristics of a spiking neuron in the device phenomena. We experimentally demonstrate spontaneous stochastic spiking along with electrically controllable firing probabilities using Vanadium Dioxide (VO 2 ) based IMT neurons which show a sigmoid-like transfer function. The stochastic spiking is explained by two noise sources - thermal noise and threshold fluctuations, which act as precursors of bifurcation. As such, the IMT neuron is modeled as an Ornstein-Uhlenbeck (OU) process with a fluctuating boundary resulting in transfer curves that closely match experiments. The moments of interspike intervals are calculated analytically by extending the first-passage-time (FPT) models for Ornstein-Uhlenbeck (OU) process to include a fluctuating boundary. We find that the coefficient of variation of interspike intervals depend on the relative proportion of thermal and threshold noise, where threshold noise is the dominant source in the current experimental demonstrations. As one of the first comprehensive studies of a stochastic neuron hardware and its statistical properties, this article would enable efficient implementation of a large class of neuro-mimetic networks and algorithms.
Fock space, symbolic algebra, and analytical solutions for small stochastic systems.
Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A
2015-12-01
Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.
Generation of Two Stable Cell Lines that Express hERa or
hERa and b and Firefly Luciferase Genes for Endocrine Screening
K.L. Bobseine*1, W.R. Kelce2, P.C. Hartig*1, and L.E. Gray, Jr.1
1USEPA, NHEERL, Reproductive Toxicology Division, RTP, NC, 2Searle, Reprod...
Regulation of AR and (Beta)-Catenin Signaling by Pin 1 in Prostate Cancer
2005-10-01
Renilla luciferase activities were determined using a dual-luciferase reporter assay kit (Promega, Madison, WI), and Renilla activities were not...consistently affected by any of the cotransfected vectors. The firefly luciferase was divided by the control Renilla luciferase and the results, given as...transfected with pTopflash (50 ng) and CMV- Renilla (2.5 ng) reporter plasmids. Firefly versus Renilla luciferase activities were determined and
Modulation of Beta-catenin Activity With PKD1 Prostate Cancer
2009-04-01
mutated site as a negative control (FOPFlash) with pRL-TK ( Renilla luciferase) in C4-2- PKD1-GFP cells activated with Bryostatin 1 or DMSO. The...firefly and Renilla luciferase activities were measured with the Dual-Luciferase Reporter (DLR) Assay System. After normalizing the firefly luciferase...activity to that of Renilla luciferase, the FOPFlash reporter plasmid luciferase values were subtracted from the normalized values obtained with the
Imani, Mehdi; Hosseinkhani, Saman; Ahmadian, Shahin; Nazari, Mahboobeh
2010-08-01
The thermal sensitivity and pH-sensitive spectral properties of firefly luciferase have hampered its application in a variety of fields. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make two separate mutant enzymes with a single bridge. Even though the A103C/S121C mutant showed remarkable thermal stability, its specific activity decreased, whereas the A296C/A326C mutant showed tremendous thermal stability, relative pH insensitivity and 7.3-fold increase of specific activity. Moreover, the bioluminescence emission spectrum of A296C/A326C was resistant against higher temperatures (37 degrees C). Far-UV CD analysis showed slight secondary structure changes for both mutants. Thermal denaturation analysis showed that conformational stabilities of A103C/S121C and A296C/A326C are more than native firefly luciferase. It is proposed that since A296 and A326 are situated in the vicinity of the enzyme active site microenvironment in comparison with A103 and S121, the formation of a disulfide bridge in this region has more impact on enzyme kinetic characteristics.
ERIC Educational Resources Information Center
Argoti, A.; Fan, L. T.; Cruz, J.; Chou, S. T.
2008-01-01
The stochastic simulation of chemical reactions, specifically, a simple reversible chemical reaction obeying the first-order, i.e., linear, rate law, has been presented by Martinez-Urreaga and his collaborators in this journal. The current contribution is intended to complement and augment their work in two aspects. First, the simple reversible…
ERIC Educational Resources Information Center
von Davier, Matthias; Sinharay, Sandip
2009-01-01
This paper presents an application of a stochastic approximation EM-algorithm using a Metropolis-Hastings sampler to estimate the parameters of an item response latent regression model. Latent regression models are extensions of item response theory (IRT) to a 2-level latent variable model in which covariates serve as predictors of the…
Implementation of Monte Carlo Tree Search (MCTS) Algorithm in COMBATXXI using JDAFS
2014-07-31
ManyStochasticDuelModelforaMountainBattle.pdf. [10] M Kress and I Talmor. “A new look at the 3: 1 rule of combat through Markov stochastic Lanchester ...00000007/2600758. [11] FW Lanchester . Aircraft in warfare: The dawn of the fourth arm. London: Constable, 1916. url: http://books.google.com/books?hl=en\\&lr
Algorithms for output feedback, multiple-model, and decentralized control problems
NASA Technical Reports Server (NTRS)
Halyo, N.; Broussard, J. R.
1984-01-01
The optimal stochastic output feedback, multiple-model, and decentralized control problems with dynamic compensation are formulated and discussed. Algorithms for each problem are presented, and their relationship to a basic output feedback algorithm is discussed. An aircraft control design problem is posed as a combined decentralized, multiple-model, output feedback problem. A control design is obtained using the combined algorithm. An analysis of the design is presented.
Multi-period project portfolio selection under risk considerations and stochastic income
NASA Astrophysics Data System (ADS)
Tofighian, Ali Asghar; Moezzi, Hamid; Khakzar Barfuei, Morteza; Shafiee, Mahmood
2018-02-01
This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, considering risks, stochastic incomes, and possibility of investing extra budget in each time period. Due to the complexity of the problem, an effective meta-heuristic method hybridized with a local search procedure is presented to solve the problem. The algorithm is based on genetic algorithm (GA), which is a prominent method to solve this type of problems. The GA is enhanced by a new solution representation and well selected operators. It also is hybridized with a local search mechanism to gain better solution in shorter time. The performance of the proposed algorithm is then compared with well-known algorithms, like basic genetic algorithm (GA), particle swarm optimization (PSO), and electromagnetism-like algorithm (EM-like) by means of some prominent indicators. The computation results show the superiority of the proposed algorithm in terms of accuracy, robustness and computation time. At last, the proposed algorithm is wisely combined with PSO to improve the computing time considerably.
Variance decomposition in stochastic simulators.
Le Maître, O P; Knio, O M; Moraes, A
2015-06-28
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Cox process representation and inference for stochastic reaction-diffusion processes
NASA Astrophysics Data System (ADS)
Schnoerr, David; Grima, Ramon; Sanguinetti, Guido
2016-05-01
Complex behaviour in many systems arises from the stochastic interactions of spatially distributed particles or agents. Stochastic reaction-diffusion processes are widely used to model such behaviour in disciplines ranging from biology to the social sciences, yet they are notoriously difficult to simulate and calibrate to observational data. Here we use ideas from statistical physics and machine learning to provide a solution to the inverse problem of learning a stochastic reaction-diffusion process from data. Our solution relies on a non-trivial connection between stochastic reaction-diffusion processes and spatio-temporal Cox processes, a well-studied class of models from computational statistics. This connection leads to an efficient and flexible algorithm for parameter inference and model selection. Our approach shows excellent accuracy on numeric and real data examples from systems biology and epidemiology. Our work provides both insights into spatio-temporal stochastic systems, and a practical solution to a long-standing problem in computational modelling.
Hybrid ODE/SSA methods and the cell cycle model
NASA Astrophysics Data System (ADS)
Wang, S.; Chen, M.; Cao, Y.
2017-07-01
Stochastic effect in cellular systems has been an important topic in systems biology. Stochastic modeling and simulation methods are important tools to study stochastic effect. Given the low efficiency of stochastic simulation algorithms, the hybrid method, which combines an ordinary differential equation (ODE) system with a stochastic chemically reacting system, shows its unique advantages in the modeling and simulation of biochemical systems. The efficiency of hybrid method is usually limited by reactions in the stochastic subsystem, which are modeled and simulated using Gillespie's framework and frequently interrupt the integration of the ODE subsystem. In this paper we develop an efficient implementation approach for the hybrid method coupled with traditional ODE solvers. We also compare the efficiency of hybrid methods with three widely used ODE solvers RADAU5, DASSL, and DLSODAR. Numerical experiments with three biochemical models are presented. A detailed discussion is presented for the performances of three ODE solvers.
Variance decomposition in stochastic simulators
NASA Astrophysics Data System (ADS)
Le Maître, O. P.; Knio, O. M.; Moraes, A.
2015-06-01
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.
Perspective: Stochastic magnetic devices for cognitive computing
NASA Astrophysics Data System (ADS)
Roy, Kaushik; Sengupta, Abhronil; Shim, Yong
2018-06-01
Stochastic switching of nanomagnets can potentially enable probabilistic cognitive hardware consisting of noisy neural and synaptic components. Furthermore, computational paradigms inspired from the Ising computing model require stochasticity for achieving near-optimality in solutions to various types of combinatorial optimization problems such as the Graph Coloring Problem or the Travelling Salesman Problem. Achieving optimal solutions in such problems are computationally exhaustive and requires natural annealing to arrive at the near-optimal solutions. Stochastic switching of devices also finds use in applications involving Deep Belief Networks and Bayesian Inference. In this article, we provide a multi-disciplinary perspective across the stack of devices, circuits, and algorithms to illustrate how the stochastic switching dynamics of spintronic devices in the presence of thermal noise can provide a direct mapping to the computational units of such probabilistic intelligent systems.
SMD-based numerical stochastic perturbation theory
NASA Astrophysics Data System (ADS)
Dalla Brida, Mattia; Lüscher, Martin
2017-05-01
The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schrödinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit.
Stochastic HKMDHE: A multi-objective contrast enhancement algorithm
NASA Astrophysics Data System (ADS)
Pratiher, Sawon; Mukhopadhyay, Sabyasachi; Maity, Srideep; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.
2018-02-01
This contribution proposes a novel extension of the existing `Hyper Kurtosis based Modified Duo-Histogram Equalization' (HKMDHE) algorithm, for multi-objective contrast enhancement of biomedical images. A novel modified objective function has been formulated by joint optimization of the individual histogram equalization objectives. The optimal adequacy of the proposed methodology with respect to image quality metrics such as brightness preserving abilities, peak signal-to-noise ratio (PSNR), Structural Similarity Index (SSIM) and universal image quality metric has been experimentally validated. The performance analysis of the proposed Stochastic HKMDHE with existing histogram equalization methodologies like Global Histogram Equalization (GHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) has been given for comparative evaluation.
NASA Astrophysics Data System (ADS)
Levine, Zachary H.; Pintar, Adam L.
2015-11-01
A simple algorithm for averaging a stochastic sequence of 1D arrays in a moving, expanding window is provided. The samples are grouped in bins which increase exponentially in size so that a constant fraction of the samples is retained at any point in the sequence. The algorithm is shown to have particular relevance for a class of Monte Carlo sampling problems which includes one characteristic of iterative reconstruction in computed tomography. The code is available in the CPC program library in both Fortran 95 and C and is also available in R through CRAN.
Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems.
Bogatyrenko, Evgeniya; Pompey, Pascal; Hanebeck, Uwe D
2011-05-01
Tracking of beating heart motion in a robotic surgery system is required for complex cardiovascular interventions. A heart surface motion tracking method is developed, including a stochastic physics-based heart surface model and an efficient reconstruction algorithm. The algorithm uses the constraints provided by the model that exploits the physical characteristics of the heart. The main advantage of the model is that it is more realistic than most standard heart models. Additionally, no explicit matching between the measurements and the model is required. The application of meshless methods significantly reduces the complexity of physics-based tracking. Based on the stochastic physical model of the heart surface, this approach considers the motion of the intervention area and is robust to occlusions and reflections. The tracking algorithm is evaluated in simulations and experiments on an artificial heart. Providing higher accuracy than the standard model-based methods, it successfully copes with occlusions and provides high performance even when all measurements are not available. Combining the physical and stochastic description of the heart surface motion ensures physically correct and accurate prediction. Automatic initialization of the physics-based cardiac motion tracking enables system evaluation in a clinical environment.
Application of stochastic weighted algorithms to a multidimensional silica particle model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menz, William J.; Patterson, Robert I.A.; Wagner, Wolfgang
2013-09-01
Highlights: •Stochastic weighted algorithms (SWAs) are developed for a detailed silica model. •An implementation of SWAs with the transition kernel is presented. •The SWAs’ solutions converge to the direct simulation algorithm’s (DSA) solution. •The efficiency of SWAs is evaluated for this multidimensional particle model. •It is shown that SWAs can be used for coagulation problems in industrial systems. -- Abstract: This paper presents a detailed study of the numerical behaviour of stochastic weighted algorithms (SWAs) using the transition regime coagulation kernel and a multidimensional silica particle model. The implementation in the SWAs of the transition regime coagulation kernel and associatedmore » majorant rates is described. The silica particle model of Shekar et al. [S. Shekar, A.J. Smith, W.J. Menz, M. Sander, M. Kraft, A multidimensional population balance model to describe the aerosol synthesis of silica nanoparticles, Journal of Aerosol Science 44 (2012) 83–98] was used in conjunction with this coagulation kernel to study the convergence properties of SWAs with a multidimensional particle model. High precision solutions were calculated with two SWAs and also with the established direct simulation algorithm. These solutions, which were generated using large number of computational particles, showed close agreement. It was thus demonstrated that SWAs can be successfully used with complex coagulation kernels and high dimensional particle models to simulate real-world systems.« less
Aralis, Hilary; Brookmeyer, Ron
2017-01-01
Multistate models provide an important method for analyzing a wide range of life history processes including disease progression and patient recovery following medical intervention. Panel data consisting of the states occupied by an individual at a series of discrete time points are often used to estimate transition intensities of the underlying continuous-time process. When transition intensities depend on the time elapsed in the current state and back transitions between states are possible, this intermittent observation process presents difficulties in estimation due to intractability of the likelihood function. In this manuscript, we present an iterative stochastic expectation-maximization algorithm that relies on a simulation-based approximation to the likelihood function and implement this algorithm using rejection sampling. In a simulation study, we demonstrate the feasibility and performance of the proposed procedure. We then demonstrate application of the algorithm to a study of dementia, the Nun Study, consisting of intermittently-observed elderly subjects in one of four possible states corresponding to intact cognition, impaired cognition, dementia, and death. We show that the proposed stochastic expectation-maximization algorithm substantially reduces bias in model parameter estimates compared to an alternative approach used in the literature, minimal path estimation. We conclude that in estimating intermittently observed semi-Markov models, the proposed approach is a computationally feasible and accurate estimation procedure that leads to substantial improvements in back transition estimates.
NASA Astrophysics Data System (ADS)
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
NASA Astrophysics Data System (ADS)
Tavakkoli-Moghaddam, Reza; Alinaghian, Mehdi; Salamat-Bakhsh, Alireza; Norouzi, Narges
2012-05-01
A vehicle routing problem is a significant problem that has attracted great attention from researchers in recent years. The main objectives of the vehicle routing problem are to minimize the traveled distance, total traveling time, number of vehicles and cost function of transportation. Reducing these variables leads to decreasing the total cost and increasing the driver's satisfaction level. On the other hand, this satisfaction, which will decrease by increasing the service time, is considered as an important logistic problem for a company. The stochastic time dominated by a probability variable leads to variation of the service time, while it is ignored in classical routing problems. This paper investigates the problem of the increasing service time by using the stochastic time for each tour such that the total traveling time of the vehicles is limited to a specific limit based on a defined probability. Since exact solutions of the vehicle routing problem that belong to the category of NP-hard problems are not practical in a large scale, a hybrid algorithm based on simulated annealing with genetic operators was proposed to obtain an efficient solution with reasonable computational cost and time. Finally, for some small cases, the related results of the proposed algorithm were compared with results obtained by the Lingo 8 software. The obtained results indicate the efficiency of the proposed hybrid simulated annealing algorithm.
Stochastic Inversion of 2D Magnetotelluric Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jinsong
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, itmore » provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less
MicroRNA Inhibitors as Anticancer Therapies
2007-08-17
Promoter activity was determined by co-transfection of the pGL3 promoter reporter (400 ng/well) with pRLSV40 ( Renilla luciferase, Promega)(100 ng/well) into...performed in triplicate and standard deviations calculated. Activitywas defined as Firefly/ Renilla ratio, normalized to control vector transfection. For...was defined as Firefly/ Renilla ratio normalized to activity in the absence of transfected E2F1. 5-RACE Mapping of Transcript—HEK-293 cells were tran
The Role of AHR in Breast Cancer Development
2005-07-01
Carlsbad, CA) was used according to the manufacturer’s instructions to transfect cells. The renilla luciferase vectorphRL-TK (0.5 [tg/well) was co...the firefly and renilla signals. Briefly, cells were lysed in equal volumes of cell lysis buffer (Promega) and RPMI for 20 min, transferred to a 96...well white wall plate, and analyzed using a Reporter Luminometer (Promega). The renilla signal was read after quenching the firefly output, thus
NASA Astrophysics Data System (ADS)
Alam, Rabeka; Karam, Liliana M.; Doane, Tennyson L.; Zylstra, Joshua; Fontaine, Danielle M.; Branchini, Bruce R.; Maye, Mathew M.
2014-12-01
The bioluminescence resonance energy transfer (BRET) between firefly luciferase enzymes and semiconductive quantum dots (QDs) with near infrared emission is described. The QD were phase transferred to aqueous buffers using a histidine mediated phase transfer route, and incubated with a hexahistidine tagged, green emitting variant of firefly luciferase from Photinus pyralis (PPyGRTS). The PPyGRTS were bound to the QD interface via the hexahistidine tag, which effectively displaces the histidine layer and binds directly to the QD interfaces, allowing for short donor-acceptor distances (˜5.5 nm). Due to this, high BRET efficiency ratios of ˜5 were obtained. These PPyGRTS-QD bio-nano conjugates were characterized by transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy and BRET emission studies. The final optimized conjugate was easily observable by night vision imaging, demonstrating the potential of these materials in imaging and signaling/sensing applications.
Firefly: A HOT camera core for thermal imagers with enhanced functionality
NASA Astrophysics Data System (ADS)
Pillans, Luke; Harmer, Jack; Edwards, Tim
2015-06-01
Raising the operating temperature of mercury cadmium telluride infrared detectors from 80K to above 160K creates new applications for high performance infrared imagers by vastly reducing the size, weight and power consumption of the integrated cryogenic cooler. Realizing the benefits of Higher Operating Temperature (HOT) requires a new kind of infrared camera core with the flexibility to address emerging applications in handheld, weapon mounted and UAV markets. This paper discusses the Firefly core developed to address these needs by Selex ES in Southampton UK. Firefly represents a fundamental redesign of the infrared signal chain reducing power consumption and providing compatibility with low cost, low power Commercial Off-The-Shelf (COTS) computing technology. This paper describes key innovations in this signal chain: a ROIC purpose built to minimize power consumption in the proximity electronics, GPU based image processing of infrared video, and a software customisable infrared core which can communicate wirelessly with other Battlespace systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Fei; Huang, Yongxi
Here, we develop a multistage, stochastic mixed-integer model to support biofuel supply chain expansion under evolving uncertainties. By utilizing the block-separable recourse property, we reformulate the multistage program in an equivalent two-stage program and solve it using an enhanced nested decomposition method with maximal non-dominated cuts. We conduct extensive numerical experiments and demonstrate the application of the model and algorithm in a case study based on the South Carolina settings. The value of multistage stochastic programming method is also explored by comparing the model solution with the counterparts of an expected value based deterministic model and a two-stage stochastic model.
Xie, Fei; Huang, Yongxi
2018-02-04
Here, we develop a multistage, stochastic mixed-integer model to support biofuel supply chain expansion under evolving uncertainties. By utilizing the block-separable recourse property, we reformulate the multistage program in an equivalent two-stage program and solve it using an enhanced nested decomposition method with maximal non-dominated cuts. We conduct extensive numerical experiments and demonstrate the application of the model and algorithm in a case study based on the South Carolina settings. The value of multistage stochastic programming method is also explored by comparing the model solution with the counterparts of an expected value based deterministic model and a two-stage stochastic model.
NASA Astrophysics Data System (ADS)
Sochi, Taha
2016-09-01
Several deterministic and stochastic multi-variable global optimization algorithms (Conjugate Gradient, Nelder-Mead, Quasi-Newton and global) are investigated in conjunction with energy minimization principle to resolve the pressure and volumetric flow rate fields in single ducts and networks of interconnected ducts. The algorithms are tested with seven types of fluid: Newtonian, power law, Bingham, Herschel-Bulkley, Ellis, Ree-Eyring and Casson. The results obtained from all those algorithms for all these types of fluid agree very well with the analytically derived solutions as obtained from the traditional methods which are based on the conservation principles and fluid constitutive relations. The results confirm and generalize the findings of our previous investigations that the energy minimization principle is at the heart of the flow dynamics systems. The investigation also enriches the methods of computational fluid dynamics for solving the flow fields in tubes and networks for various types of Newtonian and non-Newtonian fluids.
ecode - Electron Transport Algorithm Testing v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian C.; Olson, Aaron J.; Bruss, Donald Eugene
2016-10-05
ecode is a Monte Carlo code used for testing algorithms related to electron transport. The code can read basic physics parameters, such as energy-dependent stopping powers and screening parameters. The code permits simple planar geometries of slabs or cubes. Parallelization consists of domain replication, with work distributed at the start of the calculation and statistical results gathered at the end of the calculation. Some basic routines (such as input parsing, random number generation, and statistics processing) are shared with the Integrated Tiger Series codes. A variety of algorithms for uncertainty propagation are incorporated based on the stochastic collocation and stochasticmore » Galerkin methods. These permit uncertainty only in the total and angular scattering cross sections. The code contains algorithms for simulating stochastic mixtures of two materials. The physics is approximate, ranging from mono-energetic and isotropic scattering to screened Rutherford angular scattering and Rutherford energy-loss scattering (simple electron transport models). No production of secondary particles is implemented, and no photon physics is implemented.« less
A new stochastic algorithm for inversion of dust aerosol size distribution
NASA Astrophysics Data System (ADS)
Wang, Li; Li, Feng; Yang, Ma-ying
2015-08-01
Dust aerosol size distribution is an important source of information about atmospheric aerosols, and it can be determined from multiwavelength extinction measurements. This paper describes a stochastic inverse technique based on artificial bee colony (ABC) algorithm to invert the dust aerosol size distribution by light extinction method. The direct problems for the size distribution of water drop and dust particle, which are the main elements of atmospheric aerosols, are solved by the Mie theory and the Lambert-Beer Law in multispectral region. And then, the parameters of three widely used functions, i.e. the log normal distribution (L-N), the Junge distribution (J-J), and the normal distribution (N-N), which can provide the most useful representation of aerosol size distributions, are inversed by the ABC algorithm in the dependent model. Numerical results show that the ABC algorithm can be successfully applied to recover the aerosol size distribution with high feasibility and reliability even in the presence of random noise.
NASA Astrophysics Data System (ADS)
Wei, Lin-Yang; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming
2016-11-01
Inverse estimation of the refractive index distribution in one-dimensional participating media with graded refractive index (GRI) is investigated. The forward radiative transfer problem is solved by the Chebyshev collocation spectral method. The stochastic particle swarm optimization (SPSO) algorithm is employed to retrieve three kinds of GRI distribution, i.e. the linear, sinusoidal and quadratic GRI distribution. The retrieval accuracy of GRI distribution with different wall emissivity, optical thickness, absorption coefficients and scattering coefficients are discussed thoroughly. To improve the retrieval accuracy of quadratic GRI distribution, a double-layer model is proposed to supply more measurement information. The influence of measurement errors upon the precision of estimated results is also investigated. Considering the GRI distribution is unknown beforehand in practice, a quadratic function is employed to retrieve the linear GRI by SPSO algorithm. All the results show that the SPSO algorithm is applicable to retrieve different GRI distributions in participating media accurately even with noisy data.
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok
1990-01-01
A procedure for compensating for the effects of distributed network-induced delays in integrated communication and control systems (ICCS) is proposed. The problem of analyzing systems with time-varying and possibly stochastic delays could be circumvented by use of a deterministic observer which is designed to perform under certain restrictive but realistic assumptions. The proposed delay-compensation algorithm is based on a deterministic state estimator and a linear state-variable-feedback control law. The deterministic observer can be replaced by a stochastic observer without any structural modifications of the delay compensation algorithm. However, if a feedforward-feedback control law is chosen instead of the state-variable feedback control law, the observer must be modified as a conventional nondelayed system would be. Under these circumstances, the delay compensation algorithm would be accordingly changed. The separation principle of the classical Luenberger observer holds true for the proposed delay compensator. The algorithm is suitable for ICCS in advanced aircraft, spacecraft, manufacturing automation, and chemical process applications.
A fuzzy reinforcement learning approach to power control in wireless transmitters.
Vengerov, David; Bambos, Nicholas; Berenji, Hamid R
2005-08-01
We address the issue of power-controlled shared channel access in wireless networks supporting packetized data traffic. We formulate this problem using the dynamic programming framework and present a new distributed fuzzy reinforcement learning algorithm (ACFRL-2) capable of adequately solving a class of problems to which the power control problem belongs. Our experimental results show that the algorithm converges almost deterministically to a neighborhood of optimal parameter values, as opposed to a very noisy stochastic convergence of earlier algorithms. The main tradeoff facing a transmitter is to balance its current power level with future backlog in the presence of stochastically changing interference. Simulation experiments demonstrate that the ACFRL-2 algorithm achieves significant performance gains over the standard power control approach used in CDMA2000. Such a large improvement is explained by the fact that ACFRL-2 allows transmitters to learn implicit coordination policies, which back off under stressful channel conditions as opposed to engaging in escalating "power wars."
NASA Astrophysics Data System (ADS)
He, Xiaojun; Ma, Haotong; Luo, Chuanxin
2016-10-01
The optical multi-aperture imaging system is an effective way to magnify the aperture and increase the resolution of telescope optical system, the difficulty of which lies in detecting and correcting of co-phase error. This paper presents a method based on stochastic parallel gradient decent algorithm (SPGD) to correct the co-phase error. Compared with the current method, SPGD method can avoid detecting the co-phase error. This paper analyzed the influence of piston error and tilt error on image quality based on double-aperture imaging system, introduced the basic principle of SPGD algorithm, and discuss the influence of SPGD algorithm's key parameters (the gain coefficient and the disturbance amplitude) on error control performance. The results show that SPGD can efficiently correct the co-phase error. The convergence speed of the SPGD algorithm is improved with the increase of gain coefficient and disturbance amplitude, but the stability of the algorithm reduced. The adaptive gain coefficient can solve this problem appropriately. This paper's results can provide the theoretical reference for the co-phase error correction of the multi-aperture imaging system.
Particle Swarm Optimization algorithms for geophysical inversion, practical hints
NASA Astrophysics Data System (ADS)
Garcia Gonzalo, E.; Fernandez Martinez, J.; Fernandez Alvarez, J.; Kuzma, H.; Menendez Perez, C.
2008-12-01
PSO is a stochastic optimization technique that has been successfully used in many different engineering fields. PSO algorithm can be physically interpreted as a stochastic damped mass-spring system (Fernandez Martinez and Garcia Gonzalo 2008). Based on this analogy we present a whole family of PSO algorithms and their respective first order and second order stability regions. Their performance is also checked using synthetic functions (Rosenbrock and Griewank) showing a degree of ill-posedness similar to that found in many geophysical inverse problems. Finally, we present the application of these algorithms to the analysis of a Vertical Electrical Sounding inverse problem associated to a seawater intrusion in a coastal aquifer in South Spain. We analyze the role of PSO parameters (inertia, local and global accelerations and discretization step), both in convergence curves and in the a posteriori sampling of the depth of an intrusion. Comparison is made with binary genetic algorithms and simulated annealing. As result of this analysis, practical hints are given to select the correct algorithm and to tune the corresponding PSO parameters. Fernandez Martinez, J.L., Garcia Gonzalo, E., 2008a. The generalized PSO: a new door to PSO evolution. Journal of Artificial Evolution and Applications. DOI:10.1155/2008/861275.
SMERFS: Stochastic Markov Evaluation of Random Fields on the Sphere
NASA Astrophysics Data System (ADS)
Creasey, Peter; Lang, Annika
2018-04-01
SMERFS (Stochastic Markov Evaluation of Random Fields on the Sphere) creates large realizations of random fields on the sphere. It uses a fast algorithm based on Markov properties and fast Fourier Transforms in 1d that generates samples on an n X n grid in O(n2 log n) and efficiently derives the necessary conditional covariance matrices.
Stochastic nonlinear dynamics pattern formation and growth models
Yaroslavsky, Leonid P
2007-01-01
Stochastic evolutionary growth and pattern formation models are treated in a unified way in terms of algorithmic models of nonlinear dynamic systems with feedback built of a standard set of signal processing units. A number of concrete models is described and illustrated by numerous examples of artificially generated patterns that closely imitate wide variety of patterns found in the nature. PMID:17908341
Portfolios of quantum algorithms.
Maurer, S M; Hogg, T; Huberman, B A
2001-12-17
Quantum computation holds promise for the solution of many intractable problems. However, since many quantum algorithms are stochastic in nature they can find the solution of hard problems only probabilistically. Thus the efficiency of the algorithms has to be characterized by both the expected time to completion and the associated variance. In order to minimize both the running time and its uncertainty, we show that portfolios of quantum algorithms analogous to those of finance can outperform single algorithms when applied to the NP-complete problems such as 3-satisfiability.
Simulation-based planning for theater air warfare
NASA Astrophysics Data System (ADS)
Popken, Douglas A.; Cox, Louis A., Jr.
2004-08-01
Planning for Theatre Air Warfare can be represented as a hierarchy of decisions. At the top level, surviving airframes must be assigned to roles (e.g., Air Defense, Counter Air, Close Air Support, and AAF Suppression) in each time period in response to changing enemy air defense capabilities, remaining targets, and roles of opposing aircraft. At the middle level, aircraft are allocated to specific targets to support their assigned roles. At the lowest level, routing and engagement decisions are made for individual missions. The decisions at each level form a set of time-sequenced Courses of Action taken by opposing forces. This paper introduces a set of simulation-based optimization heuristics operating within this planning hierarchy to optimize allocations of aircraft. The algorithms estimate distributions for stochastic outcomes of the pairs of Red/Blue decisions. Rather than using traditional stochastic dynamic programming to determine optimal strategies, we use an innovative combination of heuristics, simulation-optimization, and mathematical programming. Blue decisions are guided by a stochastic hill-climbing search algorithm while Red decisions are found by optimizing over a continuous representation of the decision space. Stochastic outcomes are then provided by fast, Lanchester-type attrition simulations. This paper summarizes preliminary results from top and middle level models.
Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model
NASA Astrophysics Data System (ADS)
Yaseen, Zaher Mundher; Ebtehaj, Isa; Bonakdari, Hossein; Deo, Ravinesh C.; Danandeh Mehr, Ali; Mohtar, Wan Hanna Melini Wan; Diop, Lamine; El-shafie, Ahmed; Singh, Vijay P.
2017-11-01
The present study proposes a new hybrid evolutionary Adaptive Neuro-Fuzzy Inference Systems (ANFIS) approach for monthly streamflow forecasting. The proposed method is a novel combination of the ANFIS model with the firefly algorithm as an optimizer tool to construct a hybrid ANFIS-FFA model. The results of the ANFIS-FFA model is compared with the classical ANFIS model, which utilizes the fuzzy c-means (FCM) clustering method in the Fuzzy Inference Systems (FIS) generation. The historical monthly streamflow data for Pahang River, which is a major river system in Malaysia that characterized by highly stochastic hydrological patterns, is used in the study. Sixteen different input combinations with one to five time-lagged input variables are incorporated into the ANFIS-FFA and ANFIS models to consider the antecedent seasonal variations in historical streamflow data. The mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (r) are used to evaluate the forecasting performance of ANFIS-FFA model. In conjunction with these metrics, the refined Willmott's Index (Drefined), Nash-Sutcliffe coefficient (ENS) and Legates and McCabes Index (ELM) are also utilized as the normalized goodness-of-fit metrics. Comparison of the results reveals that the FFA is able to improve the forecasting accuracy of the hybrid ANFIS-FFA model (r = 1; RMSE = 0.984; MAE = 0.364; ENS = 1; ELM = 0.988; Drefined = 0.994) applied for the monthly streamflow forecasting in comparison with the traditional ANFIS model (r = 0.998; RMSE = 3.276; MAE = 1.553; ENS = 0.995; ELM = 0.950; Drefined = 0.975). The results also show that the ANFIS-FFA is not only superior to the ANFIS model but also exhibits a parsimonious modelling framework for streamflow forecasting by incorporating a smaller number of input variables required to yield the comparatively better performance. It is construed that the FFA optimizer can thus surpass the accuracy of the traditional ANFIS model in general, and is able to remove the false (inaccurately) forecasted data in the ANFIS model for extremely low flows. The present results have wider implications not only for streamflow forecasting purposes, but also for other hydro-meteorological forecasting variables requiring only the historical data input data, and attaining a greater level of predictive accuracy with the incorporation of the FFA algorithm as an optimization tool in an ANFIS model.
Multi-Parent Clustering Algorithms from Stochastic Grammar Data Models
NASA Technical Reports Server (NTRS)
Mjoisness, Eric; Castano, Rebecca; Gray, Alexander
1999-01-01
We introduce a statistical data model and an associated optimization-based clustering algorithm which allows data vectors to belong to zero, one or several "parent" clusters. For each data vector the algorithm makes a discrete decision among these alternatives. Thus, a recursive version of this algorithm would place data clusters in a Directed Acyclic Graph rather than a tree. We test the algorithm with synthetic data generated according to the statistical data model. We also illustrate the algorithm using real data from large-scale gene expression assays.
Žuvela, Petar; Liu, J Jay; Macur, Katarzyna; Bączek, Tomasz
2015-10-06
In this work, performance of five nature-inspired optimization algorithms, genetic algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC), firefly algorithm (FA), and flower pollination algorithm (FPA), was compared in molecular descriptor selection for development of quantitative structure-retention relationship (QSRR) models for 83 peptides that originate from eight model proteins. The matrix with 423 descriptors was used as input, and QSRR models based on selected descriptors were built using partial least squares (PLS), whereas root mean square error of prediction (RMSEP) was used as a fitness function for their selection. Three performance criteria, prediction accuracy, computational cost, and the number of selected descriptors, were used to evaluate the developed QSRR models. The results show that all five variable selection methods outperform interval PLS (iPLS), sparse PLS (sPLS), and the full PLS model, whereas GA is superior because of its lowest computational cost and higher accuracy (RMSEP of 5.534%) with a smaller number of variables (nine descriptors). The GA-QSRR model was validated initially through Y-randomization. In addition, it was successfully validated with an external testing set out of 102 peptides originating from Bacillus subtilis proteomes (RMSEP of 22.030%). Its applicability domain was defined, from which it was evident that the developed GA-QSRR exhibited strong robustness. All the sources of the model's error were identified, thus allowing for further application of the developed methodology in proteomics.
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics.
Arampatzis, Georgios; Katsoulakis, Markos A; Rey-Bellet, Luc
2016-03-14
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics
NASA Astrophysics Data System (ADS)
Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc
2016-03-01
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systems with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.
Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arampatzis, Georgios; Katsoulakis, Markos A.; Rey-Bellet, Luc
2016-03-14
We demonstrate that centered likelihood ratio estimators for the sensitivity indices of complex stochastic dynamics are highly efficient with low, constant in time variance and consequently they are suitable for sensitivity analysis in long-time and steady-state regimes. These estimators rely on a new covariance formulation of the likelihood ratio that includes as a submatrix a Fisher information matrix for stochastic dynamics and can also be used for fast screening of insensitive parameters and parameter combinations. The proposed methods are applicable to broad classes of stochastic dynamics such as chemical reaction networks, Langevin-type equations and stochastic models in finance, including systemsmore » with a high dimensional parameter space and/or disparate decorrelation times between different observables. Furthermore, they are simple to implement as a standard observable in any existing simulation algorithm without additional modifications.« less
Identification of Small Molecules Targeting the Posttranscriptional Control of ERG Expression
2012-10-01
ied. To establish a cell line expressing lucife rase-ERG fusion protein, the vector along pRL-CMV-Rluc expressing Renilla luciferase gene was...expanded, and examined for the e xpression of t wo different luciferases. A clone expressing both Firefly luciferase and Renilla luciferase was selected...treated with the individual chemical at 10 μM for 24 h. The dual luciferase activities were measured. The ratio of Firefly to Renilla lu ciferase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Junwei; Zhang, Huan; Fang, Liurong
Highlights: • We developed a novel firefly luciferase based biosensor to detect apoptosis. • The novel biosensor 233-DnaE-DEVDG was reliable, sensitive and convenient. • 233-DnaE-DEVDG faithfully indicated ESAT-6 family proteins of Mycobacterium tuberculosis induced apoptosis. • EsxA, esxT and esxL in ESAT-6 family proteins induced apoptosis. • Activation of nuclear factor-κB (NF-κB) participated in esxT-induced apoptosis. - Abstract: The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferasemore » by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-κB (NF-κB) and the NF-κB-regulated genes encoding tumor necrosis factor-α (TNF-α) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.« less
FIREFLY (Fitting IteRativEly For Likelihood analYsis): a full spectral fitting code
NASA Astrophysics Data System (ADS)
Wilkinson, David M.; Maraston, Claudia; Goddard, Daniel; Thomas, Daniel; Parikh, Taniya
2017-12-01
We present a new spectral fitting code, FIREFLY, for deriving the stellar population properties of stellar systems. FIREFLY is a chi-squared minimization fitting code that fits combinations of single-burst stellar population models to spectroscopic data, following an iterative best-fitting process controlled by the Bayesian information criterion. No priors are applied, rather all solutions within a statistical cut are retained with their weight. Moreover, no additive or multiplicative polynomials are employed to adjust the spectral shape. This fitting freedom is envisaged in order to map out the effect of intrinsic spectral energy distribution degeneracies, such as age, metallicity, dust reddening on galaxy properties, and to quantify the effect of varying input model components on such properties. Dust attenuation is included using a new procedure, which was tested on Integral Field Spectroscopic data in a previous paper. The fitting method is extensively tested with a comprehensive suite of mock galaxies, real galaxies from the Sloan Digital Sky Survey and Milky Way globular clusters. We also assess the robustness of the derived properties as a function of signal-to-noise ratio (S/N) and adopted wavelength range. We show that FIREFLY is able to recover age, metallicity, stellar mass, and even the star formation history remarkably well down to an S/N ∼ 5, for moderately dusty systems. Code and results are publicly available.1
Viviani, Vadim R; Silva Neto, Antonio J; Arnoldi, Frederico G C; Barbosa, João A R G; Ohmiya, Yoshihiro
2008-01-01
Beetle luciferases emit a wide range of bioluminescence colors, ranging from green to red. Firefly luciferases can shift the spectrum to red in response to pH and temperature changes, whereas click beetle and railroadworm luciferases do not. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. Through comparative site-directed mutagenesis and modeling studies, using the pH-sensitive luciferases (Macrolampis and Cratomorphus distinctus fireflies) and the pH-insensitive luciferases (Pyrearinus termitilluminans, Phrixotrix viviani and Phrixotrix hirtus) cloned by our group, here we show that substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). The substitutions at positions 227, 228 and 229 (P. pyralis sequence) cause dramatic redshift and temporal shift in both groups of luciferases, indicating their involvement in labile interactions. Modeling studies showed that the residues Y227 and N229 are buried in the protein core, fixing the loop to other structural elements participating at the bottom of the luciferin binding site. Changes in pH and temperature (in firefly luciferases), as well as point mutations in this loop, may disrupt the interactions of these structural elements exposing the active site and modulating bioluminescence colors.
Different Types of Luciferase Reporters Show Distinct Susceptibility to T3-Evoked Downregulation.
Kollár, Anna; Kvárta-Papp, Zsuzsanna; Egri, Péter; Gereben, Balázs
2016-01-01
The firefly luciferase reporter protein is a crucial tool for studies targeting a broad range of biological questions. Importantly, luciferase assays are also widely used to explore mechanisms underlying thyroid hormone dependent regulation of gene expression. However, it was demonstrated that the firefly luciferase reporter is subject to triiodothyronine (T3)-evoked, promoter independent downregulation that is mediated by the thyroid hormone receptor. Since this effect can interfere with readout accuracy, the study aimed to find luciferase reporters that are not susceptible to this phenomenon. Luciferase reporter constructs were generated under the control of a minimal thymidine kinase (TK) promoter and transiently transfected into JEG-3 cells to test their activity upon T3 treatment. Activity of the TK-(dCpG)Luc encoding a synthetic (dCpG)Luciferase and TK-NanoLuc expressing the NanoLuc reporter was not significantly changed by T3 treatment while the firefly luciferase control was suppressed by ∼2.6-fold. T3 also downregulated the activity of Renilla luciferase by ∼30%. Novel types of luciferase reporters, especially the synthetic (dCpG)Luciferase, can be more accurate to study T3-regulated gene expression than the classical firefly luciferase reporter. Renilla luciferase, a popular transfection control of dual luciferase assays, should be used with caution in conditions with T3 treatment.
An implicit iterative algorithm with a tuning parameter for Itô Lyapunov matrix equations
NASA Astrophysics Data System (ADS)
Zhang, Ying; Wu, Ai-Guo; Sun, Hui-Jie
2018-01-01
In this paper, an implicit iterative algorithm is proposed for solving a class of Lyapunov matrix equations arising in Itô stochastic linear systems. A tuning parameter is introduced in this algorithm, and thus the convergence rate of the algorithm can be changed. Some conditions are presented such that the developed algorithm is convergent. In addition, an explicit expression is also derived for the optimal tuning parameter, which guarantees that the obtained algorithm achieves its fastest convergence rate. Finally, numerical examples are employed to illustrate the effectiveness of the given algorithm.
Optimal Budget Allocation for Sample Average Approximation
2011-06-01
an optimization algorithm applied to the sample average problem. We examine the convergence rate of the estimator as the computing budget tends to...regime for the optimization algorithm . 1 Introduction Sample average approximation (SAA) is a frequently used approach to solving stochastic programs...appealing due to its simplicity and the fact that a large number of standard optimization algorithms are often available to optimize the resulting sample
Statistical Signal Models and Algorithms for Image Analysis
1984-10-25
In this report, two-dimensional stochastic linear models are used in developing algorithms for image analysis such as classification, segmentation, and object detection in images characterized by textured backgrounds. These models generate two-dimensional random processes as outputs to which statistical inference procedures can naturally be applied. A common thread throughout our algorithms is the interpretation of the inference procedures in terms of linear prediction
NASA Technical Reports Server (NTRS)
Jacobson, R. A.
1975-01-01
Difficulties arise in guiding a solar electric propulsion spacecraft due to nongravitational accelerations caused by random fluctuations in the magnitude and direction of the thrust vector. These difficulties may be handled by using a low thrust guidance law based on the linear-quadratic-Gaussian problem of stochastic control theory with a minimum terminal miss performance criterion. Explicit constraints are imposed on the variances of the control parameters, and an algorithm based on the Hilbert space extension of a parameter optimization method is presented for calculation of gains in the guidance law. The terminal navigation of a 1980 flyby mission to the comet Encke is used as an example.
Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics
NASA Technical Reports Server (NTRS)
Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.
1996-01-01
An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.
Stochastic Matching and the Voluntary Nature of Choice
Neuringer, Allen; Jensen, Greg; Piff, Paul
2007-01-01
Attempts to characterize voluntary behavior have been ongoing for thousands of years. We provide experimental evidence that judgments of volition are based upon distributions of responses in relation to obtained rewards. Participants watched as responses, said to be made by “actors,” appeared on a computer screen. The participant's task was to estimate how well each actor represented the voluntary choices emitted by a real person. In actuality, all actors' responses were generated by algorithms based on Baum's (1979) generalized matching function. We systematically varied the exponent values (sensitivity parameter) of these algorithms: some actors matched response proportions to received reinforcer proportions, others overmatched (predominantly chose the highest-valued alternative), and yet others undermatched (chose relatively equally among the alternatives). In each of five experiments, we found that the matching actor's responses were judged most closely to approximate voluntary choice. We found also that judgments of high volition depended upon stochastic (or probabilistic) generation. Thus, stochastic responses that match reinforcer proportions best represent voluntary human choice. PMID:17725049
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braumann, Andreas; Kraft, Markus, E-mail: mk306@cam.ac.u; Wagner, Wolfgang
2010-10-01
This paper is concerned with computational aspects of a multidimensional population balance model of a wet granulation process. Wet granulation is a manufacturing method to form composite particles, granules, from small particles and binders. A detailed numerical study of a stochastic particle algorithm for the solution of a five-dimensional population balance model for wet granulation is presented. Each particle consists of two types of solids (containing pores) and of external and internal liquid (located in the pores). Several transformations of particles are considered, including coalescence, compaction and breakage. A convergence study is performed with respect to the parameter that determinesmore » the number of numerical particles. Averaged properties of the system are computed. In addition, the ensemble is subdivided into practically relevant size classes and analysed with respect to the amount of mass and the particle porosity in each class. These results illustrate the importance of the multidimensional approach. Finally, the kinetic equation corresponding to the stochastic model is discussed.« less
Optimization of Operations Resources via Discrete Event Simulation Modeling
NASA Technical Reports Server (NTRS)
Joshi, B.; Morris, D.; White, N.; Unal, R.
1996-01-01
The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.
NASA Astrophysics Data System (ADS)
Indik, Nathaniel; Fehrmann, Henning; Harke, Franz; Krishnan, Badri; Nielsen, Alex B.
2018-06-01
Efficient multidimensional template placement is crucial in computationally intensive matched-filtering searches for gravitational waves (GWs). Here, we implement the neighboring cell algorithm (NCA) to improve the detection volume of an existing compact binary coalescence (CBC) template bank. This algorithm has already been successfully applied for a binary millisecond pulsar search in data from the Fermi satellite. It repositions templates from overdense regions to underdense regions and reduces the number of templates that would have been required by a stochastic method to achieve the same detection volume. Our method is readily generalizable to other CBC parameter spaces. Here we apply this method to the aligned-single-spin neutron star-black hole binary coalescence inspiral-merger-ringdown gravitational wave parameter space. We show that the template nudging algorithm can attain the equivalent effectualness of the stochastic method with 12% fewer templates.
Multi-Algorithm Particle Simulations with Spatiocyte.
Arjunan, Satya N V; Takahashi, Koichi
2017-01-01
As quantitative biologists get more measurements of spatially regulated systems such as cell division and polarization, simulation of reaction and diffusion of proteins using the data is becoming increasingly relevant to uncover the mechanisms underlying the systems. Spatiocyte is a lattice-based stochastic particle simulator for biochemical reaction and diffusion processes. Simulations can be performed at single molecule and compartment spatial scales simultaneously. Molecules can diffuse and react in 1D (filament), 2D (membrane), and 3D (cytosol) compartments. The implications of crowded regions in the cell can be investigated because each diffusing molecule has spatial dimensions. Spatiocyte adopts multi-algorithm and multi-timescale frameworks to simulate models that simultaneously employ deterministic, stochastic, and particle reaction-diffusion algorithms. Comparison of light microscopy images to simulation snapshots is supported by Spatiocyte microscopy visualization and molecule tagging features. Spatiocyte is open-source software and is freely available at http://spatiocyte.org .
Stochastic algorithm for simulating gas transport coefficients
NASA Astrophysics Data System (ADS)
Rudyak, V. Ya.; Lezhnev, E. V.
2018-02-01
The aim of this paper is to create a molecular algorithm for modeling the transport processes in gases that will be more efficient than molecular dynamics method. To this end, the dynamics of molecules are modeled stochastically. In a rarefied gas, it is sufficient to consider the evolution of molecules only in the velocity space, whereas for a dense gas it is necessary to model the dynamics of molecules also in the physical space. Adequate integral characteristics of the studied system are obtained by averaging over a sufficiently large number of independent phase trajectories. The efficiency of the proposed algorithm was demonstrated by modeling the coefficients of self-diffusion and the viscosity of several gases. It was shown that the accuracy comparable to the experimental one can be obtained on a relatively small number of molecules. The modeling accuracy increases with the growth of used number of molecules and phase trajectories.
Hybrid deterministic/stochastic simulation of complex biochemical systems.
Lecca, Paola; Bagagiolo, Fabio; Scarpa, Marina
2017-11-21
In a biological cell, cellular functions and the genetic regulatory apparatus are implemented and controlled by complex networks of chemical reactions involving genes, proteins, and enzymes. Accurate computational models are indispensable means for understanding the mechanisms behind the evolution of a complex system, not always explored with wet lab experiments. To serve their purpose, computational models, however, should be able to describe and simulate the complexity of a biological system in many of its aspects. Moreover, it should be implemented by efficient algorithms requiring the shortest possible execution time, to avoid enlarging excessively the time elapsing between data analysis and any subsequent experiment. Besides the features of their topological structure, the complexity of biological networks also refers to their dynamics, that is often non-linear and stiff. The stiffness is due to the presence of molecular species whose abundance fluctuates by many orders of magnitude. A fully stochastic simulation of a stiff system is computationally time-expensive. On the other hand, continuous models are less costly, but they fail to capture the stochastic behaviour of small populations of molecular species. We introduce a new efficient hybrid stochastic-deterministic computational model and the software tool MoBioS (MOlecular Biology Simulator) implementing it. The mathematical model of MoBioS uses continuous differential equations to describe the deterministic reactions and a Gillespie-like algorithm to describe the stochastic ones. Unlike the majority of current hybrid methods, the MoBioS algorithm divides the reactions' set into fast reactions, moderate reactions, and slow reactions and implements a hysteresis switching between the stochastic model and the deterministic model. Fast reactions are approximated as continuous-deterministic processes and modelled by deterministic rate equations. Moderate reactions are those whose reaction waiting time is greater than the fast reaction waiting time but smaller than the slow reaction waiting time. A moderate reaction is approximated as a stochastic (deterministic) process if it was classified as a stochastic (deterministic) process at the time at which it crosses the threshold of low (high) waiting time. A Gillespie First Reaction Method is implemented to select and execute the slow reactions. The performances of MoBios were tested on a typical example of hybrid dynamics: that is the DNA transcription regulation. The simulated dynamic profile of the reagents' abundance and the estimate of the error introduced by the fully deterministic approach were used to evaluate the consistency of the computational model and that of the software tool.
Hybrid stochastic simplifications for multiscale gene networks.
Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu
2009-09-07
Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.
Regulation of AR and (beta)-Catenin Signaling by Pin 1 in Prostate Cancer
2006-10-01
hrs. cells were harvested for Luciferase reporter Assay. C, CV-1 cells were transfected with Renilla (2.5ng), G5-Luc (10ng), pBIND-LBD (50ng), pACT-AR...stimulation, cells were cultured in 5 to 10% CDS-FBS. Firefly and internal control Renilla lucif- erase activities were determined using a dual luciferase...reporter assay kit (Pro- mega, Madison, WI), and Renilla activities were not consistently affected by any of the cotransfected vectors. The firefly
Operation of Power Grids with High Penetration of Wind Power
NASA Astrophysics Data System (ADS)
Al-Awami, Ali Taleb
The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus improving trading risk control. A case study comparing coordinated with uncoordinated bidding strategies depending on the trader's risk attitude is included. Simulation results show that coordinated bidding can improve the expected profits while significantly improving the CVaR.
Variance decomposition in stochastic simulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Maître, O. P., E-mail: olm@limsi.fr; Knio, O. M., E-mail: knio@duke.edu; Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa
This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance.more » Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.« less
A Firefly-Inspired Method for Protein Structure Prediction in Lattice Models
Maher, Brian; Albrecht, Andreas A.; Loomes, Martin; Yang, Xin-She; Steinhöfel, Kathleen
2014-01-01
We introduce a Firefly-inspired algorithmic approach for protein structure prediction over two different lattice models in three-dimensional space. In particular, we consider three-dimensional cubic and three-dimensional face-centred-cubic (FCC) lattices. The underlying energy models are the Hydrophobic-Polar (H-P) model, the Miyazawa–Jernigan (M-J) model and a related matrix model. The implementation of our approach is tested on ten H-P benchmark problems of a length of 48 and ten M-J benchmark problems of a length ranging from 48 until 61. The key complexity parameter we investigate is the total number of objective function evaluations required to achieve the optimum energy values for the H-P model or competitive results in comparison to published values for the M-J model. For H-P instances and cubic lattices, where data for comparison are available, we obtain an average speed-up over eight instances of 2.1, leaving out two extreme values (otherwise, 8.8). For six M-J instances, data for comparison are available for cubic lattices and runs with a population size of 100, where, a priori, the minimum free energy is a termination criterion. The average speed-up over four instances is 1.2 (leaving out two extreme values, otherwise 1.1), which is achieved for a population size of only eight instances. The present study is a test case with initial results for ad hoc parameter settings, with the aim of justifying future research on larger instances within lattice model settings, eventually leading to the ultimate goal of implementations for off-lattice models. PMID:24970205
A firefly-inspired method for protein structure prediction in lattice models.
Maher, Brian; Albrecht, Andreas A; Loomes, Martin; Yang, Xin-She; Steinhöfel, Kathleen
2014-01-07
We introduce a Firefly-inspired algorithmic approach for protein structure prediction over two different lattice models in three-dimensional space. In particular, we consider three-dimensional cubic and three-dimensional face-centred-cubic (FCC) lattices. The underlying energy models are the Hydrophobic-Polar (H-P) model, the Miyazawa-Jernigan (M-J) model and a related matrix model. The implementation of our approach is tested on ten H-P benchmark problems of a length of 48 and ten M-J benchmark problems of a length ranging from 48 until 61. The key complexity parameter we investigate is the total number of objective function evaluations required to achieve the optimum energy values for the H-P model or competitive results in comparison to published values for the M-J model. For H-P instances and cubic lattices, where data for comparison are available, we obtain an average speed-up over eight instances of 2.1, leaving out two extreme values (otherwise, 8.8). For six M-J instances, data for comparison are available for cubic lattices and runs with a population size of 100, where, a priori, the minimum free energy is a termination criterion. The average speed-up over four instances is 1.2 (leaving out two extreme values, otherwise 1.1), which is achieved for a population size of only eight instances. The present study is a test case with initial results for ad hoc parameter settings, with the aim of justifying future research on larger instances within lattice model settings, eventually leading to the ultimate goal of implementations for off-lattice models.
FINITE-STATE APPROXIMATIONS TO DENUMERABLE-STATE DYNAMIC PROGRAMS,
AIR FORCE OPERATIONS, LOGISTICS), (*INVENTORY CONTROL, DYNAMIC PROGRAMMING), (*DYNAMIC PROGRAMMING, APPROXIMATION(MATHEMATICS)), INVENTORY CONTROL, DECISION MAKING, STOCHASTIC PROCESSES, GAME THEORY, ALGORITHMS, CONVERGENCE
Golightly, Andrew; Wilkinson, Darren J.
2011-01-01
Computational systems biology is concerned with the development of detailed mechanistic models of biological processes. Such models are often stochastic and analytically intractable, containing uncertain parameters that must be estimated from time course data. In this article, we consider the task of inferring the parameters of a stochastic kinetic model defined as a Markov (jump) process. Inference for the parameters of complex nonlinear multivariate stochastic process models is a challenging problem, but we find here that algorithms based on particle Markov chain Monte Carlo turn out to be a very effective computationally intensive approach to the problem. Approximations to the inferential model based on stochastic differential equations (SDEs) are considered, as well as improvements to the inference scheme that exploit the SDE structure. We apply the methodology to a Lotka–Volterra system and a prokaryotic auto-regulatory network. PMID:23226583
Nguyen, A; Yosinski, J; Clune, J
2016-01-01
The Achilles Heel of stochastic optimization algorithms is getting trapped on local optima. Novelty Search mitigates this problem by encouraging exploration in all interesting directions by replacing the performance objective with a reward for novel behaviors. This reward for novel behaviors has traditionally required a human-crafted, behavioral distance function. While Novelty Search is a major conceptual breakthrough and outperforms traditional stochastic optimization on certain problems, it is not clear how to apply it to challenging, high-dimensional problems where specifying a useful behavioral distance function is difficult. For example, in the space of images, how do you encourage novelty to produce hawks and heroes instead of endless pixel static? Here we propose a new algorithm, the Innovation Engine, that builds on Novelty Search by replacing the human-crafted behavioral distance with a Deep Neural Network (DNN) that can recognize interesting differences between phenotypes. The key insight is that DNNs can recognize similarities and differences between phenotypes at an abstract level, wherein novelty means interesting novelty. For example, a DNN-based novelty search in the image space does not explore in the low-level pixel space, but instead creates a pressure to create new types of images (e.g., churches, mosques, obelisks, etc.). Here, we describe the long-term vision for the Innovation Engine algorithm, which involves many technical challenges that remain to be solved. We then implement a simplified version of the algorithm that enables us to explore some of the algorithm's key motivations. Our initial results, in the domain of images, suggest that Innovation Engines could ultimately automate the production of endless streams of interesting solutions in any domain: for example, producing intelligent software, robot controllers, optimized physical components, and art.
Li, Yun; Wu, Wenqi; Jiang, Qingan; Wang, Jinling
2016-01-01
Based on stochastic modeling of Coriolis vibration gyros by the Allan variance technique, this paper discusses Angle Random Walk (ARW), Rate Random Walk (RRW) and Markov process gyroscope noises which have significant impacts on the North-finding accuracy. A new continuous rotation alignment algorithm for a Coriolis vibration gyroscope Inertial Measurement Unit (IMU) is proposed in this paper, in which the extended observation equations are used for the Kalman filter to enhance the estimation of gyro drift errors, thus improving the north-finding accuracy. Theoretical and numerical comparisons between the proposed algorithm and the traditional ones are presented. The experimental results show that the new continuous rotation alignment algorithm using the extended observation equations in the Kalman filter is more efficient than the traditional two-position alignment method. Using Coriolis vibration gyros with bias instability of 0.1°/h, a north-finding accuracy of 0.1° (1σ) is achieved by the new continuous rotation alignment algorithm, compared with 0.6° (1σ) north-finding accuracy for the two-position alignment and 1° (1σ) for the fixed-position alignment. PMID:27983585
Ant Lion Optimization algorithm for kidney exchanges.
Hamouda, Eslam; El-Metwally, Sara; Tarek, Mayada
2018-01-01
The kidney exchange programs bring new insights in the field of organ transplantation. They make the previously not allowed surgery of incompatible patient-donor pairs easier to be performed on a large scale. Mathematically, the kidney exchange is an optimization problem for the number of possible exchanges among the incompatible pairs in a given pool. Also, the optimization modeling should consider the expected quality-adjusted life of transplant candidates and the shortage of computational and operational hospital resources. In this article, we introduce a bio-inspired stochastic-based Ant Lion Optimization, ALO, algorithm to the kidney exchange space to maximize the number of feasible cycles and chains among the pool pairs. Ant Lion Optimizer-based program achieves comparable kidney exchange results to the deterministic-based approaches like integer programming. Also, ALO outperforms other stochastic-based methods such as Genetic Algorithm in terms of the efficient usage of computational resources and the quantity of resulting exchanges. Ant Lion Optimization algorithm can be adopted easily for on-line exchanges and the integration of weights for hard-to-match patients, which will improve the future decisions of kidney exchange programs. A reference implementation for ALO algorithm for kidney exchanges is written in MATLAB and is GPL licensed. It is available as free open-source software from: https://github.com/SaraEl-Metwally/ALO_algorithm_for_Kidney_Exchanges.
NASA Astrophysics Data System (ADS)
Venema, V. K. C.; Lindau, R.; Varnai, T.; Simmer, C.
2009-04-01
Two main groups of statistical methods used in the Earth sciences are geostatistics and stochastic modelling. Geostatistical methods, such as various kriging algorithms, aim at estimating the mean value for every point as well as possible. In case of sparse measurements, such fields have less variability at small scales and a narrower distribution as the true field. This can lead to biases if a nonlinear process is simulated on such a kriged field. Stochastic modelling aims at reproducing the structure of the data. One of the stochastic modelling methods, the so-called surrogate data approach, replicates the value distribution and power spectrum of a certain data set. However, while stochastic methods reproduce the statistical properties of the data, the location of the measurement is not considered. Because radiative transfer through clouds is a highly nonlinear process it is essential to model the distribution (e.g. of optical depth, extinction, liquid water content or liquid water path) accurately as well as the correlations in the cloud field because of horizontal photon transport. This explains the success of surrogate cloud fields for use in 3D radiative transfer studies. However, up to now we could only achieve good results for the radiative properties averaged over the field, but not for a radiation measurement located at a certain position. Therefore we have developed a new algorithm that combines the accuracy of stochastic (surrogate) modelling with the positioning capabilities of kriging. In this way, we can automatically profit from the large geostatistical literature and software. The algorithm is tested on cloud fields from large eddy simulations (LES). On these clouds a measurement is simulated. From the pseudo-measurement we estimated the distribution and power spectrum. Furthermore, the pseudo-measurement is kriged to a field the size of the final surrogate cloud. The distribution, spectrum and the kriged field are the inputs to the algorithm. This algorithm is similar to the standard iterative amplitude adjusted Fourier transform (IAAFT) algorithm, but has an additional iterative step in which the surrogate field is nudged towards the kriged field. The nudging strength is gradually reduced to zero. We work with four types of pseudo-measurements: one zenith pointing measurement (which together with the wind produces a line measurement), five zenith pointing measurements, a slow and a fast azimuth scan (which together with the wind produce spirals). Because we work with LES clouds and the truth is known, we can validate the algorithm by performing 3D radiative transfer calculations on the original LES clouds and on the new surrogate clouds. For comparison also the radiative properties of the kriged fields and standard surrogate fields are computed. Preliminary results already show that these new surrogate clouds reproduce the structure of the original clouds very well and the minima and maxima are located where the pseudo-measurements sees them. The main limitation seems to be the amount of data, which is especially very limited in case of just one zenith pointing measurement.
Global sensitivity analysis in stochastic simulators of uncertain reaction networks.
Navarro Jimenez, M; Le Maître, O P; Knio, O M
2016-12-28
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.
NASA Astrophysics Data System (ADS)
Torres-Verdin, C.
2007-05-01
This paper describes the successful implementation of a new 3D AVA stochastic inversion algorithm to quantitatively integrate pre-stack seismic amplitude data and well logs. The stochastic inversion algorithm is used to characterize flow units of a deepwater reservoir located in the central Gulf of Mexico. Conventional fluid/lithology sensitivity analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generates typical Class III AVA responses. On the other hand, layer- dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution. Accordingly, AVA stochastic inversion, which combines the advantages of AVA analysis with those of geostatistical inversion, provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties (P-velocity, S-velocity, density), and lithotype (sand- shale) distributions. The quantitative use of rock/fluid information through AVA seismic amplitude data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, yields accurate 3D models of petrophysical properties such as porosity and permeability. Finally, by fully integrating pre-stack seismic amplitude data and well logs, the vertical resolution of inverted products is higher than that of deterministic inversions methods.
Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan
2016-12-28
The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.
Data Analysis Approaches for the Risk-Informed Safety Margins Characterization Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Alfonsi, Andrea; Maljovec, Daniel P.
2016-09-01
In the past decades, several numerical simulation codes have been employed to simulate accident dynamics (e.g., RELAP5-3D, RELAP-7, MELCOR, MAAP). In order to evaluate the impact of uncertainties into accident dynamics, several stochastic methodologies have been coupled with these codes. These stochastic methods range from classical Monte-Carlo and Latin Hypercube sampling to stochastic polynomial methods. Similar approaches have been introduced into the risk and safety community where stochastic methods (such as RAVEN, ADAPT, MCDET, ADS) have been coupled with safety analysis codes in order to evaluate the safety impact of timing and sequencing of events. These approaches are usually calledmore » Dynamic PRA or simulation-based PRA methods. These uncertainties and safety methods usually generate a large number of simulation runs (database storage may be on the order of gigabytes or higher). The scope of this paper is to present a broad overview of methods and algorithms that can be used to analyze and extract information from large data sets containing time dependent data. In this context, “extracting information” means constructing input-output correlations, finding commonalities, and identifying outliers. Some of the algorithms presented here have been developed or are under development within the RAVEN statistical framework.« less
Global sensitivity analysis in stochastic simulators of uncertain reaction networks
Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.
2016-12-23
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes thatmore » the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. Here, a sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.« less
Global sensitivity analysis in stochastic simulators of uncertain reaction networks
NASA Astrophysics Data System (ADS)
Navarro Jimenez, M.; Le Maître, O. P.; Knio, O. M.
2016-12-01
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.
A stochastic multi-scale method for turbulent premixed combustion
NASA Astrophysics Data System (ADS)
Cha, Chong M.
2002-11-01
The stochastic chemistry algorithm of Bunker et al. and Gillespie is used to perform the chemical reactions in a transported probability density function (PDF) modeling approach of turbulent combustion. Recently, Kraft & Wagner have demonstrated a 100-fold gain in computational speed (for a 100 species mechanism) using the stochastic approach over the conventional, direct integration method of solving for the chemistry. Here, the stochastic chemistry algorithm is applied to develop a new transported PDF model of turbulent premixed combustion. The methodology relies on representing the relevant spatially dependent physical processes as queuing events. The canonical problem of a one-dimensional premixed flame is used for validation. For the laminar case, molecular diffusion is described by a random walk. For the turbulent case, one of two different material transport submodels can provide the necessary closure: Taylor dispersion or Kerstein's one-dimensional turbulence approach. The former exploits ``eddy diffusivity'' and hence would be much more computationally tractable for practical applications. Various validation studies are performed. Results from the Monte Carlo simulations compare well to asymptotic solutions of laminar premixed flames, both with and without high activation temperatures. The correct scaling of the turbulent burning velocity is predicted in both Damköhler's small- and large-scale turbulence limits. The effect of applying the eddy diffusivity concept in the various regimes is discussed.
Effects of Epigenetic Modulation on Reporter Gene Expression: Implications for Stem Cell Imaging
Krishnan, Manickam; Park, Jinha M.; Cao, Feng; Wang, Dongxu; Paulmurugan, Ramasay; Tseng, Jeffrey R.; Gonzalgo, Mark L.; Gambhir, Sanjiv S.; Wu, Joseph C.
2013-01-01
Tracking stem cell localization, survival, differentiation, and proliferation following transplantation in living subjects is essential for understanding stem cell biology and physiology. In this study, we investigated the long-term stability of reporter gene expression in an embryonic rat cardiomyoblast cell line and the role of epigenetic modulation on reversing reporter gene silencing. Cells were stably transfected with plasmids carrying cytomegalovirus promoter driving firefly luciferase reporter gene (CMV-Fluc) and passaged repeatedly for 3–8 months. Within the highest expressor clone, the firefly luciferase activity decreased progressively from passage-1 (843±28) to passage-20 (250±10) to passage-40 (44±3) to passage-60 (3±1 RLU/µg) (P<0.05 vs. passage-1). Firefly luciferase activity was maximally rescued by treatment with 5-azacytidine (DNA methyltransferase inhibitor) compared to trichostatin A (histone deacetylase inhibitor) and retinoic acid (transcriptional activator) (P<0.05). Increasing dosages of 5-azacytidine treatment led to higher levels of firefly luciferase mRNA (RT-PCR) and protein (Western blots) and inversely lower levels of methylation in the CMV promoter (DNA nucleotide sequence). These in vitro results were extended to in vivo bioluminescence imaging (BLI) of cell transplant in living animals. Cells treated with 5-azacytidine were monitored for 2 weeks compared to 1 week for untreated cells (P<0.05). These findings should have important implications for reporter gene-based imaging of stem cell transplantation. PMID:16246867
Nazari, Mahboobeh; Hosseinkhani, Saman; Hassani, Leila
2013-02-01
Multi-color bioluminescence is developed using the introduction of single/double disulfide bridges in firefly luciferase. The bioluminescence reaction, which uses luciferin, Mg(2+)-ATP and molecular oxygen to yield an electronically excited oxyluciferin, is carried out by the luciferase and emits visible light. The bioluminescence color of firefly luciferases is determined by the luciferase sequence and assay conditions. It has been proposed that the stability of a protein may increase through the introduction of a disulfide bridge that decreases the configurational entropy of unfolding. Single and double disulfide bridges are introduced into Photinus pyralis firefly luciferase to make separate mutant enzymes with a single/double bridge (C(81)-A(105)C, L(306)C-L(309)C, P(451)C-V(469)C; C(81)-A(105)C/P(451)C-V(469)C, and A(296)C-A(326)C/P(451)C-V(469)C). By introduction of disulfide bridges using site-directed mutagenesis in Photinus pyralis luciferase the color of emitted light was changed to red or kept in different extents. The bioluminescence color shift occurred with displacement of a critical loop in the luciferase structure without any change in green emitter mutants. Thermodynamic analysis revealed that among mutants, L(306)C-L(309)C shows a remarkable stability against urea denaturation and also a considerable increase in kinetic stability and a clear shift in bioluminescence spectra towards red.
Extended Mixed-Efects Item Response Models with the MH-RM Algorithm
ERIC Educational Resources Information Center
Chalmers, R. Philip
2015-01-01
A mixed-effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed-effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis-Hastings Robbins-Monro (MH-RM) stochastic imputation algorithm to accommodate for…
Gene selection heuristic algorithm for nutrigenomics studies.
Valour, D; Hue, I; Grimard, B; Valour, B
2013-07-15
Large datasets from -omics studies need to be deeply investigated. The aim of this paper is to provide a new method (LEM method) for the search of transcriptome and metabolome connections. The heuristic algorithm here described extends the classical canonical correlation analysis (CCA) to a high number of variables (without regularization) and combines well-conditioning and fast-computing in "R." Reduced CCA models are summarized in PageRank matrices, the product of which gives a stochastic matrix that resumes the self-avoiding walk covered by the algorithm. Then, a homogeneous Markov process applied to this stochastic matrix converges the probabilities of interconnection between genes, providing a selection of disjointed subsets of genes. This is an alternative to regularized generalized CCA for the determination of blocks within the structure matrix. Each gene subset is thus linked to the whole metabolic or clinical dataset that represents the biological phenotype of interest. Moreover, this selection process reaches the aim of biologists who often need small sets of genes for further validation or extended phenotyping. The algorithm is shown to work efficiently on three published datasets, resulting in meaningfully broadened gene networks.
Optimal Alignment of Structures for Finite and Periodic Systems.
Griffiths, Matthew; Niblett, Samuel P; Wales, David J
2017-10-10
Finding the optimal alignment between two structures is important for identifying the minimum root-mean-square distance (RMSD) between them and as a starting point for calculating pathways. Most current algorithms for aligning structures are stochastic, scale exponentially with the size of structure, and the performance can be unreliable. We present two complementary methods for aligning structures corresponding to isolated clusters of atoms and to condensed matter described by a periodic cubic supercell. The first method (Go-PERMDIST), a branch and bound algorithm, locates the global minimum RMSD deterministically in polynomial time. The run time increases for larger RMSDs. The second method (FASTOVERLAP) is a heuristic algorithm that aligns structures by finding the global maximum kernel correlation between them using fast Fourier transforms (FFTs) and fast SO(3) transforms (SOFTs). For periodic systems, FASTOVERLAP scales with the square of the number of identical atoms in the system, reliably finds the best alignment between structures that are not too distant, and shows significantly better performance than existing algorithms. The expected run time for Go-PERMDIST is longer than FASTOVERLAP for periodic systems. For finite clusters, the FASTOVERLAP algorithm is competitive with existing algorithms. The expected run time for Go-PERMDIST to find the global RMSD between two structures deterministically is generally longer than for existing stochastic algorithms. However, with an earlier exit condition, Go-PERMDIST exhibits similar or better performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuyang; Zhang, Qichun; Wang, Hong
To enhance the performance of the tracking property , this paper presents a novel control algorithm for a class of linear dynamic stochastic systems with unmeasurable states, where the performance enhancement loop is established based on Kalman filter. Without changing the existing closed loop with the PI controller, the compensative controller is designed to minimize the variances of the tracking errors using the estimated states and the propagation of state variances. Moreover, the stability of the closed-loop systems has been analyzed in the mean-square sense. A simulated example is included to show the effectiveness of the presented control algorithm, wheremore » encouraging results have been obtained.« less
Hypothesis testing of scientific Monte Carlo calculations.
Wallerberger, Markus; Gull, Emanuel
2017-11-01
The steadily increasing size of scientific Monte Carlo simulations and the desire for robust, correct, and reproducible results necessitates rigorous testing procedures for scientific simulations in order to detect numerical problems and programming bugs. However, the testing paradigms developed for deterministic algorithms have proven to be ill suited for stochastic algorithms. In this paper we demonstrate explicitly how the technique of statistical hypothesis testing, which is in wide use in other fields of science, can be used to devise automatic and reliable tests for Monte Carlo methods, and we show that these tests are able to detect some of the common problems encountered in stochastic scientific simulations. We argue that hypothesis testing should become part of the standard testing toolkit for scientific simulations.
Some Results of Weak Anticipative Concept Applied in Simulation Based Decision Support in Enterprise
NASA Astrophysics Data System (ADS)
Kljajić, Miroljub; Kofjač, Davorin; Kljajić Borštnar, Mirjana; Škraba, Andrej
2010-11-01
The simulation models are used as for decision support and learning in enterprises and in schools. Tree cases of successful applications demonstrate usefulness of weak anticipative information. Job shop scheduling production with makespan criterion presents a real case customized flexible furniture production optimization. The genetic algorithm for job shop scheduling optimization is presented. Simulation based inventory control for products with stochastic lead time and demand describes inventory optimization for products with stochastic lead time and demand. Dynamic programming and fuzzy control algorithms reduce the total cost without producing stock-outs in most cases. Values of decision making information based on simulation were discussed too. All two cases will be discussed from optimization, modeling and learning point of view.
Hypothesis testing of scientific Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Wallerberger, Markus; Gull, Emanuel
2017-11-01
The steadily increasing size of scientific Monte Carlo simulations and the desire for robust, correct, and reproducible results necessitates rigorous testing procedures for scientific simulations in order to detect numerical problems and programming bugs. However, the testing paradigms developed for deterministic algorithms have proven to be ill suited for stochastic algorithms. In this paper we demonstrate explicitly how the technique of statistical hypothesis testing, which is in wide use in other fields of science, can be used to devise automatic and reliable tests for Monte Carlo methods, and we show that these tests are able to detect some of the common problems encountered in stochastic scientific simulations. We argue that hypothesis testing should become part of the standard testing toolkit for scientific simulations.
NASA Technical Reports Server (NTRS)
Sandell, N. R., Jr.; Athans, M.
1975-01-01
The development of the theory of the finite - state, finite - memory (FSFM) stochastic control problem is discussed. The sufficiency of the FSFM minimum principle (which is in general only a necessary condition) was investigated. By introducing the notion of a signaling strategy as defined in the literature on games, conditions under which the FSFM minimum principle is sufficient were determined. This result explicitly interconnects the information structure of the FSFM problem with its optimality conditions. The min-H algorithm for the FSFM problem was studied. It is demonstrated that a version of the algorithm always converges to a particular type of local minimum termed a person - by - person extremal.
Strategic planning for disaster recovery with stochastic last mile distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, Russell Whitford; Van Hentenryck, Pascal; Coffrin, Carleton
2010-01-01
This paper considers the single commodity allocation problem (SCAP) for disaster recovery, a fundamental problem faced by all populated areas. SCAPs are complex stochastic optimization problems that combine resource allocation, warehouse routing, and parallel fleet routing. Moreover, these problems must be solved under tight runtime constraints to be practical in real-world disaster situations. This paper formalizes the specification of SCAPs and introduces a novel multi-stage hybrid-optimization algorithm that utilizes the strengths of mixed integer programming, constraint programming, and large neighborhood search. The algorithm was validated on hurricane disaster scenarios generated by Los Alamos National Laboratory using state-of-the-art disaster simulation toolsmore » and is deployed to aid federal organizations in the US.« less
A New Method of Facial Expression Recognition Based on SPE Plus SVM
NASA Astrophysics Data System (ADS)
Ying, Zilu; Huang, Mingwei; Wang, Zhen; Wang, Zhewei
A novel method of facial expression recognition (FER) is presented, which uses stochastic proximity embedding (SPE) for data dimension reduction, and support vector machine (SVM) for expression classification. The proposed algorithm is applied to Japanese Female Facial Expression (JAFFE) database for FER, better performance is obtained compared with some traditional algorithms, such as PCA and LDA etc.. The result have further proved the effectiveness of the proposed algorithm.
A controlled genetic algorithm by fuzzy logic and belief functions for job-shop scheduling.
Hajri, S; Liouane, N; Hammadi, S; Borne, P
2000-01-01
Most scheduling problems are highly complex combinatorial problems. However, stochastic methods such as genetic algorithm yield good solutions. In this paper, we present a controlled genetic algorithm (CGA) based on fuzzy logic and belief functions to solve job-shop scheduling problems. For better performance, we propose an efficient representational scheme, heuristic rules for creating the initial population, and a new methodology for mixing and computing genetic operator probabilities.
Liang, Jie; Qian, Hong
2010-01-01
Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand “complex behavior” and complexity theory, and from which important biological insight can be gained. PMID:24999297
Liang, Jie; Qian, Hong
2010-01-01
Modern molecular biology has always been a great source of inspiration for computational science. Half a century ago, the challenge from understanding macromolecular dynamics has led the way for computations to be part of the tool set to study molecular biology. Twenty-five years ago, the demand from genome science has inspired an entire generation of computer scientists with an interest in discrete mathematics to join the field that is now called bioinformatics. In this paper, we shall lay out a new mathematical theory for dynamics of biochemical reaction systems in a small volume (i.e., mesoscopic) in terms of a stochastic, discrete-state continuous-time formulation, called the chemical master equation (CME). Similar to the wavefunction in quantum mechanics, the dynamically changing probability landscape associated with the state space provides a fundamental characterization of the biochemical reaction system. The stochastic trajectories of the dynamics are best known through the simulations using the Gillespie algorithm. In contrast to the Metropolis algorithm, this Monte Carlo sampling technique does not follow a process with detailed balance. We shall show several examples how CMEs are used to model cellular biochemical systems. We shall also illustrate the computational challenges involved: multiscale phenomena, the interplay between stochasticity and nonlinearity, and how macroscopic determinism arises from mesoscopic dynamics. We point out recent advances in computing solutions to the CME, including exact solution of the steady state landscape and stochastic differential equations that offer alternatives to the Gilespie algorithm. We argue that the CME is an ideal system from which one can learn to understand "complex behavior" and complexity theory, and from which important biological insight can be gained.
Hybrid stochastic simplifications for multiscale gene networks
Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu
2009-01-01
Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach. PMID:19735554
Brominated Luciferins Are Versatile Bioluminescent Probes
Steinhardt, Rachel C.; Rathbun, Colin M.; Krull, Brandon T.; ...
2016-12-08
Here, we report a set of brominated luciferins for bioluminescence imaging. These regioisomeric scaffolds were accessed by using a common synthetic route. All analogues produced light with firefly luciferase, although varying levels of emission were observed. Differences in photon output were analyzed by computation and photophysical measurements. The brightest brominated luciferin was further evaluated in cell and animal models. At low doses, the analogue outperformed the native substrate in cells. The remaining luciferins, although weak emitters with firefly luciferase, were inherently capable of light production and thus potential substrates for orthogonal mutant enzymes.
AR-NcoR Interaction as a Therapeutic Target for Prostate Cancer Prevention and Treatment
2005-10-01
mutant AR, VP16-NCoRc, ARE4-luciferase reporter, and control pRL-CMV ( Renilla ) reporter. They were then treated for 24 hrs with 10 nM DHT, 10 nM RU486...or no hormone. Firefly versus Renilla luciferase activities were measure from triplicate samples. Relative light units (RLU) reflect normalized...firefly/ Renilla (+SD). NCoR binding to the RU486 liganded AR is mediated by the C-terminal N1 CoRNR box in NCoR. As NCoR deletion mutants indicated
GAS-611 firefly in zero gravity
NASA Technical Reports Server (NTRS)
Williams, Tony
1988-01-01
The Get Away Special 611 (GAS-611) project will carry a small, self-contained biological experiment into a microgravity environment for a period of 120 hours. The payload will be a colony of Lampyridae (fireflies). The ability of this beetle to produce light with an efficiency of 98 pct will be evaluated in the micro-G environment. The chemical process that occurs could be assisted by the earth's gravitational pull and the very complex tracheae system found within this species of beetle. The effects of microgravity on mating and beetle larvae will also be studied.
Quantum/molecular mechanics study of firefly bioluminescence on luciferase oxidative conformation
NASA Astrophysics Data System (ADS)
Pinto da Silva, Luís; Esteves da Silva, Joaquim C. G.
2014-07-01
This is the first report of a computational study of the color tuning mechanism of firefly bioluminescence, using the oxidative conformation of luciferase. The results of these calculations demonstrated that the electrostatic field generated by luciferase is fundamental both for the emission shift and efficiency. Further calculations indicated that a shift in emission is achieved by modulating the energy, at different degrees, of the emissive and ground states. These differences in energy modulation will then lead to changes in the energy gap between the states.
Stochastic Models of Plant Diversity: Application to White Sands Missile Range
2000-02-01
decades and its models have been well developed. These models fall in the categories: dynamic models and stochastic models. In their book , Modeling...Gelb 1974), and dendro- climatology (Visser and Molenaar 1988). Optimal Estimation An optimal estimator is a computational algorithm that...Evaluation, M.B. Usher, ed., Chapman and Hall, London. Visser, H., and J. Molenaar . 1990. "Estimating Trends in Tree-ring Data." For. Sei. 36(1): 87
Planning with Continuous Resources in Stochastic Domains
NASA Technical Reports Server (NTRS)
Mausam, Mausau; Benazera, Emmanuel; Brafman, Roneu; Hansen, Eric
2005-01-01
We consider the problem of optimal planning in stochastic domains with metric resource constraints. Our goal is to generate a policy whose expected sum of rewards is maximized for a given initial state. We consider a general formulation motivated by our application domain--planetary exploration--in which the choice of an action at each step may depend on the current resource levels. We adapt the forward search algorithm AO* to handle our continuous state space efficiently.
MONALISA for stochastic simulations of Petri net models of biochemical systems.
Balazki, Pavel; Lindauer, Klaus; Einloft, Jens; Ackermann, Jörg; Koch, Ina
2015-07-10
The concept of Petri nets (PN) is widely used in systems biology and allows modeling of complex biochemical systems like metabolic systems, signal transduction pathways, and gene expression networks. In particular, PN allows the topological analysis based on structural properties, which is important and useful when quantitative (kinetic) data are incomplete or unknown. Knowing the kinetic parameters, the simulation of time evolution of such models can help to study the dynamic behavior of the underlying system. If the number of involved entities (molecules) is low, a stochastic simulation should be preferred against the classical deterministic approach of solving ordinary differential equations. The Stochastic Simulation Algorithm (SSA) is a common method for such simulations. The combination of the qualitative and semi-quantitative PN modeling and stochastic analysis techniques provides a valuable approach in the field of systems biology. Here, we describe the implementation of stochastic analysis in a PN environment. We extended MONALISA - an open-source software for creation, visualization and analysis of PN - by several stochastic simulation methods. The simulation module offers four simulation modes, among them the stochastic mode with constant firing rates and Gillespie's algorithm as exact and approximate versions. The simulator is operated by a user-friendly graphical interface and accepts input data such as concentrations and reaction rate constants that are common parameters in the biological context. The key features of the simulation module are visualization of simulation, interactive plotting, export of results into a text file, mathematical expressions for describing simulation parameters, and up to 500 parallel simulations of the same parameter sets. To illustrate the method we discuss a model for insulin receptor recycling as case study. We present a software that combines the modeling power of Petri nets with stochastic simulation of dynamic processes in a user-friendly environment supported by an intuitive graphical interface. The program offers a valuable alternative to modeling, using ordinary differential equations, especially when simulating single-cell experiments with low molecule counts. The ability to use mathematical expressions provides an additional flexibility in describing the simulation parameters. The open-source distribution allows further extensions by third-party developers. The software is cross-platform and is licensed under the Artistic License 2.0.
Taillefumier, Thibaud; Touboul, Jonathan; Magnasco, Marcelo
2012-12-01
In vivo cortical recording reveals that indirectly driven neural assemblies can produce reliable and temporally precise spiking patterns in response to stereotyped stimulation. This suggests that despite being fundamentally noisy, the collective activity of neurons conveys information through temporal coding. Stochastic integrate-and-fire models delineate a natural theoretical framework to study the interplay of intrinsic neural noise and spike timing precision. However, there are inherent difficulties in simulating their networks' dynamics in silico with standard numerical discretization schemes. Indeed, the well-posedness of the evolution of such networks requires temporally ordering every neuronal interaction, whereas the order of interactions is highly sensitive to the random variability of spiking times. Here, we answer these issues for perfect stochastic integrate-and-fire neurons by designing an exact event-driven algorithm for the simulation of recurrent networks, with delayed Dirac-like interactions. In addition to being exact from the mathematical standpoint, our proposed method is highly efficient numerically. We envision that our algorithm is especially indicated for studying the emergence of polychronized motifs in networks evolving under spike-timing-dependent plasticity with intrinsic noise.
Paracousti-UQ: A Stochastic 3-D Acoustic Wave Propagation Algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preston, Leiph
Acoustic full waveform algorithms, such as Paracousti, provide deterministic solutions in complex, 3-D variable environments. In reality, environmental and source characteristics are often only known in a statistical sense. Thus, to fully characterize the expected sound levels within an environment, this uncertainty in environmental and source factors should be incorporated into the acoustic simulations. Performing Monte Carlo (MC) simulations is one method of assessing this uncertainty, but it can quickly become computationally intractable for realistic problems. An alternative method, using the technique of stochastic partial differential equations (SPDE), allows computation of the statistical properties of output signals at a fractionmore » of the computational cost of MC. Paracousti-UQ solves the SPDE system of 3-D acoustic wave propagation equations and provides estimates of the uncertainty of the output simulated wave field (e.g., amplitudes, waveforms) based on estimated probability distributions of the input medium and source parameters. This report describes the derivation of the stochastic partial differential equations, their implementation, and comparison of Paracousti-UQ results with MC simulations using simple models.« less
Alvarado, Michelle; Ntaimo, Lewis
2018-03-01
Oncology clinics are often burdened with scheduling large volumes of cancer patients for chemotherapy treatments under limited resources such as the number of nurses and chairs. These cancer patients require a series of appointments over several weeks or months and the timing of these appointments is critical to the treatment's effectiveness. Additionally, the appointment duration, the acuity levels of each appointment, and the availability of clinic nurses are uncertain. The timing constraints, stochastic parameters, rising treatment costs, and increased demand of outpatient oncology clinic services motivate the need for efficient appointment schedules and clinic operations. In this paper, we develop three mean-risk stochastic integer programming (SIP) models, referred to as SIP-CHEMO, for the problem of scheduling individual chemotherapy patient appointments and resources. These mean-risk models are presented and an algorithm is devised to improve computational speed. Computational results were conducted using a simulation model and results indicate that the risk-averse SIP-CHEMO model with the expected excess mean-risk measure can decrease patient waiting times and nurse overtime when compared to deterministic scheduling algorithms by 42 % and 27 %, respectively.
Gursoy, Gamze; Terebus, Anna; Youfang Cao; Jie Liang
2016-08-01
Stochasticity plays important roles in regulation of biochemical reaction networks when the copy numbers of molecular species are small. Studies based on Stochastic Simulation Algorithm (SSA) has shown that a basic reaction system can display stochastic focusing (SF) by increasing the sensitivity of the network as a result of the signal noise. Although SSA has been widely used to study stochastic networks, it is ineffective in examining rare events and this becomes a significant issue when the tails of probability distributions are relevant as is the case of SF. Here we use the ACME method to solve the exact solution of the discrete Chemical Master Equations and to study a network where SF was reported. We showed that the level of SF depends on the degree of the fluctuations of signal molecule. We discovered that signaling noise under certain conditions in the same reaction network can lead to a decrease in the system sensitivities, thus the network can experience stochastic defocusing. These results highlight the fundamental role of stochasticity in biological reaction networks and the need for exact computation of probability landscape of the molecules in the system.
Dynamic partitioning for hybrid simulation of the bistable HIV-1 transactivation network.
Griffith, Mark; Courtney, Tod; Peccoud, Jean; Sanders, William H
2006-11-15
The stochastic kinetics of a well-mixed chemical system, governed by the chemical Master equation, can be simulated using the exact methods of Gillespie. However, these methods do not scale well as systems become more complex and larger models are built to include reactions with widely varying rates, since the computational burden of simulation increases with the number of reaction events. Continuous models may provide an approximate solution and are computationally less costly, but they fail to capture the stochastic behavior of small populations of macromolecules. In this article we present a hybrid simulation algorithm that dynamically partitions the system into subsets of continuous and discrete reactions, approximates the continuous reactions deterministically as a system of ordinary differential equations (ODE) and uses a Monte Carlo method for generating discrete reaction events according to a time-dependent propensity. Our approach to partitioning is improved such that we dynamically partition the system of reactions, based on a threshold relative to the distribution of propensities in the discrete subset. We have implemented the hybrid algorithm in an extensible framework, utilizing two rigorous ODE solvers to approximate the continuous reactions, and use an example model to illustrate the accuracy and potential speedup of the algorithm when compared with exact stochastic simulation. Software and benchmark models used for this publication can be made available upon request from the authors.
STOCHSIMGPU: parallel stochastic simulation for the Systems Biology Toolbox 2 for MATLAB.
Klingbeil, Guido; Erban, Radek; Giles, Mike; Maini, Philip K
2011-04-15
The importance of stochasticity in biological systems is becoming increasingly recognized and the computational cost of biologically realistic stochastic simulations urgently requires development of efficient software. We present a new software tool STOCHSIMGPU that exploits graphics processing units (GPUs) for parallel stochastic simulations of biological/chemical reaction systems and show that significant gains in efficiency can be made. It is integrated into MATLAB and works with the Systems Biology Toolbox 2 (SBTOOLBOX2) for MATLAB. The GPU-based parallel implementation of the Gillespie stochastic simulation algorithm (SSA), the logarithmic direct method (LDM) and the next reaction method (NRM) is approximately 85 times faster than the sequential implementation of the NRM on a central processing unit (CPU). Using our software does not require any changes to the user's models, since it acts as a direct replacement of the stochastic simulation software of the SBTOOLBOX2. The software is open source under the GPL v3 and available at http://www.maths.ox.ac.uk/cmb/STOCHSIMGPU. The web site also contains supplementary information. klingbeil@maths.ox.ac.uk Supplementary data are available at Bioinformatics online.
Plasma Equilibria With Stochastic Magnetic Fields
NASA Astrophysics Data System (ADS)
Krommes, J. A.; Reiman, A. H.
2009-05-01
Plasma equilibria that include regions of stochastic magnetic fields are of interest in a variety of applications, including tokamaks with ergodic limiters and high-pressure stellarators. Such equilibria are examined theoretically, and a numerical algorithm for their construction is described.^2,3 % The balance between stochastic diffusion of magnetic lines and small effects^2 omitted from the simplest MHD description can support pressure and current profiles that need not be flattened in stochastic regions. The diffusion can be described analytically by renormalizing stochastic Langevin equations for pressure and parallel current j, with particular attention being paid to the satisfaction of the periodicity constraints in toroidal configurations with sheared magnetic fields. The equilibrium field configuration can then be constructed by coupling the prediction for j to Amp'ere's law, which is solved numerically. A. Reiman et al., Pressure-induced breaking of equilibrium flux surfaces in the W7AS stellarator, Nucl. Fusion 47, 572--8 (2007). J. A. Krommes and A. H. Reiman, Plasma equilibrium in a magnetic field with stochastic regions, submitted to Phys. Plasmas. J. A. Krommes, Fundamental statistical theories of plasma turbulence in magnetic fields, Phys. Reports 360, 1--351.
NASA Astrophysics Data System (ADS)
Dong, Bing; Ren, De-Qing; Zhang, Xi
2011-08-01
An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartmann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10-3 to 10-4.5 at an angular distance of 2λ/D after being corrected by SPGD based AO.
NASA Astrophysics Data System (ADS)
Panda, Satyasen
2018-05-01
This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhou, Xinyang; Liu, Zhiyuan
This paper considers distribution networks with distributed energy resources and discrete-rate loads, and designs an incentive-based algorithm that allows the network operator and the customers to pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. Four major challenges include: (1) the non-convexity from discrete decision variables, (2) the non-convexity due to a Stackelberg game structure, (3) unavailable private information from customers, and (4) different update frequency from two types of devices. In this paper, we first make convex relaxation for discrete variables, then reformulate the non-convex structure into a convex optimization problem together withmore » pricing/reward signal design, and propose a distributed stochastic dual algorithm for solving the reformulated problem while restoring feasible power rates for discrete devices. By doing so, we are able to statistically achieve the solution of the reformulated problem without exposure of any private information from customers. Stability of the proposed schemes is analytically established and numerically corroborated.« less
Faster PET reconstruction with a stochastic primal-dual hybrid gradient method
NASA Astrophysics Data System (ADS)
Ehrhardt, Matthias J.; Markiewicz, Pawel; Chambolle, Antonin; Richtárik, Peter; Schott, Jonathan; Schönlieb, Carola-Bibiane
2017-08-01
Image reconstruction in positron emission tomography (PET) is computationally challenging due to Poisson noise, constraints and potentially non-smooth priors-let alone the sheer size of the problem. An algorithm that can cope well with the first three of the aforementioned challenges is the primal-dual hybrid gradient algorithm (PDHG) studied by Chambolle and Pock in 2011. However, PDHG updates all variables in parallel and is therefore computationally demanding on the large problem sizes encountered with modern PET scanners where the number of dual variables easily exceeds 100 million. In this work, we numerically study the usage of SPDHG-a stochastic extension of PDHG-but is still guaranteed to converge to a solution of the deterministic optimization problem with similar rates as PDHG. Numerical results on a clinical data set show that by introducing randomization into PDHG, similar results as the deterministic algorithm can be achieved using only around 10 % of operator evaluations. Thus, making significant progress towards the feasibility of sophisticated mathematical models in a clinical setting.
NASA Astrophysics Data System (ADS)
Zhang, Kai; Li, Jingzhi; He, Zhubin; Yan, Wanfeng
2018-07-01
In this paper, a stochastic optimization framework is proposed to address the microgrid energy dispatching problem with random renewable generation and vehicle activity pattern, which is closer to the practical applications. The patterns of energy generation, consumption and storage availability are all random and unknown at the beginning, and the microgrid controller design (MCD) is formulated as a Markov decision process (MDP). Hence, an online learning-based control algorithm is proposed for the microgrid, which could adapt the control policy with increasing knowledge of the system dynamics and converges to the optimal algorithm. We adopt the linear approximation idea to decompose the original value functions as the summation of each per-battery value function. As a consequence, the computational complexity is significantly reduced from exponential growth to linear growth with respect to the size of battery states. Monte Carlo simulation of different scenarios demonstrates the effectiveness and efficiency of our algorithm.
NASA Astrophysics Data System (ADS)
Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.
2014-06-01
This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.