Sample records for fireside deposit study

  1. Fireside Corrosion Behavior of HVOF and Plasma-Sprayed Coatings in Advanced Coal/Biomass Co-Fired Power Plants

    NASA Astrophysics Data System (ADS)

    Hussain, T.; Dudziak, T.; Simms, N. J.; Nicholls, J. R.

    2013-06-01

    This article presents a systematic evaluation of coatings for advanced fossil fuel plants and addresses fireside corrosion in coal/biomass-derived flue gases. A selection of four candidate coatings: alloy 625, NiCr, FeCrAl and NiCrAlY were deposited onto superheaters/reheaters alloy (T91) using high-velocity oxy-fuel (HVOF) and plasma spraying. A series of laboratory-based fireside corrosion exposures were carried out on these coated samples in furnaces under controlled atmosphere for 1000 h at 650 °C. The tests were carried out using the "deposit-recoat" test method to simulate the environment that was anticipated from air-firing 20 wt.% cereal co-product mixed with a UK coal. The exposures were carried out using a deposit containing Na2SO4, K2SO4, and Fe2O3 to produce alkali-iron tri-sulfates, which had been identified as the principal cause of fireside corrosion on superheaters/reheaters in pulverized coal-fired power plants. The exposed samples were examined in an ESEM with EDX analysis to characterize the damage. Pre- and post-exposure dimensional metrologies were used to quantify the metal damage in terms of metal loss distributions. The thermally sprayed coatings suffered significant corrosion attack from a combination of aggressive combustion gases and deposit mixtures. In this study, all the four plasma-sprayed coatings studied performed better than the HVOF-sprayed coatings because of a lower level of porosity. NiCr was found to be the best performing coating material with a median metal loss of ~87 μm (HVOF sprayed) and ~13 μm (plasma sprayed). In general, the median metal damage for coatings had the following ranking (in the descending order: most to the least damage): NiCrAlY > alloy 625 > FeCrAl > NiCr.

  2. Fireside corrosion in kraft recovery boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, H.N.; Barham, D.; Hupa, M.

    1988-01-01

    Causes and corrective measures are reviewed for several common types of fireside corrosion in kraft recovery boilers. Corrosion differs significantly with location in the boiler due tio the great differences in metal surface temperature and deposit and flue gas chemistry. Sulphidation corrosion associated with sulphur-bearing gases under reducing conditions is dominant in the lower furnace, while sulphidation/oxidation resulting from gas-deposit-metal reactions is important in the upper boiler. In many cases, although corrosion has been controlled by ensuring the absence of a molten phase at the metal surface, the corrosion mechanism is not fully understood.

  3. Ash chemistry and sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrifvars, B.J.; Backman, R.; Hupa, Mikko

    1996-12-31

    The thermal behavior of a fuel ash is one important factor to consider when fireside slagging and fouling problems in steam boilers are addressed. It is well known that different types of chemical reactions and melts in deposits play an important role in the build-up of problematic fireside deposits. Low viscous melts occur in steam boilers mainly when salt mixtures are present in the ash. Such are Merent mixtures of alkali and earth alkali sulfates, chlorides and carbonates. These mixtures do not melt at a certain temperature but form a melt in a temperature range which in some cases maymore » be several hundreds of degrees. The amount of melt is crucial for the deposit build-up. For some boilers it has been found that roughly 10 - 20 weight-% melt in an ash mixture would be enough to cause extensive deposit formation, while 60 - 80 weight-% melt would already cause the ash to be so wet it would flow down a vertical tube and not cause any further deposit growth.« less

  4. A novel capacitance sensor for fireside corrosion measurement.

    PubMed

    Ban, Heng; Li, Zuoping

    2009-11-01

    Fireside corrosion in coal-fired power plants is a leading mechanism for boiler tube failures. Online monitoring of fireside corrosion can provide timely data to plant operators for mitigation implementation. This paper presents a novel sensor concept for measuring metal loss based on electrical capacitance. Laboratory-scale experiments demonstrated the feasibility of design, fabrication, and operation of the sensor. The fabrication of the prototype sensor involved sputtering deposition of a thin metal coating with varying thickness on a ceramic substrate. Corrosion metal loss resulted in a proportional decrease in electrical capacitance of the sensor. Laboratory experiments using a muffle furnace with an oxidation environment demonstrated that low carbon steel coatings on ceramic substrate survived cyclic temperatures over 500 degrees C. Measured corrosion rates of sputtered coating in air had an Arrhenius exponential dependence on temperature, with metal thickness loss ranging from 2.0 nm/h at 200 degrees C to 2.0 microm/h at 400 degrees C. Uncertainty analysis indicated that the overall measurement uncertainty was within 4%. The experimental system showed high signal-to-noise ratio, and the sensor could measure submicrometer metal thickness changes. The laboratory experiments demonstrated that the sensor concept and measurement system are capable of short term, online monitoring of metal loss, indicating the potential for the sensor to be used for fireside corrosion monitoring and other metal loss measurement.

  5. A novel capacitance sensor for fireside corrosion measurement

    NASA Astrophysics Data System (ADS)

    Ban, Heng; Li, Zuoping

    2009-11-01

    Fireside corrosion in coal-fired power plants is a leading mechanism for boiler tube failures. Online monitoring of fireside corrosion can provide timely data to plant operators for mitigation implementation. This paper presents a novel sensor concept for measuring metal loss based on electrical capacitance. Laboratory-scale experiments demonstrated the feasibility of design, fabrication, and operation of the sensor. The fabrication of the prototype sensor involved sputtering deposition of a thin metal coating with varying thickness on a ceramic substrate. Corrosion metal loss resulted in a proportional decrease in electrical capacitance of the sensor. Laboratory experiments using a muffle furnace with an oxidation environment demonstrated that low carbon steel coatings on ceramic substrate survived cyclic temperatures over 500 °C. Measured corrosion rates of sputtered coating in air had an Arrhenius exponential dependence on temperature, with metal thickness loss ranging from 2.0 nm/h at 200 °C to 2.0 μm/h at 400 °C. Uncertainty analysis indicated that the overall measurement uncertainty was within 4%. The experimental system showed high signal-to-noise ratio, and the sensor could measure submicrometer metal thickness changes. The laboratory experiments demonstrated that the sensor concept and measurement system are capable of short term, online monitoring of metal loss, indicating the potential for the sensor to be used for fireside corrosion monitoring and other metal loss measurement.

  6. Systemic Operational Design: Enhancing the Joint Operation Planning Process

    DTIC Science & Technology

    2007-05-20

    Epistemological Bumpf of the Way Ahead for Operational Design? p. 42. 79 Stephen R. Covey, The 7 Habits of Highly Effective People . (New York: Fireside...John Wiley and Sons, Ltd. Covey, Stephen R. 1989. The 7 Habits of Highly Effective People . New York: Fireside Publishing. Creveld, Martin Van

  7. Electric utility use of fireside additives. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Locklin, D.W.; Krause, H.H.; Anson, D.

    1980-01-01

    Fireside additives have been used or proposed for use in fossil-fired utility boilers to combat a number of problems related to boiler performance and reliability. These problems include corrosion, fouling, superheat control, and acidic emissions. Fuel additives and other fireside additives have been used mainly with oil firing; however, there is growing experience with additives in coal-firing, especially for flyash conditioning to improve the performance of electrostatic precipitators. In decisions regarding the selection and use of additives, utilities have had to rely extensively on empiricism, due partly to an incomplete understanding of processes involved and partly to the limited amountmore » of quantitative data. The study reported here was sponsored by the Electric Power Research Institute to assemble and analyze pertinent operating experience and to recommend guidelines for utility decisions on the use of additives. The combined results of the state-of-the-art review of technical literature and a special survey of utility experience are reported. A total of 38 utilities participated in the survey, providing information on trials conducted on 104 units in 93 different plants. Altogether, 445 separate trials were reported, each representing a unit/additive/fuel combination. Additives used in these trials included 90 different additive formulations, both pure compounds and proprietary products. These formulations were categorized into 37 generic classes according to their chemical constituents, and the results of the survey are presented by these generic classes. The findings are organized according to the operating problems for which fireside additives are used. Guidelines are presented for utility use in additive selection and in planning additive trials.« less

  8. Demonstration of coal reburning for cyclone boiler NO{sub x} control. Appendix, Book 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Based on the industry need for a pilot-scale cyclone boiler simulator, Babcock Wilcox (B&W) designed, fabricated, and installed such a facility at its Alliance Research Center (ARC) in 1985. The project involved conversion of an existing pulverized coal-fired facility to be cyclone-firing capable. Additionally, convective section tube banks were installed in the upper furnace in order to simulate a typical boiler convection pass. The small boiler simulator (SBS) is designed to simulate most fireside aspects of full-size utility boilers such as combustion and flue gas emissions characteristics, fireside deposition, etc. Prior to the design of the pilot-scale cyclone boiler simulator,more » the various cyclone boiler types were reviewed in order to identify the inherent cyclone boiler design characteristics which are applicable to the majority of these boilers. The cyclone boiler characteristics that were reviewed include NO{sub x} emissions, furnace exit gas temperature (FEGT) carbon loss, and total furnace residence time. Previous pilot-scale cyclone-fired furnace experience identified the following concerns: (1) Operability of a small cyclone furnace (e.g., continuous slag tapping capability). (2) The optimum cyclone(s) configuration for the pilot-scale unit. (3) Compatibility of NO{sub x} levels, carbon burnout, cyclone ash carryover to the convection pass, cyclone temperature, furnace residence time, and FEGT.« less

  9. Novel Corrosion Sensor for Vision 21 Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heng Ban; Bharat Soni

    2007-03-31

    Advanced sensor technology is identified as a key component for advanced power systems for future energy plants that would have virtually no environmental impact. This project intends to develop a novel high temperature corrosion sensor and subsequent measurement system for advanced power systems. Fireside corrosion is the leading mechanism for boiler tube failures and has emerged to be a significant concern for current and future energy plants due to the introduction of technologies targeting emissions reduction, efficiency improvement, or fuel/oxidant flexibility. Corrosion damage can lead to catastrophic equipment failure, explosions, and forced outages. Proper management of corrosion requires real-time indicationmore » of corrosion rate. However, short-term, on-line corrosion monitoring systems for fireside corrosion remain a technical challenge to date due to the extremely harsh combustion environment. The overall goal of this project is to develop a technology for on-line fireside corrosion monitoring. This objective is achieved by the laboratory development of sensors and instrumentation, testing them in a laboratory muffle furnace, and eventually testing the system in a coal-fired furnace. This project successfully developed two types of sensors and measurement systems, and successful tested them in a muffle furnace in the laboratory. The capacitance sensor had a high fabrication cost and might be more appropriate in other applications. The low-cost resistance sensor was tested in a power plant burning eastern bituminous coals. The results show that the fireside corrosion measurement system can be used to determine the corrosion rate at waterwall and superheater locations. Electron microscope analysis of the corroded sensor surface provided detailed picture of the corrosion process.« less

  10. ANSYS Fluent Modelling of an Underexpanded Supersonic Sootblower Jet Impinging into Recovery Boiler Tube Geometries

    NASA Astrophysics Data System (ADS)

    Doroudi, Shahed

    Sootblowers generate high pressure supersonic steam jets to control fireside deposition on heat transfer tubes of a kraft recovery boiler. Sootblowing is energy expensive, using 3-12% of the mill's total steam production. This motivates research on the dynamics of sootblower jet interaction with tubes and deposits, to optimize their use. A CFD investigation was performed using ANSYS Fluent 15.0 to model three-dimensional steady-state impingement of a Mach 2.5 mildly underexpanded (PR 1.2) air jet onto arrays of cylindrical tubes with and without fins, at various nozzle-to-tube centerline offsets. A free jet and four impingement cases for each of the economizer and generating bank geometries are compared to experimental visualizations. Pressure distributions on impinging surfaces suggest that the fins in the economizer produce a reduced but uniform sootblowing force. Pressure contours along the tubes (in the vertical direction) show a sharp decline one tube diameter away from the jet mid-plane.

  11. 2012 ARPA-E Energy Innovation Summit: Fireside Chat with Steven Chu and Bill Gates

    ScienceCinema

    Chu, Steven; Gates, Bill; Podesta, John

    2018-05-14

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. This video captures a session called Fireside Chat that featured Steven Chu, the Secretary of Energy, and Bill Gates, Chairman of Microsoft Corporation. The session is moderated by John Podesta, Chair of the Center for American Progress. Energy Secretary Steven Chu and Microsoft Founder and Chairman Bill Gates exchanged ideas about how small businesses and innovators can overcome the challenges that face many startups.

  12. Coal reburning for cyclone boiler NO{sub x} control demonstration. Quarterly report No. 6, July--September, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-31

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustormore » operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.« less

  13. Coal reburning for cyclone boiler NO sub x control demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    It is the objective of the Coal Reburning for Cyclone Boiler NO{sub x} Control Project to fully establish that the cola reburning clean coal technology offers cost-effective alternatives to cyclone operating electric utilities for overall oxides of nitrogen control. The project will evaluate the applicability of the reburning technology for reducing NO{sub x} emissions in full scale cyclone-fired boilers which use coal as a primary fuel. The performance goals while burning coal are: (1) Greater than 50 percent reduction in NO{sub x} emissions, as referenced to the uncontrolled (baseline) conditions at full load. (2) No serious impact on cyclone combustormore » operation, boiler efficiency or boiler fireside performance (corrosion and deposition), or boiler ash removal system performance.« less

  14. 2012 ARPA-E Energy Innovation Summit: Fireside Chat with Steven Chu and Bill Gates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Steven; Gates, Bill; Podesta, John

    2012-02-28

    The third annual ARPA-E Energy Innovation Summit was held in Washington D.C. in February, 2012. The event brought together key players from across the energy ecosystem - researchers, entrepreneurs, investors, corporate executives, and government officials - to share ideas for developing and deploying the next generation of energy technologies. This video captures a session called Fireside Chat that featured Steven Chu, the Secretary of Energy, and Bill Gates, Chairman of Microsoft Corporation. The session is moderated by John Podesta, Chair of the Center for American Progress. Energy Secretary Steven Chu and Microsoft Founder and Chairman Bill Gates exchanged ideas aboutmore » how small businesses and innovators can overcome the challenges that face many startups.« less

  15. Effect of Sulfur and Chlorine on Fireside Corrosion Behavior of Inconel 740 H Superalloy

    NASA Astrophysics Data System (ADS)

    Jin-tao, Lu; Yan, Li; Zhen, Yang; Jin-yang, Huang; Ming, Zhu; Gu, Y.

    2018-03-01

    Fireside corrosion behavior of Inconel 740H superalloy was studied at 750 °C in simulated coal ash/flue gas environments by means of XRD, SEM and EDS. The results indicated that the corrosion behavior was strongly related to the SO2 levels and was significantly affected by NaCl additions. In presence of the atmospheres with 0.1 % SO2, the alloy exhibited the highest corrosion resistance due to formation of a stable and dense Cr2O3 film. In presence of the atmosphere with 1.5 % SO2, however, a non-coherent and porous Cr2O3 film was formed. The thickness of film and internal sulfides were substantially increased. The NaCl additions significantly accelerated the corrosion process. A non-protective outer oxide film was formed, composed by multiple layers with serious inner sulfide and spallation. The depths of internal oxidizing and sulfuration zones were significantly increased. The mechanism of ash corrosion formation was also discussed.

  16. Staying out of the Cold.

    ERIC Educational Resources Information Center

    Levinson, Patrick J.

    1996-01-01

    Discusses how annual boiler maintenance can help cut fuel costs and prevent downtime. Outlines a cleaning program, which includes inspecting the fireside of the boiler, checking the refractory, and checking the waterside. Describes other maintenance measures, such as checking hydraulic fluid levels, and offers tips for analyzing combustion. (RJM)

  17. Hearth and campfire influences on arterial blood pressure: defraying the costs of the social brain through fireside relaxation.

    PubMed

    Lynn, Christopher Dana

    2014-11-11

    The importance of fire in human evolutionary history is widely acknowledged but the extent not fully explored. Fires involve flickering light, crackling sounds, warmth, and a distinctive smell. For early humans, fire likely extended the day, provided heat, helped with hunting, warded off predators and insects, illuminated dark places, and facilitated cooking. Campfires also may have provided social nexus and relaxation effects that could have enhanced prosocial behavior. According to this hypothesis, calmer, more tolerant people would have benefited in the social milieu via fireside interactions relative to individuals less susceptible to relaxation response. Using a randomized crossover design that disaggregated fire's sensory properties, pre-posttest blood pressure measures were compared among 226 adults across three studies with respect to viewing simulated muted-fire, fire-with-sound, and control conditions, in addition to tests for interactions with hypnotizability, absorption, and prosociality. Results indicated consistent blood pressure decreases in the fire-with-sound condition, particularly with a longer duration of stimulus, and enhancing effects of absorption and prosociality. Findings confirm that hearth and campfires induce relaxation as part of a multisensory, absorptive, and social experience. Enhancements to relaxation capacities in the human social brain likely took place via feedback involving these and other variables.

  18. Exploring how alternative mapping approaches influence fireshed assessment and human community exposure to wildfire

    Treesearch

    Joe H. Scott; Matthew P. Thompson; Julie W. Gilbertson-Day

    2015-01-01

    Attaining fire-adapted human communities has become a key focus of collaborative planning on landscapes across the western United States and elsewhere. The coupling of fire simulation with GIS has expanded the analytical base to support such planning efforts, particularly through the "fireside" concept that identifies areas where wildfires could ignite and...

  19. The Camp David Ceremony and the Genre of the Presidential Parasocial Broadcast Announcement.

    ERIC Educational Resources Information Center

    Houser, William Evan

    In 1978, the historic Camp David Peace Accords between Egypt and Israel were signed in a ceremony broadcast from the White House. The ceremony may be seen as a member of a rhetorical genre informally called the Presidential Parasocial Broadcast Announcement, but with a new twist. The genre has its roots in the Fireside Chats of Franklin D.…

  20. Evaluation of advanced austenitic alloys relative to alloy design criteria for steam service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindeman, R.W.; Maziasz, P.J.; Bolling, E.

    1990-05-01

    The results are summarized for a 6-year activity on advanced austenitic stainless steels for heat recovery systems. Commercial, near-commercial, and developmental alloys were evaluated relative to criteria for metallurgical stability, fabricability, weldability, and mechanical strength. Fireside and steamside corrosion were also considered, but no test data were collected. Lean stainless steel alloys that were given special attention in the study were type 316 stainless steel, fine-grained type 347 stainless steel, 17-14CuMo stainless steel, Esshete 1250, Sumitomo ST3Cu{reg sign} stainless steel, and a group of alloys identified as HT-UPS (high-temperature, ultrafine-precipitation strengthened) steels that were basically 14Cr--16Ni--Mo steels modified by variousmore » additions of MC-forming elements. It was found that, by solution treating the MC-forming alloys to temperatures above 1150{degree}C and subsequently cold or warm working, excellent metallurgical stability and creep strength could be achieved. Test data to beyond 35,000 h were collected. The ability to clad the steels for improved fireside corrosion resistance was demonstrated. Weldability of the alloys was of concern, and hot cracking was found to be a problem in the HT-UPS alloys. By reducing the phosphorous content and selecting either CRE 16-8-2 stainless steel or alloy 556 filler metal, weldments were produced that had excellent strength and ductility. The major issues related to the development of the advanced alloys were identified and ways to resolve the issues suggested. 89 refs., 45 figs., 8 tabs.« less

  1. FDR's Fireside Chat on the Purposes and Foundations of the Recovery Program. The Constitution Community: The Great Depression and World War II (1929-1945).

    ERIC Educational Resources Information Center

    Clark, Linda Darus

    When Franklin Delano Roosevelt was elected U.S. President in 1932, it was with the promise to restore U.S. confidence and to bring the country out of the Great Depression. After his election, Roosevelt formulated his New Deal policies to bring about relief from economic hardships. He created the National Recovery Administration (NRA) which had two…

  2. Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels

    DOEpatents

    Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.

    2010-03-16

    An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.

  3. Combustion performance characteristics of fine grind fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, O.K.; Levasseur, A.A.

    1996-12-31

    The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCFs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. To date, twelve beneficiated coal-based fuels have been acquired through PETC and tested at ABB Power Plant Laboratories Fireside Performance Test Facility (FPTF). The results from these fuels indicate that firing the BCFs improved furnace heat transfer andmore » fly ash erosion compared to their respective feed coals. This paper presents the results from a series of combustion test runs recently conducted in the FPTF to address the effect of fuel fineness on performance. A conventionally cleaned at the mine Pittsburgh No. 8 (Emerald mine, Green County, Pennsylvania, Cyprus Coal Company) was acquired and prepared at three grinds (standard, fine and ultra-fine grinds) to evaluate the effect of fuel fineness on combustion performance. The three fuels were tested at firing rates ranging from 3.0 {times} 10{sup 6} Btu/h to 4.0 {times} 10{sup 6} Btu/h, at standard (no staging) and two staged firing conditions.« less

  4. CONCEPTUAL DESIGN ASSESSMENT FOR THE COFIRING OF BIOREFINERY SUPPLIED LIGNIN PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David J. Webster; Jeffrey T. Ranney; Jacqueline G. Broder

    2002-07-01

    The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed. Processing of biosolids and pilot facility hydrolysis production have been completed to produce lignin for cofire testing. EERC had received all the biomass and baseline coal fuels for use in testing. All the combustion and fuel handling tests at EERC have been completed. During fuel preparation EERC reported no difficulties in fuel blending and handling. Preliminary cofire test results indicate that the blending of lignin and biosolids with the Colbert coal blendmore » generally reduces NOx emissions, increases the reactivity of the coal, and increases the ash deposition rate on superheater surfaces. Deposits produced from the fuel blends, however, are more friable and hence easier to remove from tube surfaces relative to those produced from the baseline Colbert coal blend. A draft of the final cofire technical report entitled ''Effects of Cofiring Lignin and Biosolids with Coal on Fireside Performance and Combustion Products'' has been prepared and is currently being reviewed by project team members. A final report is expected by mid-third quarter 2002. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The environmental review, preferred steam supply connection points and steam pipeline routing, and assessment of steam export impacts have been completed without major issue. A cost estimate for the steam supply system was also completed. TVA is further evaluating the impacts of adding lignin to the coal fuel blend and how the steam cost is impacted by proximity of the Masada biomass facility. TVA has provided a draft final report that is under review by team members.« less

  5. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 2: Materials considerations. [materials used in boilers and heat exchangers of energy conversion systems for electric power plants using coal

    NASA Technical Reports Server (NTRS)

    Thomas, D. E.

    1976-01-01

    Extensive studies are presented which were carried out on materials behavior in nine advanced energy conversion systems employing coal and coal-derived fuels. The areas of materials behavior receiving particular attention in this regard are: (1) fireside corrosion and erosion in boiler and heat exchanger materials, (2) oxidation and hot corrosion of gas turbine materials, (3) liquid metal corrosion and mass transport, (4) high temperature steam corrosion, (5) compatability of materials with coal slag and MHD seed, (6) reaction of materials with impure helium, (7) allowable stresses for boiler and heat exchanger materials, (8) environmental effects on mechanical properties, and (9) liquid metal purity control and instrumentation. Such information was then utilized in recommending materials for use in the critical components of the power systems, and at the same time to identify materials problem areas and to evaluate qualitatively the difficulty of solving those problems. Specific materials recommendations for critical components of the nine advanced systems under study are contained in summary tables.

  6. Fireside corrosion in oxy-fuel combustion of coal

    DOE PAGES

    Holcomb, Gordon R.; Tylczak, Joseph; Meier, Gerald H.; ...

    2011-08-01

    Oxy-fuel combustion is based on burning fossil fuels in a mixture of recirculated flue gas and oxygen, rather than in air. An optimized oxy-combustion power plant will have ultra-low emissions since the flue gas that results from oxy-fuel combustion consists almost entirely of CO2 and water vapor. Once the water vapor is condensed, it is relatively easy to sequester the CO2 so that it does not escape into the atmosphere. A variety of laboratory tests comparing air-firing to oxy-firing conditions, and tests examining specific simpler combinations of oxidants, were conducted at 650-700 C. Alloys studied included model Fe-Cr and Ni-Crmore » alloys, commercial ferritic steels, austenitic steels, and nickel base superalloys. Furthermore, the observed corrosion behavior shows accelerated corrosion even with sulfate additions that remain solid at the tested temperatures, encapsulation of ash components in outer iron oxide scales, and a differentiation between oxy-fuel combustion flue gas recirculation choices.« less

  7. Mitigation of Syngas Cooler Plugging and Fouling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bockelie, Michael J.

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling ofmore » the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better understanding of deposit formation mechanisms; • performing Techno-Economic-Analysis for a representative IGCC plant to investigate the impact on plant economics, in particular the impacts on the Cost of Electricity (COE), due to plant shutdowns caused by syngas cooler plugging and fouling and potential benefits to plant economics of developing strategies to mitigate syngas cooler fouling; and • performing modeling and pilot scale tests to investigate the potential benefits of using a sorbent (fuel additive) to capture the vaporized metals that result in syngas cooler fouling. All project milestones for BP 1 and BP 2 were achieved. DOE was provided a briefing on our accomplishments in BP1 and BP2 and our proposed plans for Budget Period 3 (BP 3). Based on our research the mitigation technology selected to investigate in BP 3 was the use of a sorbent that can be injected into the gasifier with the fuel slurry to capture vaporized metals that lead to the deposit formation in the syngas cooler. The work effort proposed for BP 3 would have focused on addressing concerns raised by gasification industry personnel for the impacts on gasifier performance of sorbent injection, so that at the end of BP 3 the use of sorbent injection would be at “pre-commercial” stage and ready for use in a Field Demonstration that could be funded by industry or DOE. A Budget Continuation Application (BCA) was submitted to obtain funding for BP3 DOE but DOE chose to not fund the proposed BP3 effort.« less

  8. High Temperature Corrosion Problem of Boiler Components in presence of Sulfur and Alkali based Fuels

    NASA Astrophysics Data System (ADS)

    Ghosh, Debashis; Mitra, Swapan Kumar

    2011-04-01

    Material degradation and ageing is of particular concern for fossil fuel fired power plant components. New techniques/approaches have been explored in recent years for Residual Life assessment of aged components and material degradation due to different damage mechanism like creep, fatigue, corrosion and erosion etc. Apart from the creep, the high temperature corrosion problem in a fossil fuel fired boiler is a matter of great concern if the fuel contains sulfur, chlorine sodium, potassium and vanadium etc. This paper discusses the material degradation due to high temperature corrosion in different critical components of boiler like water wall, superheater and reheater tubes and also remedial measures to avoid the premature failure. This paper also high lights the Residual Life Assessment (RLA) methodology of the components based on high temperature fireside corrosion. of different critical components of boiler.

  9. Fireside Corrosion Behaviors of Super304H and HR3C in Coal Ash/Gas Environment with Different SO2 Contents at 650 °C

    NASA Astrophysics Data System (ADS)

    Lu, Jintao; Yang, Zhen; Li, Yan; Huang, Jinyang; Zhou, Yongli; Zhao, Xinbao; Yuan, Yong

    2018-05-01

    The corrosion behaviors of Super304H and HR3C used for USC boiler applications were investigated in simulated coal ash/gas environments with 0.1 and 1.5% of SO2 at 650 °C for 500 h. The results indicated that the increase in SO2 accelerated the corrosion rate and the spalling tendency of the corrosion layer in both tested alloys. Fe2O3, Cr2O3 and FeCr2O4 main peaks were revealed by XRD on Super304H, but on HR3C only the Cr2O3 peak showed a high intensity. The SO2 content did not affect the corrosion product composition of any of the alloys, but accelerated the inner sulfidation and the spallation on Super304H. No obvious internal sulfidation was observed on HR3C in either SO2 content. Based on the experimental results, the alloy corrosion mechanism and the influence of sulfur content on the corrosion process were discussed.

  10. Investigation of thermal spray coatings on austenitic stainless steel substrate to enhance corrosion protection

    NASA Astrophysics Data System (ADS)

    Rogers, Daniel M.

    The research is aimed to evaluate thermal spray coatings to address material issues in supercritical and ultra-supercritical Rankine cycles. The primary purpose of the research is to test, evaluate, and eventually implement a coating to improve corrosion resistance and increase efficiency of coal fired power plants. The research is performed as part of a comprehensive project to evaluate the ability of titanium, titanium carbide, or titanium diboride powders to provide fireside corrosion resistance in supercritical and ultra-supercritical steam boilers, specifically, coal driven boilers in Illinois that must utilize high sulfur and high chlorine content coal. [1] The powder coatings that were tested are nano-sized titanium carbide (TiC) and titanium di-boride (TiB2) powders that were synthesized by a patented process at Southern Illinois University. The powders were then sent to Gas Technology Institute in Chicago to coat steel coupons by HVOF (High Velocity Oxy-Fuel) thermal spray technique. The powders were coated on an austenitic 304H stainless steel substrate which is commonly found in high temperature boilers, pipelines, and heat exchangers. The samples then went through various tests for various lengths of time under subcritical, supercritical, and ultra-supercritical conditions. The samples were examined using a scanning electron microscope and x-ray diffraction techniques to study microstructural changes and then determined which coating performed best.

  11. Boiler materials for ultra-supercritical coal power plants - steamside oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanathan, R.; Sarver, J.; Tanzosh, J.M.

    2006-06-15

    The corrosion behavior of tubing materials carrying steam at high temperature is of great concern to fossil power plant operators. This is due to the fact that the oxide films formed on the steam side can lead to major failures and consequently to reduced plant availability. The wall loss of the pressure boundary caused by oxidation can increase the hoop stresses and cause premature creep failures; second, the increased insulation of the tubes due to the low thermal conductivity of the oxide film can lead to increased metal temperature, thereby exacerbating the fireside corrosion as well as creep problems. Themore » third concern is that thicker oxides may spall more easily when the plant is cooled down. On restart, the spalled material may lodge somewhere in the system with the potential for causing tube blockages, or it may be swept out with the working fluid and enter the steam turbine causing erosion damage to the turbine nozzles and blades. Failures of tubing and turbine components by these mechanisms have been widely reported in the United States. In view of the importance of the steamside oxidation, a major study of the phenomenon is being carried out as part of a major national program sponsored by the U.S. Department of Energy and the Ohio Coal Development Office. As a prelude to the experimental work, a literature survey was performed to document the state of the art. Results of the review are reported here.« less

  12. Boiler materials for ultra-supercritical coal power plants—Steamside oxidation

    NASA Astrophysics Data System (ADS)

    Viswanathan, R.; Sarver, J.; Tanzosh, J. M.

    2006-06-01

    The corrosion behavior of tubing materials carrying steam at high temperature is of great concern to fossil power plant operators. This is due to the fact that the oxide films formed on the steam side can lead to major failures and consequently to reduced plant availability. The wall loss of the pressure boundary caused by oxidation can increase the hoop stresses and cause premature creep failures; second, the increased insulation of the tubes due to the low thermal conductivity of the oxide film can lead to increased metal temperature, thereby exacerbating the fireside corrosion as well as creep problems. The third concern is that thicker oxides may spall more easily when the plant is cooled down. On restart, the spalled material may lodge somewhere in the system with the potential for causing tube blockages, or it may be swept out with the working fluid and enter the steam turbine causing erosion damage to the turbine nozzles and blades. Failures of tubing and turbine components by these mechanisms have been widely reported in the United States. In view of the importance of the steamside oxidation, a major study of the phenomenon is being carried out as part of a major national program sponsored by the U.S. Department of Energy and the Ohio Coal Development Office. As a prelude to the experimental work, a literature survey was performed to document the state of the art. Results of the review are reported here.

  13. An ounce of prevention: A pre-randomization protocol to improve retention in substance use disorder clinical trials.

    PubMed

    Northrup, Thomas F; Greer, Tracy L; Walker, Robrina; Rethorst, Chad D; Warden, Diane; Stotts, Angela L; Trivedi, Madhukar H

    2017-01-01

    Missing data in substance use disorder (SUD) research pose a significant threat to internal validity. Participants terminate involvement or become less likely to attend intervention and research visits for many reasons, which should be addressed prior to becoming problematic. During a 9-month study targeting stimulant abuse, early dropouts and participant reported attendance barriers led to implementing a structured, pre-randomization protocol with participants about retention and solution-focused strategies (the "Fireside Chat"). Our aim is to outline this approach and present data on intervention participation and research visit attendance after implementation. STimulant Reduction using Dosed Exercise (STRIDE) was a two-arm, multisite randomized clinical trial testing treatment-as-usual for stimulant abuse/dependence augmented by Exercise or Health Education. For both groups, study intervention visits at the site were scheduled 3/week for 12weeks followed by 1/week for 24weeks. During The Chat, research staff thoroughly reviewed participants' expectations, and barriers and solutions to retention. Fifteen participants were randomized (to Exercise or Health Education) prior to and fourteen were randomized after Chat implementation. Intervention and monthly follow-up attendance (before and after implementation) were compared at the site (N=29) that developed and rigorously implemented The Chat. Individuals who participated in The Chat (n=14) attended significantly more intervention visits during weeks 1-12 (p<0.001) and weeks 13-36 (p<0.05) and attended more research visits (p<0.001). Proactive discussion of expectations and barriers prior to randomization was associated with greater study attendance. SUD researchers should consider tailoring this approach to suit their needs. Further investigation is warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Engaging Citizen Scientists through Partnership with Interpreters

    NASA Astrophysics Data System (ADS)

    Heavner, M.; Ferguson Craig, L.; Hekkers, M.; Connor, C. L.; Hood, E. W.

    2010-12-01

    A partnership between USDA Forest Service Mendenhall Glacier Visitor Center interpreters and University of Alaska faculty and students has facilitated citizen science engagement. The Mendenhall Glacier Visitor Center is the most visited facility operated by the United States Forest Service with approximately 445,000 visitors per year. University and visitor center personnel have developed exhibits in the Visitor Center. A majority of visitors stay for only approximately one hour due to cruise ship schedule constraints, so direct engagement by interpreters is an effective public engagement method. Therefore, the University of Alaska Southeast and the Mendenhall Glacier Visitor Center (MGVC) have worked in partnership to study the Mendenhall Glacier, providing annual public lectures through the MGVC Fireside Lecture Series, intense training sessions for all MGVC interpreters at the beginning of every summer season, and facilitating a dialog of "on-site" observations by interpreters and visitors and University researchers. The MGVC facilitates a weather station and multiple cameras providing real time data and images of Mendenhall Glacier which may be accessed by anyone and time-lapse videos of calving or advance/retreat of the terminus of the glacier. Specifically, these images and meteorological data allow the continued engagement of visitors through access when they have returned home. The open communication between MGVC and UAS allows the rapid communication of observations of changes associated with the glacier and quick response to questions of interpreters or the public. A public recording of calving facilitates public engagement and facilitates the production of time-lapse video by university personnel. In our presentation we will describe the partnership between UAS and MGVC.

  15. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larry G. Felix; P. Vann Bush

    2002-10-26

    This is the eighth Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. The final biomass co-firing test burn was conducted during this quarter. In this test (Test 14), up to 20% by weight dry switchgrass was comilled with Jim Walters No.7 mine coal and injected through the single-register burner. Jim Walters No.7 coal is a low-volatility, low-sulfur ({approx}0.7% S) Eastern bituminous coal. The results of this test are presented in this quarterly report. Progress has continued to be made in implementing a modeling approach tomore » combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. The REI Configurable Fireside Simulator (CFS) is now in regular use. Presently, the CFS is being used to generate CFD calculations for completed tests with Powder River Basin coal and low-volatility (Jim Walters No.7 Mine) coal. Niksa Energy Associates will use the results of these CFD simulations to complete their validation of the NOx/LOI predictive model. Work has started on the project final report.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giovanni, D.V.; Carr, R.C.; Landham, E.C.

    Two products of coal quality research at the Electric Power Research Institute TM (EPRI) are available for field evaluation: Coal Quality Impact Model (CQIM and Fireside Testing Guidelines (FIG). The CQIM is a computer program that may be tailored to simulate the performance characteristics of a coal-fired power plant. The FIG is a technical report that guides utilities in conducting field tests to gather performance data and quantify the technical and economic impacts of different coals. Moreover, the results from field tests may be utilized to validate and assess the applicability of the CQIM. Field tests were conducted at Mississippimore » Power Company`s Watson Unit 4 to evaluate the coal quality impacts of coal switching on boiler performance and emissions. Watson Unit 4 is a 255 MW (gross), opposed-wall, pulverized-coal-fired boiler manufactured by Riley Stoker Corporation and rated at 1,779,000 lb/hr steam flow at 1000{degrees}F superheat steam temperature and 2,500 psig. The unit is equipped with a cold-side electrostatic precipitator for particulate matter control. Comprehensive tests were conducted on all major equipment components, including the pulverizers, fans, combustion equipment, boiler heat transfer surfaces, air preheater, and electrostatic precipitator, for two coals. The CQIN4 was configured to predict the performance of the unit when burning each coal. The work was sponsored by EPRI, and Mississippi Power Company (MPC) was the host utility company. This report summarizes results from the field test program, including potential heat rate improvements that were identified, and the differences in unit operations and performance for the two coals. The results from the CQIM validation effort are also presented.« less

  17. High-temperature fireside corrosion monitoring in the superheater section of a pulverized-coal-fired boiler. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mok, W.Y.; Cox, W.M.

    1992-12-01

    The work described in this report was the first British in-plant application of continuous online electrochemical corrosion monitoring technology in pulverized coal-fired superheater environments. The work was conducted at Drax Power Station, National Power plc, UK. The investigation was to evaluate the relative corrosion performance of stainless steel Alloys 316 and 310. Two electrochemical sensor assemblies fabricated from the test alloys were attached to the end of a coupon exposure probe which was inserted into the superheater section of a 660MW boiler. The probe assemblies were exposed at a nominal temperature of 665{degrees}C (1229{degrees}F) during the trial. two series ofmore » short term temperature scanning tests were carried out. Alloy 310 performed comparatively better than Alloy 316. Minimal corrosion loss was sustained by Alloy 310 whilst a characteristic wastage flat was observed on Alloy 316. It was shown that variations in boiler operation could affect the minute-to-minute corrosion behavior of the test materials. The results of the brief temperature scan program indicated a trend of increasing corrosion with exposure temperature. No evidence was observed of the ``bell-shaped`` curve behavior reported in laboratory studies of molten salt corrosion. Metallographic examination of the sensors indicated that only small and discrete areas of internal sulfur enrichment beneath the surface scale. This is untypical of the morphology of sulfur enriched scale found in molten salt corrosion systems. The corrosion processes were predominately in the form of oxidation/sulfidation. The formation of a wastage flat was postulated to have been caused by an electrochemical mechanism similar to that of flow assisted corrosion in aqueous electrolytes. These results confirmed that continuous on-line electrochemical instrumentation could be used to investigate, monitor and characterize high temperature oxidation in power generation boiler superheaters.« less

  18. High-temperature fireside corrosion monitoring in the superheater section of a pulverized-coal-fired boiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mok, W.Y.; Cox, W.M.

    1992-12-01

    The work described in this report was the first British in-plant application of continuous online electrochemical corrosion monitoring technology in pulverized coal-fired superheater environments. The work was conducted at Drax Power Station, National Power plc, UK. The investigation was to evaluate the relative corrosion performance of stainless steel Alloys 316 and 310. Two electrochemical sensor assemblies fabricated from the test alloys were attached to the end of a coupon exposure probe which was inserted into the superheater section of a 660MW boiler. The probe assemblies were exposed at a nominal temperature of 665[degrees]C (1229[degrees]F) during the trial. two series ofmore » short term temperature scanning tests were carried out. Alloy 310 performed comparatively better than Alloy 316. Minimal corrosion loss was sustained by Alloy 310 whilst a characteristic wastage flat was observed on Alloy 316. It was shown that variations in boiler operation could affect the minute-to-minute corrosion behavior of the test materials. The results of the brief temperature scan program indicated a trend of increasing corrosion with exposure temperature. No evidence was observed of the bell-shaped'' curve behavior reported in laboratory studies of molten salt corrosion. Metallographic examination of the sensors indicated that only small and discrete areas of internal sulfur enrichment beneath the surface scale. This is untypical of the morphology of sulfur enriched scale found in molten salt corrosion systems. The corrosion processes were predominately in the form of oxidation/sulfidation. The formation of a wastage flat was postulated to have been caused by an electrochemical mechanism similar to that of flow assisted corrosion in aqueous electrolytes. These results confirmed that continuous on-line electrochemical instrumentation could be used to investigate, monitor and characterize high temperature oxidation in power generation boiler superheaters.« less

  19. The Cambia Sojourns Scholars Leadership Program: Conversations with Emerging Leaders in Palliative Care.

    PubMed

    Cruz-Oliver, Dulce M; Bernacki, Rachelle; Cooper, Zara; Grudzen, Corita; Izumi, Seiko; Lafond, Deborah; Lam, Daniel; LeBlanc, Thomas W; Tjia, Jennifer; Walter, Jennifer

    2017-08-01

    There is a pressing workforce shortage and leadership scarcity in palliative care to adequately meet the demands of individuals with serious illness and their families. To address this gap, the Cambia Health Foundation launched its Sojourns Scholars Leadership Program in 2014, an initiative designed to identify, cultivate, and advance the next generation of palliative care leaders. This report intends to summarize the second cohort of Sojourns Scholars' projects and their reflection on their leadership needs. This report summarizes the second cohort of sojourns scholars' project and their reflection on leadership needs. After providing a written reflection on their own projects, the second cohort participated in a group interview (fireside chat) to elicit their perspectives on barriers and facilitators in providing palliative care, issues facing leadership in palliative care in the United States, and lessons from personal and professional growth as leaders in palliative care. They analyzed the transcript of the group interview using qualitative content analysis methodology. Three themes emerged from descriptions of the scholars' project experience: challenges in palliative care practice, leadership strategies in palliative care, and three lessons learned to be a leader were identified. Challenges included perceptions of palliative care, payment and policy, and workforce development. Educating and collaborating with other clinicians and influencing policy change are important strategies used to advance palliative care. Time management, leading team effort, and inspiring others are important skills that promote effectiveness as a leader. Emerging leaders have a unique view of conceptualizing contemporary palliative care and shaping the future. Providing comprehensive, coordinated care that is high quality, patient and family centered, and readily available depends on strong leadership in palliative care. The Cambia Scholars Program represents a unique opportunity.

  20. Materials Performance in USC Steam Portland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.R. Holcomb; J. Tylczak; R. Hu

    2011-04-26

    Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interestmore » include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.« less

  1. Defect studies of thin ZnO films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Vlček, M.; Čížek, J.; Procházka, I.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Mosnier, J.-P.

    2014-04-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  2. Mineral deposits of Central America, with a section on manganese deposits of Panama

    USGS Publications Warehouse

    Roberts, Ralph Jackson; Irving, Earl Montgomery; Simons, F.S.

    1957-01-01

    The mineral deposits of Central America were studied between 1942 and 1945, in cooperation with the United States Department of State and the Foreign Economic Administration. Emphasis was originally placed on the study of strategic-mineral deposits, especially of antimony, chromite, manganese, quartz, and mica, but deposits of other minerals that offered promise of significant future production were also studied. A brief appraisal of the base-metal deposits was made, and deposits of iron ore in Honduras and of lead and zinc ores in Guatemala were mapped. In addition, studies were made of the regional geology of some areas, data were collected from many sources, and a new map of the geology of Central America was compiled.

  3. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    NASA Astrophysics Data System (ADS)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  4. Simultaneous ion sputter polishing and deposition

    NASA Technical Reports Server (NTRS)

    Rutledge, S.; Banks, B.; Brdar, M.

    1981-01-01

    Results of experiments to study ion beam sputter polishing in conjunction with simultaneous deposition as a mean of polishing copper surfaces are presented. Two types of simultaneous ion sputter polishing and deposition were used in these experiments. The first type utilized sputter polishing simultaneous with vapor deposition, and the second type utilized sputter polishing simultaneous with sputter deposition. The etch and deposition rates of both techniques were studied, as well as the surface morphology and surface roughness.

  5. Progress in the Study of Coastal Storm Deposits

    NASA Astrophysics Data System (ADS)

    Xiong, Haixian; Huang, Guangqing; Fu, Shuqing; Qian, Peng

    2018-05-01

    Numerous studies have been carried out to identify storm deposits and decipher storm-induced sedimentary processes in coastal and shallow-marine areas. This study aims to provide an in-depth review on the study of coastal storm deposits from the following five aspects. 1) The formation of storm deposits is a function of hydrodynamic and sedimentary processes under the constraints of local geological and ecological factors. Many questions remain to demonstrate the genetic links between storm-related processes and a variety of resulting deposits such as overwash deposits, underwater deposits and hummocky cross-stratification (HCS). Future research into the formation of storm deposits should combine flume experiments, field observations and numerical simulations, and make full use of sediment source tracing methods. 2) Recently there has been rapid growth in the number of studies utilizing sediment provenance analysis to investigate the source of storm deposits. The development of source tracing techniques, such as mineral composition, magnetic susceptibility, microfossil and geochemical property, has allowed for better understanding of the depositional processes and environmental changes associated with coastal storms. 3) The role of extreme storms in the sedimentation of low-lying coastal wetlands with diverse ecosystem services has also drawn a great deal of attention. Many investigations have attempted to quantify widespread land loss, vertical marsh sediment accumulation and wetland elevation change induced by major hurricanes. 4) Paleostorm reconstructions based on storm sedimentary proxies have shown many advantages over the instrumental records and historic documents as they allow for the reconstruction of storm activities on millennial or longer time scales. Storm deposits having been used to establish proxies mainly include beach ridges and shelly cheniers, coral reefs, estuary-deltaic storm sequences and overwash deposits. Particularly over the past few decades, the proxies developed from overwash deposits have successfully retrieved many records of storm activities during the mid to late Holocene worldwide. 5) Distinguishing sediments deposited by storms and tsunamis is one of the most difficult issues among the many aspects of storm deposit studies. Comparative studies have investigated numerous diagnostic evidences including hydrodynamic condition, landward extent, grain property, texture and grading, thickness, microfossil assemblage and landscape conformity. Perhaps integrating physical, biological and geochemical evidences will, in the future, allow unambiguous identification of tsunami deposits and storm deposits.

  6. Developing Depositional Models for Mercury Contaminated Floodplain Deposits Using Geomorphic Mapping and GIS in South River, Virginia

    NASA Astrophysics Data System (ADS)

    Barbieri, A.; Pizzuto, J.; O'Neal, M. A.; Rhoades, E.

    2007-12-01

    Mercury was introduced into the South River from the 1930s to the 1950s from an industrial plant in Waynesboro, Virginia. Mercury contamination in fish tissue continues to exceed acceptable levels. The contaminated sediments in the river's floodplains are probably the present source of mercury to the South River ecosystem. Locating and determining the extent and depositional history of these deposits are important for understanding the mercury cycle in the river as well as for remediation plans. The South River is a sinuous, single thread alluvial river with frequent bedrock exposures along its bed and banks. Overbank deposits are discontinuous and thin. Rates of lateral migration by the South River are extremely low, averaging 0.02 m/yr, and the river has been influenced by mill dams along a 19 km study reach. This 19 km section of the 37 km river reach was selected for the study because of its high concentration of Hg. Six different categories of floodplain deposits dating from 1937-2005 have been identified throughout the river using studies of historical aerial photographs in a GIS framework, field mapping, dendro- and radionuclide dating, grain size and Hg analysis. Not surprisingly, traditional depositional models of meandering rivers do not apply. Floodplain depositional units include mill dam deposits, point bar/bench deposits, concave bank bench deposits, islands, cattle deposits, and tributary confluences deposits. The most important deposits for sequestering historic mercury are those that also store the most silt and clay. These include mill dam deposits, point bar/bench deposits, concave bank deposits, and tributary confluence deposits. Many of these deposits represent reservoirs of mercury-contaminated sediments that could supply significant amounts of mercury into the river presently and in the future.

  7. Ultrastructural study of electron dense deposits in renal tubular basement membrane: prevalence and relationship to epithelial atrophy.

    PubMed

    Yong, Jim L C; Killingsworth, Murray C

    2014-08-01

    This study reports the prevalence of immune deposits associated with the proximal and distal tubules in a series of routine renal biopsies received in our department during a single calendar year. From 87 cases, 65 (74%) were found to have glomerular immune deposits by immunofluorescence. Tubular immune deposits were found in 12 cases (18%), 3 of which had no glomerular deposits. By transmission electron microscopy (EM), 58 cases (66%) were found to have deposits of granular or vesicular material associated with the tubular basement membranes (TBM). Finely granular electron dense deposits appeared to correspond to the immune deposits seen by immunofluorescence microscopy (IF) and may be a sensitive marker of immune deposition.

  8. Ultrastructural Study of Electron Dense Deposits in Renal Tubular Basement Membrane: Prevalence and Relationship to Epithelial Atrophy

    PubMed Central

    Killingsworth, Murray C.

    2014-01-01

    This study reports the prevalence of immune deposits associated with the proximal and distal tubules in a series of routine renal biopsies received in our department during a single calendar year. From 87 cases, 65 (74%) were found to have glomerular immune deposits by immunofluorescence. Tubular immune deposits were found in 12 cases (18%), 3 of which had no glomerular deposits. By transmission electron microscopy (EM), 58 cases (66%) were found to have deposits of granular or vesicular material associated with the tubular basement membranes (TBM). Finely granular electron dense deposits appeared to correspond to the immune deposits seen by immunofluorescence microscopy (IF) and may be a sensitive marker of immune deposition. PMID:24933115

  9. Studies of mist deposition for the formation of quantum dot CdSe films

    NASA Astrophysics Data System (ADS)

    Price, S. C.; Shanmugasundaram, K.; Ramani, S.; Zhu, T.; Zhang, F.; Xu, J.; Mohney, S. E.; Zhang, Q.; Kshirsagar, A.; Ruzyllo, J.

    2009-10-01

    Films of CdSe(ZnS) colloidal nanocrystalline quantum dots (NQDs) were deposited on bare silicon, glass and polymer coated silicon using mist deposition. This effort is a part of an exploratory investigation in which this deposition technique is studied for the first time as a method to form semiconductor NQD films. The process parameters, including deposition time, solution concentration and electric field, were varied to change the thickness of the deposited film. Blanket films and films deposited through a shadow mask were created to investigate the method's ability to pattern films during the deposition process. The differences between these deposition modes in terms of film morphology were observed. Overall, the results show that mist deposition of quantum dots is a viable method for creating thin, patterned quantum dot films using colloidal solution as the precursor. It is concluded that this technique shows very good promise for quantum dot (light emitting diode, LED) fabrication.

  10. Ambient air metallic pollutant study at HAF areas during 2013-2014

    NASA Astrophysics Data System (ADS)

    Fang, Guor-Cheng; Kuo, Yu-Chen; Zhuang, Yuan-Jie

    2015-05-01

    This study characterized diurnal variations of the total suspended particulate (TSP) concentrations, dry deposition flux and dry deposition velocity of metallic elements at Taichung Harbor (Harbor), Gong Ming Junior High School (Airport) and Sha lu Farmland (Farmland) sampling sites in central Taiwan between August, 2013 and July, 2014 in this study. The result indicated that: 1) the ambient air particulate concentrations, dry depositions were displayed as Harbor > Farmland > Airport during the day time sampling period. However, dry deposition velocities were shown as Airport > Harbor > Farmland for this study. 2) The ambient air particulate concentrations, dry depositions were displayed as Airport > Harbor > Farmland during the night time sampling period. However, dry deposition velocities were shown as Farmland > Harbor > Airport for this study. 3) The metallic element Zn has the average highest concentrations at Airport, Harbor and Farmland among all the metallic elements during the day time sampling period in this study. 4) There were significant differences for the metallic elements (Cr, Cu, Zn and Pb) in dry depositions at these three characteristic sampling sites (HAF) for the night time sampling period. The only exception is metallic element Cd. It displayed that there were no significant differences for the metallic element Cd at the Airport and Farmland sampling sites during the night time sampling period. 5) The average highest values for the metallic element Cu in TSP among the three characteristic sampling sites occurred during the fall and winter seasons for this study. As for the dry depositions, the average highest values in dry deposition among the three characteristic sampling sites occurred during the spring and summer seasons for this study. 6) The average highest values for the metallic element Cd in TSP among the three characteristic sampling sites occurred during the spring and summer seasons for this study. As for the dry depositions, the average highest values in dry deposition among the three characteristic sampling sites occurred during fall and winter for this study.

  11. Estimation of speciated and total mercury dry deposition at monitoring locations in eastern and central North America

    USGS Publications Warehouse

    Zhang, L.; Blanchard, P.; Gay, D.A.; Prestbo, E.M.; Risch, M.R.; Johnson, D.; Narayan, J.; Zsolway, R.; Holsen, T.M.; Miller, E.K.; Castro, M.S.; Graydon, J.A.; St. Louis, V.L.; Dalziel, J.

    2012-01-01

    Dry deposition of speciated mercury, i.e., gaseous oxidized mercury (GOM), particulate-bound mercury (PBM), and gaseous elemental mercury (GEM), was estimated for the year 2008–2009 at 19 monitoring locations in eastern and central North America. Dry deposition estimates were obtained by combining monitored two- to four-hourly speciated ambient concentrations with modeled hourly dry deposition velocities (Vd) calculated using forecasted meteorology. Annual dry deposition of GOM+PBM was estimated to be in the range of 0.4 to 8.1 μg m−2 at these locations with GOM deposition being mostly five to ten times higher than PBM deposition, due to their different modeled Vd values. Net annual GEM dry deposition was estimated to be in the range of 5 to 26 μg m−2 at 18 sites and 33 μg m−2 at one site. The estimated dry deposition agrees very well with limited surrogate-surface dry deposition measurements of GOM and PBM, and also agrees with litterfall mercury measurements conducted at multiple locations in eastern and central North America. This study suggests that GEM contributes much more than GOM+PBM to the total dry deposition at the majority of the sites considered here; the only exception is at locations close to significant point sources where GEM and GOM+PBM contribute equally to the total dry deposition. The relative magnitude of the speciated dry deposition and their good comparisons with litterfall deposition suggest that mercury in litterfall originates primarily from GEM, which is consistent with the limited number of previous field studies. The study also supports previous analyses suggesting that total dry deposition of mercury is equal to, if not more important than, wet deposition of mercury on a regional scale in eastern North America.

  12. Development of an Aerosol Surface Inoculation Method for Bacillus Spores ▿

    PubMed Central

    Lee, Sang Don; Ryan, Shawn P.; Snyder, Emily Gibb

    2011-01-01

    A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 107 CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies. PMID:21193670

  13. Development of an aerosol surface inoculation method for bacillus spores.

    PubMed

    Lee, Sang Don; Ryan, Shawn P; Snyder, Emily Gibb

    2011-03-01

    A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 10(7) CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies.

  14. Deposition rates of fungal spores in indoor environments, factors effecting them and comparison with non-biological aerosols

    NASA Astrophysics Data System (ADS)

    Kanaani, Hussein; Hargreaves, Megan; Ristovski, Zoran; Morawska, Lidia

    Particle deposition indoors is one of the most important factors that determine the effect of particle exposure on human health. While many studies have investigated the particle deposition of non-biological aerosols, few have investigated biological aerosols and even fewer have studied fungal spore deposition indoors. The purpose of this study was, for the first time, to investigate the deposition rates of fungal particles in a chamber of 20.4 m 3 simulating indoor environments by: (1) releasing fungal particles into the chamber, in sufficient concentrations so the particle deposition rates can be statistically analysed; (2) comparing the obtained deposition rates with non-bioaerosol particles of similar sizes, investigated under the same conditions; and (3) investigating the effects of ventilation on the particle deposition rates. The study was conducted for a wide size range of particle sizes (0.54-6.24 μm), at three different air exchange rates (0.009, 1.75 and 2.5 h -1). An Ultraviolet Aerodynamic Particle Sizer Spectrometer (UVAPS) was used to monitor the particle concentration decay rate. The study showed that the deposition rates of fungal spores ( Aspergillus niger and Penicillium species) and the other aerosols (canola oil and talcum powder) were similar, especially at very low air exchange rates (in the order of 0.009). Both the aerosol and the bioaerosol deposition rates were found to be a function of particle size. The results also showed increasing deposition rates with increasing ventilation rates, for all particles under investigation. These conclusions are important in understanding the dynamics of fungal spores in the air.

  15. An innovative spraying setup to obtain uniform salt(s) mixture deposition to investigate hot corrosion

    NASA Astrophysics Data System (ADS)

    Mannava, Venkateswararao; Swaminathan, A. Vignesh; Kamaraj, M.; Kottada, Ravi Sankar

    2016-02-01

    A hot corrosion study via molten salt deposition and its interaction with creep/fatigue play a critical role in predicting the life of gas turbine engine components. To do systematic hot corrosion studies, deposition of molten salts on specimens should be uniform with good adherence. Thus, the present study describes an in-house developed spraying setup that produces uniform and reliable molten salt deposition in a repeatable fashion. The efficacy of the present method was illustrated by depositing 90 wt. % Na2SO4 + 5 wt. % NaCl + 5 wt. % NaV O3 salt mixture on hot corrosion coupons and on creep specimens, and also by comparing with other deposition methods.

  16. Towards Thermal Wavelength Scale Two- and Three-Dimensional Photonic Crystals

    DTIC Science & Technology

    2016-04-01

    this now. We studied the anisotropic thermal conductivity of nanoscale graphite layers deposited by chemical vapor deposition on Ni substrates at...Braun, and David G. Cahill, “Thermal conductivity of graphite thin films grown by low temperature chemical vapor deposition on Ni (111),” submitted...that there is no degradation in the power factor. In the carbon work, we studied the deposited by chemical vapor deposition on Ni substrates at

  17. Comparison of stochastic lung deposition fractions with experimental data.

    PubMed

    Majid, Hussain; Hofmann, Werner; Winkler-Heil, Renate

    2012-04-01

    Deposition fractions of inhaled particles predicted by different computational models vary with respect to physical and biological factors and mathematical modeling techniques. These models must be validated by comparison with available experimental data. Experimental data supplied by different deposition studies with surrogate airway models or lung casts were used in this study to evaluate the stochastic deposition model Inhalation, Deposition and Exhalation of Aerosols in the Lung at the airway generation level. Furthermore, different analytical equations derived for the three major deposition mechanisms, diffusion, impaction, and sedimentation, were applied to different cast or airway models to quantify their effect on calculated particle deposition fractions. The experimental results for ultrafine particles (0.00175 and 0.01) were found to be in close agreement with the stochastic model predictions; however, for coarse particles (3 and 8 μm), experimental deposition fractions became higher with increasing flow rate. An overall fair agreement among the calculated deposition fractions for the different cast geometries was found. However, alternative deposition equations resulted in up to 300% variation in predicted deposition fractions, although all equations predicted the same trends as functions of particle diameter and breathing conditions. From this comparative study, it can be concluded that structural differences in lung morphologies among different individuals are responsible for the apparent variability in particle deposition in each generation. The use of different deposition equations yields varying deposition results caused primarily by (i) different lung morphometries employed in their derivation and the choice of the central bifurcation zone geometry, (ii) the assumption of specific flow profiles, and (iii) different methods used in the derivation of these equations.

  18. Stratigraphy of Upper Cretaceous and Cenozoic deposits of the Bakchar iron ore deposit (southwestern Siberia): New data

    NASA Astrophysics Data System (ADS)

    Lebedeva, N. K.; Kuzmina, O. B.; Sobolev, E. S.; Khazina, I. V.

    2017-01-01

    The results of complex palynological and microfaunistic studies of Upper Cretaceous and Cenozoic deposits of the Bakchar iron ore deposit are presented. Geochronologically, the age of the deposits varies from Campanian to Quaternary. It was established that the Slavgorod, Gan'kino, and Jurki (?) formations contain four biostratons in the rank of beds with dinocysts and three biostratons in the rank of beds with spores and pollen. The Cenozoic continental deposits contain four biostratons in the rank of beds, containing spores and pollen. As a result of the study, a large stratigraphic gap in the Cretaceous-Paleogene boundary deposits, covering a significant part of the Maastrichtian, Paleocene, Ypresian, and Lutetian stages of the Eocene, was established. The remnants of a new morphotype of heteromorphic ammonites of genus Baculites were first described in deposits of the Slavgorod Formation (preliminarily, upper Campanian). The distribution features of the different palynomorph groups in the Upper Cretaceous-Cenozoic deposits in the area of study due to transgressive-regressive cycles and climate fluctuations were revealed.

  19. Spatial variation in the flux of atmospheric deposition and its ecological effects in arid Asia

    NASA Astrophysics Data System (ADS)

    Jiao, Linlin; Wang, Xunming; Li, Danfeng

    2018-06-01

    Atmospheric deposition is one of the key land surface processes, and plays important roles in regional ecosystems and global climate change. Previous studies have focused on the magnitude of and the temporal and spatial variations in the flux of atmospheric deposition, and the composition of atmospheric deposition on a local scale. However, there have been no comprehensive studies of atmospheric deposition on a regional scale and its ecological effects in arid Asia. The temporal and spatial patterns, composition of atmospheric deposition, and its potential effects on regional ecosystems in arid Asia are investigated in this study. The results show that the annual deposition flux is high on the Turan Plain, Aral Sea Desert, and Tarim Basin. The seasonal deposition flux also varies remarkably among different regions. The Tarim Basin shows higher deposition flux in both spring and summer, southern Mongolian Plateau has a higher deposition flux in spring, and the deposition flux of Iran Plateau is higher in summer. Multiple sources of elements in deposited particles are identified. Calcium, iron, aluminum, and magnesium are mainly derived from remote regions, while zinc, copper and lead have predominantly anthropogenic sources. Atmospheric deposition can provide abundant nutrients to vegetation and consequently play a role in the succession of regional ecosystems by affecting the structure, function, diversity, and primary production of the vegetation, especially the exotic or short-lived opportunistic species in arid Asia. Nevertheless, there is not much evidence of the ecological effects of atmospheric deposition on the regional and local scale. The present results may help in further understanding the mechanism of atmospheric deposition as well as providing a motivation for the protection of the ecological environment in arid Asia.

  20. Design of experiments to optimize an in vitro cast to predict human nasal drug deposition.

    PubMed

    Shah, Samir A; Dickens, Colin J; Ward, David J; Banaszek, Anna A; George, Chris; Horodnik, Walter

    2014-02-01

    Previous studies showed nasal spray in vitro tests cannot predict in vivo deposition, pharmacokinetics, or pharmacodynamics. This challenge makes it difficult to assess deposition achieved with new technologies delivering to the therapeutically beneficial posterior nasal cavity. In this study, we determined best parameters for using a regionally divided nasal cast to predict deposition. Our study used a model suspension and a design of experiments to produce repeatable deposition results that mimic nasal deposition patterns of nasal suspensions from the literature. The seven-section (the nozzle locator, nasal vestibule, front turbinate, rear turbinate, olfactory region, nasopharynx, and throat filter) nylon nasal cast was based on computed tomography images of healthy humans. It was coated with a glycerol/Brij-35 solution to mimic mucus. After assembling and orienting, airflow was applied and nasal spray containing a model suspension was sprayed. After disassembling the cast, drug depositing in each section was assayed by HPLC. The success criteria for optimal settings were based on nine in vivo studies in the literature. The design of experiments included exploratory and half factorial screening experiments to identify variables affecting deposition (angles, airflow, and airflow time), optimization experiments, and then repeatability and reproducibility experiments. We found tilt angle and airflow time after actuation affected deposition the most. The optimized settings were flow rate of 16 L/min, postactuation flow time of 12 sec, a tilt angle of 23°, nozzle angles of 0°, and actuation speed of 5 cm/sec. Neither cast nor operator caused significant variation of results. We determined cast parameters to produce results resembling suspension nasal sprays in the literature. The results were repeatable and unaffected by operator or cast. These nasal spray parameters could be used to assess deposition from new devices or formulations. For human deposition studies using radiolabeled formulations, this cast could show that radiolabel deposition represents drug deposition. Our methods could also be used to optimize settings for other casts.

  1. Studies of the mechanisms of turbine fuel instability

    NASA Technical Reports Server (NTRS)

    Daniel, S. R.

    1983-01-01

    The formation of insoluble deposits in a Jet A, a Diesel, and a model fuel (1/10 v/v tetralin/dodecane) was studied. Experiments were conducted using glass containers at 394 K with an air/fuel ratio of 14/1. The effects of addition of ppm levels of various compounds on deposit formation were evaluated. Nitrogen heterocycles were shown to produce a basicity dependent acceleration of deposition. Thiols and thiophene were shown to increase deposition while sulfides and disulfides act as inhibitors. Copper metal and its salts also promote deposition. Results of various instrumental analyses of deposits and development of a high performance liquid chromatographic method for monitoring deposit precursors are discussed.

  2. Studies of Niobium Thin Film Produced by Energetic Vacuum Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genfa Wu; Anne-Marie Valente; H. Phillips

    2004-05-01

    An energetic vacuum deposition system has been used to study deposition energy effects on the properties of niobium thin films on copper and sapphire substrates. The absence of working gas avoids the gaseous inclusions commonly seen with sputtering deposition. A biased substrate holder controls the deposition energy. Transition temperature and residual resistivity ratio of the niobium thin films at several deposition energies are obtained together with surface morphology and crystal orientation measurements by AFM inspection, XRD and TEM analysis. The results show that niobium thin films on sapphire substrate exhibit the best cryogenic properties at deposition energy around 123 eV.more » The TEM analysis revealed that epitaxial growth of film was evident when deposition energy reaches 163 eV for sapphire substrate. Similarly, niobium thin film on copper substrate shows that film grows more oriented with higher deposition energy and grain size reaches the scale of the film thickness at the deposition energy around 153 eV.« less

  3. Regional deposition of mometasone furoate nasal spray suspension in humans.

    PubMed

    Shah, Samir A; Berger, Robert L; McDermott, John; Gupta, Pranav; Monteith, David; Connor, Alyson; Lin, Wu

    2015-01-01

    Nasal deposition studies can demonstrate whether nasal sprays treating allergic rhinitis and polyposis reach the ciliated posterior nasal cavity, where turbinate inflammation and other pathology occurs. However, quantifying nasal deposition is challenging, because in vitro tests do not correlate to human nasal deposition; gamma scintigraphy studies are thus used. For valid data, the radiolabel must distribute, as the drug, into different-sized droplets, remain associated with the drug in the formulation after administration, and not alter its deposition. Some nasal deposition studies have demonstrated this using homogenous solutions. However, most commercial nasal sprays are heterogeneous suspensions. Using mometasone furoate nasal suspension (MFS), we developed a technique to validate radiolabel deposition as a surrogate for nasal cavity drug deposition and characterized regional deposition and nasal clearance in humans. Mometasone furoate (MF) formulation was spiked with diethylene triamine pentacaetic acid. Both unlabeled and radiolabeled formulations (n = 3) were sprayed into a regionally divided nasal cast. Drug deposition was quantified by high pressure liquid chromatography within each region; radiolabel deposition was determined by gamma camera. Healthy subjects (n = 12) were dosed and imaged for six hours. Scintigraphic images were coregistered with magnetic resonance imaging scans to quantify anterior and posterior nasal cavity deposition and mucociliary clearance. The ratio of radiolabel to unlabeled drug was 1.05 in the nasal cast and regionally appeared to match, indicating that in vivo radiolabel deposition could represent drug deposition. In humans, MFS delivered 86% (9.2) of metered dose to the nasal cavity, approximately 60% (9.1) of metered dose to the posterior nasal cavity. After 15 minutes, mucociliary clearance removed 59% of the initial radiolabel in the nasal cavity, consistent with clearance rates from the ciliated posterior surface. MFS deposited significant drug into the posterior nasal cavity. Both nasal cast validation and mucociliary clearance confirm the radiolabel deposition distribution method accurately represented corticosteroid nasal deposition.

  4. Regional deposition of mometasone furoate nasal spray suspension in humans.

    PubMed

    Shah, S A; Berger, R L; McDermott, J; Gupta, P; Monteith, D; Connor, A; Lin, W

    2014-11-21

    Nasal deposition studies can demonstrate whether nasal sprays treating allergic rhinitis and polyposis reach the ciliated posterior nasal cavity, where turbinate inflammation and other pathology occurs. However, quantifying nasal deposition is challenging, because in vitro tests do not correlate to human nasal deposition; gamma scintigraphy studies are thus used. For valid data, the radiolabel must distribute, as the drug, into different-sized droplets, remain associated with the drug in the formulation after administration, and not alter its deposition. Some nasal deposition studies have demonstrated this using homogenous solutions. However, most commercial nasal sprays are heterogeneous suspensions. Using mometasone furoate nasal suspension (MFS), we developed a technique to validate radiolabel deposition as a surrogate for nasal cavity drug deposition and characterized regional deposition and nasal clearance in humans. Mometasone furoate (MF) formulation was spiked with diethylene triamine pentacaetic acid. Both unlabeled and radiolabeled formulations (n = 3) were sprayed into a regionally divided nasal cast. Drug deposition was quantified by high pressure liquid chromatography within each region; radiolabel deposition was determined by gamma camera. Healthy subjects (n = 12) were dosed and imaged for six hours. Scintigraphic images were coregistered with magnetic resonance imaging scans to quantify anterior and posterior nasal cavity deposition and mucociliary clearance. The ratio of radiolabel to unlabeled drug was 1.05 in the nasal cast and regionally appeared to match, indicating that in vivo radiolabel deposition could represent drug deposition. In humans, MFS delivered 86% (9.2) of metered dose to the nasal cavity, approximately 60% (9.1) of metered dose to the posterior nasal cavity. After 15 minutes, mucociliary clearance removed 59% of the initial radiolabel in the nasal cavity, consistent with clearance rates from the ciliated posterior surface. MFS deposited significant drug into the posterior nasal cavity. Both nasal cast validation and mucociliary clearance confirm the radiolabel deposition distribution method accurately represented corticosteroid nasal deposition.

  5. Field, model, and computer simulation study of some aspects of the origin and distribution of Colorado Plateau-type uranium deposits

    USGS Publications Warehouse

    Ethridge, F.G.; Sunada, D.K.; Tyler, Noel; Andrews, Sarah

    1982-01-01

    Numerous hypotheses have been proposed to account for the nature and distribution of tabular uranium and vanadium-uranium deposits of the Colorado Plateau. In one of these hypotheses it is suggested that the deposits resulted from geochemical reactions at the interface between a relatively stagnant groundwater solution and a dynamic, ore-carrying groundwater solution which permeated the host sandstones (Shawe, 1956; Granger, et al., 1961; Granger, 1968, 1976; and Granger and Warren, 1979). The study described here was designed to investigate some aspects of this hypothesis, particularly the nature of fluid flow in sands and sandstones, the nature and distribution of deposits, and the relations between the deposits and the host sandstones. The investigation, which was divided into three phases, involved physical model, field, and computer simulation studies. During the initial phase of the investigation, physical model studies were conducted in porous-media flumes. These studies verified the fact that humic acid precipitates could form at the interface between a humic acid solution and a potassium aluminum sulfate solution and that the nature and distribution of these precipitates were related to flow phenomena and to the nature and distribution of the host porous-media. During the second phase of the investigation field studies of permeability and porosity patterns in Holocene stream deposits were investigated and the data obtained were used to design more realistic porous media models. These model studies, which simulated actual stream deposits, demonstrated that precipitates possess many characteristics, in terms of their nature and relation to host sandstones, that are similar to ore deposits of the Colorado Plateau. The final phase of the investigation involved field studies of actual deposits, additional model studies in a large indoor flume, and computer simulation studies. The field investigations provided an up-to-date interpretation of the depositional environments of the host sandstones in the Slick Rock District and data on the nature and distribution of the ore deposits which are found to be directly related to the architecture of the host sandstones which acted as conduits for the transport of mineralized groundwaters. Large-scale model studies, designed to simulate Grants Mineral Belt deposits, demonstrated that precipitates had characteristics similar to those of actual uranium deposits and data obtained from these studies strongly supported the hypothesis that the ores formed soon after deposition of the host sandstones and that their distribution was largely controlled by permeability and porosity patterns established at the time of deposition of the host sandstones. A numerical model was developed during the second and third stages of the investigation that can predict favorable locations for mineralization given sufficient data on porosity, hydraulic conductivity, the distribution and thickness of sandstone hosts, and an estimate of the initial hydrologic conditions. The model was successfully tested using data from the Slick Rock District.

  6. Iron deposition and inflammation in multiple sclerosis. Which one comes first?

    PubMed Central

    2011-01-01

    Whether iron deposition is an epiphenomenon of the multiple sclerosis (MS) disease process or may play a primary role in triggering inflammation and disease development remains unclear at this time, and should be studied at the early stages of disease pathogenesis. However, it is difficult to study the relationship between iron deposition and inflammation in early MS due to the delay between the onset of symptoms and diagnosis, and the poor availability of tissue specimens. In a recent article published in BMC Neuroscience, Williams et al. investigated the relationship between inflammation and iron deposition using an original animal model labeled as "cerebral experimental autoimmune encephalomyelitis", which develops CNS perivascular iron deposits. However, the relative contribution of iron deposition vs. inflammation in the pathogenesis and progression of MS remains unknown. Further studies should establish the association between inflammation, reduced blood flow, iron deposition, microglia activation and neurodegeneration. Creating a representative animal model that can study independently such relationship will be the key factor in this endeavor. PMID:21699686

  7. Study on electrochemically deposited Mg metal

    NASA Astrophysics Data System (ADS)

    Matsui, Masaki

    An electrodeposition process of magnesium metal from Grignard reagent based electrolyte was studied by comparing with lithium. The electrodeposition of magnesium was performed at various current densities. The obtained magnesium deposits did not show dendritic morphologies while all the lithium deposits showed dendritic products. Two different crystal growth modes in the electrodeposition process of magnesium metal were confirmed by an observation using scanning electron micro scope (SEM) and a crystallographic analysis using X-ray diffraction (XRD). An electrochemical study of the deposition/dissolution process of the magnesium showed a remarkable dependency of the overpotential of magnesium deposition on the electrolyte concentration compared with lithium. This result suggests that the dependency of the overpotential on the electrolyte concentration prevent the locally concentrated current resulting to form very uniform deposits.

  8. Deposition and clearance of inhaled particles.

    PubMed Central

    Stuart, B O

    1984-01-01

    Theoretical models of respiratory tract deposition of inhaled particles are compared to experimental studies of deposition patterns in humans and animals, as governed principally by particle size, density, respiratory rate and flow parameters. Various models of inhaled particle deposition make use of approximations of the respiratory tract to predict fractional deposition caused by fundamental physical processes of particle impaction, sedimentation, and diffusion. These models for both total deposition and regional (nasopharyngeal, tracheobronchial, and pulmonary) deposition are compared with early and recent experimental studies. Reasonable correlation has been obtained between theoretical and experimental studies, but the behavior in the respiratory tract of very fine (less than 0.1 micron) particles requires further investigation. Properties of particle shape, charge and hygroscopicity as well as the degree of respiratory tract pathology also influence deposition patterns; definitive experimental work is needed in these areas. The influence upon deposition patterns of dynamic alterations in inspiratory flow profiles caused by a variety of breathing patterns also requires further study, and the use of differing ventilation techniques with selected inhaled particle sizes holds promise in diagnosis of respiratory tract diseases. Mechanisms of conducting airway and alveolar clearance processes involving the pulmonary macrophage, mucociliary clearance, dissolution, transport to systemic circulation, and translocation via regional lymphatic vessels are discussed. PMID:6376108

  9. Response of canopy nitrogen uptake to a rapid decrease in bulk nitrate deposition in two eastern Canadian boreal forests.

    PubMed

    Houle, D; Marty, C; Duchesne, L

    2015-01-01

    A few studies have reported a recent and rapid decline in NO3(-) deposition in eastern North America. Whether this trend can be observed at remote boreal sites with low rates of N deposition and how it could impact canopy uptake (CU) of N remain unknown. Here we report trends between 1997/1999 and 2012 for precipitation, throughfall N deposition as well as inorganic N CU for two boreal forest sites of Quebec, Canada, with contrasted N deposition rates and tree species composition. NO3(-) bulk deposition declined by approximately 50% at both sites over the studied period while no change was observed for NH4(+). As a result, the contribution of NH4(+) to inorganic N deposition changed from ~33% to more than 50% during the study period. On average, 52-59% of N deposition was intercepted by the canopy, the retention being higher for NH4(+) (60-67%) than for NO3(-) (45-54%). The decrease in NO3(-) bulk deposition and the increase in the NH4(+):NO3(-) ratio had important impacts on N-canopy interactions. The contribution of NH4(+) CU to that of total inorganic N CU increased at both sites but the trend was significant only at Tirasse (lowest N deposition). At this site, absolute NO3(-) CU significantly decreased (as did total N CU) during the study period, a consequence of the strong relationship (r(2) = 0.88) between NO3(-) bulk deposition and NO3(-) CU. Our data suggest that N interactions with forest canopies may change rapidly with changes in N deposition as well as with tree species composition.

  10. Enzymatic control of biological deposits in papermaking.

    PubMed

    Hatcher, H J

    1984-01-01

    Deposit control in the pulp and paper industry has traditionally been accomplished by the use of toxic biocides. A method has been found whereby biological deposits can be controlled by the use of an enzyme-based product. Numerous field studies have been conducted successfully and photographs prepared illustrating the process. The dynamics of deposit formation and problems associated with such formations have been the subject of considerable study. Development and control of deposit problems under different paper mill conditions using the chemical-biochemical approach will be discussed.

  11. Organic Thin Films Deposited by Emulsion-Based, Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation: Fundamentals and Applications

    NASA Astrophysics Data System (ADS)

    Ge, Wangyao

    Thin film deposition techniques are indispensable to the development of modern technologies as thin film based optical coatings, optoelectronic devices, sensors, and biological implants are the building blocks of many complicated technologies, and their performance heavily depends on the applied deposition technique. Particularly, the emergence of novel solution-processed materials, such as soft organic molecules, inorganic compounds and colloidal nanoparticles, facilitates the development of flexible and printed electronics that are inexpensive, light weight, green and smart, and these thin film devices represent future trends for new technologies. One appealing feature of solution-processed materials is that they can be deposited into thin films using solution-processed deposition techniques that are straightforward, inexpensive, high throughput and advantageous to industrialize thin film based devices. However, solution-processed techniques rely on wet deposition, which has limitations in certain applications, such as multi-layered film deposition of similar materials and blended film deposition of dissimilar materials. These limitations cannot be addressed by traditional, vacuum-based deposition techniques because these dry approaches are often too energetic and can degrade soft materials, such as polymers, such that the performance of resulting thin film based devices is compromised. The work presented in this dissertation explores a novel thin film deposition technique, namely emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE), which combines characteristics of wet and dry deposition techniques for solution-processed materials. Previous studies have demonstrated the feasibility of emulsion-based RIR-MAPLE to deposit uniform and continuous organic, nanoparticle and blended films, as well as hetero-structures that otherwise are difficult to achieve. However, fundamental understanding of the growth mechanisms that govern emulsion-based RIR-MAPLE is still missing, which increases the difficulty of using rational design to improve the performance of initial RIR-MAPLE devices that have been demonstrated. As a result, it is important to study the fundamentals of emulsion-based RIR-MAPLE in order to provide insight into the long-term prospects for this thin film deposition technique. This dissertation explores the fundamental deposition mechanisms of emulsion-based RIR-MAPLE by considering the effects of the emulsion target composition (namely, the primary solvent, secondary solvent, and surfactant) on the properties of deposited polymer films. The study of primary solvent effects on hydrophobic polymer deposition helps identify the unique method of film formation for emulsion-based RIR-MAPLE, which can be described as cluster-by-cluster deposition of emulsified particles that yields two levels of ordering (i.e., within the clusters and among the clusters). The generality of this film formation mechanism is tested by applying the lessons learned to hydrophilic polymer deposition. Based on these studies, the deposition design rules to achieve smooth polymer films, which are important for different device applications, are identified according to the properties of the polymer. After discussion of the fundamental deposition mechanisms, three applications of emulsion-based RIR-MAPLE, namely thin film deposition of organic solar cells, polymer/nanoparticle hybrid solar cells, and antimicrobial/fouling-release multifunctional films, are studied. The work on organic solar cells identifies the ideal deposition mode for blended films with nanoscale domain sizes, as well as demonstrates the relationships among emulsion target composition, film properties, and corresponding device performance. The studies of polymer/nanoparticle hybrid solar cells demonstrate precise control of colloidal nanoparticle deposition, in which the integrity of nanoparticles is maintained and a distinct film morphology is achieved when co-deposited with polymers. Finally, the application of antimicrobial and fouling-release multifunctional films demonstrates the importance of blended film deposition with nanoscale phase separation, a key feature to achieving reusable bio-films that can kill bacteria when illuminated with ultraviolet light. Thus, this dissertation provides great insight to the fundamentals of emulsion-based RIR-MAPLE, serves as a valuable reference for future development, and paves the pathway for wider adoption of this unique thin film deposition technique, especially for organic solar cells.

  12. Dry deposition models for radionuclides dispersed in air: a new approach for deposition velocity evaluation schema

    NASA Astrophysics Data System (ADS)

    Giardina, M.; Buffa, P.; Cervone, A.; De Rosa, F.; Lombardo, C.; Casamirra, M.

    2017-11-01

    In the framework of a National Research Program funded by the Italian Minister of Economic Development, the Department of Energy, Information Engineering and Mathematical Models (DEIM) of Palermo University and ENEA Research Centre of Bologna, Italy are performing several research activities to study physical models and mathematical approaches aimed at investigating dry deposition mechanisms of radioactive pollutants. On the basis of such studies, a new approach to evaluate the dry deposition velocity for particles is proposed. Comparisons with some literature experimental data show that the proposed dry deposition scheme can capture the main phenomena involved in the dry deposition process successfully.

  13. Effect of growth parameters on the optical properties of ZnO nanostructures grown by simple solution methods

    NASA Astrophysics Data System (ADS)

    Kothari, Anjana

    2017-05-01

    ZnO, a wide band gap semiconductor is of significant interest for a range of practical applications. One of the highly attractive features of ZnO is to grow variety of nanostructures by using low-cost techniques. In this paper, we report deposition of ZnO nanostructure rod-arrays (NRA) via low-temperature, solution-based deposition techniques such as chemical bath deposition (CBD) and microwave-assisted chemical bath deposition (MACBD). A detailed study of film deposition parameters such as variation in concentration of precursors and deposition temperature has been carried out. Compositional and structural study of the films has been done by X-ray Diffractometer to know the phase and purity of the final product. Morphological study of these structures has been carried out by Scanning Electron Microscopy. Optical study such as transmittance and diffuse reflectance of the films has been carried out as a function of growth parameters.

  14. Building upon the Great Waters Initiative: Scoping study for potential polyaromatic hydrocarbon deposition into San Diego Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehler, J.; Sylte, W.W.

    1997-12-31

    The deposition of atmospheric polyaromatic hydrocarbons (PAHs) into San Diego Bay was evaluated at an initial study level. This study was part of an overall initial estimate of PAH waste loading to San Diego Bay from all environmental pathways. The study of air pollutant deposition to water bodies has gained increased attention both as a component of Total Maximum Daily Load (TMDL) determinations required under the Clean Water Act and pursuant to federal funding authorized by the 1990 Clean Air Act Amendments to study the atmospheric deposition of hazardous air pollutants to the Great Waters, which includes coastal waters. Tomore » date, studies under the Clean Air Act have included the Great Lakes, Chesapeake Bay, Lake Champlain, and Delaware Bay. Given the limited resources of this initial study for San Diego Bay, the focus was on maximizing the use of existing data and information. The approach developed included the statistical evaluation of measured atmospheric PAH concentrations in the San Diego area, the extrapolation of EPA study results of atmospheric PAH concentrations above Lake Michigan to supplement the San Diego data, the estimation of dry and wet deposition with published calculation methods considering local wind and rainfall data, and the comparison of resulting PAH deposition estimates for San Diego Bay with estimated PAH emissions from ship and commercial boat activity in the San Diego area. The resulting PAH deposition and ship emission estimates were within the same order of magnitude. Since a significant contributor to the atmospheric deposition of PAHs to the Bay is expected to be from shipping traffic, this result provides a check on the order of magnitude on the PAH deposition estimate. Also, when compared against initial estimates of PAH loading to San Diego Bay from other environmental pathways, the atmospheric deposition pathway appears to be a significant contributor.« less

  15. Mechanical characteristics of a tool steel layer deposited by using direct energy deposition

    NASA Astrophysics Data System (ADS)

    Baek, Gyeong Yun; Shin, Gwang Yong; Lee, Eun Mi; Shim, Do Sik; Lee, Ki Yong; Yoon, Hi-Seak; Kim, Myoung Ho

    2017-07-01

    This study focuses on the mechanical characteristics of layered tool steel deposited using direct energy deposition (DED) technology. In the DED technique, a laser beam bonds injected metal powder and a thin layer of substrate via melting. In this study, AISI D2 substrate was hardfaced with AISI H13 and M2 metal powders for mechanical testing. The mechanical and metallurgical characteristics of each specimen were investigated via microstructure observation and hardness, wear, and impact tests. The obtained characteristics were compared with those of heat-treated tool steel. The microstructures of the H13- and M2-deposited specimens show fine cellular-dendrite solidification structures due to melting and subsequent rapid cooling. Moreover, the cellular grains of the deposited M2 layer were smaller than those of the H13 structure. The hardness and wear resistance were most improved in the M2-deposited specimen, yet the H13-deposited specimen had higher fracture toughness than the M2-deposited specimen and heat-treated D2.

  16. Mosses as an integrating tool for monitoring PAH atmospheric deposition: comparison with total deposition and evaluation of bioconcentration factors. A year-long case-study.

    PubMed

    Foan, Louise; Domercq, Maria; Bermejo, Raúl; Santamaría, Jesús Miguel; Simon, Valérie

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) atmospheric deposition was evaluated at a remote site in Northern Spain using moss biomonitoring with Hylocomium splendens (Hedw.) Schimp., and by measuring the total deposition fluxes of PAHs. The year-long study allowed seasonal variations of PAH content in mosses to be observed, and these followed a similar trend to those of PAH fluxes in total deposition. Generally, atmospheric deposition of PAHs is greater in winter than in summer, due to more PAH emissions from domestic heating, less photoreactivity of the compounds, and intense leaching of the atmosphere by wet deposition. However, fractionation of these molecules between the environmental compartments occurs: PAH fluxes in total deposition and PAH concentrations in mosses are correlated with their solubility (r=0.852, p<0.01) and lipophilic properties (KOW, r=0.768, p<0.01), respectively. This annual study therefore showed that atmospheric PAH fluxes can be estimated with moss biomonitoring data if the bioconcentration or 'enriching' factors are known. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Microscopical and functional aspects of calcium-transport and deposition in terrestrial isopods.

    PubMed

    Ziegler, Andreas; Fabritius, Helge; Hagedorn, Monica

    2005-01-01

    Terrestrial isopods (Crustacea) are excellent model organisms to study epithelial calcium-transport and the regulation of biomineralization processes. They molt frequently and resorb cuticular CaCO(3) before the molt to prevent excessive loss of Ca(2+) ions when the old cuticle is shed. The resorbed mineral is stored in CaCO(3) deposits within the ecdysial gap of the first four anterior sternites. After the molt, the deposits are quickly resorbed to mineralise the posterior part of the new cuticle. The deposits contain numerous small spherules composed of an organic matrix and amorphous CaCO(3), which has a high solubility and, therefore, facilitates quick mobilization of Ca(2+) and HCO(3)(-) ions. During the formation and resorption of the deposits large amounts of Ca(2+), HCO(3)(-) and H(+) are transported across the anterior sternal epithelial cells. Within the last years, various light and electron microscopical techniques have been used to characterize the CaCO(3) deposits and the cellular mechanisms involved in biomineralization. The work on the CaCO(3) deposits includes studies on the ultrastructure of the deposits, the sequence of events during deposit formation and dissolution, and the mineral composition of the sternal deposits. The differentiation of the anterior sternal epithelial cells and the mechanisms of epithelial ion transport required for the mineralization and demineralisation of the deposits was studied using various analytical light and electron microscopical techniques including polarized light microscopy, immunocytochemistry, electron microprobe analysis, electron energy loss spectroscopy and electron spectroscopic imaging. Comparative analysis of deposit morphology and the differentiation of the sternal epithelia provide information on the evolution of CaCO(3) deposit formation in relation to the degree of adaptation to terrestrial environments.

  18. Mineral resource potential map of the Fossil Ridge Wilderness Study Area, Gunnison County, Colorado

    USGS Publications Warehouse

    DeWitt, Ed; Stoneman, R.J.; Clark, J.R.; Kluender, S.E.

    1985-01-01

    Areas that immediately adjoin the Fossil Ridge Wilderness Study Area have a high potential for molybdenum in large deposits, lead in medium-size deposits, and zinc -in small- to medium-size deposits. Depending on the extraction of base metals, parts of the adjoining areas could have a low resource potential for bismuth and cadmium as byproducts in medium-size deposits.

  19. Sensitivity study of the wet deposition schemes in the modelling of the Fukushima accident.

    NASA Astrophysics Data System (ADS)

    Quérel, Arnaud; Quélo, Denis; Roustan, Yelva; Mathieu, Anne; Kajino, Mizuo; Sekiyama, Thomas; Adachi, Kouji; Didier, Damien; Igarashi, Yasuhito

    2016-04-01

    The Fukushima-Daiichi release of radioactivity is a relevant event to study the atmospheric dispersion modelling of radionuclides. Actually, the atmospheric deposition onto the ground may be studied through the map of measured Cs-137 established consecutively to the accident. The limits of detection were low enough to make the measurements possible as far as 250km from the nuclear power plant. This large scale deposition has been modelled with the Eulerian model ldX. However, several weeks of emissions in multiple weather conditions make it a real challenge. Besides, these measurements are accumulated deposition of Cs-137 over the whole period and do not inform of deposition mechanisms involved: in-cloud, below-cloud, dry deposition. A comprehensive sensitivity analysis is performed in order to understand wet deposition mechanisms. It has been shown in a previous study (Quérel et al, 2016) that the choice of the wet deposition scheme has a strong impact on the assessment of the deposition patterns. Nevertheless, a "best" scheme could not be highlighted as it depends on the selected criteria: the ranking differs according to the statistical indicators considered (correlation, figure of merit in space and factor 2). A possibility to explain the difficulty to discriminate between several schemes was the uncertainties in the modelling, resulting from the meteorological data for instance. Since the move of the plume is not properly modelled, the deposition processes are applied with an inaccurate activity in the air. In the framework of the SAKURA project, an MRI-IRSN collaboration, new meteorological fields at higher resolution (Sekiyama et al., 2013) were provided and allows to reconsider the previous study. An updated study including these new meteorology data is presented. In addition, a focus on several releases causing deposition in located areas during known period was done. This helps to better understand the mechanisms of deposition involved following the Fukushima release. Quérel et al, 2016, accepted for publication in IJEP Sekiyama et al., 2013, Ensemble simulation of the atmospheric radionuclides discharged by the Fukushima nuclear accident. Presented at the EGU General Assembly, Vienne, pp. EGU2013-1695.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com; Maghraoui-Meherzi, Hager

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferentialmore » orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like. - Graphical Abstract: We report the preparation of different phases of manganese sulfide thin films (γ, β and α-MnS) by chemical bath deposition method. The effects of deposition parameters such as deposition time and temperature, concentrations of precursors and multi-layer deposition on MnS thin films structure and morphology were investigated. The influence of thermal annealing under nitrogen atmosphere at different temperature on MnS properties was also studied. Different manganese precursors as well as different complexing agent were also used. - Highlights: • γ and β-MnS films were deposited on substrate using the chemical bath deposition. • The effect of deposition parameters on MnS film properties has been investigated. • Multi-layer deposition was also studied to increase film thickness. • The effect of annealing under N{sub 2} at different temperature was investigated.« less

  1. Oil well flow assurance through static electric potential: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Hashmi, Muhammad Ihtsham Asmat

    Flow assurance technology deals with the deposition of organic and inorganic solids in the oil flow path, which results in constriction of the production tubing and surface flow lines and drastically reduces the kinetic energy of the fluid. The major contributors to this flow restriction are inorganic scales, asphaltene, wax and gas hydrates, in addition to minor contribution from formation fines and corrosion products. Some of these materials (particularly asphaltene and inorganic scales) carry surface charges on their nuclei and seen to be attracted by electrode having opposite charge. The focus of the present research is to find the possibilities of inhibiting the deposition of asphaltene and inorganic scales in the production tubing by applying static electrical potential. With this objective, two flow set ups were made; one for asphaltene and the other for scale deposition studies, attached with precision pumps, pressure recording system and DC power supply. In each set up there were two flow loops, one was converted as Anode and the other as Cathode. A series of flow studies were conducted using the flow set ups, in which oil-dilution ratio, temperature and most importantly DC potential difference was varied and the deposition behavior of the asphaltene aggregates and calcium carbonate scale to the walls of the test loops were observed through rise of differential pressure across the loop due to possible deposition and constriction of the flow path. Two different sets of flow studies; one without oil dilution and other with the diluted oil (with n-heptane), were performed. Both experiments were investigated under the influence of static potential applied across the two test loops. Experimental results indicated that asphaltene deposition in the cathode can be retarded or stopped by applying a suitable negative potential; an increase in the static potential resulted in enhanced control over the asphaltene aggregation and hence the deposition. In the second study, scale deposition and retardation through static potential is studied through a series of flow experiments. Under the influence of static potential, scale deposition at the room temperature showed an increase in the deposition rates, whereas, at the elevated temperatures, scale deposition rates were observed to be retarded and delayed. Beyond a certain value of the static potential, this decreasing trend in deposition rates become directly proportional to the applied static potential. Results showed that the scale deposition may be controlled if not completely stopped, in the anode, if a suitable positive potential can be applied to it. The overall conclusion of this study is as follows: • Asphaltene deposition can be arrested almost completely by converting the production well into a cathode. • Scale deposition can be retarded or deposition rate can be much delayed by converting the production well into an anode.

  2. Geochemical Data for Samples Collected in 2008 Near the Concealed Pebble Porphyry Cu-Au-Mo Deposit, Southwest Alaska

    USGS Publications Warehouse

    Fey, David L.; Granitto, Matthew; Giles, Stuart A.; Smith, Steven M.; Eppinger, Robert G.; Kelley, Karen D.

    2009-01-01

    In the summer of 2007, the U.S. Geological Survey (USGS) began an exploration geochemical research study over the Pebble porphyry copper-gold-molybdenum deposit. This report presents the analytical data collected in 2008. The Pebble deposit is world class in size, and is almost entirely concealed by tundra, glacial deposits, and post-Cretaceous volcanic rocks. The Pebble deposit was chosen for this study because it is concealed by surficial cover rocks, is relatively undisturbed (except for exploration company drill holes), is a large mineral system, and is fairly well-constrained at depth by the drill hole geology and geochemistry. The goals of this study are to 1) determine whether the concealed deposit can be detected with surface samples, 2) better understand the processes of metal migration from the deposit to the surface, and 3) test and develop methods for assessing mineral resources in similar concealed terrains. The analytical data are presented as an integrated Microsoft Access 2003 database and as separate Excel files.

  3. Constructing, connecting and soldering nanostructures by environmental electron beam deposition

    NASA Astrophysics Data System (ADS)

    Mølhave, Kristian; Nørgaard Madsen, Dorte; Dohn, Søren; Bøggild, Peter

    2004-08-01

    Highly conductive nanoscale deposits with solid gold cores can be made by electron beam deposition in an environmental scanning electron microscope (ESEM), suggesting the method to be used for constructing, connecting and soldering nanostructures. This paper presents a feasibility study for such applications. We identify several issues related to contamination and unwanted deposition, relevant for deposition in both vacuum (EBD) and environmental conditions (EEBD). We study relations between scan rate, deposition rate, angle and line width for three-dimensional structures. Furthermore, we measure the conductivity of deposits containing gold cores, and find these structures to be highly conductive, approaching the conductivity of solid gold and capable of carrying high current densities. Finally, we study the use of the technique for soldering nanostructures such as carbon nanotubes. Based on the presented results we are able to estimate limits for the applicability of the method for the various applications, but also demonstrate that it is a versatile and powerful tool for nanotechnology within these limits.

  4. HVOF Thermal Spray TiC/TiB 2 Coatings for AUSC Boiler/Turbine Components for Enhanced Corrosion Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Kanchan; Koc, Rasit; Fan, Chinbay

    The high temperatures of operations still pose significant risk of degradation and fatigue from oxidizing, corroding and eroding environment. In addition to unused O 2, water from combustion and SO x from the coal sulfur oxidation that result in highly corrosive environment, acid gases such as HCl and other sulfur compounds may also be present. These adverse effects are further accelerated due to the elevated temperatures. In addition, ash particulates and unburnt carbon and pyritic sulfur can cause erosion of the surface and thus loss of material. Unburnt carbon and pyritic sulfur may also cause localized reduction sites. Thus, firesidemore » corrosion protection and steam oxidation protection alternatives to currently used Ni-Cr overlays need to be identified and evaluated. Titanium carbide (TiC) is a suitable alternative on account of the material features such as the high hardness, the high melting point, the high strength and the low density for the substitution or to be used in conjunction with NiCr for enhancing the fireside corrosion and erosion of the materials. Another alternative is the use of titanium boride as a coating for chemical stability required for long-term service and high erosion resistance over the state-of-the-art, high fracture toughness (K 1C ~12 MPam 1/2) and excellent corrosion resistance (kp~1.9X10 -11 g 2/cm 4/s at 800°C in air). The overarching aim of the research endeavor was to synthesize oxidation, corrosion and wear resistant TiC and TiB 2 coating powders, apply thermal spray coating on existing boiler materials and characterize the coated substrates for corrosion resistance for applications at high temperatures (500 -750 °C) and high pressures (~350 bars) using the HVOF process and to demonstrate the feasibility of these coating to be used in AUSC boilers and turbines.« less

  5. Sphenostylis stenocarpa (ex. A. Rich.) Harms., a Fading Genetic Resource in a Changing Climate: Prerequisite for Conservation and Sustainability

    PubMed Central

    Nnamani, Catherine Veronica; Ajayi, Sunday Adesola; Oselebe, Happiness Ogba; Atkinson, Christopher John; Igboabuchi, Anastasia Ngozi

    2017-01-01

    The southeastern part of Nigeria is one of the major hotspots of useful plant genetic resources. These endemic species are associated with a rich indigenous knowledge and cultural diversity in relation to their use and conservation. Sphenostylis stenocarpa (ex. A. Rich.) Harms., (African Yam Bean (AYB)), is one such crop within the family of Fabaceae. Its nutritional and eco-friendly characteristics have value in ameliorating malnutrition, hidden hunger and environmental degradation inherent in resource-poor rural and semi-rural communities throughout Africa. However, lack of information from the custodians of this crop is limiting its sustainable development. Therefore, ethnobotanical surveys on the diversity, uses, and constraints limiting the cultivation and use of the crop in southeastern Nigeria were carried out. Five-hundred respondents were randomly selected and data collected through oral interviews and focused group discussion (FGD). Semi-structured questionnaires (SSQ) were also used to elicit information from a spectrum of AYB users comprising community leaders, farmers, market women and consumers in five States. Results showed that the majority of the respondents lacked formal education and were of the age group of 40–50 years, while the female gender dominated with limited access to land and extension officers. Seed coat colour largely determined utilization. Long cooking time, requirement for staking materials, aging of farmers and low market demand were among the major constraints limiting further cultivation and utilization of AYB. In-situ conservation was by hanging dried fruits by the fireside, beside the house, storing in earthenware, calabash gourds, cans and bottles. It is concluded that there is urgent need to scale up conservation through robust linkages between contemporary scientific domains and indigenous peoples in order to harness and incorporate the rich indigenous knowledge in local communities for enhanced scientific knowledge, biodiversity conservation and its sustainable utilization for food security. PMID:28704944

  6. Sphenostylis stenocarpa (ex. A. Rich.) Harms., a Fading Genetic Resource in a Changing Climate: Prerequisite for Conservation and Sustainability.

    PubMed

    Nnamani, Catherine Veronica; Ajayi, Sunday Adesola; Oselebe, Happiness Ogba; Atkinson, Christopher John; Igboabuchi, Anastasia Ngozi; Ezigbo, Eucharia Chizoba

    2017-07-12

    The southeastern part of Nigeria is one of the major hotspots of useful plant genetic resources. These endemic species are associated with a rich indigenous knowledge and cultural diversity in relation to their use and conservation. Sphenostylis stenocarpa ( e x. A. Rich.) Harms., (African Yam Bean (AYB)), is one such crop within the family of Fabaceae. Its nutritional and eco-friendly characteristics have value in ameliorating malnutrition, hidden hunger and environmental degradation inherent in resource-poor rural and semi-rural communities throughout Africa. However, lack of information from the custodians of this crop is limiting its sustainable development. Therefore, ethnobotanical surveys on the diversity, uses, and constraints limiting the cultivation and use of the crop in southeastern Nigeria were carried out. Five-hundred respondents were randomly selected and data collected through oral interviews and focused group discussion (FGD). Semi-structured questionnaires (SSQ) were also used to elicit information from a spectrum of AYB users comprising community leaders, farmers, market women and consumers in five States. Results showed that the majority of the respondents lacked formal education and were of the age group of 40-50 years, while the female gender dominated with limited access to land and extension officers. Seed coat colour largely determined utilization. Long cooking time, requirement for staking materials, aging of farmers and low market demand were among the major constraints limiting further cultivation and utilization of AYB. In-situ conservation was by hanging dried fruits by the fireside, beside the house, storing in earthenware, calabash gourds, cans and bottles. It is concluded that there is urgent need to scale up conservation through robust linkages between contemporary scientific domains and indigenous peoples in order to harness and incorporate the rich indigenous knowledge in local communities for enhanced scientific knowledge, biodiversity conservation and its sustainable utilization for food security.

  7. Methodology and significance of studies of atmospheric deposition in highway runoff

    USGS Publications Warehouse

    Colman, John A.; Rice, Karen C.; Willoughby, Timothy C.

    2001-01-01

    Atmospheric deposition and the processes that are involved in causing and altering atmospheric deposition in relation to highway surfaces and runoff were evaluated nationwide. Wet deposition is more easily monitored than dry deposition, and data on wet deposition are available for major elements and water properties (constituents affecting acid deposition) from the inter-agency National Atmospheric Deposition Program/ National Trends Network (NADP/NTN). Many trace constituents (metals and organic compounds) of interest in highway runoff loads, however, are not included in the NADP/NTN. Dry deposition, which constitutes a large part of total atmospheric deposition for many constituents in highway runoff loads, is difficult to monitor accurately. Dry-deposition rates are not widely available.Many of the highway-runoff investigations that have addressed atmospheric-deposition sources have had flawed investigative designs or problems with methodology. Some results may be incorrect because of reliance on time-aggregated data collected during a period of changing atmospheric emissions. None of the investigations used methods that could accurately quantify the part of highway runoff load that can be attributed to ambient atmospheric deposition. Lack of information about accurate ambient deposition rates and runoff loads was part of the problem. Samples collected to compute the rates and loads were collected without clean-sampling methods or sampler protocols, and without quality-assurance procedures that could validate the data. Massbudget calculations comparing deposition and runoff did not consider loss of deposited material during on-highway processing. Loss of deposited particles from highway travel lanes could be large, as has been determined in labeled particle studies, because of resuspension caused by turbulence from passing traffic. Although a cause of resuspension of large particles, traffic turbulence may increase the rate of deposition for small particles and gases by impaction, especially during precipitation periods.Ultimately, traffic and road maintenance may be determined to be the source of many constituents measured in highway runoff previously attributed to ambient atmospheric deposition. An investigative design using tracers of ambient deposition that are not present in highway traffic sources could determine conclusively what fraction of highway runoff load is contributed by ambient atmospheric deposition.

  8. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    PubMed

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  9. Critical Deposition Condition of CoNiCrAlY Cold Spray Based on Particle Deformation Behavior

    NASA Astrophysics Data System (ADS)

    Ichikawa, Yuji; Ogawa, Kazuhiro

    2017-02-01

    Previous research has demonstrated deposition of MCrAlY coating via the cold spray process; however, the deposition mechanism of cold spraying has not been clearly explained—only empirically described by impact velocity. The purpose of this study was to elucidate the critical deposit condition. Microscale experimental measurements of individual particle deposit dimensions were incorporated with numerical simulation to investigate particle deformation behavior. Dimensional parameters were determined from scanning electron microscopy analysis of focused ion beam-fabricated cross sections of deposited particles to describe the deposition threshold. From Johnson-Cook finite element method simulation results, there is a direct correlation between the dimensional parameters and the impact velocity. Therefore, the critical velocity can describe the deposition threshold. Moreover, the maximum equivalent plastic strain is also strongly dependent on the impact velocity. Thus, the threshold condition required for particle deposition can instead be represented by the equivalent plastic strain of the particle and substrate. For particle-substrate combinations of similar materials, the substrate is more difficult to deform. Thus, this study establishes that the dominant factor of particle deposition in the cold spray process is the maximum equivalent plastic strain of the substrate, which occurs during impact and deformation.

  10. Source apportionment of wet-deposited atmospheric mercury in Tampa, Florida

    NASA Astrophysics Data System (ADS)

    Michael, Ryan; Stuart, Amy L.; Trotz, Maya A.; Akiwumi, Fenda

    2016-03-01

    In this paper, sources of mercury deposition to the Tampa area (Florida, USA) are investigated by analysis of one year (March 2000-March 2001) of daily wet deposition data. HYSPLIT back-trajectory modeling was performed to assess potential source locations for high versus low concentration events in data stratified by precipitation level. Positive matrix factorization (PMF) was also applied to apportion the elemental compositions from each event and to identify sources. Increased total mercury deposition was observed during summer months, corresponding to increased precipitation. However, mercury concentration in deposited samples was not strongly correlated with precipitation amount. Back-trajectories show air masses passing over Florida land in the short (12 h) and medium (24 h) term prior to deposition for high mercury concentration events. PMF results indicate that eleven factors contribute to the deposited elements in the event data. Diagnosed elemental profiles suggest the sources that contribute to mercury wet deposition at the study site are coal combustion (52% of the deposited mercury mass), municipal waste incineration (23%), medical waste incineration (19%), and crustal dust (6%). Overall, results suggest that sources local to the county and in Florida likely contributed substantially to mercury deposition at the study site, but distant sources may also contribute.

  11. Fabrication and kinetics study of nano-Al/NiO thermite film by electrophoretic deposition.

    PubMed

    Zhang, Daixiong; Li, Xueming

    2015-05-21

    Nano-Al/NiO thermites were successfully prepared as film by electrophoretic deposition (EPD). For the key issue of this EPD, a mixture solvent of ethanol-acetylacetone (1:1 in volume) containing 0.00025 M nitric acid was proved to be a suitable dispersion system for EPD. The kinetics of electrophoretic deposition for both nano-Al and nano-NiO were investigated; the linear relation between deposition weight and deposition time in short time and parabolic relation in prolonged time were observed in both EPDs. The critical transition time between linear deposition kinetics and parabolic deposition kinetics for nano-Al and nano-NiO were 20 and 10 min, respectively. The theoretical calculation of the kinetics of electrophoretic deposition revealed that the equivalence ratio of nano-Al/NiO thermites film would be affected by the behavior of electrophoretic deposition for nano-Al and nano-NiO. The equivalence ratio remained steady when the linear deposition kinetics dominated for both nano-Al and nano-NiO. The equivalence ratio would change with deposition time when deposition kinetics for nano-NiO changed into parabolic kinetics dominated after 10 min. Therefore, the rule was suggested to be suitable for other EPD of bicomposites. We also studied thermodynamic properties of electrophoretic nano-Al/NiO thermites film as well as combustion performance.

  12. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy.

    PubMed

    Yang, Shuo; Du, Dong; Chang, Baohua

    2018-02-04

    In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes) and cooling conditions (natural cooling and forced cooling) on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains.

  13. Studies of the Influence of Beam Profile and Cooling Conditions on the Laser Deposition of a Directionally-Solidified Superalloy

    PubMed Central

    Yang, Shuo; Du, Dong

    2018-01-01

    In the laser deposition of single crystal and directionally-solidified superalloys, it is desired to form laser deposits with high volume fractions of columnar grains by suppressing the columnar-to-equiaxed transition efficiently. In this paper, the influence of beam profile (circular and square shapes) and cooling conditions (natural cooling and forced cooling) on the geometric morphology and microstructure of deposits were experimentally studied in the laser deposition of a directionally-solidified superalloy, IC10, and the mechanisms of influence were revealed through a numerical simulation of the thermal processes during laser deposition. The results show that wider and thinner deposits were obtained with the square laser beam than those with the circular laser beam, regardless of whether natural or forced cooling conditions was used. The heights and contact angles of deposits were notably increased due to the reduced substrate temperatures by the application of forced cooling for both laser beam profiles. Under natural cooling conditions, columnar grains formed epitaxially at both the center and the edges of the deposits with the square laser beam, but only at the center of the deposits with the circular laser beam; under forced cooling conditions, columnar grains formed at both the center and the edges of deposits regardless of the laser beam profile. The high ratios of thermal gradient and solidification velocity in the height direction of the deposits were favorable to forming deposits with higher volume fractions of columnar grains. PMID:29401715

  14. Exploration case study using indicator minerals in till at the giant Pebble porphyry Cu-Au-Mo deposit, southwest Alaska, USA

    USGS Publications Warehouse

    Eppinger, Robert G.; Kelley, Karen D.; Fey, David L.; Giles, Stuart A.; Smith, Steven G.

    2011-01-01

    The Pebble deposit in southwest Alaska (Fig. 1) contains one of the largest resources of copper and gold in the world. It includes a measured and indicated resource of 5,942 million tonnes (Mt) at 0.42% Cu, 0.35 g/t Au, and 250 ppm Mo (0.30% copper equivalent, CuEQ, cut off) and contains significant concentrations of Ag, Pd, and Re (Northern Dynasty Minerals 2011). The deposit remains open at depth. The Pebble West zone was discovered in 1989 by Cominco American. In 2005, Northern Dynasty Minerals Ltd. (NDM) discovered Pebble East, and in July 2007, NDM partnered with Anglo American to form the Pebble Limited Partnership (PLP). The U.S. Geological Survey began collaborative investigations with PLP in 2007 to identify techniques that will improve mineral exploration in covered terranes. The Pebble deposit is an ideal location for such a study because the deposit is undisturbed (except for drilling), is almost entirely concealed by post-mineral volcanic rocks and glacial deposits, and because its distribution is well constrained in the subsurface by PLP’s drill-hole geology and geochemistry. An exploration method developed by Averill (2007) that utilizes porphyry copper indicator minerals (PCIMR) in glacial till samples was applied at Pebble; samples were collected up- and down-ice (of former glaciers) from the deposit. The distribution of several PCIMs identifies the deposit, which suggests that PCIMs may be useful in exploration for other concealed porphyry deposits in the region. In this study, we compare the efficacy of PCIMs relative to that of pond and stream sediments also collected in the deposit area. The Pebble deposit is located 380 km southwest of Anchorage, in the Bristol Bay region of southwest Alaska. There is no road network and access to the study area is by helicopter. The deposit is situated in a broad glacially sculpted topographic low at the head of three drainages, Talarik Creek, North Fork Koktuli River, and the South Fork Koktuli River (Fig. 1). The study area is in a zone of discontinuous permafrost and is masked by lichen-rich tundra vegetation.

  15. Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron.

    PubMed

    Kang, In-Je; Joa, Sang-Beom; Lee, Heon-Ju

    2013-11-01

    To improve the thermal conductivity and wear resistance of ceramic materials in the field of renewable energy technologies, diamond coating by plasma processing has been carried out in recent years. This study's goal is to improve diamond deposition on Al2O3 ceramic substrates by plasma surface treatments. Before diamond deposition was carried out in a vacuum, plasma surface treatments using Ar gas were conducted to improve conditions for deposition. We also conducted plasma processing for diamond deposition on Al2O3 ceramic substrates using a DC arc Plasmatron. The Al2O3 ceramic substrates with diamond film (5 x 15 mm2), were investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then, the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) was studied. We identified nanocrystalline diamond films on the Al2O3 ceramic substrates. The results showed us that the deposition rate of diamond films was 2.3 microm/h after plasma surface treatments. Comparing the above result with untreated ceramic substrates, the deposition rate improved with the surface roughness of the deposited diamond films.

  16. Optimization of Cold Spray Deposition of High-Density Polyethylene Powders

    NASA Astrophysics Data System (ADS)

    Bush, Trenton B.; Khalkhali, Zahra; Champagne, Victor; Schmidt, David P.; Rothstein, Jonathan P.

    2017-10-01

    When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure and plastic deformation can produce bonding between the particle and the substrate. The use of a cool supersonic gas flow to accelerate these solid particles is known as cold spray deposition. The cold spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting potential material properties possible with polymeric particles. In this work, a combined computational and experimental study was employed to study the cold spray deposition of high-density polyethylene powders over a wide range of particle temperatures and impact velocities. Cold spray deposition of polyethylene powders was demonstrated across a range broad range of substrate materials including several different polymer substrates with different moduli, glass and aluminum. A material-dependent window of successful deposition was determined for each substrate as a function of particle temperature and impact velocity. Additionally, a study of deposition efficiency revealed the optimal process parameters for high-density polyethylene powder deposition which yielded a deposition efficiency close to 10% and provided insights into the physical mechanics responsible for bonding while highlighting paths toward future process improvements.

  17. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purandare, Yashodhan, E-mail: Y.Purandare@shu.ac.uk; Ehiasarian, Arutiun; Hovsepian, Papken

    Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +}more » rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.« less

  18. A comparative study: Effect of plasma on V2O5 nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Singh, Megha; Kumar, Prabhat; Sharma, Rabindar K.; Reddy, G. B.

    2016-05-01

    Vanadium pentoxide nanostructured thin films (NSTs) have been studied to analyze the effect of plasma on nanostructures grown and morphology of films deposited using sublimation process. Nanostructured thin films were deposited on glass substrates, one in presence of oxygen plasma and other in oxygen environment (absence of plasma). Films were characterized using XRD, Raman spectroscopy, SEM and HRTEM. XRD studies revealed α-V2O5 films (orthorhombic phase) with good crystallinity. However, film deposited in presence of plasma have higher peak intensities as compared to those deposited in absence of plasma. Raman studies also support these finding following same trends of considerable increase in intensity in case of film deposited in presence of plasma. SEM micrographs makes the difference more visible, as film deposited in plasma have well defined plate like structures whereas other film have not-clearly-defined petal-like structures. HRTEM results show orthorhombic phase with 0.39 nm interplanar spacing, as reported by XRD. Results are hereby in good agreement with each other.

  19. SAMPLE SIZE FOR SEASONAL MEAN CONCENTRATION, DEPOSITION VELOCITY AND DEPOSITION: A RESAMPLING STUDY

    EPA Science Inventory

    Methodologies are described to assign confidence statements to seasonal means of concentration (C), deposition velocity (V J, and deposition categorized by species/parameters, sites, and seasons in the presence of missing data. Estimators of seasonal means with missing weekly dat...

  20. Effect of catalyst on deposition of vanadium oxide in plasma ambient

    NASA Astrophysics Data System (ADS)

    Singh, Megha; Kumar, Prabhat; Saini, Sujit K.; Reddy, G. B.

    2018-05-01

    In this paper, we have studied effect of catalyst (buffer layer) on structure, morphology, crystallinity, uniformity of nanostructured thin films deposited in nitrogen plasma ambient keeping all other process parameters constant. The process used for deposition is novel known as Plasma Assisted Sublimation Process (PASP). Samples were then studied using SEM, TEM, HRTEM, Raman spectroscopy. By structural analysis it was found out that samples deposited on Ni layer composed chiefly of α-V2O5 but minor amount of other phases were present in the sample. Samples deposited on Al catalyst layer revealed different phase of V2O5, where sample deposited on Ag was composed chiefly of VO2±x phase. Further analysis revealed that morphology of samples is also affected by catalyst. While samples deposited in Al and Ag layer tend to have reasonably defined geometry, sample deposited on Ni layer were irregular in shape and size. All the results well corroborate with each other.

  1. Study of the various factors influencing deposit formation and operation of gasoline engine injection systems

    NASA Astrophysics Data System (ADS)

    Stepien, Z.

    2016-09-01

    Generally, ethanol fuel emits less pollutants than gasoline, it is completely renewable product and has the potential to reduce greenhouse gases emission but, at the same time can present a multitude of technical challenges to engine operation conditions including creation of very adverse engine deposits. These deposits increasing fuel consumption and cause higher exhaust emissions as well as poor performance in drivability. This paper describes results of research and determination the various factors influencing injector deposits build-up of ethanol-gasoline blends operated engine. The relationship between ethanol-gasoline fuel blends composition, their treatment, engine construction as well as its operation conditions and fuel injectors deposit formation has been investigated. Simulation studies of the deposit formation endanger proper functioning of fuel injection system were carried out at dynamometer engine testing. As a result various, important factors influencing the deposit creation process and speed formation were determined. The ability to control of injector deposits by multifunctional detergent-dispersant additives package fit for ethanol-gasoline blends requirements was also investigated.

  2. Comparison of Tsunami Deposits Surveyed in 2010 and 2015 From the 2010 Maule Earthquake and Tsunami in South-Central Chile.

    NASA Astrophysics Data System (ADS)

    Ruiz, A. C.; MacInnes, B. T.; Ely, L. L.; Cisternas, M. A.; Gelfenbaum, G. R.; Richmond, B. M.; Meneses, D. J.

    2015-12-01

    The February 27, 2010 Mw 8.8 Maule earthquake and tsunami that struck south-central Chile altered the coastal landscape, leaving a depositional record at many locations along the coast. Our research is questioning whether tsunami deposits originally described during post-tsunami surveys in La Trinchera, Constitución and Coliumo soon after the event change significantly over time. The deposits initially described in 2010 were revisited 5 years later to determine if taphonomic changes occurred and to assess the long-term preservation potential of deposits with different initial characteristics and settings. We recently made measurements of deposit thickness, grain size, grading, sedimentary structures, incipient soil development and accumulation of organic material. Results indicate that deposit thickness and the maximum inland extent of recognizable deposits had decreased slightly since 2010, while overlying soil development and accumulation of organic matter increased. Few deposits had been altered by bioturbation. We will use the inland extent of the deposits surveyed in 2015 to model a minimum size of the 2010 earthquake and tsunami in GeoClaw. The results will be compared with independent geophysical models of the rupture characteristics. This can be used as a case study that can be applied to earlier paleo-earthquake and tsunami events in which seismic data is sparse or non-existent and the most reliable record is the inundation distance as determined by tsunami deposits. Studying the change of deposits in the geologic record over time can provide key insights into how tsunami deposits are preserved, which is important when working with paleo-deposits that may have been altered since deposition.

  3. Process development for the manufacture of an integrated dispenser cathode assembly using laser chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Johnson, Ryan William

    2005-07-01

    Laser Chemical Vapor Deposition (LCVD) has been shown to have great potential for the manufacture of small, complex, two or three dimensional metal and ceramic parts. One of the most promising applications of the technology is in the fabrication of an integrated dispenser cathode assembly. This application requires the deposition of a boron nitride-molybdenum composite structure. In order to realize this structure, work was done to improve the control and understanding of the LCVD process and to determine experimental conditions conducive to the growth of the required materials. A series of carbon fiber and line deposition studies were used to characterize process-shape relationships and study the kinetics of carbon LCVD. These studies provided a foundation for the fabrication of the first high aspect ratio multi-layered LCVD wall structures. The kinetics studies enabled the formulation of an advanced computational model in the FLUENT CFD package for studying energy transport, mass and momentum transport, and species transport within a forced flow LCVD environment. The model was applied to two different material systems and used to quantify deposition rates and identify rate-limiting regimes. A computational thermal-structural model was also developed using the ANSYS software package to study the thermal stress state within an LCVD deposit during growth. Georgia Tech's LCVD system was modified and used to characterize both boron nitride and molybdenum deposition independently. The focus was on understanding the relations among process parameters and deposit shape. Boron nitride was deposited using a B3 N3H6-N2 mixture and growth was characterized by sporadic nucleation followed by rapid bulk growth. Molybdenum was deposited from the MoCl5-H2 system and showed slow, but stable growth. Each material was used to grow both fibers and lines. The fabrication of a boron nitride-molybdenum composite was also demonstrated. In sum, this work served to both advance the general science of Laser Chemical Vapor Deposition and to elucidate the practicality of fabricating ceramic-metal composites using the process.

  4. A new Strategy to Improve Drug Delivery to the Maxillary Sinuses: The Frequency Sweep Acoustic Airflow.

    PubMed

    El Merhie, Amira; Navarro, Laurent; Delavenne, Xavier; Leclerc, Lara; Pourchez, Jérémie

    2016-05-01

    Enhancement of intranasal sinus deposition involves nebulization of a drug superimposed by an acoustic airflow. We investigated the impact of fixed frequency versus frequency sweep acoustic airflow on the improvement of aerosolized drug penetration into maxillary sinuses. Fixed frequency and frequency sweep acoustic airflow were generated using a nebulizing system of variable frequency. The effect of sweep cycle and intensity variation was studied on the intranasal sinus deposition. We used a nasal replica created from CT scans using 3D printing. Sodium fluoride and gentamicin were chosen as markers. Studies performed using fixed frequency acoustic airflow showed that each of maxillary sinuses of the nasal replica required specific frequency for the optimal aerosol deposition. Intranasal sinus drug deposition experiments under the effect of the frequency sweep acoustic airflow showed an optimal aerosol deposition into both maxillary sinus of the nasal replica. Studies on the effect of the duration of the sweep cycle showed that the shorter the cycle the better the deposition. We demonstrate the benefit of frequency sweep acoustic airflow on drug deposition into maxillary sinuses. However further in vivo studies have to be conducted since delivery rates cannot be obviously determined from a nasal replica.

  5. The role of deposits in tsunami risk assessment

    USGS Publications Warehouse

    Jaffe, B.

    2008-01-01

    An incomplete catalogue of tsunamis in the written record hinders tsunami risk assessment. Tsunami deposits, hard evidence of tsunami, can be used to extend the written record. The two primary factors in tsunami risk, tsunami frequency and magnitude, can be addressed through field and modeling studies of tsunami deposits. Recent research has increased the utility of tsunami deposits in tsunami risk assessment by improving the ability to identify tsunami deposits and developing models to determine tsunami magnitude from deposit characteristics. Copyright ASCE 2008.

  6. Experimental Comparison of Calcium Sulfate (CaSO(4)) Scale Deposition on Coated Carbon Steel and Titanium Surfaces

    NASA Astrophysics Data System (ADS)

    Al-Otaibi, Dhawi AbdulRahman

    Calcium Sulfate (CaSO4) deposit reduces heat exchange in heat transfer equipment which adversely affects the equipment performance and plant production. This experimental study was conducted by using the Rotating Cylinder Electrode (RCE) equipment available in the university's Center for Engineering Research (CER/RI) to study and compare the effect of solution hydrodynamics on Calcium Sulfate (CaSO4) scale deposition on coated carbon steel and titanium surfaces. In addition, the Scanning Electron Microscopic was used to examine the morphology and distribution of Calcium Sulfate (CaSO 4) crystals deposited on titanium metal surfaces. In this study, the rotational speed was varied from 100 to 2000 RPM to study the behavior of Calcium Sulfate (CaSO4) accumulation on both materials. Based on the experimental results, Calcium Sulfate (CaSO4) scale obtained in the present study was almost constant on coated carbon steel in which the rate of scale deposition is equal to the rate of scale removal. However, the deposition of Calcium Sulfate (CaSO4) observed on titanium material was increased as the speed increased.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, R.G.

    Soil macroinvertebrate communities were studied in ecologically analogous oak-hickory forests across a three-state atmospheric pollution gradient in Illinois, Indiana, and Ohio. The goal was to investigate changes in the community structure of soil fauna in study sites receiving different amounts of acidic deposition for several decades and the possible relationships between these changes and physico-chemical properties of soil. The study revealed significant differences in the numbers of soil animals among the three study sites. The sharply differentiated pattern of soil macroinvertebrate fauna seems closely linked to soil chemistry. Significant correlations of the abundance of soil macroinvertebrates with soil parameters suggestmore » that their populations could have been affected by acidic deposition in the region. Abundance of total soil macroinvertebrates decreased with the increased cumulative loading of acidic deposition. Among the groups most sensitive to deposition were: earthworms gastropods, dipteran larvae, termites, and predatory beetles. The results of the study support the hypothesis that chronic long-term acidic deposition could aversely affect the soil decomposer community which could cause lower organic matter turnover rates leading to an increase in soil organic matter content in high deposition sites.« less

  8. Uncertainty and perspectives in studies of atmospheric nitrogen deposition in China: A response to Liu et al. (2015).

    PubMed

    He, Nianpeng; Zhu, Jianxing; Wang, Qiufeng

    2015-07-01

    In this paper, we have formally responded to the speculation in "Liu et al. suspect that Zhu et al. (2015) may have underestimated dissolved organic N but overestimated total particulate N in wet deposition in China" by Liu et al. (2015). Here, we first discussed the uncertainty and plausible reasons of atmospheric deposition in China, which have been reported in different studies. We disagree with their interpretation on some points. Firstly, the difficulties in quality control from sampling to analyzing are common to all studies regarding atmospheric deposition, including the studies cited by Liu et al. (2015). More importantly, their discussion did not fully consider the apparent influence of different scaling-up methods (from an observation site scale to a national scale) on estimations of atmospheric N deposition in China. Furthermore, we provided the optimal approaches to resolve these challenges discussed in order to promote the related studies of atmospheric N deposition in China in the future. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Additive Manufacturing for Superalloys - Producibility and Cost Validation (Preprint)

    DTIC Science & Technology

    2011-03-01

    evaluated in this study were: Shaped Metal Deposition (SMD, 3D Weld Deposition) Laser Powder Deposition (LPD) Electron Beam Wire Deposition (EBWD...envelope and would be removed during subsequent machining. Radiographic inspection also revealed fine random internal micro porosity in some of the...successfully fabricated the required deposition samples for Task 2 (see Figure 4). A surface examination revealed some surface cracks and porosity , but all

  10. Patterns and Drivers of Inorganic and Organic Nitrogen and Phosphorus Deposition, Cycling, and Loss Throughout a Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Decina, S.; Templer, P. H.; Hutyra, L.; Gately, C.

    2016-12-01

    As the urban population expands to 70% of the global population by the year 2050, it is essential to understand changes in both nitrogen (N) and phosphorus (P) cycling in urban ecosystems. Though rates of atmospheric N deposition have been shown to be elevated in numerous cities, few studies have discerned patterns and drivers of spatial variation within urban areas, nor examined rates of urban P deposition or the organic components of both N and P cycling in these ecosystems. We measured atmospheric inorganic N deposition, soil N cycling and loss, and soil respiration across the greater Boston area in the growing seasons of 2015 and 2016, as well as atmospheric deposition and loss of total (inorganic + organic) N and P in the growing season of 2016. We find that mean rates of inorganic N deposition in the greater Boston area are 8.70 ± 0.68 kg N ha-1 yr-1, which is almost double the rate of N deposition measured at a rural reference site 90 km southwest of Boston. Moreover, rates of N deposition are highly variable, varying from 3.84 to 13.82 kg N ha-1 yr-1 within the greater Boston area. Ammonium (NH4+) deposition composes 69.9 ± 2.2 % of total inorganic N deposition, is highest in late spring, and is strongly correlated with traffic emissions of nitrogen oxides (NOx) and distance to roads, which suggests a strong effect of vehicular ammonia (NH3) emissions and spring fertilizer application on urban N deposition. In contrast to past studies, we do not find significant relationships between rates of atmospheric N deposition with N loss via leaching, nor with rates of soil respiration. These results indicate that studies and networks measuring urban N deposition should make measurements across many sites, urban NH3 emissions should be monitored and modeled to predict and explain the variability in urban N deposition fluxes, and N deposition is decoupled from soil N and C loss in urban areas. Overall, our findings demonstrate that urban areas have distinct patterns and drivers of the biogeochemical cycling of nutrients, particularly N and P.

  11. AFM investigation and optical band gap study of chemically deposited PbS thin films

    NASA Astrophysics Data System (ADS)

    Zaman, S.; Mansoor, M.; Abubakar; Asim, M. M.

    2016-08-01

    The interest into deposition of nanocrystalline PbS thin films, the potential of designing and tailoring both the topographical features and the band gap energy (Eg) by controlling growth parameters, has significant technological importance. Nanocrystalline thin films of lead sulfide were grown onto glass substrates by chemical bath deposition (CBD) method. The experiments were carried out by varying deposition temperature. We report on the modification of structural and optical properties as a function of deposition temperature. The morphological changes of the films were analyzed by using SEM and AFM. AFM was also used to calculate average roughness of the films. XRD spectra indicated preferred growth of cubic phase of PbS films in (200) direction with increasing deposition time. Optical properties have been studied by UV-Spectrophotometer. From the diffused reflectance spectra we have calculated the optical Eg shift from 0.649-0.636 eV with increasing deposition time.

  12. Theoretical and experimental studies of the deposition of Na2So4 from seeded combustion gases

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Santoro, G. J.; Stearns, C. A.; Fryburg, G. C.; Rosner, D. E.

    1977-01-01

    Flames in a Mach 0.3 atmospheric pressure laboratory burner rig were doped with sea salt, NaS04, and NaCl, respectively, in an effort to validate theoretical dew point predictions made by a local thermochemical equilibrium (LTCE) method of predicting condensation temperatures of sodium sulfate in flame environments. Deposits were collected on cylindrical platinum targets placed in the combustion products, and the deposition was studied as a function of collector temperature. Experimental deposition onset temperatures checked within experimental error with LTCE-predicted temperatures. A multicomponent mass transfer equation was developed to predict the rate of deposition of Na2SO4(c) via vapor transport at temperatures below the deposition onset temperature. Agreement between maximum deposition rates predicted by this chemically frozen boundary layer (CFBL) theory and those obtained in the seeded laboratory burner experiments is good.

  13. Feasibility study of electrophoresis deposition of DyF3 on Nd-Fe-B particles for coercivity enhancement

    NASA Astrophysics Data System (ADS)

    Kim, K. M.; Kang, M. S.; Kwon, H. W.; Lee, J. G.; Yu, J. H.

    2018-05-01

    Feasibility of the electrophoresis deposition (EPD) technique for homogeneous and adhesive deposition of DyF3 particles on the Nd-Fe-B-type particles was studied, and coercivity enhancement in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD was investigated. HDDR-treated Nd12.5Fe80.6B6.4Ga0.3Nb0.2 particles were deposited with DyF3 particles by EPD. More homogeneous and adhesive deposition of DyF3 particles on the surface of Nd-Fe-B particles was made by the EPD with respect to conventional dip-coating, and this led to more active and homogeneous diffusion of Dy. More profound coercivity enhancement was achieved in the diffusion-treated Nd-Fe-B-type particles deposited with DyF3 by EPD compared to dip-coated particles.

  14. Cardiogenic mixing increases aerosol deposition in the human lung in the absence of gravity.

    PubMed

    Prisk, G Kim; Sá, Rui Carlos; Darquenne, Chantal

    2013-11-01

    Exposure to extraterrestrial dusts is an almost inevitable consequence of any proposed planetary exploration. Previous studies in humans showed reduced deposition in low-gravity compared with normal gravity (1G). However, the reduced sedimentation means that fewer particles deposit in the airways, increasing the number of particles transported to the lung periphery where they eventually deposit albeit at a smaller rate than in 1G. In this study, we determined the role that gravity and other mechanisms such as cardiogenic mixing play in peripheral lung deposition during breath holds. Eight healthy subjects inhaled boluses of 0.5 μm-diameter particles to penetration volumes (V p ) of 300 and 1200ml that were followed by breath holds of up to 10 sec. Tests were performed in 1G and during short periods of microgravity (μG) aboard the NASA Microgravity Research Aircraft. Aerosol deposition and dispersion were calculated from these data. Results show that, for both V p , deposition in 1G was significantly higher than in μG. In contrast, while dispersion was significantly higher in 1G compared to μG at V p =1200ml, there was no significant gravitational effect on dispersion at V p =300ml. Finally, for each G level and V p , deposition and dispersion significantly increased with increasing breath-hold time. The most important finding of this study is that, even in the absence of gravity, aerosol deposition in the lung periphery increased with increasing residence time. Because the particles used in this study were too large to be significantly affected by Brownian diffusion, the increase in deposition is likely due to cardiogenic motion effects.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Shanique L.; Kim, Myoungwoo; Lin, Peng

    The Great Lakes eco-region is one of the largest sources of fresh water in North America; however it is chronically exposed to heavy metal loadings such as mercury. In this study a comprehensive model evaluation was conducted to determine mercury loadings to the Great Lakes. The study also evaluated the relative impact of anthropogenic mercury emissions from China, regional and global sources on deposition to the Great Lakes. For the 2005 study period, CMAQ 4.7.1 model estimated a total of 6.4 ± 0.5 metric tons of mercury deposited in the Great Lakes. The total deposition breakdown showed a net loadingmore » for Lake Superior of 1906 ± 246 kg/year which is the highest of all the lakes. Lake Michigan followed with 1645 ± 203 kg/year and 1511 ± 107 kg/year in Lake Huron. The lowest total deposition was seen in Lakes Erie and Ontario amassing annual totals of 837 ± 107 kg and 506 ± 63 kg, respectively. Wet and dry deposition of mercury were both significant pathways and exhibited strong seasonal variability with higher deposition occurring in the warmer months (June–November) and the lowest in winter. Wet deposition of RGM significantly influenced the deposition proportions accounting for roughly 90% of all mercury deposited. Of the three emission sources (global background, integrated planning management (IPM) and Chinese), global background concentrations represented the maximum impact to deposition loading in the Great Lakes, except for Lake Erie and parts of Lake Michigan. There was minimal seasonality for the global background, but differences in percentage contribution between dry (28–97%) and wet deposition (43–98%) was predicted. The contributions were seen mainly in the northern sections of the Great Lakes further away from IPM point sources. These findings suggest strong localized impact of IPM sources on the southernmost lakes. Deposition as a result of emissions from China exhibited seasonality in both wet and dry deposition and showed significant contributions ranging from 0.2 to 9%.« less

  16. Investigation into Generation of Micro Features by Localised Electrochemical Deposition

    NASA Astrophysics Data System (ADS)

    Debnath, Subhrajit; Laskar, Hanimur Rahaman; Bhattacharyya, B.

    2017-11-01

    With the fast advancement of technology, localised electrochemical deposition (LECD) is becoming very advantageous in generating high aspect ratio micro features to meet the steep demand in modern precision industries of the present world. Except many other advantages, this technology is highly uncomplicated and economical for fabricating metal micro-parts with in micron ranges. In the present study, copper micro-columns have been fabricated utilizing LECD process. Different process parameters such as voltage, frequency, duty ratio and electrolyte concentration, which affect the deposition performance have been identified and their effects on deposition performances such as deposition rate, height and diameter of the micro-columns have been experimentally investigated. Taguchi's methodology has been used to study the effects as well as to obtain the optimum values of process parameters so that localised deposition with best performance can be achieved. Moreover, the generated micro-columns were carefully observed under optical and scanning electron microscope from where the surface quality of the deposited micro-columns has been studied qualitatively. Also, an array of copper micro-columns has been fabricated on stainless steel (SS-304) substrate for further exploration of LECD process capability.

  17. Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides

    NASA Astrophysics Data System (ADS)

    Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU

    2018-03-01

    Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.

  18. Metal organic chemical vapor deposition of environmental barrier coatings for the inhibition of solid deposit formation from heated jet fuel

    NASA Astrophysics Data System (ADS)

    Mohan, Arun Ram

    Solid deposit formation from jet fuel compromises the fuel handling system of an aviation turbine engine and increases the maintenance downtime of an aircraft. The deposit formation process depends upon the composition of the fuel, the nature of metal surfaces that come in contact with the heated fuel and the operating conditions of the engine. The objective of the study is to investigate the effect of substrate surfaces on the amount and nature of solid deposits in the intermediate regime where both autoxidation and pyrolysis play an important role in deposit formation. A particular focus has been directed to examining the effectiveness of barrier coatings produced by metal organic chemical vapor deposition (MOCVD) on metal surfaces for inhibiting the solid deposit formation from jet fuel degradation. In the first part of the experimental study, a commercial Jet-A sample was stressed in a flow reactor on seven different metal surfaces: AISI316, AISI 321, AISI 304, AISI 347, Inconel 600, Inconel 718, Inconel 750X and FecrAlloy. Examination of deposits by thermal and microscopic analysis shows that the solid deposit formation is influenced by the interaction of organosulfur compounds and autoxidation products with the metal surfaces. The nature of metal sulfides was predicted by Fe-Ni-S ternary phase diagram. Thermal stressing on uncoated surfaces produced coke deposits with varying degree of structural order. They are hydrogen-rich and structurally disordered deposits, spherulitic deposits, small carbon particles with relatively ordered structures and large platelets of ordered carbon structures formed by metal catalysis. In the second part of the study, environmental barrier coatings were deposited on tube surfaces to inhibit solid deposit formation from the heated fuel. A new CVD system was configured by the proper choice of components for mass flow, pressure and temperature control in the reactor. A bubbler was designed to deliver the precursor into the reactor for the deposition of metal and metal oxide functional coatings by MOCVD. Alumina was chosen as a candidate for metal oxide coating because of its thermal and phase stability. Platinum was chosen as a candidate to utilize the oxygen spillover process to maintain a self-cleaning surface by oxidizing the deposits formed during thermal stressing. Two metal organic precursors, aluminum trisecondary butoxide and aluminum acetylacetonate, were used as precursors to coat tubes of varying diameters. The morphology and uniformity of the coatings were characterized by electron microscopy and energy-dispersive x-ray spectroscopy. The coating was characterized by x-ray photoelectron spectroscopy to obtain the surface chemical composition. This is the first study conducted to examine the application of MOCVD to coat internal surfaces of tubes with varying diameters. In the third part of the study, the metal oxide coatings, alumina from aluminum acetylacetonate, alumina from aluminum trisecondary butoxide, zirconia from zirconium acetylacetonate, tantalum oxide from tantalum pentaethoxide and the metal coating, platinum from platinum acetylacetonate were deposited by MOCVD on AISI304. The chemical composition and the surface acidity of the coatings were characterized by x-ray photoelectron spectroscopy. The morphology of the coatings was characterized by electron microscopy. The coated substrates were tested in the presence of heated Jet-A in a flow reactor to evaluate their effectiveness in inhibiting the solid deposit formation. All coatings inhibited the formation of metal sulfides and the carbonaceous solid deposits formed by metal catalysis. The coatings also delayed the accumulation of solid carbonaceous deposits. In particular, it has been confirmed that the surface acidity of the metal oxide coatings affects the formation of carbonaceous deposits. Bimolecular addition reactions promoted by the Bronsted acid sites appear to lead to the formation of carbonaceous solid deposits depending on the surface acidity of the coatings. In the last part of the study, the residual carbon was incorporated in the zirconia coating by deposition with and without oxygen. As carbon surface is less active towards coke deposition, presence of residual carbon in the coating was expected to reduce its activity towards carbon deposition. The residual carbon in the coating was characterized by Raman spectroscopy and thermal analysis. However, it has been observed that residual carbon in the coating beyond a certain concentration compromises the integrity of the coating during the process of cooling the substrate from deposition temperature to room temperature. It has been found that residual carbon in the zirconia coating does not appear to affect the activity of the surface towards carbon deposition.

  19. The investigation of atmospheric deposition distribution of organochlorine pesticides (OCPs) in Turkey

    NASA Astrophysics Data System (ADS)

    Cindoruk, S. Sıddık; Tasdemir, Yücel

    2014-04-01

    Atmospheric deposition is a significant pollution source leading to contamination of remote and clean sites, surface waters and soils. Since persistent organic pollutants (POPs) stay in atmosphere without any degradation, they can be transported and deposited to clean surfaces. Organochlorine pesticides are an important group of POPs which have toxic and harmful effects to living organisms and environment. Therefore, atmospheric deposition levels and characteristics are of importance to determine the pollution quantity of water and soil surfaces in terms of POPs. This study reports the distribution quantities of atmospheric deposition including bulk, dry, wet and air-water exchange of particle and gas phase OCPs as a result of 1-year sampling campaign. Atmospheric deposition distribution showed that the main mechanism for OCPs deposition is wet processes with percentage of 69 of total deposition. OCP compounds' deposition varied according to atmospheric concentration and deposition mechanism. HCH compounds were dominant pesticide species for all deposition mechanisms. HCH deposition constituted the 65% of Σ10OCPs.

  20. Atomic force microscopy and Langmuir–Blodgett monolayer technique to assess contact lens deposits and human meibum extracts☆

    PubMed Central

    Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

    2015-01-01

    Purpose The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Methods Meibum study: Meibum was collected from all participants and studied via Langmuir–Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Results Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. Conclusions MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. PMID:25620317

  1. Mineral resource potential map of the Gila-San Francisco Wilderness Study Area, Graham and Greenlee counties, Arizona

    USGS Publications Warehouse

    Richter, Donlad H.; Klein, Douglas P.; Lawrence, Viki A.; Lane, Michael

    1982-01-01

    The mineral resource potential of the Gila-San Francisco Wilderness Study Area (AZ-040-022/023/024) is low (fig. 2). Although favorable geologic environments for placer gold deposits and manganese vein deposits are present in the study area, the probability of discovering economically exploitable deposits of these metals is low, and not encouraging. Even more speculative is the study area's porphyry copper potential which is based solely on the possibility of favorable host terranes underlying the study area at depth. The study area does contain substantial deposits of pumice, but their economic significance is probably minor. A part of the study area has been previously designated a Known Geothermal Resource Area (KGRA).

  2. AN EXAMINATION OF THE CMAQ SIMULATIONS OF THE WET DEPOSITION OF AMMONIUM FROM A BAYESIAN PERSPECTIVE

    EPA Science Inventory

    The objective of this study is to ascertain the effects of precipitation simulations and emissions on CMAQ simulations of deposition. In both seasons, CMAQ tends to underpredict the deposition amounts. Based on the co-located measurements of ammonium wet deposition and precipita...

  3. Sediment deposition and erosion in south San Francisco Bay, California from 1956 to 2005

    USGS Publications Warehouse

    Jaffe, Bruce; Foxgrover, Amy C.

    2006-01-01

    Sediment deposition and erosion in South San Francisco Bay from 1956 to 2005 was studied by comparing bathymetric surveys made in 1956, 1983, and 2005. From 1956 to 1983, the region was erosional. In contrast, from 1983 to 2005, the region was depositional. Analysis of subregions defined by depth, morphology and location revealed similarities in behavior during both the erosional and depositional periods. During the entire period of the study, there was net erosion in the shallows (<1 m depth) on the eastern shore of the bay north of the Dumbarton Bridge and net deposition in the region south of Dumbarton Bridge. The rates, however, reflected the sediment regime of each time period. Erosional areas were less erosional during the period with net deposition and depositional zones were more depositional. The cause for the increase in deposition from 1983 to 2005 is unknown, but could be related to an increase in sediment supply from Central Bay. The patterns of deposition and erosion and the change in rates are consistent with an increase in sediment supply from the north, as would occur if the supply from Central Bay increased from 1956-1983 to 1983-2005. Additional research is needed to fully understand why South San Francisco Bay became depositional from 1983 to 2005 and to determine the implications of this change to the planned salt pond restoration in the region.

  4. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 2− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 −–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 +–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 −–N and NH4 +–N was ~31.38% and ~20.50% for the contents of NO3 −–N and NH4 +–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238

  5. Natural or anthropogenic? On the origin of atmospheric sulfate deposition in the Andes of southeastern Ecuador

    NASA Astrophysics Data System (ADS)

    Makowski Giannoni, S.; Rollenbeck, R.; Trachte, K.; Bendix, J.

    2014-10-01

    Atmospheric sulfur deposition above certain limits can represent a threat to tropical forests, causing nutrient imbalances and mobilizing toxic elements that impact biodiversity and forest productivity. Atmospheric sources of sulfur deposited by precipitation have been roughly identified in only a few lowland tropical forests. Even scarcer are studies of this type in tropical mountain forests, many of them mega-diversity hotspots and especially vulnerable to acidic deposition. In these places, the topographic complexity and related streamflow conditions affect the origin, type, and intensity of deposition. Furthermore, in regions with a variety of natural and anthropogenic sulfur sources, like active volcanoes and biomass burning, no source emission data has been used for determining the contribution of each source to the deposition. The main goal of the current study is to evaluate sulfate (SO4- deposition by rain and occult precipitation at two topographic locations in a tropical mountain forest of southern Ecuador, and to trace back the deposition to possible emission sources applying back-trajectory modeling. To link upwind natural (volcanic) and anthropogenic (urban/industrial and biomass-burning) sulfur emissions and observed sulfate deposition, we employed state-of-the-art inventory and satellite data, including volcanic passive degassing as well. We conclude that biomass-burning sources generally dominate sulfate deposition at the evaluated sites. Minor sulfate transport occurs during the shifting of the predominant winds to the north and west. Occult precipitation sulfate deposition and likely rain sulfate deposition are mainly linked to biomass-burning emissions from the Amazon lowlands. Volcanic and anthropogenic emissions from the north and west contribute to occult precipitation sulfate deposition at the mountain crest Cerro del Consuelo meteorological station and to rain-deposited sulfate at the upriver mountain pass El Tiro meteorological station.

  6. Natural or anthropogenic? On the origin of atmospheric sulfate deposition in the Andes of southeastern Ecuador

    NASA Astrophysics Data System (ADS)

    Makowski Giannoni, S.; Rollenbeck, R.; Trachte, K.; Bendix, J.

    2014-05-01

    Atmospheric sulfur deposition above certain limits can represent a threat to tropical forests, causing nutrient imbalances and mobilizing toxic elements that impact biodiversity and forest productivity. Atmospheric sources of sulfur deposited by precipitation have being roughly identified in only a few lowland tropical forests. Even scarcer are these type of studies in tropical mountain forests, many of them megadiversity hotspots and especially vulnerable to acidic deposition. Here, the topographic complexity and related streamflow condition the origin, type, and intensity of deposition. Furthermore, in regions with a variety of natural and anthropogenic sulfur sources, like active volcanoes and biomass-burning, no source-emission data has been used for determining the contribution of each of them to the deposition. The main goal of the current study is to evaluate sulfate (SO4-) deposition by rain and occult precipitation at two topographic locations in a tropical mountain forest of southern Ecuador, and to trace back the deposition to possible emission sources applying back trajectory modeling. To link upwind natural (volcanic) and anthropogenic (urban/industrial and biomass-burning) sulfur emissions and observed sulfate deposition, we employed state of the art inventory and satellite data, including volcanic passive degassing as well. We conclude that biomass-burning sources generally dominate sulfate deposition at the evaluated sites. Minor sulfate transport occurs during the shifting of the predominant winds to the north and west. Occult precipitation sulfate deposition and likely rain sulfate deposition are mainly linked to biomass-burning emissions from the Amazon lowlands. Volcanic and anthropogenic emissions from the north and west contribute to occult precipitation sulfate deposition at the mountain crest Cerro del Consuelo meteorological station and to rain-deposited sulfate at the upriver mountain-pass El Tiro meteorological station.

  7. Investigations into the formation of nanocrystalline quantum dot thin films by mist deposition process

    NASA Astrophysics Data System (ADS)

    Kshirsagar, Aditya

    Semiconductor nanocrystalline quantum dots (NQDs) have material properties remarkably different compared to bulk semiconductors with the same material composition. These NQDs have various novel applications in the electronic and photonic industry, such as light emitting diodes (LEDs) and flat-panel displays. In these applications, ultra-thin films of NQDs in the monolayer regime are needed to ensure optimal current transport properties and device efficiency. There is ongoing search to find a suitable method to deposit and pattern such ultra-thin films of quantum dots with few monolayer thicknesses. Several competing approaches are available, each with its pros and cons. This study explores mist deposition as the technique to fill this void. In this study, ultra-thin films of quantum dots are deposited on diverse substrates and are characterized to understand the mechanics of mist deposition. Various applications of blanket deposited and patterned quantum dot films are studied. The results discussed here include atomic force microscopy analysis of the films to study surface morphology, fluorescence microscopy to study light emission and optical microscope images to study patterning techniques. These results demonstrate the ability of mist deposition to form 1-4 monolayers thick, uniform, defect-free patterned films with root mean square (RMS) surface roughness less than 2 nm. LEDs fabricated using mist deposition show a peak luminescence greater than 500 cd/m2 for matched red, yellow and green devices using Alq3 as the electron transport layer, and over 9000 cd/m2 for red devices using ZnO as the electron transport layer, respectively. In addition to the experimental approach to study the process and explore potential applications, simulation and modeling are carried out to understand the various aspects of mist deposition. A mathematical model is presented which discusses the atomization process of the precursor solution, the physics involved during the deposition process, and the mechanics of film formation. Results of film morphology simulation using Monte Carlo techniques and process simulation using multi-physics approach are discussed. Problems in pattern transfer due to electrostatic effects when using shadow masks are presented in a separate chapter.

  8. A modeling study of the effect of gravity on airflow distribution and particle deposition in the lung.

    PubMed

    Asgharian, Bahman; Price, Owen; Oberdörster, Gunter

    2006-06-01

    Inhalation of particles generated as a result of thermal degradation from fire or smoke, as may occur on spacecraft, is of major health concern to space-faring countries. Knowledge of lung airflow and particle transport under different gravity environments is required to addresses this concern by providing information on particle deposition. Gravity affects deposition of particles in the lung in two ways. First, the airflow distribution among airways is changed in different gravity environments. Second, particle losses by sedimentation are enhanced with increasing gravity. In this study, a model of airflow distribution in the lung that accounts for the influence of gravity was used for a mathematical description of particle deposition in the human lung to calculate lobar, regional, and local deposition of particles in different gravity environments. The lung geometry used in the mathematical model contained five lobes that allowed the assessment of lobar ventilation distribution and variation of particle deposition. At zero gravity, it was predicted that all lobes of the lung expanded and contracted uniformly, independent of body position. Increased gravity in the upright position increased the expansion of the upper lobes and decreased expansion of the lower lobes. Despite a slight increase in predicted deposition of ultrafine particles in the upper lobes with decreasing gravity, deposition of ultrafine particles was generally predicted to be unaffected by gravity. Increased gravity increased predicted deposition of fine and coarse particles in the tracheobronchial region, but that led to a reduction or even elimination of deposition in the alveolar region for coarse particles. The results from this study show that existing mathematical models of particle deposition at 1 G can be extended to different gravity environments by simply correcting for a gravity constant. Controlled studies in astronauts on future space missions are needed to validate these predictions.

  9. Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming - A review and new analysis of past study results

    USGS Publications Warehouse

    Burns, Douglas A.

    2003-01-01

    The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7kgha-1yr-1 of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but data from the National Atmospheric Deposition Program and Clean Air Status and Trends Network show no region-wide increase during the past 2 decades. Nitrogen loads in atmospheric wet deposition have increased since the mid-1980s, however, at three high elevation (>3000m) sites east of the Continental Divide in the Front Range. Much of this increase is the result of increased ammonium (NH4+) concentrations in wet deposition. This suggests an increase in contributions from agricultural areas or from vehicles east of the Rocky Mountains and is consistent with the results of previous studies that have suggested a significant eastern source for atmospheric N deposition to the Front Range. The four sites with the highest NH4+ concentrations in wet deposition were among the six easternmost NADP sites, which is also consistent with a source to the east of the Rockies. This analysis found an increase in N loads in wet deposition at Niwot Ridge of only 0.013kgha-1yr-1, more than an order of magnitude less than previously reported for this site. This lower rate of increase results from application of the non-parametric Seasonal Kendall trend test to mean monthly data, which failed a test for normality, in contrast to linear regression, which was applied to mean annual data in a previous study. Current upward trends in population growth and energy use in Colorado and throughout the west suggest a need for continued monitoring of atmospheric deposition of N, and may reveal more widespread trends in N deposition in the future.

  10. Mercury in Precipitation in Indiana, January 2001-December 2003

    USGS Publications Warehouse

    Risch, Martin R.

    2007-01-01

    Total mercury deposition that was more than 10 percent of the mean annual deposition (1,262 ng/m2 ) was recorded in 11 of 551 weekly samples from the study period. These samples contained approximately 3 inches or more of rain and most were collected in spring and summer 2003. The highest deposition (2,456 ng/m2 in a sample from Roush Lake) was 15.7 percent of the annual deposition at that station and approximately 10 times the mean weekly deposition for Indiana. High deposition recorded in three weekly samples at Clifty Falls contributed 31 percent of the annual deposition at that station in 2003. Weekly samples with high mercury deposition may help to explain the differences in annual mercury deposition among the four monitoring stations in Indiana.

  11. [Effects of the grain size and thickness of dust deposits on soil water and salt movement in the hinterland of the Taklimakan Desert].

    PubMed

    Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying

    2009-08-01

    By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (<0.063 mm) deposits promoted soil water evaporation, deeper soil desiccation, and surface soil salt accumulation, while coarse-textured (0.063-2 mm) deposits inhibited soil water evaporation and decreased deeper soil water loss and surface soil salt accumulation. The inhibition effect of the grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.

  12. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition.

    PubMed

    Lewis, Brett B; Stanford, Michael G; Fowlkes, Jason D; Lester, Kevin; Plank, Harald; Rack, Philip D

    2015-01-01

    Platinum-carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IV)Me3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top-down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.

  13. Comparative study of initial stages of copper immersion deposition on bulk and porous silicon

    NASA Astrophysics Data System (ADS)

    Bandarenka, Hanna; Prischepa, Sergey L.; Fittipaldi, Rosalba; Vecchione, Antonio; Nenzi, Paolo; Balucani, Marco; Bondarenko, Vitaly

    2013-02-01

    Initial stages of Cu immersion deposition in the presence of hydrofluoric acid on bulk and porous silicon were studied. Cu was found to deposit both on bulk and porous silicon as a layer of nanoparticles which grew according to the Volmer-Weber mechanism. It was revealed that at the initial stages of immersion deposition, Cu nanoparticles consisted of crystals with a maximum size of 10 nm and inherited the orientation of the original silicon substrate. Deposited Cu nanoparticles were found to be partially oxidized to Cu2O while CuO was not detected for all samples. In contrast to porous silicon, the crystal orientation of the original silicon substrate significantly affected the sizes, density, and oxidation level of Cu nanoparticles deposited on bulk silicon.

  14. Synthesis of nano-structure tungsten nitride thin films on silicon using Mather-type plasma focus

    NASA Astrophysics Data System (ADS)

    Hussnain, A.; Rawat, R. S.; Ahmad, R.; Umar, Z. A.; Hussain, T.; Lee, P.; Chen, Z.

    2015-07-01

    Nano-structure thin film of tungsten nitride was deposited onto Si-substrate at room temperature using Mather-type plasma focus (3.3 kJ) machine. Substrate was exposed against 10, 20, 30, and 40 deposition shots and its corresponding effect on structure, morphology, conductivity and nano-hardness has been systematically studied. The X-ray diffractormeter spectra of the exposed samples show the presence of various phases of WN and WN2 that depends on number of deposition shots. Surface morphological study revealed the uniform distribution of nano-sized grains on deposited film surface. Hardness and conductivity of exposed substrate improved with higher deposition shots. X-ray photo-electron spectroscopy survey scan of 40 deposition shots confirmed the elemental presence of W and N on Si-substrate.

  15. In situ monitoring of electrical resistance during deposition of Ag and Al thin films by pulsed laser deposition: Comparative study

    NASA Astrophysics Data System (ADS)

    Abdellaoui, N.; Pereira, A.; Novotny, M.; Bulir, J.; Fitl, P.; Lancok, J.; Moine, B.; Pillonnet, A.

    2017-10-01

    In this study, the growth by pulsed laser deposition of thin films of nanometer thickness as well as clusters is presented. Two kinds of metals, namely Ag and Al, are investigated because of their different growth processes on SiO2. We show that by tuning the deposition rate and the background atmosphere, it is easily possible to obtain Ag clusters that exhibit plasmonic resonances at wavelengths shorter than 500 nm. It is further demonstrated that Al tends to perfectly wet the substrate when deposited under vacuum or gas pressure. In situ electrical resistance measurements are used to follow the growth during deposition, and conventional analysis techniques (AFM, SEM, absorption and ellipsometry spectroscopy) are used to control their properties.

  16. Effects of atmospheric reactive phosphorus deposition on phosphorus transport in a subtropical watershed: A Chinese case study.

    PubMed

    Gao, Yang; Hao, Zhuo; Yang, Tiantian; He, Nianpeng; Wen, Xuefa; Yu, Guirui

    2017-07-01

    Atmospheric phosphorus (P) deposition is not only an important external macronutrient source for aquatic ecosystems but also a major cause of high export coefficient (EC) values. However, there are limited numbers of studies in the literature that focus on estimating the deposition flux of reactive P (P r ). The aim of this study is to estimate the P r deposition on the Xiangxi River watershed, and therefore, provide a comprehensive understanding about the P r deposition on subtropical watersheds in China. Results have shown that maximal P r deposition fluxes reached 12 kg km -2 in our selected subtropical watershed. Furthermore, we found out the particulate phosphorus (PP) were dominating the total P r deposition in the Xiangxi River watershed. According to our experiments, certain forms of P r deposition were associated with high correlation coefficients with respect to the variation of rainfall intensity. Results also demonstrated that the dissolved organic phosphorus (DOP) and soluble reactive phosphorus (SRP) via wet deposition had large influences on the DOP and SRP concentrations in runoff, while the PO 4 -P and PP via wet deposition only affected PO 4 -P and PP loads through runoff discharge. Our experiments also shown that most parts of the P r in runoff water was derived from rainfall and its magnitudes varied with land types. Results suggested that during the dry season, the P r wet deposition not only was an important source for the P r transport driven by runoff, but also was one of the most important influencing factors that dominated the P r transport in subtropical watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A computer model for the simulation of nanoparticle deposition in the alveolar structures of the human lungs.

    PubMed

    Sturm, Robert

    2015-11-01

    According to epidemiological and experimental studies, inhalation of nanoparticles is commonly believed as a main trigger for several pulmonary dysfunctions and lung diseases. Concerning the transport and deposition of such nano-scale particles in the different structures of the human lungs, some essential questions are still in need of a clarification. Therefore, main objective of the study was the simulation of nanoparticle deposition in the alveolar region of the human respiratory tract (HRT). Respective factors describing the aerodynamic behavior of spherical and non-spherical particles in the inhaled air stream (i.e., Cunningham slip correction factors, dynamic shape factors, equivalent-volume diameters, aerodynamic diameters) were computed. Alveolar deposition of diverse nanomaterials according to several known mechanisms, among which Brownian diffusion and sedimentation play a superior role, was approximated by the use of empirical and analytical formulae. Deposition calculations were conducted with a currently developed program, termed NANODEP, which allows the variation of numerous input parameters with regard to particle geometry, lung morphometry, and aerosol inhalation. Generally, alveolar deposition of nanoparticles concerned for this study varies between 0.1% and 12.4% during sitting breathing and between 2.0% and 20.1% during heavy-exercise breathing. Prolate particles (e.g., nanotubes) exhibit a significant increase in deposition, when their aspect ratio is enhanced. In contrast, deposition of oblate particles (e.g., nanoplatelets) is remarkably declined with any reduction of the aspect ratio. The study clearly demonstrates that alveolar deposition of nanoparticles represents a topic certainly being of superior interest for physicists and respiratory physicians in future.

  18. Seasonal and Spatial Variations of Bulk Nitrogen Deposition and the Impacts on the Carbon Cycle in the Arid/Semiarid Grassland of Inner Mongolia, China.

    PubMed

    Li, Xianglan; Shi, Huiqiu; Xu, Wenfang; Liu, Wei; Wang, Xiujun; Hou, Longyu; Feng, Fei; Yuan, Wenping; Li, Linghao; Xu, Hua

    2015-01-01

    Atmospheric nitrogen (N) deposition is an important component that affects the structure and function of different terrestrial ecosystem worldwide. However, much uncertainty still remains concerning the magnitude of N deposition on grassland ecosystem in China. To study the spatial and temporal patterns of bulk N deposition, the levels of N (NH4+-N and NO3--N) concentration in rainfall were measured at 12 sites across a 1200 km grassland transect in Inner Mongolia, China, and the respective N deposition rates were estimated. The inorganic N deposition rates ranged from 4.53 kg N ha-1 to 12.21 kg N ha-1 with a mean value of 8.07 kg N ha-1 during the entire growing season, decreasing steadily from the eastern to the western regions. Inorganic N deposition occurred mainly in July and August across meadow steppe, typical steppe, and desert steppe, which corresponded to the seasonal distribution of mean annual precipitation. A positive relationship was found between inorganic N deposition and mean annual precipitation (R2 = 0.54 ~ 0.72, P < 0.0001) across the grassland transect. Annual estimation of inorganic N deposition was 0.67 Pg yr-1 in Inner Mongolia, China based on the correlation between N deposition rates and precipitation. N deposition was an important factor controlling aboveground biomass and ecosystem respiration, but has no effect on root biomass and soil respiration. We must clarify that we used the bulk deposition samplers during the entire sampling process and estimated the dissolved NH4+-N and NO3--N deposition rates during the entire growing season. Long-term N deposition monitoring networks should be constructed to study the patterns of N deposition and its potential effect on grassland ecosystem, considering various N species, i.e., gaseous N, particle N, and wet N deposition.

  19. Volcanogenic massive sulphide and orogenic gold deposits of northern southeast Alaska

    USGS Publications Warehouse

    Sack, Patrick J; Karl, Susan M.; Steeves, Nathan; Gemmell, J Bruce

    2016-01-01

    This five-day field trip visits the most significant mineral deposits in northern southeast Alaska. The trip begins and ends with regional transects in the interior Intermontane terranes around Whitehorse, Yukon, and the Insular terranes along the northern Chatham Strait region of southeast Alaska (Fig. A-1 and Fig. A-2; Plate-1). To put the deposits in a regional tectonic framework, the guidebook begins with an introduction to northern Cordilleran geology, tectonics and metallogeny. The foci of the deposit portion of the field trip are Late Triassic volcanogenic massive sulphide (VMS) deposits of the Alexander Triassic metallogenic belt and Paleogene orogenic gold deposits of the Juneau gold belt. Details of the local geology are further elaborated in each segment of the guide book (Days 1-5). The data that provide the basis for the VMS deposit interpretations come from a series of PhD and MSc studies by the Centre of Excellence in Ore Deposit Research (CODES) at the University of Tasmania and the University of Ottawa. These deposit-scale studies are complimented by a long history of regional mapping and research by the U.S. Geological Survey (USGS).

  20. Synthesis of BiFeO3 thin films by chemical solution deposition - Structural and magnetic studies

    NASA Astrophysics Data System (ADS)

    Angappane, S.; Kambhala, Nagaiah

    2012-06-01

    BiFeO3 thin films were deposited on Si (100) substrates by chemical solution deposition. A precursor solution of bismuth acetate and iron acetylacetonate dissolved in distilled water and acetic acid was spin coated on to silicon substrates at ambient conditions, followed by drying and annealing at 650 °C. The films were characterized by XRD and FESEM to study structural properties and morphology. The magnetic properties studied by SQUID magnetometer shows the ferromagnetic nature of the chemical solution deposited BiFeO3 films which are crucial for low cost device applications.

  1. Anion-Dependent Potential Precycling Effects on Lithium Deposition/Dissolution Reaction Studied by an Electrochemical Quartz Crystal Microbalance.

    PubMed

    Smaran, Kumar Sai; Shibata, Sae; Omachi, Asami; Ohama, Ayano; Tomizawa, Eika; Kondo, Toshihiro

    2017-10-19

    The electrochemical quartz crystal microbalance technique was employed to study the initial stage of the electrodeposition and dissolution of lithium utilizing three kinds of electrolyte solutions such as LiPF 6 , LiTFSI, or LiFSI in tetraglyme. The native-SEI (solid-electrolyte interphase) formed by a potential prescan before lithium deposition/dissolution in all three solutions. Simultaneous additional SEI (add-SEI) deposition and its dissolution with lithium deposition and dissolution, respectively, were observed in LiPF 6 and LiTFSI. Conversely, the add-SEI dissolution with lithium deposition and its deposition with lithium dissolution were observed in LiFSI. Additional potential precycling resulted in the accumulation of a "pre-SEI" layer over the native-SEI layer in all of the solutions. With the pre-SEI, only lithium deposition/dissolution were significantly observed in LiTFSI and LiFSI. On the basis of the potential dependences of the mass and resistance changes, the anion-dependent effects of such a pre-SEI layer presence/absence on the lithium deposition/dissolution processes were discussed.

  2. Measurement of atmospheric dry deposition at Emerald Lake in Sequoia National Park. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bytnerowicz, A.; Olszyk, D.

    1988-04-11

    The primary objective of the study was to evaluate atmospheric dry deposition of major anions and cations to trees in the Emerald Lake area of Sequoia National Park. The field work was performed between July 15 and September 10, 1987. Teflon-coated and non-coated branches of native lodgepole pine (Pinus concorta) and western white pine (P. monticola), and potted seedlings of Coulter pine (P. coulteri) were rinsed using deionized-distilled water. Nylon and paper filters were exposed along with the vegetation, and were extracted in deionized-distilled water. The rinses and extracts were analyzed for concentrations of nitrate, sulfate, phosphate, chloride, fluoride, ammonium,more » and metallic cations. The deposition of nitrate to paper filters and to Coulter pine branches was significantly higher than deposition to the native conifers. Deposition of nitrate was significantly greater than deposition of sulfate, supporting earlier studies of chapparal in the South Coast Air Basin. Ammonium deposition was also quite high, suggesting that transport from the valley may be a significant source of dry deposition in the Sierra.« less

  3. Organic micropollutants in wet and dry depositions in the Venice Lagoon.

    PubMed

    Gambaro, Andrea; Radaelli, Marta; Piazza, Rossano; Stortini, Angela Maria; Contini, Daniele; Belosi, Franco; Zangrando, Roberta; Cescon, Paolo

    2009-08-01

    Atmospheric transport is an important route by which pollutants are conveyed from the continents to both coastal and open sea. The role of aerosol deposition in the transport of polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) and polybromodiphenyls ethers (PBDEs) to water and soil systems has been evaluated by measuring their concentrations in wet and dry depositions to the Venice Lagoon. The organic micropollutant flux data indicate that they contribute to the total deposition flux in different ways through wet and dry deposition, showing that the prevalent contribution derives from wet deposition. The fluxes calculated for PBDEs, showed the prevalence of 47, 99, 100 and 183 congeners, both in dry and wet fluxes. With regard to PCBs, the flux of summation operatorPCB for wet deposition is in the same order of magnitude of the diffusive flux at the air-water interface. The PAH fluxes obtained in the present study are similar to those obtained in previous studies on the atmospheric bulk deposition to the Venice Lagoon. The ratios between Phe/Ant and Fl/Py indicate that the pollutants sources are pyrolytic, deriving from combustion fuels.

  4. Pulmonary Deposition of Aerosols in Microgravity

    NASA Technical Reports Server (NTRS)

    Prisk, G. Kim

    1997-01-01

    The intrapulmonary deposition of airborne particles (aerosol) in the size range of 0.5 to 5 microns is primarily due to gravitational sedimentation. In the microgravity (muG) environment, sedimentation is no longer active, and thus there should be marked changes in the amount and site of the deposition of these aerosol. We propose to study the total intrapulmonary deposition of aerosol spanning the range 0.5 to 5 microns in the KC-135 at both muG and at 1.8-G. This will be followed by using boli of 1.0 micron aerosol, inhaled at different points in a breath to study aerosol dispersion and deposition as a function of inspired depth. The results of these studies will have application in better understanding of pulmonary diseases related to inhaled particles (pneumoconioses), in studying drugs delivered by inhalation, and in understanding the consequence of long-term exposure to respirable aerosols in long-duration space flight.

  5. Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO 2 Storage Efficiency. A Reservoir Simulation Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okwen, Roland; Frailey, Scott; Leetaru, Hannes

    2014-09-30

    The storage potential and fluid movement within formations are dependent on the unique hydraulic characteristics of their respective depositional environments. Storage efficiency (E) quantifies the potential for storage in a geologic depositional environment and is used to assess basinal or regional CO 2 storage resources. Current estimates of storage resources are calculated using common E ranges by lithology and not by depositional environment. The objectives of this project are to quantify E ranges and identify E enhancement strategies for different depositional environments via reservoir simulation studies. The depositional environments considered include deltaic, shelf clastic, shelf carbonate, fluvial deltaic, strandplain, reef,more » fluvial and alluvial, and turbidite. Strategies considered for enhancing E include CO 2 injection via vertical, horizontal, and deviated wells, selective completions, water production, and multi-well injection. Conceptual geologic and geocellular models of the depositional environments were developed based on data from Illinois Basin oil fields and gas storage sites. The geologic and geocellular models were generalized for use in other US sedimentary basins. An important aspect of this work is the development of conceptual geologic and geocellular models that reflect the uniqueness of each depositional environment. Different injection well completions methods were simulated to investigate methods of enhancing E in the presence of geologic heterogeneity specific to a depositional environment. Modeling scenarios included horizontal wells (length, orientation, and inclination), selective and dynamic completions, water production, and multiwell injection. A Geologic Storage Efficiency Calculator (GSECalc) was developed to calculate E from reservoir simulation output. Estimated E values were normalized to diminish their dependency on fluid relative permeability. Classifying depositional environments according to normalized baseline E ranges ranks fluvial deltaic and turbidite highest and shelf carbonate lowest. The estimated average normalized baseline E of turbidite, and shelf carbonate depositional environments are 42.5% and 13.1%, with corresponding standard deviations of 11.3%, and 3.10%, respectively. Simulations of different plume management techniques suggest that the horizontal well, multi-well injection with brine production from blanket vertical producers are the most efficient E enhancement strategies in seven of eight depositional environments; for the fluvial deltaic depositional environment, vertical well with blanket completions is the most efficient. This study estimates normalized baseline E ranges for eight depositional environments, which can be used to assess the CO 2 storage resource of candidate formations. This study also improves the general understanding of depositional environment’s influence on E. The lessons learned and results obtained from this study can be extrapolated to formations in other US basins with formations of similar depositional environments, which should be used to further refine regional and national storage resource estimates in future editions of the Carbon Utilization and Storage Atlas of the United States. Further study could consider the economic feasibility of the E enhancement strategies identified here.« less

  6. Sedimentological characteristics and depositional processes of sediment gravity flows in rift basins: The Palaeogene Dongying and Shahejie formations, Bohai Bay Basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Chen, Hongde; Zhong, Yijiang; Wang, Jun; Xu, Changgui; Chen, Anqing; Du, Xiaofeng

    2017-10-01

    Sediment gravity flow deposits are common, particularly in sandy formations, but their origin has been a matter of debate and there is no consensus about the classification of such deposits. However, sediment gravity flow sandstones are economically important and have the potential to meet a growing demand in oil and gas exploration, so there is a drive to better understand them. This study focuses on sediment gravity flow deposits identified from well cores in Palaeogene deposits from the Liaodong Bay Depression in Bohai Bay Basin, China. We classify the sediment gravity flow deposits into eight lithofacies using lithological characteristics, grain size, and sedimentary structures, and interpret the associated depositional processes. Based on the scale, spatial distribution, and contact relationships of sediment gravity flow deposits, we defined six types of lithofacies associations (LAs) that reflect transformation processes and depositional morphology: LA1 (unconfined proximal breccia deposits), LA2 (confined channel deposits), LA3 (braided-channel lobe deposits), LA4 (unconfined lobe deposits), LA5 (distal sheet deposits), and LA6 (non-channelized sheet deposits). Finally, we established three depositional models that reflect the sedimentological characteristics and depositional processes of sediment gravity flow deposits: (1) slope-apron gravel-rich depositional model, which involves cohesive debris flows deposited as LA1 and dilute turbidity currents deposited as LA5; (2) non-channelized surge-like turbidity current depositional model, which mainly comprises sandy slumping, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA5 and LA6; and (3) channelized subaqueous-fan depositional model, which consists of non-cohesive bedload dominated turbidity currents, suspended load dominated turbidity currents, and dilute turbidity currents deposited as LA2-LA5, originating from sustained extrabasinal turbidity currents (hyperpycnal flow). The depositional models may be applicable to oil and gas exploration and production from sediment gravity flow systems in similar lacustrine depositional environments elsewhere.

  7. Studies of Plasma-Sprayed Alumina

    NASA Astrophysics Data System (ADS)

    Ilavsky, Jan

    1994-05-01

    Phase transformations and porosity of the plasma sprayed alumina deposits were examined. The dependence of the phase transformations on deposit chemistry was established. Porosity changes during heat treatment were studied and a model for the porosity is proposed. A novel technique in the field of plasma sprayed deposits--small-angle neutron scattering (SANS)--was successfully applied. Deposits were manufactured using the water-stabilized plasma spray system, PAL160, with an input of 160 kW. Phase transformations of the plasma sprayed alumina deposits were studied using XRD and DTA. The deposits were manufactured from 99.9% alumina, alumina-chromia (1.5% Cr_2O_3), gray alumina (3.7% TiO_2) and alumina -titania (17% TiO_2). The addition of chromia increases the temperature of the alpha phase formation by about 40^circ C and the addition of TiO_2 reduces this temperature by about 150^circ C for gray alumina and by about 175^ circC for alumina-titania. The amount of metastable theta phase was found to depend on the chemistry of the feedstock. Porosities of the deposits, made from alumina and gray alumina, were studied using mercury intrusion porosimetry, weighing method (Archimedean porosimetry), image analysis and SANS. Samples were studied in the as -sprayed condition and after heat treatment for 2 hours at 1300^circC and 1500 ^circC. Porosity depends on the deposit chemistry and on the heat treatment and varies from 5% to about 11%. Different porosity measurement techniques yield different results. Surface areas of 1.5 to 7.5 times 10^4 cm^2 /cm^3 (times 10^6 m^{ -1}) were measured using SANS and depend on heat treatment and on the deposit chemistry. The phase transformations can be associated with an increase in pore surface area and decrease in surface area at 1500 ^circC can be associated with sintering. The effective pore radius, R_{ rm eff}, as measured by SANS is a measure of the pore sizes in the 0.08 to 10 μm size range. The R_{rm eff} depends on deposit chemistry and is about 0.7 to 0.9 μm for all deposits, but the gray alumina deposit, heat treated at 1500^ circC for 2h, exhibits an R_ {rm eff} of 2.2 mu m. This increase can be associated with sintering.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Hsu-Chi; Swift, D.L.; Simpson, S.Q.

    The extrathoracic airways, including the nasal passage, oral passage, pharynx, and larynx, are the first targets for inhaled particles and provide an important defense for the lung. Understanding the deposition efficiency of the nasal and oral passages is therefore crucial for assessing doses of inhaled particles to the extrathoracic airways and the lung. Significant inter-subject variability in nasal deposition has been shown in recent studies by Rasmussen, T.R. et al, using 2.6 {mu}m particles in 10 human subjects and in our preliminary studies using 0.004-0.15 {mu}m particles in four adult volunteers. No oral deposition was reported in either of thesemore » studies. Reasons for the intersubject variations have been frequently attributed to the geometry of the nasal passages. The aims of the present study were to measure in vivo the nasal airway dimensions and the deposition of ultrafine aerosols in both the nasal and oral passages, and to determine the relationship between nasal airway dimensions and aerosol deposition. A statistical procedure incorporated with the diffusion theory was used to model the dimensional features of the nasal airways which may be responsible for the biological variability in particle deposition. In summary, we have correlated deposition of particles in the size range of 0.004 to 0.15 {mu}m with the nasal dimensions of each subject.« less

  9. Comparison of the effects of using local and central snow deposits: a case study in Luleå.

    PubMed

    Reinosdotter, K; Viklander, M; Malmqvist, P A

    2003-01-01

    The aim of the study was to determine if an increased use of local land-based snow deposits would be more sustainable than the use of a central snow deposit. The study focused on transport related emissions, costs for transporting the snow, technical attendance, local effects, public acceptance, land use, effects on the recipient environmental control and potential for accidents. General information was obtained from an inventory regarding snow handling that was made in 14, geographically spread, Swedish municipalities during 2001. The comparison of costs for transporting snow and transport-related emissions was based on information gathered from the municipality of Luleå. The study showed that using local land-based snow deposits would decrease traffic-related emissions such as CO2, CO and NO(x) by 40% annually and would decrease the annual cost for transporting snow by nearly 80%. On the other hand local snow deposits may lead to an increased risk of accidents and to negative local effects such as delayed growing season, flooding and drainage problems. Available land for local snow deposits in the cities is hard to find, and is usually expensive. Therefore a combination of local and central snow deposits is likely to be the most realistic option.

  10. Mechanical and hydraulic properties of sludge deposit on sludge drying reed beds (SDRBs): influence of sludge characteristics and loading rates.

    PubMed

    Vincent, Julie; Forquet, Nicolas; Molle, Pascal; Wisniewski, Christelle

    2012-07-01

    This work was designed to study the hydraulic properties of sludge deposit, focusing on the impact of operating conditions (i.e. loads and feeding frequencies) on air entrance (aerobic mineralization optimization) into the sludge deposit. The studied sludge deposits came from six 2m(2) pilot-scale SDRBs that had been in operation for 50 months with three different loads of 30, 50, and 70 kg of SSm(-2) y(-1). Two influents were assessed (i.e. activated sludge and septage) presenting different characteristics (i.e. pollutant contents, physical properties...). Two experimental approaches were employed based on establishing the water retention curve (capillary pressure versus volumetric water content) and the hydrotextural diagram to determine the hydraulic properties of sludge deposit. The study obtained valuable information for optimizing operating conditions, specifically for efficient management of loading frequency to optimize aerobic conditions within the sludge deposit. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Atomic force microscopy and Langmuir-Blodgett monolayer technique to assess contact lens deposits and human meibum extracts.

    PubMed

    Hagedorn, Sarah; Drolle, Elizabeth; Lorentz, Holly; Srinivasan, Sruthi; Leonenko, Zoya; Jones, Lyndon

    2015-01-01

    The purpose of this exploratory study was to investigate the differences in meibomian gland secretions, contact lens (CL) lipid extracts, and CL surface topography between participants with and without meibomian gland dysfunction (MGD). Meibum study: Meibum was collected from all participants and studied via Langmuir-Blodgett (LB) deposition with subsequent Atomic Force Microscopy (AFM) visualization and surface roughness analysis. CL Study: Participants with and without MGD wore both etafilcon A and balafilcon A CLs in two different phases. CL lipid deposits were extracted and analyzed using pressure-area isotherms with the LB trough and CL surface topographies and roughness values were visualized using AFM. Meibum study: Non-MGD participant meibum samples showed larger, circular aggregates with lower surface roughness, whereas meibum samples from participants with MGD showed more lipid aggregates, greater size variability and higher surface roughness. CL Study: Worn CLs from participants with MGD had a few large tear film deposits with lower surface roughness, whereas non-MGD participant-worn lenses had many small lens deposits with higher surface roughness. Balafilcon A pore depths were shallower in MGD participant worn lenses when compared to non-MGD participant lenses. Isotherms of CL lipid extracts from MGD and non-MGD participants showed a seamless rise in surface pressure as area decreased; however, extracts from the two different lens materials produced different isotherms. MGD and non-MGD participant-worn CL deposition were found to differ in type, amount, and pattern of lens deposits. Lipids from MGD participants deposited irregularly whereas lipids from non-MGD participants showed more uniformity. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  12. Estimated global nitrogen deposition using NO2 column density

    USGS Publications Warehouse

    Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao

    2013-01-01

    Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.

  13. Using deposition rate to increase the thermal and kinetic stability of vapor-deposited hole transport layer glasses via a simple sublimation apparatus

    NASA Astrophysics Data System (ADS)

    Kearns, Kenneth L.; Krzyskowski, Paige; Devereaux, Zachary

    2017-05-01

    Deposition rate is known to affect the relative stability of vapor-deposited glasses; slower rates give more stable materials due to enhanced mobility at the free surface of the film. Here we show that the deposition rate can affect both the thermodynamic and kinetic stabilities of N ,N' -bis(3-methylphenyl)-N ,N' -diphenylbenzidine (TPD) and N ,N' -di-[(1-naphthyl)-N ,N' -diphenyl]-1,1'-biphenyl)-4,4'-diamine (NPD) glasses used as hole transport layers for organic light emitting diodes (OLEDs). A simple, low-vacuum glass sublimation apparatus and a high vacuum deposition chamber were used to deposit the glass. 50 μm thick films were deposited in the sublimation apparatus and characterized by differential scanning calorimetry while 75 nm thick films were prepared in the high vacuum chamber and studied by hot-stage spectroscopic ellipsometry (SE). The thermodynamic stability from both preparation chambers was consistent and showed that the fictive temperature (Tfictive) was more than 30 K lower than the conventional glass transition temperature (Tg) at the slowest deposition rates. The kinetic stability, measured as the onset temperature (Tonset) where the glass begins to transform into the supercooled liquid, was 16-17 K greater than Tg at the slowest rates. Tonset was systematically lower for the thin films characterized by SE and was attributed to the thickness dependent transformation of the glass into the supercooled liquid. These results show the first calorimetric characterization of the stability of glasses for OLED applications made by vapor deposition and the first direct comparison of deposition apparatuses as a function of the deposition rate. The ease of fabrication will create an opportunity for others to study the effect of deposition conditions on glass stability.

  14. Experimental studies of deposition at a debris-flow flume

    USGS Publications Warehouse

    Major, Jon J.

    1995-01-01

    Geologists commonly infer the flow conditions and the physical properties of debris flows from the sedimentologic, stratigraphic, and morphologic characteristics of their deposits. However, such inferences commonly lack corroboration by direct observation because the capricious nature of debris flows makes systematic observation and measurement of natural events both difficult and dangerous. Furthermore, in contrast to the numerous experimental studies of water flow and related fluvial deposition, few real-time observations and measurements of sediment deposition by large-scale mass flow of debris under controlled conditions have been made. Recent experiments at the U.S. Geological Survey debris-flow flume in the H. J. Andrews Experimental Forest, Oregon (Iverson and others, 1992) are shedding new insight on sediment deposition by debris flows and on the veracity of methods commonly used to reconstruct flow character from deposit characteristics.

  15. Spacer geometry and particle deposition in spiral wound membrane feed channels.

    PubMed

    Radu, A I; van Steen, M S H; Vrouwenvelder, J S; van Loosdrecht, M C M; Picioreanu, C

    2014-11-01

    Deposition of microspheres mimicking bacterial cells was studied experimentally and with a numerical model in feed spacer membrane channels, as used in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane systems. In-situ microscopic observations in membrane fouling simulators revealed formation of specific particle deposition patterns for different diamond and ladder feed spacer orientations. A three-dimensional numerical model combining fluid flow with a Lagrangian approach for particle trajectory calculations could describe very well the in-situ observations on particle deposition in flow cells. Feed spacer geometry, positioning and cross-flow velocity sensitively influenced the particle transport and deposition patterns. The deposition patterns were not influenced by permeate production. This combined experimental-modeling approach could be used for feed spacer geometry optimization studies for reduced (bio)fouling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Geologic Criteria for the Assessment of Sedimentary Exhalative (Sedex) Zn-Pb-Ag Deposits

    USGS Publications Warehouse

    Emsbo, Poul

    2009-01-01

    Sedex deposits account for more than 50 percent of the world's zinc and lead reserves and furnish more than 25 percent of the world's production of these two metals. This report draws on previous syntheses as well as on topical studies of deposits in sedex basins to determine the characteristics and processes that produced sedex deposits. This analysis also uses studies of the tectonic, sedimentary, and fluid evolution of modern and ancient sedimentary basins and mass balance constraints to identify the hydrothermal processes that are required to produce sedex deposits. This report demonstrates how a genetic model can be translated into geologic criteria that can be used in the U.S. Geological Survey National Assessments for sedex zinc-lead-silver deposits to define permissive tracts, assess the relative prospectivity of permissive tracts, and map favorability within permissive tracts.

  17. Episodic inputs of atmospheric nitrogen to the Sargasso Sea: Contributions to new production and phytoplankton blooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, A.F.; Johnson, R.J.; Siegel, D.A.

    1993-06-01

    This paper compares a recent atmospheric wet deposition record (including all measurable daily rainfall events between October 1988 and June 1991) with concurrent measurements of nitrogen cycling and biomass at the U.S. Joint Global Ocean Flux Study Bermuda Atlantic Time Series Study station. The two data sets, among the most complete synoptic records of atmospheric nitrogen deposition and ocean nitrogen cycling, provide an opportunity to directly assess the importance of nitrogen deposition in the ocean. The results indicate that individual nitrogen wet deposition events are usually small compared to the ambient nitrogen cycle and that only under sustained calm conditionsmore » following large deposition events will nitrogen deposition processes be an important signal for the understanding of ocean biochemistry. 46 refs., 7 figs.« less

  18. Recent storm and tsunami coarse-clast deposit characteristics, southeast Hawai'i

    USGS Publications Warehouse

    Richmond, B.M.; Watt, Sebastian; Buckley, M.; Jaffe, B.E.; Gelfenbaum, G.; Morton, R.A.

    2011-01-01

    Deposits formed by extreme waves can be useful in elucidating the type and characteristics of the depositional event. The study area on the southeast coast of the island of Hawaiʻi is characterized by the presence of geologically young basalts of known age that are mantled by recent wave-derived sedimentary deposits. The area has been impacted by large swells, storms and tsunamis over the last century, and in combination with known substrate ages makes this an ideal location to study recent deposits produced by such events. Three distinct coarse-clast deposit assemblages can be recognized based on clast size, composition, angularity, orientation, packing, elevation and inland distance of the deposit. These deposits are characterized as one of three types. 1) Gravel fields of isolated clasts, primarily boulder-size material, and scattered pockets of concentrated sand and gravel in topographic lows. 2) Shore-parallel and cuspate ridges composed mostly of rounded basalt gravel and sand with small amounts of carbonate detritus. The ridges range in height from about 1 to 3 m and are 10s of m wide. 3) Cliff-top deposits of scattered angular and sub-angular clasts along sea cliffs that are generally greater than 5 m elevation. The gravel fields are primarily of tsunami origin from either the 1975 Kalapana event, or a combination of the 1975 tsunami, and 1868 tsunami or earlier events. The ridge deposits are presently active and sediment continues to be added during high wave events. The cliff-top deposits contain evidence of deposition by both tsunami and storm processes and require further investigation.

  19. Heavy minerals in the 2011 Tohoku-oki tsunami deposits—insights into sediment sources and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Jagodziński, Robert; Sternal, Beata; Szczuciński, Witold; Chagué-Goff, Catherine; Sugawara, Daisuke

    2012-12-01

    The 2011 Tohoku-oki tsunami left sand and mud deposits more than 4 km inland on the coastal plain of Sendai, Japan. The tsunami deposits, pre-tsunami soils and beach sediments were analysed for grain size, and heavy mineral content and assemblages to test the applicability of heavy mineral analyses in the identification of tsunami deposits and interpretation of associated sedimentation processes. Heavy minerals comprised on average 35% of the tsunami deposit in the 0.125-0.25 mm grain size fraction. The most common were orthopyroxenes, clinopyroxenes, amphiboles, limonites and opaque minerals. Heavy mineral concentrations and assemblages were similar in the tsunami deposits, beach and pre-tsunami soils and sediments and thus tsunami deposits could not simply be identified based on their heavy minerals. Sediment provenance analysis revealed that tsunami deposits left within 1.5 km of the shoreline were mostly eroded from the beach, dune and local soils, while deposits farther inland (> 1.5 km) were mostly derived from local soil erosion. No evidence was found for a significant contribution of offshore sediments. Detailed analyses revealed that the lowermost portion of tsunami deposits was mostly of local origin, while the sediment source of the upper portion was variable. A comparison with a previous study of heavy minerals in 2004 IOT deposits confirms that heavy minerals in tsunami deposits are mostly source-dependent and may represent a useful supplementary tool in studies of tsunami deposits. However, the interpretation must always be placed in the local geological context and corroborated with other "tsunami proxies".

  20. Using the geologic setting of talc deposits as an indicator of amphibole asbestos content

    USGS Publications Warehouse

    Van Gosen, B. S.; Lowers, H.A.; Sutley, S.J.; Gent, C.A.

    2004-01-01

    This study examined commercial talc deposits in the U.S. and their amphibole-asbestos content. The study found that the talc-forming environment directly influenced the amphibole and amphibole-asbestos content of the talc deposit. Large talc districts in the U.S. have mined hydrothermal talcs that replaced dolostone. Hydrothermal talcs, created by siliceous fluids heated by magmas at depth, consistently lack amphiboles as accessory minerals. In contrast, mineable talc deposits that formed by contact or regional metamorphism consistently contain amphiboles, locally as asbestiform varieties. Examples of contact metamorphic deposits occur in Death Valley, California; these talc-tremolite deposits contain accessory amphibole-asbestos. Talc bodies formed by regional metamorphism always contain amphiboles, which display a variety of compositions and habits, including asbestiform. Some industrial mineral deposits are under scrutiny as potential sources of accessory asbestos minerals. Recognizing consistent relations between the talc-forming environment and amphibole-asbestos content may be used in prioritizing remediation or monitoring of abandoned and active talc mines.

  1. Water evaporation in silica colloidal deposits.

    PubMed

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Proteomic analysis of protein deposits on worn daily wear silicone hydrogel contact lenses

    PubMed Central

    Wei, Xiaojia; Aliwarga, Yulina; Carnt, Nicole A.; Garrett, Qian; Willcox, Mark D.P.

    2008-01-01

    Purpose Previous studies have demonstrated deposition of tear proteins onto worn contact lenses. In this study, we used proteomic techniques to analyze the protein deposits extracted from worn daily wear silicone hydrogel contact lenses in combination with different lens care solutions. Methods Worn lenses were collected and protein deposits extracted using urea and surfactant. Protein extracts were desalted, concentrated, and then separated using one-dimensional gel electrophoresis. Individual protein components in extracts were identified using liquid chromatography combined with tandem mass spectrometry (LC-MS-MS) after trypsin digestion. Results One-dimensional gel electrophoresis revealed that lysozyme and other small proteins (around 20 kDa) were the most abundant proteins in the extracts. LC-MS-MS revealed a wide array of proteins in lens extracts with lysozyme and lipocalin 1 being the most commonly identified in deposit extracts. Conclusions Worn contact lenses deposit a wide array of proteins from tear film and other sources. Protein deposit profiles varied and were specific for each contact lens material. PMID:18989384

  3. Stratigraphy of the layered terrain in Valles Marineris, Mars

    NASA Technical Reports Server (NTRS)

    Komatsu, G.; Strom, Roger G.

    1991-01-01

    The layered terrain in Valles Marineris provides information about its origin and the geologic history of this canyon system. Whether the terrain is sedimentary material deposited in a dry or lacustrine environment, or volcanic material related to the tectonics of the canyon is still controversial. However, recent studies of Gangis Layered Terrain suggests a cyclic sequence of deposition and erosion under episodic lacustrine conditions. The stratigraphic studies are extended to four other occurrences of layered terrains in Valles Marineris in an attempt to correlate and distinguish between depositional environments. The Juvantae Chasma, Hebes Chasma, Ophir and Candor Chasmata, Melas Chasma, and Gangis Layered Terrain were examined. Although there are broad similarities among the layered terrains, no two deposits are exactly alike. This suggests that there was no synchronized regional depositional processes to form all the layered deposits. However, the similar erosional style of the lower massive weakly bedded unit in Hebes, Gangis, and Ophir-Candor suggests it may have been deposited under similar circumstances.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiantis, Dian; Nelson, Malik; Van Ranst, Eric

    Java Island, Indonesia with abundant amount of pyroclastic deposits is located in the very active and dynamic Pacific Ring of Fires. Studying the geochemical weathering indices of these pyroclastic deposits is important to get a clear picture about weathering profiles on deposits resulting from the eruption of Mt. Merapi. Immediately after the first phase of the eruption (March to June 2006), moist and leached pyroclastic deposits were collected. These pyroclastic deposits were found to be composed of volcanic glass, plagioclase feldspar in various proportions, orthopyroxene, clinopyroxene, olivine, amphibole, and titanomagnetite. Total elemental composition of the bulk samples (including trace elementsmore » and heavy metals) were determined by wet chemical methods and X-ray fluorescence (XRF) analyses. Weathering of the pyroclastic deposits was studied using various weathering indices. The Ruxton ratio, weathering index of Parker, Vought resudual index and chemical index of weathering of moist pyroclastic are lower than the leached sample but the alteration indices (chemical and plagioclase) are slightly higher in the moist compared to the leached pyroclastic deposits.« less

  5. Study of the deposition process of vinpocetine on the surface of porous silicon

    NASA Astrophysics Data System (ADS)

    Lenshin, A. S.; Polkovnikova, Yu. A.; Seredin, P. V.

    Currently the most prospective way in pharmacotherapy is the obtaining of nanoparticles involving pharmaceutical substances. Application of porous inorganic materials on the basis of silicon is among the main features in solving of this problem. The present work is concerned with the problem of the deposition of pharmaceutical drug with nootropic activity - vinpocetine - into porous silicon. Silicon nanoparticles were obtained by electrochemical anodic etching of Si plates. The process of vinpocetine deposition was studied in dependence of the deposition time. As a result of the investigations it was found that infrared transmission spectra of porous silicon with the deposited vinpocetine revealed the absorption bands characteristic of vinpocetine substance.

  6. Source apportionment of atmospheric bulk deposition in the Belgrade urban area using Positive Matrix factorization

    NASA Astrophysics Data System (ADS)

    Tasić, M.; Mijić, Z.; Rajšić, S.; Stojić, A.; Radenković, M.; Joksić, J.

    2009-04-01

    The primary objective of the present study was to assess anthropogenic impacts of heavy metals to the environment by determination of total atmospheric deposition of heavy metals. Atmospheric depositions (wet + dry) were collected monthly, from June 2002 to December 2006, at three urban locations in Belgrade, using bulk deposition samplers. Concentrations of Fe, Al, Pb, Zn, Cu, Ni, Mn, Cr, V, As and Cd were analyzed using atomic absorption spectrometry. Based upon these results, the study attempted to examine elemental associations in atmospheric deposition and to elucidate the potential sources of heavy metal contaminants in the region by the use of multivariate receptor model Positive Matrix Factorization (PMF).

  7. Micropatterning of TiO2 thin films by MOCVD and study of their growth tendency.

    PubMed

    Hwang, Ki-Hwan; Kang, Byung-Chang; Jung, Duk Young; Kim, Youn Jea; Boo, Jin-Hyo

    2015-03-23

    In this work, we studied the growth tendency of TiO2 thin films deposited on a narrow-stripe area (<10 μm). TiO2 thin films were selectively deposited on OTS patterned Si(100) substrates by MOCVD. The experimental data showed that the film growth tendency was divided into two behaviors above and below a line patterning width of 4 μm. The relationship between the film thickness and the deposited area was obtained as a function of f(x) = a[1 - e((-bx))]c. To find the tendency of the deposition rate of the TiO2 thin films onto the various linewidth areas, the relationship between the thickness of the TiO2 thin film and deposited linewidth was also studied. The thickness of the deposited TiO2 films was measured from the alpha-step profile analyses and cross-sectional SEM images. At the same time, a computer simulation was carried out to reveal the relationship between the TiO2 film thickness and deposited line width. The theoretical results suggest that the mass (velocity) flux in flow direction is directly affected to the film thickness.

  8. Determining atmospheric deposition in Wyoming with IMPROVE and other national programs

    Treesearch

    Karl Zeller; Debra Youngblood Harrington; Richard Fisher; Evgeny Donev

    2000-01-01

    Atmospheric deposition is the result of air pollution gases and aerosols leaving the atmosphere as "dry" or "wet" deposition. Little is known about just how much pollution is deposited onto soils, lakes and streams. To determine the extent and trends of forest exposure to air pollution, various types of monitoring have been conducted. In this study...

  9. Sediment-hosted stratabound copper assessment of the Neoproterozoic Roan Group, central African copperbelt, Katanga Basin, Democratic Republic of the Congo and Zambia: Chapter T in Global mineral resource assessment

    USGS Publications Warehouse

    Zientek, Michael L.; Bliss, James D.; Broughton, David W.; Christie, Michael; Denning, Paul; Hayes, Timothy S.; Hitzman, Murray W.; Horton, John D.; Frost-Killian, Susan; Jack, Douglas J.; Master, Sharad; Parks, Heather L.; Taylor, Cliff D.; Wilson, Anna B.; Wintzer, Niki E.; Woodhead, Jon

    2014-01-01

    This study estimates the location, quality, and quantity of undiscovered copper in stratabound deposits within the Neoproterozoic Roan Group of the Katanga Basin in the Democratic Republic of the Congo and Zambia. The study area encompasses the Central African Copperbelt, the greatest sediment-hosted copper-cobalt province in the world, containing 152 million metric tons of copper in greater than 80 deposits. This study (1) delineates permissive areas (tracts) where undiscovered sediment-hosted stratabound copper deposits may occur within 2 kilometers of the surface, (2) provides a database of known sediment-hosted stratabound copper deposits and prospects, (3) estimates numbers of undiscovered deposits within these permissive tracts at several levels of confidence, and (4) provides probabilistic estimates of amounts of copper and mineralized rock that could be contained in undiscovered deposits within each tract. The assessment, conducted in January 2010 using a three-part form of mineral resource assessment, indicates that a substantial amount of undiscovered copper resources might occur in sediment-hosted stratabound copper deposits within the Roan Group in the Katanga Basin. Monte Carlo simulation results that combine grade and tonnage models with estimates of undiscovered deposits indicate that the mean estimate of undiscovered copper in the study area is 168 million metric tons, which is slightly greater than the known resources at 152 million metric tons. Furthermore, significant value can be expected from associated metals, particularly cobalt. Tracts in the Democratic Republic of the Congo (DRC) have potential to contain near-surface, undiscovered deposits. Monte Carlo simulation results indicate a mean value of 37 million metric tons of undiscovered copper may be present in significant prospects.

  10. Fog deposition to a Tillandsia carpet in the Atacama Desert

    NASA Astrophysics Data System (ADS)

    Westbeld, A.; Klemm, O.; Grießbaum, F.; Sträter, E.; Larrain, H.; Osses, P.; Cereceda, P.

    2009-09-01

    In the Atacama Desert, one of the driest places on earth, fog deposition plays an important role for the water balance and for the survival of vulnerable ecosystems. The eddy covariance method, previously applied for the quantification of fog deposition to forests in various parts of the world, was used for the first time to measure deposition of fog water to a desert. In this exploratory study we estimate the amount of water available for the ecosystem by deposition and determine the relevant processes driving fog deposition. This is especially important for the species Tillandsia landbecki living in coastal Atacama at the limit of plant existence with fog and dew being the only sources of water. Between 31 July and 19 August 2008 approximately 2.5 L m-2 of water were made available through deposition. Whole-year deposition was estimated as 25 L m-2. Turbulent upward fluxes occurred several times during the evenings and are explained by the formation of radiation fog. In connection with that, underestimates of the deposition are assumed. More detailed studies covering various seasons and all parameters and fluxes contributing to the local energy balance are suggested. This will help to further develop understanding about the processes of (i) deposition of water to the desert, and (ii) intensification of advection fog through additional formation of radiation fog.

  11. Evaluation of the structural, optical and electrical properties of AZO thin films prepared by chemical bath deposition for optoelectronics

    NASA Astrophysics Data System (ADS)

    Kumar, K. Deva Arun; Valanarasu, S.; Rosario, S. Rex; Ganesh, V.; Shkir, Mohd.; Sreelatha, C. J.; AlFaify, S.

    2018-04-01

    Aluminum doped zinc oxide (AZO) thin films for electrode applications were deposited on glass substrates using chemical bath deposition (CBD) method. The influence of deposition time on the structural, morphological, and opto-electrical properties of AZO films were investigated. Structural studies confirmed that all the deposited films were hexagonal wurtzite structure with polycrystalline nature and exhibited (002) preferential orientation. There is no other impurity phases were detected for different deposition time. Surface morphological images shows the spherically shaped grains are uniformly arranged on to the entire film surface. The EDS spectrum confirms the presence of Zn, O and Al elements in deposited AZO film. The observed optical transmittance is high (87%) in the visible region, and the calculated band gap value is 3.27 eV. In this study, the transmittance value is decreased with increasing deposition time. The room temperature PL spectrum exposed that AZO thin film deposited at (60 min) has good optical quality with less defect density. The minimum electrical resistivity and maximum carrier concentration values were observed as 8.53 × 10-3(Ω cm) and 3.53 × 1018 cm-3 for 60 min deposited film, respectively. The obtained figure of merit (ϕ) value 3.05 × 10-3(Ω/sq)- 1 is suggested for an optoelectronic device.

  12. Additive Manufacturing of AlSi10Mg Alloy Using Direct Energy Deposition: Microstructure and Hardness Characterization

    NASA Astrophysics Data System (ADS)

    Javidani, M.; Arreguin-Zavala, J.; Danovitch, J.; Tian, Y.; Brochu, M.

    2017-04-01

    This paper aims to study the manufacturing of the AlSi10Mg alloy with direct energy deposition (DED) process. Following fabrication, the macro- and microstructural evolution of the as-processed specimens was initially investigated using optical microscopy and scanning electron microscopy. Columnar dendritic structure was the dominant solidification feature of the deposit; nevertheless, detailed microstructural analysis revealed cellular morphology near the substrate and equiaxed dendrites at the top end of the deposit. Moreover, the microstructural morphology in the melt pool boundary of the deposit differed from the one in the core of the layers. The remaining porosity of the deposit was evaluated by Archimedes' principle and by image analysis of the polished surface. Crystallographic texture in the deposit was also assessed using electron backscatter diffraction and x-ray diffraction analysis. The dendrites were unidirectionally oriented at an angle of 80° to the substrate. EPMA line scans were performed to evaluate the compositional variation and elemental segregation in different locations. Eventually, microhardness (HV) tests were conducted in order to study the hardness gradient in the as-DED-processed specimen along the deposition direction. The presented results, which exhibited a deposit with an almost defect free structure, indicate that the DED process can suitable for the deposition of Al-Si-based alloys with a highly consolidated structure.

  13. Impacts of urbanization on nitrogen deposition in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Wang, X.; Fan, Q.

    2015-12-01

    The Pearl River Delta (PRD) region is one of the most advanced economic districts in China, which has experienced remarkable economic development and urbanization in the past two decades. Accompanied with the rapid economy development and urbanization, the PRD region encountered both severe nitrogen pollution and deposition. In this study, the characteristics of nitrogen deposition and impacts of urbanization on nitrogen deposition in the PRD region were investigated by combining the methods of field study and numerical model. According to the field measurements, the total dry and wet atmospheric deposition of reactive N at a urban site (SYSU) was up to 55.0 kg ha-1 yr-1 in 2010, slightly lower than the results at a rural forest site (DHS) (57.6 kg ha-1 yr-1). Wet deposition was the main form of the total deposition (64-76%). Organic nitrogen (ON) was found to be dominant in the total N deposition, with a contribution of 53% at DHS and 42% at SYSU. NH4+-N and NO3--N accounted for a similar portion of the total N deposition (23-29%). Atmospheric nitrogen deposition was further simulated by using the improved WRF-Chem model. The simulated N deposition flux was high in the north of PRD (i.e., Guangzhou, Foshan, Zhaoqing) and relative low in the east (Huizhou) and south (Zhuhai), with an average N deposition flux of about 24 kg ha-1 yr-1 for the whole PRD. The distribution of N dry deposition was mainly controlled by the concentration of reactive N compounds and precipitation governed the wet deposition distribution. The modeling results also indicate that the PRD area is the source region in which the emissions exceed the deposition while the outside area of the PRD is the receptor region in which the deposition exceeds emissions. The impact of emission change and land use change due to urbanization was also investigated using the WRF-Chem model. The results showed that atmospheric N deposition exhibits a direct response to emission change while the land use change impacts the atmospheric N deposition indirectly mainly through the modification of precipitation. As a result of great challenges in reduction of the reactive N emission, a scenario of rising N deposition in the PRD cannot be discarded in the future.

  14. Attribution of nitrogen deposition driven by urbanization over Pearl River Delta region China

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wu, Z.

    2016-12-01

    The Pearl River Delta (PRD) region is one of the most advanced economic districts in China, which has experienced remarkable economic development and urbanization in the past two decades. Accompanied with the rapid economy development and urbanization, the PRD region encountered both severe nitrogen pollution and deposition. In this study, the characteristics of nitrogen deposition and impacts of urbanization on nitrogen deposition in the PRD region were investigated by combining the methods of field study and numerical model. According to the field measurements, the total dry and wet atmospheric deposition of reactive N at a urban site (SYSU) was up to 55.0 kg ha-1 yr-1 in 2010, slightly lower than the results at a rural forest site (DHS) (57.6 kg ha-1 yr-1). Wet deposition was the main form of the total deposition (64-76%). Organic nitrogen (ON) was found to be dominant in the total N deposition, with a contribution of 53% at DHS and 42% at SYSU. NH4+-N and NO3-N accounted for a similar portion of the total N deposition (23-29%). Atmospheric nitrogen deposition was further simulated by using the improved WRF-Chem model. The simulated N deposition flux was high in the north of PRD (i.e.,Guangzhou, Foshan, Zhaoqing) and relative low in the east (Huizhou) and south (Zhuhai), with an average N deposition flux of about 24 kg ha-1 yr-1 for the whole PRD. The distribution of N dry deposition was mainly controlled by the concentration of reactive N compounds and precipitation governed the wet deposition distribution. The modeling results also indicate that the PRD area is the source region in which the emissions exceed the deposition while the outside area of the PRD is the receptor region in which the deposition exceeds emissions. The impact of emission change and land use change due to urbanization was also investigated using the WRF-Chem model. The results showed that atmospheric N deposition exhibits a direct response to emission change while the land use change impacts the atmospheric N deposition indirectly mainly through the modification of precipitation. As a result of great challenges in reduction of the reactive N emission, a scenario of rising N deposition in the PRD cannot be discarded in the future.

  15. Growth of ternary CdxZn1-xO thin films in oxygen ambient using pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Sharma, Sugandha; Saini, Basant; Kaur, Ravinder; Gupta, Vinay; Tomar, Monika; Kapoor, Avinashi

    2018-05-01

    This study reports the growth of cadmium alloyed zinc (CdxZn1-xO) oxide thin films using pulsed laser deposition. The films are deposited on Corning glass substrates at different oxygen pressures of 5, 20, and 40 mTorr. High resolution X-ray diffraction studies reveal mixed phase (hexagonal and cubic) for films deposited at 20 and 40 mTorr, while a cubic phase for film deposited at 5 mTorr pressure. Optical transmittance studies indicate red-shifting of transmission edge as oxygen pressure decreases to 5 mTorr from 20 mTorr, hinting at a possible increase in cadmium content in thin films. Minimum band gap energy is obtained at growth pressure of 5 mTorr. Resistivity measurements have been performed using Hall effect measurement set up at 298 K.

  16. Deposition of amorphous carbon thin films by aerosol-assisted CVD method

    NASA Astrophysics Data System (ADS)

    Fadzilah, A. N.; Dayana, K.; Rusop, M.

    2018-05-01

    This paper reports on the deposition of amorphous carbon (a-C) by Aerosol-assisted Chemical Vapor Deposition (AACVD) using natural source of camphor oil as the precursor material. 4 samples were deposited at 4 different deposition flow rate from 15 sccm to 20 sccm, with 5 sccm interval for each sample. The analysis includes the electrical, optical and structural analysis of the data. The a-C structure which came from the manipulation of synthesis parameter was characterized by the solar simulator system, UV-VIS-NIR, Raman spectroscope and AFM. The properties of a-C are highly dependent on the deposition techniques and deposition parameters; hence the influences of gas flow rate were studied.

  17. The electrophoretic deposition of ZnO on highly oriented pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Ghalamboran, Milad; Jahangiri, Mojtaba; Yousefiazari, Ehsan

    2017-12-01

    Intensive research has been conducted on ZnO thin and thick films in recent years. Such layers, used in different electronic devices, are deposited utilizing various methods, but electrophoretic deposition (EPD) has been chosen because of the advantages like low energy consumption, economical superiority, ecofriendliness, controllability, and high deposition rate. Here, we report electrophoretically depositing ZnO layers onto highly oriented pyrolytic graphite. Well-dispersed and stable ZnO suspensions are used for the deposition of continuous and even layers of ZnO on the substrate. ZnO powder is dispersed in acetone. The electric field applied is in the 250 V/cm to 2000 V/cm range. The morphology of the deposits are studied by SEM at the different stages of the deposition process.

  18. Morphology and Composition of Localized Lunar Dark Mantle Deposits With LROC Data

    NASA Astrophysics Data System (ADS)

    Gustafson, O.; Bell, J. F.; Gaddis, L. R.; Hawke, B. R.; Robinson, M. S.; LROC Science Team

    2010-12-01

    Clementine color (ultraviolet, visible or UVVIS) and Lunar Reconnaissance Orbiter (LRO) Wide Angle (WAC) and Narrow Angle (NAC) camera data provide the means to investigate localized lunar dark-mantle deposits (DMDs) of potential pyroclastic origin. Our goals are to (1) examine the morphology and physical characteristics of these deposits with LROC WAC and NAC data; (2) extend methods used in earlier studies of lunar DMDs with Clementine spectral reflectance (CSR) data; (3) use LRO WAC multispectral data to complement and extend the CSR data for compositional analyses; and (4) apply these results to identify the likely mode of emplacement and study the diversity of compositions among these deposits. Pyroclastic deposits have been recognized all across the Moon, identified by their low albedo, smooth texture, and mantling relationship to underlying features. Gaddis et al. (2003) presented a compositional analysis of 75 potential lunar pyroclastic deposits (LPDs) based on CSR measurements. New LRO camera (LROC) data permit more extensive analyses of such deposits than previously possible. Our study began with six sites on the southeastern limb of the Moon that contain nine of the cataloged 75 potential pyroclastic deposits: Humboldt (4 deposits), Petavius, Barnard, Abel B, Abel C, and Titius. Our analysis found that some of the DMDs exhibit qualities characteristic of fluid emplacement, such as flat surfaces, sharp margins, embaying relationships, and flow textures. We conclude that the localized DMDs are a complex class of features, many of which may have formed by a combination of effusive and pyroclastic emplacement mechanisms. We have extended this analysis to include additional localized DMDs from the catalog of 75 potential pyroclastic deposits. We have examined high resolution (up to 0.5 m/p) NAC images as they become available to assess the mode of emplacement of the deposits, locate potential volcanic vents, and assess physical characteristics of the DMDs such as thickness, roughness, and rock abundance. Within and around each DMD, the Clementine UVVIS multispectral mosaic (100 m/p, 5 bands at 415, 750, 900, 950, and 1000 nm) and LROC WAC multispectral image cubes (75 to 400 m/p, 7 bands at 320, 360, 415, 565, 605, 645, and 690 nm) have been used to extract spectral reflectance data. Spectral ratio plots were prepared to compare deposits and draw conclusions regarding compositional differences, such as mafic mineral or titanium content and distribution, both within and between DMDs. The result of the study will be an improved classification of these deposits in terms of emplacement mechanisms and composition, including identifying compositional affinities among DMDs and between DMDs and other volcanic deposits.

  19. Use of surface and borehole geophysics to delineate the glacial-drift stratigraphy of northeastern St. Joseph County, Indiana

    USGS Publications Warehouse

    Bayless, E. Randall; Westjohn, David B.; Watson, Lee R.

    1995-01-01

    Inverse models of direct current electrical- resistivity sounding data and normal-resistivity and natural-gamma logs were used to assist delineation of the glacial-drift stratigraphy in a 580-square- kilometer area of northeastern St. Joseph County, Indiana. Unconsolidated deposits in the study area are composed of glacial-drift, including outwash, till, and lacustrine sediments; thicknesses range from about 15 to more than 70 meters. The glacial outwash deposits are mostly composed of sand and gravel and are the primary source of drinking water to northeastern St. Joseph County. The glacial till and glacio-lacustrine deposits contain a larger fraction of clay than the outwash deposits and may retard ground-water flow between shallow and deeper sand and gravel aquifers. Results of the geophysical measurements collected during this study indicate that glacial-drift deposits in the area north and east of the St. Joseph River are mostly composed of sand and gravel with inter-layered clay-rich deposits that are laterally discontinuous. In the area south of the St. Joseph River, the thickness of sand and gravel deposits diminishes, and clay-rich deposits dominate the stratigraphy. The presence of an electrically conductive bedrock, the Ellsworth Shale, beneath the glacial-drift deposits is identified in inverse models of direct current electrical-resistivity sounding data.

  20. Optical and structural properties of cadmium telluride films grown by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Ehsani, M. H.; Rezagholipour Dizaji, H.; Azizi, S.; Ghavami Mirmahalle, S. F.; Siyanaki, F. Hosseini

    2013-08-01

    Cadmium telluride films were grown by the glancing angle deposition (GLAD) technique. The samples were prepared under different incident deposition flux angles (α = 0°, 20° and 70° measured from the normal to the substrate surface). During deposition, the substrate temperature was maintained at room temperature. The structural study was performed using an x-ray diffraction diffractometer. The samples were found to be poly-crystalline with cubic structure for those deposited at α = 0° and 20° and hexagonal structure for the one deposited at 70°. The images of samples obtained by the field emission scanning electron microscopy technique showed that the GLAD method could produce a columnar layer tilted toward the incident deposition flux. The optical properties study by the UV-Vis spectroscopy technique showed that the use of this growth technique affected the optical properties of the films. A higher absorption coefficient in the visible and near-IR spectral range was observed for the sample deposited at α = 70°. This is an important result from the photovoltaic applications point of view where absorber materials with large absorption coefficients are needed. Also, it seems that the sample with a high incident deposition flux angle has the capability of making an n-CdTe/p-CdTe homo-junction.

  1. Assessment of Global Mercury Deposition through Litterfall.

    PubMed

    Wang, Xun; Bao, Zhengduo; Lin, Che-Jen; Yuan, Wei; Feng, Xinbin

    2016-08-16

    There is a large uncertainty in the estimate of global dry deposition of atmospheric mercury (Hg). Hg deposition through litterfall represents an important input to terrestrial forest ecosystems via cumulative uptake of atmospheric Hg (most Hg(0)) to foliage. In this study, we estimate the quantity of global Hg deposition through litterfall using statistical modeling (Monte Carlo simulation) of published data sets of litterfall biomass production, tree density, and Hg concentration in litter samples. On the basis of the model results, the global annual Hg deposition through litterfall is estimated to be 1180 ± 710 Mg yr(-1), more than two times greater than the estimate by GEOS-Chem. Spatial distribution of Hg deposition through litterfall suggests that deposition flux decreases spatially from tropical to temperate and boreal regions. Approximately 70% of global Hg(0) dry deposition occurs in the tropical and subtropical regions. A major source of uncertainty in this study is the heterogeneous geospatial distribution of available data. More observational data in regions (Southeast Asia, Africa, and South America) where few data sets exist will greatly improve the accuracy of the current estimate. Given that the quantity of global Hg deposition via litterfall is typically 2-6 times higher than Hg(0) evasion from forest floor, global forest ecosystems represent a strong Hg(0) sink.

  2. Comparison of SPECT aerosol deposition data with a human respiratory tract model.

    PubMed

    Fleming, John S; Epps, Ben P; Conway, Joy H; Martonen, Ted B

    2006-01-01

    Three-dimensional (3D) radionuclide imaging provides detailed information on the distribution of inhaled aerosol material within the body. Analysis of the data can provide estimates of the deposition per airway generation. In this study, two different nebulizers have been used to deliver radiolabeled aerosols of different particle size to 12 human subjects. Medical imaging has been used to assess the deposition in the body. The deposition pattern has also been estimated using the International Commission on Radiological Protection (ICRP) empirical model and compared to values obtained by experiment. The results showed generally good agreement between model and experiment for both aerosols for the deposition in the extrathoracic and conducting airways. However, there were significant differences in the fate of the remainder of the aerosol between the amount deposited in the alveolar region and that exhaled. The inter-subject variability of deposition predicted by the model was significantly less than that measured, for all regions of the body. The model predicted quite well the differences in deposition distribution pattern between the two aerosols. In conclusion, this study has shown that the ICPR model of inhaled aerosol deposition shows areas of good agreement with results from experiment. However, there are also areas of disagreement, which may be explained by hygroscopic particle growth and individual variation in airway anatomy.

  3. Lithofacies and sequence stratigraphic analysis of the Upper Jurassic siliciclastics in the eastern Kopet-Dagh Basin, NE Iran

    NASA Astrophysics Data System (ADS)

    Zand-Moghadam, Hamed; Moussavi-Harami, Reza; Mahboubi, Asadollah; Aghaei, Ali

    2016-05-01

    The Upper Jurassic (Oxfordian-Kimmeridgian) Mozduran Formation is the most important gas reservoirs of the northeast Iran. Siliciclastic facies of this formation in eastern most parts of the basin have not been studied yet. Therefore, four stratigraphic sections of Mozduran Formation have been selected in the Kole-Malekabad, Kale-Karab, Deraz-Ab and Karizak to interpret depositional history and analyze depositional sequences. Based on texture and sedimentary structures, 14 slilciclastic lithofacies were identified and classified into four categories, including conglomerate (Gms, Gp, Gt), sandstone (Sh, Sp, St, Sr, Sl, Sm, Se), mud rock (Fl) and intermediate sandstone-mud rock (Sr (Fl), Sr/Fl, Fl (Sr)). Identified lithofacies formed four architectural elements CH, SB, LA and FF. Lithofacies characteristics and architectural elements with mostly bimodal pattern of paleocurrents show that the majority of Mozduran lithofacies deposited in the coastal environment (tidal influence). Sequence stratigraphic analysis shows that the Kole-Malekabad section consists of two depositional sequences while other sections are characterized by three depositional sequences. The lower and upper sequence boundaries of the Mozduran Formation in all stratigraphic sections are SB1 that are distinguished by paleosol and sometime conglomerate horizons. Most of depositional sequences in studied sections are composed only of TST and HST. The TST deposits consist mostly of quartzarenite and litharenite petrofacies that have been deposited in the tidal zone. HST packages are mostly including mud rocks with interdeds of sandstone lithofacies that are deposited in supratidal setting. The LST facies is recognized only in the DS3 (equivalent to the second depositional sequences of the Kole-Malekabad), which consist of conglomerate facies. Instead, the Kole-Malekabad section is often composed of supratidal gypsiferrous shales, indicating sea level fall in the study area.

  4. Immune complexes with cationic antibodies deposit in glomeruli more effectively than cationic antibodies alone.

    PubMed

    Mannik, M; Gauthier, V J; Stapleton, S A; Agodoa, L Y

    1987-06-15

    In previously published studies, highly cationized antibodies alone and in immune complexes bound to glomeruli by charge-charge interaction, but only immune complexes persisted in glomeruli. Because normal IgG does not deposit in glomeruli, studies were conducted to determine whether cationized antibodies can be prepared which deposit in glomeruli when bound to antigen but not when free in circulation. A series of cationized rabbit antiHSA was prepared with the number of added amino groups ranging from 13.3 to 60.2 per antibody molecule. Antibodies alone or in preformed soluble immune complexes, prepared at fivefold or 50-fold antigen excess, were administered to mice. With the injection of a fixed dose of 100 micrograms per mouse, antibodies alone did not deposit in glomeruli with less than 29.6 added amino groups by immunofluorescence microscopy. In contrast, 100 micrograms of antibodies with 23.5 added amino groups in immune complexes, made at fivefold antigen excess, formed immune deposits in glomeruli. With selected preparations of cationized, radiolabeled antibodies, deposition in glomeruli was quantified by isolation of mouse glomeruli. These quantitative data were in good agreement with the results of immunofluorescence microscopy. Immune complexes made at 50-fold antigen excess, containing only small-latticed immune complexes with no more than two antibody molecules per complex, deposited in glomeruli similar to antibodies alone. Selected cationized antibodies alone or in immune complexes were administered to mice in varying doses. In these experiments, glomerular deposition of immune complexes, made at fivefold antigen excess, was detected with five- to 10-fold smaller doses than the deposition of the same antibodies alone. These studies demonstrate that antibody molecules in immune complexes are more likely to deposit in glomeruli by charge-charge interactions than antibodies alone.

  5. Deposition efficiency of inhaled particles (15-5000 nm) related to breathing pattern and lung function: an experimental study in healthy children and adults.

    PubMed

    Rissler, Jenny; Gudmundsson, Anders; Nicklasson, Hanna; Swietlicki, Erik; Wollmer, Per; Löndahl, Jakob

    2017-04-08

    Exposure to airborne particles has a major impact on global health. The probability of these particles to deposit in the respiratory tract during breathing is essential for their toxic effects. Observations have shown that there is a substantial variability in deposition between subjects, not only due to respiratory diseases, but also among individuals with healthy lungs. The factors determining this variability are, however, not fully understood. In this study we experimentally investigate factors that determine individual differences in the respiratory tract depositions of inhaled particles for healthy subjects at relaxed breathing. The study covers particles of diameters 15-5000 nm and includes 67 subjects aged 7-70 years. A comprehensive examination of lung function was performed for all subjects. Principal component analyses and multiple regression analyses were used to explore the relationships between subject characteristics and particle deposition. A large individual variability in respiratory tract deposition efficiency was found. Individuals with high deposition of a certain particle size generally had high deposition for all particles <3500 nm. The individual variability was explained by two factors: breathing pattern, and lung structural and functional properties. The most important predictors were found to be breathing frequency and anatomical airway dead space. We also present a linear regression model describing the deposition based on four variables: tidal volume, breathing frequency, anatomical dead space and resistance of the respiratory system (the latter measured with impulse oscillometry). To understand why some individuals are more susceptible to airborne particles we must understand, and take into account, the individual variability in the probability of particles to deposit in the respiratory tract by considering not only breathing patterns but also adequate measures of relevant structural and functional properties.

  6. Tin-tungsten mineralizing processes in tungsten vein deposits: Panasqueira, Portugal

    NASA Astrophysics Data System (ADS)

    Lecumberri-Sanchez, P.; Pinto, F.; Vieira, R.; Wälle, M.; Heinrich, C. A.

    2015-12-01

    Tungsten has a high heat resistance, density and hardness, which makes it widely applied in industry (e.g. steel, tungsten carbides). Tungsten deposits are typically magmatic-hydrothermal systems. Despite the economic significance of tungsten, there are no modern quantitative analytical studies of the fluids responsible for the formation of its highest-grade deposit type (tungsten vein deposits). Panasqueira (Portugal) is a tungsten vein deposit, one of the leading tungsten producers in Europe and one of the best geologically characterized tungsten vein deposits. In this study, compositions of the mineralizing fluids at Panasqueira have been determined through combination of detailed petrography, microthermometric measurements and LA-ICPMS analyses, and geochemical modeling has been used to determine the processes that lead to tungsten mineralization. We characterized the fluids related to the various mineralizing stages in the system: the oxide stage (tin and tungsten mineralization), the sulfide stage (chalcopyrite and sphalerite mineralization) and the carbonate stage. Thus, our results provide information on the properties of fluids related with specific paragenetic stages. Furthermore we used those fluid compositions in combination with host rock mineralogy and chemistry to evaluate which are the controlling factors in the mineralizing process. This study provides the first quantitative analytical data on fluid composition for tungsten vein deposits and evaluates the controlling mineralization processes helping to determine the mechanisms of formation of the Panasqueira tin-tungsten deposit and providing additional geochemical constraints on the local distribution of mineralization.

  7. Metallogenic evolution of uranium deposits in the Middle East and North Africa deposits

    NASA Astrophysics Data System (ADS)

    Howari, Fares; Goodell, Philip; Salman, Abdulaty

    2016-02-01

    This paper is briefly involved in classification and distributions of the Middle East and North Africa (MENA) uranium deposits. The study of these mineral systems can significantly contribute to our further understanding of the metallogeny of known and poorly explored deposits. This provides contribution to, and further enhancement of, current classifications and metallogenic models of uranium systems, allowing researchers to emphasize on unknown or poorly studied mineral systems found in MENA. The present study identified eight metallogenic types of uranium associated with: 1) the Archean rocks and intra-cratonic basins, 2) the Pan-African granites and rhyolites which are characterized by igneous activity, 3) Phanerozoic (Paleozoic) clastics, these deposits are the sedimentological response to Pan African magmatism, 4) Mesozoic (basal) clastics type e.g. Nubia sandstones which are characterized by uranium minerals, 5) regional sedimentary phosphate deposits which are categorized as geosynclinal, or continental margin deposits, on the shelf of the Tethys Ocean, 6) Cenozoic Intracratonic Felsic Magmatism of the Tibesti and Hoggar, and the sandstone U deposits of adjoining Niger. These are similar to the Pan-African magmatism metallogenic, 7) Calcretes, and 8) Resistate minerals which are often enriched in rare earth elements, sometimes including uranium. They are thus sometimes considered as U resources but poorly explored in the MENA region. These metallogenic types are described and discussed in the current paper.

  8. Argon thermochronology of mineral deposits; a review of analytical methods, formulations, and selected applications

    USGS Publications Warehouse

    Snee, Lawrence W.

    2002-01-01

    40Ar/39Ar geochronology is an experimentally robust and versatile method for constraining time and temperature in geologic processes. The argon method is the most broadly applied in mineral-deposit studies. Standard analytical methods and formulations exist, making the fundamentals of the method well defined. A variety of graphical representations exist for evaluating argon data. A broad range of minerals found in mineral deposits, alteration zones, and host rocks commonly is analyzed to provide age, temporal duration, and thermal conditions for mineralization events and processes. All are discussed in this report. The usefulness of and evolution of the applicability of the method are demonstrated in studies of the Panasqueira, Portugal, tin-tungsten deposit; the Cornubian batholith and associated mineral deposits, southwest England; the Red Mountain intrusive system and associated Urad-Henderson molybdenum deposits; and the Eastern Goldfields Province, Western Australia.

  9. Investigation of Deposit Formation Mechanisms for Engine In-cylinder Combustion and Exhaust Systems Using Quantitative Analysis and Sustainability Study

    NASA Astrophysics Data System (ADS)

    Ye, Z.; Meng, Q.; Mohamadian, H. P.; Wang, J. T.; Chen, L.; Zhu, L.

    2007-06-01

    The formation of SI engine combustion deposits is a complex phenomenon which depends on various factors of fuel, oil, additives, and engine. The goal of this study is to examine the effects of operating conditions, gasoline, lubricating oil, and additives on deposit formation. Both an experimental investigation and theoretical analysis are conducted on a single cylinder engine. As a result, the impact of deposits on engine performance and exhaust emissions (HC, NO x ) has been indicated. Using samples from a cylinder head and exhaust pipe as well as switching gases via the dual-gas method (N2, O2), the deposit formation mechanism is thoroughly investigated via the thermogravity analysis approach, where the roles of organic, inorganic, and volatile components of fuel, additives, and oil on deposit formation are identified from thermogravity curves. Sustainable feedback control design is then proposed for potential emission control and performance optimization

  10. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

    DOE PAGES

    Lewis, Brett B.; Stanford, Michael G.; Fowlkes, Jason D.; ...

    2015-04-08

    In this paper, platinum–carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IV)Me 3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top–down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. Finally, in addition to purification, the post-deposition electron stimulated oxygen purification processmore » enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.« less

  11. [Mechanisms of immune deposit formation in glomerulonephritis].

    PubMed

    Bussolati, B; Camussi, G

    1996-03-01

    Recent experimental studies allowed the identification of several mechanisms of immune deposit formation, which are able to reproduce the morphological and clinical pattern of human glomerulonephritis. Moreover, it was shown that most of the lesions considered, in the past, as due to circulating immune complexes (IC), are instead caused by the "in situ" formation of IC. As a result of these studies, the following schematic classification was proposed: 1) immune deposits formed by glomerular localization of IC primarily formed in the circulation; 2) immune deposits formed "in situ" by reaction of circulating antibodies with fixed structural antigens; 3) immune deposits formed "in situ" by antibodies reactive with movable structural antigens; 4) immune deposits formed "in situ" by antibodies reactive with sequestered antigens leaking out of tissues; 5) IC formed "in situ" by antibodies reactive with exogenous or non-glomerular endogenous antigens planted in the glomeruli; 6) ANCA-associated glomerular disease.

  12. Aggregation of estimated numbers of undiscovered deposits: an R-script with an example from the Chu Sarysu Basin, Kazakhtan: Chapter B in Global mineral resource assessment

    USGS Publications Warehouse

    Schuenemeyer, John H.; Zientek, Michael L.; Box, Stephen E.

    2011-01-01

    Mineral resource assessments completed by the U.S. Geological Survey during the past three decades express geologically based estimates of numbers of undiscovered mineral deposits as probability distributions. Numbers of undiscovered deposits of a given type are estimated in geologically defined regions. Using Monte Carlo simulations, these undiscovered deposit estimates are combined with tonnage and grade models to derive a probability distribution describing amounts of commodities and rock that could be present in undiscovered deposits within a study area. In some situations, it is desirable to aggregate the assessment results from several study areas. This report provides a script developed in open-source statistical software, R, that aggregates undiscovered deposit estimates of a given type, assuming independence, total dependence, or some degree of correlation among aggregated areas, given a user-specified correlation matrix.

  13. 3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data

    NASA Astrophysics Data System (ADS)

    Lang, Jörg; Sievers, Julian; Loewer, Markus; Igel, Jan; Winsemann, Jutta

    2017-12-01

    Bedforms related to supercritical flows are increasingly recognised as important constituents of many depositional environments, but outcrop studies are commonly hampered by long bedform wavelengths and complex three-dimensional geometries. We combined outcrop-based facies analysis with ground-penetrating radar (GPR) surveys to analyse the 3D facies architecture of subaqueous ice-contact fan and glacifluvial delta deposits. The studied sedimentary systems were deposited at the margins of the Middle Pleistocene Scandinavian ice sheets in Northern Germany. Glacifluvial Gilbert-type deltas are characterised by steeply dipping foreset beds, comprising cyclic-step deposits, which alternate with antidune deposits. Deposits of cyclic steps consist of lenticular scours infilled by backset cross-stratified pebbly sand and gravel. The GPR sections show that the scour fills form trains along the delta foresets, which can locally be traced for up to 15 m. Perpendicular and oblique to palaeoflow direction, these deposits appear as troughs with concentric or low-angle cross-stratified infills. Downflow transitions from scour fills into sheet-like low-angle cross-stratified or sinusoidally stratified pebbly sand, deposited by antidunes, are common. Cyclic steps and antidunes were deposited by sustained and surge-type supercritical density flows, which were related to hyperpycnal flows, triggered by major meltwater discharge or slope-failure events. Subaqueous ice-contact fan deposits include deposits of progradational scour fills, isolated hydraulic jumps, antidunes and (humpback) dunes. The gravel-rich fan succession consists of vertical stacks of laterally amalgamated pseudo-sheets, indicating deposition by pulses of waning supercritical flows under high aggradation rates. The GPR sections reveal the large-scale architecture of the sand-rich fan succession, which is characterised by lobe elements with basal erosional surfaces associated with scours filled with backsets related to hydraulic jumps, passing upwards and downflow into deposits of antidunes and (humpback) dunes. The recurrent facies architecture of the lobe elements and their prograding and retrograding stacking pattern are interpreted as related to autogenic flow morphodynamics.

  14. Thermal Stability of Jet Fuels: Kinetics of Forming Deposit Precursors

    NASA Technical Reports Server (NTRS)

    Naegeli, David W.

    1997-01-01

    The focus of this study was on the autoxidation kinetics of deposit precursor formation in jet fuels. The objectives were: (1) to demonstrate that laser-induced fluorescence is a viable kinetic tool for measuring rates of deposit precursor formation in jet fuels; (2) to determine global rate expressions for the formation of thermal deposit precursors in jet fuels; and (3) to better understand the chemical mechanism of thermal stability. The fuels were isothermally stressed in small glass ampules in the 120 to 180 C range. Concentrations of deposit precursor, hydroperoxide and oxygen consumption were measured over time in the thermally stressed fuels. Deposit precursors were measured using laser-induced fluorescence (LIF), hydroperoxides using a spectrophotometric technique, and oxygen consumption by the pressure loss in the ampule. The expressions, I.P. = 1.278 x 10(exp -11)exp(28,517.9/RT) and R(sub dp) = 2.382 x 10(exp 17)exp(-34,369.2/RT) for the induction period, I.P. and rate of deposit precursor formation R(sub dp), were determined for Jet A fuel. The results of the study support a new theory of deposit formation in jet fuels, which suggest that acid catalyzed ionic reactions compete with free radical reactions to form deposit precursors. The results indicate that deposit precursors form only when aromatics are present in the fuel. Traces of sulfur reduce the rate of autoxidation but increase the yield of deposit precursor. Free radical chemistry is responsible for hydroperoxide formation and the oxidation of sulfur compounds to sulfonic acids. Phenols are then formed by the acid catalyzed decomposition of benzylic hydroperoxides, and deposit precursors are produced by the reaction of phenols with aldehydes, which forms a polymer similar to Bakelite. Deposit precursors appear to have a phenolic resin-like structure because the LIF spectra of the deposit precursors were similar to that of phenolic resin dissolved in TAM.

  15. Variations in fluvial deposition on an alluvial plain: an example from the Tongue River Member of the Fort Union Formation (Paleocene), southeastern Powder River Basin, Wyoming, U.S.A.

    USGS Publications Warehouse

    Johnson, E.A.; Pierce, F.W.

    1990-01-01

    The Tongue River Member of the Paleocene Fort Union Formation is an important coal-bearing sedimentary unit in the Powder River Basin of Wyoming and Montana. We studied the depositional environments of a portion of this member at three sites 20 km apart in the southeastern part of the basin. Six lithofacies are recognized that we assign to five depositional facies categorized as either channel or interchannel-wetlands environments. (1) Type A sandstone is cross stratified and occurs as lenticular bodies with concave-upward basal surfaces; these bodies are assigned to the channel facies interpreted to be the product of low-sinuosity streams. (2) Type B sandstone occurs in parallel-bedded units containing mudrock partings and fossil plant debris; these units constitute the levee facies. (3) Type C sandstone typically lacks internal structure and occurs as tabular bodies separating finer grained deposits; these bodies represent the crevasse-splay facies. (4) Gray mudrock is generally nonlaminated and contains ironstone concretions; these deposits constitute the floodplain facies. (5) Carbonaceous shale and coal are assigned to the swamp facies. We recognize two styles of stream deposition in our study area. Laterally continuous complexes of single and multistoried channel bodies occur at our middle study site and we interpret these to be the deposits of sandy braided stream systems. In the two adjacent study sites, single and multistoried channel bodies are isolated in a matrix of finer-grained interchannel sediment suggesting deposition by anastomosed streams. A depositional model for our study area contains northwest-trending braided stream systems. Avulsions of these systems created anastomosed streams that flowed into adjacent interchannel areas. We propose that during late Paleocene a broad alluvial plain existed on the southeastern flank of the Powder River Basin. The braided streams that crossed this surface were tributaries to a northward-flowing, basin-axis trunk stream that existed to the west. ?? 1990.

  16. Identification of tsunami deposits using organic markers

    NASA Astrophysics Data System (ADS)

    Bellanova, Piero; Schwarzbauer, Jan; Reicherter, Klaus; Jaffe, Bruce; Szczucinski, Witold

    2017-04-01

    Geochemical analyses of tsunami deposits are becoming standard and are used in almost every study. However, only inorganic proxies are typically studied. Recent studies that developed and broaden geochemical methods to investigate tsunami deposits (e.g., Szczucinski et al., 2016) and illustrate the importance of information from biomarker analyses (e.g., Shinozaki et al., 2015). These studies indicated that organic geochemistry can be used for the differentiation between marine and terrestrial matter, indicating a potential source of a deposit. Organic proxies also have the advantage of remaining longer in the sediment than inorganic proxies, which can be leached out by groundwater or rain. The 2011 Tohoku-oki tsunami inundated as much as 4.5 km inland and had run up heights of up to 40 m. Samples of sandy tsunami deposits from Sendai Plain, Samenoura Bay, and Oppa Bay (Japan) were collected and analyzed using gas chromatography-mass spectrometry (GC-MS) to search for natural compounds (biomarkers) and anthropogenic pollutants (anthropogenic markers). Natural compounds substances, such as fatty acids and n-alkanes, and anthropogenic compounds (e.g., polycyclic aromatic hydrocarbons and pesticides) were identified and quantified. Further, the two different compound types (natural vs. anthropogenic) were evaluated for their usefulness in identification of deposits from extreme flooding events. The analyzed chemical compounds and their diagenetic transformation products were distinctly different for the pre-tsunami, the tsunami and the thin post-tsunami eolian deposits. The preliminary results of this study point out the utility of organic indicators for the identification of extreme flooding events (like tsunamis), particularly for historic events. References Shinozaki, T., Fujino, S., Ikehara, M., Sawai, Y., Tamura, T., Goto, K., Sugawara, D., Abe, T., 2015. Marine biomarkers deposited on coastal land by the 2011Tohoku-oki tsunami. Natural Hazards 77,455-460. Szczuciński, W., Pawłowska, J., Lejzerowicz, F., Nishimura, Y., Kokociński, M., Majewski, W., Nakamura, Y., Pawlowski, J., 2016. Ancient sedimentary DNA reveals past tsunami deposits. Marine Geology 381, 29-33.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng Lijian; Teixiera, V.; Santos, M. P. dos

    Indium tin oxide (ITO) thin films have been deposited onto glass substrates at room temperature by ion beam assisted deposition technique at different deposition rates. During all the deposition processes, the parameters of the Kaufman ion source and the oxygen gas flow are maintained constants. And only the deposition rate is varied from 0,1 nm/s to 0,3 nm/s by adjusting the e-beam power supply. The effects of the deposition rate on the properties of the deposited films have been studied. The structural, optical and electrical properties of the deposited films have been characterized by X-ray diffraction, AFM, transmittance, FTIR, andmore » Hall effect measurements. The optical constants of the deposited films have been calculated by fitting the transmittance spectra. It has been found that although the film prepared at low deposition rate (0,1 nm/s) shows a high transmittance in the visible region, it has a poor electrical conductivity. The films prepared at 0,2 nm/s deposition rate shows a good electrical conductivity, high IR reflectance which is useable for some electromagnetic wave shielding applications and a reasonable transmittance in the visible region.« less

  18. Summar throughfall and winter deposition in the San Bernardino mountains in southern California

    Treesearch

    Mark E. Fenn; Andrzej Bytnerowicz

    1997-01-01

    Summer throughfall and year-round precipitation chemistry were studied for three years at Barton Flats (BF), a low to moderate pollution site in the San Bernardino Mountains (SBM) in southern California. Winter fog plus dry deposition, and bulk deposition were also measured during one season at three sites traversing an atmospheric deposition gradient in the SBM....

  19. Summer throughfall and winter deposition in the San Bernardino mountains in southern California

    Treesearch

    M. E. Fenn; A. Bytnerowicz

    1997-01-01

    Summer throughfall and year-round precipitation chemistry were studied for three years at Barton Flats (BF), a low to moderate pollution site in the San Bernardino Mountains (SBM) in southern California. Winter fog plus dry deposition, and bulk deposition were also measured during one season at three sites traversing an atmospheric deposition gradient in the SBM....

  20. Assessment of atmospheric trace metal deposition in urban environments using direct and indirect measurement methodology and contributions from wet and dry depositions

    NASA Astrophysics Data System (ADS)

    Omrani, Mehrazin; Ruban, Véronique; Ruban, Gwenaël; Lamprea, Katerine

    2017-11-01

    Bulk Atmospheric Deposition (BAD), Wet Atmospheric Deposition (WAD) and Dry Atmospheric Deposition (DAD) were all measured within an urban residential area in Nantes (France) over a 9-month period (27 February - 10 December 2014). The objectives of this study were to compare 2 methods for measuring dry and wet atmospheric depositions in the urban environment (DAD and WAD: direct method; BAD and WAD: indirect one), and to characterize as well the variations and relative contributions of these depositions. Trace metals (As, Cd, Cr, Cu, Ni, Pt and V) were used to carry out these comparison and quantification. BAD was collected with two open polyethylene containers (72 × 54 × 21 cm), while WAD was collected by means of an automated rainwater collector and DAD was determined from both air measurements (recorded by an air sampler) and 7Be deposition velocities. The comparison based on a detailed evaluation of uncertainties showed a significant difference between the direct and indirect methods. Dry and wet depositions varied widely from one month to the next. Zn and Cu were the most abundant elements in both dry and wet depositions. The mean contribution of DAD to the bulk atmospheric deposition during this 9-month study was significant for Zn, Cu and V (about 25%) as well as for Pb (approx. 60%). For this relatively unpolluted urban residential catchment, the contribution of atmospheric deposition to global load at the catchment outlet was low, between 10% and 20% for Zn, Cu, V and Pb, 25% for Cr and about 30% for Ni. For other urban sites exhibiting high atmospheric pollution however, the atmospheric contribution to the global pollution load could be much greater. An accurate and representative estimation of DAD thus proves critical.

  1. Biofilms and Physical Deposits on Nasolacrimal Silastic Stents Following Dacryocystorhinostomy: Is There a Difference Between Ocular and Nasal Segments?

    PubMed

    Ali, Mohammad Javed; Baig, Farhana; Lakshman, Mekala; Naik, Milind N

    2015-01-01

    The aims of this study were to examine the presence of biofilms and physical deposits on ocular and nasal segments of silastic nasolacrimal duct stents inserted after dacryocystorhinostomy and to document any differences. A prospective interventional study was performed on a series of patients undergoing dacryocystorhinostomy with Crawford stent insertion. All the patient samples were retrieved 4 weeks after an endoscopic dacryocystorhinostomy. None of the patients had any evidence of postoperative infection. The ocular and nasal segments were separated during retrieval. After removal, the stent segments were subjected to biofilm and physical deposit analysis using standard protocols of scanning electron microscopy. These stent segments were compared against sterile stents which acted as controls. A total of 11 stents were studied. Nine were consecutive patient samples and 2 were sterile stents. The ocular and nasal segments of all the stents demonstrated evidence of biofilm formation and physical deposits. However, the deposits and biofilms were thicker and extensive in the ocular segment, although more focal in nature. In contrast, the nasal segments showed thinner biofilms and sparser deposits but were more diffuse in nature. The presence of different-sized organisms within the exopolysaccharide matrix and in between the deposits suggests the existence of polymicrobial communities. This is the first study to report the differences between ocular and nasal segments of lacrimal stents. These differences could propel further studies on stent biomechanics and their interactions with ocular and nasal tissues, following a dacryocystorhinostomy.

  2. Measurement Techniques for Respiratory Tract Deposition of Airborne Nanoparticles: A Critical Review

    PubMed Central

    Möller, Winfried; Pagels, Joakim H.; Kreyling, Wolfgang G.; Swietlicki, Erik; Schmid, Otmar

    2014-01-01

    Abstract Determination of the respiratory tract deposition of airborne particles is critical for risk assessment of air pollution, inhaled drug delivery, and understanding of respiratory disease. With the advent of nanotechnology, there has been an increasing interest in the measurement of pulmonary deposition of nanoparticles because of their unique properties in inhalation toxicology and medicine. Over the last century, around 50 studies have presented experimental data on lung deposition of nanoparticles (typical diameter≤100 nm, but here≤300 nm). These data show a considerable variability, partly due to differences in the applied methodologies. In this study, we review the experimental techniques for measuring respiratory tract deposition of nano-sized particles, analyze critical experimental design aspects causing measurement uncertainties, and suggest methodologies for future studies. It is shown that, although particle detection techniques have developed with time, the overall methodology in respiratory tract deposition experiments has not seen similar progress. Available experience from previous research has often not been incorporated, and some methodological design aspects that were overlooked in 30–70% of all studies may have biased the experimental data. This has contributed to a significant uncertainty on the absolute value of the lung deposition fraction of nanoparticles. We estimate the impact of the design aspects on obtained data, discuss solutions to minimize errors, and highlight gaps in the available experimental set of data. PMID:24151837

  3. Effects of acidic deposition and soil acidification on sugar maple trees in the Adirondack Mountains, New York

    USGS Publications Warehouse

    Sullivan, Timothy J.; Lawrence, Gregory B.; Bailey, Scott W.; McDonnell, Todd C.; McPherson, G.T.

    2013-01-01

    This study documents the effects of acidic deposition and soil acid-base chemistry on the growth, regeneration, and canopy condition of sugar maple (SM) trees in the Adirondack Mountains of New York. Sugar maple is the dominant canopy species throughout much of the northern hardwood forest in the State. A field study was conducted in 2009 in which 50 study plots within 20 small Adirondack watersheds were sampled and evaluated for soil acid-base chemistry and SM growth, canopy condition, and regeneration. Atmospheric sulfur (S) and nitrogen (N) deposition were estimated for each plot. Trees growing on soils with poor acid-base chemistry (low exchangeable calcium and % base saturation) that receive relatively high levels of atmospheric S and N deposition exhibited little to no SM seedling regeneration, decreased canopy condition, and short-to long-term growth declines compared with study plots having better soil condition and lower levels of atmospheric deposition. These results suggest that the ecosystem services provided by SM in the western and central Adirondack Mountain region, including aesthetic, cultural, and monetary values, are at risk from ongoing soil acidification caused in large part by acidic deposition.

  4. Comparison of Mercury Mass Loading in Streams to Wet and Dry Atmospheric Deposition in Watersheds of the Western US: Evidence for Non-Atmospheric Mercury Sources

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Majewski, M. S.; Alpers, C. N.; Eckley, C.

    2015-12-01

    Many streams in the western United States (US) are listed as impaired by mercury (Hg), and it is important to understand the magnitudes of the various sources in order to implement management strategies. Atmospheric deposition of Hg and can be a major source of aquatic contamination, along with mine wastes, and other sources. Prior studies in the eastern US have shown that streams deliver less than 50% of the atmospherically deposited Hg on an annual basis. In this study, we compared annual stream Hg loads for 20 watersheds in the western US to measured wet and modeled dry deposition. Land use varies from undisturbed to mixed (agricultural, urban, forested, mining). Data from the Mercury Deposition Network was used to estimate Hg input from precipitation. Dry deposition was not directly measured, but can be modeled using the Community Multi-scale Air Quality model. At an undeveloped watershed in the Rocky Mountains, the ratio of stream Hg load to atmospheric deposition was 0.2 during a year of average precipitation. In contrast, at the Carson River in Nevada, with known Hg contamination from historical silver mining with Hg amalgamation, stream export exceeded atmospheric deposition by a factor of 60, and at a small Sierran watershed with gold mining, the ratio was 70. Larger watersheds with mixed land uses, tend to have lower ratios of stream export relative to atmospheric deposition suggesting storage of Hg. The Sacramento River was the largest watershed for which Hg riverine loads were available with an average ratio of stream Hg export to atmospheric deposition of 0.10. Although Hg was used in upstream historical mining operations, the downstream river Hg load is partially mitigated by reservoirs, which trap sediment. This study represents the first compilation of riverine Hg loads in comparison to atmospheric deposition on a regional scale; the approach may be useful in assessing the relative importance of atmospheric and non-atmospheric Hg sources.

  5. Scanning tunneling microscopy studies of pulse deposition of dinuclear organometallic molecules on Au(111)

    NASA Astrophysics Data System (ADS)

    Guo, Song; Alex Kandel, S.

    2008-01-01

    Ultrahigh-vacuum scanning tunneling microscopy (STM) was used to study trans-[Cl(dppe)2Ru(CC)6Ru(dppe)2Cl] [abbreviated as Ru2, diphenylphosphinoethane (dppe)] on Au(111). This large organometallic molecule was pulse deposited onto the Au(111) surface under ultrahigh-vacuum (UHV) conditions. UHV STM studies on the prepared sample were carried out at room temperature and 77K in order to probe molecular adsorption and to characterize the surface produced by the pulse deposition process. Isolated Ru2 molecules were successfully imaged by STM at room temperature; however, STM images were degraded by mobile toluene solvent molecules that remain on the surface after the deposition. Cooling the sample to 77K allows the solvent molecules to be observed directly using STM, and under these conditions, toluene forms organized striped domains with regular domain boundaries and a lattice characterized by 5.3 and 2.7Å intermolecular distances. When methylene chloride is used as the solvent, it forms analogous domains on the surface at 77K. Mild annealing under vacuum causes most toluene molecules to desorb from the surface; however, this annealing process may lead to thermal degradation of Ru2 molecules. Although pulse deposition is an effective way to deposit molecules on surfaces, the presence of solvent on the surface after pulse deposition is unavoidable without thermal annealing, and this annealing may cause undesired chemical changes in the adsorbates under study. Preparation of samples using pulse deposition must take into account the characteristics of sample molecules, solvent, and surfaces.

  6. Pediatric in vitro and in silico models of deposition via oral and nasal inhalation.

    PubMed

    Carrigy, Nicholas B; Ruzycki, Conor A; Golshahi, Laleh; Finlay, Warren H

    2014-06-01

    Respiratory tract deposition models provide a useful method for optimizing the design and administration of inhaled pharmaceutical aerosols, and can be useful for estimating exposure risks to inhaled particulate matter. As aerosol must first pass through the extrathoracic region prior to reaching the lungs, deposition in this region plays an important role in both cases. Compared to adults, much less extrathoracic deposition data are available with pediatric subjects. Recently, progress in magnetic resonance imaging and computed tomography scans to develop pediatric extrathoracic airway replicas has facilitated addressing this issue. Indeed, the use of realistic replicas for benchtop inhaler testing is now relatively common during the development and in vitro evaluation of pediatric respiratory drug delivery devices. Recently, in vitro empirical modeling studies using a moderate number of these realistic replicas have related airway geometry, particle size, fluid properties, and flow rate to extrathoracic deposition. Idealized geometries provide a standardized platform for inhaler testing and exposure risk assessment and have been designed to mimic average in vitro deposition in infants and children by replicating representative average geometrical dimensions. In silico mathematical models have used morphometric data and aerosol physics to illustrate the relative importance of different deposition mechanisms on respiratory tract deposition. Computational fluid dynamics simulations allow for the quantification of local deposition patterns and an in-depth examination of aerosol behavior in the respiratory tract. Recent studies have used both in vitro and in silico deposition measurements in realistic pediatric airway geometries to some success. This article reviews the current understanding of pediatric in vitro and in silico deposition modeling via oral and nasal inhalation.

  7. Glomerular Immune Deposits Are Predictive of Poor Long-Term Outcome in Patients with Adult Biopsy-Proven Minimal Change Disease: A Cohort Study in Korea.

    PubMed

    Lee, Sung Woo; Yu, Mi-Yeon; Baek, Seon Ha; Ahn, Shin-Young; Kim, Sejoong; Na, Ki Young; Chae, Dong-Wan; Chin, Ho Jun

    2016-01-01

    There has been little published information on risk factors for poor long-term outcome in adult biopsy-proven minimal change disease (MCD). Data from sixty-three adult, biopsy-proven primary MCD patients treated at a tertiary university hospital between 2003 and 2013 were analyzed. Baseline clinical and pathologic factors were assessed for the associations with composite outcome of creatinine doubling, end stage renal disease, or all-cause mortality. During a median (interquartile) 5.0 (2.8-5.0) years, the composite outcome occurred in 11.1% (7/63) of patients. The rate of glomerular immune deposits was 23.8% (15/63). Patients with glomerular immune deposits showed a significantly lower urine protein creatinine ratio than those without deposits (P = 0.033). The rate of non-responders was significantly higher in patients with glomerular immune deposits than in those without deposits (P = 0.033). In patients with deposits, 26.7% (4/15) developed the composite outcome, while only 6.3% (3/48) developed the composite outcome among those without deposits (P = 0.049). In multivariate Cox proportional hazards regression analysis, the presence of glomerular immune deposits was the only factor associated with development of the composite outcome (hazard ratio: 2.310, 95% confidence interval: 1.031-98.579, P = 0.047). Glomerular immune deposits were associated with increased risk of a composite outcome in adult MCD patients. The higher rate of non-responders in patients with deposits might be related to the poor outcome. Future study is needed.

  8. Deposition mechanisms of TiO2 nanoparticles in a parallel plate system.

    PubMed

    Chowdhury, Indranil; Walker, Sharon L

    2012-03-01

    In this study, a microscope-based technique was utilized to understand the fundamental mechanisms involved in deposition of TiO(2) nanoparticles (TNPs). Transport and deposition studies were conducted in a parallel plate (PP) flow chamber with TNP labeled with fluorescein isothiocyanate (FITC) for visualization. Attachment of FITC-labeled TNPs on surfaces is a function of a combination of parameters, including ionic strength (IS), pH and flowrate. Significantly higher deposition rates were observed at pH 5 versus pH 7. This is attributed to the conditions being chemically favorable for deposition at pH 5 as compared to pH 7, as predicted by DLVO theory. Additionally, deposition rates at pH 5 were reduced with IS below 10 mM due to the decrease in range of electrostatic attractive forces. Above 10 mM, aggregate size increased, resulting in higher deposition rates. At pH 7, no deposition was observed below 10 mM and above this concentration, deposition increased with IS. The impact of flowrate was also observed, with decreasing flowrate leading to greater deposition due to the reduction in drag force acting on the aggregate (regardless of pH). Comparisons between experimental and theoretical approximations indicate that non-DLVO type forces also play a significant role. This combination of observations suggest that the deposition of these model nanoparticles on glass surfaces was controlled by a combination of DLVO and non-DLVO-type forces, shear rate, aggregation state, and gravitational force acting on TNPs. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Experimentation and Modeling of Jet A Thermal Stability in a Heated Tube

    NASA Technical Reports Server (NTRS)

    Khodabandeh, Julia W.

    2005-01-01

    High performance aircraft typically use hydrocarbon fuel to regeneratively cool the airframe and engine components. As the coolant temperatures increase, the fuel may react with dissolved oxygen forming deposits that limit the regenerative cooling system performance. This study investigates the deposition of Jet A using a thermal stability experiment and computational fluid dynamics (CFD) modeling. The experimental portion of this study is performed with a high Reynolds number thermal stability (HiRets) tester in which fuel passes though an electrically heated tube and the fuel outlet temperature is held constant. If the thermal stability temperature of the fuel is exceeded, deposits form and adhere to the inside of the tube creating an insulating layer between the tube and the fuel. The HiRets tester measures the tube outer wall temperatures near the fuel outlet to report the effect of deposition occurring inside the tube. Final deposits are also estimated with a carbon burn off analysis. The CFD model was developed and used to simulate the fluid dynamics, heat transfer, chemistry, and transport of the deposit precursors. The model is calibrated to the experiment temperature results and carbon burn-off deposition results. The model results show that the dominant factor in deposition is the heated wall temperature and that most of the deposits are formed in the laminar sublayer. The models predicted a 7.0E-6 kilograms per square meter-sec deposition rate, which compared well to the carbon burn-off analysis deposition rate of 1.0E-6 kilograms per square meter-sec.

  10. Mineral deposit densities for estimating mineral resources

    USGS Publications Warehouse

    Singer, Donald A.

    2008-01-01

    Estimates of numbers of mineral deposits are fundamental to assessing undiscovered mineral resources. Just as frequencies of grades and tonnages of well-explored deposits can be used to represent the grades and tonnages of undiscovered deposits, the density of deposits (deposits/area) in well-explored control areas can serve to represent the number of deposits. Empirical evidence presented here indicates that the processes affecting the number and quantity of resources in geological settings are very general across many types of mineral deposits. For podiform chromite, porphyry copper, and volcanogenic massive sulfide deposit types, the size of tract that geologically could contain the deposits is an excellent predictor of the total number of deposits. The number of mineral deposits is also proportional to the type’s size. The total amount of mineralized rock is also proportional to size of the permissive area and the median deposit type’s size. Regressions using these variables provide a means to estimate the density of deposits and the total amount of mineralization. These powerful estimators are based on analysis of ten different types of mineral deposits (Climax Mo, Cuban Mn, Cyprus massive sulfide, Franciscan Mn, kuroko massive sulfide, low-sulfide quartz-Au vein, placer Au, podiform Cr, porphyry Cu, and W vein) from 108 permissive control tracts around the world therefore generalizing across deposit types. Despite the diverse and complex geological settings of deposit types studied here, the relationships observed indicate universal controls on the accumulation and preservation of mineral resources that operate across all scales. The strength of the relationships (R 2=0.91 for density and 0.95 for mineralized rock) argues for their broad use. Deposit densities can now be used to provide a guideline for expert judgment or used directly for estimating the number of most kinds of mineral deposits.

  11. Maps showing mineral resource assessment for skarn deposits of gold, silver, copper, tungsten, and iron in the Butte 1 degree by 2 degrees Quadrangle, Montana

    USGS Publications Warehouse

    Elliott, J.E.; Wallace, C.A.; Lee, G.K.; Antweiler, J.C.; Lidke, D.J.; Rowan, L.C.; Hanna, W.F.; Trautwein, C.M.; Dwyer, John L.; Moll, S.H.

    1992-01-01

    The purpose of this report is to assess the potential for undiscovered skarn deposits of gold, silver, copper, tungsten, and iron in the Butte 1 °X2° quadrangle. Other deposit types have been assessed and reports for each of the following have been prepared: Vein and replacement deposits of gold, silver, copper, lead, zinc, ·manganese, and tungsten; porphyry-stockwork deposits of copper, molybdenum, and tungsten; stockwork-disseminated deposits of gold and silver; placer deposits of gold; and miscellaneous deposit types including strata-bound deposits of copper and silver in rocks of the Middle Proterozoic Belt Supergroup, phosphate deposits in the Permian Phosporia Formation, and deposits of barite and fluorite. The Butte quadrangle, in west-central Montana, is one of the most mineralized and productive mining regions in the U.S. Its mining districts, including the world famous Butte or Summit Valley district, have produced a variety of metallic and nonmetallic mineral commodities valued at more than $6.4 billion (at the time of production). Because of its importance as a mineral producing region, the Butte quadrangle was selected for study by the U.S. Geological Survey under the Conterminous United States Mineral Assessment Program (CUSMAP). Under this program, new data on geology, geochemistry, geophysics, geochronology, mineral resources, and remote sensing were collected and synthesized. The field and laboratory studies were supported, in part, by funding from the Geologic Framework and Synthesis Program and the Wilderness Program. The methods used in resource assessment include a compilation of all data into data sets, the development of an occurrence model for skarn deposits in the quadrangle, and the analysis of data using techniques provided by a Geographic Information System (GIS). This map is one of a number of reports and maps on the Butte 1 °X2° quadrangle. Other publications resulting from this study include U.S. Geological Survey (USGS) Miscellaneous Investigations Series Maps 1-2050-A (Rowan and Segal, 1989), 1-2050-B (Rowan and others, 1991), 1-2050-D (Elliott and others, in press); Miscellaneous Field Studies Map MF-1925 (Wallace, 1987a); and Open-File Reports OF-86-292 (Wallace and others, 1986) and OF-86-0632 (Elliott and others, 1986).

  12. Impacts of channel deposition on the risk of flooding in a watershed

    NASA Astrophysics Data System (ADS)

    Ting-Yue, Hong; Chia-Ling, Chang

    2017-04-01

    Taiwan is located in East Asian where is always hit by typhoons. Typhoons usually bring huge amounts of rainfall and result in the problems of channel deposition. Deposition influences the functions of channel and increases the risk of flooding. The Luliao Reservoir Watershed is the case area in this study. It is the major water source for agricultural activity and domestic use. The objective of this study is to assess the possible impacts of channel deposition on the watershed environment. This study applies the Storm Water Management Model (SWMM) to predict the hydrologic responses and evaluate the risk of flooding. The results show that the decrease of cross section induced by deposition in a channel may increase the risk of flooding and impact the safety of watershed environment. Therefore, canal desilting is important in channel regulation. The discussion and analysis can be useful references for channel regulation.

  13. Sand deposition in shoreline eddies along five Wild and Scenic Rivers, Idaho

    USGS Publications Warehouse

    Andrews, E.D.; Vincent, K.R.

    2007-01-01

    Sand bars deposited along the lateral margin of a river channel are frequently a focus of recreational activities. Sand bars are appealing sites on which to camp, picnic, fish and relax because they are relatively flat, soft, non-cohesive sand, free of vegetation and near the water's edge. The lack of vegetation and cohesion make sand bars easily erodible. Without appreciable deposition of new material, number and size of bars through a given reach of river will decline substantially over a period of years. We studied 63 beaches and their associated eddies located throughout 10 selected reaches within the designated Wild and Scenic River sections of the Lochsa, Selway, Middle Fork Clearwater, Middle Fork Salmon and Salmon Rivers in Idaho to determine the relation of beaches to the frequency and magnitude of streamflows that deposit appreciable quantities of sand. At present, these rivers have been altered little, if at all, by flow regulation, and only the Salmon River has substantial diversion upstream of a study reach. The river reaches studied have an abundance of sand bar beaches of appreciable size, in spite of suspended sand concentrations that rarely exceeded a few hundred milligrams per litre even during the largest floods. Calculated mean annual rates of deposition in an eddy vary from 5.8 to more than 100 cm depending primarily on: (1) the duration of streamflows that inundate the eddy sand bar depositions; (2) the rate of the flow exchange between the channel and an eddy and (3) the concentrations of suspended sand in the primary channel. The annual thickness of sand deposition in an eddy varies greatly from year to year depending on the duration of relatively large streamflows. Maximum annual sand depositions in an eddy are three to nine times the estimated long-term mean values. Relatively large, sustained floods deposit an appreciable portion of total deposition over a period of years. For the period of record, 1930-2002, the seven largest annual depositions, which represent more than 40% of all material deposited over the Lochsa River 21.9 km eddy, occurred in the years with the seven largest instantaneous annual peak floods. Beach area and volume for most beaches, however, are less variable year-to-year than the variation in annual deposition would indicate. Accumulative 10-year weighed deposition rate was computed to estimate the effective variability of beach deposition. Although less variable than the annual deposition, the cumulative 10-year deposition calculated for the longest hydrologic records, 71 years, existing on the Idaho Wild and Scenic Rivers varied by more than an order of magnitude from less than 20 cm to more than 220 cm.

  14. Deposition and re-erosion studies by means of local impurity injection in TEXTOR

    NASA Astrophysics Data System (ADS)

    Textor Team Kirschner, A.; Kreter, A.; Wienhold, P.; Brezinsek, S.; Coenen, J. W.; Esser, H. G.; Pospieszczyk, A.; Schulz, Ch.; Breuer, U.; Borodin, D.; Clever, M.; Ding, R.; Galonska, A.; Huber, A.; Litnovsky, A.; Matveev, D.; Ohya, K.; Philipps, V.; Samm, U.; Schmitz, O.; Schweer, B.; Stoschus, H.

    2011-08-01

    Pioneering experiments to study local erosion and deposition processes have been carried out in TEXTOR by injecting 13C marked hydrocarbons (CH4 and C2H4) as well as silane (SiD4) and tungsten-hexafluoride (WF6) through test limiters exposed to the edge plasma. The influence of various limiter materials (C, W, Mo) and surface roughness, different geometries (spherical or roof-like) and local plasma parameters has been studied. Depending on these conditions the local deposition efficiency of injected species varies between 0.1% and 9% - the largest deposition has been found for 13CH4 injection through unpolished, spherical C test limiter and ohmic plasma conditions. The most striking result is that ERO modelling cannot reproduce these low deposition efficiencies using the common assumptions on sticking probabilities and physical and chemical re-erosion yields. As an explanation large re-erosion due to background plasma and possibly low "effective sticking" of returning species is applied. This has been interpreted as enhanced re-erosion of re-deposits under simultaneous impact of high ion fluxes from plasma background.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Y.S.; Yeh, H.C.; Guilmette, R.A.

    Very large and very small particles most often deposit in the nasal airways. Studies in airway models provide large data sets with which to evaluate the deposition mechanism, while in vivo deposition data are needed to validate results obtained with nasal models. Four adult male, nonsmoking, healthy human volunteers (ages 36-57 yr) participated in this study. Deposition was measured in each subject at constant flow rates of 4, 7.5, 10, and 20 L min{sup -1}. Monodisperse silver particles (5, 8, and 20 nm) and polystyrene latex particles (50 and 100 nm) were used. Bach subject held his breath for 30-60more » sec, during which time, the aerosol was drawn through the nasal airway and exhausted through a mouth tube. Aerosol concentrations in the intake and exhaust air were measured by an ultrafine condensation particle counter. The deposition efficiency in the nasal airway was calculated taking into account particle losses in the mask, mouth tube, and transport lines. Our results were consistent with the turbulent diffusional deposition model previously established from studies using nasal airway casts. 21 refs., 12 figs., 3 tabs.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denton, J. S.; Goldstein, S. J.; Paviet, P.

    Studies of uranium-series (U-series) disequilibria within and around ore deposits provide valuable information on the extent and timing of actinide mobility, via mineral-fluid interaction, over a range of spatial and temporal scales. Such information is useful in studies of analogs of high-level nuclear-waste repositories, as well as for mining and mineral extraction sites, locations of previous nuclear weapons testing, and legacy nuclear waste contamination. In this study we present isotope dilution mass spectrometry U-series measurements for fracture-fill materials (hematite, goethite, kaolinite, calcite, dolomite and quartz) from one such analog; the Nopal I uranium ore deposit situated at Peña Blanca inmore » the Chihuahua region of northern Mexico. The ore deposit is located in fractured, unsaturated volcanic tuff and fracture-fill materials from surface fractures as well as fractures in a vertical drill core have been analyzed. High uranium concentrations in the fracture-fill materials (between 12 and 7700 ppm) indicate uranium mobility and transport from the deposit. Furthermore, uranium concentrations generally decrease with horizontal distance away from the deposit but in this deposit there is no trend with depth below the surface.« less

  17. Comparative Study of Solution Phase and Vapor Phase Deposition of Aminosilanes on Silicon Dioxide Surfaces

    PubMed Central

    Yadav, Amrita R.; Sriram, Rashmi; Carter, Jared A.; Miller, Benjamin L.

    2014-01-01

    The uniformity of aminosilane layers typically used for the modification of hydroxyl bearing surfaces such as silicon dioxide is critical for a wide variety of applications, including biosensors. However, in spite of many studies that have been undertaken on surface silanization, there remains a paucity of easy-to-implement deposition methods reproducibly yielding smooth aminosilane monolayers. In this study, solution- and vapor-phase deposition methods for three aminoalkoxysilanes differing in the number of reactive groups (3-aminopropyl triethoxysilane (APTES), 3-aminopropyl methyl diethoxysilane (APMDES) and 3-aminopropyl dimethyl ethoxysilane (APDMES)) were assessed with the aim of identifying methods that yield highly uniform and reproducible silane layers that are resistant to minor procedural variations. Silane film quality was characterized based on measured thickness, hydrophilicity and surface roughness. Additionally, hydrolytic stability of the films was assessed via these thickness and contact angle values following desorption in water. We found that two simple solution-phase methods, an aqueous deposition of APTES and a toluene based deposition of APDMES, yielded high quality silane layers that exhibit comparable characteristics to those deposited via vapor-phase methods. PMID:24411379

  18. The zonal distribution of selected elements above the Kalamazoo porphyry copper deposit, San Manuel district, Pinal County, Arizona

    USGS Publications Warehouse

    Chaffee, M.A.

    1976-01-01

    There may be many as-yet-undiscovered porphyry copper deposits that exist as blind deposits deep within exposed rock bodies. The Kalamazoo porphyry copper-molybdenum deposit is a blind deposit present at depths up to at least 1,000 m (about 3,200 ft) that contains zoning features common to many of the known porphyry copper deposits found in western North and South America. As the preliminary phase in a geochemical study of the Kalamazoo deposit, whole-rock samples of core and cuttings from two drill holes have been analyzed for 60 different elements. Each hole represents a different major rock unit and each has penetrated completely through all the existing alteration zones and the ore zone. Plots of concentration vs. depth for 17 selected elements show distinct high- or low-concentration zones that are spatially related to the ore zone. For most of the ore-related elements no significant correlation with the two lithologies is apparent. The spatial distribution and abundance of elements such as Co, Cu, S, Se, Mn, Tl, Rb, Zn, B, and Li may be useful in determining the direction for exploration to proceed to locate a blind deposit. Trace element studies should be valuable in evaluating areas containing extensive outcrops of rocks with disseminated pyrite. Elemental zoning should be at least as useful as alteration-mineralization zoning for evaluating rock bodies thought to contain blind deposits similar to the Kalamazoo deposit. ?? 1976.

  19. Fast electrochemical deposition of Ni(OH)2 precursor involving water electrolysis for fabrication of NiO thin films

    NASA Astrophysics Data System (ADS)

    Koyama, Miki; Ichimura, Masaya

    2018-05-01

    Ni(OH)2 precursor films were deposited by galvanostatic electrochemical deposition (ECD), and NiO thin films were fabricated by annealing in air. The effects of the deposition current densities were studied in a range that included current densities high enough to electrolyze water and generate hydrogen bubbles. The films fabricated by ECD involving water electrolysis had higher transparency and smoother surface morphology than those deposited with lower current densities. In addition, the annealed NiO films clearly had preferred (111) orientation when the deposition was accompanied by water electrolysis. p-type conduction was confirmed for the annealed films.

  20. Optical study of plasma sprayed hydroxyapatite coatings deposited at different spray distance

    NASA Astrophysics Data System (ADS)

    Belka, R.; Kowalski, S.; Żórawski, W.

    2017-08-01

    Series of hydroxyapatite (HA) coatings deposited on titanium substrate at different spray (plasma gun to workpiece) distance were investigated. The optical methods as dark field confocal microscopy, Raman/PL and UV-VIS spectroscopy were used for study the influence of deposition process on structural degradation of HA precursor. The hydroxyl group concentration was investigated by study the OH mode intensity in the Raman spectra. Optical absorption coefficients at near UV region were analyzed by Diffuse Reflectance Spectroscopy. PL intensity observed during Raman measurement was also considered as relation to defects concentration and degradation level. It was confirmed the different gunsubstrate distance has a great impact on structure of deposited HA ceramics.

  1. Surface chemistry relevant to material processing for semiconductor devices

    NASA Astrophysics Data System (ADS)

    Okada, Lynne Aiko

    Metal-oxide-semiconductor (MOS) structures are the core of many modern integrated circuit (IC) devices. Each material utilized in the different regions of the device has its own unique chemistry. Silicon is the base semiconductor material used in the majority of these devices. With IC device complexity increasing and device dimensions decreasing, understanding material interactions and processing becomes increasingly critical. Hsb2 desorption is the rate-limiting step in silicon growth using silane under low temperature conditions. Activation energies for Hsb2 desorption measured during Si chemical vapor deposition (CVD) versus single-crystal studies are found to be significantly lower. It has been proposed that defect sites on the silicon surface could explain the observed differences. Isothermal Hsb2 desorption studies using laser induced thermal desorption (LITD) techniques have addressed this issue. The growth of low temperature oxides is another relevant issue for fabrication of IC devices. Recent studies using 1,4-disilabutane (DSB) (SiHsb3CHsb2CHsb2SiHsb3) at 100sp°C in ambient Osb2 displayed the successful low temperature growth of silicon dioxide (SiOsb2). However, these studies provided no information about the deposition mechanism. We performed LITD and Fourier transform infrared (FTIR) studies on single-crystal and porous silicon surfaces to examine the adsorption, decomposition, and desorption processes to determine the deposition mechanism. Titanium nitride (TiN) diffusion barriers are necessary in modern metallization structures. Controlled deposition using titanium tetrachloride (TiClsb4) and ammonia (NHsb3) has been demonstrated using atomic layered processing (ALP) techniques. We intended to study the sequential deposition method by monitoring the surface intermediates using LITD techniques. However, formation of a Cl impurity source, ammonium chloride (NHsb4sp+Clsp-), was observed, thereby, limiting our ability for effective studies. Tetrakis(dimethylamino)titanium (Tilbrack N\\{CHsb3\\}sb2rbracksb4) (TDMAT) is another precursor used in the CVD deposition of TiN films in IC devices. Thermal decomposition studies have demonstrated deviations from conformal deposition. Successful conformal deposition may be affected by readsorption of the reaction product, dimethylamine (HNlbrack CHsb3rbracksb2). Detailed studies were performed using LITD techniques in order to understand the adsorption and desorption kinetics of TDMAT and dimethylamine to gain insights about the conformal deposition of TiN.

  2. A record of uranium-series transport at Nopal I, Sierra Pena Blanca, Mexico: Implications for natural uranium deposits and radioactive waste repositories

    DOE PAGES

    Denton, J. S.; Goldstein, S. J.; Paviet, P.; ...

    2016-04-10

    Studies of uranium-series (U-series) disequilibria within and around ore deposits provide valuable information on the extent and timing of actinide mobility, via mineral-fluid interaction, over a range of spatial and temporal scales. Such information is useful in studies of analogs of high-level nuclear-waste repositories, as well as for mining and mineral extraction sites, locations of previous nuclear weapons testing, and legacy nuclear waste contamination. In this study we present isotope dilution mass spectrometry U-series measurements for fracture-fill materials (hematite, goethite, kaolinite, calcite, dolomite and quartz) from one such analog; the Nopal I uranium ore deposit situated at Peña Blanca inmore » the Chihuahua region of northern Mexico. The ore deposit is located in fractured, unsaturated volcanic tuff and fracture-fill materials from surface fractures as well as fractures in a vertical drill core have been analyzed. High uranium concentrations in the fracture-fill materials (between 12 and 7700 ppm) indicate uranium mobility and transport from the deposit. Furthermore, uranium concentrations generally decrease with horizontal distance away from the deposit but in this deposit there is no trend with depth below the surface.« less

  3. The economic potential of El-Gedida glauconite deposits, El-Bahariya Oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    El-Habaak, Galal; Askalany, Mohamed; Faraghaly, Mohamed; Abdel-Hakeem, Mahmoud

    2016-08-01

    The mining work at El-Gedida iron mine, El-Bahariya Oasis, in the Western Desert of Egypt extracts commercial iron ore deposits without attention paid to the large glauconite deposits overlying these iron ore deposits. For this reason, the present paper aims at evaluating and attracting the attention to these glauconite deposits as alternative potassium fertilizers. The study was achieved by investigating mineralogical, physical and chemical properties of the green deposits. Mineralogical and physical properties involved the determination of glauconite pellets content in different grain size fractions relative to impurities and the analysis of the percentage of clay matrix and grain size distribution. Different pre-treatment strategies and methods including comminution, sieving, magnetic separation, and X-ray diffraction were used for investigating those mineralogical and physical properties. On the other hand, chemical analyses included potassium content, heavy metal concentrations, and pH and salinity measurements. The major elements and trace elements were measured using ICP-OES and the pH was measured using a pH conductometer. Moreover, this study investigated the nature of grain boundaries and the effect of sieving on glauconite beneficiation. Results of this study suggest that El-Gedida glauconite deposits are mineralogically, physically and chemically suitable for exploitation and can be beneficiated for use as an alternative potassium fertilizer.

  4. RIR-MAPLE deposition of conjugated polymers and hybrid nanocomposites for application to optoelectronic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiff-Roberts, Adrienne D.; Pate, Ryan; McCormick, Ryan

    2012-07-30

    Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) is a variation of pulsed laser deposition that is useful for organic-based thin films because it reduces material degradation by selective absorption of infrared radiation in the host matrix. A unique emulsion-based RIR-MAPLE approach has been developed that reduces substrate exposure to solvents and provides controlled and repeatable organic thin film deposition. In order to establish emulsion-based RIR-MAPLE as a preferred deposition technique for conjugated polymer or hybrid nanocomposite optoelectronic devices, studies have been conducted to demonstrate the value added by the approach in comparison to traditional solution-based deposition techniques, and this workmore » will be reviewed. The control of hybrid nanocomposite thin film deposition, and the photoconductivity in such materials deposited using emulsion-based RIR-MAPLE, will also be reviewed. The overall result of these studies is the demonstration of emulsion-based RIR-MAPLE as a viable option for the fabrication of conjugated polymer and hybrid nanocomposite optoelectronic devices that could yield improved device performance.« less

  5. Late Quaternary stratigraphy and luminescence geochronology of the northeastern Mojave Desert

    USGS Publications Warehouse

    Mahan, S.A.; Miller, D.M.; Menges, C.M.; Yount, J.C.

    2007-01-01

    The chronology of the Holocene and late Pleistocene deposits of the northeastern Mojave Desert have been largely obtained using radiocarbon ages. Our study refines and extends this framework using optically stimulated luminescence (OSL) to date deposits from Valjean Valley, Silurian Lake Playa, Red Pass, and California Valley. Of particular interest are eolian fine silts incorporated in ground-water discharge (GWD) deposits bracketed at 185-140 and 20-50 ka. Alluvial fan deposits proved amenable for OSL by dating both eolian sand lenses and reworked eolian sand in a matrix of gravel that occurs within the fan stratigraphy. Lacustrine sand in spits and bars also yielded acceptable OSL ages. These OSL ages fill gaps in the geochronology of desert deposits, which can provide data relevant to understanding the responses of several depositional systems to regional changes in climate. This study identifies the most promising deposits for future luminescence dating and suggests that for several regions of the Mojave Desert, sediments from previously undated landforms can be more accurately placed within correct geologic map units.

  6. An Alternative Cu-Based Bond Layer for Electric Arc Coating Process

    NASA Astrophysics Data System (ADS)

    Fadragas, Carlos R.; Morales, E. V.; Muñoz, J. A.; Bott, I. S.; Lariot Sánchez, C. A.

    2011-12-01

    A Cu-Al alloy has been used as bond coat between a carbon steel substrate and a final coating deposit obtained by applying the twin wire electric arc spraying coating technique. The presence of a copper-based material in the composite system can change the overall temperature profile during deposition because copper exhibits a thermal conductivity several times higher than that of the normally recommended bond coat materials (such as nickel-aluminum alloys or nickel-chromium alloys). The microstructures of 420 and 304 stainless steels deposited by the electric arc spray process have been investigated, focusing attention on the deposit homogeneity, porosity, lamellar structure, and microhardness. The nature of the local temperature gradient during deposition can strongly influence the formation of the final coating deposit. This study presents a preliminary study, undertaken to investigate the changes in the temperature profile which occur when a Cu-Al alloy is used as bond coat, and the possible consequences of these changes on the microstructure and adhesion of the final coating deposit. The influence of the thickness of the bond layer on the top coating temperature has also been also evaluated.

  7. Deposition and growth of domains in one dimension

    NASA Astrophysics Data System (ADS)

    Rodgers, G. J.; Tavassoli, Z.

    1998-09-01

    A model of deposition and growth in one dimension is studied in which finite sized domains are deposited by the random sequential adsorption process. The domains then grow with a time dependent growth rate. When the initial deposited domains are monomers and dimers the coverage is found exactly for a number of different growth rates. A continuum version of this model is also considered.

  8. The Origin of the Terra Meridiani Sediments: Volatile Transport and the Formation of Sulfate Bearing Layered Deposits on Mars

    NASA Technical Reports Server (NTRS)

    Niles, P.B.

    2008-01-01

    The chemistry, sedimentology, and geology of the Meridiani sedimentary deposits are best explained by eolian reworking of the sublimation residue of a large scale ice/dust deposit. This large ice deposit was located in close proximity to Terra Meridiani and incorporated large amounts of dust, sand, and SO2 aerosols generated by impacts and volcanism during early martian history. Sulfate formation and chemical weathering of the initial igneous material is hypothesized to have occurred inside of the ice when the darker mineral grains were heated by solar radiant energy. This created conditions in which small films of liquid water were created in and around the mineral grains. This water dissolved the SO2 and reacted with the mineral grains forming an acidic environment under low water/rock conditions. Subsequent sublimation of this ice deposit left behind large amounts of weathered sublimation residue which became the source material for the eolian process that deposited the Terra Meridiani deposit. The following features of the Meridiani sediments are best explained by this model: The large scale of the deposit, its mineralogic similarity across large distances, the cation-conservative nature of the weathering processes, the presence of acidic groundwaters on a basaltic planet, the accumulation of a thick sedimentary sequence outside of a topographic basin, and the low water/rock ratio needed to explain the presence of very soluble minerals and elements in the deposit. Remote sensing studies have linked the Meridiani deposits to a number of other martian surface features through mineralogic similarities, geomorphic similarities, and regional associations. These include layered deposits in Arabia Terra, interior layered deposits in the Valles Marineris system, southern Elysium/Aeolis, Amazonis Planitia, and the Hellas basin, Aram Chaos, Aureum Chaos, and Ioni Chaos. The common properties shared by these deposits suggest that all of these deposits share a common formation process which must have acted over a large area of Mars. The results of this study suggest a mechanism for volatile transport on Mars without invoking an early greenhouse. They also imply a common formation mechanism for most of the sulfate minerals and layered deposits on Mars, which explains their common occurrence.

  9. Chemically and size-resolved particulate matter dry deposition on stone and surrogate surfaces inside and outside the low emission zone of Milan: application of a newly developed "Deposition Box".

    PubMed

    Ferrero, Luca; Casati, Marco; Nobili, Lara; D'Angelo, Luca; Rovelli, Grazia; Sangiorgi, Giorgia; Rizzi, Cristiana; Perrone, Maria Grazia; Sansonetti, Antonio; Conti, Claudia; Bolzacchini, Ezio; Bernardi, Elena; Vassura, Ivano

    2018-04-01

    The collection of atmospheric particles on not-filtering substrates via dry deposition, and the subsequent study of the particle-induced material decay, is trivial due to the high number of variables simultaneously acting on the investigated surface. This work reports seasonally resolved data of chemical composition and size distribution of particulate matter deposed on stone and surrogate surfaces obtained using a new method, especially developed at this purpose. A "Deposition Box" was designed allowing the particulate matter dry deposition to occur selectively removing, at the same time, variables that can mask the effect of airborne particles on material decay. A pitched roof avoided rainfall and wind variability; a standardised gentle air exchange rate ensured a continuous "sampling" of ambient air leaving unchanged the sampled particle size distribution and, at the same time, leaving quite calm condition inside the box, allowing the deposition to occur. Thus, the "Deposition Box" represents an affordable tool that can be used complementary to traditional exposure systems. With this system, several exposure campaigns, involving investigated stone materials (ISMs) (Carrara Marble, Botticino limestone, Noto calcarenite and Granite) and surrogate (Quartz, PTFE, and Aluminium) substrates, have been performed in two different sites placed in Milan (Italy) inside and outside the low emission zone. Deposition rates (30-90 μg cm -2  month -1 ) showed significant differences between sites and seasons, becoming less evident considering long-period exposures due to a positive feedback on the deposition induced by the deposited particles. Similarly, different stone substrates influenced the deposition rates too. The collected deposits have been observed with optical and scanning electron microscopes and analysed by ion chromatography. Ion deposition rates were similar in the two sites during winter, whereas it was greater outside the low emission zone during summer and considering the long-period exposure. The dimensional distribution of the collected deposits showed a significant presence of fine particles in agreement with deposition rate of the ionic fraction. The obtained results allowed to point out the role of the fine particles fraction and the importance of making seasonal studies.

  10. Multi-model study of HTAP II on sulfur and nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Tan, Jiani; Fu, Joshua S.; Dentener, Frank; Sun, Jian; Emmons, Louisa; Tilmes, Simone; Sudo, Kengo; Flemming, Johannes; Eiof Jonson, Jan; Gravel, Sylvie; Bian, Huisheng; Davila, Yanko; Henze, Daven K.; Lund, Marianne T.; Kucsera, Tom; Takemura, Toshihiko; Keating, Terry

    2018-05-01

    This study uses multi-model ensemble results of 11 models from the second phase of Task Force Hemispheric Transport of Air Pollution (HTAP II) to calculate the global sulfur (S) and nitrogen (N) deposition in 2010. Modeled wet deposition is evaluated with observation networks in North America, Europe and East Asia. The modeled results agree well with observations, with 76-83 % of stations being predicted within ±50 % of observations. The models underestimate SO42-, NO3- and NH4+ wet depositions in some European and East Asian stations but overestimate NO3- wet deposition in the eastern United States. Intercomparison with previous projects (PhotoComp, ACCMIP and HTAP I) shows that HTPA II has considerably improved the estimation of deposition at European and East Asian stations. Modeled dry deposition is generally higher than the inferential data calculated by observed concentration and modeled velocity in North America, but the inferential data have high uncertainty, too. The global S deposition is 84 Tg(S) in 2010, with 49 % in continental regions and 51 % in the ocean (19 % of which coastal). The global N deposition consists of 59 Tg(N) oxidized nitrogen (NOy) deposition and 64 Tg(N) reduced nitrogen (NHx) deposition in 2010. About 65 % of N is deposited in continental regions, and 35 % in the ocean (15 % of which coastal). The estimated outflow of pollution from land to ocean is about 4 Tg(S) for S deposition and 18 Tg(N) for N deposition. Comparing our results to the results in 2001 from HTAP I, we find that the global distributions of S and N deposition have changed considerably during the last 10 years. The global S deposition decreases 2 Tg(S) (3 %) from 2001 to 2010, with significant decreases in Europe (5 Tg(S) and 55 %), North America (3 Tg(S) and 29 %) and Russia (2 Tg(S) and 26 %), and increases in South Asia (2 Tg(S) and 42 %) and the Middle East (1 Tg(S) and 44 %). The global N deposition increases by 7 Tg(N) (6 %), mainly contributed by South Asia (5 Tg(N) and 39 %), East Asia (4 Tg(N) and 21 %) and Southeast Asia (2 Tg(N) and 21 %). The NHx deposition increases with no control policy on NH3 emission in North America. On the other hand, NOy deposition has started to dominate in East Asia (especially China) due to boosted NOx emission.

  11. Geologic, geochemical, and isotopic studies of a carbonate- and siliciclastic-hosted Pb-Zn deposit at Lion Hill, Vermont

    USGS Publications Warehouse

    Foley, Nora K.; Clark, Sandra H.B.; Woodruff, Laurel G.; Mosier, Elwin L.

    1995-01-01

    The prospect of an Irish-type sedimentary-exhalative origin for stratabound Pb-Zn deposits of the Paleozoic shelf of North America is of considerable importance to understanding the timing of mineralization relative to platform evolution and for evaluating the mineral resource potential of the region. Our study of the Lion Hill deposit indicates a potential for Irish-type Pb-Zn deposits in platform rocks of western Vermont; however, at Lion Hill they contain enrichments of Pb, Zn, and Cu rather than a Pb, Zn, and Ag association.

  12. Geochemical characteristics of The Emet (Espey-Hisarcik) borate deposits, Kütahya, Turkey

    NASA Astrophysics Data System (ADS)

    Koçak, İ.; Koç, Ş.

    2018-06-01

    Nearly 72% world's borate reserves are in western part of Turkey. The Emet (Kütahya) deposit is one of these deposits. The Emet borate deposit, like other deposits in western Anatolia, was deposited in Miocene lacustrine environment whose formation coincides with volcanic activity started in Paleogene and lasted to the beginning of Quaternary. The borate ore displaying lenticular structure is alternated with claystone, marl, tuff and thin bedded limestone. The mineral paragenesis is composed of colemanite, hydroboracite, Veatchite, dolomite, calcite, montmorillonite and illite. The Emet borate deposit has been the subject of various geologic and mineralogical studies. In the present study major and trace element contents of 60 borate samples from this deposit are discussed. Among the trace elements, significant enrichment was found in As, Se, Sr, Cs, Sb and Li. Element correlations indicate volcanic source for boron (exhalations and hydrothermal solutions) whilst other elements are found to be derived from a terrestrial source. According to REE data, high Ce concentrations and anomalies are generally indicative of oxygenated depositional environment whilst low Ce contents facilitated the lake waters to be low oxygenated as a result of H2S-rich hydrothermal solutions. The weak negative anomaly detected only in the Hisarcık region is attributed to lacking of Eu contribution to the lake due to insufficient alteration on the continent.

  13. Deuterium retention and release behaviours of tungsten and deuterium co-deposited layers

    NASA Astrophysics Data System (ADS)

    Qiao, L.; Zhang, H. W.; Xu, J.; Chai, L. Q.; Hu, M.; Wang, P.

    2018-04-01

    Tungsten (W) layer deposited in argon and deuterium atmosphere by magnetron sputtering was used as a model system to study the deuterium (D) retention and release behavior in co-deposited W layer. After deposition several selected samples were exposed in deuterium plasma at 370 K with a flux of 4.0 × 1021 D/(m2 s) up to a fluence of 1.1 × 1025 D/m2. Structures of co-deposited W layers are investigated by field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD), and the corresponding D retention and release behaviors are studied as functions of deposition and exposure parameters using thermal desorption spectroscopy (TDS). Two main D release peaks were detected from TDS spectra located near 600 and 800 K in these W and D co-deposited layers, and total deuterium retention increased linearly as a function of W layer's thickness. After deuterium plasma exposure, the total D retention amount in W layer increases significantly and D release peak shifts to lower temperature. Clearly, despite the high density of defects expected in co-deposited W layers, the initial deuterium retention before exposure to the deuterium plasma is low even for the samples with a W&D layer. But due to the high densities of defects, during the deuterium plasma exposure the deuterium retention increases faster for co-deposited layer than for the bulk W sample.

  14. Focused helium-ion-beam-induced deposition

    NASA Astrophysics Data System (ADS)

    Alkemade, P. F. A.; Miro, H.

    2014-12-01

    The recent introduction of the helium ion microscope (HIM) offers new possibilities for materials modification and fabrication with spatial resolution below 10 nm. In particular, the specific interaction of He+ ions in the tens of keV energy range with materials—i.e., minimal deflection and mainly energy loss via electronic excitations—renders the HIM a special tool for ion-beam-induced deposition. In this work, an overview is given of all studies of helium-ion-beam-induced deposition (He-IBID) that appeared in the literature before summer 2014. Continuum models that describe the deposition processes are presented in detail, with emphasis on precursor depletion and replenishment. In addition, a Monte Carlo model is discussed. Basic experimental He-IBID studies are critically examined. They show deposition rates of up to 0.1 nm3/ion. Analysis by means of a continuum model yields the precursor diffusion constant and the cross sections for beam-induced precursor decomposition and beam-induced desorption. Moreover, it is shown that deposition takes place only in a small zone around the beam impact point. Furthermore, the characterization of deposited materials is discussed in terms of microstructure and resistivity. It is shown that He-IBID material resembles more electron-beam-induced-deposition (EBID) material than Ga-ion-beam-induced-deposition (Ga-IBID) material. Nevertheless, the spatial resolution for He-IBID is in general better than for EBID and Ga-IBID; in particular, proximity effects are minimal.

  15. Preliminary study of favorability for uranium resources in Juab County, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leedom, S.H.; Mitchell, T.P.

    1978-02-01

    The best potential for large, low-grade uranium deposits in Juab County is in the hydrothermally altered vitric tuffs of Pliocene age. The lateral extent of the altered tuffs may be determined by subsurface studies around the perimeter of the volcanic centers in the Thomas Range and the Honeycomb Hills. Because the ring-fracture zone associated with collapse of the Thomas caldera was a major control for hydrothermal uranium deposits, delineation of the northern and eastern positions of the ring-fracture zone is critical in defining favorable areas for uranium deposits. A small, medium-grade ore deposit in tuffaceous sand of Pliocene age atmore » the Yellow Chief mine in Dugway Dell is unique in origin, and the probability of discovering another deposit of this type is low. A deposit of this type may be present under alluvial cover in the northwestern Drum Mountains along the southern extension of the ring-fracture zone of the Thomas caldera. Festoonlike iron oxide structures and uranium deposition within permeable sandstone horizons indicate that the Yellow Chief deposit was formed by recent ground-water circulation. Granitic intrusive rocks in the Deep Creek Range and in Desert Mountain contain isolated epigenetic vein-type deposits. These rocks could be a source of arkosic sediments buried in adjacent valleys. The Pleistocene lacustrine sediments and playa lake brines may contain concentrations of uranium leached from uranium-rich rocks.« less

  16. Patterns of Forest invertebrates Along an Acidic Deposition Gradient in the Midwestern United States

    Treesearch

    Robert A. Haack

    1996-01-01

    The Ohio Corridor Study (OCS) was designed to detect possible effects of acidic deposition on oak-hickory (Quercus-Carya) forests in the midwestem United States. There was one study site in Arkansas, and two each in Illinois, Indiana, and Ohio. Estimates of total sulfate deposition have generally increased about two-fold from west (Arkansas) to east (Ohio) during the...

  17. Past and future effects of atmospheric deposition on the forest ecosystem at the Hubbard Brook Experimental Forest: simulations with the dynamic model ForSAFE

    Treesearch

    Salim Belyazid; Scott Bailey; Harald Sverdrup

    2010-01-01

    The Hubbard Brook Ecosystem Study presents a unique opportunity for studying long-term ecosystem responses to changes in anthropogenic factors. Following industrialisation and the intensification of agriculture, the Hubbard Brook Experimental Forest (HBEF) has been subject to increased loads of atmospheric deposition, particularly sulfur and nitrogen. The deposition of...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, J.M.

    Three outcrop studies were conducted in deposits of different depositional environments. At each site, permeability measurements were obtained with an air-minipermeameter developed as part of this study. In addition, the geological units were mapped with either surveying, photographs, or both. Geostatistical analysis of the permeability data was performed to estimate the characteristics of the probability distribution function and the spatial correlation structure. The information obtained from the geological mapping was then compared with the results of the geostatistical analysis for any relationships that may exist. The main field site was located in the Albuquerque Basin of central New Mexico atmore » an outcrop of the Pliocene-Pleistocene Sierra Ladrones Formation. The second study was conducted on the walls of waste pits in alluvial fan deposits at the Nevada Test Site. The third study was conducted on an outcrop of an eolian deposit (miocene) south of Socorro, New Mexico. The results of the three studies were then used to construct a conceptual model relating depositional environment to geostatistical models of heterogeneity. The model presented is largely qualitative but provides a basis for further hypothesis formulation and testing.« less

  19. Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler.

    PubMed

    Sakata, Masahiro; Marumoto, Kohji

    2004-04-01

    Dry deposition fluxes and deposition velocities (=deposition flux/atmospheric concentration) for trace metals including Hg, Cd, Cu, Mn, Pb, and Zn in the Tokyo metropolitan area were measured using an improved water surface sampler. Mercury is deposited on the water surface in both gaseous (reactive gaseous mercury, RGM) and particulate (particulate mercury, Hg(p)) forms. The results based on 1 yr observations found that dry deposition plays a significant if not dominant role in trace metal deposition in this urban area, contributing fluxes ranging from 0.46 (Cd) to 3.0 (Zn) times those of concurrent wet deposition fluxes. The deposition velocities were found to be dependent on the deposition of coarse particles larger than approximately 5 microm in diameter on the basis of model calculations. Our analysis suggests that the 84.13% diameter is a more appropriate index for each deposited metal than the 50% diameter in the assumed undersize log-normal distribution, because larger particles are responsible for the flux. The deposition velocities for trace metals other than mercury increased exponentially with an increase in their 84.13% diameters. Using this regression equation, the deposition velocities for Hg(p) were estimated from its 84.13% diameter. The deposition fluxes for Hg(p) calculated from the estimated velocities tended to be close to the mercury fluxes measured with the water surface sampler during the study periods except during summer.

  20. Regional and Localized Deposits on the Moon

    NASA Technical Reports Server (NTRS)

    Coombs, Cassandra R.

    1996-01-01

    Earth-based telescopic remote sensing studies have provided important information concerning lunar pyroclastic deposits. Combined with the returned lunar sample studies and analyses of lunar photography, we have learned a great deal about the nature and origin of these explosive volcanic materials. Lunar pyroclastic deposits are more numerous, extensive, and widely distributed than previously thought. Two generic classes of lunar pyroclastics have been identified, regional and localized. From the former, two separate spectral compositional groups have been identified; one is dominated by Fe(2+)-bearing glasses, the other is composed of ilmenite-rich black spheres. Comparatively, three separate spectral groups have been identified among the localized deposits: highlands-rich, olivine-rich, and mare-rich. Returned sample studies and the recently collected Galileo and Clementine data also corroborate these findings. Albedo data and multispectral imagery suggest that the thicker core deposits of the regional dark mantle deposits (RDMD) are surrounded by pyroclastic debris and subjacent highlands material. The presence of a major component of pyroclastic debris in the regolith surrounding the core regional deposits has important implications for the resource potential of these materials. Both telescopic and orbital spectra indicate that the regional pyroclastic deposits are rich in iron, titanium and oxygen-bearing minerals. Particle shapes vary from simple glass spheres to compound droplets with quench crystallized textures. Their small grain size and friability make them ideal indigenous feedstock. Compared to other resource feedstock sources on the Moon, these pyroclastic materials may be the best oxygen resource on the Moon.

  1. Revised methods for estimating potential reentry exposure associated with indoor crack and crevice and perimeter application.

    PubMed

    Driver, Jeffrey H; Ross, John H; Pandian, Muhilan; Selim, Sami; Sharp, Janice K

    2013-01-01

    Surface deposition of insecticides applied as indoor residential foggers, baseboard or perimeter sprays, spot sprays, and crack-and-crevice (C&C) sprays represent pathways of unintentional, postapplication exposure for children and adults. Estimation of the magnitude of this exposure following an application event is associated with uncertainty due to many factors, including (1) surface residue deposition and distribution, (2) access to and the nature of contact with treated surfaces based on time-activity patterns of residents, and (3) the role of residue removal mechanisms such as cleaning treated surfaces, pesticide degradation or redistribution, and hand washing and bathing following contact. A comparative spatial deposition study was conducted involving broadcast, perimeter, and C&C application methods. Residues measured using a spatial grid of deposition dosimeters on floor surfaces demonstrated significantly lower residue concentrations in readily accessible areas following C&C and perimeter applications, versus broadcast treatment. Analyses of other monitoring studies support this finding. The implications of these findings are discussed for both screening-level and higher tier probabilistic postapplication, residential exposure assessment. The U.S. Environmental Protection Agency (EPA) current guidance on interpretation of deposition following C&C application is supported by data in this study and others that indicate a ratio of 10:1 for deposition for broadcast versus C&C application. However, the perimeter deposition data are quite similar to C&C deposition and do not support a 70/30 default relative to broadcast recommended by the U.S. EPA (2012).

  2. How will the semi-natural vegetation of the UK have changed by 2030 given likely changes in nitrogen deposition?

    PubMed

    Stevens, Carly J; Payne, Richard J; Kimberley, Adam; Smart, Simon M

    2016-01-01

    Nitrogen deposition is known to have major impacts on contemporary ecosystems but few studies have addressed how these impacts will develop over coming decades. We consider likely changes to British semi-natural vegetation up to the year 2030 both qualitatively, based on knowledge of species responses from experimental and gradient studies, and quantitatively, based on modelling of species relationships in national monitoring data. We used historical N deposition trends and national predictions of changing deposition to calculate cumulative deposition from 1900 to 2030. Data from the Countryside Survey (1978, 1990 and 1998) was used to parameterise models relating cumulative N deposition to Ellenberg N which were then applied to expected future deposition trends. Changes to habitat suitability for key species of grassland, heathland and bog, and broadleaved woodland to 2030 were predicted using the MultiMOVE model. In UK woodlands by 2030 there is likely to be reduced occurrence of lichens, increased grass cover and a shift towards more nitrophilic vascular plant species. In grasslands we expect changing species composition with reduced occurrence of terricolous lichens and, at least in acid grasslands, reduced species richness. In heaths and bogs we project overall reductions in species richness with decreased occurrence of terricolous lichens and some bryophytes, reduced cover of dwarf shrubs and small increases in grasses. Our study clearly suggests that changes in vegetation due to nitrogen deposition are likely to continue through coming decades. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Time history of diesel particle deposition in cylindrical dielectric barrier discharge reactors

    NASA Astrophysics Data System (ADS)

    Talebizadeh, P.; Rahimzadeh, H.; Ahmadi, G.; Brown, R.; Inthavong, K.

    2016-12-01

    Non-thermal plasma (NTP) treatment reactors have recently been developed for elimination of diesel particulate matter for reducing both the mass and number concentration of particles. The role of the plasma itself is obscured by the phenomenon of particle deposition on the reactor surface. Therefore, in this study, the Lagrangian particle transport model is used to simulate the dispersion and deposition of nano-particles in the range of 5 to 500 nm in a NTP reactor in the absence of an electric field. A conventional cylindrical dielectric barrier discharge reactor is selected for the analysis. Brownian diffusion, gravity and Saffman lift forces were included in the simulations, and the deposition efficiencies of different sized diesel particles were studied. The results show that for the studied particle diameters, the effect of Saffman lift is negligible and gravity only affects the motion of particles with a diameter of 500 nm or larger. Time histories of particle transport and deposition were evaluated for one-time injection and a continuous (multiple-time) injection. The results show that the number of deposited particles for one-time injection is identical to the number of deposited particles for multiple-time injections when adjusted with the shift in time. Furthermore, the maximum number of escaped particles occurs at 0.045 s after the injection for all particle diameters. The presented results show that some particle reduction previously ascribed to plasma treatment has ignored contributions from the surface deposition.

  4. Surface Sampling of Spores in Dry-Deposition Aerosols▿

    PubMed Central

    Edmonds, Jason M.; Collett, Patricia J.; Valdes, Erica R.; Skowronski, Evan W.; Pellar, Gregory J.; Emanuel, Peter A.

    2009-01-01

    The ability to reliably and reproducibly sample surfaces contaminated with a biological agent is a critical step in measuring the extent of contamination and determining if decontamination steps have been successful. The recovery operations following the 2001 attacks with Bacillus anthracis spores were complicated by the fact that no standard sample collection format or decontamination procedures were established. Recovery efficiencies traditionally have been calculated based upon biological agents which were applied to test surfaces in a liquid format and then allowed to dry prior to sampling tests, which may not be best suited for a real-world event with aerosolized biological agents. In order to ascertain if differences existed between air-dried liquid deposition and biological spores which were allowed to settle on a surface in a dried format, a study was undertaken to determine if differences existed in surface sampling recovery efficiencies for four representative surfaces. Studies were then undertaken to compare sampling efficiencies between liquid spore deposition and aerosolized spores which were allowed to gradually settle under gravity on four different test coupon types. Tests with both types of deposition compared efficiencies of four unique swabbing materials applied to four surfaces with various surface properties. Our studies demonstrate that recovery of liquid-deposited spores differs significantly from recovery of dry aerosol-deposited spores in most instances. Whether the recovery of liquid-deposited spores is overexaggerated or underrepresented with respect to that of aerosol-deposited spores depends upon the surface material being tested. PMID:18997021

  5. KALMIOPSIS WILDERNESS, OREGON.

    USGS Publications Warehouse

    Page, Norman J; Miller, Michael S.

    1984-01-01

    Geologic, geochemical, geophysical field and laboratory, and mine and prospect studies conducted in the Kalmiopsis Wilderness, Oregon indicate that areas within and immediately adjacent to the wilderness have substantiated mineral-resource potential. The types of mineral resources which occur in these areas include massive sulfide deposits containing copper, zinc, lead, silver and gold; podiform chromite deposits; laterite deposits containing nickel, cobalt, and chromium; lode gold deposits; and placer gold deposits. Past production from existing mines is estimated to have been at least 7000 troy oz of gold, 4000 long tons of chromite, and few tens of tons of copper ore.

  6. Effect of deposition temperature & oxygen pressure on mechanical properties of (0.5) BZT-(0.5)BCT ceramic thin films

    NASA Astrophysics Data System (ADS)

    Sailaja, P.; Kumar, N. Pavan; Rajalakshmi, R.; Kumar, R. Arockia; Ponpandian, N.; Prabahar, K.; Srinivas, A.

    2018-05-01

    Lead free ferroelectric thin films of {(0.5) BZT-(0.5) BCT} (termed as BCZT) were deposited on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition at four deposition temperatures 600, 650, 700, 750°C and at two oxygen pressures viz. 75mtorr and 100 mtorr using BCZT ceramic target (prepared by solid state sintering method). The effect of deposition temperature and oxygen pressure on the structure, microstructure and mechanical properties of BCZT films were studied. X-ray diffraction patterns of deposited films confirm tetragonal crystal symmetry and the crystallinity of the films increases with increasing deposition temperature. Variation in BCZT grain growth was observed when the films are deposited at different temperatures andoxygen pressures respectively. The mechanical properties viz. hardness and elastic modulus were also found to be high with increase in the deposition temperature and oxygen pressure. The results will be discussed.

  7. Acid deposition and assessment of its critical load for the environmental health of waterbodies in a subtropical watershed, China

    NASA Astrophysics Data System (ADS)

    Jia, Junjie; Gao, Yang

    2017-12-01

    Atmospheric acidic deposition in subtropical watersheds poses an environmental risk of causing acidification of aquatic ecosystems. In this study, we evaluated the frequency of acid deposition in a subtropical forest ecosystem and the associated critical loads of acidity for a sensitive aquatic ecosystem. We found that out of 132 rainfall events, 33(25%) were acidic rainfall occurrences. Estimated wet acid deposition (2282.78 eq·ha-1·yr-1), consistent with SO42- and NH4+ deposition, was high in spring and summer and low in autumn and winter. Waterbodies surrounded by mixed wood and citrus orchard experience severe acidification, mostly from S deposition because acidic deposition exceeds the corresponding critical loads of acidity. Modifications that take acid rain deposition into consideration are needed for land-use and agricultural management strategies to improve the environmental health of waterbodies in subtropical watersheds.

  8. Properties of zinc tin oxide thin film by aerosol assisted chemical vapor deposition (AACVD)

    NASA Astrophysics Data System (ADS)

    Riza, Muhammad Arif; Rahman, Abu Bakar Abd; Sepeai, Suhaila; Ludin, Norasikin Ahmad; Teridi, Mohd Asri Mat; Ibrahim, Mohd Adib

    2018-05-01

    This study focuses on the properties of ZTO which have been deposited by a low-cost method namely aerosol assisted chemical vapor deposition (AACVD). The precursors used in this method were zinc acetate dihidrate and tin chloride dihydrate for ZTO thin film deposition. Both precursors were mixed and stirred until fully dissolved before deposition. The ZTO was deposited on borosilicate glass substrate for the investigation of optical properties. The films deposited have passed the scotch tape adherence test. XRD revealed that the crystal ZTO is slightly in the form of perovskite structure but several deteriorations were also seen in the spectrum. The UV-Vis analysis showed high transmittance of ˜85% and the band gap was calculated to be 3.85 eV. The average thickness of the film is around 284 nm. The results showed that the ZTO thin films have been successfully deposited by the utilization of AACVD method.

  9. A New Occurrence Model for National Assessment of Undiscovered Volcanogenic Massive Sulfide Deposits

    USGS Publications Warehouse

    Shanks, W.C. Pat; Dusel-Bacon, Cynthia; Koski, Randolph; Morgan, Lisa A.; Mosier, Dan; Piatak, Nadine M.; Ridley, Ian; Seal, Robert R.; Schulz, Klaus J.; Slack, John F.; Thurston, Roland

    2009-01-01

    Volcanogenic massive sulfide (VMS) deposits are very significant current and historical resources of Cu-Pb-Zn-Au-Ag, are active exploration targets in several areas of the United States and potentially have significant environmental effects. This new USGS VMS deposit model provides a comprehensive review of deposit occurrence and ore genesis, and fully integrates recent advances in the understanding of active seafloor VMS-forming environments, and integrates consideration of geoenvironmental consequences of mining VMS deposits. Because VMS deposits exhibit a broad range of geological and geochemical characteristics, a suitable classification system is required to incorporate these variations into the mineral deposit model. We classify VMS deposits based on compositional variations in volcanic and sedimentary host rocks. The advantage of the classification method is that it provides a closer linkage between tectonic setting and lithostratigraphic assemblages, and an increased predictive capability during field-based studies.

  10. Constraints of C-O-S isotope compositions and the origin of the Ünlüpınar volcanic-hosted epithermal Pb-Zn ± Au deposit, Gümüşhane, NE Turkey

    NASA Astrophysics Data System (ADS)

    Akaryali, Enver; Akbulut, Kübra

    2016-03-01

    The Eastern Pontide Orogenic Belt (EPOB) constitutes one of the best examples of the metallogenic provinces in on the Alpine-Himalayan belt. This study focuses on the genesis of the Ünlüpınar Pb-Zn ± Au deposit in the southern part of the Eastern Pontide Orogenic Belt. The main lithological units in the study area are the Early Carboniferous Kurtoğlu Metamorphic Complex the Late Carboniferous Köse Granitoid and the Early-Middle Jurassic Şenköy Formation. The studied deposit is hosted by the Şenköy Formation, which consists predominantly of basaltic-andesitic rocks and associated pyroclastic rocks that are calc-alkaline in composition. Silicic, sulfidic, argillic, chloritic, hematitic, carbonate and limonite are the most obvious alteration types observed in the deposit site. Ore microscopy studies exhibit that the mineral paragenesis in deposits includes pyrite, chalcopyrite, sphalerite, galena, gold, quartz and calcite. Electron microprobe analyses conducted on sphalerite indicate that the Zn/Cd ratio varies between 84 and 204, and these ratios point at a hydrothermal deposit related to granitic magmas. Fluid inclusion studies in calcite and quartz show that the homogenization temperature of the studied deposit ranges between 90-160 °C and 120-330 °C respectively. The values of sulfur isotope analysis of pyrite, sphalerite and galena minerals vary between 1.6‰ and 5.7‰, and the results of oxygen and carbon isotope analysis range between 8.4‰ and 18‰ and -5‰ and -3.6‰, respectively. The average formation temperature of the ore was calculated as 264 °C with a sulfur isotope geothermometer. All of the data indicate that the Ünlüpınar deposit is an epithermal vein-type mineralization that was formed depending on the granitic magmatism.

  11. ROUND LAKE WILDERNESS STUDY AREA, WISCONSIN.

    USGS Publications Warehouse

    Cannon, W.F.; Williams, Bradford B.

    1984-01-01

    The Round Lake Wilderness study area in Wisconsin was studied using geophysical and geochemical surveys, examination of a few bedrock exposures near the area (none are known within the area) and augering and testing of peat deposits. The only direct indication of potential mineral resource is about 760,000 tons of commercial quality peat contained in several bogs. Larger deposits of similar material are abundant closer to markets and although the peat in this area is classified as a demonstrated resource within an area of substantiated peat resource potential, it is considered to be of little importance. The study area lies within a belt of ancient volcanic rocks extending across northern Wisconsin in which several important copper, zinc, and lead deposits were discovered but no indication of such deposits was found within the area.

  12. Comparison of atmospheric mercury speciation and deposition at nine sites across central and eastern North America

    USGS Publications Warehouse

    Engle, Mark A.; Tate, Michael T.; Krabbenhoft, David P.; Schauer, James J; Kolker, Allan; Shanley, James B.; Bothner, Michael

    2010-01-01

    was observed but was highly dependant upon inclusion of data from two sites with exceptionally high deposition. Findings from this study highlight the importance of environmental setting on atmospheric Hg cycling and deposition rates.

  13. REGIONAL DEPOSITION OF COARSE PARTICLES AND VENTILATION DISTRIBUTION IN PATIENTS WITH CYSTIC FIBROSIS

    EPA Science Inventory

    The efficacy of inhaled pharmaceuticals depends, in part, on their site of respiratory deposition. Markedly nonuniform ventilation distribution may occur in persons with obstructive airways diseases and may affect particle deposition. We studied the relationship between regional ...

  14. Depositional processes in large-scale debris-flow experiments

    USGS Publications Warehouse

    Major, J.J.

    1997-01-01

    This study examines the depositional process and characteristics of deposits of large-scale experimental debris flows (to 15 m3) composed of mixtures of gravel (to 32 mm), sand, and mud. The experiments were performed using a 95-m-long, 2-m-wide debris-flow flume that slopes 31??. Following release, experimental debris flows invariably developed numerous shallow (???10 cm deep) surges. Sediment transported by surges accumulated abruptly on a 3?? runout slope at the mouth of the flume. Deposits developed in a complex manner through a combination of shoving forward and shouldering aside previously deposited debris and through progressive vertical accretion. Progressive accretion by the experimental flows is contrary to commonly assumed en masse sedimentation by debris flows. Despite progressive sediment emplacement, deposits were composed of unstratified accumulations of generally unsorted debris; hence massively textured, poorly sorted debris-flow deposits are not emplaced uniquely en masse. The depositional process was recorded mainly by deposit morphology and surface texture and was not faithfully registered by interior sedimentary texture; homogeneous internal textures could be misinterpreted as the result of en masse emplacement by a single surge. Deposition of sediment by similar, yet separate, debris flows produced a homogenous, massively textured composite deposit having little stratigraphic distinction. Similar deposit characteristics and textures are observed in natural debris-flow deposits. Experimental production of massively textured deposits by progressive sediment accretion limits interpretations that can be drawn from deposit characteristics and casts doubt on methods of estimating flow properties from deposit thickness or from relations between particle size and bed thickness.

  15. Structural and mechanical properties of Al-C-N films deposited at room temperature by plasma focus device

    NASA Astrophysics Data System (ADS)

    Z, A. Umar; R, Ahmad; R, S. Rawat; M, A. Baig; J, Siddiqui; T, Hussain

    2016-07-01

    The Al-C-N films are deposited on Si substrates by using a dense plasma focus (DPF) device with aluminum fitted central electrode (anode) and by operating the device with CH4/N2 gas admixture ratio of 1:1. XRD results verify the crystalline AlN (111) and Al3CON (110) phase formation of the films deposited using multiple shots. The elemental compositions as well as chemical states of the deposited Al-C-N films are studied using XPS analysis, which affirm Al-N, C-C, and C-N bonding. The FESEM analysis reveals that the deposited films are composed of nanoparticles and nanoparticle agglomerates. The size of the agglomerates increases at a higher number of focus deposition shots for multiple shot depositions. Nanoindentation results reveal the variation in mechanical properties (nanohardness and elastic modulus) of Al-C-N films deposited with multiple shots. The highest values of nanohardness and elastic modulus are found to be about 11 and 185 GPa, respectively, for the film deposited with 30 focus deposition shots. The mechanical properties of the films deposited using multiple shots are related to the Al content and C-N bonding.

  16. Physical deposit measures and commercial potential: The case of titanium-bearing heavy-mineral deposits

    USGS Publications Warehouse

    Attanasi, E.D.; DeYoung, J.H.

    1988-01-01

    Physical measures of mineral deposit characteristics, such as grade and tonnage, long have been used in both subjective and analytic models to predict favorability of areas for the occurrence of mineral deposits of particular types. After a deposit has been identified, however, the explorationist must decide whether to continue data collection, begin an economic feasibility study, or abandon the prospect. The decision maker can estimate the probability that a deposit will be commercial by examining physical measures. The amount of sampling data required before such a probability estimate can be considered reliable can be determined. A logit probability model estimated from onshore titanium-bearing heavy-mineral deposit data identifies and quantifies the relative influence of a deposit's physical measures on the chances of the deposit becoming commercial. A principal conclusion that can be drawn from the analysis is that, along with a measure of deposit size, the characteristics most important in predicting commercial potential are grades of the constituent minerals. Total heavy-mineral-bearing sand grade or even total titanium grade (without data on constituent mineral grades) are poor predictors of the deposit's commercial potential. ?? 1988 International Association for Mathematical Geology.

  17. Deposition measurement of particulate matter in connection with corrosion studies.

    PubMed

    Ferm, Martin; Watt, John; O'Hanlon, Samantha; De Santis, Franco; Varotsos, Costas

    2006-03-01

    A new passive particle collector (inert surrogate surface) that collects particles from all directions has been developed. It was used to measure particle deposition at 35 test sites as part of a project that examined corrosion of materials in order that variation in particulate material could be used in development of dose-response functions in a modern multi-pollutant environment. The project, MULTI-ASSESS, was funded by the EU to examine the effects of air pollution on cultural heritage. Passive samplers were mounted rain-protected, and both in wind-protected and wind-exposed positions, to match the exposure of the samples for corrosion studies. The particle mass and its chemical content (nitrate, ammonium, sulfate, calcium, sodium, chloride, magnesium and potassium) were analysed. The loss of light reflectance on the surrogate surface was also measured. Very little ammonium and potassium was found, and one or more anions are missing in the ion balance. There were many strong correlations between the analysed species. The mass of analysed water-soluble ions was fairly constant at 24% of the total mass. The particle mass deposited to the samplers in the wind-protected position was about 25% of the particles deposited to an openly exposed sampler. The Cl-/Na+ ratios indicate a reaction between HNO(3) and NaCl. The deposited nitrate flux corresponds to the missing chloride. The Ca2+ deposition equals the SO4(2-) deposition and the anion deficiency. The SO4(2-) deposition most likely originates from SO2 that has reacted with basic calcium-containing particles either before or after they were deposited. The particle depositions at the urban sites were much higher than in nearby rural sites. The deposited mass correlated surprisingly well with the PM(10) concentration, except at sites very close to traffic.

  18. An Experimental Study on Slurry Erosion Resistance of Single and Multilayered Deposits of Ni-WC Produced by Laser-Based Powder Deposition Process

    NASA Astrophysics Data System (ADS)

    Balu, Prabu; Hamid, Syed; Kovacevic, Radovan

    2013-11-01

    Single and multilayered deposits containing different mass fractions of tungsten carbide (WC) in nickel (Ni)-matrix (NT-20, NT-60, NT-80) are deposited on a AISI 4140 steel substrate using a laser-based powder deposition process. The transverse cross section of the coupons reveals that the higher the mass fraction of WC in Ni-matrix leads to a more uniform distribution through Ni-matrix. The slurry erosion resistance of the fabricated coupons is tested at three different impingement angles using an abrasive water jet cutting machine, which is quantified based on the erosion rate. The top layer of a multilayered deposit (i.e., NT-60 in a two-layer NT-60 over NT-20 deposit) exhibits better erosion resistance at all three tested impingement angles when compared to a single-layer (NT-60) deposit. A definite increase in the erosion resistance is noted with an addition of nano-size WC particles. The relationship between the different mass fractions of reinforcement (WC) in the deposited composite material (Ni-WC) and their corresponding matrix (Ni) hardness on the erosion rate is studied. The eroded surface is analyzed in the light of a three-dimensional (3-D) profilometer and a scanning electron microscope (SEM). The results show that a volume fraction of approximately 62% of WC with a Ni-matrix hardness of 540 HV resulting in the gouging out of WC from the Ni-matrix by the action of slurry. It is concluded that the slurry erosion resistance of the AISI 4140 steel can be significantly enhanced by introducing single and multilayered deposits of Ni-WC composite material fabricated by the laser-based powder deposition process.

  19. Glomerular Immune Deposits Are Predictive of Poor Long-Term Outcome in Patients with Adult Biopsy-Proven Minimal Change Disease: A Cohort Study in Korea

    PubMed Central

    Lee, Sung Woo; YU, Mi-Yeon; Baek, Seon Ha; Ahn, Shin-Young; Kim, Sejoong; Na, Ki Young; Chae, Dong-Wan; Chin, Ho Jun

    2016-01-01

    Background and Objectives There has been little published information on risk factors for poor long-term outcome in adult biopsy-proven minimal change disease (MCD). Methods Data from sixty-three adult, biopsy-proven primary MCD patients treated at a tertiary university hospital between 2003 and 2013 were analyzed. Baseline clinical and pathologic factors were assessed for the associations with composite outcome of creatinine doubling, end stage renal disease, or all-cause mortality. Results During a median (interquartile) 5.0 (2.8–5.0) years, the composite outcome occurred in 11.1% (7/63) of patients. The rate of glomerular immune deposits was 23.8% (15/63). Patients with glomerular immune deposits showed a significantly lower urine protein creatinine ratio than those without deposits (P = 0.033). The rate of non-responders was significantly higher in patients with glomerular immune deposits than in those without deposits (P = 0.033). In patients with deposits, 26.7% (4/15) developed the composite outcome, while only 6.3% (3/48) developed the composite outcome among those without deposits (P = 0.049). In multivariate Cox proportional hazards regression analysis, the presence of glomerular immune deposits was the only factor associated with development of the composite outcome (hazard ratio: 2.310, 95% confidence interval: 1.031–98.579, P = 0.047). Conclusion Glomerular immune deposits were associated with increased risk of a composite outcome in adult MCD patients. The higher rate of non-responders in patients with deposits might be related to the poor outcome. Future study is needed. PMID:26799663

  20. Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Novotný, M.; Čížek, J.; Kužel, R.; Bulíř, J.; Lančok, J.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.; Anwand, W.; Brauer, G.

    2012-06-01

    ZnO thin films were grown by pulsed laser deposition on three different substrates: sapphire (0 0 0 1), MgO (1 0 0) and fused silica (FS). The structure and morphology of the films were characterized by x-ray diffraction and scanning electron microscopy and defect studies were carried out using slow positron implantation spectroscopy (SPIS). Films deposited on all substrates studied in this work exhibit the wurtzite ZnO structure and are characterized by an average crystallite size of 20-100 nm. However, strong differences in the microstructure of films deposited on various substrates were found. The ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit local epitaxy, i.e. a well-defined relation between film crystallites and the substrate. Domains with different orientation relationships with the substrate were found in both films. On the other hand, the film deposited on the FS substrate exhibits fibre texture with random lateral orientation of crystallites. Extremely high compressive in-plane stress of σ ˜ 14 GPa was determined in the film deposited on the MgO substrate, while the film deposited on sapphire is virtually stress-free, and the film deposited on the FS substrate exhibits a tensile in-plane stress of σ ˜ 0.9 GPa. SPIS investigations revealed that the concentration of open-volume defects in the ZnO films is substantially higher than that in a bulk ZnO single crystal. Moreover, the ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit a significantly higher density of defects than the film deposited on the amorphous FS substrate.

  1. Oligocene Fluvio-Deltaic Depositional Environments Salin Sub-Basin, Central Myanmar

    NASA Astrophysics Data System (ADS)

    Gough, A.; Hall, R.

    2017-12-01

    A recent increase in accessibility for research in Myanmar has allowed rapid advancements in the understanding of the geology of the country. Evolving depositional environments can be reconstructed in largely unstudied Oligocene deposits of the Salin sub-basin, of the Central Myanmar Basin. Data has been collected through a fieldwork campaign to target well-exposed sediments along the western margin of the basin. The studied outcrops span approximately one hundred kilometres from north to south, and a series of sedimentary logs, palaeocurrent data, 2D panel diagrams, and samples for petrographical analysis have been collected and interpreted. The Oligocene formations studied include the Shwezetaw, Paduang, and Okhmintaung, each of which show a broadly southwards-trending fluvio-deltaic environment of deposition. Towards the north, the lower Rupelian Shwezetaw Formation comprises thick fluviatile sandstones which grade southwards through macrotidal-dominated fluvio-deltaic interbedded siltstones and rare sandstones, into marine sandstones. Overlying this, the upper Rupelian Paduang Formation grades rapidly from rare fluvial sandstones towards the north of the basin into deltaic and marine interbedded sandstones and siltstones to the south. This formation is more marine in nature, suggesting a minor transgression throughout the lower Oligocene. By the time of deposition of the Okhmintaung Formation in the Chattian the observed deposits solely represent a tidally-influenced deltaic depositional environment, with very little temporal variation, suggesting a stable sea level. Despite the relatively unchanging depositional environment, the formations are approximately 4000 m thick, suggesting that sedimentation kept pace with relatively rapid subsidence. This current study, which will combine depositional environment reconstruction, provenance, and sediment routing analysis, will provide important insights into both the tectonic setting and the huge sediment accumulation of the poorly understood Central Myanmar Basin.

  2. Quantifying Source Sector and Region Contributions of BC and Dust Deposition on the Arctic Snow and the Resulting Albedo Reduction

    NASA Astrophysics Data System (ADS)

    Sobhani, N.; Gregory, C.; Kulkarni, S.

    2017-12-01

    Long-range transport of atmospheric particulate matter (PM) from mid-latitude sources to the Arctic is the main contributor to the Arctic PM loadings and deposition. Light absorbing particles such as Black Carbon (BC) and dust are considered of great climatic importance and are the main absorbers of sunlight in the atmosphere. Wet and dry deposition of light absorbing particles (LAPs) on snow and ice cause reduction of snow and ice albedo. LAPs have significant radiative forcing and effect on snow albedo causing snow and ice to warm and melt more quickly. There are large uncertainties in estimating radiative forcing of LAPs. In this study, the potential impacts of LAPs from different emission source regions and sectors on snow albedo in the Arctic are studied. A modeling framework including Weather Research and Forecasting Model (WRF) and the University of Iowa's Sulfur Transport and dEpostion model (STEM) is used to simulate the seasonality and transport of LAPs from different geographical sources and sectors (i.e. transportation, residential, industry, biomass burning and power) to the Arctic. The main geographical source contributor to the Arctic BC annual deposition flux is China. However, there is a distinct seasonal variation for the contributions of geographical source emissions to BC deposition. During the spring, when the deposition flux is highest, the contribution of biomass burning attributes for up to 40% of total deposition at Alert and Barrow. However, during the winter, the anthropogenic sectors contribute up to 95% of total BC deposition. The simulated snow BC mixing ratios are evaluated using the observed BC snow concentration values from previous studies including Doherty et al., 2010. The simulations show the BC deposition causes 0.6% snow albedo decrease during spring 2008 over the Arctic.

  3. Analysis of microstructure in electro-spark deposited IN718 superalloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anisimov, E.; Khan, A.K.; Ojo, O.A., E-mail: olanr

    2016-09-15

    The microstructure of electro-spark deposited (ESD) superalloy IN718 was studied by the use of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. In converse to general assumption, the extremely high cooling rate involved in the ESD process did not produce partitionless solidification that is devoid of second phase microconstituents in the material, nano-sized Laves phase and MC carbide particles were observed within the deposited layer. Notwithstanding the several thermal cycles involved in the process, the extremely low heat input of the process produced a deposited region that is free ofmore » the main strengthening phase of the alloy, γ″ phase precipitates, which is in contrast to what have been reported on laser deposition. Nevertheless, application of the standard full heat treatment of the alloy resulted in extensive formation of the γ″ phase precipitates and δ phase precipitates, the most stable secondary phase of the alloy, with nearly, if not complete, dissolution of the Laves phase particles. Furthermore, the XPS analysis done in the study revealed the formation of nano-oxides within the deposited layer, which increased the microhardness of the superalloy in the as-deposited condition and inhibited its grain growth during post-process heat treatment. The microstructure analysis done in this work is crucial to the understanding of properties of the superalloy processed by the ESD technique. - Highlights: •Electron microscopy analyses of electro-spark deposited IN 718 superalloy were performed. •Nano-sized secondary phase particles were observed within the deposited layer. •The study shows that the ESD did not produce partitionless solidification of the alloy.« less

  4. Effect of surface deposits on electromagnetic waves propagating in uniform ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1990-01-01

    A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.

  5. Application of remote sensor data to geologic analysis of the Bonanza test site Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler)

    1975-01-01

    Selected samples of anomalous surface features commonly associated with the various types of uranium deposits are presented and recommendations for sensor applications are given. The features studied include: epigenetic uranium ore roll type; precambrian basal conglomerate type; vein-type uranium deposits; pipe-structure or diatreme deposits; evaporitic uranium deposits. The hydrogeology of the Mosquito Range and the San Luis Valley is also examined.

  6. Sm-Nd and Rb-Sr isotopic systematics of the Pea Ridge Fe-P deposit and related rocks, southeast Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marikos, M.A.; Barton, M.D.

    1993-03-01

    Pea ridge is a discordant Middle Proterozoic Fe-P deposit hosted in rhyolite tuffs and flows of the 1.4--1.5 Ga St. Francois terrane. Host rocks and the deposit are cut by basalt and aplite/pegmatite dikes. The deposit overlies a blind pluton which is partially surrounded by a trachytic ring complex. In the deposit, which is mined for Fe, early Qtz+Amph+Mag+Ap rock is cut by Mag+Ap+Qtz rock. Subsequently, portions of the deposit and host rocks were brecciated, oxidized and silicified to produce a complex suite of rocks enriched in Hem+Qtz+Ksp+Mu. Late breccia pipes/dikes cut the complex and were mineralized with Bar+Ksp+Flu+Chl+Cc+REE-phosphates. Sm/Ndmore » and Rb/Sr isotopic systematics have been studied to: (1) constrain source(s) of igneous rocks and deposit components, (2) refine ages of magmatism, mineralization, and later hydrothermal activity, (3) begin regional comparison of isotopic systematics in SE Missouri Fe deposits, and (4) complement ongoing Missouri DGLS/USGS studies. Fourteen combined Sm-Nd and Rb-Sr analyses were done on materials including two host rhyolites, two nearby trachytes, two gneiss samples representing plausible basement, two intramineral dikes, and six samples of mineralization.« less

  7. Enhanced properties of tungsten thin films deposited with a novel HiPIMS approach

    NASA Astrophysics Data System (ADS)

    Velicu, Ioana-Laura; Tiron, Vasile; Porosnicu, Corneliu; Burducea, Ion; Lupu, Nicoleta; Stoian, George; Popa, Gheorghe; Munteanu, Daniel

    2017-12-01

    Despite the tremendous potential for industrial use of tungsten (W), very few studies have been reported so far on controlling and tailoring the properties of W thin films obtained by physical vapor deposition techniques and, even less, for those deposited by High Power Impulse Magnetron Sputtering (HiPIMS). This study presents results on the deposition process and properties characterization of nanocrystalline W thin films deposited on silicon and molybdenum substrates (100 W average sputtering power) by conventional dc magnetron sputtering (dcMS) and HiPIMS techniques. Topological, structural, mechanical and tribological properties of the deposited thin films were investigated. It was found that in HiPIMS, both deposition process and coatings properties may be optimized by using an appropriate magnetic field configuration and pulsing design. Compared to the other deposited samples, the W films grown in multi-pulse (5 × 3 μs) HiPIMS assisted by an additional magnetic field, created with a toroidal-shaped permanent magnet placed in front of the magnetron cathode, show significantly enhanced properties, such as: smoother surfaces, higher homogeneity and denser microstructure, higher hardness and Young's modulus values, better adhesion to the silicon substrate and lower coefficient of friction. Mechanical behaviour and structural changes are discussed based on plasma diagnostics results.

  8. Exhaust Gas Recirculation Cooler Fouling in Diesel Applications: Fundamental Studies Deposit Properties and Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John Morse; Sluder, Scott; Lance, Michael J

    2013-01-01

    This paper reports on the results of experimental efforts aimed at improving the understanding of the mechanisms and conditions at play in the fouling of EGR coolers. An experimental apparatus was constructed to utilize simplified surrogate heat exchanger tubes in lieu of full-size heat exchangers. The use of these surrogate tubes allowed removal of the tubes after exposure to engine exhaust for study of the deposit layer and its properties. The exhaust used for fouling the surrogate tubes was produced using a modern medium-duty diesel engine fueled with both ultra-low sulfur diesel and biodiesel blends. At long exposure times, nomore » significant difference in the fouling rate was observed between fuel types and HC levels. Surface coatings for the tubes were also evaluated to determine their impact on deposit growth. No surface treatment or coating produced a reduction in the fouling rate or any evidence of deposit removal. In addition, microstructural analysis of the fouling layers was performed using optical and electron microscopy in order to better understand the deposition mechanism. The experimental results are consistent with thermophoretic deposition for deposit formation, and van der Waals attraction between the deposit surface and exhaust-borne particulate.« less

  9. Development of a Zealand White Rabbit Deposition Model to Study Inhalation Anthrax

    PubMed Central

    Asgharian, Bahman; Price, Owen; Kabilan, Senthil; Jacob, Richard E.; Einstein, Daniel R.; Kuprat, A.P.; Corley, Richard A.

    2016-01-01

    Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits as a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits. PMID:26895308

  10. Estimating Lunar Pyroclastic Deposit Depth from Imaging Radar Data: Applications to Lunar Resource Assessment

    NASA Technical Reports Server (NTRS)

    Campbell, B. A.; Stacy, N. J.; Campbell, D. B.; Zisk, S. H.; Thompson, T. W.; Hawke, B. R.

    1992-01-01

    Lunar pyroclastic deposits represent one of the primary anticipated sources of raw materials for future human settlements. These deposits are fine-grained volcanic debris layers produced by explosive volcanism contemporaneous with the early stage of mare infilling. There are several large regional pyroclastic units on the Moon (for example, the Aristarchus Plateau, Rima Bode, and Sulpicius Gallus formations), and numerous localized examples, which often occur as dark-halo deposits around endogenic craters (such as in the floor of Alphonsus Crater). Several regional pyroclastic deposits were studied with spectral reflectance techniques: the Aristarchus Plateau materials were found to be a relatively homogeneous blanket of iron-rich glasses. One such deposit was sampled at the Apollo 17 landing site, and was found to have ferrous oxide and titanium dioxide contents of 12 percent and 5 percent, respectively. While the areal extent of these deposits is relatively well defined from orbital photographs, their depths have been constrained only by a few studies of partially filled impact craters and by imaging radar data. A model for radar backscatter from mantled units applicable to both 70-cm and 12.6-cm wavelength radar data is presented. Depth estimates from such radar observations may be useful in planning future utilization of lunar pyroclastic deposits.

  11. Nanoscale semiconductor Pb1-xSnxSe (x = 0.2) thin films synthesized by electrochemical atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lin, Shaoxiong; Zhang, Xin; Shi, Xuezhao; Wei, Jinping; Lu, Daban; Zhang, Yuzhen; Kou, Huanhuan; Wang, Chunming

    2011-04-01

    In this paper the fabrication and characterization of IV-VI semiconductor Pb1-xSnxSe (x = 0.2) thin films on gold substrate by electrochemical atomic layer deposition (EC-ALD) method at room temperature are reported. Cyclic voltammetry (CV) is used to determine approximate deposition potentials for each element. The amperometric I-t technique is used to fabricate the semiconductor alloy. The elements are deposited in the following sequence: (Se/Pb/Se/Pb/Se/Pb/Se/Pb/Se/Sn …), each period is formed using four ALD cycles of PbSe followed by one cycle of SnSe. Then the deposition manner above is cyclic repeated till a satisfactory film with expected thickness of Pb1-xSnxSe is obtained. The morphology of the deposit is observed by field emission scanning electron microscopy (FE-SEM). X-ray diffraction (XRD) pattern is used to study its crystalline structure; X-ray photoelectron spectroscopy (XPS) of the deposit indicates an approximate ratio 1.0:0.8:0.2 of Se, Pb and Sn, as the expected stoichiometry for the deposit. Open-circuit potential (OCP) studies indicate a good p-type property, and the good optical activity makes it suitable for fabricating a photoelectric switch.

  12. Microbial diversity in nonsulfur, sulfur and iron geothermal steam vents.

    PubMed

    Benson, Courtney A; Bizzoco, Richard W; Lipson, David A; Kelley, Scott T

    2011-04-01

    Fumaroles, commonly called steam vents, are ubiquitous features of geothermal habitats. Recent studies have discovered microorganisms in condensed fumarole steam, but fumarole deposits have proven refractory to DNA isolation. In this study, we report the development of novel DNA isolation approaches for fumarole deposit microbial community analysis. Deposit samples were collected from steam vents and caves in Hawaii Volcanoes National Park, Yellowstone National Park and Lassen Volcanic National Park. Samples were analyzed by X-ray microanalysis and classified as nonsulfur, sulfur or iron-dominated steam deposits. We experienced considerable difficulty in obtaining high-yield, high-quality DNA for cloning: only half of all the samples ultimately yielded sequences. Analysis of archaeal 16S rRNA gene sequences showed that sulfur steam deposits were dominated by Sulfolobus and Acidianus, while nonsulfur deposits contained mainly unknown Crenarchaeota. Several of these novel Crenarchaeota lineages were related to chemoautotrophic ammonia oxidizers, indicating that fumaroles represent a putative habitat for ammonia-oxidizing Archaea. We also generated archaeal and bacterial enrichment cultures from the majority of the deposits and isolated members of the Sulfolobales. Our results provide the first evidence of Archaea in geothermal steam deposits and show that fumaroles harbor diverse and novel microbial lineages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Pulsed laser deposited hexagonal wurzite ZnO thin-film nanostructures/nanotextures for nanophotonics applications

    NASA Astrophysics Data System (ADS)

    John Chelliah, Cyril Robinson Azariah; Swaminathan, Rajesh

    2018-01-01

    The high-quality and transparent thin-film zinc oxide (ZnO) nanostructures/nanotextures deposited on glass and silicon substrates using pulsed laser deposition (PLD) technique are reported. A solid-state, Nd-YAG laser was used for the PLD process. The films were deposited (i) at room temperature of 25°C (as deposited), (ii) at 150°C, (iii) at 300°C, (iv) at 450°C, and (v) at 600°C and annealed in the vacuum chamber. The depositions were also carried out at different laser repetition rates such as 10 and 5 Hz. UV spectroscopy and photoluminescence (PL) spectroscopy were carried out for optical studies. X-ray diffraction studies were carried out for all samples and analyzed the effects of the laser repetition rate, deposition, and annealing temperatures on the structural properties. Field-emission scanning electron microscope images are recorded for the best-structured samples. The electrical parameters were calibrated using the Hall effect measurement system and the IV characterization was performed using a CHI Electrochemical workstation. The deposition temperature has a significant effect on the microstrain and dislocation density of the ZnO thin film and optical phenomena with various electrical parameters, including the electron mobility, conductivity, and magnetoresistance. These promising results are suitable conditions for nanophotonics applications.

  14. Mineral Deposit Data for Epigenetic Base- and Precious-metal and Uranium-thorium Deposits in South-central and Southwestern Montana and Southern and Central Idaho

    USGS Publications Warehouse

    Klein, T.L.

    2004-01-01

    Metal deposits spatially associated with the Cretaceous Boulder and Idaho batholiths of southwestern Montana and southern and central Idaho have been exploited since the early 1860s. Au was first discovered in placer deposits; exploitation of vein deposits in bedrock soon followed. In 1865, high-grade Ag vein deposits were discovered and remained economically important until the 1890s. Early high-grade deposits of Au, Ag and Pb were found in the weathered portions of the veins systems. As mining progressed to deeper levels, Ag and Pb grades diminished. Exploration for and development of these vein deposits in this area have continued until the present. A majority of these base- and precious-metal vein deposits are classified as polymetallic veins (PMV) and polymetallic carbonate-replacement (PMR) deposits in this compilation. Porphyry Cu and Mo, epithermal (Au, Ag, Hg and Sb), base- and precious-metal and W skarn, W vein, and U and Th vein deposits are also common in this area. The world-class Butte Cu porphyry and the Butte high-sulfidation Cu vein deposits are in this study area. PMV and PMR deposits are the most numerous in the region and constitute about 85% of the deposit records compiled. Several types of syngenetic/diagenetic sulfide mineral deposits in rocks of the Belt Supergroup or their equivalents are common in the region and they have been the source of a substantial metal production over the last century. These syngenetic deposits and their metamorphosed/structurally remobilized equivalents were not included in this database; therefore, deposits in the Idaho portion of the Coeur d'Alene district and the Idaho Cobalt belt, for example, have not been included because many of them are believed to be of this type.

  15. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. Themore » X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.« less

  16. Experimental approaches to well controlled studies of thin-film nucleation and growth.

    NASA Technical Reports Server (NTRS)

    Poppa, H.; Moorhead, R. D.; Heinemann, K.

    1972-01-01

    Particular features and the performance of two experimental systems are described for quantitative studies of thin-film nucleation and growth processes including epitaxial depositions. System I consists of a modified LEED-Auger instrument combined with high-resolution electron microscopy. System II is a UHV electron microscope adapted for in-situ deposition studies. The two systems complement each other ideally, and the combined use of both can result in a comprehensive investigation of vapor deposition processes not obtainable with any other known method.

  17. An increase in precipitation exacerbates negative effects of nitrogen deposition on soil cations and soil microbial communities in a temperate forest.

    PubMed

    Shi, Leilei; Zhang, Hongzhi; Liu, Tao; Mao, Peng; Zhang, Weixin; Shao, Yuanhu; Fu, Shenglei

    2018-04-01

    World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change microbial biomass and community structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Contaminated landslide runout deposits in rivers - Method for estimating long-term ecological risks.

    PubMed

    Göransson, G; Norrman, J; Larson, M

    2018-06-14

    The potential catastrophic event of a landslide bringing contaminants to surface waters has been highlighted in public media, but there are still few scientific studies analyzing the risk of landslides with contaminated soil. The aim of this study is to present a method to estimate the risk of potential long-term ecological effects on water bodies due to contaminated soil released into a river through a landslide. The study constitutes further development of previous work focusing on the instantaneous (short-term) release of contaminants and associated effects. Risk is here defined as the probability of surface water failing to comply with environmental quality standards (EQS). The transport model formulation is kept simple enough to allow for a probabilistic analysis as a first assessment of the impact on the river water quality from a landslide runout deposit containing contaminated soil. The model is applied at a contaminated site located adjacent to the Göta Älv River that discharges into the Gothenburg estuary, in southwest Sweden. The results from the case study show that a contaminated runout deposit will likely cause contamination levels above EQSs in the near area for a long time and that it will take several years for the deposit to erode, with the greatest erosion at the beginning when water velocities are their highest above the deposit. A contaminated landslide runout deposit will thus act as a source of contamination to the downstream water system until all the contaminated deposit has been eroded away and the contaminants have been transported from the deposit to the river, and further to the river mouth - diluted but not necessarily negligible. Therefore, it is important to prevent landslides of contaminated soil or waste, and if such events were to occur, to remove the contaminated runout deposit as soon as possible. Copyright © 2018. Published by Elsevier B.V.

  19. Atmospheric deposition to forests in the eastern USA

    USGS Publications Warehouse

    Risch, Martin R.; DeWild, John F.; Gay, David A.; Zhang, Leiming; Boyer, Elizabeth W.; Krabbenhoft, David P.

    2017-01-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007–2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m2/yr) and ranged from 2.2 to 23.4 μg/m2/yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007–2009 than in 2012–2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors.

  20. Atmospheric mercury deposition to forests in the eastern USA.

    PubMed

    Risch, Martin R; DeWild, John F; Gay, David A; Zhang, Leiming; Boyer, Elizabeth W; Krabbenhoft, David P

    2017-09-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007-2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007-2009 than in 2012-2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors. Published by Elsevier Ltd.

  1. The sedimentology and dynamics of crater-affiliated wind streaks in western Arabia Terra, Mars and Patagonia, Argentina

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Tanaka, K.L.; Yamamoto, A.; Berman, D.C.; Zimbelman, J.R.; Kargel, J.S.; Sasaki, S.; Jinguo, Y.; Miyamoto, H.

    2010-01-01

    Wind streaks comprise recent aeolian deposits that have been extensively documented on Venus, Earth and Mars. Martian wind streaks are among the most abundant surface features on the planet and commonly extend from the downwind margins of impact craters. Previous studies of wind streaks emerging from crater interior deposits suggested that the mode of emplacement was primarily related to the deposition of silt-sized particles as these settled from plumes. We have performed geologic investigations of two wind streaks clusters; one situated in western Arabia Terra, a region in the northern hemisphere of Mars, and another in an analogous terrestrial site located in southern Patagonia, Argentina, where occurrences of wind streaks emanate from playas within maar craters. In both these regions we have identified bedforms in sedimentary deposits on crater floors, along wind-facing interior crater margins, and along wind streaks. These observations indicate that these deposits contain sand-sized particles and that sediment migration has occurred via saltation from crater interior deposits to wind streaks. In Arabia Terra and in Patagonia wind streaks initiate from crater floors that contain lithic and evaporitic sedimentary deposits, suggesting that the composition of wind streak source materials has played an important role in development. Spatial and topographic analyses suggest that regional clustering of wind streaks in the studied regions directly correlates to the areal density of craters with interior deposits, the degree of proximity of these deposits, and the craters' rim-to-floor depths. In addition, some (but not all) wind streaks within the studied clusters have propagated at comparable yearly (Earth years) rates. Extensive saltation is inferred to have been involved in its propagation based on the studied terrestrial wind streak that shows ripples and dunes on its surface and the Martian counterpart changes orientation toward the downslope direction where it extends into an impact crater. ?? 2009 Elsevier B.V.

  2. Electrochemical Deposition of Niobium onto the Surface of Copper Using a Novel Choline Chloride-Based Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtroma, Alex I.; Buhlera, Jessica E.; Reece, Charles E.

    2013-06-01

    Recent research has shown that choline chloride-based solutions can be used to replace acid-based electrochemical polishing solutions. In this study niobium metal was successfully deposited on the surface of copper substrate via electrochemical deposition using a novel choline chloride-based ionic liquid. The niobium metal used for deposition on the Cu had been dissolved in the solution from electrochemical polishing of a solid niobium piece prior to the deposition. The visible coating on the surface of the Cu was analyzed using scanning electron microscopy (SEM) and electron dispersive x-ray spectroscopy (EDX). This deposition method effectively recycles previously dissolved niobium from electrochemicalmore » polishing.« less

  3. Compilation of gallium resource data for bauxite deposits

    USGS Publications Warehouse

    Schulte, Ruth F.; Foley, Nora K.

    2014-01-01

    Gallium (Ga) concentrations for bauxite deposits worldwide have been compiled from the literature to provide a basis for research regarding the occurrence and distribution of Ga worldwide, as well as between types of bauxite deposits. In addition, this report is an attempt to bring together reported Ga concentration data into one database to supplement ongoing U.S. Geological Survey studies of critical mineral resources. The compilation of Ga data consists of location, deposit size, bauxite type and host rock, development status, major oxide data, trace element (Ga) data and analytical method(s) used to derive the data, and tonnage values for deposits within bauxite provinces and districts worldwide. The range in Ga concentrations for bauxite deposits worldwide is

  4. Nonenzymatic detection of glucose using BaCuO2 thin layer

    NASA Astrophysics Data System (ADS)

    Ito, Takeshi; Asada, Tsuyoshi; Asai, Naoto; Shimizu, Tomohiro; Shingubara, Shoso

    2017-01-01

    A BaCuO2 thin layer was deposited on a glassy carbon electrode and used for the direct oxidation of glucose. The crystalline, electrochemical, and physicochemical properties that depend on the deposition temperature and deposition time were studied. X-ray diffraction (XRD) analysis showed that the thin layer was amorphous even at 400 °C. The current density of the glucose oxidation using the thin layer deposited at 200 °C was higher than those at other deposition temperatures. Under this condition, the current density increased with the glucose concentration and deposition time. These results indicate that a BaCuO2 thin layer has potential for measuring the blood glucose level without enzymes.

  5. Properties of soils and tree wood tissue across a Lake States sulfate deposition gradient.

    Treesearch

    Lewis F. Ohmann; David F. Grigal

    1991-01-01

    Presents the soil and tree wood tissue properties (mostly chemical) of the plots that were remeasured and sampled for a study of the relation between forest condition and wet sulfate deposition along the Lake States acidic deposition gradient.

  6. Chronic Nitrogen Deposition Influences the Chemical Dynamics of Leaf Litter and Fine Roots During Decomposition

    EPA Science Inventory

    Atmospheric nitrogen deposition induces a forest carbon sink across broad parts of the Northern Hemisphere; this carbon sink may partly result from slower litter decomposition. Although microbial responses to experimental nitrogen deposition have been well-studied, evidence linki...

  7. Controlling the Nanoscale Patterning of AuNPs on Silicon Surfaces

    PubMed Central

    Williams, Sophie E.; Davies, Philip R.; Bowen, Jenna L.; Allender, Chris J.

    2013-01-01

    This study evaluates the effectiveness of vapour-phase deposition for creating sub-monolayer coverage of aminopropyl triethoxysilane (APTES) on silicon in order to exert control over subsequent gold nanoparticle deposition. Surface coverage was evaluated indirectly by observing the extent to which gold nanoparticles (AuNPs) deposited onto the modified silicon surface. By varying the distance of the silicon wafer from the APTES source and concentration of APTES in the evaporating media, control over subsequent gold nanoparticle deposition was achievable to an extent. Fine control over AuNP deposition (AuNPs/μm2) however, was best achieved by adjusting the ionic concentration of the AuNP-depositing solution. Furthermore it was demonstrated that although APTES was fully removed from the silicon surface following four hours incubation in water, the gold nanoparticle-amino surface complex was stable under the same conditions. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to study these affects. PMID:28348330

  8. Four studies on effects of environmental factors on the quality of National Atmospheric Deposition Program measurements

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Latysh, Natalie E.; Lehmann, Christopher M.B.; Rhodes, Mark F.

    2011-01-01

    Selected aspects of National Atmospheric Deposition Program / National Trends Network (NADP/NTN) protocols are evaluated in four studies. Meteorological conditions have minor impacts on the error in NADP/NTN sampling. Efficiency of frozen precipitation sample collection is lower than for liquid precipitation samples. Variability of NTN measurements is higher for relatively low-intensity deposition of frozen precipitation than for higher-intensity deposition of liquid precipitation. Urbanization of the landscape surrounding NADP/NTN sites is not affecting trends in wet-deposition chemistry data to a measureable degree. Five NADP siting criteria intended to preserve wet-deposition sample integrity have varying degrees of effectiveness. NADP siting criteria for objects within the 90 degrees cones and trees within the 120 degrees cones projected from the collector bucket to sky are important for protecting sample integrity. Tall vegetation, fences, and other objects located within 5 meters of the collectors are related to the frequency of visible sample contamination, indicating the importance of these factors in NADP siting criteria.

  9. Comparative studies on damages to organic layer during the deposition of ITO films by various sputtering methods

    NASA Astrophysics Data System (ADS)

    Lei, Hao; Wang, Meihan; Hoshi, Yoichi; Uchida, Takayuki; Kobayashi, Shinichi; Sawada, Yutaka

    2013-11-01

    Aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) was respectively bombarded and irradiated by Ar ions, oxygen ions, electron beam and ultraviolet light to confirm damages during the sputter-deposition of transparent conductive oxide (TCO) on organic layer. The degree of damage was evaluated by the photoluminescence (PL) spectra of BAlq. The results confirmed the oxygen ions led to a larger damage and were thought to play the double roles of bombardment to organic layer and reaction with organic layer as well. The comparative studies on PL spectra of BAlq after the deposition of TCO films by various sputtering systems, such as conventional magnetron sputtering (MS), low voltage sputtering (LVS) and kinetic-energy-control-deposition (KECD) system, facing target sputtering (FTS) were performed. Relative to MS, LVS and KECD system, FTS can completely suppress the bombardment of the secondary electrons and oxygen negative ions, and keep a higher deposition rate simultaneously, thus it is a good solution to attain a low-damage sputter-deposition.

  10. Comparison of forest edge effects on throughfall deposition in different forest types.

    PubMed

    Wuyts, Karen; De Schrijver, An; Staelens, Jeroen; Gielis, Leen; Vandenbruwane, Jeroen; Verheyen, Kris

    2008-12-01

    This study examined the influence of distance to the forest edge, forest type, and time on Cl-, SO4(2-), NO3(-), and NH4+ throughfall deposition in forest edges. The forests were dominated by pedunculate oak, silver birch, or Corsican/Austrian pine, and were situated in two regions of Flanders (Belgium). Along transects, throughfall deposition was monitored at distances of 0-128 m from the forest edge. A repeated-measures analysis demonstrated that time, forest type, and distance to the forest edge significantly influenced throughfall deposition of the ions studied. The effect of distance to the forest edge depended significantly on forest type in the deposition of Cl-, SO4(2-), and NO3(-): the edge effect was significantly greater in pine stands than in deciduous birch and oak stands. This finding supports the possibility of converting pine plantations into oak or birch forests in order to mitigate the input of nitrogen and potentially acidifying deposition.

  11. UV-light assisted patterned metallization of textile fabrics

    NASA Astrophysics Data System (ADS)

    Bahners, Thomas; Gebert, Beate; Prager, Andrea; Hartmann, Nils; Hagemann, Ulrich; Gutmann, Jochen S.

    2018-04-01

    A UV-assisted process allows full-faced or local deposition of silver domains on textiles made of natural as well as synthetic fibers, which act as nuclei for subsequent galvanic metallization. SEM and XPS analyses indicate that the process generates particulate depositions - particles, aggregates - of elementary silver. Masking the UV irradiation confines silver deposition strictly to the exposed areas thus allowing patterning. Adhesion of the deposited silver is high on the studied natural fiber cotton and polyamide fibers. Adhesion on smooth and chemically inert synthethic fibers such as, e.g., poly(ethylene terephthalate) or para- and meta-aramids could be enhanced by finishing with poly(vinylamine) thus providing complex-forming amino groups. Although the process does not deposit a closed, electrically conducting layer, all studied samples could be metallized by galvanization. The resulting metal coatings exhibit high conductivity and wash stability. Following a patterned silver deposition, the subsequent galvanic metallization produced conductive patterns of identical geometry thus opening an avenue towards printed circuits on textile fabrics.

  12. Geophysical and geochemical data from the area of the Pebble Cu-Au-Mo porphyry deposit, southwestern Alaska: Contributions to assessment techniques for concealed mineral resources

    USGS Publications Warehouse

    Anderson, E.D.; Smith, S.M.; Giles, S.A.; Granitto, Matthew; Eppinger, R.G.; Bedrosian, P.A.; Shah, A.K.; Kelley, K.D.; Fey, D.L.; Minsley, B.J.; Brown, P.J.

    2011-01-01

    In 2007, the U.S. Geological Survey began a multidisciplinary study in southwest Alaska to investigate the setting and detectability of mineral deposits in concealed volcanic and glacial terranes. The study area hosts the world-class Pebble porphyry Cu-Au-Mo deposit, and through collaboration with the Pebble Limited Partnership, a range of geophysical and geochemical investigations was carried out in proximity to the deposit. The deposit is almost entirely concealed by tundra, glacial deposits, and post-mineralization volcanic rocks. The discovery of mineral resources beneath cover is becoming more important because most of the mineral resources at the surface have already been discovered. Research is needed to identify ways in which to assess for concealed mineral resources. This report presents the uninterpreted geophysical measurements and geochemical and mineralogical analytical data from samples collected during the summer field seasons from 2007 to 2010, and makes the data available in a single Geographic Information System (GIS) database.

  13. Audiomagnetotelluric data to characterize the Revett-type copper-silver deposits at Rock Creek in the Cabinet Mountains Wilderness, Montana

    USGS Publications Warehouse

    Sampson, Jay A.; Rodriguez, Brian D.

    2011-01-01

    The Revett-type deposits at Rock Creek are part of the concealed stratabound copper-silver deposits located in the Cabinet Mountains Wilderness of Montana. The U.S. Geological Survey is conducting a series of multidisciplinary studies as part of the Assessment Techniques for Concealed Mineral Resources project. Geologic, geochemical, geophysical, and mineral resources data are being evaluated with existing and new mineral deposit models to predict the possibility and probability of undiscovered deposits in covered terranes. To help characterize the size, resistivity, and depth of the mineral deposit concealed beneath thick overburden, a regional southwest-northeast audiomagnetotelluric sounding profile was acquired. Further studies will attempt to determine if induced polarization parameters can be extracted from the magnetotelluric data to determine the size of the mineralized area. The purpose of this report is to release the audiomagnetotelluric sounding data collected along that southwest-northeast profile. No interpretation of the data is included.

  14. Ecological effects of nitrogen deposition in the western United States

    USGS Publications Warehouse

    Fenn, M.E.; Baron, Jill S.; Allen, E.B.; Rueth, H.M.; Nydick, K.R.; Geiser, L.; Bowman, W.D.; Sickman, J.O.; Meixner, T.; Johnson, D.W.; Neitlich, P.

    2003-01-01

    In the western United States vast acreages of land are exposed to low levels of atmospheric nitrogen (N) deposition, with interspersed hotspots of elevated N deposition downwind of large, expanding metropolitan centers or large agricultural operations. Biological response studies in western North America demonstrate that some aquatic and terrestrial plant and microbial communities are significantly altered by N deposition. Greater plant productivity is counterbalanced by biotic community changes and deleterious effects on sensitive organisms (lichens and phytoplankton) that respond to low inputs of N (3 to 8 kilograms N per hectare per year). Streamwater nitrate concentrations are elevated in high-elevation catchments in Colorado and are unusually high in southern California and in some chaparral catchments in the southwestern Sierra Nevada. Chronic N deposition in the West is implicated in increased fire frequency in some areas and habitat alteration for threatened species. Between hotspots, N deposition is too low to cause noticeable effects or has not been studied.

  15. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China.

    PubMed

    Fu, Xuewu; Feng, Xinbin; Zhu, Wanze; Rothenberg, S; Yao, Heng; Zhang, Hui

    2010-06-01

    Mt. Gongga area in southwest China was impacted by Hg emissions from industrial activities and coal combustion, and annual means of atmospheric TGM and PHg concentrations at a regional background station were 3.98 ng m(-3) and 30.7 pg m(-3), respectively. This work presents a mass balance study of Hg in an upland forest in this area. Atmospheric deposition was highly elevated in the study area, with the annual mean THg deposition flux of 92.5 microg m(-2) yr(-1). Total deposition was dominated by dry deposition (71.8%), and wet deposition accounted for the remaining 28.2%. Forest was a large pool of atmospheric Hg, and nearly 76% of the atmospheric input was stored in forest soil. Volatilization and stream outflow were identified as the two major pathways for THg losses from the forest, which yielded mean output fluxes of 14.0 and 8.6 microg m(-2) yr(-1), respectively. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Sedimentological characterization of flood-tidal delta deposits in the Sego Sandstone, subsidence analysis in the Piceance Creek Basin, and uranium-lead geochronology (NW Colorado, USA)

    NASA Astrophysics Data System (ADS)

    York, Carly C.

    The Sego Sandstone located in western Colorado is a member of the Upper Cretaceous Mesaverde Group and is considered an analogue of the Canadian heavy oil sands. Deposition of the Sego Sandstone occurred during the Upper Campanian (~78 Ma) at the end of the Sevier Orogeny and the beginning of the Laramide Orogeny on the western edge of the Cretaceous Interior Seaway. Although regional studies have detailed time equivalent deposits in the Book Cliffs, UT, the tidally influenced and marginal marine lithofacies observed north of Rangely, CO are distinctly different from the dominately fluvial and tidally-influenced delta facies of Book Cliff outcrops to the southwest. This study characterized flood-tidal delta deposits within the Sego Sandstone, the subsidence history of the Upper Cretaceous sedimentary rocks within the present day Piceance Creek Basin in NW Colorado, and the detrital zircon signal and oldest depositional age of the Sego Sandstone. The goals of this study are to (i) identify relative controls on reservoir characteristics of marginal marine deposits, specifically in flood-tidal delta deposits; (ii) identify the possible mechanisms responsible for subsidence within the present day Piceance Creek Basin during the Late Cretaceous; and (iii) better constrain the provenance and maximum depositional age of the Sego Sandstone. In this study I compared grain size diameter, grain and cement composition, and the ratio of pore space/cement from thin sections collected in tidal, shoreface, and flood-tidal delta facies recognized along detailed measured stratigraphic sections. This analysis provides a detailed comparison between different depositional environments and resultant data showed that grain size diameter is different between tidal, shoreface, and flood-tidal delta facies. Identifying the subsidence mechanisms affecting the Piceance Creek Basin and sediment source of the Late Cretaceous sediments, on the other hand, is important for evaluation of controls on basin filling. Additionally, U-Pb analysis better constrains youngest depositional age for the Sego Sandstone in northwestern Colorado to 76 Ma years old, where previously constraints have been based on stratigraphic relationships and biostratigraphy in eastern Utah and southeastern Colorado.

  17. Deposition and characterization of molybdenum thin films using dc-plasma magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Majid, E-mail: majids@hotmail.com; Islam, Mohammad, E-mail: mohammad.islam@gmail.com

    2013-12-15

    Molebdenum (Mo) thin films were deposited on well-cleaned soda-lime glass substrates using DC-plasma magnetron sputtering. In the design of experiment deposition was optimized for maximum beneficial characteristics by monitoring effect of process variables such as deposition power (100–200 W). Their electrical, structural and morphological properties were analyzed to study the effect of these variables. The electrical resistivity of Mo thin films could be reduced by increasing deposition power. Within the range of analyzed deposition power, Mo thin films showed a mono crystalline nature and the crystallites were found to have an orientation along [110] direction. The surface morphology of thinmore » films showed that a highly dense micro structure has been obtained. The surface roughness of films increased with deposition power. The adhesion of Mo thin films could be improved by increasing the deposition power. Atomic force microscopy was used for the topographical study of the films and to determine the roughness of the films. X-ray diffractrometer and scanning electron microscopy analysis were used to investigate the crystallinity and surface morphology of the films. Hall effect measurement system was used to find resistivity, carrier mobility and carrier density of deposited films. The adhesion test was performed using scotch hatch tape adhesion test. Mo thin films prepared at deposition power of 200 W, substrate temperature of 23°C and Ar pressure of 0.0123 mbar exhibited a mono crystalline structure with an orientation along (110) direction, thickness of ∼550 nm and electrical resistivity value of 0.57 × 10{sup −4} Ω cm.« less

  18. Deposition of biomass combustion aerosol particles in the human respiratory tract.

    PubMed

    Löndahl, Jakob; Pagels, Joakim; Boman, Christoffer; Swietlicki, Erik; Massling, Andreas; Rissler, Jenny; Blomberg, Anders; Bohgard, Mats; Sandström, Thomas

    2008-08-01

    Smoke from biomass combustion has been identified as a major environmental risk factor associated with adverse health effects globally. Deposition of the smoke particles in the lungs is a crucial factor for toxicological effects, but has not previously been studied experimentally. We investigated the size-dependent respiratory-tract deposition of aerosol particles from wood combustion in humans. Two combustion conditions were studied in a wood pellet burner: efficient ("complete") combustion and low-temperature (incomplete) combustion simulating "wood smoke." The size-dependent deposition fraction of 15-to 680-nm particles was measured for 10 healthy subjects with a novel setup. Both aerosols were extensively characterized with regard to chemical and physical particle properties. The deposition was additionally estimated with the ICRP model, modified for the determined aerosol properties, in order to validate the experiments and allow a generalization of the results. The measured total deposited fraction of particles from both efficient combustion and low-temperature combustion was 0.21-0.24 by number, surface, and mass. The deposition behavior can be explained by the size distributions of the particles and by their ability to grow by water uptake in the lungs, where the relative humidity is close to saturation. The experiments were in basic agreement with the model calculations. Our findings illustrate: (1) that particles from biomass combustion obtain a size in the respiratory tract at which the deposition probability is close to its minimum, (2) that particle water absorption has substantial impact on deposition, and (3) that deposition is markedly influenced by individual factors.

  19. Atmospheric deposition of phthalate esters in a subtropical city

    NASA Astrophysics Data System (ADS)

    Zeng, Feng; Lin, Yujun; Cui, Kunyan; Wen, Jiaxin; Ma, Yongqin; Chen, Hongli; Zhu, Fang; Ma, Zhiling; Zeng, Zunxiang

    2010-02-01

    In Chinese cities, air pollution has become a serious and aggravating environmental problem undermining the sustainability of urban ecosystems and the quality of urban life. Bulk atmospheric deposition samples were collected two-weekly, from February 2007 to January 2008, at three representative areas, one suburban and two urbanized, in the subtropical city, Guangzhou, China, to assess the deposition fluxes and seasonal variations of phthalate esters (PAEs). Sixteen PAE congeners in bulk deposition samples were measured and the depositional fluxes of ∑ 16PAEs ranged from 3.41 to 190 μg m -2 day -1, and were highly affected by local anthropogenic activities. The significant relationship between PAEs and particulate depositional fluxes (correlation coefficient R2 = 0.72, P < 0.001) showed PAEs are associated primarily with particles. Temporal flux variations of PAEs were influenced by seasonal changes in meteorological parameters, and the deposition fluxes of PAEs were obviously higher in wet season than in dry season. Diisobutyl phthalate (D iBP), Di- n-butyl phthalate (D nBP), and Di(2-ethylhexyl) phthalate (DEHP) dominated the PAE pattern in bulk depositions, which is consistent with a high consumption of the plasticizer market in China. PAE profiles in bulk deposition showed similarities exhibited in both time and space, and a weak increase of high molecular weight PAE (HMW PAE) contribution in the wet season compared to those in the dry season. Average atmospheric deposition fluxes of PAEs in the present study were significantly higher than those from other studies, reflecting strong anthropogenic inputs as a consequence of rapid industrial and urban development in the region.

  20. Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada: BC DEPOSITION FROM FOREST FIRES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, J. L.; Polashenski, C. M.; Soja, A. J.

    We identify an important Black Carbon (BC) aerosol deposition event that was observed in snow stratigraphy and dated to between 27 July 2013 – 2 August 2013. This event comprises a significant portion (~60%) of total deposition over a 10 month period (July 2013 – April 2014). Here we link this event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the CALIOP and MODIS instruments during transport between Canada and Greenland, confirming that this event involved emissions from forest fires in Canada. We use high-resolution regional chemical transportmore » mod-eling (WRF-Chem) combined with high-resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model accurately captures the timing of the BC deposition event and shows that the major contribution to deposition during this event is emissions originating from fires in Canada. However, the model under-predicts aerosol deposition compared to measurements at all sites by a factor of 2–100. Under-prediction of modeled BC deposition originates from uncertainties in fire emissions combined with uncertainties in aerosol scavenging by clouds. This study suggests that it is possible to describe the transport of an exceptional smoke event on regional and continental scales. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires.« less

  1. Properties of TiO2 thin films and a study of the TiO2-GaAs interface

    NASA Technical Reports Server (NTRS)

    Chen, C. Y.; Littlejohn, M. A.

    1977-01-01

    Titanium dioxide (TiO2) films prepared by chemical vapor deposition were investigated in this study for the purpose of the application in the GaAs metal-insulator-semiconductor field-effect transistor. The degree of crystallization increases with the deposition temperature. The current-voltage study, utilizing an Al-TiO2-Al MIM structure, reveals that the d-c conduction through the TiO2 film is dominated by the bulk-limited Poole-Frenkel emission mechanism. The dependence of the resistivity of the TiO2 films on the deposition environment is also shown. The results of the capacitance-voltage study indicate that an inversion layer in an n-type substrate can be achieved in the MIS capacitor if the TiO2 films are deposited at a temperature higher than 275 C. A process of low temperature deposition followed by the pattern definition and a higher temperature annealing is suggested for device fabrications. A model, based on the assumption that the surface state densities are continuously distributed in energy within the forbidden band gap, is proposed to interpret the lack of an inversion layer in the Al-TiO2-GaAs MIS structure with the TiO2 films deposited at 200 C.

  2. Deposition of dual-layer coating on Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Hussain Din, Sajad; Shah, M. A.; Sheikh, N. A.

    2017-03-01

    Dual-layer diamond coatings were deposited on titanium alloy (Ti6Al4V) using a hot filament chemical vapour deposition technique with the anticipation of studying the structural and morphology properties of the alloy. The coated diamond films were characterized using scanning electron microscope, x-ray diffraction (XRD), and Raman spectroscopy. The XRD studies reveal that the deposited films are highly crystalline in nature, whereas morphological studies show that the films have a cauliflower structure. XRD analysis was used to calculate the structural parameters of the Ti6Al4V and CVD-coated Ti6Al4V. Raman spectroscopy was used to determine the nature and magnitude of the residual stress of the coatings.

  3. Geology and geochemistry of Summitville, Colorado: an epithermal acid sulfate deposit in a volcanic dome

    USGS Publications Warehouse

    Gray, J.E.; Coolbaugh, M.F.

    1994-01-01

    Geologic studies during recent open-pit mining at Summitville, Colorado, have provided new information on an epithermal acid sulfate Au-Ag-Cu deposit formed in a volcanic dome. Geologic mapping, geochemical studies of whole-rock samples from blast holes, and geologic and geochemical traverse studies refine the details of the evolution of the Summitville deposit. Six distinct events followed emplacement of the quartz latite volcanic dome and define the development of the Summitville deposit: 1) an early stage of acid sulfate alteration, 2) subsequent Cu sulfide and gold mineralization, 3) widespread hydrothermal brecciation, 4) volumetrically minor, base metal sulfide-bearing barite veining, 5) volumetrically minor, kaolinite matrix brecciation, and finally, 6) supergene oxidation. -from Authors

  4. Studies on annealed ZnO:V thin films deposited by nebulised spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Malini, D. Rachel

    2018-04-01

    Structural, optical and photoluminescence properties of annealed ZnO:V thin films deposited by nebulized spray pyrolysis technique by varying vanadium concentration are studied. Thickness of thin films varies from 1.52µm to 7.78µm. V2O5, VO2 and ZnO peaks are observed in XRD patterns deposited with high vanadium concentration and the intensity of peaks corresponding to ZnO decreases in those samples. Morphological properties were studied by analysing SEM images and annealed thin films deposited at ZnO:V = 50:50 possess dumb bell shape grains. Emission peaks corresponding to both Augur transition and deep level transition are observed in the PL spectra of the samples.

  5. PEALD grown high-k ZrO{sub 2} thin films on SiC group IV compound semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khairnar, A. G., E-mail: agkhairnar@gmail.com; Patil, V. S.; Agrawal, K. S.

    The study of ZrO{sub 2} thin films on SiC group IV compound semiconductor has been studied as a high mobility substrates. The ZrO{sub 2} thin films were deposited using the Plasma Enhanced Atomic Layer Deposition System. The thickness of the thin films were measured using ellipsometer and found to be 5.47 nm. The deposited ZrO{sub 2} thin films were post deposition annealed in rapid thermal annealing chamber at temperature of 400°Ð¡. The atomic force microscopy and X-гау photoelectron spectroscopy has been carried out to study the surface topography, roughness and chemical composition of thin film, respectively.

  6. Synthesis and Characterization of ZnO/polymer planar heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Gutierrez, Leandro; Manners, William; Nabizadeh, Arya; Albers, Patrick; Duran, Jesus; Scudieri, Anthony; Isah, Anne; McDougall, Michael; Sahiner, Mehmet; Wang, Weining

    2014-03-01

    ZnO/polymer heterojunction has been studied by many groups for its potential application in solar cell, LED, UV photodetection and other applications. However, there are few studies on ZnO/polymer heterojunction by synthesizing ZnO using pulsed laser deposition (PLD). Comparing with other methods, PLD has the advantage of congruent evaporation, and being able to grow high quality thin films at relatively low temperature. In our previous work in pulsed-laser-deposited (PLD) ZnO/PEDOT:PSS heterojunction, correlations between the annealing conditions of pulsed laser deposition and the electrical performance of solar cells have been observed. In this work, we report two new studies: 1) Studies on how the performance of the PLD-ZnO /PEDOT:PSS heterojunction depends on polymer conductivity; 2) Comparison studies on PLD-ZnO/PEDOT:PSS and PLD-ZnO/P3HT heterojunction. We studied how the performance of ZnO/polymer solar cells depend on the polymer work function and conductivities and deposition condition of ZnO. X-ray diffraction (XRD) and scanning electron microscopy were used to characterize the PLD-ZnO film. The correlation between the solar cell electrical performance and the polymer conductivity and pulsed laser deposition conditions will be discussed.

  7. Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part II. Emission sector and source region contributions.

    PubMed

    Qiao, Xue; Tang, Ya; Kota, Sri Harsha; Li, Jingyi; Wu, Li; Hu, Jianlin; Zhang, Hongliang; Ying, Qi

    2015-11-01

    A source-oriented Community Multiscale Air Quality (CMAQ) model driven by the meteorological fields generated by the Weather Research and Forecasting (WRF) model was used to study the dry and wet deposition of nitrate (NO3(-)), sulfate (SO4(2-)), and ammonium (NH4(+)) ions in the Jiuzhaigou National Nature Reserve (JNNR), China from June to August 2010 and to identify the contributions of different emission sectors and source regions that were responsible for the deposition fluxes. Contributions from power plants, industry, transportation, domestic, biogenic, windblown dust, open burning, fertilizer, and manure management sources to deposition fluxes in JNNR watershed and four EANET sites are determined. In JNNR, 96%, 82%, and 87% of the SO4(2-), NO3(-) and NH4(+) deposition fluxes are in the form of wet deposition of the corresponding aerosol species. Industry and power plants are the two major sources of SO4(2-) deposition flux, accounting for 86% of the total wet deposition of SO4(2-), and industry has a higher contribution (56%) than that of power plants (30%). Power plants and industry are also the top sources that are responsible for NO3(-) wet deposition, and contributions from power plants (30%) are generally higher than those from industries (21%). The major sources of NH4(+) wet deposition flux in JNNR are fertilizer (48%) and manure management (39%). Source-region apportionment confirms that SO2 and NOx emissions from local and two nearest counties do not have a significant impact on predicted wet deposition fluxes in JNNR, with contributions less than 10%. While local NH3 emissions account for a higher fraction of the NH4(+) deposition, approximately 70% of NH4(+) wet deposition in JNNR originated from other source regions. This study demonstrates that S and N deposition in JNNR is mostly from long-range transport rather than from local emissions, and to protect JNNR, regional emission reduction controls are needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Atmospheric nitrogen deposition budget in a subtropical hydroelectric reservoir (Nam Theun II case study, Lao PDR)

    NASA Astrophysics Data System (ADS)

    Adon, Marcellin; Galy-Lacaux, Corinne; Serça, Dominique; Guerin, Frederic; Guedant, Pierre; Vonghamsao, Axay; Rode, Wanidaporn

    2016-04-01

    With 490 km² at full level of operation, Nam Theun 2 (NT2) is one of the largest hydro-reservoir in South East Asia. NT2 is a trans-basin hydropower project that diverts water from the Nam Theun river (a Mekong tributary) to the Xe Ban Fai river (another Mekong tributary). Atmospheric deposition is an important source of nitrogen (N), and it has been shown that excessive fluxes of N from the atmosphere has resulted in eutrophication of many coastal waters. A large fraction of atmospheric N input is in the form of inorganic N. This study presents an estimation of the atmospheric inorganic nitrogen budget into the NT2 hydroelectric reservoir based on a two-year monitoring (July 2010 to July 2012) including gas concentrations and precipitation. Dry deposition fluxes are calculated from monthly mean surface measurements of NH3, HNO3 and NO2 concentrations (passive samplers) together with simulated deposition velocities, and wet deposition fluxes from NH4+ and NO3- concentrations in single event rain samples (automated rain sampler). Annual rainfall amount was 2500 and 3160 mm for the two years. The average nitrogen deposition flux is estimated at 1.13 kgN.ha-1.yr-1 from dry processes and 5.52 kgN.ha-1.yr-1 from wet ones, i.e., an average annual total nitrogen flux of 6.6 kgN.ha-1.yr-1 deposited into the NT2 reservoir. The wet deposition contributes to 83% of the total N deposition. The nitrogen deposition budget has been also calculated over the rain tropical forest surrounding the reservoir. Due to higher dry deposition velocities above forested ecosystems, gaseous dry deposition flux is estimated at 4.0 kgN.ha-1.yr-1 leading to a total nitrogen deposition about 9.5 kgN.ha-1.yr-1. This result will be compared to nitrogen deposition in the African equatorial forested ecosystems in the framework of the IDAF program (IGAC-DEBITS-AFrica).

  9. A preliminary evaluation of the nonfuel mineral potential of Somalia

    USGS Publications Warehouse

    Greenwood, W.R.

    1982-01-01

    Additional exploration in Somalia is warranted for a wide variety of metallic and nonmetallic deposits. In Precambrian rocks, deposit types favorable for exploration include: a banded iron formation; platinum-bearing mafic-ultramafic complexes; tin-bearing quartz veins; phosphorite; stratabound base-metal deposits; uranium associated with Precambrian(?) syenite; apatite, molybdenum, and alumina in alkalic rocks; Jurassic and Cretaceous black shales; possible bedded-barite and massive base- and precious-metal sulfide deposits; vein barite in Tertiary rocks in fault zones; sepiolite and bentonite for drilling muds and other industrial uses; celestite; possible Tertiary zeolite; and uranium deposits. Several of these deposit types could be Jointly developed and integrated into domestic industries; for example, phosphate and gypsum, or bentonite for pelletized iron from the banded iron deposits. Other deposits such as barite and sepiolite are of value because of their proximity to major drilling operations in the Arabian Gulf. Still other deposits, such as alumina and banded iron, might be marketable because of proximity to aluminum and iron-refining industries now being constructed in Saudi Arabia. Some deposits, such as celestite, can be developed with little capital investment; others, such as the iron deposits, would require large capital commitments. Exploration and evaluation for many of these deposits can be accomplished by Somali geologists with a few advisors. Most of the deposits require feasibility studies conducted by teams of economic geologists, extractive metallurgists, and economists. Some marginal deposits could be exploited if cooperative development schemes could be negotiated with governments in nearby countries.

  10. Spectro-Morphologic Analysis of Pyroclastic Deposits on Mercury

    NASA Astrophysics Data System (ADS)

    Doressoundiram, A.; Besse, S.; Hersérant, W.

    2014-12-01

    Observations of the MESSENGER spacecraft in orbit around Mercury have shown that volcanism is a very important process that has shaped the surface of the planet. Kerber et al. [2011,2014] have identified 200 pyroclastic deposits candidates based on color ratio and morphology images. Goudge et al. [2014] used the visible portion of the MASCS spectrometer to do further analysis on the spectral nature of the deposits. The authors have shown that the deposits have specific UV properties probably caused by Oxygen-Metal charges transfer, and a correlation between the slope of the UV-downturn and the age of the surrounding terrains. In this study, we use the full range of the MASCS spectrometer (300-1400nm) to characterize the spectral properties of the pyroclastic deposits. Moreover, additional observations have been obtained since the last publications, and this allows specific studies of previously non-imaged deposits. This study shows that the visible slope of the deposits is changing as a function of distance from the vent, as seen on the Moon for pyroclastic deposits and their mafic absorption bands [Besse et al, 2013]. This is consistent with a decrease of thickness of the deposits that are mixed with background material. Surprisingly, the UV-downturn parameter proposed by Goudge et al. [2014] does not change as the distance to the vent increase. Eventually, the near infrared portion does not appear to have absorption bands in the range 900nm-1200nm, consistent with the very low iron abundance of the surface of Mercury. This could also be due to the lower signal to noise ratio of the near infrared portion of the MASCS instrument, and further analysis are needed to confirm these results. The use of visible images from the MDIS camera has revealed that some of the pyroclastic deposits candidates are certainly correlated with hollows.

  11. Nitrogen deposition along an elevation gradient in Taiwan

    NASA Astrophysics Data System (ADS)

    Li, Chia-Yi; Cheng, Chih-Hsin

    2017-04-01

    Taiwan is one of the areas that has high nitrogen deposition. The deposition of nitrogen, however, is not homogeneous, but rather is heterogeneous with high spatial and temporal variation. In this study, we evaluated nitrogen deposition along an elevation gradient ranged from 100 m which was closest to the agricultural and industrial areas to 1800 m which was located in the mid-elevation mountainous areas to identify how elevation affects nitrogen deposition under an annual determination. Bulk precipitation was collected using the funnel apparatus mounted on a post 1.5 m above ground level in each study site (n=7), and collected weekly or every other weekly depending on the frequency of rainfall events. Cations (K+, Na+, Ca+2, Mg+2, and NH4+), anions (F-, Cl-, SO4-2, and NO3-), pH and electric conductance (EC) of precipitation water were analyzed. The results indicated a significant trend along the elevation gradient. Volume-weighted mean concentration (μg L-1) and deposition amounts (kg ha-1) of based cations, anions, NH4+, pH and EC decreased with the elevation, whereas hydrogen ion increased with elevation. The mean ratio of NH4+-N/NO3-N for all study sites was 2.87 and no clear elevation trend existed. However, a relatively high ratio of NH4+-N/NO3-N was found in the sites with elevation less than 500 m during the periods between March and May, suggesting the seasonal agricultural input in these sites. Deposition of NH4+-N, NO3-N, and total inorganic N were 12 - 25, 4 - 10, and 16 - 37 kg N ha-1, respectively, during the period from January 2016 to August 2016. Higher nitrogen deposition is expected for the whole 2016 year. High nitrogen deposition poses an ecological threat in Taiwan and more research is warranted to understand how nitrogen deposition could be detrimental to environment.

  12. The Effect of Suspended Sediment Transport and Deposition on Streambed Clogging Under Losing and Gaining Flow Conditions

    NASA Astrophysics Data System (ADS)

    Fox, A.; Packman, A. I.; Preziosi-Ribero, A.; Li, A.; Arnon, S.

    2017-12-01

    Sediment transport and deposition in streams can affect streambed hydraulic characteristics due to clogging, reduce water fluxes through the hyporheic zone, and thus expected to affect biogeochemical processes. Processes affecting deposition of suspended particles were systematically studied under various overlying velocities but without taking into account the interactions with groundwater. This is despite the fact that the interaction with groundwater were shown to play an important role in deposition patterns of fine sediments in field studies. The objective of this study was to evaluate the effect of losing and gaining fluxes on suspended sediment depositional patterns and on hyporheic exchange fluxes. Experiments were conducted in a laboratory flume system (640 cm long and 30 cm wide) that has a capacity to enforce losing or gaining flow conditions. The flume was packed with homogenous sand, while suspended sediment deposition was evaluated by adding kaolinite particles to the water and following the deposition rate by particle disappearance from the bulk water. Consecutive additions of kaolinite were done, while hyporheic exchange fluxes were evaluated by conducting NaCl tracer experiments between each kaolinite additions. Furthermore, dye injections were used to visualize the flow patterns in the streambed using time-lapse photography through the transparent sidewalls of the flume. Hyporheic exchange and particle tracking simulations were done to assess the results of particle deposition and feedbacks between hyporheic flow, particle transport, and streambed clogging. Experimental results showed that the deposition of clay decreases with increasing amount of clay concentration in the sediment. Hyporheic exchange flux decreases linearly with increasing amount of clay added to the system and the region of active hyporheic exchange was confined to the upper part of the sediment. Understanding the particle deposition mechanisms under losing and gaining flow condition are expected to improve our predictive ability to capture the dynamics of streambed characteristics, which has implications to sediment transport, biogeochemical processes and hyporheic ecology.

  13. Non cardiopatic and cardiopatic beta thalassemic patients: quantitative and qualitative cardiac iron deposition evaluation with MRI.

    PubMed

    Macarini, L; Marini, S; Pietrapertosa, A; Scardapane, A; Ettorre, G C

    2005-01-01

    Cardiomyopathy is one of the major complications of b thalassaemia major as a result of transfusional iron overload. The aim of our study is to evaluate with MR if there is any difference of iron deposition signal intensity (SI) or distribution between non-cardiopathic and cardiopathic thalassaemic patients in order to establish if there is a relationship between cardiopathy and iron deposition. We studied 20 patients affected by b thalassaemia major, of whom 10 cardiopathic and 10 non-cardiopathic, and 10 healthy volunteers as control group. Serum ferritin and left ventricular ejection fraction were calculated in thalassaemic patients. All patients were examined using a 1.5 MR unit with ECG-gated GE cine-MR T2*-weighted, SE T1-weighted and GE T2*-weighted sequences. In all cases, using an adequate ROI, the myocardial and skeletal muscle signal intensity (SI), the myocardial/skeletal muscle signal intensity ratio (SIR) and the SI average of the myocardium and skeletal muscle were calculated for every study group. The qualitative evaluation of iron deposition distribution was independently performed by three radiologists who analyzed the extension, the site and the morphology of iron deposition on the MR images and reported their observations on the basis of a four-level rating scale: 0 (absent), 1 (limited), 2 (partial), 3 (widespread deposition). The result of quantitative and qualitative evaluations were analysed with statistical tests. Cardiac iron deposition was found in 8/10 non-cardiopathic thalassaemic patients and in all cardiopathic thalassaemic patients. We noticed a significant SI difference (p>0.05) between the healthy volunteer control group and the thalassaemic patients with iron deposition, but no significant SI difference in iron deposition between non-cardiopathic and cardiopathic thalassaemic patients in the areas evaluated. The qualitative evaluation revealed a different distribution of iron deposition between the two thalassaemic groups, with more widespread distribution in cardiopathic patients. We found cardiac iron deposition also in non-cardiopathic b thalassaemic patients and a qualitative difference in cardiac iron distribution between non-cardiopathic and cardiopathic patients. The qualitative evaluation of cardiac iron deposition was useful for an easier classification of the disease, bypassing the SI quantitative value which is affected by the extremely uneven distribution of iron deposition and by the sampling technique used. MR evaluation of non-cardiopathic thalassaemic patients may be useful to evaluate early iron deposition and to establish the most suitable chelation therapy.

  14. Results of Radiocarbon Dating of Holocene Deposits from the Sea of Azov

    NASA Astrophysics Data System (ADS)

    Matishov, G. G.; Kovaleva, G. V.; Arslanov, Kh. A.; Dyuzhova, K. V.; Polshin, V. V.; Zolotareva, A. E.

    2018-04-01

    New data on the absolute age of Quaternary bottom deposits from the Sea of Azov based on the results of radiocarbon analysis (14C) are presented. Overall, 67 radiocarbon dating of bottom deposits of New and Ancient Azov Ages were obtained. The thickness of sediments of the New Azov Age and their distribution over different areas of the Sea of Azov was determined during the study; the results obtained were compared with the reference data available. An integrated approach to the study of deposits, based on the combination of the biostratigraphy methods and the results of absolute age dating, was applied.

  15. Age differences in IDA savings outcomes: findings from the American Dream Demonstration.

    PubMed

    Putnam, Michelle; Sherraden, Michael; Zhang, Lin; Morrow-Howell, Nancy

    2008-01-01

    This study aims to develop a greater understanding of age differences in savings outcomes within Individual Development Accounts (IDAs). Participant data from the American Dream Demonstration (ADD) are examined for age differences in accumulated net deposits, average monthly net deposits, and deposit frequency. ADDprogram data are examined for savings match rates, monthly savings targets, direct deposit, and hours of financial education offered. Results indicate that, on average, older IDA participants have better savings outcomes than younger participants. Findings from this study suggest that impoverished middleaged and older adults can save if provided an opportunity and incentives. However, success will depend on the characteristics of the programs.

  16. Particle deposition onto people in a transit venue

    DOE PAGES

    Liljegren, James C.; Brown, David F.; Lunden, Melissa M.; ...

    2016-07-11

    Following the release of an aerosolized biological agent in a transit venue, material deposited on waiting passengers and subsequently shed from their clothing may significantly magnify the scope and consequences of such an attack. Published estimates of the relevant particle deposition and resuspension parameters for complex, real-world environments such as a transit facility are non-existent. In this study, measurements of particle deposition velocity onto cotton fabric samples affixed to stationary and walking persons in a large multimodal transit facility were obtained for tracer particle releases carried out as part of a larger study of subway airflows and particulate transport. Depositionmore » velocities onto cotton and wool were also obtained using a novel automated sampling mechanism deployed at locations in the transit facility and throughout the subway. The data revealed higher deposition velocities than have been previously reported for people exposed in test chambers or office environments. Furthermore, the relatively high rates of deposition onto people in a transit venue obtained in this study suggest it is possible that fomite transport by subway and commuter/regional rail passengers could present a significant mechanism for rapidly dispersing a biological agent throughout a metropolitan area and beyond.« less

  17. Particle deposition onto people in a transit venue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liljegren, James C.; Brown, David F.; Lunden, Melissa M.

    Following the release of an aerosolized biological agent in a transit venue, material deposited on waiting passengers and subsequently shed from their clothing may significantly magnify the scope and consequences of such an attack. Published estimates of the relevant particle deposition and resuspension parameters for complex, real-world environments such as a transit facility are non-existent. In this study, measurements of particle deposition velocity onto cotton fabric samples affixed to stationary and walking persons in a large multimodal transit facility were obtained for tracer particle releases carried out as part of a larger study of subway airflows and particulate transport. Depositionmore » velocities onto cotton and wool were also obtained using a novel automated sampling mechanism deployed at locations in the transit facility and throughout the subway. The data revealed higher deposition velocities than have been previously reported for people exposed in test chambers or office environments. Furthermore, the relatively high rates of deposition onto people in a transit venue obtained in this study suggest it is possible that fomite transport by subway and commuter/regional rail passengers could present a significant mechanism for rapidly dispersing a biological agent throughout a metropolitan area and beyond.« less

  18. Mass-transport deposits and reservoir quality of Upper Cretaceous Chalk within the German Central Graben, North Sea

    NASA Astrophysics Data System (ADS)

    Arfai, Jashar; Lutz, Rüdiger; Franke, Dieter; Gaedicke, Christoph; Kley, Jonas

    2016-04-01

    The architecture of intra-chalk deposits in the `Entenschnabel' area of the German North Sea is studied based on 3D seismic data. Adapted from seismic reflection characteristics, four types of mass-transport deposits (MTDs) are distinguished, i.e. slumps, slides, channels and frontal splay deposits. The development of these systems can be linked to inversion tectonics and halotectonic movements of Zechstein salt. Tectonic uplift is interpreted to have caused repeated tilting of the sea floor. This triggered large-scale slump deposition during Turonian-Santonian times. Slump deposits are characterised by chaotic reflection patterns interpreted to result from significant stratal distortion. The south-eastern study area is characterised by a large-scale frontal splay complex. This comprises a network of shallow channel systems arranged in a distributive pattern. Several slide complexes are observed near the Top Chalk in Maastrichtian and Danian sediments. These slides are commonly associated with large incisions into the sediments below. Best reservoir properties with high producible porosities are found in the reworked chalk strata, e.g. Danish North Sea, therefore MTDs detected in the study area are regarded as potential hydrocarbon reservoirs and considered as exploration targets.

  19. Comparative study of solution-phase and vapor-phase deposition of aminosilanes on silicon dioxide surfaces.

    PubMed

    Yadav, Amrita R; Sriram, Rashmi; Carter, Jared A; Miller, Benjamin L

    2014-02-01

    The uniformity of aminosilane layers typically used for the modification of hydroxyl bearing surfaces such as silicon dioxide is critical for a wide variety of applications, including biosensors. However, in spite of many studies that have been undertaken on surface silanization, there remains a paucity of easy-to-implement deposition methods reproducibly yielding smooth aminosilane monolayers. In this study, solution- and vapor-phase deposition methods for three aminoalkoxysilanes differing in the number of reactive groups (3-aminopropyl triethoxysilane (APTES), 3-aminopropyl methyl diethoxysilane (APMDES) and 3-aminopropyl dimethyl ethoxysilane (APDMES)) were assessed with the aim of identifying methods that yield highly uniform and reproducible silane layers that are resistant to minor procedural variations. Silane film quality was characterized based on measured thickness, hydrophilicity and surface roughness. Additionally, hydrolytic stability of the films was assessed via these thickness and contact angle values following desorption in water. We found that two simple solution-phase methods, an aqueous deposition of APTES and a toluene based deposition of APDMES, yielded high quality silane layers that exhibit comparable characteristics to those deposited via vapor-phase methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Surface modification of biomaterials by pulsed laser ablation deposition and plasma/gamma polymerization

    NASA Astrophysics Data System (ADS)

    Rau, Kaustubh R.

    Surface modification of stainless-steel was carried out by two different methods: pulsed laser ablation deposition (PLAD) and a combined plasma/gamma process. A potential application was the surface modification of endovascular stents, to enhance biocompatibility. The pulsed laser ablation deposition process, had not been previously reported for modifying stents and represented a unique and potentially important method for surface modification of biomaterials. Polydimethylsiloxane (PDMS) elatomer was studied using the PLAD technique. Cross- linked PDMS was deemed important because of its general use for biomedical implants and devices as well as in other fields. Furthermore, PDMS deposition using PLAD had not been previously studied and any information gained on its ablation characteristics could be important scientifically and technologically. The studies reported here showed that the deposited silicone film properties had a dependence on the laser energy density incident on the target. Smooth, hydrophobic, silicone-like films were deposited at low energy densities (100-150 mJ/cm2). At high energy densities (>200 mJ/cm2), the films had an higher oxygen content than PDMS, were hydrophilic and tended to show a more particulate morphology. It was also determined that (1)the deposited films were stable and extremely adherent to the substrate, (2)silicone deposition exhibited an `incubation effect' which led to the film properties changing with laser pulse number and (3)films deposited under high vacuum were similar to films deposited at low vacuum levels. The mechanical properties of the PLAD films were determined by nanomechanical measurements which are based on the Atomic Force Microscope (AFM). From these measurements, it was possible to determine the modulus of the films and also study their scratch resistance. Such measurement techniques represent a significant advance over current state-of-the-art thin film characterization methods. An empirical model for ablation was developed for the 248 nm laser irradiation of silicone. The model demonstrated a good fit to the experimental data and showed that silicone underwent ablation by a thermal mechanism. In addition to PLAD studies, functionalization of stainless steel was carried out by a combined plasma/gamma method involving deposition of a hexane plasma polymer by RF plasma polymerization, followed by gamma radiation graft polymerization of methacrylic acid. The hydrograft modified surfaces were further modified by chemisorption reactions with poly(ethylene imine) to produce amine-rich surfaces. Bovine serum albumin was then bound via amino groups using glutaraldehyde coupling. A streaming potential cell was also built and used to measure the zeta potential of these ionic surfaces.

  1. A Study on the Effect of Electrodeposition Parameters on the Morphology of Porous Nickel Electrodeposits

    NASA Astrophysics Data System (ADS)

    Sengupta, Srijan; Patra, Arghya; Jena, Sambedan; Das, Karabi; Das, Siddhartha

    2018-03-01

    In this study, the electrodeposition of nickel foam by dynamic hydrogen bubble-template method is optimized, and the effects of key deposition parameters (applied voltage and deposition time) and bath composition (concentration of Ni2+, pH of the bath, and roles of Cl- and SO4 2- ions) on pore size, distribution, and morphology and crystal structure are studied. Nickel deposit from 0.1 M NiCl2 bath concentration is able to produce the honeycomb-like structure with regular-sized holes. Honeycomb-like structure with cauliflower morphology is deposited at higher applied voltages of 7, 8, and 9 V; and a critical time (>3 minutes) is required for the development of the foamy structure. Compressive residual stresses are developed in the porous electrodeposits after 30 seconds of deposition time (-189.0 MPa), and the nature of the residual stress remains compressive upto 10 minutes of deposition time (-1098.6 MPa). Effect of pH is more pronounced in a chloride bath compared with a sulfate bath. The increasing nature of pore size in nickel electrodeposits plated from a chloride bath (varying from 21 to 48 μm), and the constant pore size (in the range of 22 to 24 μm) in deposits plated from a sulfate bath, can be ascribed to the striking difference in the magnitude of the corresponding current-time profiles.

  2. The quantitative studies on gas explosion suppression by an inert rock dust deposit.

    PubMed

    Song, Yifan; Zhang, Qi

    2018-07-05

    The traditional defence against propagating gas explosions is the application of dry rock dust, but not much quantitative study on explosion suppression of rock dust has been made. Based on the theories of fluid dynamics and combustion, a simulated study on the propagation of premixed gas explosion suppressed by deposited inert rock dust layer is carried out. The characteristics of the explosion field (overpressure, temperature, flame speed and combustion rate) at different deposited rock dust amounts are investigated. The flame in the pipeline cannot be extinguished when the deposited rock dust amount is less than 12 kg/m 3 . The effects of suppressing gas explosion become weak when the deposited rock dust amount is greater than 45 kg/m 3 . The overpressure decreases with the increase of the deposited rock dust amounts in the range of 18-36 kg/m 3 and the flame speed and the flame length show the same trends. When the deposited rock dust amount is 36 kg/m 3 , the overpressure can be reduced by 40%, the peak flame speed by 50%, and the flame length by 42% respectively, compared with those of the gas explosion of stoichiometric mixture. In this model, the effective raised dust concentrations to suppress explosion are 2.5-3.5 kg/m 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Low-Volatility Model Demonstrates Humidity Affects Environmental Toxin Deposition on Plastics at a Molecular Level.

    PubMed

    Hankett, Jeanne M; Collin, William R; Yang, Pei; Chen, Zhan; Duhaime, Melissa

    2016-02-02

    Despite the ever-increasing prevalence of plastic debris and endocrine disrupting toxins in aquatic ecosystems, few studies describe their interactions in freshwater environments. We present a model system to investigate the deposition/desorption behaviors of low-volatility lake ecosystem toxins on microplastics in situ and in real time. Molecular interactions of gas-phase nonylphenols (NPs) with the surfaces of two common plastics, poly(styrene) and poly(ethylene terephthalate), were studied using quartz crystal microbalance and sum frequency generation vibrational spectroscopy. NP point sources were generated under two model environments: plastic on land and plastic on a freshwater surface. We found the headspace above calm water provides an excellent environment for NP deposition and demonstrate significant NP deposition on plastic within minutes at relevant concentrations. Further, NP deposits and orders differently on both plastics under humid versus dry environments. We attributed the unique deposition behaviors to surface energy changes from increased water content during the humid deposition. Lastly, nanograms of NP remained on microplastic surfaces hours after initial NP introduction and agitating conditions, illustrating feasibility for plastic-bound NPs to interact with biota and surrounding matter. Our model studies reveal important interactions between low-volatility environmental toxins and microplastics and hold potential to correlate the environmental fate of endocrine disrupting toxins in the Great Lakes with molecular behaviors.

  4. Structural, Optical, and Vibrational Properties of ZnO Microrods Deposited on Silicon Substrate

    NASA Astrophysics Data System (ADS)

    Lahlouh, Bashar I.; Ikhmayies, Shadia J.; Juwhari, Hassan K.

    2018-03-01

    Zinc oxide (ZnO) microrod films deposited by spray pyrolysis on silicon substrate at 350 ± 5°C have been studied and evaluated, and compared with thin films deposited by electron beam to confirm the identity of the studied samples. The films were characterized using different techniques. The microrod structure was studied and confirmed by scanning electron microscopy. Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction analysis confirmed successful deposition of ZnO thin films with the expected wurtzite structure. Reflectance data showed a substantial drop across the whole studied wavelength range. The photoluminescence (PL) spectra of the studied samples showed a peak at ˜ 360 nm, representing a signature of ZnO. The shift in the PL peak position is due to defects and other species present in the films, as confirmed by FTIR and energy-dispersive x-ray spectroscopy results.

  5. Atmospheric wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan Province, China.

    PubMed

    Qiao, Xue; Xiao, Weiyang; Jaffe, Daniel; Kota, Sri Harsha; Ying, Qi; Tang, Ya

    2015-04-01

    In the last two decades, remarkable ecological changes have been observed in Jiuzhaigou National Nature Reserve (JNNR). Some of these changes might be related to excessive deposition of sulfur (S) and nitrogen (N), but the relationship has not been quantified due to lack of monitoring data, particularly S and N deposition data. In this study, we investigated the concentrations, fluxes, and sources of S and N wet deposition in JNNR from April 2010 to May 2011. The results show that SO4(2-), NO3-, and NH4+ concentrations in the wet deposition were 39.4-170.5, 6.2-34.8, and 0.2-61.2 μeq L(-1), with annual Volume-Weighted Mean (VWM) concentrations of 70.5, 12.7, and 13.4 μeq L(-1), respectively. Annual wet deposition fluxes of SO4(2-), NO3-, and NH4+ were 8.06, 1.29, and 1.39 kg S(N)ha(-1), respectively, accounting for about 90% of annual atmospheric inputs of these species at the monitoring site. The results of Positive Matrix Factorization (PMF) analysis show that fossil fuel combustion, agriculture, and aged sea salt contributed to 99% and 83% of annual wet deposition fluxes of SO4(2-) and NO3-, respectively. Agriculture alone contributed to 89% of annual wet deposition flux of NH4+. Although wet deposition in JNNR was polluted by anthropogenic acids, the acidity was largely neutralized by the Ca2+ from crust and 81% of wet deposition samples had a pH higher than 6.00. However, acid rain mainly caused by SO4(2-) continued to occur in the wet season, when ambient alkaline dust concentration was lower. Since anthropogenic emissions have elevated S and N deposition and caused acid rain in JNNR, further studies are needed to better quantify the regional sources and ecological effects of S and N deposition for JNNR. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effect of surface deposits on electromagnetic propagation in uniform ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1991-01-01

    A finite-element Galerkin formulation has been used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple dielectric surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.

  7. Surface Finish after Laser Metal Deposition

    NASA Astrophysics Data System (ADS)

    Rombouts, M.; Maes, G.; Hendrix, W.; Delarbre, E.; Motmans, F.

    Laser metal deposition (LMD) is an additive manufacturing technology for the fabrication of metal parts through layerwise deposition and laser induced melting of metal powder. The poor surface finish presents a major limitation in LMD. This study focuses on the effects of surface inclination angle and strategies to improve the surface finish of LMD components. A substantial improvement in surface quality of both the side and top surfaces has been obtained by laser remelting after powder deposition.

  8. A study of structural and mechanical properties of nano-crystalline tungsten nitride film synthesis by plasma focus

    NASA Astrophysics Data System (ADS)

    Hussnain, Ali; Singh Rawat, Rajdeep; Ahmad, Riaz; Hussain, Tousif; Umar, Z. A.; Ikhlaq, Uzma; Chen, Zhong; Shen, Lu

    2015-02-01

    Nano-crystalline tungsten nitride thin films are synthesized on AISI-304 steel at room temperature using Mather-type plasma focus system. The surface properties of the exposed substrate against different deposition shots are examined for crystal structure, surface morphology and mechanical properties using X-ray diffraction (XRD), atomic force microscope, field emission scanning electron microscope and nano-indenter. The XRD results show the growth of WN and WN2 phases and the development of strain/stress in the deposited films by varying the number of deposition shots. Morphology of deposited films shows the significant change in the surface structure with different ion energy doses (number of deposition shots). Due to the effect of different ion energy doses, the strain/stress developed in the deposited film leads to an improvement of hardness of deposited films.

  9. Effects of age and amyloid deposition on Aβ dynamics in the human central nervous system.

    PubMed

    Huang, Yafei; Potter, Rachel; Sigurdson, Wendy; Santacruz, Anna; Shih, Shirley; Ju, Yo-El; Kasten, Tom; Morris, John C; Mintun, Mark; Duntley, Stephen; Bateman, Randall J

    2012-01-01

    The amyloid hypothesis predicts that increased production or decreased clearance of β-amyloid (Aβ) leads to amyloidosis, which ultimately culminates in Alzheimer disease (AD). To investigate whether dynamic changes in Aβ levels in the human central nervous system may be altered by aging or by the pathology of AD and thus contribute to the risk of AD. Repeated-measures case-control study. Washington University School of Medicine in St Louis, Missouri. Participants with amyloid deposition, participants without amyloid deposition, and younger normal control participants. In this study, hourly cerebrospinal fluid (CSF) Aβ concentrations were compared with age, status of amyloid deposition, electroencephalography, and video recording data. Linear increases were observed over time in the Aβ levels in CSF samples obtained from the younger normal control participants and the older participants without amyloid deposition, but not from the older participants with amyloid deposition. Significant circadian patterns were observed in the Aβ levels in CSF samples obtained from the younger control participants; however, circadian amplitudes decreased in both older participants without amyloid deposition and older participants with amyloid deposition. Aβ diurnal concentrations were correlated with the amount of sleep but not with the various activities that the participants participated in while awake. A reduction in the linear increase in the Aβ levels in CSF samples that is associated with amyloid deposition and a decreased CSF Aβ diurnal pattern associated with increasing age disrupt the normal physiology of Aβ dynamics and may contribute to AD.

  10. Modeling the long-term deposition trends in US over 1990 ...

    EPA Pesticide Factsheets

    Reactive nitrogen (Nr) is very important pollutant which at the same time plays a very important role on air and water quality, human health and biological diversity. The atmospheric nitrogen deposition can cause acidification and excess eutrophication, which brings damages to the ecosystems. Quantifying the total deposition is US is still a challenge due to the lack of the long-term observation data for the dry deposition. For this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate deposition changes in US over 1990—2010. The WRF-CMAQ model was run for the continental US using a 36km by 36km horizontal grid spacing, by using a consistent emission inventory recently developed by Jia et al., (2013). We found significant decreasing trend for the total inorganic nitrogen over the East and West coast of California, and increasing trend in the East North Central. The decreased total deposition was controlled by the oxidized nitrogen, as a result of the recent consistent NOx emission reductions due to air regulations such as the Clean Air Act and the NOx State Implementation Plan, consistent with other studies (Li et al., 2016; Schwede and Lear, 2014). The increased inorganic nitrogen deposition was dominated by the reduced nitrogen, which was attributed to the unregulated increasing ammonia (NH3) emissions. The dry and wet inorganic nitrogen deposition trends also have a different spatial patterns: wet deposition was decreasi

  11. Channelization in porous media driven by erosion and deposition.

    PubMed

    Jäger, R; Mendoza, M; Herrmann, H J

    2017-01-01

    We develop and validate a new model to study simultaneous erosion and deposition in three-dimensional porous media. We study the changes of the porous structure induced by the deposition and erosion of matter on the solid surface and find that when both processes are active, channelization in the porous structure always occurs. The channels can be stable or only temporary depending mainly on the driving mechanism. Whereas a fluid driven by a constant pressure drop in general does not form steady channels, imposing a constant flux always produces stable channels within the porous structure. Furthermore we investigate how changes of the local deposition and erosion properties affect the final state of the porous structure, finding that the larger the range of wall shear stress for which there is neither erosion nor deposition, the more steady channels are formed in the structure.

  12. Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: From cyclic steps to humpback dunes

    NASA Astrophysics Data System (ADS)

    Lang, Jörg; Winsemann, Jutta

    2013-10-01

    The preservation of bedforms related to supercritical flows and hydraulic jumps is commonly considered to be rare in the geologic record, although these bedforms are known from a variety of depositional environments. This field-based study presents a detailed analysis of the sedimentary facies and stacking pattern of deposits of cyclic steps, chutes-and-pools, antidunes and humpback dunes from three-dimensional outcrops. The well exposed Middle Pleistocene successions from northern Germany comprise glacilacustrine ice-contact subaqueous fan and glacial lake-outburst flood deposits. The studied successions give new insights into the depositional architecture of bedforms related to supercritical flows and may serve as an analogue for other high-energy depositional environments such as fluvial settings, coarse-grained deltas or turbidite systems. Deposits of cyclic steps occur within the glacial lake-outburst flood succession and are characterised by lenticular scours infilled by gently to steeply dipping backsets. Cyclic steps formed due to acceleration and flow thinning when the glacial lake-outburst flood spilled over a push-moraine ridge. These bedforms are commonly laterally and vertically truncated and alternate with deposits of chutes-and-pools and antidunes. The subaqueous fan successions are dominated by laterally extensive sinusoidal waveforms, which are interpreted as deposits of aggrading stationary antidunes, which require quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by downflow divergent cross-stratification, displaying differentiation into topsets, foresets and bottomsets, and are interpreted as deposited at the transition from subcritical to supercritical flow conditions or vice versa. Gradual lateral and vertical transitions between humpback dunes and antidune deposits are very common. The absence of planar-parallel stratification in all studied successions suggests that the formation of these bedforms is suppressed in flows characterised by hydraulic jumps under highly aggradational conditions. The large-scale lateral and vertical successions of bedforms are interpreted as representing the temporal and spatial evolution of the initial supercritical flows, which was strongly affected by the occurrence of hydraulic jumps. Small-scale facies changes and the formation of individual bedforms are interpreted as controlled by fluctuating discharge, bed topography and pulsating unstable flows.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasakthi, P.; Sekar, R.; Bapu, G.N.K.Ramesh, E-mail: bapu2657@yahoo.com

    Highlights: • Nickel deposits from sulphamate solutions using pulse method are prepared. • Effect of duty cycle and frequency are studied. • XRD, SEM and AFM of the nickel deposits are characterized. • Corrosion characteristics of the nickel deposit are reported. - Abstract: Nickel deposits have been obtained on mild steel substrate by pulse current (PC) electrodeposition method using nickel sulphamate electrolyte. Micro hardness values increased with decreasing duty cycle and pulse frequency. X-ray diffraction studies revealed that (2 0 0) plane was predominant and the nickel deposit obtained at low duty cycle and low frequency has the smallest grainmore » size. The surface morphology of the coatings was explored by scanning electron microscopy (SEM) and atomic force microscopy. These studies showed that the microstructure of the nickel coatings changed from pyramidal structure to homogeneous structure with increasing duty cycle and pulse frequencies. The corrosion resistance of coatings was evaluated by potentiodynamic polarization and electrochemical impedance studies in 3.5 wt% sodium chloride (NaCl) solutions. An enhancement of the corrosion resistance, charge-transfer resistance and wear resistance has been obtained at low duty cycle and low frequencies.« less

  14. Reconnaissance study of the geology of U.S. vermiculite deposits: Are asbestos minerals common constituents?

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Lowers, Heather; Bush, Alfred L.; Meeker, Gregory P.; Plumlee, Geoffrey S.; Brownfield, Isabelle K.; Sutley, Stephen J.

    2002-01-01

    Unusually high incidences of asbestos-related mortality and respiratory disease in the small town of Libby, Montana, have been linked to amphibole mineral fibers intergrown with the vermiculite deposits mined and milled near the town from 1923 to 1990. A study conducted by the U.S. Agency for Toxic Substances and Disease Registry concluded that mortality due to asbestosis in Libby mine and mill workers and residents during 1979 to 1998 was much higher than expected for a similar Montana or United States population group. Recent medical testing of past and present mineworkers and residents of Libby showed lung abnormalities in nearly one-fifth of the adult study participants. The U.S. Environmental Protection Agency, under Superfund authority, is completing sampling and cleanup of asbestos-bearing materials in the mine, mill, and town sites. The U.S. Geological Survey is conducting a study, reviewed herein, to investigate the mineral content of other U.S. vermiculite deposits and to determine if the amphibole asbestos minerals like those found in the Libby deposits are common in other vermiculite deposits.

  15. Combinatorial Characterization of TiO2 Chemical Vapor Deposition Utilizing Titanium Isopropoxide.

    PubMed

    Reinke, Michael; Ponomarev, Evgeniy; Kuzminykh, Yury; Hoffmann, Patrik

    2015-07-13

    The combinatorial characterization of the growth kinetics in chemical vapor deposition processes is challenging because precise information about the local precursor flow is usually difficult to access. In consequence, combinatorial chemical vapor deposition techniques are utilized more to study functional properties of thin films as a function of chemical composition, growth rate or crystallinity than to study the growth process itself. We present an experimental procedure which allows the combinatorial study of precursor surface kinetics during the film growth using high vacuum chemical vapor deposition. As consequence of the high vacuum environment, the precursor transport takes place in the molecular flow regime, which allows predicting and modifying precursor impinging rates on the substrate with comparatively little experimental effort. In this contribution, we study the surface kinetics of titanium dioxide formation using titanium tetraisopropoxide as precursor molecule over a large parameter range. We discuss precursor flux and temperature dependent morphology, crystallinity, growth rates, and precursor deposition efficiency. We conclude that the surface reaction of the adsorbed precursor molecules comprises a higher order reaction component with respect to precursor surface coverage.

  16. Mossbauer studies of bulk and thin-film FeTe

    NASA Technical Reports Server (NTRS)

    Aggarwal, K.; Escue, W. T.; Mendiratta, R. G.

    1978-01-01

    In study, dependence of Mossbauer parameters on film thickness and film substrate was measured and related to iron tellurium structure. Report also describes film deposition technique (flash deposition) and Mossbauer apparatus.

  17. Experimental Study of Direct Laser Deposition of Ti-6Al-4V and Inconel 718 by Using Pulsed Parameters

    PubMed Central

    Shah, Kamran; Haq, Izhar Ul; Shah, Shaukat Ali; Khan, Farid Ullah; Khan, Sikander

    2014-01-01

    Laser direct metal deposition (LDMD) has developed from a prototyping to a single metal manufacturing tool. Its potential for creating multimaterial and functionally graded structures is now beginning to be explored. This work is a first part of a study in which a single layer of Inconel 718 is deposited on Ti-6Al-4V substrate. Single layer tracks were built at a range of powder mass flow rates using a coaxial nozzle and 1.5 kW diode laser operating in both continuous and pulsed beam modes. This part of the study focused on the experimental findings during the deposition of Inconel 718 powder on Ti-6Al-4V substrate. Scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for characterization and phase identification. Residual stress measurement had been carried out to ascertain the effects of laser pulse parameters on the crack development during the deposition process. PMID:24592190

  18. Leaching of polycyclic aromatic hydrocarbons from oil shale processing waste deposit: a long-term field study.

    PubMed

    Jefimova, Jekaterina; Irha, Natalya; Reinik, Janek; Kirso, Uuve; Steinnes, Eiliv

    2014-05-15

    The leaching behavior of selected polycyclic aromatic hydrocarbons (PAHs) from an oil shale processing waste deposit was monitored during 2005-2009. Samples were collected from the deposit using a special device for leachate sampling at field conditions without disturbance of the upper layers. Contents of 16 priority PAHs in leachate samples collected from aged and fresh parts of the deposit were determined by GC-MS. The sum of the detected PAHs in leachates varied significantly throughout the study period: 19-315 μg/l from aged spent shale, and 36-151 μg/l from fresh spent shale. Among the studied PAHs the low-molecular weight compounds phenanthrene, naphthalene, acenaphthylene, and anthracene predominated. Among the high-molecular weight PAHs benzo[a]anthracene and pyrene leached in the highest concentrations. A spent shale deposit is a source of PAHs that could infiltrate into the surrounding environment for a long period of time. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Atomic layer deposition of zirconium silicate films using zirconium tetrachloride and tetra-n-butyl orthosilicate

    NASA Astrophysics Data System (ADS)

    Kim, Won-Kyu; Kang, Sang-Woo; Rhee, Shi-Woo; Lee, Nae-In; Lee, Jong-Ho; Kang, Ho-Kyu

    2002-11-01

    Atomic layer chemical vapor deposition of zirconium silicate films with a precursor combination of ZrCl4 and tetra-n-butyl orthosilicate (TBOS) was studied for high dielectric gate insulators. The effect of deposition conditions, such as deposition temperature, pulse time for purge and precursor injection on the deposition rate per cycle, and composition of the film were studied. At 400 °C, the growth rate saturated to 1.35 Å/cycle above 500 sccm of the argon purge flow rate. The growth rate, composition ratio ((Zr/Zr+Si)), and impurity contents (carbon and chlorine) saturated with the increase of the injection time of ZrCl4 and TBOS and decreased with the increased deposition temperature from 300 to 500 °C. The growth rate, composition ratio, carbon, and chlorine contents of the Zr silicate thin films deposited at 500 °C were 1.05 Å/cycle, 0.23, 1.1 at. %, and 2.1 at. %, respectively. It appeared that by using only zirconium chloride and silicon alkoxide sources, the content of carbon and chlorine impurities could not be lowered below 1%. It was also found that the incorporation rate of metal from halide source was lower than alkoxide source.

  20. Nitrogen and Sulfur Deposition Effects on Forest Biogeochemical Processes.

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.

    2014-12-01

    Chronic atmospheric deposition of nitrogen and sulfur have widely ranging biogeochemical consequences in terrestrial ecosystems. Both N and S deposition can affect plant growth, decomposition, and nitrous oxide production, with sometimes synergistic and sometimes contradictory responses; yet their separate effects are rarely isolated and their interactive biogeochemical impacts are often overlooked. For example, S deposition and consequent acidification and mortality may negate stimulation of plant growth induced by N deposition; decomposition can be slowed by both N and S deposition, though through different mechanisms; and N2O production may be stimulated directly by N and indirectly by S amendments. Recent advances in conceptual models and whole-ecosystem experiments provide novel means for disentangling the impacts of N and S in terrestrial ecosystems. Results from a new whole-ecosystem N x S- addition experiment will be presented in detail, examining differential response of tree and soil carbon storage to N and S additions. These results combine with observations from a broad array of long-term N addition studies, atmospheric deposition gradients, stable isotope tracer studies, and model analyses to inform the magnitude, controls, and stability of ecosystem C storage in response to N and S addition.

  1. Cadmium sulphide (CdS) thin films deposited by chemical bath deposition (CBD) and dip coating techniques—a comparative study

    NASA Astrophysics Data System (ADS)

    Khimani, Ankurkumar J.; Chaki, Sunil H.; Malek, Tasmira J.; Tailor, Jiten P.; Chauhan, Sanjaysinh M.; Deshpande, M. P.

    2018-03-01

    The CdS thin films were deposited on glass slide substrates by Chemical Bath Deposition and dip coating techniques. The films thickness variation with deposition time showed maximum films deposition at 35 min for both the films. The energy dispersive analysis of x-ray showed both the films to be stoichiometric. The x-ray diffraction analysis confirmed the films possess hexagonal crystal structure. The transmission electron, scanning electron and optical microscopy study showed the films deposition to be uniform. The selected area electron diffraction exhibited ring patterns stating the films to be polycrystalline in nature. The atomic force microscopy images showed surface formed of spherical grains, hills and valleys. The recorded optical absorbance spectra analysis revealed the films possess direct optical bandgap having values of 2.25 eV for CBD and 2.40 eV for dip coating. The refractive index (η), extinction coefficient (k), complex dielectric constant (ε) and optical conductivity (σ 0) variation with wavelength showed maximum photon absorption till the respective wavelengths corresponding to the optical bandgap energy values. The recorded photoluminescence spectra showed two emission peaks. All the obtained results have been discussed in details.

  2. Use of Calluna vulgaris to detect signals of nitrogen deposition across an urban-rural gradient

    NASA Astrophysics Data System (ADS)

    Power, S. A.; Collins, C. M.

    2010-05-01

    Densely populated cities can experience high concentrations of traffic-derived pollutants, with oxides of nitrogen and ammonia contributing significantly to the overall nitrogen (N) budget of urban ecosystems. This study investigated changes in the biochemistry of in situ Calluna vulgaris plants to detect signals of N deposition across an urban-rural gradient from central London to rural Surrey, UK. Foliar N concentrations and δ 15N signatures were higher, and C/N ratios lower, in urban areas receiving the highest rates of N deposition. Plant phosphorus (P) concentrations were also highest in these areas, suggesting that elevated rates of N deposition are unlikely to result in progressive P-limitation in urban habitats. Free amino acid concentrations were positively related to N deposition for asparagine, glutamine, glycine, phenylalanine, isoleucine, leucine and lysine. Overall, relationships between tissue chemistry and N deposition were similar for oxidised, reduced and total N, although the strength of relationships varied with the different biochemical indicators. The results of this study indicate that current rates of N deposition are having substantial effects on plant biochemistry in urban areas, with likely implications for the biodiversity and functioning of urban ecosystems.

  3. Gold nanoparticles deposited on glass: physicochemical characterization and cytocompatibility

    PubMed Central

    2013-01-01

    Properties of gold films sputtered under different conditions onto borosilicate glass substrate were studied. Mean thickness of sputtered gold film was measured by gravimetry, and film contact angle was determined by goniometry. Surface morphology was examined by atomic force microscopy, and electrical sheet resistance was determined by two-point technique. The samples were seeded with rat vascular smooth muscle cells, and their adhesion and proliferation were studied. Gold depositions lead to dramatical changes in the surface morphology and roughness in comparison to pristine substrate. For sputtered gold structures, the rapid decline of the sheet resistance appears on structures deposited for the times above 100 s. The thickness of deposited gold nanoparticles/layer is an increasing function of sputtering time and current. AFM images prove the creation of separated gold islands in the initial deposition phase and a continuous gold coverage for longer deposition times. Gold deposition has a positive effect on the proliferation of vascular smooth muscle cells. Largest number of cells was observed on sample sputtered with gold for 20 s and at the discharge current of 40 mA. This sample exhibits lowest contact angle, low relative roughness, and only mild increase of electrical conductivity. PMID:23705782

  4. Delivery of propellant soluble drug from a metered dose inhaler.

    PubMed Central

    Ashworth, H L; Wilson, C G; Sims, E E; Wotton, P K; Hardy, J G

    1991-01-01

    The deposition of particulate suspensions delivered from a metered dose inhaler has been investigated extensively. The distribution of propellant, delivered from a metered dose inhaler, was studied by radiolabelling it with technetium-99m hexamethylpropyleneamine oxime. Andersen sampler measurements indicated that half of the dose was associated with particles in the size range 0.5-5 microns diameter. The preparation was administered to healthy subjects by inhalation and deposition was monitored with a gamma camera. Each lung image was divided into an inner, mid, and peripheral zone. The effects on deposition of varying the size of the delivery orifice (0.46, 0.61, and 0.76 mm internal diameters) and the effect of attaching a spacer were assessed. Lung deposition was independent of the orifice size within the actuator. Without the spacer the average dose deposited in the lungs was 39%, with 15% penetrating into the peripheral part of the lungs. Attachment of the spacer to the mouth-piece increased the mean lung deposition to 57% and reduced oropharyngeal deposition. The study has shown that propellant soluble drugs can be delivered efficiently to the lungs from a metered dose inhaler. Images PMID:2038731

  5. Spatial pattern of nitrogen deposition flux over Czech forests: a novel approach accounting for unmeasured nitrogen species

    NASA Astrophysics Data System (ADS)

    Hůnová, Iva; Stoklasová, Petra; Kurfürst, Pavel; Vlček, Ondřej; Schovánková, Jana; Stráník, Vojtěch

    2015-04-01

    Nitrogen plays an important role in the biogeochemistry of forests as an essential plant nutrient and indispensable substance for many reactions in living cell. Most temperate forests are N-limited (Townsend, 1999), and increased nitrogen deposition results in many negative environmental effects, such as eutrofication, acidification, and loss of biodiversity (Bobbink et al., 2010). The nitrogen biogeochemical cycle is still poorly understood (Fowler et al., 2014). In studies addressing the association between atmospheric deposition and its impacts on ecosystems, a reliable estimation of N deposition is a key factor of successful approach of this issue. The quantification of real deposition of nitrogen is a complicated task, however, due to several reasons: only some constituents are regularly measured, and throughfall is not a relevant proxy for estimation of the total deposition due to complicated interchange of nitrogen between forest canopy, understory, and atmosphere. There are studies estimating the total nitrogen deposition at one particular site, on the other hand, there are studies estimating the total nitrogen deposition over a larger domain, such as e.g. Europe. The studies for a middle scale, like one country, are practically lacking with few exceptions (Fowler et al., 2005). The advantage of such a country-scale approach is that measured constituents might be mapped in detail, which enhances also spatial accuracy and reliability. The ambient air quality monitoring in the Czech Republic is paid an appreciable attention (Hůnová, 2001) due to the fact, that in the recent past its territory belonged to the most polluted parts of Europe. The time trends and spatial patterns of atmospheric deposition were published (Hůnová et al. 2014). It is obvious, however, that nitrogen deposition is substantially underestimated, particularly due not fully accounted for dry and occult deposition. We present an advanced approach for estimation of spatial pattern of atmospheric nitrogen deposition flux over the Czech forests collating all available data and model results. The aim of the presented study is to provide an improved, more reliable and more realistic estimate of spatial pattern of nitrogen deposition flux over one country. This has so far been based standardly on measurements of ambient N/NOx concentrations as dry deposition proxy, and N/NH4+ and N/NO3- as wet deposition proxy. For estimate of unmeasured species contributing to dry deposition, we used an Eulerian photochemical dispersion model CAMx, the Comprehensive Air Quality Model with extensions (ESSS, 2011), coupled with a high resolution regional numeric weather prediction model Aladin (Vlček, Corbet, 2011). Contribution of fog was estimated using a geostatistical data driven model. Final maps accounting for unmeasured species clearly indicate, that so far used approach results in substantial underestimation of nitrogen deposition flux. Substitution of unmeasured nitrogen species by modeled values seems to be a plausible way for approximation of total nitrogen deposition, and getting more realistic spatial pattern as input for further studies of likely nitrogen impacts on ecosystems. Acknowledgements: We would like to acknowledge the grants GA14-12262S - Effects of changing growth conditions on tree increment, stand production and vitality - danger or opportunity for the Central-European forestry?, and NAZV QI112A168 (ForSoil) of the Czech Ministry for Agriculture for support of this contribution. The input data used for the analysis were provided by the Czech Hydrometeorological Institute. References: Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R. et al. (2010): Global Assessment of Nitrogen Deposition Effects on Terrestrial Plant Diversity: a Synthesis. Ecological Applications 20 (1), 30-59. Fowler D., O'Donoghue M., Muller J.B.A, et al. (2005): A chronology of nitrogen deposition in the UK between 1900 and 2000. Watter, Air & Soil Pollution: Focus 4, 9-23. Fowler D., Pyle J.A., Raven J.A., Sutton M.A. (2014): The global nitrogen cycle in the twenty-first century: introduction. Philosophical Transactions of the Royal Society B: Biological Sciences 368: 20130165. ESSS (2011): AirWare On-line Reference Manual. Simulation Models: CAMx (25.4.2013). http://www.ess.co.at/MANUALS/AIRWARE/PDF/CAMx.pdf. Hůnová I., Maznová J., Kurfürst P. (2014): Trends in atmospheric deposition fluxes of sulphur and nitrogen in Czech forests. Environmental Pollution 184, 668-675. Townsend A.R., ed. (1999): New Perspectives on Nitrogen Cycling in the Temperate and Tropical Americas. Kluwer Academic Publishers, Dordrecht. Vlček O., Corbet L. (2011): Porovnání výstupů Eulerovského modelu CAMx s měřeními ze staniční sítě ČR - část 1: Aerosoly. Meteorologické zprávy 64, 142-151.

  6. Uranium in the Wyoming Landscape Conservation Initiative study area, southwestern Wyoming

    USGS Publications Warehouse

    Wilson, Anna B.

    2015-10-20

    In the WLCI study area, all uranium areas except Poison Basin and Ketchum Buttes contain roll-front deposits in Eocene (56–34 Ma) sedimentary rocks. Tabular sandstone-hosted uranium deposits are also recognized within the study area.

  7. KDEP: A resource for calculating particle deposition in the respiratory tract

    DOE PAGES

    Klumpp, John A.; Bertelli, Luiz

    2017-08-01

    This study presents KDEP, an open-source implementation of the ICRP lung deposition model developed by the authors. KDEP, which is freely available to the public, can be used to calculate lung deposition values under a variety of different conditions using the ICRP methodology. The paper describes how KDEP implements this model and discusses some key points of the implementation. The published lung deposition values for intakes by workers were reproduced, and new deposition values were calculated for intakes by members of the public. KDEP can be obtained for free at github.com or by emailing the authors directly.

  8. Characterization of wet and dry deposition in the downwind of industrial sources in a dry tropical area.

    PubMed

    Singh, R K; Agrawal, M

    2001-12-19

    An atmospheric deposition study was conducted in the downwind of Shaktinagar Thermal Power Plant (STPP), Renusagar Thermal Power Plant (RTPP), and Anpara Thermal Power Plant (ATPP), at Singrauli region, Uttar Pradesh (UP), India to characterize dry and wet deposition in relation to different pollution loading. During the study period, dry and wet depositions and levels of gaseous pollutants (SO2 and NO2) were estimated across the sites. Dry deposition was collected on a monthly basis and wet deposition on an event basis. Depositions were analyzed for pH, nitrate (NO3-), ammonium (NH4+), and sulphate (SO4(2-)) contents. Dry deposition rate both collected as clearfall and throughfall varied between 0.15 to 2.28 and 0.33 to 3.48 g m(-2) day(-1), respectively, at control and maximally polluted sites. The pH of dry deposition varied from 5.81 to 6.89 during winter and 6.09 to 7.02 during summer across the sites. During the rainy season, the mean pH of clear wet deposition varied from 6.56 to 7.04 and throughfall varied from 6.81 to 7.22. The concentrations of NO2 and SO2 pollutants were highest during the winter season. Mean SO2 concentrations varied from 18 to 75 g m(-3) at control and differently polluted sites during the winter season. The variation in NO2 concentrations did not show a pattern similar to that of SO2. The highest NO2 concentration during the winter season was 50 g m(-3), observed near RTPP. NO2 concentration did not show much variation among different sites, suggesting that the sources of NO2 emission are evenly distributed along the sites. The concentrations of NH4+, NO3-, and SO4(2-) ions in dry deposition were found to be higher in summer as compared to the winter season. In dry deposition (clearfall) the concentrations of NH4+, NO3-, and SO4(2-) varied from 0.13 to 1.0, 0.81 to 1.95, and 0.82 to 3.27 mg l(-1), respectively, during winter. In wet deposition (clearfall), the above varied from 0.14 to 0.74, 0.81 to 1.82, and 0.67 to 2.70 mg l(-1), respectively. The study clearly showed that both dry and wet depositions varied between the sites and season, suggesting significant impact of industrial activities in modifying the atmospheric input. The nonacidic deposition suggests that there is no threat of acidification of the receiving ecosystem at present.

  9. Laboratory study of SO2 dry deposition on limestone and marble: Effects of humidity and surface variables

    USGS Publications Warehouse

    Spiker, E. C.; Hosker, R.P.; Weintraub, V.C.; Sherwood, S.I.

    1995-01-01

    The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3, nitrogen oxides) can be held constant. An airfoil sample holder holds up to eight stone samples (3.8 cm in diameter and 1 cm thick) in nearly identical exposure conditions. SO2 deposition on limestone was found to increase exponentially with increasing relative humidity (RH). Marble behaves similarly, but with a much lower deposition rate. Trends indicate there is little deposition below 20% RH on clean limestone and below 60% RH on clean marble. This large difference is due to the limestone's greater porosity, surface roughness, and effective surface area. These results indicate surface variables generally limit SO2 deposition below about 70% RH on limestone and below at least 95% RH on marble. Aerodynamic variables generally limit deposition at higher relative humidity or when the surface is wet.The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3, nitrogen oxides) can be held constant. An airfoil sample holder holds up to eight stone samples (3.8 cm in diameter and 1 cm thick) in nearly identical exposure conditions. SO2 deposition on limestone was found to increase exponentially with increasing relative humidity (RH). Marble behaves similarly, but with a much lower deposition rate. Trends indicate there is little deposition below 20% RH on clean limestone and below 60% RH on clean marble. This large difference is due to the limestone's greater porosity, surface roughness, and effective surface area. These results indicate surface variables generally limit SO2 deposition below about 70% RH on limestone and below at least 95% RH on marble. Aerodynamic variables generally limit deposition at higher relative humidity or when the surface is wet.

  10. Electroless deposition of Ni Cu P alloy and study of the influences of some parameters on the properties of deposits

    NASA Astrophysics Data System (ADS)

    Ashassi-Sorkhabi, H.; Dolati, H.; Parvini-Ahmadi, N.; Manzoori, J.

    2002-01-01

    Cupronickel alloys are known for their excellent corrosion resistance, especially in marine atmosphere. The development of an appropriate electroless bath involves the use of a reducing agent, complexing and stabilizing compounds and metallic salts. In this work, autocatalytic deposition of Ni-Cu-P alloys (28-95 wt.% Ni, 66-0 wt.% Cu, 7.5-3 wt.% P) has been carried out on 302 b steel sheets from bath containing: NiCl 2·6H 2O, CuCl 2·2H 2O, NaH 2PO 2, Na citrate, sulphosalicilic acid and triethanolamine. The effects of pH, temperature, and bath composition on the hardness and the composition of deposits have been studied. In addition, the deposition rates of alloy, nickel, copper and phosphorus were investigated and optimum conditions were obtained. The average rate of alloy deposition was 9 mg cm -2 h -1 and the optimum pH and temperature were 8.5 and 80 °C, respectively. The chemical stability of bath was desirable, and no spontaneous decomposition occurred. The changes in the structure of deposit by heat treatment were studied by the X-ray diffraction (XRD) method. The XRD patterns indicate that the copper content affects the structure changes. With increasing copper content, the phosphorus content decreased and the crystallinity of the deposits grew. After heat treatment of alloys with lower copper content at 400 °C for 1 h, the crystallization to Ni 3P was observed.

  11. Pyroglutamate-3 Amyloid-β Deposition in the Brains of Humans, Non-Human Primates, Canines, and Alzheimer Disease–Like Transgenic Mouse Models

    PubMed Central

    Frost, Jeffrey L.; Le, Kevin X.; Cynis, Holger; Ekpo, Elizabeth; Kleinschmidt, Martin; Palmour, Roberta M.; Ervin, Frank R.; Snigdha, Shikha; Cotman, Carl W.; Saido, Takaomi C.; Vassar, Robert J.; George-Hyslop, Peter St.; Ikezu, Tsuneya; Schilling, Stephan; Demuth, Hans-Ulrich; Lemere, Cynthia A.

    2014-01-01

    Amyloid-β (Aβ) peptides, starting with pyroglutamate at the third residue (pyroGlu-3 Aβ), are a major species deposited in the brain of Alzheimer disease (AD) patients. Recent studies suggest that this isoform shows higher toxicity and amyloidogenecity when compared to full-length Aβ peptides. Here, we report the first comprehensive and comparative IHC evaluation of pyroGlu-3 Aβ deposition in humans and animal models. PyroGlu-3 Aβ immunoreactivity (IR) is abundant in plaques and cerebral amyloid angiopathy of AD and Down syndrome patients, colocalizing with general Aβ IR. PyroGlu-3 Aβ is further present in two nontransgenic mammalian models of cerebral amyloidosis, Caribbean vervets, and beagle canines. In addition, pyroGlu-3 Aβ deposition was analyzed in 12 different AD-like transgenic mouse models. In contrast to humans, all transgenic models showed general Aβ deposition preceding pyroGlu-3 Aβ deposition. The findings varied greatly among the mouse models concerning age of onset and cortical brain region. In summary, pyroGlu-3 Aβ is a major species of β-amyloid deposited early in diffuse and focal plaques and cerebral amyloid angiopathy in humans and nonhuman primates, whereas it is deposited later in a subset of focal and vascular amyloid in AD-like transgenic mouse models. Given the proposed decisive role of pyroGlu-3 Aβ peptides for the development of human AD pathology, this study provides insights into the usage of animal models in AD studies. PMID:23747948

  12. Reviews and new metallogenic models of mineral deposits in South China: An introduction

    NASA Astrophysics Data System (ADS)

    Hu, Rui-Zhong; Chen, Wei Terry; Xu, De-Ru; Zhou, Mei-Fu

    2017-04-01

    In South China, the Yangtze and Cathaysia blocks were welded together along the Jiangnan Fold Belt during Neoproterozoic time (∼830 Ma). Large-scale mineralization in these two blocks occurred from Proterozoic to Cenozoic, making the region one of the most important polymetallic metallogenic provinces in the world. Of particular importance are world-class deposits of iron-oxide copper gold (IOCG), sediment-hosted Mn-P-Al-(Ni, Mo, PGE), syenite-carbonatite-related REE, felsic intrusion-related Sn-W-Mo-Cu-Fe-Pb-Zn, mafic intrusion-related V-Ti-Fe and Cu-Ni-PGE and low-temperature hydrothermal Pb, Zn, Au, and Sb (Fig. 1). In addition, the Ta-Nb, Hg, As, Tl and U deposits in South China are among the world largest of these kinds. Because of these deposits, South China has been a focus of researches for many years. Publications before 2005 were mostly restricted in Chinese. In the past decade, some case studies on some world-class deposits in South China are available in international journals. These recent studies have advanced our understanding of their mode of formation. However, some important issues regarding the timing, tectonic setting and mechanisms of metal concentration still remain poorly understood. This special issue brings together some of the latest information on these topics, including major review papers on specific types of mineralization and several papers dealing with some specific deposits in the region. We anticipate that this issue will generate more interests in the studies of mineral deposits in South China. In this introduction, we outline the tectonic framework and associated deposits.

  13. Dry deposition of gaseous oxidized mercury in Western Maryland.

    PubMed

    Castro, Mark S; Moore, Chris; Sherwell, John; Brooks, Steve B

    2012-02-15

    The purpose of this study was to directly measure the dry deposition of gaseous oxidized mercury (GOM) in western Maryland. Annual estimates were made using passive ion-exchange surrogate surfaces and a resistance model. Surrogate surfaces were deployed for seventeen weekly sampling periods between September 2009 and October 2010. Dry deposition rates from surrogate surfaces ranged from 80 to 1512 pgm(-2)h(-1). GOM dry deposition rates were strongly correlated (r(2)=0.75) with the weekly average atmospheric GOM concentrations, which ranged from 2.3 to 34.1 pgm(-3). Dry deposition of GOM could be predicted from the ambient air concentrations of GOM using this equation: GOM dry deposition (pgm(-2)h(-1))=43.2 × GOM concentration-80.3. Dry deposition velocities computed using GOM concentrations and surrogate surface GOM dry deposition rates, ranged from 0.2 to 1.7 cms(-1). Modeled dry deposition rates were highly correlated (r(2)=0.80) with surrogate surface dry deposition rates. Using the overall weekly average surrogate surface dry deposition rate (369 ± 340 pg m(-2)h(-1)), we estimated an annual GOM dry deposition rate of 3.2 μg m(-2)year(-1). Using the resistance model, we estimated an annual GOM dry deposition rate of 3.5 μg m(-2)year(-1). Our annual GOM dry deposition rates were similar to the dry deposition (3.3 μg m(-2)h(-1)) of gaseous elemental mercury (GEM) at our site. In addition, annual GOM dry deposition was approximately 1/2 of the average annual wet deposition of total mercury (7.7 ± 1.9 μg m(-2)year(-1)) at our site. Total annual mercury deposition from dry deposition of GOM and GEM and wet deposition was approximately 14.4 μg m(-2)year(-1), which was similar to the average annual litterfall deposition (15 ± 2.1 μg m(-2)year(-1)) of mercury, which was also measured at our site. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Precipitation of lead-zinc ores in the Mississippi Valley-type deposit at Treves, Cevennes region of southern France

    USGS Publications Warehouse

    Leach, D.; Macquar, J.-C.; Lagneau, V.; Leventhal, J.; Emsbo, P.; Premo, W.

    2006-01-01

    The Trèves zinc–lead deposit is one of several Mississippi Valley-type (MVT) deposits in the Cévennes region of southern France. Fluid inclusion studies show that the ore was deposited at temperatures between approximately 80 and 150°C from a brine that derived its salinity mainly from the evaporation of seawater past halite saturation. Lead isotope studies suggest that the metals were extracted from local basement rocks. Sulfur isotope data and studies of organic matter indicate that the reduced sulfur in the ores was derived from the reduction of Mesozoic marine sulfate by thermochemical sulfate reduction or bacterially mediated processes at a different time or place from ore deposition. The large range of δ34S values determined for the minerals in the deposit (12.2–19.2‰ for barite, 3.8–13.8‰ for sphalerite and galena, and 8.7 to −21.2‰ for pyrite), are best explained by the mixing of fluids containing different sources of sulfur. Geochemical reaction path calculations, based on quantitative fluid inclusion data and constrained by field observations, were used to evaluate possible precipitation mechanisms. The most important precipitation mechanism was probably the mixing of fluids containing different metal and reduced sulfur contents. Cooling, dilution, and changes in pH of the ore fluid probably played a minor role in the precipitation of ores. The optimum results that produced the most metal sulfide deposition with the least amount of fluid was the mixing of a fluid containing low amounts of reduced sulfur with a sulfur-rich, metal poor fluid. In this scenario, large amounts of sphalerite and galena are precipitated, together with smaller quantities of pyrite precipitated and dolomite dissolved. The relative amounts of metal precipitated and dolomite dissolved in this scenario agree with field observations that show only minor dolomite dissolution during ore deposition. The modeling results demonstrate the important control of the reduced sulfur concentration on the Zn and Pb transport capacity of the ore fluid and the volumes of fluid required to form the deposit. The studies of the Trèves ores provide insights into the ore-forming processes of a typical MVT deposit in the Cévennes region. However, the extent to which these processes can be extrapolated to other MVT deposits in the Cévennes region is problematic. Nevertheless, the evidence for the extensive migration of fluids in the basement and sedimentary cover rocks in the Cévennes region suggests that the ore forming processes for the Trèves deposit must be considered equally viable possibilities for the numerous fault-controlled and mineralogically similar MVT deposits in the Cévennes region.

  15. USGS scientists study sediment deposited by 2004 Indian Ocean tsunami

    USGS Publications Warehouse

    2005-01-01

    In January, U.S. Geological Survey (USGS) scientists traveled to countries on the Indian Ocean to study sediment deposited by the devastating tsunami of December 26, 2004. They hope to gain knowledge that will help them to identify ancient tsunami deposits in the geologic record—which extends much farther into the past than written records—and so compile a history of tsunamis that can be used to assess a region's future tsunami risk.

  16. Modeling electrochemical deposition inside nanotubes to obtain metal-semiconductor multiscale nanocables or conical nanopores.

    PubMed

    Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter

    2005-08-04

    Nanocables with a radial metal-semiconductor heterostructure have recently been prepared by electrochemical deposition inside metal nanotubes. First, a bare nanoporous polycarbonate track-etched membrane is coated uniformly with a metal film by electroless deposition. The film forms a working electrode for further deposition of a semiconductor layer that grows radially inside the nanopore when the deposition rate is slow. We propose a new physical model for the nanocable synthesis and study the effects of the deposited species concentration, potential-dependent reaction rate, and nanopore dimensions on the electrochemical deposition. The problem involves both axial diffusion through the nanopore and radial transport to the nanopore surface, with a surface reaction rate that depends on the axial position and the time. This is so because the radial potential drop across the deposited semiconductor layer changes with the layer thickness through the nanopore. Since axially uniform nanocables are needed for most applications, we consider the relative role of reaction and axial diffusion rates on the deposition process. However, in those cases where partial, empty-core deposition should be desirable (e.g., for producing conical nanopores to be used in single nanoparticle detection), we give conditions where asymmetric geometries can be experimentally realized.

  17. Surface roughness analysis of SiO2 for PECVD, PVD and IBD on different substrates

    NASA Astrophysics Data System (ADS)

    Amirzada, Muhammad Rizwan; Tatzel, Andreas; Viereck, Volker; Hillmer, Hartmut

    2016-02-01

    This study compares surface roughness of SiO2 thin layers which are deposited by three different processes (plasma-enhanced chemical vapor deposition, physical vapor deposition and ion beam deposition) on three different substrates (glass, Si and polyethylene naphthalate). Plasma-enhanced chemical vapor deposition (PECVD) processes using a wide range of deposition temperatures from 80 to 300 °C have been applied and compared. It was observed that the nature of the substrate does not influence the surface roughness of the grown layers very much. It is also perceived that the value of the surface roughness keeps on increasing as the deposition temperature of the PECVD process increases. This is due to the increase in the surface diffusion length with the rise in substrate temperature. The layers which have been deposited on Si wafer by ion beam deposition (IBD) process are found to be smoother as compared to the other two techniques. The layers which have been deposited on the glass substrates using PECVD reveal the highest surface roughness values in comparison with the other substrate materials and techniques. Different existing models describing the dynamics of clusters on surfaces are compared and discussed.

  18. Atmospheric dry deposition in the vicinity of the Salton Sea, California - II: Measurement and effects of an enhanced evaporation system

    USGS Publications Warehouse

    Alonso, R.; Bytnerowicz, A.; Yee, J.L.; Boarman, W.I.

    2005-01-01

    A study was conducted to determine the effects of salt spray drift from pilot technologies employed by the US Bureau of Reclamation on deposition rates of various air-born ions. An enhanced evaporation system (EES) was tested in the field at the Salton Sea, California. Dry deposition of NO3-, NH4+, SO42-, Cl-, Ca2+, Na+, K+ and Se was assessed by using nylon filters and branches of natural vegetation exposed for one-week long periods. The simultaneous exposure of both lyophilized branches and branches of live plants offered important information highlighting the dynamics of deposited ions on vegetation. The EES significantly increased the deposition rates of Cl-, SO42- and Na+ in an area of about 639-1062 m surrounding the sprayers. Similarly, higher deposition of Ca 2+ and K+ caused by the EES was detected only when deposition was assessed using nylon filters or lyophilized branches. Deposition fluxes of NO3-, NH4+ and Se were not affected by the spraying system. Techniques for measuring dry deposition and calculating landscape-level depositional loads in non-forested systems need further development. ?? 2005 Elsevier Ltd. All rights reserved.

  19. Aerosol Deposition in Health and Disease

    PubMed Central

    2012-01-01

    Abstract The success of inhalation therapy is not only dependent upon the pharmacology of the drugs being inhaled but also upon the site and extent of deposition in the respiratory tract. This article reviews the main mechanisms affecting the transport and deposition of inhaled aerosol in the human lung. Aerosol deposition in both the healthy and diseased lung is described mainly based on the results of human studies using nonimaging techniques. This is followed by a discussion of the effect of flow regime on aerosol deposition. Finally, the link between therapeutic effects of inhaled drugs and their deposition pattern is briefly addressed. Data show that total lung deposition is a poor predictor of clinical outcome, and that regional deposition needs to be assessed to predict therapeutic effectiveness. Indeed, spatial distribution of deposited particles and, as a consequence, drug efficiency is strongly affected by particle size. Large particles (>6 μm) tend to mainly deposit in the upper airway, limiting the amount of drugs that can be delivered to the lung. Small particles (<2 μm) deposit mainly in the alveolar region and are probably the most apt to act systemically, whereas the particle in the size range 2–6 μm are be best suited to treat the central and small airways. PMID:22686623

  20. The erosion behaviour of biologically active sewer sediment deposits: observations from a laboratory study.

    PubMed

    Banasiak, Robert; Verhoeven, Ronny; De Sutter, Renaat; Tait, Simon

    2005-12-01

    The erosion behaviour of various fine-grained sediment deposits has been investigated in laboratory experiments. This work mainly focused on tests using sewer sediment in which strong biochemical reactions were observed during the deposit formation period. A small number of initial tests were conducted in which the deposits were made from mixtures of "clean" mineral and organic sediments. The erosion behaviour observed in these tests was compared with the erosion characteristics for sediments taken from deposits in a sewer. The impact of the biological processes on physical properties such as bulk density, water content, deposit structure and the erosive behaviour as a function of bed shear stress are quantified and discussed. Based on these observations it is believed that bio-processes weaken the strength of the in-pipe sediment deposits. A significantly weaker sediment surface layer was observed during deposition under quiescent oxygen-rich conditions. This resulted in a deposit with low shear strength which may be a cause of a first foul flush of suspended sediment when flow rates were increased. Comparison between tests with sewer sediments and the artificial representative surrogates suggested that the deposits of the later did not correctly simulate the depositional development and the resultant erosion patterns observed with the more bio-active sewer sediment.

  1. Enhancement of the Electrical Conductivity and Interlaminar Shear Strength of CNT/GFRP Hierarchical Composite Using an Electrophoretic Deposition Technique

    PubMed Central

    Haghbin, Amin; Liaghat, Gholamhossein; Arabi, Amir Masoud; Pol, Mohammad Hossein

    2017-01-01

    In this work, an electrophoretic deposition (EPD) technique has been used for deposition of carbon nanotubes (CNTs) on the surface of glass fiber textures (GTs) to increase the volume conductivity and the interlaminar shear strength (ILSS) of CNT/glass fiber-reinforced polymers (GFRPs) composites. Comprehensive experimental studies have been conducted to establish the influence of electric field strength, CNT concentration in EPD suspension, surface quality of GTs, and process duration on the quality of deposited CNT layers. CNT deposition increased remarkably when the surface of glass fibers was treated with coupling agents. Deposition of CNTs was optimized by measuring CNT’s deposition mass and process current density diagrams. The effect of optimum field strength on CNT deposition mass is around 8.5 times, and the effect of optimum suspension concentration on deposition rate is around 5.5 times. In the optimum experimental setting, the current density values of EPD were bounded between 0.5 and 1 mA/cm2. Based on the cumulative deposition diagram, it was found that the first three minutes of EPD is the effective deposition time. Applying optimized EPD in composite fabrication of treated GTs caused a drastic improvement on the order of 108 times in the volume conductivity of the nanocomposite laminate in comparison with simple GTs specimens. Optimized CNT deposition also enhanced the ILSS of hierarchical nanocomposites by 42%. PMID:28937635

  2. Computational and Experimental Studies of Electrospray Deposition of Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Yong, Xin; Li, Ao; Brown, Nicholas; Zhao, Mingfei; Zhu, Yaqun; German, Guy; Chiarot, Paul

    2017-11-01

    Electrospray offers unique capabilities for deploying colloidal suspensions to create nanoparticle films and coatings. It can deliver precise quantities of particles in a dry state and overcomes many limitations of other technologies. We integrate simulations and experiments to elucidate the relationship between the key operating parameters and the structure of an electrospray deposit. We investigate the role of the electrospray time, the target substrate properties, and the polydispersity of the colloidal suspensions. The deposition patterns are similar for all spray times and substrates. In particular, the deposited particles segregate to the center and edge of a deposit, leaving a depletion region in between. Using a Lagrangian particle tracking method with convective droplet evaporation, we highlight the critical role of the space charge interactions inside the plume in governing the trajectory of the emitted particles and the ensuing deposit morphology. The microstructure of a deposit is also influenced by the electrical conductivity of the target substrate. The residual charges on the particles deposited on to a dielectric substrate influence the deposition of subsequent in-flight particles.

  3. Morphological evolution of nanocrystal metal-on-insulator films grown by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Warrender, Jeffrey Michael

    Pulsed laser deposition (PLD) film growth differs from conventional thermal deposition in two essential ways: the depositing species arrive in short bursts of 10--100mus, and with 10--100 eV of kinetic energy. This thesis presents a comprehensive study of the influence of these separate characteristics of the PLD flux on film growth, with the goal of understanding what mechanisms and processes govern PLD morphology evolution. A theoretical description of the early stages of pulsed, non-energetic growth is presented, with the principal results being a discussion of the dimensionless parameters that must be controlled to achieve data collapse for a variety of conditions; the identification of at least four different island size distribution shapes, which characterize the growth mode being observed; and a rate equation formalism for pulsed deposition that gives excellent agreement with results from kinetic Monte Carlo (KMC) simulations. The model system of metal-on-insulator film growth has been studied extensively for thermal deposition, and is known to exhibit a characteristic morphological progression beginning with isolated three-dimensional islands and ending with a percolating, continuous film that conducts electrically. Two separate experimental investigations are reported for PLD growth of this system. In the fast, the details of the PLD pulse are held constant and the pulse frequency is varied; this amounts to varying the time-averaged deposition flux. Non-energetic KMC simulations, which take into account only the pulsed nature of the flux, predicted that, for the case where surface diffusion is very fast compared to the pulse frequency and the deposition rate, percolation thickness would scale with pulse frequency with an exponent of -0.34. Experiments performed at 93°C and 135°C gave scaling exponents of -0.31 and -0.34 respectively, in good agreement with the KMC prediction. The experiments also showed good data collapse when maintaining a constant value B/f, where B is the coalescence "efficiency" and f is the pulse frequency. A separate experimental investigation was performed to compare PLD with thermal deposition under otherwise identical background and substrate conditions; this amounts to studying the effect of varying the average deposition flux. For this case, non-energetic simulations predict that PLD deposits, by virtue of having smaller and more densely spaced islands, would reach percolation with relatively less deposition. (Abstract shortened by UMI.)

  4. Hydraulic experimental investigation on spatial distribution and formation process of tsunami deposit on a slope

    NASA Astrophysics Data System (ADS)

    Harada, K.; Takahashi, T.; Yamamoto, A.; Sakuraba, M.; Nojima, K.

    2017-12-01

    An important aim of the study of tsunami deposits is to estimate the characteristics of past tsunamis from the tsunami deposits found locally. Based on the tsunami characteristics estimated from tsunami deposit, it is possible to examine tsunami risk assessment in coastal areas. It is considered that tsunami deposits are formed based on the dynamic correlation between tsunami's hydraulic values, sediment particle size, topography, etc. However, it is currently not enough to evaluate the characteristics of tsunamis from tsunami deposits. This is considered to be one of the reasons that the understanding of the formation process of tsunami deposits is not sufficiently understood. In this study, we analyze the measurement results of hydraulic experiment (Yamamoto et al., 2016) and focus on the formation process and distribution of tsunami deposits. Hydraulic experiment was conducted with two-dimensional water channel with a slope. Tsunami was inputted as a bore wave flow. The moving floor section was installed as a seabed slope connecting to shoreline and grain size distribution was set some cases. The water level was measured using ultrasonic displacement gauges, and the flow velocity was measured using propeller current meters and an electromagnetic current meter. The water level and flow velocity was measured at some points. The distribution of tsunami deposit was measured from shoreline to run-up limit on the slope. Yamamoto et al. (2016) reported the measurement results on the distribution of tsunami deposit with wave height and sand grain size. Therefore, in this study, hydraulic analysis of tsunami sediment formation process was examined based on the measurement data. Time series fluctuation of hydraulic parameters such as Froude number, Shields number, Rouse number etc. was calculated to understand on the formation process of tsunami deposit. In the front part of the tsunami, the flow velocity take strong flow from shoreline to around the middle of slope. From the measurement result in this time, it is considered that the dominant process of deposit formation is suspended state. At the run-up limit where the flow velocity decreases, the sediment moves in bedload state. As a result, the amount of sediment transport near the run-up limit changes under the influence of particle size.

  5. The depositional web on the floodplain of the Fly River, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Day, Geoff; Dietrich, William E.; Rowland, Joel C.; Marshall, Andrew

    2008-03-01

    Floodplain deposition on lowland meandering rivers is usually interpreted as either lateral accretion during channel migration or overbank deposition. Previous studies on the Fly River in Papua New Guinea suggest, however, that floodplain channels (consisting of tie channel and tributary channels) play an important role in conveying sediment out across the floodplain. Here we report the results of an intensive field study conducted from 1990 to 1998 that documents the discharge of main stem water from the Fly River onto its floodplain and maps the spatial pattern of sediment deposition on the floodplain (using as a tracer elevated particulate copper introduced into the system by upstream mining). An extensive network of water level recorders demonstrates significant hydraulic heads from the main stem out the floodplain channels. For the monitoring period 1995-1998, net water discharge into the floodplain channels was about 20% of the flow. Another 20% is estimated to spill overbank from the main stem in wet years. Annual floodplain coring from 1990 to 1994 obtained over 800 samples across the 3500 km2 Middle Fly floodplain for use in documenting temporal and spatial patterns of sediment deposition. Early samples record the rapid spread of sediment up to 10 km away from the main stem via floodplain channels. Later, more intensive coring samples documented a well-defined exponential decline in sediment deposition from the nearest channel (which differed little between floodplain and main stem channels). Deposition, averaging about 6-9 mm/a, occurred in a 1 km corridor either side of these channels and effectively ceased beyond that distance. About 40% of the total sediment load was deposited on the floodplain, with half of that being conveyed by the over 900 km of floodplain channels (equal to about 0.09% sediment deposition/km of main stem channel length). Levee topographies along the main stem and floodplain channels are similar but cannot be explained by the observed exponential functions. Channel margin shear flow during extended periods of flooding may give rise to the localized levee deposition. Our study demonstrates that tie and tributary floodplain channels can inject large volumes of sediment-laden main stem waters great distances across the floodplain where they spill overbank, forming a narrow band of deposition, thereby creating a depositional web.

  6. Influence of deposition conditions on electrical and mechanical properties of Sm2O3-doped CeO2 thin films prepared by EB-PVD (+IBAD) methods. Part 1: Effective relative permittivity

    NASA Astrophysics Data System (ADS)

    Hartmanová, Mária; Nádaždy, Vojtech; Kundracik, František; Mansilla, Catina

    2013-03-01

    Study is devoted to the effective relative permittivity ɛr of CeO2 + x. Sm2O3 thin films prepared by electron-beam physical vapour deposition and ionic beam-assisted deposition methods; ɛr was investigated by three independent ways from the bulk parallel capacitance Cp, impedance capacitance Cimp, and accumulation capacitance Cacc in dependence on the deposition conditions (deposition temperature, dopant amount x and Ar+ ion bombardment during the film deposition) used. Investigations were performed using impedance spectroscopy, capacitance-voltage and current-voltage characteristics as well as deep level transient spectroscopy. Results obtained are described and discussed.

  7. Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung.

    PubMed

    Das, Gautom K; Anderson, Donald S; Wallis, Chris D; Carratt, Sarah A; Kennedy, Ian M; Van Winkle, Laura S

    2016-06-02

    Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m(-3) of ∼30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu(3+)) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution.

  8. Study of magnetism in Ni-Cr hardface alloy deposit on 316LN stainless steel using magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Kishore, G. V. K.; Kumar, Anish; Chakraborty, Gopa; Albert, S. K.; Rao, B. Purna Chandra; Bhaduri, A. K.; Jayakumar, T.

    2015-07-01

    Nickel base Ni-Cr alloy variants are extensively used for hardfacing of austenitic stainless steel components in sodium cooled fast reactors (SFRs) to avoid self-welding and galling. Considerable difference in the compositions and melting points of the substrate and the Ni-Cr alloy results in significant dilution of the hardface deposit from the substrate. Even though, both the deposit and the substrate are non-magnetic, the diluted region exhibits ferromagnetic behavior. The present paper reports a systematic study carried out on the variations in microstructures and magnetic behavior of American Welding Society (AWS) Ni Cr-C deposited layers on 316 LN austenitic stainless steels, using atomic force microscopy (AFM) and magnetic force microscopy (MFM). The phase variations of the oscillations of a Co-Cr alloy coated magnetic field sensitive cantilever is used to quantitatively study the magnetic strength of the evolved microstructure in the diluted region as a function of the distance from the deposit/substrate interface, with the spatial resolution of about 100 nm. The acquired AFM/MFM images and the magnetic property profiles have been correlated with the variations in the chemical compositions in the diluted layers obtained by the energy dispersive spectroscopy (EDS). The study indicates that both the volume fraction of the ferromagnetic phase and its ferromagnetic strength decrease with increasing distance from the deposit/substrate interface. A distinct difference is observed in the ferromagnetic strength in the first few layers and the ferromagnetism is observed only near to the precipitates in the fifth layer. The study provides a better insight of the evolution of ferromagnetism in the diluted layers of Ni-Cr alloy deposits on stainless steel.

  9. Effect of Energy Input on the Characteristic of AISI H13 and D2 Tool Steels Deposited by a Directed Energy Deposition Process

    NASA Astrophysics Data System (ADS)

    Park, Jun Seok; Park, Joo Hyun; Lee, Min-Gyu; Sung, Ji Hyun; Cha, Kyoung Je; Kim, Da Hye

    2016-05-01

    Among the many additive manufacturing technologies, the directed energy deposition (DED) process has attracted significant attention because of the application of metal products. Metal deposited by the DED process has different properties than wrought metal because of the rapid solidification rate, the high thermal gradient between the deposited metal and substrate, etc. Additionally, many operating parameters, such as laser power, beam diameter, traverse speed, and powder mass flow rate, must be considered since the characteristics of the deposited metal are affected by the operating parameters. In the present study, the effect of energy input on the characteristics of H13 and D2 steels deposited by a direct metal tooling process based on the DED process was investigated. In particular, we report that the hardness of the deposited H13 and D2 steels decreased with increasing energy input, which we discuss by considering microstructural observations and thermodynamics.

  10. Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres

    NASA Astrophysics Data System (ADS)

    Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Angot, Helene; Barbante, Carlo; Brunke, Ernst-Günther; Arcega-Cabrera, Flor; Cairns, Warren; Comero, Sara; Diéguez, María del Carmen; Dommergue, Aurélien; Ebinghaus, Ralf; Feng, Xin Bin; Fu, Xuewu; Garcia, Patricia Elizabeth; Gawlik, Bernd Manfred; Hageström, Ulla; Hansson, Katarina; Horvat, Milena; Kotnik, Jože; Labuschagne, Casper; Magand, Olivier; Martin, Lynwill; Mashyanov, Nikolay; Mkololo, Thumeka; Munthe, John; Obolkin, Vladimir; Ramirez Islas, Martha; Sena, Fabrizio; Somerset, Vernon; Spandow, Pia; Vardè, Massimiliano; Walters, Chavon; Wängberg, Ingvar; Weigelt, Andreas; Yang, Xu; Zhang, Hui

    2017-02-01

    The atmospheric deposition of mercury (Hg) occurs via several mechanisms, including dry and wet scavenging by precipitation events. In an effort to understand the atmospheric cycling and seasonal depositional characteristics of Hg, wet deposition samples were collected for approximately 5 years at 17 selected GMOS monitoring sites located in the Northern and Southern hemispheres in the framework of the Global Mercury Observation System (GMOS) project. Total mercury (THg) exhibited annual and seasonal patterns in Hg wet deposition samples. Interannual differences in total wet deposition are mostly linked with precipitation volume, with the greatest deposition flux occurring in the wettest years. This data set provides a new insight into baseline concentrations of THg concentrations in precipitation worldwide, particularly in regions such as the Southern Hemisphere and tropical areas where wet deposition as well as atmospheric Hg species were not investigated before, opening the way for future and additional simultaneous measurements across the GMOS network as well as new findings in future modeling studies.

  11. A simplified method for assessing particle deposition rate in aircraft cabins

    NASA Astrophysics Data System (ADS)

    You, Ruoyu; Zhao, Bin

    2013-03-01

    Particle deposition in aircraft cabins is important for the exposure of passengers to particulate matter, as well as the airborne infectious diseases. In this study, a simplified method is proposed for initial and quick assessment of particle deposition rate in aircraft cabins. The method included: collecting the inclined angle, area, characteristic length, and freestream air velocity for each surface in a cabin; estimating the friction velocity based on the characteristic length and freestream air velocity; modeling the particle deposition velocity using the empirical equation we developed previously; and then calculating the particle deposition rate. The particle deposition rates for the fully-occupied, half-occupied, 1/4-occupied and empty first-class cabin of the MD-82 commercial airliner were estimated. The results show that the occupancy did not significantly influence the particle deposition rate of the cabin. Furthermore, the simplified human model can be used in the assessment with acceptable accuracy. Finally, the comparison results show that the particle deposition rate of aircraft cabins and indoor environments are quite similar.

  12. Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID.

    PubMed

    Puydinger Dos Santos, Marcos Vinicius; Szkudlarek, Aleksandra; Rydosz, Artur; Guerra-Nuñez, Carlos; Béron, Fanny; Pirota, Kleber Roberto; Moshkalev, Stanislav; Diniz, José Alexandre; Utke, Ivo

    2018-01-01

    Non-noble metals, such as Cu and Co, as well as noble metals, such as Au, can be used in a number modern technological applications, which include advanced scanning-probe systems, magnetic memory and storage, ferroelectric tunnel junction memristors, metal interconnects for high performance integrated circuits in microelectronics and nano-optics applications, especially in the areas of plasmonics and metamaterials. Focused-electron-beam-induced deposition (FEBID) is a maskless direct-write tool capable of defining 3-dimensional metal deposits at nanometre scale for above applications. However, codeposition of organic ligands when using organometallic precursors is a typical problem that limits FEBID of pure metal nanostructures. In this work, we present a comparative study using a post-growth annealing protocol at 100, 200, and 300 °C under high vacuum on deposits obtained from Co 2 (CO) 8 , Cu(II)(hfac) 2 , and Me 2 Au(acac) to study improvements on composition and electrical conductivity. Although the as-deposited material was similar for all precursors, metal grains embedded in a carbonaceous matrix, the post-growth annealing results differed. Cu-containing deposits showed the formation of pure Cu nanocrystals at the outer surface of the initial deposit for temperatures above 100 °C, due to the migration of Cu atoms from the carbonaceous matrix containing carbon, oxygen, and fluorine atoms. The average size of the Cu crystals doubles between 100 and 300 °C of annealing temperature, while the composition remains constant. In contrast, for Co-containing deposits oxygen release was observed upon annealing, while the carbon content remained approximately constant; the cobalt atoms coalesced to form a metallic film. The as-deposited Au-containing material shows subnanometric grains that coalesce at 100 °C, maintaining the same average size at annealing temperatures up to 300 °C. Raman analysis suggests that the amorphous carbonaceous matrix of the as-written Co, Cu and Au deposits turned into nanocrystalline graphite with comparable crystal sizes of 12-14 nm at 300 °C annealing temperature. However, we observed a more effective formation of graphite clusters in Co- than in Cu- and Au-containing deposits. The graphitisation has a minor influence on the electrical conductivity improvements of Co-C deposits, which is attributed to the high as-deposited Co content and the related metal grain percolation. On the contrary, electrical conductivity improvements by factors of 30 and 12 for, respectively, Cu-C and Au-C deposits with low metal content are mainly attributed to the graphitisation. This relatively simple vacuum-based post-growth annealing protocol may be useful for other precursors as it proved to be efficient in reliably tuning the electrical properties of as-deposited FEBID materials. Finally, a H 2 -assisted gold purification protocol is demonstrated at temperatures around 300 °C by fully removing the carbon matrix and drastically reducing the electrical resistance of the deposit.

  13. Study of copper-free back contacts to thin film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vijay

    The goals of this project are to study Cu free back contact alternatives for CdS/CdTe thin film solar cells, and to research dry etching for CdTe surface preparation before contact application. In addition, an attempt has been made to evaluate the stability of some of the contacts researched. The contacts studied in this work include ZnTe/Cu2Te, Sb2Te 3, and Ni-P alloys. The ZnTe/Cu2Te contact system is studied as basically an extension of the earlier work done on Cu2Te at USF. RF sputtering from a compound target of ZnTe and Cu2Te respectively deposits these layers on etched CdTe surface. The effect of Cu2Te thickness and deposition temperature on contact and cell performance will be studied with the ZnTe depositions conditions kept constant. C-V measurements to study the effect of contact deposition conditions on CdTe doping will also be performed. These contacts will then be stressed to high temperatures (70--100°C) and their stability with stress time is analyzed. Sb2Te3 will be deposited on glass using RF sputtering, to study film properties with deposition temperature. The Sb2Te 3 contact performance will also be studied as a function of the Sb 2Te3 deposition temperature and thickness. The suitability of Ni-P alloys for back contacts to CdTe solar cells was studied by forming a colloidal mixture of Ni2P in graphite paste. The Ni-P contacts, painted on Br-methanol etched CdTe surface, will be studied as a function of Ni-P concentration (in the graphite paste), annealing temperature and time. Some of these cells will undergo temperature stress testing to determine contact behavior with time. Dry etching of CdTe will be studied as an alternative for wet etching processes currently used for CdTe solar cells. The CdTe surface is isotropically etched in a barrel reactor in N2, Ar or Ar:O 2 ambient. The effect of etching ambient, pressure, plasma power and etch time on contact performance will be studied.

  14. Comparison study of biomimetic strontium-doped calcium phosphate coatings by electrochemical deposition and air plasma spray: morphology, composition and bioactive performance.

    PubMed

    Li, Ling; Lu, Xia; Meng, Yizhi; Weyant, Christopher M

    2012-10-01

    In this study, strontium-doped calcium phosphate coatings were deposited by electrochemical deposition and plasma spray under different process parameters to achieve various coating morphologies. The coating composition was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy while the cytocompatibility and bioactivity of the strontium-doped calcium phosphate coatings were evaluated using bone cell culture using MC3T3-E1 osteoblast-like cells. The addition of strontium leads to enhanced proliferation suggesting the possible benefits of strontium incorporation in calcium phosphate coatings. The morphology and composition of deposited coatings showed a strong influence on the growth of cells.

  15. Fluid inclusion study of some Sarrabus fluorite deposits, Sardinia, Italy.

    USGS Publications Warehouse

    Belkin, H.E.; de Vivo, B.; Valera, R.

    1984-01-01

    Fluid inclusions in six deposits of fluorite fracture fillings associated with Hercynian (Carboniferous) cycle magmatism were studied by microthermometric techniques. All the inclusions were liquid dominated, aqueous, and homogenized in the liquid phase. One-phase (liquid), two-phase (liquid + vapour) and three-phase (liquid, vapour, and solid NaCl daughter mineral) fluid inclusions were noted. This study indicates that five of the fluorite deposits formed from 95o-125oC fluids with approx 15 wt.% NaCl. One other deposit appears to have been formed by very dilute solutions at approx 125oC. It is suggested that the local fluorite-forming process was the formation of fracture-localized hydrothermal systems in which magmatic water interaction with some other fluid-connate, meteoric, or marine.-G.J.N.

  16. Landscape characteristics of Rhizophora mangle forests and propagule deposition in coastal environments of Florida (USA)

    USGS Publications Warehouse

    Sengupta, R.; Middleton, B.; Yan, C.; Zuro, M.; Hartman, H.

    2005-01-01

    Field dispersal studies are seldom conducted at regional scales even though reliable information on mid-range dispersal distance is essential for models of colonization. The purpose of this study was to examine the potential distance of dispersal of Rhizophora mangle propagules by comparing deposition density with landscape characteristics of mangrove forests. Propagule density was estimated at various distances to mangrove sources (R. mangle) on beaches in southwestern Florida in both high-and low-energy environments, either facing open gulf waters vs. sheltered, respectively. Remote sensing and Geographic Information Systems were used to identify source forests and to determine their landscape characteristics (forest size and distance to deposition area) for the regression analyses. Our results indicated that increasing density of propagules stranded on beaches was related negatively to the distance of the deposition sites from the nearest stands of R. mangle and that deposition was greatly diminished 2 km or more from the source. Measures of fragmentation such as the area of the R. mangle forests were related to propagule deposition but only in low-energy environments. Our results suggest that geographic models involving the colonization of coastal mangrove systems should include dispersal dynamics at mid-range scales, i.e., for our purposes here, beyond the local scale of the forest and up to 5 km distant. Studies of mangrove propagule deposition at various spatial scales are key to understanding regeneration limitations in natural gaps and restoration areas. Therefore, our study of mid-range propagule dispersal has broad application to plant ecology, restoration, and modeling. ?? Springer 2005.

  17. Wettability control of droplet deposition and detachment.

    PubMed

    Baret, Jean-Christophe; Brinkmann, Martin

    2006-04-14

    The conditions for droplet deposition on plane substrates are studied using electrowetting to continuously modulate the surface wettability. Droplets of controlled volume attached to the tip of a pipette are brought into contact with the surface. During retraction of the pipette the droplets are deposited or detach completely depending on volume and contact angle. The experimental limit of deposition in the contact angle or volume plane is in good agreement with analytical and numerical predictions obtained within the capillary model.

  18. Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry

    USGS Publications Warehouse

    Clow, David W.; Williams, Mark W.; Schuster, Paul F.

    2016-01-01

    Mountain snowpacks are a vital natural resource for ∼1.5 billion people in the northern Hemisphere, helping to meet human and ecological demand for water in excess of that provided by summer rain. Springtime warming and aeolian dust deposition accelerate snowmelt, increasing the risk of water shortages during late summer, when demand is greatest. While climate networks provide data that can be used to evaluate the effect of warming on snowpack resources, there are no established regional networks for monitoring aeolian dust deposition to snow. In this study, we test the hypothesis that chemistry of snow, wet deposition, and aerosols can be used as a surrogate for dust deposition to snow. We then analyze spatial patterns and temporal trends in inferred springtime dust deposition to snow across the Rocky Mountains, USA, for 1993–2014. Geochemical evidence, including strong correlations (r2 ≥ 0.94) between Ca2+, alkalinity, and dust concentrations in snow deposited during dust events, indicate that carbonate minerals in dust impart a strong chemical signature that can be used to track dust deposition to snow. Spatial patterns in chemistry of snow, wet deposition, and aerosols indicate that dust deposition increases from north to south in the Rocky Mountains, and temporal trends indicate that winter/spring dust deposition increased by 81% in the southern Rockies during 1993–2014. Using a multivariate modeling approach, we determined that increases in dust deposition and decreases in springtime snowfall combined to accelerate snowmelt timing in the southern Rockies by approximately 7–18 days between 1993 and 2014. Previous studies have shown that aeolian dust emissions may have doubled globally during the 20th century, possibly due to drought and land-use change. Climate projections for increased aridity in the southwestern U.S., northern Africa, and other mid-latitude regions of the northern Hemisphere suggest that aeolian dust emissions may continue to increase, compounding the risk that climate warming poses to snowpack water resources in arid/semi-arid regions of the world.

  19. Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China

    NASA Astrophysics Data System (ADS)

    Shen, Jianlin; Li, Yong; Liu, Xuejun; Luo, Xiaosheng; Tang, Hong; Zhang, Yangzhu; Wu, Jinshui

    2013-03-01

    Atmospheric emissions of reactive nitrogen (N) species are at high levels in China in recent years, but few studies have employed N deposition monitoring techniques that measure both dry and wet deposition for comprehensive evaluation of the impacts of N deposition on ecosystems. In this study, to quantify the total N deposition, both dry and wet N depositions were monitored using denuder/filter pack systems, passive samplers and wet-only samplers at three sites with different land use types (forest, paddy field and tea field) in a 135-km2 catchment in subtropical central China from September 2010 to August 2011. At the three sampling sites, the annual mean concentrations of total N (the sum of NH, NO and DON) in rainwater were 1.2-1.6 mg N L-1, showing small variation across sites. Annual mean concentrations of total N (the sum of NH3, NO2, HNO3, particulate NH and NO) in the air were 13-18 μg N m-3. High NH3 concentrations in the air were observed at the agricultural sites of tea and paddy fields, indicating significant NH3 emissions from N fertiliser application; and high NO2 concentrations were found at the upland sites of forest and tea field, suggesting high NO emissions from soils due to high N deposition or high N fertiliser input. The annual total N deposition for the three sites of paddy field, tea field and forest was estimated as 22, 34 and 55 kg N ha-1 yr-1, in which the dry N deposition components contributed to 21%, 36% and 63% of the annual total N deposition, respectively. The annual deposition of reduced N species was 1.1-1.8 times of the annual deposition of oxidised N species. To minimise the adverse effects of atmospheric N deposition on natural/semi-natural ecosystems, it is crucial to reduce the reactive N emissions from anthropogenic activities (e.g., N fertiliser application, animal production and fossil fuel combustion) in subtropical central China.

  20. Development of a Zealand white rabbit deposition model to study inhalation anthrax

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgharian, Bahman; Price, Owen; Kabilan, Senthil

    Despite using rabbits in several inhalation exposure experiments to study diseases such as anthrax, there is a lack of understanding regarding deposition characteristics and fate of inhaled particles (bio-aerosols and viruses) in the respiratory tracts of rabbits. Such information allows dosimetric extrapolation to humans to inform human outcomes. The lung geometry of the New Zealand white rabbit (referred to simply as rabbits throughout the article) was constructed using recently acquired scanned images of the conducting airways of rabbits and available information on its acinar region. In addition, functional relationships were developed for the lung and breathing parameters of rabbits asmore » a function of body weight. The lung geometry and breathing parameters were used to extend the existing deposition model for humans and several other species to rabbits. Evaluation of the deposition model for rabbits was made by comparing predictions with available measurements in the literature. Deposition predictions in the lungs of rabbits indicated smaller deposition fractions compared to those found in humans across various particle diameter ranges. The application of the deposition model for rabbits was demonstrated by extrapolating deposition predictions in rabbits to find equivalent human exposure concentrations assuming the same dose-response relationship between the two species. Human equivalent exposure concentration levels were found to be much smaller than those for rabbits.« less

  1. A tsunami deposit from Vancouver Island, Canada ― Geological evidence for the penultimate great Cascadia earthquake?

    NASA Astrophysics Data System (ADS)

    Tanigawa, K.; Sawai, Y.; Bobrowsky, P. T.; Huntley, D.; Goff, J. R.; Shinozaki, T.

    2017-12-01

    We examined tsunami deposits within salt marshes at Tofino, Ucluelet and Port Alberni along the west coast of Vancouver Island aligned with the Cascadia Subduction Zone. Previous studies in 1990s reported tsunami deposits associated with the 1964 Alaska, the 1700 Cascadia and older earthquakes from these sites (Clague and Bobrowsky, 1994a; b). However, the ages of older tsunami deposits were not well constrained. We excavated pits and collected salt marsh sediments in 2015 and 2016. Sand layers interbedded within peat and mud deposits occur at widely separated sites on Vancouver Island. Two visible sand layers were observed in Tofino, four in Ucluelet and three in Port Alberni; which is consistent with previous studies. We used a combination of 210Pb, 137Cs and 14C dating to constrain the depositional ages of sand layers. Plant microfossils and insects obtained directly above and below each sand layer were used for radiocarbon dating. Radiocarbon ages indicate that the sand layer prior to the 1700 tsunami sediments was deposited between 550-300 calendar years before present. This depositional age is correlative to the T2 event of the Cascadia Subduction Zone turbidite history (Goldfinger et al., 2012). References: Clague and Bobrowsky (1994a) Quaternary Research, 41, 176-184. Clague and Bobrowsky (1994b) GSA Bulletin 106, 1293-1303. Goldfinger et al. (2012) USGS Professional Paper 1661-F, 170 p.

  2. Processing of sputter targets using current activated pressure assisted densification

    NASA Astrophysics Data System (ADS)

    Chaney, Neil Russell

    Thin Film deposition is a process that has been around since the beginning of the twentieth century and has become an integral part of the microfabrication and nanofabrication industries. Sputter deposition is a method of physical vapor deposition (PVD) in which a target is bombarded with ions and atoms are ejected and deposited as a thin film on a substrate. Despite extensive research on the direct process of sputtering thin films from targets to substrates, not much work has been done on studying the effect of processing on the microstructure of a target. In the first part of this work, the development of a PVD chamber is explored along with a few modifications and improvements developed along the way. A multiple process PVD chamber was equipped with three different types of PVD processes: sputtering, evaporation, and electron-beam deposition. In the second part of this work, the effect of processing of sputter targets on deposited films is explored. Multiple targets of Copper and yttria stabilized zirconia were produced using CAPAD. The effect of the processing on the microstructure of the targets was determined. The targets were then sputtered into films to study the effects of the target grain size on their properties. The effect of power and pressure were also measured. Increased power led to increased deposition rates while higher vacuum caused deposition rates to decrease.

  3. Impact of acoustic airflow on intrasinus drug deposition: New insights into the vibrating mode and the optimal acoustic frequency to enhance the delivery of nebulized antibiotic.

    PubMed

    Leclerc, Lara; Merhie, Amira El; Navarro, Laurent; Prévôt, Nathalie; Durand, Marc; Pourchez, Jérémie

    2015-10-15

    We investigated the impact of vibrating acoustic airflow, the high frequency (f≥100 Hz) and the low frequency (f≤45 Hz) sound waves, on the enhancement of intrasinus drug deposition. (81m)Kr-gas ventilation study was performed in a plastinated human cast with and without the addition of vibrating acoustic airflow. Similarly, intrasinus drug deposition in a nasal replica using gentamicin as a marker was studied with and without the superposition of different modes of acoustic airflow. Ventilation experiments demonstrate that no sinus ventilation was observed without acoustic airflow although sinus ventilation occurred whatever the modes of acoustic airflow applied. Intrasinus drug deposition experiments showed that the high frequency acoustic airflow led to 4-fold increase in gentamicin deposition into the left maxillary sinus and to 2-fold deposition increase into the right maxillary sinus. Besides, the low frequency acoustic airflow demonstrated a significant increase of 4-fold and 2-fold in the right and left maxillary sinuses, respectively. We demonstrated the benefit of different modes of vibrating acoustic airflow for maxillary sinus ventilation and intrasinus drug deposition. The degree of gentamicin deposition varies as a function of frequency of the vibrating acoustic airflow and the geometry of the ostia. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Deposition by the 2011 Tohoku-oki tsunami on coastal lowland controlled by beach ridges near Sendai, Japan

    NASA Astrophysics Data System (ADS)

    Takashimizu, Yasuhiro; Urabe, Atsushi; Suzuki, Koji; Sato, Yoshiki

    2012-12-01

    A study of the 2011 Tohoku-oki tsunami deposits on the coastal lowland of the Sendai Plain, Japan was carried out along a shore-perpendicular survey line in the Arahama area. Field descriptions and tsunami water depth measurements were complemented by sedimentary analyses, including grain size, grain fabric and diatom analysis. The tsunami deposits show a generally fining-inland trend along the 3.4 km long transect. The depositional facies, grain size analysis and grain fabric data suggest that most of the tsunami deposits were laid down during the tsunami inflow, except at one site. These tsunami deposits are characterized by parallel-laminated or massive sand and silt with pieces of woods, fragments of glass, rip-up mud clasts and an erosional base. Minor backwash deposits overlying the inflow sand layer were only observed on one beach ridge and attributed to the topographic high. Marine diatom species comprised only approximately 2% of the diatom assemblage in tsunami deposits and their content decreased landward. In this study, diatom assemblages were similar in the rice field soil and tsunami layers, suggesting that the muddy fraction of the deposits mainly consists of sediments derived from the tsunami-eroded rice field soil. As a result of soil erosion, the tsunami had a high suspended sediment load. Furthermore, after the first tsunami inundation, seawater left by the tsunami did not drain completely to the sea because of the high coastal beach ridge and/or coastal subsidence due to the massive earthquake. Therefore, strong tsunami outflows to the sea did not occur and these areas were covered by mud deposited from stagnant water.

  5. Prevalence of calcific deposits within the rotator cuff tendons in adults with and without subacromial pain syndrome: clinical and radiologic analysis of 1219 patients.

    PubMed

    Louwerens, Jan K G; Sierevelt, Inger N; van Hove, Ruud P; van den Bekerom, Michel P J; van Noort, Arthur

    2015-10-01

    Calcific tendinopathy is one of the most frequent causes of pain in the shoulder and is characterized by the presence of calcific deposits in the rotator cuff; however, calcific deposits have also been described in asymptomatic individuals. Only a few authors have reported epidemiologic data on the prevalence of calcific deposits in the rotator cuff. This study analyzed clinical and radiological data of 1219 adults with and without subacromial pain syndrome (SAPS) to assess the prevalence of calcific deposits in the rotator cuff. Multivariate analysis was used to define risk factors associated with the presence of symptomatic calcific tendinopathy. Calcific deposits were found in the rotator cuff of 57 of 734 asymptomatic patients (7.8%). Of 485 patients with SAPS, 42.5% had calcific deposits. Age between 30 and 60 years (odds ratio [OR], 8.0; 95% confidence interval [CI], 2.5-26.3; P < .001), subacromial pain (OR, 7.1; 95% CI, 5.1-9.9, P < .001), and female gender (OR, 1.5; 95% CI, 1.1-2.0; P = .014) were significantly associated with increased odds of calcific deposits. This study demonstrates that women aged between 30 and 60 years with SAPS and a calcific deposit of >1.5 cm in length have the highest chance of suffering from symptomatic calcific tendinopathy of the rotator cuff. The prevalence rates of 7.8% in asymptomatic patients and 42.5% in patients with SAPS provide a current view on the epidemiology of calcific deposits in the rotator cuff. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  6. Study of the deposition features of the organic dye Rhodamine B on the porous surface of silicon with different pore sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenshin, A. S., E-mail: lenshinas@phys.vsu.ru; Seredin, P. V.; Kavetskaya, I. V.

    2017-02-15

    The deposition features of the organic dye Rhodamine B on the porous surface of silicon with average pore sizes of 50–100 and 100–250 nm are studied. Features of the composition and optical properties of the obtained systems are studied using infrared and photoluminescence spectroscopy. It is found that Rhodamine-B adsorption on the surface of por-Si with various porosities is preferentially physical. The optimal technological parameters of its deposition are determined.

  7. Localization of lead accumulated by corn plants. [Zea mays L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, C.; Koeppe, D.E.; Miller, R.J.

    1974-01-01

    Light and electron microscopic studies of corn plants (Zea mays L.) exposed to Pb in hydroponic solution showed that the roots generally accumulated a surface Pb precipitate and slowly accumulated Pb crystals in the cell walls. The root surface precipitate formed without the apparent influence of any cell organelles. In contrast, Pb taken up by roots was concentrated in dicytosome vesicles. Dicytosome vesicles containing cell wall material fused with one another to encase the Pb deposit. This encased deposit which was surrounded by a membrane migrated toward the outside of the cell where the membrane surrounding the deposit then fusedmore » with the plasmalemma. The material surrounding the deposit then fused with the cell wall. The result of this process was a concentration of Pb deposits in the cell wall outside the plasmalemma. Similar deposits were observed in stems and leaves suggesting that Pb was transported and deposited in a similar manner.« less

  8. Localization of Lead Accumulated by Corn Plants 1

    PubMed Central

    Malone, Carl; Koeppe, D. E.; Miller, Raymond J.

    1974-01-01

    Light and electron microscopic studies of corn plants (Zea mays L.) exposed to Pb in hydroponic solution showed that the roots generally accumulated a surface Pb precipitate and slowly accumulated Pb crystals in the cell walls. The root surface precipitate formed without the apparent influence of any cell organelles. In contrast, Pb taken up by roots was concentrated in dictyosome vesicles. Dictyosome vesicles containing cell wall material fused with one another to encase the Pb deposit. This encased deposit which was surrounded by a membrane migrated toward the outside of the cell where the membrane surrounding the deposit fused with the plasmalemma. The material surrounding the deposit then fused with the cell wall. The result of this process was a concentration of Pb deposits in the cell wall outside the plasmalemma. Similar deposits were observed in stems and leaves suggesting that Pb was transported and deposited in a similar manner. Images PMID:16658711

  9. BUFFALO PEAKS WILDERNESS STUDY AREA, COLORADO.

    USGS Publications Warehouse

    Hedlund, D.C.; Wood, R.H.

    1984-01-01

    Field investigations were conducted to evaluate the mineral-resource potential of the Buffalo Peaks Wilderness Study Area, Colorado. On the basis of this study there is a probable mineral-resource potential for silver vein and bedding replacement deposits along the Weston Pass fault zone, for hydrothermal vein-type uranium deposits in the vicinity of the Parkdale iron pit, and for gold vein deposits in the parts of the Granite and Four Mile districts that are within the wilderness study area. A probable barite resource potential occurs at Rough and Tumbling Creek and near Spring Creek on the east side of the study area. There is little promise for the occurrence of energy resources.

  10. Sedimentary deposits of the 26 December 2004 tsunami on the northwest coast of Aceh, Indonesia

    USGS Publications Warehouse

    Moore, A.; Nishimura, Y.; Gelfenbaum, G.; Kamataki, T.; Triyono, R.

    2006-01-01

    The 2004 Sumatra-Andaman tsunami flooded coastal northern Sumatra to a depth of over 20 m, deposited a discontinuous sheet of sand up to 80 cm thick, and left mud up to 5 km inland. In most places the sand sheet is normally graded, and in some it contains complex internal stratigraphy. Structures within the sand sheet may record the passage of up to 3 individual waves. We studied the 2004 tsunami deposits in detail along a flow-parallel transect about 400 m long, 16 km southwest of Banda Aceh. Near the shore along this transect, the deposit is thin or absent. Between 50 and 400 m inland it ranges in thickness from 5 to 20 cm. The main trend in thickness is a tendency to thicken by filling low spots, most dramatically at pre-existing stream channels. Deposition generally attended inundation - along the transect, the tsunami deposited sand to within about 40 m of the inundation limit. Although the tsunami deposit contains primarily material indistinguishable from material found on the beach one month after the event, it also contains grain sizes and compositions unavailable on the current beach. Along the transect we studied, these grains become increasingly dominant both landward and upward in the deposit; possibly some landward source of sediment was exposed and exploited by the passage of the waves. The deposit also contains the unabraded shells of subtidal marine organisms, suggesting that at least part of the deposit came from offshore. Grain sizes within the deposit tend to fine upward and landward, although individual units within the deposit appear massive, or show reverse grading. Sorting becomes better landward, although the most landward sites generally become poorly sorted from the inclusion of soil clasts. These sites commonly show interlayering of sandy units and soil clast units. Deposits from the 2004 tsunami in Sumatra demonstrate the complex nature of the deposits of large tsunamis. Unlike the deposits of smaller tsunamis, internal stratigraphy is complex, and will require some effort to understand. The Sumatra deposits also show the contribution of multiple sediment sources, each of which has its own composition and grain size. Such complexity may allow more accurate modeling of flow depth and flow velocity for paleotsunamis, if an understanding of how tsunami hydraulics affect sedimentation can be established. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRAPUB.

  11. Empirical observations on longer-term use of incentives for weight loss.

    PubMed

    John, Leslie K; Loewenstein, George; Volpp, Kevin G

    2012-11-01

    Behavioral economic-based interventions are emerging as powerful tools to help individuals accomplish their own goals, including weight loss. Deposit contract incentive systems give participants the opportunity to put their money down toward losing weight, which they forfeit if they fail to lose weight; lottery incentive systems enable participants to win money if they attain weight loss goals. In this paper, we pool data from two prior studies to examine a variety of issues that unpublished data from those studies allow us to address. First, examining data from the deposit contract treatments in greater depth, we investigate factors affecting deposit frequency and size, and discuss possible ways of increasing deposits. Next, we compare the effectiveness of both deposit contract and lottery interventions as a function of participant demographic characteristics. These observations may help to guide the design of future, longer-term, behavioral economic-based interventions. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

    PubMed Central

    Bittencourt, Carla; Bals, Sara; Van Tendeloo, Gustaaf

    2013-01-01

    Summary Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature. PMID:23399584

  13. Morphology, Composition, and Bioactivity of Strontium-Doped Brushite Coatings Deposited on Titanium Implants via Electrochemical Deposition

    PubMed Central

    Liang, Yongqiang; Li, Haoyan; Xu, Jiang; Li, Xin; Qi, Mengchun; Hu, Min

    2014-01-01

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for use in dental applications. In this study, strontium-doped brushite coatings were deposited on titanium by electrochemical deposition. The phase composition of the coating was investigated by energy dispersive X-ray spectroscopy and X-ray diffraction. The surface morphologies of the coatings were studied through scanning electron microscopy, and the cytocompatibility and bioactivity of the strontium-doped brushite coatings were evaluated using cultured osteoblasts. Osteoblast proliferation was enhanced by the addition of strontium, suggesting a possible mechanism by which strontium incorporation in brushite coatings increased bone formation surrounding the implants. Cell growth was also strongly influenced by the composition of the deposited coatings, with a 10% Sr-doped brushite coating inducing the greatest amount of bone formation among the tested materials. PMID:24901526

  14. Deposition and characterization of ZnSe nanocrystalline thin films

    NASA Astrophysics Data System (ADS)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  15. Experimental study on TiN coated racetrack-type ceramic pipe

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Xu, Yan-Hui; Zhang, Bo; Wei, Wei; Fan, Le; Pei, Xiang-Tao; Hong, Yuan-Zhi; Wang, Yong

    2015-11-01

    TiN film was coated on the internal surface of a racetrack-type ceramic pipe by three different methods: radio-frequency sputtering, DC sputtering and DC magnetron sputtering. The deposition rates of TiN film under different coating methods were compared. The highest deposition rate was 156 nm/h, which was obtained by magnetron sputtering coating. Based on AFM, SEM and XPS test results, the properties of TiN film, such as film roughness and surface morphology, were analyzed. Furthermore, the deposition rates were studied with two different cathode types, Ti wires and Ti plate. According to the SEM test results, the deposition rate of TiN/Ti film was about 800 nm/h with Ti plate cathode by DC magnetron sputtering. Using Ti plate cathode rather than Ti wire cathode can greatly improve the film deposition rate. Supported by National Nature Science Foundation of China (11075157)

  16. Biochemical processes of oligotrophic peat deposits of Vasyugan Mire

    NASA Astrophysics Data System (ADS)

    Inisheva, L. I.; Sergeeva, M. A.

    2009-04-01

    The problem of peat and mire ecosystems functioning and their rational use is the main problem of biosphere study. This problem also refers to forecasting of biosphere changes results which are global and anthropogenic. According to many scientists' research the portion of mires in earth carbon balance is about 15% of world's stock. The aim of this study is to investigate biochemical processes in oligotrophic deposits in North-eastern part of Vasyugan Mire. The investigations were made on the territory of scientific-research ground (56˚ 03´ and 56˚ 57´ NL, 82˚ 22´ and 82˚ 42´ EL). It is situated between two rivers Bakchar and Iksa (in outskirts of the village Polynyanka, Bakchar region, Tomsk oblast). Evolution of investigated mire massif began with the domination of eutrophic phytocenosis - Filicinae, then sedge. Later transfer into oligotrophic phase was accompanied by formation of meter high-moor peat deposit. The age of three-meter peat deposit reaches four thousand years. Biochemical processes of carbon cycle cover the whole peat deposit, but the process activity and its direction in different layers are defined by genesis and duration of peat formation. So, the number of cellulose-fermenting aerobes in researched peat deposits ranges from 16.8 to 75.5 million CFU/g, and anaerobic bacteria from 9.6 to 48.6 million CFU/g. The high number of aerobes is characteristic for high water levels, organizing by raised bog peats. Their number decreases along the profile in 1.7 - 2 times. The number of microflora in peat deposit is defined by the position in the landscape profile (different geneses), by the depth, by hydrothermic conditions of years and individual months. But microflora activity shows along all depth of peat deposit. We found the same in the process of studying of micromycete complex structure. There was revealed either active component micromycete complex - mycelium, or inert one - spores in a meter layer of peat deposit. If mushrooms spores are observed in all deposit layers, mycelium of mushrooms deepens into the peat deposit (to 2 meters) within the limits of aerobic (meter) zone and only in particular months of dry years. The existence of seasonal dynamics of eukaryotic cells, and also capability of yeast and other groups of micromycetes for growth, testifies about vital activity of a number of eukaryotic cells at a depth of 2 meters. Researched peat deposits are biochemically active along the whole profile. But they are different in a microflora number of individual physiological groups either in items of the landscape, or in deposit depth. The largest quantity of aerobic cellulose-fermenting microorganisms is marked during dry years. Anaerobic cellulose-fermenting microorganisms dominate during wet years. The quantity of microbe biomass increases in bottom lifts of peat deposits. This fact testifies about viable condition of microbe complex at depth. The formation process of carbon dioxide in peat deposits of Vasyugan Mire actively occurs during dry years and is defined by hydrothermic conditions of a meter layer of peat deposit. The intensity of CO2 isolation for certain correlates with the temperature in horizon of 0 - 50 sm. and with bog waters level. The study of gas composition for the three years showed that the largest concentration of carbon dioxide in peat soils is marked along the whole profile during a dryer year (0.08 - 2.65 millimole/l), increasing other years' level in about 1.5 0 2 times. Emission of carbon dioxide in peat

  17. Effect of Laser Power and Gas Flow Rate on Properties of Directed Energy Deposition of Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Mahamood, Rasheedat M.

    2018-03-01

    Laser metal deposition (LMD) process belongs to the directed energy deposition class of additive manufacturing processes. It is an important manufacturing technology with lots of potentials especially for the automobile and aerospace industries. The laser metal deposition process is fairly new, and the process is very sensitive to the processing parameters. There is a high level of interactions among these process parameters. The surface finish of part produced using the laser metal deposition process is dependent on the processing parameters. Also, the economy of the LMD process depends largely on steps taken to eliminate or reduce the need for secondary finishing operations. In this study, the influence of laser power and gas flow rate on the microstructure, microhardness and surface finish produced during the laser metal deposition of Ti6Al4V was investigated. The laser power was varied between 1.8 kW and 3.0 kW, while the gas flow rate was varied between 2 l/min and 4 l/min. The microstructure was studied under an optical microscope, the microhardness was studied using a Metkon microhardness indenter, while the surface roughness was studied using a Jenoptik stylus surface analyzer. The results showed that better surface finish was produced at a laser power of 3.0 kW and a gas flow rate of 4 l/min.

  18. Development of a dust deposition forecast model for a mine tailings impoundment

    NASA Astrophysics Data System (ADS)

    Stovern, Michael

    Wind erosion, transport and deposition of particulate matter can have significant impacts on the environment. It is observed that about 40% of the global land area and 30% of the earth's population lives in semiarid environments which are especially susceptible to wind erosion and airborne transport of contaminants. With the increased desertification caused by land use changes, anthropogenic activities and projected climate change impacts windblown dust will likely become more significant. An important anthropogenic source of windblown dust in this region is associated with mining operations including tailings impoundments. Tailings are especially susceptible to erosion due to their fine grain composition, lack of vegetative coverage and high height compared to the surrounding topography. This study is focused on emissions, dispersion and deposition of windblown dust from the Iron King mine tailings in Dewey-Humboldt, Arizona, a Superfund site. The tailings impoundment is heavily contaminated with lead and arsenic and is located directly adjacent to the town of Dewey-Humboldt. The study includes in situ field measurements, computational fluid dynamic modeling and the development of a windblown dust deposition forecasting model that predicts deposition patterns of dust originating from the tailings impoundment. Two instrumented eddy flux towers were setup on the tailings impoundment to monitor the aeolian and meteorological conditions. The in situ observations were used in conjunction with a computational fluid dynamic (CFD) model to simulate the transport of windblown dust from the mine tailings to the surrounding region. The CFD model simulations include gaseous plume dispersion to simulate the transport of the fine aerosols, while individual particle transport was used to track the trajectories of larger particles and to monitor their deposition locations. The CFD simulations were used to estimate deposition of tailings dust and identify topographic mechanisms that influence deposition. Simulation results indicated that particles preferentially deposit in regions of topographic upslope. In addition, turbulent wind fields enhanced deposition in the wake region downwind of the tailings. This study also describes a deposition forecasting model (DFM) that can be used to forecast the transport and deposition of windblown dust originating from a mine tailings impoundment. The DFM uses in situ observations from the tailings and theoretical simulations of aerosol transport to parameterize the model. The model was verified through the use of inverted-disc deposition samplers. The deposition forecasting model was initialized using data from an operational Weather Research and Forecasting (WRF) model and the forecast deposition patterns were compared to the inverted-disc samples through gravimetric, chemical composition and lead isotopic analysis. The DFM was verified over several month-long observing periods by comparing transects of arsenic and lead tracers measured by the samplers to the DFM PM27 forecast. Results from the sampling periods indicated that the DFM was able to accurately capture the regional deposition patterns of the tailings dust up to 1 km. Lead isotopes were used for source apportionment and showed spatial patterns consistent with the DFM and the observed weather conditions. By providing reasonably accurate estimates of contaminant deposition rates, the DFM can improve the assessment of human health impacts caused by windblown dust from the Iron King tailings impoundment.

  19. Linking pulses of atmospheric deposition to DOC release in an upland peat-covered catchment

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Burt, T. P.; Adamson, J. K.

    2008-12-01

    Changes in atmospheric deposition have been proposed as one possible explanation of the widespread increase in DOC concentration observed in many Northern Hemisphere catchments. This study uses detailed, long-term, monthly monitoring records of pH, conductivity SO4, and DOC in precipitation, soil water, and runoff chemistry from an upland peat-covered catchment in northern England. By deriving impulse transfer functions this study explores whether changes in deposition lead to significant changes in the occurrence of each component in the soil and runoff water; especially significant changes in DOC. The study shows that (1) impulses in the deposition of acidity have no significant effect upon pH or DOC in soil water or runoff. (2) DOC in soil water and runoff is responsive to impulses in SO4 and conductivity, but only when those impulses are changes in soil water chemistry and not when they are in atmospheric deposition. (3) The effects of changes in SO4 and/or conductivity can easily be overemphasized if memory effects are not accounted for, and their effect is limited to only 1 or 2 months after a severe drought. This study can support the view that changes in ionic strength can result in changes in DOC concentration in soil water or runoff, but the system studied is unresponsive to changes in atmospheric deposition. Impulses in soil water SO4 do not lead to increases in DOC concentrations, and so this mechanism does not provide an explanation for DOC increases.

  20. RARE Grant- Atmospheric Dry Deposition: Quantification of Mercury and Nutrients using Novel Surrogate Surface Collector Techniques

    EPA Science Inventory

    This study will quantify the daily surrogate surface dry deposition of mercury and nutrient species, and evaluate its relative importance to wet deposition at two sites in Florida over a two-year period. It will identify the major sources contributing to the observed mercury and...

  1. Measurement of foliar deposits of Bt and their relation to efficacy

    Treesearch

    P. G. Fast; E. G. Kettela; C. Wiesner

    1985-01-01

    Interest in and discussion of the relationship between droplet spectrum emitted and droplet spectrum deposited, spray cloud behaviour, the relationship between droplets deposited and efficacy, and optimum droplet size, has increased in recent years and has resulted in a number of collaborative studies addressing aspects of these questions. The questions are...

  2. The Interior Layered Deposits of Valles Marineris: Layering, Erosional Processes, and Age Relationships

    NASA Technical Reports Server (NTRS)

    Weitz, C. M.; Parker, T.; Anderson, F. S.; Grant, J. A.

    2001-01-01

    We have used Viking and Mars Global Surveyor data to study the interior layered deposits in detail. We have identified features which may support fluvial activity within Valles Marineris. Stratigraphic relationships indicate the deposits are younger than the wallrock. Additional information is contained in the original extended abstract.

  3. REGIONAL DEPOSITION DOSE OF INHALED NANO-SIZE PARTICLES IN HUMAN LUNGS DURING CONTROLLED NORMAL BREATHING

    EPA Science Inventory

    INTRODUCTION

    One of the key factors for affecting respiratory

    deposition of particles is the breathing pattern of

    individual subjects. Although idealized breathing

    patterns (square or sine wave form) are frequently used

    for studying lung deposit...

  4. Ecological effects of nitrogen deposition in the western United States

    Treesearch

    Mark E. Fenn; Jill S. Baron; Edith B. Allen; Heather M. Rueth; Koren R. Nydick; Linda Geiser; William D. Bowman; James O. Sickman; Thomas Meixner; Dale W. Johnson; Peter Neitlich

    2003-01-01

    In the western United States vast acreages of land are exposed to low levels of atmospheric nitrogen (N) deposition, with interspersed hotspots of elevated N deposition downwind of large, expanding metropolitan centers or large agricultural operations. Biological response studies in western North America demonstrate that some aquatic and terrestrial plant and microbial...

  5. Using ASD data to identify the altered minerals for exploring of gold deposit in the Beishan area, North China

    NASA Astrophysics Data System (ADS)

    Ren, G. L.; Yi, H.; Yang, M.; Liang, N.; Li, J. Q.; Yang, J. L.

    2016-11-01

    Hyperspectral information of altered minerals plays an important role in the identifications of mineralized zones. In this study, the altered minerals of two gold deposits from Fangshankou-Laojinchang regions of Beishan metallogenic belt were measured by ASD field Spectrometer. Many gold deposits would have a close relationship with Variscan magma intrusion, which have been found in study region. The alteration minerals have been divided six types by the spectral results, i.e. sericite, limonite, dolomite, chlorite, epidote and calcite. The distribution characteristics and formations of altered minerals were discussed here. By the ASD, the spectral curve of different geological units in the Jintanzi and Fangshankou gold deposits were analysed and summarized. The results show that the sericite and limonite are mainly related with the gold mineralization and widely occurred in the gold deposits. Therefore, we proposed that the sericite and limonite are the iconic alteration mineral assemblages for gold mineralization and the models of altered minerals for gold deposits could be established in this region.

  6. Effect of swift heavy ion irradiation on structural and opto-electrical properties of bi-layer CdS-Bi2S3 thin films prepared by solution growth technique at room temperature

    NASA Astrophysics Data System (ADS)

    Shaikh, Shaheed U.; Siddiqui, Farha Y.; Desale, Deepali J.; Ghule, Anil V.; Singh, Fouran; Kulriya, Pawan K.; Sharma, Ramphal

    2015-01-01

    CdS-Bi2S3 bi-layer thin films have been deposited by chemical bath deposition method on Indium Tin Oxide glass substrate at room temperature. The as-deposited thin films were annealed at 250 °C in an air atmosphere for 1 h. An air annealed thin film was irradiated using Au9+ ions with the energy of 120 MeV at fluence 5×1012 ions/cm2 using tandem pelletron accelerator. The irradiation induced modifications were studied using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Raman spectroscopy, UV spectroscopy and I-V characteristics. XRD study reveals that the as-deposited thin films were nanocrystalline in nature. The decrease in crystallite size, increase in energy band gap and resistivity were observed after irradiation. Results are explained on the basis of energy deposited by the electronic loss after irradiation. The comparative results of as-deposited, air annealed and irradiated CdS-Bi2S3 bi-layer thin films are presented.

  7. A case study on the influences of long-range transport to Taiwan`s acid deposition using Taiwan air quality model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ken-Hui Chang; Fu-Tien Jeng

    1996-12-31

    The long-range and transboundary transport of precursors of add deposition in East Asia became important due to the industrial development around this area. We started to develop Taiwan Air Quality Model (TAQM) system since 1992, which is based on regional Acid Deposition Model (RADM) system. A typical episode in Mei-Yu season has been selected to study. A case considering all emissions within simulated domain has been run as a reference case, and another perturbed case, not including Taiwan`s emission, has been also run for analyzing quantitatively the influence of long-range transport to Taiwan`s wet deposition during the episode are 31%more » and 24% for total sulfur compounds and total nitrogen compounds respectively; but for dry deposition, only 6% is contributed by long range transport for sulfur compounds and 29% for total nitrogen compounds. Therefore, the percentages of total acid deposition contributed by long-range transport are 27% and 25% for total sulfur compounds and total nitrogen compounds, respectively.« less

  8. Non-conventional photocathodes based on Cu thin films deposited on Y substrate by sputtering

    NASA Astrophysics Data System (ADS)

    Perrone, A.; D'Elia, M.; Gontad, F.; Di Giulio, M.; Maruccio, G.; Cola, A.; Stankova, N. E.; Kovacheva, D. G.; Broitman, E.

    2014-07-01

    Copper (Cu) thin films were deposited on yttrium (Y) substrate by sputtering. During the deposition, a small central area of the Y substrate was shielded to avoid the film deposition and was successively used to study its photoemissive properties. This configuration has two advantages: the cathode presents (i) the quantum efficiency and the work function of Y and (ii) high electrical compatibility when inserted into the conventional radio-frequency gun built with Cu bulk. The photocathode was investigated by scanning electron microscopy to determine surface morphology. X-ray diffraction and atomic force microscopy studies were performed to compare the structure and surface properties of the deposited film. The measured electrical resistivity value of the Cu film was similar to that of high purity Cu bulk. Film to substrate adhesion was also evaluated using the Daimler-Benz Rockwell-C adhesion test method. Finally, the photoelectron performance in terms of quantum efficiency was obtained in a high vacuum photodiode cell before and after laser cleaning procedures. A comparison with the results obtained with a twin sample prepared by pulsed laser deposition is presented and discussed.

  9. X-Ray Diffraction Studies on Metal Deposition in Group D Streptococci

    PubMed Central

    Tucker, Fayne L.; Thomas, John W.; Appleman, Milo D.; Goodman, Stewart H.; Donohue, Jerry

    1966-01-01

    Tucker, Fayne L. (University of Southern California, Los Angeles), John W. Thomas, Milo D. Appleman, Stewart H. Goodman, and Jerry Donohue. X-ray diffraction studies on metal deposition in group D streptococci. J. Bacteriol. 92:1311–1314. 1966.—Streptococcus faecalis N83 and S. faecium K6A reduced several compounds of Group VI elements to the elemental form, but reduced none of several compounds tested containing elements of other groups. The elemental tellurium deposited by S. faecium K6A was in general of a larger particle size than that deposited by S. faecalis N83 as judged from X-ray diffraction analysis. The particle size of the deposited tellurium was correlated with the blackness of the precipitate produced by cells growing in the presence of tellurite. A black and gray variation was observed in S. faecium K6A which was considered to be due to particle size, the amount of tellurium present, and the location of the deposited tellurium. The gray color of S. faecium K6A was not due to the presence of any oxidized tellurium products. PMID:4958879

  10. Structural and optical studied of nano structured lead sulfide thin films prepared by the chemical bath deposition technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al Din, Nasser Saad, E-mail: nsaadaldin@yahoo.com; Hussain, Nabiha, E-mail: nabihahssin@yahoo.com; Jandow, Nidhal, E-mail: nidhaljandow@yahoo.com

    2016-07-25

    Lead (II) Sulfide PbS thin films were deposited on glass substrates at 25°C by chemical bath deposition (CBD) method. The structural properties of the films were studied as a function of the concentration of Thiourea (CS (NH{sub 2}){sub 2}) as Source of Sulfide and deposition time. The surface morphology of the films was characterized by X-ray diffraction and SEM. The obtained results showed that the as-deposited films Polycrystalline had cubic crystalline phase that belong to S.G: Fm3m. We found that they have preferred orientation [200]. Also the thickness of thin films decrease with deposition time after certain value and, itmore » observed free sulfide had orthorhombic phase. Optical properties showed that the thin films have high transmission at visible range and low transmission at UV, IR range. The films of PbS have direct band gap (I.68 - 2.32 ev) at 300 K the values of band energy decreases with increases thickness of the Lead (II) Sulfide films.« less

  11. Depositional architecture and sequence stratigraphy of the Upper Jurassic Hanifa Formation, central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Sorogy, Abdelbaset; Al-Kahtany, Khaled; Almadani, Sattam; Tawfik, Mohamed

    2018-03-01

    To document the depositional architecture and sequence stratigraphy of the Upper Jurassic Hanifa Formation in central Saudi Arabia, three composite sections were examined, measured and thin section analysed at Al-Abakkayn, Sadous and Maashabah mountains. Fourteen microfacies types were identified, from wackestones to boundstones and which permits the recognition of five lithofacies associations in a carbonate platform. Lithofacies associations range from low energy, sponges, foraminifers and bioclastic burrowed offshoal deposits to moderate lithoclstic, peloidal and bioclastic foreshoal deposits in the lower part of the Hanifa while the upper part is dominated by corals, ooidal and peloidal high energy shoal deposits to moderate to low energy peloidal, stromatoporoids and other bioclastics back shoal deposits. The studied Hanifa Formation exhibits an obvious cyclicity, distinguishing from vertical variations in lithofacies types. These microfacies types are arranged in two third order sequences, the first sequence is equivalent to the lower part of the Hanifa Formation (Hawtah member) while the second one is equivalent to the upper part (Ulayyah member). Within these two sequences, there are three to six fourth-order high frequency sequences respectively in the studied sections.

  12. Sedimentary exhalative (sedex) zinc-lead-silver deposit model

    USGS Publications Warehouse

    Emsbo, Poul; Seal, Robert R.; Breit, George N.; Diehl, Sharon F.; Shah, Anjana K.

    2016-10-28

    This report draws on previous syntheses and basic research studies of sedimentary exhalative (sedex) deposits to arrive at the defining criteria, both descriptive and genetic, for sedex-type deposits. Studies of the tectonic, sedimentary, and fluid evolution of modern and ancient sedimentary basins have also been used to select defining criteria. The focus here is on the geologic characteristics of sedex deposit-hosting basins that contain greater than 10 million metric tons of zinc and lead. The enormous size of sedex deposits strongly suggests that basin-scale geologic processes are involved in their formation. It follows that mass balance constraints of basinal processes can provide a conceptual underpinning for the evaluation of potential ore-forming mechanisms and the identification of geologic indicators for ore potential in specific sedimentary basins. Empirical data and a genetic understanding of the physicochemical, geologic, and mass balance conditions required for each of these elements are used to establish a hierarchy of quantifiable geologic criteria that can be used in U.S. Geological Survey national assessments.  In addition, this report also provides a comprehensive evaluation of environmental considerations associated with the mining of sedex deposits.

  13. Validation of Growth Layer Group (GLG) depositional rate using daily incremental growth lines in the dentin of beluga (Delphinapterus leucas (Pallas, 1776)) teeth

    PubMed Central

    Suydam, Robert S.; Ortiz, Joseph D.; Thewissen, J. G. M.

    2018-01-01

    Counts of Growth Layer Groups (GLGs) in the dentin of marine mammal teeth are widely used as indicators of age. In most marine mammals, observations document that GLGs are deposited yearly, but in beluga whales, some studies have supported the view that two GLGs are deposited each year. Our understanding of beluga life-history differs substantially depending on assumptions regarding the timing of GLG deposition; therefore, resolving this issue has important considerations for population assessments. In this study, we used incremental lines that represent daily pulses of dentin mineralization to test the hypothesis that GLGs in beluga dentin are deposited on a yearly basis. Our estimate of the number of daily growth lines within one GLG is remarkably close to 365 days within error, supporting the hypothesis that GLGs are deposited annually in beluga. We show that measurement of daily growth increments can be used to validate the time represented by GLGs in beluga. Furthermore, we believe this methodology may have broader applications to age estimation in other taxa. PMID:29338011

  14. Validation of Growth Layer Group (GLG) depositional rate using daily incremental growth lines in the dentin of beluga (Delphinapterus leucas (Pallas, 1776)) teeth.

    PubMed

    Waugh, David A; Suydam, Robert S; Ortiz, Joseph D; Thewissen, J G M

    2018-01-01

    Counts of Growth Layer Groups (GLGs) in the dentin of marine mammal teeth are widely used as indicators of age. In most marine mammals, observations document that GLGs are deposited yearly, but in beluga whales, some studies have supported the view that two GLGs are deposited each year. Our understanding of beluga life-history differs substantially depending on assumptions regarding the timing of GLG deposition; therefore, resolving this issue has important considerations for population assessments. In this study, we used incremental lines that represent daily pulses of dentin mineralization to test the hypothesis that GLGs in beluga dentin are deposited on a yearly basis. Our estimate of the number of daily growth lines within one GLG is remarkably close to 365 days within error, supporting the hypothesis that GLGs are deposited annually in beluga. We show that measurement of daily growth increments can be used to validate the time represented by GLGs in beluga. Furthermore, we believe this methodology may have broader applications to age estimation in other taxa.

  15. Hydroquinone-ZnO nano-laminate deposited by molecular-atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Huang, Jie; Lucero, Antonio T.; Cheng, Lanxia; Hwang, Hyeon Jun; Ha, Min-Woo; Kim, Jiyoung

    2015-03-01

    In this study, we have deposited organic-inorganic hybrid semiconducting hydroquinone (HQ)/zinc oxide (ZnO) superlattices using molecular-atomic layer deposition, which enables accurate control of film thickness, excellent uniformity, and sharp interfaces at a low deposition temperature (150 °C). Self-limiting growth of organic layers is observed for the HQ precursor on ZnO surface. Nano-laminates were prepared by varying the number of HQ to ZnO cycles in order to investigate the physical and electrical effects of different HQ to ZnO ratios. It is indicated that the addition of HQ layer results in enhanced mobility and reduced carrier concentration. The highest Hall mobility of approximately 2.3 cm2/V.s and the lowest n-type carrier concentration of approximately 1.0 × 1018/cm3 were achieved with the organic-inorganic superlattice deposited with a ratio of 10 ZnO cycles to 1 HQ cycle. This study offers an approach to tune the electrical transport characteristics of ALD ZnO matrix thin films using an organic dopant. Moreover, with organic embedment, this nano-laminate material may be useful for flexible electronics.

  16. Hydrodynamic and Chemical Modeling of a Chemical Vapor Deposition Reactor for Zirconia Deposition

    NASA Astrophysics Data System (ADS)

    Belmonte, T.; Gavillet, J.; Czerwiec, T.; Ablitzer, D.; Michel, H.

    1997-09-01

    Zirconia is deposited on cylindrical substrates by flowing post-discharge enhanced chemical vapor deposition. In this paper, a two dimensional hydrodynamic and chemical modeling of the reactor is described for given plasma characteristics. It helps in determining rate constants of the synthesis reaction of zirconia in gas phase and on the substrate which is ZrCl4 hydrolysis. Calculated deposition rate profiles are obtained by modeling under various conditions and fits with a satisfying accuracy the experimental results. The role of transport processes and the mixing conditions of excited gases with remaining ones are studied. Gas phase reaction influence on the growth rate is also discussed.

  17. Thin Film CuInS2 Prepared by Spray Pyrolysis with Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Cowen, Jonathan E.; Hepp, Aloysius F.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Both horizontal hot-wall and vertical cold-wall atmospheric chemical spray pyrolysis processes deposited near single-phase stoichiometric CuInS2 thin films. Single-source precursors developed for ternary chalcopyrite materials were used for this study, and a new liquid phase single-source precursor was tested with a vertical cold-wall reactor. The depositions were carried out under an argon atmosphere, and the substrate temperature was kept at 400 C. Columnar grain structure was obtained with vapor deposition, and the granular structure was obtained with (liquid) droplet deposition. Conductive films were deposited with planar electrical resistivities ranging from 1 to 30 Omega x cm.

  18. Age-related iron deposition in the basal ganglia of controls and Alzheimer disease patients quantified using susceptibility weighted imaging.

    PubMed

    Wang, Dan; Li, Yan-Ying; Luo, Jian-Hua; Li, Yue-Hua

    2014-01-01

    This study aimed to investigate age-related iron deposition changes in healthy subjects and Alzheimer disease patients using susceptibility weighted imaging. The study recruited 182 people, including 143 healthy volunteers and 39 Alzheimer disease patients. All underwent conventional magnetic resonance imaging and susceptibility weighted imaging sequences. The groups were divided according to age. Phase images were used to investigate iron deposition in the bilateral head of the caudate nucleus, globus pallidus and putamen, and the angle radian value was calculated. We hypothesized that age-related iron deposition changes may be different between Alzheimer disease patients and controls of the same age, and that susceptibility weighted imaging would be a more sensitive method of iron deposition quantification. The results revealed that iron deposition in the globus pallidus increased with age, up to 40 years. In the head of the caudate nucleus, iron deposition peaked at 60 years. There was a general increasing trend with age in the putamen, up to 50-70 years old. There was significant difference between the control and Alzheimer disease groups in the bilateral globus pallidus in both the 60-70 and 70-80 year old group comparisons. In conclusion, iron deposition increased with age in the globus pallidus, the head of the caudate nucleus and putamen, reaching a plateau at different ages. Furthermore, comparisons between the control and Alzheimer disease group revealed that iron deposition changes were more easily detected in the globus pallidus. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Classification of gravity-flow deposits and their significance for unconventional petroleum exploration, with a case study from the Triassic Yanchang Formation (southern Ordos Basin, China)

    NASA Astrophysics Data System (ADS)

    Fan, Aiping; Yang, Renchao; (Tom) van Loon, A. J.; Yin, Wei; Han, Zuozhen; Zavala, Carlos

    2018-08-01

    The ongoing exploration for shale oil and gas has focused sedimentological research on the transport and deposition mechanisms of fine-grained sediments, and more specifically on fine-grained mass-flow deposits. It appears, however, that no easily applicable classification scheme for gravity-flow deposits exists, and that such classifications almost exclusively deal with sandy and coarser sediments. Since the lack of a good classification system for fine-grained gravity flow deposits hampers scientific communication and understanding, we propose a classification scheme on the basis of the mud content in combination with the presumed transport mechanism. This results in twelve types of gravity-flow deposits. In order to show the practical applicability of this classification system, we apply it to the Triassic lacustrine Yanchang Formation in the southern Ordos Basin (China), which contains numerous slumps, debris-flows deposits, turbidites and hyperpycnites. The slumps and debrites occur mostly close to a delta front, and the turbidites and hyperpycnites extend over large areas from the delta slopes into the basin plain. The case study shows that (1) mud cannot only be transported but also deposited under active hydrodynamic conditions; (2) fine-grained gravity-flow constitute a significant part of the lacustrine mudstones and shales; (3) muddy gravity flows are important for the transport and deposition of clastic particles, clay minerals and organic matter, and thus are important mechanisms involved in the generation of hydrocarbons, also largely determining the reservoir capability for unconventional petroleum.

  20. Computational fluid dynamics modeling of Bacillus anthracis spore deposition in rabbit and human respiratory airways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabilan, S.; Suffield, S. R.; Recknagle, K. P.

    Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived respectively from computed tomography (CT) and µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation–exhalation breathingmore » conditions using average species-specific minute volumes. Two different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Due to the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the nasal sinus compared to the human at the same air concentration of anthrax spores. In contrast, higher spore deposition was predicted in the lower conducting airways of the human compared to the rabbit lung due to differences in airway branching pattern. This information can be used to refine published and ongoing biokinetic models of inhalation anthrax spore exposures, which currently estimate deposited spore concentrations based solely upon exposure concentrations and inhaled doses that do not factor in species-specific anatomy and physiology for deposition.« less

  1. Ecological Aspects of Condition of Ground Deposits in Shershnevsky Reservoir

    NASA Astrophysics Data System (ADS)

    Arkanova, I. A.; Denisov, S. E.; Knutarev, D. Yu

    2017-11-01

    The article considers the aspects of the condition of ground deposits influencing the operating conditions of the water intake facilities in the Shershnevsky reservoir being the only source of the utility and drinking water supply in Chelyabinsk. The object of the research is a section near the Sosnovskie intake stations of the Shershnevsky reservoir. Based on the hydrometric surveys of the studied section and using the Kriging method and the Surfer suite, we calculated the volume of ground deposits. As a result of the analyses, the authors have proved that ground deposits in the studied section have a technology-related nature which is connected with the annual growth of the volume of ground deposits which is inadmissible in the operating conditions of the pump stations of water intake facilities whereas ground deposits will fully block the intake windows of pump stations. In case the bed area of the Shershnevsky reservoir is not timely treated, the ground deposits here will complicate the operation of the pump stations which will result in a technological problem of the treatment facilities operation up to a transfer of the pump station premises to other territories less exposed to the deposits. The treatment of the Shershnevsky reservoir from the ground deposits accumulated in the course of time will help to considerably increase its actual capacity, which will allow one to increase water circulation paths and to improve the water quality indices. In its turn, the water quality improvement will decrease the supply of suspended solids into the water intake facilities and cut the reagent costs in the course of the treatment water works operation.

  2. Photochemical CVD of Ru on functionalized self-assembled monolayers from organometallic precursors

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsea R.; Arevalo Rodriguez, Paul; Brewer, Christopher R.; Brannaka, Joseph A.; Shi, Zhiwei; Yang, Jing; Salazar, Bryan; McElwee-White, Lisa; Walker, Amy V.

    2017-02-01

    Chemical vapor deposition (CVD) is an attractive technique for the metallization of organic thin films because it is selective and the thickness of the deposited film can easily be controlled. However, thermal CVD processes often require high temperatures which are generally incompatible with organic films. In this paper, we perform proof-of-concept studies of photochemical CVD to metallize organic thin films. In this method, a precursor undergoes photolytic decomposition to generate thermally labile intermediates prior to adsorption on the sample. Three readily available Ru precursors, CpRu(CO)2Me, (η3-allyl)Ru(CO)3Br, and (COT)Ru(CO)3, were employed to investigate the role of precursor quantum yield, ligand chemistry, and the Ru oxidation state on the deposition. To investigate the role of the substrate chemistry on deposition, carboxylic acid-, hydroxyl-, and methyl-terminated self-assembled monolayers were used. The data indicate that moderate quantum yields for ligand loss (φ ≥ 0.4) are required for ruthenium deposition, and the deposition is wavelength dependent. Second, anionic polyhapto ligands such as cyclopentadienyl and allyl are more difficult to remove than carbonyls, halides, and alkyls. Third, in contrast to the atomic layer deposition, acid-base reactions between the precursor and the substrate are more effective for deposition than nucleophilic reactions. Finally, the data suggest that selective deposition can be achieved on organic thin films by judicious choice of precursor and functional groups present on the substrate. These studies thus provide guidelines for the rational design of new precursors specifically for selective photochemical CVD on organic substrates.

  3. Downstream lightening and upward heavying, sorting of sediments of uniform grain size but differing in density

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Solari, L.; Hill, K. M.

    2014-12-01

    Downstream fining, i.e. the tendency for a gradual decrease in grain size in the downstream direction, has been observed and studied in alluvial rivers and in laboratory flumes. Laboratory experiments and field observations show that the vertical sorting pattern over a small Gilbert delta front is characterized by an upward fining profile, with preferential deposition of coarse particles in the lowermost part of the deposit. The present work is an attempt to answer the following questions. Are there analogous sorting patterns in mixtures of sediment particles having the same grain size but differing density? To investigate this, we performed experiments at the Hydrosystems Laboratory at the University of Illinois at Urbana-Champaign. During the experiments a Gilbert delta formed and migrated downstream allowing for the study of transport and sorting processes on the surface and within the deposit. The experimental results show 1) preferential deposition of heavy particles in the upstream part of the deposit associated with a pattern of "downstream lightening"; and 2) a vertical sorting pattern over the delta front characterized by a pattern of "upward heavying" with preferential deposition of light particles in the lowermost part of the deposit. The observed downstream lightening is analogous of the downstream fining with preferential deposition of heavy (coarse) particles in the upstream part of the deposit. The observed upward heavying was unexpected because, considering the particle mass alone, the heavy (coarse) particles should have been preferentially deposited in the lowermost part of the deposit. Further, the application of classical fractional bedload transport relations suggests that in the case of mixtures of particles of uniform size and different densities equal mobility is not approached. We hypothesize that granular physics mechanisms traditionally associated with sheared granular flows may be responsible for the observed upward heavying and for the deviation from equal mobility.

  4. Response of Sphagnum fuscum to Nitrogen Deposition: A Case Study of Ombrogenous Peatlands in Alberta, Canada

    USGS Publications Warehouse

    Vitt, D.H.; Wieder, K.; Halsey, L.A.; Turetsky, M.

    2003-01-01

    Peatlands cover about 30% of northeastern Alberta and are ecosystems that are sensitive to nitrogen deposition. In polluted areas of the UK, high atmospheric N deposition (as a component of acid deposition) has been considered among the causes of Sphagnum decline in bogs (ombrogenous peatlands). In relatively unpolluted areas of western Canada and northern Sweden, short-term experimental studies have shown that Sphagnum responds quickly to nutrient loading, with uptake and retention of nitrogen and increased production. Here we examine the response of Sphagnum fuscum to enhanced nitrogen deposition generated during 34 years of oil sands mining through the determination of net primary production (NPP) and nitrogen concentrations in the upper peat column. We chose six continental bogs receiving differing atmospheric nitrogen loads (modeled using a CALPUFF 2D dispersion model). Sphagnum fuscum net primary production (NPP) at the high deposition site (Steepbank - mean of 600 g/m2; median of 486 g/m2) was over three times as high than at five other sites with lower N deposition. Additionally, production of S. fuscum may be influenced to some extent by distance of the moss surface from the water table. Across all sites, peat nitrogen concentrations are highest at the surface, decreasing in the top 3 cm with no significant change with increasing depth. We conclude that elevated N deposition at the Steepbank site has enhanced Sphagnum production. Increased N concentrations are evident only in the top 1-cm of the peat profile. Thus, 34 years after mine startup, increased N-deposition has increased net primary production of Sphagnum fuscum without causing elevated levels of nitrogen in the organic matter profile. A response to N-stress for Sphagnum fuscum is proposed at 14-34 kg ha-1 yr-1. A review of N-deposition values reveals a critical N-deposition value of between 14.8 and 15.7 kg ha -1 yr-1 for NPP of Sphagnum species.

  5. Comparing particle-size distributions in modern and ancient sand-bed rivers

    NASA Astrophysics Data System (ADS)

    Hajek, E. A.; Lynds, R. M.; Huzurbazar, S. V.

    2011-12-01

    Particle-size distributions yield valuable insight into processes controlling sediment supply, transport, and deposition in sedimentary systems. This is especially true in ancient deposits, where effects of changing boundary conditions and autogenic processes may be detected from deposited sediment. In order to improve interpretations in ancient deposits and constrain uncertainty associated with new methods for paleomorphodynamic reconstructions in ancient fluvial systems, we compare particle-size distributions in three active sand-bed rivers in central Nebraska (USA) to grain-size distributions from ancient sandy fluvial deposits. Within the modern rivers studied, particle-size distributions of active-layer, suspended-load, and slackwater deposits show consistent relationships despite some morphological and sediment-supply differences between the rivers. In particular, there is substantial and consistent overlap between bed-material and suspended-load distributions, and the coarsest material found in slackwater deposits is comparable to the coarse fraction of suspended-sediment samples. Proxy bed-load and slackwater-deposit samples from the Kayenta Formation (Lower Jurassic, Utah/Colorado, USA) show overlap similar to that seen in the modern rivers, suggesting that these deposits may be sampled for paleomorphodynamic reconstructions, including paleoslope estimation. We also compare grain-size distributions of channel, floodplain, and proximal-overbank deposits in the Willwood (Paleocene/Eocene, Bighorn Basin, Wyoming, USA), Wasatch (Paleocene/Eocene, Piceance Creek Basin, Colorado, USA), and Ferris (Cretaceous/Paleocene, Hanna Basin, Wyoming, USA) formations. Grain-size characteristics in these deposits reflect how suspended- and bed-load sediment is distributed across the floodplain during channel avulsion events. In order to constrain uncertainty inherent in such estimates, we evaluate uncertainty associated with sample collection, preparation, analytical particle-size analysis, and statistical characterization in both modern and ancient settings. We consider potential error contributions and evaluate the degree to which this uncertainty might be significant in modern sediment-transport studies and ancient paleomorphodynamic reconstructions.

  6. Regional stratigraphy and distribution of epigenetic stratabound celestine, fluorite, barite and Pb-Zn deposits in the MVT province of northeastern Mexico

    NASA Astrophysics Data System (ADS)

    González-Sánchez, Francisco; Camprubí, Antoni; González-Partida, Eduardo; Puente-Solís, Rafael; Canet, Carles; Centeno-García, Elena; Atudorei, Viorel

    2009-04-01

    Northeastern Mexico hosts numerous epigenetic stratabound carbonate-hosted low-temperature hydrothermal deposits of celestine, fluorite, barite and zinc-lead, which formed by replacement of Mesozoic evaporites or carbonate rocks. Such deposits can be permissively catalogued as Mississippi Valley-type (MVT) deposits. The deposits studied in the state of Coahuila are associated with granitic and metasedimentary basement highs (horsts) marginal or central to the Mesozoic Sabinas Basin. These horsts controlled the stratigraphy of the Mesozoic basins and subsequently influenced the Laramide structural pattern. The Sabinas Basin consists of ~6,000-m-thick Jurassic to Cretaceous siliciclastic, carbonate and evaporitic series. The MVT deposits are mostly in Barremian and in Aptian-Albian to Cenomanian formations and likely formed from basinal brines that were mobilized during the Laramide orogeny, although earlier diagenetic replacement of evaporite layers (barite and celestine deposits) and lining of paleokarstic cavities in reef carbonates (Zn-Pb deposits) is observed. Fluid inclusion microthermometry and isotopic studies suggest ore formation due to mixing of basinal brines and meteoric water. Homogenization temperatures of fluid inclusions range from 45°C to 210°C; salinities range from 0 to 26 wt.% NaCl equiv., and some inclusions contain hydrocarbons or bitumen. Sulfur isotope data suggest that most of the sulfur in barite and celestine is derived from Barremian to Cenomanian evaporites. Regional geology and a compilation of metallogenic features define the new MVT province of northeastern Mexico, which comprises most of the state of Coahuila and portions of the neighboring states of Nuevo León, Durango and, perhaps extends into Zacatecas and southern Texas. This province exhibits a regional metal zonation, with celestine deposits to the south, fluorite deposits to the north and barite and Zn-Pb deposits mostly in the central part.

  7. Study of nanostructure and ethanol vapor sensing performance of WO3 thin films deposited by e-beam evaporation method under different deposition angles: application in breath analysis devices

    NASA Astrophysics Data System (ADS)

    Amani, E.; Khojier, K.; Zoriasatain, S.

    2018-01-01

    This paper studies the effect of deposition angle on the crystallographic structure, surface morphology, porosity and subsequently ethanol vapor sensing performance of e-beam-evaporated WO3 thin films. The WO3 thin films were deposited by e-beam evaporation technique on SiO2/Si substrates under different deposition angles (0°, 30°, and 60°) and then post-annealed at 500 °C with a flow of oxygen for 4 h. Crystallographic structure and surface morphology of the samples were checked using X-ray diffraction method and atomic force microscopy, respectively. Physical adsorption isotherm was also used to measure the porosity and effective surface area of the samples. The electrical response of the samples was studied to different concentrations of ethanol vapor (10-50 ppm) at the temperature range of 140-260 °C and relative humidity of 80%. The results reveal that the WO3 thin film deposited under 30° angle shows more sensitivity to ethanol vapor than the other samples prepared in this work due to the more crystallinity, porosity, and effective surface area. The investigations also show that the sample deposited at 30° can be a good candidate as a breath analysis device at the operating temperature of 240 °C because of its high response, low detection limit, and reliability at high relative humidity.

  8. Modern Pearl River Delta and Permian Huainan coalfield, China: A comparative sedimentary facies study

    USGS Publications Warehouse

    Suping, P.; Flores, R.M.

    1996-01-01

    Sedimentary facies types of the Pleistocene deposits of the Modern Pearl River Delta in Guangdong Province, China and Permian Member D deposits in Huainan coalfield in Anhui Province are exemplified by depositional facies of anastomosing fluvial systems. In both study areas, sand/sandstone and mud/mudstone-dominated facies types formed in diverging and converging, coeval fluvial channels laterally juxtaposed with floodplains containing ponds, lakes, and topogenous mires. The mires accumulated thin to thick peat/coal deposits that vary in vertical and lateral distribution between the two study areas. This difference is probably due to attendant sedimentary processes that affected the floodplain environments. The ancestral floodplains of the Modern Pearl River Delta were reworked by combined fluvial and tidal and estuarine processes. In contrast, the floodplains of the Permian Member D were mainly influenced by freshwater fluvial processes. In addition, the thick, laterally extensive coal zones of the Permian Member D may have formed in topogenous mires that developed on abandoned courses of anastomosing fluvial systems. This is typified by Seam 13-1, which is a blanket-like body that thickens to as much as 8 in but also splits into thinner beds. This seam overlies deposits of diverging and converging, coeval fluvial channels of the Sandstone D, and associated overbank-floodplain deposits. The limited areal extent of lenticular Pleistocene peat deposits of the Modern Pearl River Delta is due to their primary accumulation in topogenous mires in the central floodplains that were restricted by contemporaneous anastomosing channels.

  9. Numerical simulation of scouring-deposition variations caused by rainfall-induced landslides in the upstream of Zengwun River, Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Hsi; Liao, Yi-Wen; Tsai, Kuang-Jung

    2017-04-01

    In recent years, the increasing sediment disasters of severe rainfall-induced landslides on human lives and lifeline facilities worldwide have advanced the necessity to find out both economically acceptable and useful techniques to predict the occurrence and destructive power of the disasters. In August 2009, Typhoon Morakot brought a large amount of rainfall with both high intensity and long duration to a vast area of Taiwan. Unfortunately, this resulted in a catastrophic landslide in watershed of Zengwun-River reservoir, southern Taiwan. Meanwhile, large amounts of landslides were formed in the upstream of Zengwun River. The major scope of this study is to apply numerical model to simulate the scouring-deposition variations caused by rainfall-induced landslides that occurred in the upstream of Zengwun River during Typhoon Morakot. This study proposed the relation diagrams of the intermediate diameter (d50), recurrence interval (T) and scouring-deposition depth (D), and applied the diagrams to understand the impacts of the scouring-deposition variations on the structures for water and soil conservation and their measurements. Based on the simulation of scouring-deposition variation at the Da-Bu dam and Da-Bang dam, this study also discussed the scouring-deposition variations of different sections under different scenarios (including flow rate, intermediate diameters and structures). In summary, the result suggested that the diagrams of the intermediate diameter, recurrence interval and scouring-deposition depth could be used as the reference for designing the check dams, ground sills and lateral constructions.

  10. Mystery solved: White deposit on streambeds proves to be diatoms

    USGS Publications Warehouse

    Webb, Rick; Rice, Karen C.

    2007-01-01

    In the late winter and early spring of 2006 an unusual white deposit was observed on rocks and margins of streambeds in a number of park streams. Inquiries were made to park staff and scientists studying water resources in the park as to what the deposit was and did it pose any type of risk. A number of explanations were proposed, but it was not until samples were collected and examined with a scanning electron microscope that the identity of the deposit was definitively determined.

  11. Snow deposition, melt, runoff, and chemistry in a small alpine watershed, Emerald Lake Basin, Sequoia National Park. Final report, 1 July 1984-31 March 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dozier, J.; Melack, J.M.; Marks, D.

    1987-03-01

    The report describes the first two years of an investigation of the snow chemistry and hydrology of the Emerald Lake Watershed in Sequoia National Park. The investigation examined the impact of acid deposition on high-elevation ecosystems of the Sierra Nevada. The following aspects of snow deposition and melt were studied: energy inputs; pattern of snow deposition and ablation; snowpack, meltwater and runoff chemistry; stream hydrology during the melt period.

  12. Paleo-tsunami history along the northern Japan Trench: evidence from Noda Village, northern Sanriku coast, Japan

    NASA Astrophysics Data System (ADS)

    Inoue, Taiga; Goto, Kazuhisa; Nishimura, Yuichi; Watanabe, Masashi; Iijima, Yasutaka; Sugawara, Daisuke

    2017-12-01

    Throughout history, large tsunamis have frequently affected the Sanriku area of the Pacific coast of the Tohoku region, Japan, which faces the Japan Trench. Although a few studies have examined paleo-tsunami deposits along the Sanriku coast, additional studies of paleo-earthquakes and tsunamis are needed to improve our knowledge of the timing, recurrence interval, and size of historical and pre-historic tsunamis. At Noda Village, in Iwate Prefecture on the northern Sanriku coast, we found at least four distinct gravelly sand layers based on correlation and chronological data. Sedimentary features such as grain size and thickness suggest that extreme waves from the sea formed these layers. Numerical modeling of storm waves further confirmed that even extremely large storm waves cannot account for the distribution of the gravelly sand layers, suggesting that these deposits are highly likely to have formed by tsunami waves. The numerical method of storm waves can be useful to identify sand layers as tsunami deposits if the deposits are observed far inland or at high elevations. The depositional age of the youngest tsunami deposit is consistent with the AD 869 Jogan earthquake tsunami, a possible predecessor of the AD 2011 Tohoku-oki tsunami. If this is the case, then the study site currently defines the possible northern extent of the AD 869 Jogan tsunami deposit, which is an important step in improving the tsunami source model of the AD 869 Jogan tsunami. Our results suggest that four large tsunamis struck the Noda site between 1100 and 2700 cal BP. The local tsunami sizes are comparable to the AD 2011 and AD 1896 Meiji Sanriku tsunamis, considering the landward extent of each tsunami deposit.

  13. Pixelized Measurement of (99m)Tc-HDP Micro Particles Formed in Gamma Correction Phantom Pinhole Scan: a Reference Study.

    PubMed

    Jung, Joo-Young; Cheon, Gi Jeong; Lee, Yun-Sang; Ha, Seunggyun; Chae, Mi-Hye; Chung, Yong-An; Yoon, Do Kyun; Bahk, Yong-Whee

    2016-09-01

    Currently, traumatic bone diseases are diagnosed by assessing the micro (99m)Tc-hydroxymethylene diphosphonate (HDP) uptake in injured trabeculae with ongoing osteoneogenesis demonstrated by gamma correction pinhole scan (GCPS). However, the mathematic size quantification of micro-uptake is not yet available. We designed and performed this phantom-based study to set up an in-vitro model of the mathematical calculation of micro-uptake by the pixelized measurement. The micro (99m)Tc-HDP deposits used in this study were spontaneously formed both in a large standard flood and small house-made dish phantoms. The processing was as follows: first, phantoms were flooded with distilled water and (99m)Tc-HDP was therein injected to induce micro (99m)Tc-HDP deposition; second, the deposits were scanned using parallel-hole and pinhole collimator to generally survey (99m)Tc-HDP deposition pattern; and third, the scans underwent gamma correction (GC) to discern individual deposits for size measurement. In original naïve scans, tracer distribution was simply nebulous in appearance and, hence, could not be measured. Impressively, however, GCPS could discern individual micro deposits so that they were calculated by pixelized measurement. Phantoms naturally formed micro (99m)Tc-HDP deposits that are analogous to (99m)Tc-HDP uptake on in-vivo bone scan. The smallest one we measured was 0.414 mm. Flooded phantoms and therein injected (99m)Tc-HDP form nebulous micro (99m)Tc-HDP deposits that are rendered discernible by GCPB and precisely calculable using pixelized measurement. This method can be used for precise quantitative and qualitative diagnosis of bone and joint diseases at the trabecular level.

  14. Nitrogen deposition effects on diatom communities in lakes from three National Parks in Washington State

    USGS Publications Warehouse

    Sheibley, Richard W.; Enache, Mihaela; Swarzenski, Peter W.; Moran, Patrick W.; Foreman, James R.

    2014-01-01

    The goal of this study was to document if lakes in National Parks in Washington have exceeded critical levels of nitrogen (N) deposition, as observed in other Western States. We measured atmospheric N deposition, lake water quality, and sediment diatoms at our study lakes. Water chemistry showed that our study lakes were ultra-oligotrophic with ammonia and nitrate concentrations often at or below detection limits with low specific conductance (−1 year−1 and were variable both within and across the parks. Diatom assemblages in a single sediment core from Hoh Lake (Olympic National Park) displayed a shift to increased relative abundances of Asterionella formosa and Fragilaria tenera beginning in the 1969–1975 timeframe, whereas these species were not found at the remaining (nine) sites. These diatom species are known to be indicative of N enrichment and were used to determine an empirical critical load of N deposition, or threshold level, where changes in diatom communities were observed at Hoh Lake. However, N deposition at the remaining nine lakes does not seem to exceed a critical load at this time. At Milk Lake, also in Olympic National Park, there was some evidence that climate change might be altering diatom communities, but more research is needed to confirm this. We used modeled precipitation for Hoh Lake and annual inorganic N concentrations from a nearby National Atmospheric Deposition Program station, to calculate elevation-corrected N deposition for 1980–2009 at Hoh Lake. An exponential fit to this data was hindcasted to the 1969–1975 time period, and we estimate a critical load of 1.0 to 1.2 kg N ha−1 year−1 for wet deposition for this lake.

  15. Reflectance degradation of a secondary concentrator by nitrate salt vapor deposition in an open volumetric receiver configuration

    NASA Astrophysics Data System (ADS)

    Lahlou, Radia; Armstrong, Peter R.; Calvet, Nicolas; Shamim, Tariq

    2017-06-01

    Nitrate salt vapor deposition on the reflecting surface of a secondary concentrator placed on top of an open molten salt tank at 500 °C is investigated using a lab-scale setup over an 8h-exposure cycle. Deposition, consisting of mostly spherical particles, is characterized in terms of chemical composition using energy dispersive X-ray spectroscopy. The corresponding specular reflectance degradation both temporary (before washing off the salt deposits) and permanent (residual reflectance loss after cleaning), is measured at different incidence angles and at reference points located at different heights. Reflectance drop due to salt deposits is compared to the one resulting from dust deposition. Long-term reflectance degradation by means of corrosion needs to be further studied through suitable accelerated aging tests.

  16. The origin of channels and associated deposits in the Elysium region of Mars

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric H.; Hoppin, Richard A.

    1987-01-01

    Photogeological studies of the Elysium volcanic province of Mars show that its sinuous channels are part of a large deposit which probably was emplaced as a series of huge volcanic debris flows or lahars. The suggestion is based on evidence that the lahars were : (1) gravity-driven mass flow deposits (lobate outlines, steep snouts, smooth medial channels and rough lateral deposits--the deposits narrow and widen in accord with topography, and they extend downslope); (2) wet (channeled surfaces, drainage features); and (3) associated with volcanism (the deposits and channels extend from a system of fractures which fed lava flows). It is conceivable that heat associated with magmatism melted ground ice below the Elysium volcanoes, formed a muddy slurry which issued out of regional fractures and spread over the adjoining plain.

  17. Stability of Y-Ti-O nanoparticles during laser deposition of oxide dispersion strengthened steel powder

    NASA Astrophysics Data System (ADS)

    Euh, Kwangjun; Arkhurst, Barton; Kim, Il Hyun; Kim, Hyun-Gil; Kim, Jeoung Han

    2017-11-01

    This study investigated the feasibility of a direct energy deposition process for fabrication of oxide dispersion strengthened steel cladding. The effect of the laser working power and scan speed on the microstructural stability of oxide nanoparticles in the deposition layer was examined. Y-Ti-O type oxide nanoparticles with a mean diameter of 45 nm were successfully dispersed by the laser deposition process. The laser working power significantly affected nanoparticle size and number density. A high laser power with a low scan speed seriously induced particle coarsening and agglomeration. Compared with bulk oxide dispersion strengthened steel, the hardness of the laser deposition layer was much lower because of a relatively coarse particle and grain size. Formation mechanism of nanoparticles during laser deposition was discussed.

  18. Optimization of process parameters for RF sputter deposition of tin-nitride thin-films

    NASA Astrophysics Data System (ADS)

    Jangid, Teena; Rao, G. Mohan

    2018-05-01

    Radio frequency Magnetron sputtering technique was employed to deposit Tin-nitride thin films on Si and glass substrate at different process parameters. Influence of varying parameters like substrate temperature, target-substrate distance and RF power is studied in detail. X-ray diffraction method is used as a key technique for analyzing the changes in the stoichiometric and structural properties of the deposited films. Depending on the combination of deposition parameters, crystalline as well as amorphous films were obtained. Pure tin-nitride thin films were deposited at 15W RF power and 600°C substrate temperature with target-substrate distance fixed at 10cm. Bandgap value of 1.6 eV calculated for the film deposited at optimum process conditions matches well with reported values.

  19. The fate of inhaled antibiotics after deposition in cystic fibrosis: How to get drug to the bug?

    PubMed

    Bos, Aukje C; Passé, Kimberly M; Mouton, Johan W; Janssens, Hettie M; Tiddens, Harm A W M

    2017-01-01

    Chronic airway infections in patients with cystic fibrosis (CF) are most often treated with inhaled antibiotics of which deposition patterns have been extensively studied. However, the journey of aerosol particles does not end after deposition within the bronchial tree. To review how local conditions affect the clinical efficacy of antibiotic aerosol particles after deposition in the airways of patients with CF. Electronic databases were searched from inception to September 2015. Original studies describing the effect of CF sputum or bacterial factors on antibiotic efficacy and formulations to increase efficacy were included. 35 articles were included which mostly described in vitro studies and mainly investigated aminoglycosides. After deposition, diffusion through the mucus layer was reduced for aminoglycosides, β-lactam antibiotics and fluoroquinolones. Within CF mucus, low oxygen tension adversely affected aminoglycosides, β-lactam antibiotics, and chloramphenicol; and molecules inactivated aminoglycosides but not β-lactam antibiotics. Finally, the alginate layer surrounding Pseudomonas aeruginosa was an important factor in the resistance against all antibiotics. After deposition in the airways, the local efficacy of inhaled antibiotics can be reduced by molecules within CF mucus and the alginate layer surrounding P. aeruginosa. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  20. Mineral-resource assessments in Alaska; background information to accompany maps and reports about the geology and undiscovered-mineral-resource potential of the Mount Katmai Quadrangle and adjacent parts of the Naknek and Afognak quadrangles, Alaska Peninsula

    USGS Publications Warehouse

    Riehle, J.R.; Church, S.E.; Detterman, R.L.; Miller, J.W.

    1994-01-01

    Geologic and geochemical field studies were carded out from 1983 to 1987 in the Mount Katmai l?x2 ? quadrangle and adjoining region, at the northeast end of the Alaska Peninsula. The region is nearly entirely within Katmai National Park and Preserve and has had almost no mineral production, so prior to this study there were few data by which to assess the mineral potential of the region. This report describes the folio of publications that have resulted from the study: geologic maps, geochemical results, fossil identifications, radiometric rock ages, and an assessment of the undiscovered-mineral-resource potential of the region. The Katmai region is inferred to potentially have three types of undiscovered mineral deposits: porphyry copper (molybdenum), precious-metal vein, and hot-springs gold. These deposit types occur elsewhere on the Alaska Peninsula in similar geologic units. Evidence suggesting their occurrence in the Katmai region is the presence of trace amounts of metals typically associated with these kinds of deposits in bedrock of certain tracts and in sediments of streams draining those tracts. Magma to provide heat, fractures to provide pathways for mineralizing fluids, and altered rock are required by genetic models of these deposit types. Such features do occur in the Katmai tracts. Confirmation of any mineral deposit in the Katmai region requires detailed follow-up sampling and acquisition of subsurface information, which is beyond the scope of this study. However, producing porphyry deposits are unknown elsewhere on the Alaska Peninsula in similar rocks, so if any such deposits occur in the Katmai region, they are likely to be few in number. Conversely, vein deposits are typically small in size so there may be several of such deposits. The properties and thermal history of the sedimentary rocks that could serve as reservoirs for oil or gas are unfavorable in adjacent regions. Thus the potential of the Katmai region for producible quantities of fossil fuels is low. In theory the region has shallow concentrations of geothermal fluids, but specific evidence for their presence is obscured by heavy precipitation and cold young rocks or deposits. Small volumes of coal occur at tidewater sites on the Pacific coast.

  1. Characterization of Spatial Impact of Particles Emitted from a Cement Material Production Facility on Outdoor Particle Deposition in the Surrounding Community.

    PubMed

    Yu, Chang Ho; Fan, Zhihua Tina; McCandlish, Elizabeth; Stern, Alan H; Lioy, Paul J

    2011-10-01

    The objective of this study was to estimate the contribution of a facility that processes steel production slag into raw material for cement production to local outdoor particle deposition in Camden, NJ. A dry deposition sampler that can house four 37-mm quartz fiber filters was developed and used for the collection of atmospheric particle deposits. Two rounds of particle collection (3-4 weeks each) were conducted in 8-11 locations 200-800 m downwind of the facility. Background samples were concurrently collected in a remote area located ∼2 km upwind from the facility. In addition, duplicate surface wipe samples were collected side-by-side from each of the 13 locations within the same sampling area during the first deposition sampling period. One composite source material sample was also collected from a pile stored in the facility. Both the bulk of the source material and the <38 μm fraction subsample were analyzed to obtain the elemental source profile. The particle deposition flux in the study area was higher (24-83 mg/m 2 ·day) than at the background sites (13-17 mg/m 2 ·day). The concentration of Ca, a major element in the cement source production material, was found to exponentially decrease with increasing downwind distance from the facility (P < 0.05). The ratio of Ca/Al, an indicator of Ca enrichment due to anthropogenic sources in a given sample, showed a similar trend. These observations suggest a significant contribution of the facility to the local particle deposition. The contribution of the facility to outdoor deposited particle mass was further estimated by three independent models using the measurements obtained from this study. The estimated contributions to particle deposition in the study area were 1.8-7.4% from the regression analysis of the Ca concentration in particle deposition samples against the distance from the facility, 0-11% from the U.S. Environmental Protection Agency (EPA) Chemical Mass Balance (CMB) source-receptor model, and 7.6-13% from the EPA Industrial Source Complex Short Term (ISCST3) dispersion model using the particle-size-adjusted permit-based emissions estimates. [Box: see text].

  2. ATMOSPHERIC MERCURY DEPOSITION TO LAKE MICHIGAN DURING THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    Wet and dry mercury (Hg) deposition were calculated to Lake Michigan using a hybrid receptor modeling framework. The model utilized mercury monitoring data collected during the Lake Michigan Mass Balance Study and the Atmospheric Exchange Over Lakes and Oceans Study together w...

  3. Subcellular localization of calcium deposits in the noble crayfish Astacus astacus spermatophore: Implications for post-mating spermatophore hardening and spermatozoon maturation.

    PubMed

    Niksirat, Hamid; Kouba, Antonín

    2016-04-01

    The freshly ejaculated spermatophore of crayfish undergoes a hardening process during post-mating storage on the body surface of female. The ultrastructural distribution of calcium deposits were studied and compared in freshly ejaculated and post-mating noble crayfish spermatophores, using the oxalate-pyroantimonate technique, to determine possible roles of calcium in post-mating spermatophore hardening and spermatozoon maturation. Small particles of sparsely distributed calcium deposits were visible in the wall of freshly ejaculated spermatophore. Also, large amount of calcium deposits were visible in the membranes of the freshly ejaculated spermatozoon. Five minutes post-ejaculation, granules in the spermatophore wall appeared as porous formations with numerous electron lucent spaces. Calcium deposits were visible within the spaces and scattered in the spermatophore wall matrix, where smaller calcium deposits combined to form globular calcium deposits. Large numbers of the globular calcium deposits were visible in the wall of the post-mating spermatophore. Smaller calcium deposits were detected in the central area of post-mating spermatophore, which contains the sperm mass, and in the extracellular matrix and capsule. While the density of calcium deposits decreased in the post-mating spermatozoon membranes, numerous small calcium deposits appeared in the subacrosomal zone and nucleus. Substantial changes in calcium deposit distribution in the crayfish spermatophore during post-mating storage on the body of female may be involved in the processes of the spermatophore hardening and spermatozoon maturation. © 2016 Wiley Periodicals, Inc.

  4. Monthly dynamics of atmospheric wet nitrogen deposition on different spatial scales in China.

    PubMed

    Zhang, Qiongyu; Wang, Qiufeng; Xu, Li; Zhu, Jianxing; He, Nianpeng

    2018-06-16

    China is one of three global hotspots for nitrogen (N) deposition, which has concerned scientists and the public. While previous studies on N deposition in China have focused on its composition, spatial pattern, and interannual dynamics, its monthly dynamics in different regions remain unclear, hindering our ability to evaluate its ecological effects. Therefore, we obtained monthly wet N deposition data from196 sites after continuous network observations and published data in China and analyzed the monthly dynamics of NH 4 + -N, NO 3 - -N, and dissolved inorganic N (DIN=NH 4 + -N+NO 3 - -N) deposition fluxes on site, regional, and national scales. We observed that the deposition fluxes of NH 4 + -N, NO 3 - -N, and DIN in China showed clear monthly patterns and regional differences. In Northern China, wet N deposition predominantly showed a unimodal trend, whereas in Southern China, it revealed a bimodal trend or irregular fluctuations. During 2000-2016, NH 4 + -N, NO 3 - -N, and DIN deposition fluxes were estimated as 9.09, 6.12, and 15.21 kg N ha -1  year. -1 , respectively. Our findings enhance our understanding of atmospheric wet N deposition, and can serve as a reference for N deposition simulation experiments in different regions, and for generating long-term N deposition data for model optimization. Regional differences in the monthly dynamics of wet N deposition should be emphasized to accurately evaluate its ecological effects on terrestrial ecosystems in different regions.

  5. The effect of image force and diffusion on the deposition of ultrafine particle to vegetation

    NASA Astrophysics Data System (ADS)

    Lin, M. Y.; Katul, G. G.; Huang, C. W.; CHU, C. R.; Khlystov, A.

    2017-12-01

    Ultrafine particles (UFP) along with their sources and sinks are gaining significant attention due to their dual role in cloud microphysics and human health. Due to its expansive areal extent, vegetation is a significant sink for UFP thus prompting interest in how UFP deposit onto vegetated surfaces. Single fiber theory reasonably explains deposition of zero charge UFP onto vegetation by treating vegetation as filter media. However, the ability of the single fiber theory to predict deposition of charged UFP onto vegetation remains unknown and frames the scope of this presentation. Wind tunnel experiments are used to investigate UFP deposition (size range 12.6 - 102 nm) onto Juniper branches (Juniperus chinesis) and their results are interpreted using single fiber theory. Three different wind speeds (0.3, 0.6, and 0.9 m/s) are investigated to study deposition of singly-charged particles and these deposition values are contrasted with neutrally charged particles. The wind tunnel experiments indicate that single fiber theory can be used to describe deposition of singly-charged particles onto vegetation if both the image force and Brownian diffusion are simultaneously considered. The image force was found to be proportional to KIM0.5 when the image force dimensionless number (KIM) is smaller than 10-8, a common condition for singly charged UFP particle. The proportionality constant was found to be 27.6 (i.e. 27.6×KIM0.5) and is larger than a previously reported value (9.7) derived for KIM between 10-7 10-5, primarily due to the lower KIM (<10-8) in this study. Another study also showed that this proportionality constant increases with decreasing KIM. With this representation for the image force, the single fiber filtration model and measurements agree to within 20%. The work here offers a new perspective on the role of image force at small KIM (10-10 10-8) and its role in enhanced deposition of charged UFP onto vegetation.

  6. Bulk deposition of organic and inorganic nitrogen in southwest China from 2008 to 2013.

    PubMed

    Song, Ling; Kuang, Fuhong; Skiba, Ute; Zhu, Bo; Liu, Xuejun; Levy, Peter; Dore, Anthony; Fowler, David

    2017-08-01

    China is regarded as one of the nitrogen deposition hotspots in the world. Measurements to-date have focused mainly on the North China Plain, ignoring the fact that atmospheric chemical and physical properties vary across the country and that there may be other hotspots regions that should be investigated. For this reason we have conducted a six year study, measuring the bulk deposition of reduced (NH 4 -N), oxidized (NO 3 -N), and dissolved organic nitrogen (DON) at three contrasting sites in the Sichuan province, southwest China. The study sites were a high altitude forest in the Gongga Mountains (GG), an agriculture dominated region in Yanting (YT) and an urban site in the mega city Chengdu (CD). The annual average bulk deposition fluxes of total dissolved nitrogen (TDN) were 7.4, 23.1 and 36.6 kg N ha -1 yr -1 at GG, YT and CD sites, respectively, during the study period 2008 to 2013. The contributions of NH 4 -N, NO 3 -N and DON to the TDN were in the range of 48.4-57.8%, 28.8-43.7%, and 8.0-15.6%, respectively. DON bulk deposition was mainly dominated by agricultural activities. TDN bulk deposition fluxes showed increasing trends at the agricultural and urban sites from 2008 to 2013, but there was little change at the remote forest (GG) site. While reduced N dominated bulk N deposition at all the three sites, its contribution showed a decreasing trend, suggesting a gradual increase in the importance of oxidized N. These results reveal the value of long term monitoring in detecting changes in the atmospheric chemical composition of this rapidly changing region, and their inclusion in the policy debate regarding which sources should be controlled in order to reduce the long term impacts of N deposition, especially for southwest China, where there are few measurements of N deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Lithology, mineralogy and geochemical characterizations of sediment-hosted Sr-F deposits in the eastern Neo-Tethyan region - With special reference to evaporation and halokinesis in Tunisia

    NASA Astrophysics Data System (ADS)

    Dill, H. G.; Nolte, N.; Hansen, B. T.

    2014-04-01

    The Neo-Tethyan basin is known for its sediment-hosted Sr deposits in Spain, Turkey, Cyprus, and the Gulf Region. Sediment-hosted Sr-F deposits with base metals formed in the rim sinks and on top of salt domes resulting from halokinesis of Triassic evaporites near the southern edge of the Mediterranean Sea in Tunisia. These evaporites delivered part of the elements, created a basin-and-swell topography and provided the local and regional unconformities to which many of the mineral deposits are related. Five mineralizing processes, each with characteristic sedimentary ore textures, are related to this subsurface salt movement: (1 + 2) Early- and late-stage replacement ("zebra rocks"), (3) hydraulic fracturing ("fitting breccia" sensuDill and Weber, 2010b), (4) remobilization ("spinifex structures"), and (5) open-space filling ("caves and vein-like deposits"). Basinal brines from Mesozoic aquifers delivered Pb, Zn, Cd, REE, Y, Hg, and Se, while Sr, Cs, Be, Li, Cu and Co have been derived from Cenozoic salinas of the Neo-Tethyan basin. Mixing of Mesozoic and Cenozoic brines between 28 and 19 Ma provoked the emplacement of Sr-F mineralization at temperatures below 200 °C under strong alkaline conditions. Epigenetic polyphase Sr-F deposits bearing base-metals which are closely related to salt domes (Tunisian-Type) may be traced into epigenetic monophase Sr deposits within bioherms (Cyprus-Type) devoid of Pb, Zn and F. Moving eastward, syndiagenetic monophase Sr deposits in biostromes (Gulf-Type) herald the beginning of Sr concentration in Miocene sabkhas of the Neo-Tethys. The current results are based upon field-related sediment petrography and on mineralogical studies, which were supplemented by chemical studies. The present studies bridge the gap between epigenetic carbonate-hosted MVT and syndiagenetic evaporite deposits, both of which developed during the same time span (Neogene) and were hosted by the same environment (near-shore marine marginal facies of the Neo-Tethys basin).

  8. Nitrogen Deposition Effects on Diatom Communities in Lakes from Three National Parks in Washington State.

    PubMed

    Sheibley, Richard W; Enache, Mihaela; Swarzenski, Peter W; Moran, Patrick W; Foreman, James R

    2014-01-01

    The goal of this study was to document if lakes in National Parks in Washington have exceeded critical levels of nitrogen (N) deposition, as observed in other Western States. We measured atmospheric N deposition, lake water quality, and sediment diatoms at our study lakes. Water chemistry showed that our study lakes were ultra-oligotrophic with ammonia and nitrate concentrations often at or below detection limits with low specific conductance (<100 μS/cm), and acid neutralizing capacities (<400 μeq/L). Rates of summer bulk inorganic N deposition at all our sites ranged from 0.6 to 2.4 kg N ha -1  year -1 and were variable both within and across the parks. Diatom assemblages in a single sediment core from Hoh Lake (Olympic National Park) displayed a shift to increased relative abundances of Asterionella formosa and Fragilaria tenera beginning in the 1969-1975 timeframe, whereas these species were not found at the remaining (nine) sites. These diatom species are known to be indicative of N enrichment and were used to determine an empirical critical load of N deposition, or threshold level, where changes in diatom communities were observed at Hoh Lake. However, N deposition at the remaining nine lakes does not seem to exceed a critical load at this time. At Milk Lake, also in Olympic National Park, there was some evidence that climate change might be altering diatom communities, but more research is needed to confirm this. We used modeled precipitation for Hoh Lake and annual inorganic N concentrations from a nearby National Atmospheric Deposition Program station, to calculate elevation-corrected N deposition for 1980-2009 at Hoh Lake. An exponential fit to this data was hindcasted to the 1969-1975 time period, and we estimate a critical load of 1.0 to 1.2 kg N ha -1  year -1 for wet deposition for this lake.

  9. Depositional setting and extension of the evaporitic units in the Neogene Santa Rosalía basin, Baja California Sur, México

    NASA Astrophysics Data System (ADS)

    Munoz, V. O. S.; Maher, A.; Jaime-Geraldo, A. J.; Niemi, T.

    2017-12-01

    Most geologic studies of the Santa Rosalía basin (SRB) have focused on the mineralization of the ore deposits, depositional environment of the sedimentary formations, and volcanism associated with the opening of the Gulf of California. Studies on the depositional setting, features, and patterns of the thick evaporite sequences in the SRB have been neglected even though one of the largest gypsum mines in the world is located in these deposits. Previous reports on the thick gypsum deposits suggested that the deposits were precipitated from hydrothermal submarine springs or from evaporation from bodies of water partly enclosed and cut off from the sea (Wilson and Rocha, 1955; Ochoa-Landin et al., 2000). Contemporary studies on the geochemistry of the gypsum supports an interpretation of marine deposition based on the isotopic values of δ34S and δ18O congruent with the precipitation of Miocene water (Conly et al., 2006). Nonetheless, our sedimentologic and stratigraphic descriptions suggest a more dynamic terrestrial to nearshore setting with graded fluvial beds, debris flow, and a clastic dike within a clastic unit of the gypsum along the Arroyo Boleo. This is compatible with the description of the San Marco Formation reported by Anderson (1940) composed of clastic sediments with no marine fossils, carbonized wood and leaf fragments as well as gypsum along the southeastern shore of the San Marcos Island asserting there is sufficient lithologic resemblance and proximity to indicate that they are the same formation. Furthermore, a multichannel seismic transect study of the Guaymas Basin by Miller and Lizarralde (2013) revealed an approximately 2-km-thick, 50 × 100 km evaporite body under the shelf on the eastern margin of the Guaymas Basin and suggest that this thick evaporitic unit correlates with the gypsum beds of the SRB on the Baja California peninsula. Additional research on the source of water and depositional evolution based on sedimentological characteristics and geochemistry of the gypsum unit is ongoing. Wilson & Rocha, USGS PP273; Ochoa-Landin et al., RMCG 17(2); Conly et al., Miner Deposita (41); Miller & Lizarralde, Geology, 41(2).

  10. Geochronology of the Thompson Creek Mo Deposit: Evidence for the Formation of Arc-related Mo Deposits

    NASA Astrophysics Data System (ADS)

    Lawrence, C. D.; Coleman, D. S.; Stein, H. J.

    2016-12-01

    The Thompson Creek Mo deposit in central ID, has been categorized as an arc-related Mo deposit due to the location, grade of Mo, and relative lack of enrichments in F, Rb, and Nb, compared to the Climax-type Mo deposits. Geochronology from this arc-related deposit provides an opportunity to compare and contrast magmatism, and mineralization to that in Climax-type deposits. Distinct pulses of magmatism were required to form the Thompson Creek Mo deposit, which is consistent with recent geochronology from Climax-type deposits. Molybdenite Re-Os geochronology from five veins requires at least three pulses of magmatism and mineralization between 89.39 +/- 0.37 and 88.47 +/- 0.16 Ma. Zircon U-Pb ages from these mineralized samples overlap with molybdenite mineralization, but show a much wider range (91.01 +/- 0.37 to 87.27 +/- 0.69). Previous work from Climax-type Mo deposits suggest a correlation between a super eruption, and the subsequent rapid (<1 Ma) onset, and completion of Mo mineralizing intrusions. The longer life (3-4 Ma) for the Thompson Creek Mo deposit suggests that the mineralizing intrusions for arc-related Mo deposits may not need to have as high [Mo] as the Climax-type deposits. This study also finds a shift in the source of magmatism from the pre- to syn-mineralizing intrusions. Zircons from pre-mineralizing intrusions have much higher (15-60 pg) concentrations of radiogenic Pb than zircons from mineralized intrusions, which all have less than 15 pg, though whole rock [U] are similar.

  11. Properties of RF sputtered cadmium telluride (CdTe) thin films: Influence of deposition pressure

    NASA Astrophysics Data System (ADS)

    Kulkarni, R. R.; Pawbake, A. S.; Waykar, R. G.; Rondiya, S. R.; Jadhavar, A. A.; Pandharkar, S. M.; Karpe, S. D.; Diwate, K. D.; Jadkar, S. R.

    2016-04-01

    Influence of deposition pressure on structural, morphology, electrical and optical properties of CdTe thin films deposited at low substrate temperature (100°C) by RF magnetron sputtering was investigated. The formation of CdTe was confirmed by low angle XRD and Raman spectroscopy. The low angle XRD analysis revealed that the CdTe films have zinc blende (cubic) structure with crystallites having preferred orientation in (111) direction. Raman spectra show the longitudinal optical (LO) phonon mode peak ˜ 165.4 cm-1 suggesting high quality CdTe film were obtained over the entire range of deposition pressure studied. Scanning electron microscopy analysis showed that films are smooth, homogenous, and crack-free with no evidence of voids. The EDAX data revealed that CdTe films deposited at low deposition pressure are high-quality stoichiometric. However, for all deposition pressures, films are rich in Cd relative to Te. The UV-Visible spectroscopy analysis show the blue shift in absorption edge with increasing the deposition pressure while the band gap show decreasing trend. The highest electrical conductivity was obtained for the film deposited at deposition pressure 1 Pa which indicates that the optimized deposition pressure for our sputtering unit is 1 Pa. Based on the experimental results, these CdTe films can be useful for the application in the flexible solar cells and other opto-electronic devices.

  12. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Li, Xiaolong; Wang, Jiangwei; Xu, Weichen; Duan, Jizhou; Chen, Shougang; Hou, Baorong

    2017-12-01

    Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of -30 μA cm-2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.

  13. CO2-rich and CO2-poor ore-forming fluids of porphyry molybdenum systems in two contrasting geologic setting: evidence from Shapinggou and Zhilingtou Mo deposits, South China

    NASA Astrophysics Data System (ADS)

    Ni, P.

    2017-12-01

    Porphyry deposits are the world most important source of Mo, accounting for more than 95% of world Mo production. Porphyry Mo deposits have been classified into Climax type and Endako type. The Climax type was generally formed in an intra-continental setting, and contain high contents of Mo (0.15-0.45 wt.%) and F (0.5-5 wt.%). In contrast, the Endako type was generated in a continental arc setting and featured by low concentrations of Mo (0.05-0.15 wt.%) and F (0.05-0.15 wt.%). The systematic comparison of ore fluids in two contrasting tectonic environments is still poorly constrained. In this study, the Shapinggou and Zhilingtou Mo deposits in South China were selected to present the contrasting ore-forming fluid features. The fluid inclusion study of Shapinggou Mo deposit suggest: Early barren quartz veins contain fluid inclusions with salinities of 7.9-16.9 wt% NaCl equiv . CO2 contents are high enough to be detected by Raman. Later molybdenite-quartz veins contain vapor-type fluid inclusions with lower salinities (0.1-7.4 wt% NaCl equiv) but higher CO2-contents, coexisting with brine inclusions with 32.9-50.9 wt% NaCl equiv. The fluid inclusion study on Zhilintou Mo deposit suggest : Early barren quartz veins contain mostly intermediate density fluid inclusions with salinities of 5.3-14.1 wt% NaCl equiv, whereas main-stage quartz-molybdenite veins contain vapor-rich fluid inclusions of 0.5-6.2 wt% NaClequiv coexisting with brine inclusions of 38.6-44.8 wt% NaCl equiv. In contrast to the Shapinggou Mo deposit, the fluid inclusions at Shizitou contain only minor amounts of CO2. This study suggests the two porphyry molybdenum deposits experienced a similar fluid evolution trend, from single-phase fluids at the premineralization stage to two-phase fluids at the mineralization stage. Fluid boiling occurred during the ore stage and probably promoted a rapid precipitation of molybdenite. Intensive phyllic alteration, CO2-poor ore-forming fluids, and continental arc setting suggest that the Zhilingtou Mo deposit is likely to be an Endako type porphyry Mo deposit. It is different from Shapinggou Mo deposit, which were formed in an intra-continental setting and characterized by intensive potassic alteration and CO2-rich ore-forming fluids.

  14. Changes in wet nitrogen deposition in the United States between 1985 and 2012

    NASA Astrophysics Data System (ADS)

    Du, Enzai; de Vries, Wim; Galloway, James N.; Hu, Xueyang; Fang, Jingyun

    2014-09-01

    The United States (US) is among the global hotspots of nitrogen (N) deposition and assessing the temporal trends of wet N deposition is relevant to quantify the effectiveness of existing N regulation policies and its consequent environmental effects. This study analyzed changes in observed wet deposition of dissolved inorganic N (DIN = ammonium + nitrate) in the US between 1985 and 2012 by applying a Mann-Kendall test and Regional Kendall test. Current wet DIN deposition (2011-2012) data were used to gain insight in the current pattern of N deposition. Wet DIN deposition generally decreased going from Midwest > Northeast > South > West region with a national mean rate of 3.5 kg N ha-1 yr-1. Ammonium dominated wet DIN deposition in the Midwest, South and West regions, whereas nitrate and ammonium both contributed a half in the Northeast region. Wet DIN deposition showed no significant change at the national scale between 1985 and 2012, but profound changes occurred in its components. Wet ammonium deposition showed a significant increasing trend at national scale (0.013 kg N ha-1 yr-2), with the highest increase in the Midwest and eastern part of the South region. Inversely, wet nitrate deposition decreased significantly at national scale (-0.014 kg N ha-1 yr-2), with the largest reduction in the Northeast region. Overall, ratios of ammonium versus nitrate in wet deposition showed a significant increase in all the four regions, resulting in a transition of the dominant N species from nitrate to ammonium. Distinct magnitudes, trends and patterns of wet ammonium and nitrate deposition suggest the needs to control N emissions by species and regions to avoid negative effects of N deposition on ecosystem health and function in the US.

  15. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification

    NASA Astrophysics Data System (ADS)

    Cheng, Chen; Bi, Chunjuan; Wang, Dongqi; Yu, Zhongjie; Chen, Zhenlou

    2018-03-01

    This study investigated the dry and wet deposition fluxes of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. The flux sources were traced based on composition and spatio-temporal variation. The results show that wet deposition concentrations of PAHs ranged from 0.07 to 0.67 mg·L-1 and were correlated with temperature ( P<0.05). Dry deposition of PAHs concentrations ranged from 3.60-92.15 mg·L-1 and were higher in winter and spring than in summer and autumn. The annual PAH average fluxes were 0.631 mg·m-2·d-1 and 4.06 mg·m-2·d-1 for wet and dry deposition, respectively. The highest wet deposition of PAH fluxes was observed in summer, while dry deposition fluxes were higher in winter and spring. Atmospheric PAHs were deposited as dry deposition in spring and winter, yet wet deposition was the dominant pathway during summer. Total atmospheric PAH fluxes were higher in the northern areas than in the southern areas of Shanghai, and were also observed to be higher in winter and spring. Annual deposition of atmospheric PAHs was about 10.8 t in across all of Shanghai. Wet deposition of PAHs was primarily composed of two, three, or four rings, while dry deposition of PAHs was composed of four, five, or six rings. The atmospheric PAHs, composed of four, five, or six rings, primarily existed in the form of particulates. Coal combustion and vehicle emissions were the dominant sources of PAH in the observed area of downtown Shanghai. In suburban areas, industrial pollution, from sources such as coke oven, incinerator, and oil fired power plant, was as significant as vehicle emissions in contributing to the deposition of PAHs.

  16. Texture and depositional history of near-surface alluvial deposits in the central part of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Laudon, Julie; Belitz, Kenneth

    1989-01-01

    Saline conditions and associated high levels of selenium and other soluble trace elements in soil, shallow ground water, and agricultural drain water of the western San Joaquin Valley, California, have prompted a study of the texture of near-surface alluvial deposits in the central part of the western valley. Texture is characterized by the percentage of coarse-grained sediment present within a specified subsurface depth interval and is used as a basis for mapping the upper 50 feet of deposits. Resulting quantitative descriptions of the deposits are used to interpret the late Quaternary history of the area. Three hydrogeologic units--Coast Range alluvium, flood-basin deposits, and Sierran sand--can be recognized in the upper 50 feet of deposits in the central part of the western San Joaquin Valley. The upper 30 feet of Coast Range alluvium and the adjacent 5 to 35 feet of flood-basin deposits are predominantly fine grained. These fine-grained Coast Range deposits are underlain by coarse-grained channel deposits. The fine-grained flood basin deposits are underlain by coarse-grained Sierran sand. The extent and orientation of channel deposits below 20 feet in the Coast Range alluvium indicate that streams draining the Coast Range may have been tributary to the axial stream that deposited the Sierran sand and that streamflow may have been to the southeast. The fining-upward stratigraphic sequence in the upper 50 feet of deposits and the headward retreat of tributary stream channels from the valley trough with time support a recent hypothesis of climatic control of alluviation in the western San Joaquin Valley.

  17. Cerebral amyloid angiopathy, blood-brain barrier disruption and amyloid accumulation in SAMP8 mice.

    PubMed

    del Valle, Jaume; Duran-Vilaregut, Joaquim; Manich, Gemma; Pallàs, Mercè; Camins, Antoni; Vilaplana, Jordi; Pelegrí, Carme

    2011-01-01

    Cerebrovascular dysfunction and β-amyloid peptide deposition on the walls of cerebral blood vessels might be an early event in the development of Alzheimer's disease. Here we studied the time course of amyloid deposition in blood vessels and blood-brain barrier (BBB) disruption in the CA1 subzone of the hippocampus of SAMP8 mice and the association between these two variables. We also studied the association between the amyloid deposition in blood vessels and the recently described amyloid clusters in the parenchyma, as well as the association of these clusters with vessels in which the BBB is disrupted. SAMP8 mice showed greater amyloid deposition in blood vessels than age-matched ICR-CD1 control mice. Moreover, at 12 months of age the number of vessels with a disrupted BBB had increased in both strains, especially SAMP8 animals. At this age, all the vessels with amyloid deposition showed BBB disruption, but several capillaries with an altered BBB showed no amyloid on their walls. Moreover, amyloid clusters showed no spatial association with vessels with amyloid deposition, nor with vessels in which the BBB had been disrupted. Finally, we can conclude that vascular amyloid deposition seems to induce BBB alterations, but BBB disruption may also be due to other factors. Copyright © 2011 S. Karger AG, Basel.

  18. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.

    PubMed

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Xu, Shengzhi; Zhao, Ying

    2014-10-07

    In this study, hydrogenated amorphous silicon (a-Si:H) thin films are deposited using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) system. The Si-H configuration of the a-Si:H/c-Si interface is regulated by optimizing the deposition temperature and post-annealing duration to improve the minority carrier lifetime (τeff) of a commercial Czochralski (Cz) silicon wafer. The mechanism of this improvement involves saturation of the microstructural defects with hydrogen evolved within the a-Si:H films due to the transformation from SiH2 into SiH during the annealing process. The post-annealing temperature is controlled to ∼180 °C so that silicon heterojunction solar cells (SHJ) could be prepared without an additional annealing step. To achieve better performance of the SHJ solar cells, we also optimize the thickness of the a-Si:H passivation layer. Finally, complete SHJ solar cells are fabricated using different temperatures for the a-Si:H film deposition to study the influence of the deposition temperature on the solar cell parameters. For the optimized a-Si:H deposition conditions, an efficiency of 18.41% is achieved on a textured Cz silicon wafer.

  19. Computational Fluid Dynamics Modeling of Bacillus anthracis ...

    EPA Pesticide Factsheets

    Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict

  20. A computational study of odorant transport and deposition in the canine nasal cavity: implications for olfaction.

    PubMed

    Lawson, M J; Craven, B A; Paterson, E G; Settles, G S

    2012-07-01

    Olfaction begins when an animal draws odorant-laden air into its nasal cavity by sniffing, thus transporting odorant molecules from the external environment to olfactory receptor neurons (ORNs) in the sensory region of the nose. In the dog and other macrosmatic mammals, ORNs are relegated to a recess in the rear of the nasal cavity that is comprised of a labyrinth of scroll-like airways. Evidence from recent studies suggests that nasal airflow patterns enhance olfactory sensitivity by efficiently delivering odorant molecules to the olfactory recess. Here, we simulate odorant transport and deposition during steady inspiration in an anatomically correct reconstructed model of the canine nasal cavity. Our simulations show that highly soluble odorants are deposited in the front of the olfactory recess along the dorsal meatus and nasal septum, whereas moderately soluble and insoluble odorants are more uniformly deposited throughout the entire olfactory recess. These results demonstrate that odorant deposition patterns correspond with the anatomical organization of ORNs in the olfactory recess. Specifically, ORNs that are sensitive to a particular class of odorants are located in regions where that class of odorants is deposited. The correlation of odorant deposition patterns with the anatomical organization of ORNs may partially explain macrosmia in the dog and other keen-scented species.

  1. Patterned mist deposition of tri-colour CdSe/ZnS quantum dot films toward RGB LED devices

    NASA Astrophysics Data System (ADS)

    Pickering, S.; Kshirsagar, A.; Ruzyllo, J.; Xu, J.

    2012-06-01

    In this experiment a technique of mist deposition was explored as a way to form patterned ultra-thin-films of CdSe/ZnS core/shell nanocrystalline quantum dots using colloidal solutions. The objective of this study was to investigate the feasibility of mist deposition as a patterning method for creating multicolour quantum dot light emitting diodes. Mist deposition was used to create three rows of quantum dot light emitting diodes on a single device with each row having a separate colour. The colours chosen were red, green and yellow with corresponding peak wavelengths of 620 nm, 558 nm, and 587 nm. The results obtained from this experiment show that it is possible to create multicolour devices on a single substrate. The peak brightnesses obtained in this experiment for the red, green, and yellow were 508 cd/m, 507 cd/m, and 665 cd/m, respectively. The similar LED brightness is important in display technologies using colloidal quantum dots in a precursor solution to ensure one colour does not dominate the emitted spectrum. Results obtained in-terms of brightness were superior to those achieved with inkjet deposition. This study has shown that mist deposition is a viable method for patterned deposition applied to quantum dot light emitting diode display technologies.

  2. Solution processed deposition of electron transport layers on perovskite crystal surface-A modeling based study

    NASA Astrophysics Data System (ADS)

    Mortuza, S. M.; Taufique, M. F. N.; Banerjee, Soumik

    2017-02-01

    The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.

  3. Mega-tsunami deposits or evidence of uplift within the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Keating, B. H.

    2004-12-01

    For several years there has been a controversy over the origin of coral-bearing deposits on the island of Lanai (Hawaii). Studies underway have expanded the study of marine deposits from Lanai to adjacent islands. Coral-bearing deposits are present at elevations up to 190 m on Lanai, 90 m on Maui, 90 m on Molokai, 30 m Oahu, 30 m on Niihau, roughly 75 m on Kauai (as well as a few m above sea level on the Kohala Volcano on the island of Hawaii). The deposits show a persistent pattern of increased weathering, color change, increasing age and increase in the number of fossils now extinct in Hawaiian waters, with elevation above modern sea level. Changes in slope are also observed reflecting changing relative sea level. A review of radiometric ages suggests in-situ corals as well as marine conglomerates were deposited near sea level and were contemporaneous. The distribution, stratigraphy and age of marine sediments around the islands are consistent with a history of uplift combined with changing sea level. We document the age, rock and fossil characteristics and distribution of sub-aerially exposed marine sediments, in the Hawaiian Island chain. We suggest that the Hawaiian Islands have experienced lithospheric adjustments during the last 500,000 years that have left marine deposits exposed above sea level.

  4. Effects of deposition temperatures on structure and physical properties of Cd 1-xZn xTe films prepared by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zeng, Dongmei; Jie, Wanqi; Zhou, Hai; Yang, Yingge

    2010-02-01

    Cd 1-xZn xTe films were deposited by RF magnetron sputtering from Cd 0.9Zn 0.1Te crystals target at different substrate temperatures (100-400 °C). The effects of the deposition temperature on structure and physical properties of Cd 1-xZn xTe films have been studied using X-ray diffraction (XRD), step profilometer, atomic force microscopy (AFM), ultraviolet spectrophotometer and Hall effect measurements. X-ray studies suggest that the deposited films were polycrystalline with preferential (1 1 1) orientation. AFM micrographs show that the grain size was changed from 50 to 250 nm with the increase of deposition temperatures, the increased grain size may result from kinetic factors during sputtering growth. The optical transmission data indicate that shallow absorption edge occurs in the range of 744-835 nm and that the optical absorption coefficient is varied with the increase of deposition temperatures. In Hall Effect measurements, the sheet resistivities of the deposited films are 3.2×10 8, 3.0×10 8, 1.9×10 8 and 1.1×10 8 Ohm/sq, which were decreased with the increase of substrate temperatures. Analysis of the resistivity of films depended on the substrate temperatures is discussed.

  5. Relationships between annual plant productivity, nitrogen deposition and fire size in low-elevation California desert scrub

    USGS Publications Warehouse

    Rao, Leela E.; Matchett, John R.; Brooks, Matthew L.; Johns, Robert; Minnich, Richard A.; Allen, Edith B.

    2014-01-01

    Although precipitation is correlated with fire size in desert ecosystems and is typically used as an indirect surrogate for fine fuel load, a direct link between fine fuel biomass and fire size has not been established. In addition, nitrogen (N) deposition can affect fire risk through its fertilisation effect on fine fuel production. In this study, we examine the relationships between fire size and precipitation, N deposition and biomass with emphasis on identifying biomass and N deposition thresholds associated with fire spreading across the landscape. We used a 28-year fire record of 582 burns from low-elevation desert scrub to evaluate the relationship of precipitation, N deposition and biomass with the distribution of fire sizes using quantile regression. We found that models using annual biomass have similar predictive ability to those using precipitation and N deposition at the lower to intermediate portions of the fire size distribution. No distinct biomass threshold was found, although within the 99th percentile of the distribution fire size increased with greater than 125 g m–2 of winter fine fuel production. The study did not produce an N deposition threshold, but did validate the value of 125 g m–2 of fine fuel for spread of fires.

  6. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler.

    PubMed

    Sleeth, Darrah K; Balthaser, Susan A; Collingwood, Scott; Larson, Rodney R

    2016-03-07

    Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET₁) and the posterior nasal and oral passages (ET₂). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm-44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.

  7. Estimation of the Human Extrathoracic Deposition Fraction of Inhaled Particles Using a Polyurethane Foam Collection Substrate in an IOM Sampler

    PubMed Central

    Sleeth, Darrah K.; Balthaser, Susan A.; Collingwood, Scott; Larson, Rodney R.

    2016-01-01

    Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET1) and the posterior nasal and oral passages (ET2). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm–44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device. PMID:26959046

  8. Aerosol delivery with two ventilation modes during mechanical ventilation: a randomized study.

    PubMed

    Dugernier, Jonathan; Reychler, Gregory; Wittebole, Xavier; Roeseler, Jean; Depoortere, Virginie; Sottiaux, Thierry; Michotte, Jean-Bernard; Vanbever, Rita; Dugernier, Thierry; Goffette, Pierre; Docquier, Marie-Agnes; Raftopoulos, Christian; Hantson, Philippe; Jamar, François; Laterre, Pierre-François

    2016-12-01

    Volume-controlled ventilation has been suggested to optimize lung deposition during nebulization although promoting spontaneous ventilation is targeted to avoid ventilator-induced diaphragmatic dysfunction. Comparing topographic aerosol lung deposition during volume-controlled ventilation and spontaneous ventilation in pressure support has never been performed. The aim of this study was to compare lung deposition of a radiolabeled aerosol generated with a vibrating-mesh nebulizer during invasive mechanical ventilation, with two modes: pressure support ventilation and volume-controlled ventilation. Seventeen postoperative neurosurgery patients without pulmonary disease were randomly ventilated in pressure support or volume-controlled ventilation. Diethylenetriaminepentaacetic acid labeled with technetium-99m (2 mCi/3 mL) was administrated using a vibrating-mesh nebulizer (Aerogen Solo(®), provided by Aerogen Ltd, Galway, Ireland) connected to the endotracheal tube. Pulmonary and extrapulmonary particles deposition was analyzed using planar scintigraphy. Lung deposition was 10.5 ± 3.0 and 15.1 ± 5.0 % of the nominal dose during pressure support and volume-controlled ventilation, respectively (p < 0.05). Higher endotracheal tube and tracheal deposition was observed during pressure support ventilation (27.4 ± 6.6 vs. 20.7 ± 6.0 %, p < 0.05). A similar penetration index was observed for the right (p = 0.210) and the left lung (p = 0.211) with both ventilation modes. A high intersubject variability of lung deposition was observed with both modes regarding lung doses, aerosol penetration and distribution between the right and the left lung. In the specific conditions of the study, volume-controlled ventilation was associated with higher lung deposition of nebulized particles as compared to pressure support ventilation. The clinical benefit of this effect warrants further studies. Clinical trial registration NCT01879488.

  9. Degradation of thermal barrier coatings on an Integrated Gasification Combined Cycle (IGCC) simulated film-cooled turbine vane pressure surface due to particulate fly ash deposition

    NASA Astrophysics Data System (ADS)

    Luo, Kevin

    Coal synthesis gas (syngas) can introduce contaminants into the flow of an Integrated Gasification Combined Cycle (IGCC) industrial gas turbine which can form molten deposits onto components of the first stage of a turbine. Research is being conducted at West Virginia University (WVU) to study the effects of particulate deposition on thermal barrier coatings (TBC) employed on the airfoils of an IGCC turbine hot section. WVU had been working with U.S. Department of Energy, National Energy Technology Laboratory (NETL) to simulate deposition on the pressure side of an IGCC turbine first stage vane to study the effects on film cooling. To simulate the particulate deposition, TBC coated, angled film-cooled test articles were subjected to accelerated deposition injected into the flow of a combustor facility with a pressure of approximately 4 atm and a gas temperature of 1560 K. The particle characteristics between engine conditions and laboratory are matched using the Stokes number and particulate loading. To investigate the degradation on the TBC from the particulate deposition, non-destructive evaluations were performed using a load-based multiple-partial unloading micro-indentation technique and were followed by scanning electron microscopy (SEM) evaluation and energy dispersive X-ray spectroscopy (EDS) examinations. The micro-indentation technique used in the study was developed by Kang et al. and can quantitatively evaluate the mechanical properties of materials. The indentation results found that the Young's Modulus of the ceramic top coat is higher in areas with deposition formation due to the penetration of the fly ash. The increase in the modulus of elasticity has been shown to result in a reduction of strain tolerance of the 7% yttria-stabilized zirconia (7YSZ) TBC coatings. The increase in the Young's modulus of the ceramic top coat is due to the stiffening of the YSZ columnar microstructure from the cooled particulate fly ash. SEM evaluation was used to evaluate the microstructure of the layers within the TBC system, and the SEM micrographs showed that the TBC/fly ash deposition interaction zone made the YSZ coating more susceptible to delamination and promoted a dissolution-reprecipitation mechanism that changes the YSZ morphology and composition. EDS examination provided elemental maps which showed a shallow infiltration depth of the fly ash deposits and an elemental distribution spectrum analysis showed yttria migration from the YSZ top coating into the molten deposition. This preliminary work should lead to future studies in gas turbine material coating systems and their interaction with simulated fly ash and potentially CMAS or volcanic ash deposition.

  10. RHEED and EELS study of Pd/Al bimetallic thin film growth on different α-Al 2O 3 substrates

    NASA Astrophysics Data System (ADS)

    Moroz, V.; Rajs, K.; Mašek, K.

    2002-06-01

    Pd/Al bimetallic thin films were grown by molecular beam epitaxy on single-crystalline α-Al 2O 3(0 0 0 1) and (1 1 2¯ 0) surfaces. Substrate and deposit crystallographic structures and evolution of deposit lattice parameter during the growth were studied by reflection high-energy electron diffraction. The electron energy loss spectroscopy was used as an auxiliary method for chemical analysis. The bimetallic films were prepared by successive deposition of both Pd and Al metals. The structure of Pd and Al deposits in early stages of the growth and its dependence on the preparation conditions were studied. Two phases of Pd clusters covered by Al overlayer have been found. The formation of Al overlayer strongly influenced the lattice parameter of Pd clusters.

  11. Aqueous, Room Temperature Deposition of Silicon, Molybdenum and Germanium onto Aluminum Substrates

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Aarti Krishna

    Electrochemical deposition of active materials such as Si, Mo and Ge is notoriously difficult, so they are typically deposited using expensive vacuum methods such as chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), and magnetron sputtering. However, for most materials, electrochemical deposition has significant advantages of cost, scalability, and manufacturability. There are two main challenges in depositing these materials from aqueous electrolytes at room temperature, namely their highly cathodic standard reduction potential and the formation of native oxides. This has led researchers to use non-aqueous electrolytes such as organic solvents, room temperature ionic liquids (RTILs), and high temperature molten salts. However, these have drawbacks over aqueous electrolytes such as high cost, low conductivity, flammability, and corrosive behavior. During my PhS studies, these two challenges were overcome by using the galvanic method of deposition and by including HF in the electrolyte. Si thin films are employed in a variety of technologies, including microelectronic and photovoltaic devices, Li ion battery anodes, and corrosion-resistant coatings. A galvanic and a combined galvanic/electroless method of Si deposition were developed using aqueous electrolytes at room temperature to obtain nanoporous and compact films, respectively. These films were characterized to understand the surface morphology, thickness, crystallinity, growth rate, composition and nucleation behavior. Approximately 7-10 µm thick compact Si films were achieved with a deposition time of around 28 hours. The galvanic method of deposition was also extended to deposit compact Mo films. Mo thin films have a number of technological applications, including back contacts for CIGS/CZTS photovoltaic devices and corrosion-resistant coatings. Mo thin films were also thoroughly characterized and approximately 4.5 µm thick films were obtained after 3 hours. Similar to Si depostion, a galvanic method of deposition and the galvanic/electroless method of deposition was tested for the deposition of Ge. However no Ge deposit could be consistently obtained, probably due to oxyanion formation in aqueous hexaflurogermante solution.

  12. Novel multi-functional europium-doped gadolinium oxide nanoparticle aerosols facilitate the study of deposition in the developing rat lung

    NASA Astrophysics Data System (ADS)

    Das, Gautom K.; Anderson, Donald S.; Wallis, Chris D.; Carratt, Sarah A.; Kennedy, Ian M.; van Winkle, Laura S.

    2016-06-01

    Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m-3 of ~30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu3+) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution.Ambient ultrafine particulate matter (UPM), less than 100 nm in size, has been linked to the development and exacerbation of pulmonary diseases. Age differences in susceptibility to UPM may be due to a difference in delivered dose as well as age-dependent differences in lung biology and clearance. In this study, we developed and characterized aerosol exposures to novel metal oxide nanoparticles containing lanthanides to study particle deposition in the developing postnatal rat lung. Neonatal, juvenile and adult rats (1, 3 and 12 weeks old) were nose only exposed to 380 μg m-3 of ~30 nm europium doped gadolinium oxide nanoparticles (Gd2O3:Eu3+) for 1 h. The deposited dose in the nose, extrapulmonary airways and lungs was determined using inductively-coupled plasma mass spectroscopy. The dose of deposited particles was significantly greater in the juvenile rats at 2.22 ng per g body weight compared to 1.47 ng per g and 0.097 ng per g for the adult and neonate rats, respectively. Toxicity was investigated in bronchoalveolar lavage fluid (BALF) by quantifying recovered cell types, and measuring lactate dehydrogenase activity and total protein. The toxicity data suggests that the lanthanide particles were not acutely toxic or inflammatory with no increase in neutrophils or lactate dehydrogenase activity at any age. Juvenile and adult rats had the same mass of deposited NPs per gram of lung tissue, while neonatal rats had significantly less NPs deposited per gram of lung tissue. The current study demonstrates the utility of novel lanthanide-based nanoparticles to study inhaled particle deposition in vivo and has important implications for nanoparticles delivery to the developing lung either as therapies or as a portion of particulate matter air pollution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00897f

  13. Association Between Serum Triglycerides and Cerebral Amyloidosis in Cognitively Normal Elderly.

    PubMed

    Choi, Hyo Jung; Byun, Min Soo; Yi, Dahyun; Choe, Young Min; Sohn, Bo Kyung; Baek, Hye Won; Lee, Jun Ho; Kim, Hyun Jung; Han, Ji Young; Yoon, Eun Jin; Kim, Yu Kyeong; Woo, Jong Inn; Lee, Dong Young

    2016-08-01

    Although many preclinical studies have suggested the possible linkage between dyslipidemia and cerebral amyloid deposition, the association between serum lipid measures and cerebral amyloid-beta (Aβ) deposition in human brain is still poorly known. We aimed to investigate the association in cognitively normal (CN) elderly individuals. Cross-sectional study. University hospital dementia clinic. 59 CN elderly. The study measures included comprehensive clinical and neuropsychological assessment based on the CERAD protocol, magnetic resonance imaging and (11)C-labelled Pittsburgh Compound B positron emission tomography scans, and quantification for serum lipid biomarkers. Multiple linear regression analyses showed that a higher serum triglycerides level was associated with heavier global cerebral Aβ deposition even after controlling age, sex, and apolipoprotein E ε4 genotype. Serum apolipoprotein B also showed significant positive association with global cerebral Aβ deposition, but the significance disappeared after controlling serum triglycerides level. No association was found between other lipid measures and global cerebral Aβ deposition. The findings suggest that serum triglycerides are closely associated with cerebral amyloidosis, although population-based prospective studies are needed to provide further evidence of the causative effect of triglycerides on cerebral amyloidosis. Copyright © 2016 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Sediment-hosted Pb-Zn Deposits: a global perspective

    USGS Publications Warehouse

    Leach, David L.; Sangster, Donald F.; Kelley, Karen D.; Large, R; Garven, G.; Allen, Craig R.

    2005-01-01

    Sediment-hosted Pb-Zn deposits contain the world's greatest lead and zinc resources and dominate world production of these metals. They are a chverse group of ore deposits hosted by a wide variety of carbonate and siliciclastic roch that have no obviolls genetic association with igneous activity. A nmge of ore-fortl1ing processes in a vmiety of geologic and tectonic environments created these deposits over at least two billion years of Earth history. The metals were precipitated by basinal brines in synsedimentary and early diagenetic to low-grade metamorphic environments. The deposits display a broad range of relationships to enclosing host rocks that includes stratiform, strata-bound, and discordant ores. These ores are divided into two broad subt)1Jes: Mississippi Valley-type (MVT) and sedimentmy exhalative (SEDEX), Despite the "exhalative" component inherent in the term "SEDEX," in this manusclipt, direct evidence of an exhalite in the ore or alteration component is not essential for a deposit to be classified as SEDEX. The presence of laminated sulfides parallel to bedding is assumed to be permissive evidence for exhalative ores. The chstinction between some SEDEX and MVT depOSits can be quite subjective because some SEDEX ores replaced carbonate, whereas some MVT depOSits formed in an early diagenetic environment and display laminated ore textures. Geologic and resource information are presented for 248 depositS that provide a framework to describe ,mel compare these deposits. Nine of tlle 10 largest sediment-hosted Pb-Zn deposits are SEDEX, Of the deposits that contain at least 2.5 million metric tons (Mt), there are 35 SEDEX (excluding Broken Hill-type) deposits and 15 MVT (excluding Iris-type) deposits. Despite the skewed distribution of the deposit size, the two deposits types have an excellent correlation between total tonnage and tonnage of contained metal (Pb + Zn), with a fairly consistent ratio of about lO/l, regardless of the size of the deposit or district. Zinc grades are approximately the same for both, whereas Pb and Ag grades are about 25 percent greater for SEDEX deposits. The largest difference between SEDEX and MVT deposits is their Cu content. Three times as many SEDEX deposits have reported Cu contents, and the median Cu value of SEDEX deposits is nearly double that of MVT deposits. Furthermore, grade-tonnage values for MVT deposits compared to a subset of SEDEX deposits hosted in carbonate rocks are virtually indistinguishable. The distribution of MVT deposits through geologic time shows that they are mainly a Phanerozoic phenomenon. The ages of SEDEX deposits are grouped into two major groups, one in the Proterozoic and another in the Phanerozoic, MVT deposits dominantly formed in platform carbonate sequences typically located within extensional zones inboard of orogenic belts, whereas SEDEX deposits formed in intracontinental or failed rifts, and rifted continental margins. The ages of MVT ores are generally tens of millions of years younger than their host rocks; however, a few are close <~5 m.y.) to the age of their host rocks. In the absence of direct dates for SEDEX deposits, their age of formation is generally constnuned by relationships to sedimentary or diagenetic features in the rocks. These studies suggest that deposition of SEDEX ores was coeval with sedimentation or early diagenesis, whereas some deposits formed at least 20 m.y. after sedimentation. Fluid inclusion, isotopic studies, and deposit modeling suggest that MVf and SEDEX deposits formed from basin brines with similar temperatures of mainly 90° to 200°C and lO to 30 wt percent NaCI equiv. Lead isotope compositions for MVT and SEDEX deposits show that Pb was mainly derived from a variety of crustal sources. Lead isotope compositions do not provide critelia that distinguish MVT from SEDEX subtypes. However, sulfur isotope compositions for sphalerite and galena show an apparent difference. SEDEX and MVf sulfur isotope compositions extend over a large range; however, most data for SEDEX ores have mainly positive isotopic compositions from 0 to 20 per mil. Isotopic values for MVf ores extend over a wider range and include more data with negative isotopic values. Given that there are relatively small differences between the metal character of MVT and SEDEX deposits and the fluids that deposited them, perhaps the most significant difference between these deposits is their depositional environment, which is determined by their respective tectonic settings. The contrasting tectonic setting also dictates the fundamental deposit attributes that generally set them apart, such as host-rock lithology, deposit morphology, and ore textures. Blief discussions are also presented on two controversial sets of deposits: Broken Hill-type deposits and a subset of deposits in the MVT group located in the Irish Midlands, considered by some authors to be a distinct ore type (Irish type). There are no Significant differences in grade tonnage values between MVT deposits and the subset that is described as Irish type. Most features of the Irish deposits are not distinct from the family of MVT deposits; however, the age of mineralization that is the same as or close to the age of the host rocks and the anomalously high fluid inclusion temperatures (up to 250°C) stand out as distinctly different from typical MVT ores. The dominance of bacteriogenic sulfur in the hish ores commonly ascribed as uniquely hish type is in fact no different from several MVT deposits or districts. A comparison of SEDEX and Broken Hill-type deposits shows that the latter deposits contain signiflcantly higher contents of Ag and Pb relative to SEDEX deposits. In terms of median values, Broken Hill-type deposits are almost three times more ellliched in Ag and one and a half times more enriched in Pb compared to other SEDEX deposits. Metamorphism is a charactelisoc feature but not a prerequisite for inclusion in the Broken Hill-type category, and IGlown Broken Hill-type examples appear to occur in Paleo- to Mesoproterozoic terranes. Broken Hill-type deposits remain an enigmatic grouping; however, there is sufficient evidence to support their inclusion as a separate category of SEDEX deposits.

  15. Optimal properties for coated titanium implants with the hydroxyapatite layer formed by the pulsed laser deposition technique

    NASA Astrophysics Data System (ADS)

    Himmlova, Lucia; Dostalova, Tatjana; Jelinek, Miroslav; Bartova, Jirina; Pesakova, V.; Adam, M.

    1999-02-01

    Pulsed laser deposition technique allow to 'tailor' bioceramic coat for metal implants by the change of deposition conditions. Each attribute is influenced by the several deposition parameters and each parameter change several various properties. Problem caused that many parameters has an opposite function and improvement of one property is followed by deterioration of other attribute. This study monitor influence of each single deposition parameter and evaluate its importance form the point of view of coat properties. For deposition KrF excimer laser in stainless-steel deposition chamber was used. Deposition conditions (ambient composition and pressures, metallic substrate temperature, energy density and target-substrate distance) were changed according to the film properties. A non-coated titanium implant was used as a control. Films with promising mechanical quality underwent an in vitro biological tests -- measurement of proliferation activity, observing cell interactions with macrophages, fibroblasts, testing toxicity of percolates, observing a solubility of hydroxyapatite (HA) coat. Deposition conditions corresponding with the optimal mechanical and biochemical properties are: metal temperature 490 degrees Celsius, ambient-mixture of argon and water vapor, energy density 3 Jcm-2, target-substrate distance 7.5 cm.

  16. Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings

    NASA Astrophysics Data System (ADS)

    Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin

    2018-03-01

    Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.

  17. Origin of bonebeds in Quaternary tank deposits

    NASA Astrophysics Data System (ADS)

    Araújo-Júnior, Hermínio Ismael de; Porpino, Kleberson de Oliveira; Bergqvist, Lílian Paglarelli

    2017-07-01

    Tank deposits are an exceptional type of fossiliferous deposit and bear a remarkably fossil record of the Pleistocene megafauna of South America, particularly of Brazil. The taphonomy of vertebrate remains preserved in this type of environmental context was clearly driven by climate, similarly to most of the Quaternary continental fossil record. The formation of the vertebrates fossil record in tank deposits was influenced by the climate seasonality typical of arid climate. The taphonomic history of most tank deposits is a consequence of this seasonality and, as a result, the paleoecological data preserved in their fossil assemblages is reliable with respect to paleobiological and paleoenvironmental settings of the Quaternary ecosystems of the Brazilian Intertropical Region (BIR). Other tank deposits experienced an unusual taphonomic history that, besides climate, was affected by recurrent events of reworking produced by the depositional agents dominant in the surrounding alluvial plains. The conclusions obtained here concerning the main taphonomic settings and formative processes that characterize fossil vertebrate assemblages of tank deposits will help further studies aimed to recover information on the paleoecology of Quaternary fauna collected in such deposits by allowing a better understanding of their time and spatial resolutions and other potential biases.

  18. Fast Scanning Calorimetry Studies of Supercooled Liquids and Glasses

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Deepanjan

    This dissertation is a compilation of research results of extensive Fast Scanning Calorimetry studies of two non-crystalline materials: Toluene and Water. Motivation for fundamental studies of non-crystalline phases, a brief overview of glassy materials and concepts and definitions related to them is provided in Chapter 1. Chapter 2 provides fundamentals and details of experimental apparata, experimental protocol and calibration procedure. Chapter 3 & 4 provides extensive studies of stable non-crystalline toluene films of micrometer and nanometer thicknesses grown by vapor deposition at distinct deposition rates and temperatures and probed by Fast Scanning Calorimetry. Fast scanning calorimetry is shown to be extremely sensitive to the structure of the vapor-deposited phase and was used to characterize simultaneously its kinetic stability and its thermodynamic properties. According to our analysis, transformation of vapor -deposited samples of toluene during heating with rates in excess 100,000 K/s follows the zero-order kinetics. The transformation rate correlates strongly with the initial enthalpy of the sample, which increases with the deposition rate according to sub-linear law. Analysis of the transformation kinetics of vapor deposited toluene films of various thicknesses reveal a sudden increase in the transformation rate for films thinner than 250 nm. The change in kinetics correlates with the surface roughness scale of the substrate, which is interpreted as evidence for kinetic anisotropy of the samples. We also show that out-of-equilibrium relaxation kinetics and possibly the enthalpy of vapor-deposited (VD) films of toluene are distinct from those of ordinary supercooled (OS) phase even when the deposition takes place at temperatures above the glass softening (Tg). The implications of these findings for the formation mechanism and structure of vapor deposited stable glasses are discussed. Chapter 5 and 6 provide detailed Fast Scanning Calorimetry studies of amorphous solid water in bulk and confining geometry (ultrathin films and nano-aggregates). Bulk-like water samples were prepared by vapor-deposition on the surface of a tungsten filament near 140 K where vapor-deposition results in low enthalpy glassy water films. The vapor deposition approach was also used to grow nano-aggregates (2- 20 nm thick) and multiple ultrathin (approximately 50 nm thick) water films alternated with benzene and methanoic films of similar dimensions. When heated from cryogenic temperatures, the ultrathin water films underwent a well manifested glass softening transition at temperatures 20 degrees below the onset of crystallization. The thermograms of nano-aggregates of ASW films show two endotherms at 40 and 10 K below the onset temperatures of crystallization. However, no such transition was observed in bulk-like water samples prior to their crystallization. These results indicate that water in confined geometry demonstrates glass softening dynamics which are dramatically distinct from those of the bulk phase. We attribute these differences to water's interfacial glass transition which occurs at temperatures tens of degrees lower than that in the bulk. Implications of these finding for past studies of glass softening dynamics in various glassy water samples are discussed in chapter 5 and 6.

  19. Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy.

    PubMed

    Sgrigna, G; Sæbø, A; Gawronski, S; Popek, R; Calfapietra, C

    2015-02-01

    A number of studies have focused on urban trees to understand their mitigation capacity of air pollution. In this study particulate matter (PM) deposition on Quercus ilex leaves was quantitatively analyzed in four districts of the City of Terni (Italy) for three periods of the year. Fine (between 0.2 and 2.5 μm) and Large (between 2.5 and 10 μm) PM fractions were analyzed. Mean PM deposition value on Quercus ilex leaves was 20.6 μg cm(-2). Variations in PM deposition correlated with distance to main roads and downwind position relatively to industrial area. Epicuticular waxes were measured and related to accumulated PM. For Fine PM deposited in waxes we observed a higher value (40% of total Fine PM) than Large PM (4% of total Large PM). Results from this study allow to increase our understanding about air pollution interactions with urban vegetation and could be hopefully taken into account when guidelines for local urban green management are realized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Geologic, hydrologic, and geochemical interpretations of mineral deposits as analogs for understanding transport of environmental contaminants

    USGS Publications Warehouse

    Wanty, R.B.; Berger, B.R.

    2006-01-01

    Base- and precious-metal mineral deposits comprise anomalous concentrations of metals and associated elements, which may be useful subjects for study as analogs for migration of environmental contaminants. In the geologic past, hydrothermal mineral deposits formed at the intersection of favorable geologic, hydrologic and geochemical gradients. In the present, weathering of these sulfide-rich deposits occurs as a result of the interplay between rates of oxygen supply versus rates of ground or surface-water flow. Transport and spatial dispersion of elements from a mineral deposit occurs as a function of competing rates of water flow versus rates of attenuation mechanisms such as adsorption, dilution, or (co)precipitation. In this paper we present several case studies from mineralized and altered sedimentary and crystalline aquifers in the western United States to illustrate the geologic control of ground-water flow and solute transport, and to demonstrate how this combined approach leads to a more complete understanding of the systems under study as well as facilitating some capability to predict major flow directions in aquifers.

  1. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells

    NASA Astrophysics Data System (ADS)

    Cohen, Bat-El; Gamliel, Shany; Etgar, Lioz

    2014-08-01

    Perovskite is a promising light harvester for use in photovoltaic solar cells. In recent years, the power conversion efficiency of perovskite solar cells has been dramatically increased, making them a competitive source of renewable energy. An important parameter when designing high efficiency perovskite-based solar cells is the perovskite deposition, which must be performed to create complete coverage and optimal film thickness. This paper describes an in-depth study on two-step deposition, separating the perovskite deposition into two precursors. The effects of spin velocity, annealing temperature, dipping time, and methylammonium iodide concentration on the photovoltaic performance are studied. Observations include that current density is affected by changing the spin velocity, while the fill factor changes mainly due to the dipping time and methylammonium iodide concentration. Interestingly, the open circuit voltage is almost unaffected by these parameters. Hole conductor free perovskite solar cells are used in this work, in order to minimize other possible effects. This study provides better understanding and control over the perovskite deposition through highly efficient, low-cost perovskite-based solar cells.

  2. VASQUEZ PEAK WILDERNESS STUDY AREA, AND ST. LOUIS PEAK, AND WILLIAMS FORK ROADLESS AREAS, COLORADO.

    USGS Publications Warehouse

    Theobald, P.K.; Bielski, A.M.

    1984-01-01

    A mineral-resource survey was conducted during the years 1979-82 in the Vasquez Peak Wilderness Study Area and in the St. Louis Peak and Williams Fork Roadless Areas, central Front Range, Colorado. Probable resource potential for the occurrence of copper, lead, zinc, and silver in massive sulfide deposits has been identified in calcareous metamorphic rocks in the northern part of the St. Louis Peak Roadless Area and in the southern part of the Williams Fork Roadless Area. A probable resource potential for vein-type uranium deposits is identified along the Berthoud Pass fault zone in the eastern part of the Vasquez Peak Wilderness Study Area. A large area encompassing the eastern and southeastern part of each of the three areas has probable and substantiated potential for either high-grade lead-zinc-silver vein deposits, or larger, lower-grade clustered vein deposits. A probable resource potential for stockwork molybdenum deposits related to porphyry molybdenum type mineralization exists beneath the lead-zinc-silver-rich veins. The nature of the geologic terrane indicates little likelihood for the occurrence of organic fuels.

  3. Sinks for Inorganic Nitrogen Deposition in Forest Ecosystems with Low and High Nitrogen Deposition in China

    PubMed Central

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Jiang, Chunming; Yan, Junhua; Zhou, Mei

    2014-01-01

    We added the stable isotope 15N in the form of (15NH4)2SO4 and K15NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the 15N tracers, the natural 15N abundance ranging from −3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from −3.92‰ to +7.25‰ in the forest under light N deposition at Daxinganling (DXAL). Four months after the tracer application, the total 15N recovery from the major ecosystem compartments ranged from 55.3% to 90.5%. The total 15N recoveries were similar under the (15NH4)2SO4 tracer treatment in both two forest ecosystems, whereas the total 15N recovery was significantly lower in the subtropical forest ecosystem at DHS than in the boreal forest ecosystem at DXAL under the K15NO3 tracer treatment. The 15N assimilated into the tree biomass represented only 8.8% to 33.7% of the 15N added to the forest ecosystems. In both of the tracer application treatments, more 15N was recovered from the tree biomass in the subtropical forest ecosystem at DHS than the boreal forest ecosystem at DXAL. The amount of 15N assimilated into tree biomass was greater under the K15NO3 tracer treatment than that of the (15NH4)2SO4 treatment in both forest ecosystems. This study suggests that, although less N was immobilized in the forest ecosystems under more intensive N deposition conditions, forest ecosystems in China strongly retain N deposition, even in areas under heavy N deposition intensity or in ecosystems undergoing spring freezing and thawing melts. Compared to ammonium deposition, deposited nitrate is released from the forest ecosystem more easily. However, nitrate deposition could be retained mostly in the plant N pool, which might lead to more C sequestration in these ecosystems. PMID:24586688

  4. Atmospheric deposition of particles at a sensitive alpine lake: Size-segregated daily and annual fluxes from passive sampling techniques.

    PubMed

    Tai, Anna Y-C; Chen, L-W Antony; Wang, Xiaoliang; Chow, Judith C; Watson, John G

    2017-02-01

    Lake Tahoe, a North American alpine lake long appreciated for its clear water and geographic setting, has experienced a trend of declining water clarity due to increasing nutrient and particle inputs. Contributions from atmospheric deposition of particulate matter (PM) could be important, yet they are inadequately quantified. This study established a yearlong deposition monitoring network in the northern Lake Tahoe Basin. Dry deposition was quantified on surrogate surfaces while wet deposition was based on particles suspended in precipitation at 24-hour resolution. The particle size ranges by these passive techniques were 1-64μm and 0.5-20μm in diameter for dry and wet deposition, respectively. Dry deposition of submicrometer (0.5-1μm) particles was also estimated by extrapolation of a lognormal size distribution. Higher daily number deposition fluxes (NDF dry and NDF wet ) were found at a near-shore site, confirming substantial impacts of commercial and tourist activities. The two more isolated sites indicated a uniform regional background. On average, daily NDF dry is about one order of magnitude lower than daily NDF wet . Dry deposition velocities increased rapidly with particle size, as evidenced by collocated measurements of NDF dry and ambient particle number concentrations, though it seems less so for wet deposition due to different scavenging mechanisms. Despite fewer "wet" days than "dry" days during the monitoring period, wet processes dominated seasonal particle deposition, particularly in winter and spring when most precipitation occurred. Adopting sediment (insoluble, inorganic) particle fraction estimates from the literature, this study reports an annual particle flux of 2.9-5.2×10 10 #m -2 yr -1 for sediment particles with 1-20μm diameter and 6.1-11×10 10 #m -2 yr -1 for those with 0.5-20μm diameter. Implications of these findings to the current knowledge of atmospheric deposition in the Lake Tahoe Total Maximum Daily Load (TMDL) are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Sinks for inorganic nitrogen deposition in forest ecosystems with low and high nitrogen deposition in China.

    PubMed

    Sheng, Wenping; Yu, Guirui; Fang, Huajun; Jiang, Chunming; Yan, Junhua; Zhou, Mei

    2014-01-01

    We added the stable isotope (15)N in the form of ((15)NH4)2SO4 and K(15)NO3 to forest ecosystems in eastern China under two different N deposition levels to study the fate of the different forms of deposited N. Prior to the addition of the (15)N tracers, the natural (15)N abundance ranging from -3.4‰ to +10.9‰ in the forest under heavy N deposition at Dinghushan (DHS), and from -3.92‰ to +7.25‰ in the forest under light N deposition at Daxinganling (DXAL). Four months after the tracer application, the total (15)N recovery from the major ecosystem compartments ranged from 55.3% to 90.5%. The total (15)N recoveries were similar under the ((15)NH4)2SO4 tracer treatment in both two forest ecosystems, whereas the total (15)N recovery was significantly lower in the subtropical forest ecosystem at DHS than in the boreal forest ecosystem at DXAL under the K(15)NO3 tracer treatment. The (15)N assimilated into the tree biomass represented only 8.8% to 33.7% of the (15)N added to the forest ecosystems. In both of the tracer application treatments, more (15)N was recovered from the tree biomass in the subtropical forest ecosystem at DHS than the boreal forest ecosystem at DXAL. The amount of (15)N assimilated into tree biomass was greater under the K(15)NO3 tracer treatment than that of the ((15)NH4)2SO4 treatment in both forest ecosystems. This study suggests that, although less N was immobilized in the forest ecosystems under more intensive N deposition conditions, forest ecosystems in China strongly retain N deposition, even in areas under heavy N deposition intensity or in ecosystems undergoing spring freezing and thawing melts. Compared to ammonium deposition, deposited nitrate is released from the forest ecosystem more easily. However, nitrate deposition could be retained mostly in the plant N pool, which might lead to more C sequestration in these ecosystems.

  6. Pathology and diagnosis of renal non-AL amyloidosis.

    PubMed

    Sethi, Sanjeev; Theis, Jason D

    2018-06-01

    Renal amyloidosis is characterized by acellular Congo red positive deposits in the glomeruli, interstitium and/or arteries. Light chain restriction on immunofluorescence studies is present in AL-amyloidosis, the most common type of amyloidosis involving the kidney. The detection of Congo red positive deposits coupled with negative immunofluorescence studies is highly suggestive of non-AL amyloidosis. Some of the non-AL amyloidosis are common while others are relatively rare. The clinical features, laboratory and renal pathology findings are helpful in the diagnosis and typing of non-AL amyloidosis. Thus, ALECT2 amyloidosis is characterized by diffuse cortical interstitial amyloid deposits, AA amyloidosis shows vascular deposits in addition to the glomerular deposits, AFib amyloidosis is characterized by massive amyloid accumulation limited to the glomeruli resulting in the obliteration of glomerular architecture, AApoA1 and AApoAIV are characterized by large amyloid deposits restricted to the medulla, and AGel shows swirling patterns of amyloid fibrils on electron microscopy. While light microscopy is very helpful, accurate typing of non-AL amyloidosis then requires immunohistochemical or laser microdissection/mass spectrometry studies of the Congo red positive deposits. Immunohistochemical studies are available for some of the non-AL amyloidosis. On the other hand, mass spectrometry analysis is a one stop methodology for confirmation and typing of amyloidosis. The diagnosis and typing of amyloidosis by mass spectrometry is based on finding the signature amyloid peptides, apolipoprotein E and serum amyloid-P component, followed by detection of precursor amyloidogenic protein such as LECT2, fibrinogen-α, gelsolin, etc. To, summarize, non-AL amyloidosis is a group of amyloidosis with distinctive clinical, laboratory and renal pathology findings. Typing of the amyloidosis is best performed using mass spectrometry methodology. Accurate typing of non-AL amyloidosis is imperative for correct management, prognosis, and genetic counseling.

  7. NITROGEN BOUNDING STUDY: METHODS FOR ESTIMATING THE RELATIVE EFFECTS OF SULFUR AND NITROGEN DEPOSITION ON SURFACE WATER CHEMISTRY

    EPA Science Inventory

    The leaching of atmospherically deposited nitrogen from forested watersheds may acidify lakes and streams. he Nitrogen Bounding Study evaluates the potential range of such adverse effects. he study estimates bounds on changes in regional-scale surface water acidification that mig...

  8. The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming - A synthesis and critical assessment of published results

    USGS Publications Warehouse

    Burns, Douglas A.

    2002-01-01

    The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7 kilograms per hectare per year ((kg/ha)/yr) of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. The Rocky Mountain National Park, in its role of protecting air-quality related values under provisions of the Clean Air Act Amendments of 1977, has provided support for this synthesis and critical assessment of published literature on the effects of atmospheric N deposition. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but no region-wide increase during the past 2 decades, although the rate of atmospheric N deposition has increased at three sites east of the Continental Divide in the Front Range region since the mid-1980s. Much of the increase in atmospheric N deposition at all three sites has resulted from an increase in the ammonium concentrations of wet deposition; this suggests an increase in contributions from agricultural areas or from vehicle traffic east of the Rocky Mountains. Lakes at two study sites in the Front Range (Loch Vale and Green Lakes Valley) had NO3- concentrations of 30 to 40 micromoles per liter (µmol/L) during early spring snowmelt and remained at 5 to 10 µmol/L during summer. Retention of N in atmospheric wet deposition in some sub-catchments of these lakes was less than 50 percent, which reflects an advanced stage of N saturation. Nitrate concentrations in surface waters west of the Continental Divide were lower—often less than 10 µmol/L during snowmelt and less than 2 µmol/L during summer -- than surface waters east of the Divide, except in areas such as the Mt. Zirkel Wilderness that receive elevated amounts of atmospheric N deposition of 4 to 5 (kg/ha)/yr. Atmospheric N deposition in the Front Range east of the Divide may have altered the composition of alpine tundra-plant communities and lake diatoms, but additional studies would be needed to definitively demonstrate the hypothesized cause-and-effect relations. Rates of N-mineralization and nitrification in soils of the Front Range have increased in response to increased atmospheric N deposition. Projected future population growth and energy use in Colorado and the west increase the likelihood that the subtle effects of atmospheric N deposition now evident in the Front Range will become more pronounced and widespread in the future. The likelihood of future increased N emissions along the Front Range warrants a continuation of existing long-term precipitation and surface-water chemistry monitoring programs, and an expansion of the networks into areas that receive large amounts of atmospheric N deposition, but currently lack adequate monitoring. Long-term study and expanded sampling are needed to address uncertainties about the effects of atmospheric N deposition on terrestrial plant communities, nutrient limitation in lake plankton, shifts of dominant species within diatom communities, and on amphibian response to episodic surface-water acidification.

  9. Depositional architecture and evolution of inner shelf to shelf edge delta systems since the Late Oliocene and their respone to the tectonic and sea level change, Pear River Mouth Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, Changsong; Zhang, Zhongtao; liu, Jingyan; Jiang, Jing

    2016-04-01

    The Pear River Mouth Basin is located in the northern continent margin of the South China Sea. Since the Late Oligocene, the long-term active fluvial systems (Paleo-Zhujiang) from the western basin margin bebouched into the northern continental margin of the South China Sea and formed widespread deltaic deposits in various depositional geomorphologies and tectonic settings. Based of integral analysys of abundant seismic, well logging and drilling core data, Depositional architecture and evolution of these delta systems and their respone to the tectonic and sea level change are documented in the study. There are two basic types of the delta systems which have been recognized: inner shelf delta deposited in shallow water enviroments and the outer shelf or shelf-edge delta systems occurred in deep water settings. The paleowater depths of these delta systems are around 30 to 80m (inner shelf delta) and 400-1000m (shelf-edge delta) estimated from the thickness (decompaction) of the delta front sequences. The study shows that the inner shelf delta systems are characterized by relatively thin delta forests (20-40m), numereous stacked distributary channel fills, relative coarse river mouth bar deposits and thin distal delta front or distal bar and prodelta deposits. In contrast, the outer shelf or shelf edge delta systems are characteristic of thick (300-800m) and steep (4-60) of deltaic clinoforms, which commonly display in 3D seismic profiles as "S" shape reflection. Large scale soft-sediment deformation structures, slump or debris flow deposits consisting mainly of soft-sediment deformed beds, blocks of sandstones and siltstones or mudstones widely developed in the delta front deposits. The shelf edge delta systems are typically associated with sandy turbidite fan deposits along the prodelta slopes, which may shift basinwards as the progradation of the delta systems. The delta systems underwent several regional cycles of evolution from inner shelf deltas to shelf edge deltas since the Late Oligocene in the study area, and this is consistent with relative sea level changes constrained by interplay of tectonic subsidence or global sea level change and sediment supply. The shelf-edge delta sandy deposits and the associated prodelta turbidite fan systems are the most important oil/gas bearing reservoirs in the continental slope area.

  10. Development of the aerosol generation system for simulating the dry deposition behavior of radioaerosol emitted by the accident of FDNPP

    NASA Astrophysics Data System (ADS)

    Zhang, Z.

    2015-12-01

    A large amount of radioactivity was discharged by the accident of FDNPP. The long half-life radionuclide, 137Cs was transported through the atmosphere mainly as the aerosol form and deposited to the forests in Fukushima prefecture. After the dry deposition of the 137Cs, the foliar uptake process would occur. To evaluate environmental transfer of radionuclides, the dry deposition and following foliar uptake is very important. There are some pioneering studies for radionuclide foliar uptake with attaching the solution containing stable target element on the leaf, however, cesium oxide aerosols were used for these deposition study [1]. In the FDNPP case, 137Cs was transported in sulfate aerosol form [2], so the oxide aerosol behaviors could not represent the actual deposition behavior in this accident. For evaluation of whole behavior of 137Cs in vegetation system, fundamental data for deposition and uptake process of sulfate aerosol was desired. In this study, we developed aerosol generation system for simulating the dry deposition and the foliar uptake behaviors of aerosol in the different chemical constitutions. In this system, the method of aerosol generation based on the spray drying. Solution contained 137Cs was send to a nozzle by a syringe pump and spraying with a high speed air flow. The sprayed mist was generated in a chamber in the relatively high temperature. The solution in the mist was dried quickly, and micro size solid aerosols consisting 137Cs were generated. The aerosols were suctioned by an ejector and transported inside a tube by the dry air flow, then were directly blown onto the leaves. The experimental condition, such as the size of chamber, chamber temperature, solution flow rate, air flow rate and so on, were optimized. In the deposition experiment, the aerosols on leaves were observed by a SEM/EDX system and the deposition amount was evaluated by measuring the stable Cs remaining on leaf. In the presentation, we will discuss the detail results of aerosol deposition behavior using the developed system. [1]C.Madoz-Escande, et al., Journal of Environmental Radioactivity, 73 pp49-71, (2004) [2] N. Kaneyasu, et al.,Environmental Science & Technology, 2012, 46 (11), pp 5720-5726

  11. Tsunami Waves Joint Inversion Using Tsunami Inundation, Tsunami Deposits Distribution and Marine-Terrestrial Sediment Signal in Tsunami Deposit

    NASA Astrophysics Data System (ADS)

    Tang, H.; WANG, J.

    2017-12-01

    Population living close to coastlines is increasing, which creates higher risks due to coastal hazards, such as the tsunami. However, the generation of a tsunami is not fully understood yet, especially for paleo-tsunami. Tsunami deposits are one of the concrete evidence in the geological record which we can apply for studying paleo-tsunami. The understanding of tsunami deposits has significantly improved over the last decades. There are many inversion models (e.g. TsuSedMod, TSUFLIND, and TSUFLIND-EnKF) to study the overland-flow characteristics based on tsunami deposits. However, none of them tries to reconstruct offshore tsunami wave characteristics (wave form, wave height, and length) based on tsunami deposits. Here we present a state-of-the-art inverse approach to reconstruct offshore tsunami wave based on the tsunami inundation data, the spatial distribution of tsunami deposits and Marine-terrestrial sediment signal in the tsunami deposits. Ensemble Kalman Filter (EnKF) Method is used for assimilating both sediment transport simulations and the field observation data. While more computationally expensive, the EnKF approach potentially provides more accurate reconstructions for tsunami waveform. In addition to the improvement of inversion results, the ensemble-based method can also quantify the uncertainties of the results. Meanwhile, joint inversion improves the resolution of tsunami waves compared with inversions using any single data type. The method will be tested by field survey data and gauge data from the 2011 Tohoku tsunami on Sendai plain area.

  12. Pesticide deposition on coveralls during vineyard applications.

    PubMed

    Coffman, C W; Obendorf, S K; Derksen, R C

    1999-08-01

    Deposition of pesticide on the clothing of the applicator was studied in a commercial vineyard using two different application technologies. A typical air-assisted sprayer with centrifugal fans delivered a concentrated spray. A tunnel or hooded sprayer was used at two carrier rates-high volume, low concentration versus low volume, high concentration-to apply Dithane M-45, an agricultural fungicide, at 3,375 g/ha on a light to medium density canopy. Deposition of pesticide was on the coveralls worn by the operator for all applications with a deposition range of 0.43 to 0.63 ng/cm2. The deposition on the clothing was higher for the air-assist sprayer than for the hooded sprayer. However, reducing the volume of water in the non-air assist hooded sprayer offered no advantage in terms of decreasing operator exposure. While the deposition of pesticide on the coveralls of the applicator was fairly uniformly distributed on the garment surface, the neck, shoulder, and upper right arm of our right-handed operator had the highest amount of pesticide deposit and the lower left quadrant of the garment had the lowest deposition. Results of this study indicate that vineyard applicator exposure can be reduced by use of the hooded non-air assisted sprayer and that extra protection is needed in the region of the neck, shoulder, and arm, and attention to the habits of the tractor driver is required.http://link.springer-ny. com/link/service/journals/00244/bibs/37n2p273.html

  13. Continuous measurements of bronchial exposure induced by radon decay products during inhalation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwaoka, Kazuki; Tokonami, Shinji; Yonehara, Hidenori

    2007-09-15

    The deposition of radon decay products is not equal in each of the respiratory regions and as the presence of radon has been linked with an increase in lung cancer risk, it is important to calculate the deposition of radon decay products in each of the respiratory regions. Recently, many studies on the deposition of radon in respiratory regions have been simulated using wire screens. The systems and equipment used in those studies are not suitable for field measurements as their dimensions are relatively massive, nor can they measure continuously. We developed a continuous bronchial dosimeter (CBD) which is suitablemore » for field measurements. It was designed with specifications that allow it to be remain compact. The CBD simulates the deposition of radon decay products in the different respiratory regions by the use of a combination of wire screens. Deposition in the simulated regions of the lung can be continuously estimated in various environments. The ratio of activities deposited in a simulated nasal cavity (N) and tracheobronchial (TB) regions was calculated from the results of simultaneous measurements using CBD-R (reference), CBD-N (nasal), and CBD-TB (tracheobronchial) measurement units. After aerosols were injected into the radon chamber, the ratio of N and TB depositions decreased. This results indicate that the CBD gave a good response to changes in the environment. It was found that the ratio of N and TB deposition also varied with time in each actual environment.« less

  14. Influence of the forest canopy on total and methyl mercury deposition in the boreal forest

    Treesearch

    E.L. Witt; R.K. Kolka; E.A. Nater; T.R. Wickman

    2009-01-01

    Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across...

  15. Forest fire effects on mercury deposition in the boreal forest

    Treesearch

    Emma L. Witt; Randall K. Kolka; Edward A. Nater; Trent R. Wickman

    2009-01-01

    The objective of this study was to determine how forest fire effects Hg deposition to nearby landscapes impacted by smoke plumes. Hg concentrations and deposition were hypothesized to increase in throughfall and open precipitation after fire, and canopy type was hypothesized to influence the magnitude of the increase. Conifer canopies, which are better able to scavenge...

  16. A throughfall collection method using mixed bed ion exchange resin columns

    Treesearch

    Mark E. Fenn; Mark A. Poth; Michael J. Arbaugh

    2002-01-01

    Measurement of ionic deposition in throughfall is a widely used method for measuring deposition inputs to the forest floor. Many studies have been published, providing a large database of throughfall deposition inputs to forests. However, throughfall collection and analysis is labor intensive and expensive because of the large number of replicate collectors needed and...

  17. Laser-assisted solar-cell metallization processing

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1984-01-01

    A photolytic metal deposition system using a focused continuous wave ultraviolet laser, a photolytic metal deposition system using a mask and ultraviolet flood illumination, and a pyrolytic metal deposition system using a focused continuous wave laser were studied. Fabrication of solar cells, as well as characterization to determine the effects of transient heat on solar cell junctions were investigated.

  18. Nanomechanical study of amorphous and polycrystalline ALD HfO2 thin films

    Treesearch

    K. Tapily; J.E. Jakes; D. Gu; H. Baumgart; A.A. Elmustafa

    2011-01-01

    Thin films of hafnium oxide (HfO2) were deposited by atomic layer deposition (ALD). The structural properties of the deposited films were characterised by transmission electron microscopy (TEM) and X-ray diffraction (XRD). We investigated the effect of phase transformations induced by thermal treatments on the mechanical properties of ALD HfO

  19. A study of process parameters on workpiece anisotropy in the laser engineered net shaping (LENSTM) process

    NASA Astrophysics Data System (ADS)

    Chandra, Shubham; Rao, Balkrishna C.

    2017-06-01

    The process of laser engineered net shaping (LENSTM) is an additive manufacturing technique that employs the coaxial flow of metallic powders with a high-power laser to form a melt pool and the subsequent deposition of the specimen on a substrate. Although research done over the past decade on the LENSTM processing of alloys of steel, titanium, nickel and other metallic materials typically reports superior mechanical properties in as-deposited specimens, when compared to the bulk material, there is anisotropy in the mechanical properties of the melt deposit. The current study involves the development of a numerical model of the LENSTM process, using the principles of computational fluid dynamics (CFD), and the subsequent prediction of the volume fraction of equiaxed grains to predict process parameters required for the deposition of workpieces with isotropy in their properties. The numerical simulation is carried out on ANSYS-Fluent, whose data on thermal gradient are used to determine the volume fraction of the equiaxed grains present in the deposited specimen. This study has been validated against earlier efforts on the experimental studies of LENSTM for alloys of nickel. Besides being applicable to the wider family of metals and alloys, the results of this study will also facilitate effective process design to improve both product quality and productivity.

  20. Formation, clearance, deposition, pathogenicity, and identification of biopharmaceutical-related immune complexes: review and case studies.

    PubMed

    Rojko, Jennifer L; Evans, Mark G; Price, Shari A; Han, Bora; Waine, Gary; DeWitte, Mark; Haynes, Jill; Freimark, Bruce; Martin, Pauline; Raymond, James T; Evering, Winston; Rebelatto, Marlon C; Schenck, Emanuel; Horvath, Christopher

    2014-06-01

    Vascular inflammation, infusion reactions, glomerulopathies, and other potentially adverse effects may be observed in laboratory animals, including monkeys, on toxicity studies of therapeutic monoclonal antibodies and recombinant human protein drugs. Histopathologic and immunohistochemical (IHC) evaluation suggests these effects may be mediated by deposition of immune complexes (ICs) containing the drug, endogenous immunoglobulin, and/or complement components in the affected tissues. ICs may be observed in glomerulus, blood vessels, synovium, lung, liver, skin, eye, choroid plexus, or other tissues or bound to neutrophils, monocytes/macrophages, or platelets. IC deposition may activate complement, kinin, and/or coagulation/fibrinolytic pathways and result in a systemic proinflammatory response. IC clearance is biphasic in humans and monkeys (first from plasma to liver and/or spleen, second from liver or spleen). IC deposition/clearance is affected by IC composition, immunomodulation, and/or complement activation. Case studies are presented from toxicity study monkeys or rats and indicate IHC-IC deposition patterns similar to those predicted by experimental studies of IC-mediated reactions to heterologous protein administration to monkeys and other species. The IHC-staining patterns are consistent with findings associated with generalized and localized IC-associated pathology in humans. However, manifestations of immunogenicity in preclinical species are generally not considered predictive to humans. © 2014 by The Author(s).

Top