Sample records for firing rate range

  1. Fire Behavior System for the Full Range of Fire Management Needs

    Treesearch

    Richard C. Rothermel; Patricia L. Andrews

    1987-01-01

    An "integrated fire behavior/fire danger rating system" should be "seamless" to avoid requiring choices among alternate, independent systems. Descriptions of fuel moisture, fuels, and fire behavior should be standardized, permitting information to flow easily through the spectrum of fire management needs. The level of resolution depends on the...

  2. Precision Strike 2008 Summer Forum

    DTIC Science & Technology

    2008-01-11

    extended ranges, 360--mounted and dismounted Technical fire direction and limited tactical fire direction on all delivery systems Delivery systems that...can rapidly emplace/displace with high rates of fire Accurate on demand, meteorological data to delivery system ranges All munitions with less than 50M...CEP at all ranges Munitions that provide a variety of effects in any environment To achieve this, Field Artillery needs these “enablers” Target

  3. Natural tree regeneration and coarse woody debris dynamics after a forest fire in the western Cascade Range

    Treesearch

    Martin J. Brown; Jane Kertis; Mark H. Huff

    2013-01-01

    We monitored coarse woody debris dynamics and natural tree regeneration over a 14-year period after the 1991 Warner Creek Fire, a 3631-ha (8,972-ac) mixed severity fire in the western Cascade Range of Oregon. Rates for tree mortality in the fire, postfire mortality, snag fall, and snag fragmentation all showed distinct patterns by tree diameter and species, with...

  4. Time course of dynamic range adaptation in the auditory nerve

    PubMed Central

    Wang, Grace I.; Dean, Isabel; Delgutte, Bertrand

    2012-01-01

    Auditory adaptation to sound-level statistics occurs as early as in the auditory nerve (AN), the first stage of neural auditory processing. In addition to firing rate adaptation characterized by a rate decrement dependent on previous spike activity, AN fibers show dynamic range adaptation, which is characterized by a shift of the rate-level function or dynamic range toward the most frequently occurring levels in a dynamic stimulus, thereby improving the precision of coding of the most common sound levels (Wen B, Wang GI, Dean I, Delgutte B. J Neurosci 29: 13797–13808, 2009). We investigated the time course of dynamic range adaptation by recording from AN fibers with a stimulus in which the sound levels periodically switch from one nonuniform level distribution to another (Dean I, Robinson BL, Harper NS, McAlpine D. J Neurosci 28: 6430–6438, 2008). Dynamic range adaptation occurred rapidly, but its exact time course was difficult to determine directly from the data because of the concomitant firing rate adaptation. To characterize the time course of dynamic range adaptation without the confound of firing rate adaptation, we developed a phenomenological “dual adaptation” model that accounts for both forms of AN adaptation. When fitted to the data, the model predicts that dynamic range adaptation occurs as rapidly as firing rate adaptation, over 100–400 ms, and the time constants of the two forms of adaptation are correlated. These findings suggest that adaptive processing in the auditory periphery in response to changes in mean sound level occurs rapidly enough to have significant impact on the coding of natural sounds. PMID:22457465

  5. Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range

    Treesearch

    Juan de Dios Benavides-Solorio; Lee H. MacDonald

    2005-01-01

    Post-fire soil erosion is of considerable concern because of the potential decline in site productivity and adverse effects on downstream resources. For the Colorado Front Range there is a paucity of post-fire erosion data and a corresponding lack of predictive models. This study measured hillslope-scale sediment production rates and site characteristics for three wild...

  6. Radar Performance Improvement. Angle Tracking Modification to Fire Control Radar System for Space Shuttle Rendezvous

    NASA Technical Reports Server (NTRS)

    Little, G. R.

    1976-01-01

    The AN/APQ-153 fire control radar modified to provide angle tracking was evaluated for improved performance. The frequency agile modifications are discussed along with the range-rate improvement modifications, and the radar to computer interface. A parametric design and comparison of noncoherent and coherent radar systems are presented. It is shown that the shuttle rendezvous range and range-rate requirements can be made by a Ku-Band noncoherent pulse radar.

  7. How to predict the spread and intensity of forest and range fires

    Treesearch

    Richard C. Rothermel

    1983-01-01

    This manual documents procedures for estimating the rate of forward spread, intensity, flame length, and size of fires burning in forests and rangelands. Contains instructions for obtaining fuel and weather data, calculating fire behavior, and interpreting the results for application to actual fire problems. This is a companion publication to "

  8. A method for ensemble wildland fire simulation

    Treesearch

    Mark A. Finney; Isaac C. Grenfell; Charles W. McHugh; Robert C. Seli; Diane Trethewey; Richard D. Stratton; Stuart Brittain

    2011-01-01

    An ensemble simulation system that accounts for uncertainty in long-range weather conditions and two-dimensional wildland fire spread is described. Fuel moisture is expressed based on the energy release component, a US fire danger rating index, and its variation throughout the fire season is modeled using time series analysis of historical weather data. This analysis...

  9. GABAergic excitation of spider mechanoreceptors increases information capacity by increasing entropy rather than decreasing jitter.

    PubMed

    Pfeiffer, Keram; French, Andrew S

    2009-09-02

    Neurotransmitter chemicals excite or inhibit a range of sensory afferents and sensory pathways. These changes in firing rate or static sensitivity can also be associated with changes in dynamic sensitivity or membrane noise and thus action potential timing. We measured action potential firing produced by random mechanical stimulation of spider mechanoreceptor neurons during long-duration excitation by the GABAA agonist muscimol. Information capacity was estimated from signal-to-noise ratio by averaging responses to repeated identical stimulation sequences. Information capacity was also estimated from the coherence function between input and output signals. Entropy rate was estimated by a data compression algorithm and maximum entropy rate from the firing rate. Action potential timing variability, or jitter, was measured as normalized interspike interval distance. Muscimol increased firing rate, information capacity, and entropy rate, but jitter was unchanged. We compared these data with the effects of increasing firing rate by current injection. Our results indicate that the major increase in information capacity by neurotransmitter action arose from the increased entropy rate produced by increased firing rate, not from reduction in membrane noise and action potential jitter.

  10. Characterization of flame radiosity in shrubland fires

    Treesearch

    Miguel G. Cruz; Bret W. Butler; Domingos X. Viegas; Pedro Palheiro

    2011-01-01

    The present study is aimed at quantifying the flame radiosity vertical profile and gas temperature in moderate to high intensity spreading fires in shrubland fuels. We report on the results from 11 experimental fires conducted over a range of fire rate of spread and frontal fire intensity varying respectively between 0.04-0.35ms-1 and 468-14,973kWm-1. Flame radiosity,...

  11. Hydrocarbon characterization experiments in fully turbulent fires.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricks, Allen; Blanchat, Thomas K.

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuelmore » evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. A set of experiments are outlined in this report which will provide data for the development and validation of models for the fuel regression rates in liquid hydrocarbon fuel fires. The experiments will be performed on fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool will be investigated and the total heat flux to the pool surface will be measured. The importance of convection within the liquid fuel will be assessed by restricting large scale liquid motion in some tests. These data sets will provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.« less

  12. Peak firing rates of rat anterodorsal thalamic head direction cells are higher during faster passive rotations.

    PubMed

    Zugaro, Michaël B; Berthoz, Alain; Wiener, Sidney I

    2002-01-01

    Head direction cells discharge selectively when the head of the animal is oriented in a specific direction. The goal of this study was to determine how sensory signals arising from passive rotations (e.g., triggered by vestibular stimulation and dynamic visual inputs) influence the responses of anterodorsal thalamic head direction cells in the absence of voluntary movement cues (e.g., motor command, efference copy, and associated kinesthetic signals). Three unrestrained rats consumed water from a reservoir at the center of a circular platform while passively subjected to sinusoidal rotatory oscillations at fast (153 +/- 27 degrees/s, sd) and slow (38 +/- 15 degrees/s) peak velocities. In 14 anterodorsal thalamic head direction cells, the preferred directions, angular response ranges and baseline firing rates remained stable, but the peak firing rates were, on average, 36% higher during the fast rotations (Wilcoxon matched-pairs test, p < 0.001; variation range: +11% to approximately +100%). No cell changed its peak firing rate by less than 10%, while three cells (21%) increased their peak firing rates by more than 50%. The velocity-dependent increase in peak firing rates was similar for left and right rotations, and the skewness of the directional response curves were not significantly different between left and right turns (Wilcoxon matched-pairs tests, n = 14, ns). These results show that sensory signals concerning self-movements modulate the responses of the head direction cells in the absence of active locomotion.

  13. Introduction to fire danger rating and remote sensing - Will remote sensing enhance wildland fire danger prediction?

    USGS Publications Warehouse

    Allgöwer, Britta; Carlson, J.D.; Van Wagtendonk, Jan W.; Chuvieco, Emilio

    2003-01-01

    While ‘Fire Danger’ per se cannot be measured, the physical properties of the biotic and abiotic world that relate to fire occurrence and fire behavior can. Today, increasingly sophisticated Remote Sensing methods are being developed to more accurately detect fuel properties such as species composition (fuel types), vegetation structure or plant water content - to name a few. Based on meteorological input data and physical, semi-physical or empirical model calculations, Wildland Fire Danger Rating Systems provide ‘indirect values’ - numerical indices - at different temporal scales (e.g., daily, weekly, monthly) denoting the physical conditions that may lead to fire ignition and support fire propagation. The results can be expressed as fire danger levels, ranging from ‘low’ to ‘very high’, and are commonly used in operational wildland fire management (e.g., the Canadian Fire Weather Index [FWI] System, the Russian Nesterov Index, or the U.S. National Fire Danger Rating System [NFDRS]). Today, fire danger levels are often turned into broad scale maps with the help of Geographical Information Systems (GIS) showing the areas with the different fire danger levels, and are distributed via the World Wide Web.In this chapter we will outline some key issues dealing with Remote Sensing and GIS techniques that are covered in the following chapters, and elaborate how the Fire Danger Rating concepts could be integrated into a framework that enables comprehensive and sustainable wildland fire risk assessment. To do so, we will first raise some general thoughts about wildland fires and suggest how to approach this extremely complex phenomenon. Second, we will outline a possible fire risk analysis framework and third we will give a short overview on existing Fire Danger Rating Systems and the principles behind them.

  14. Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs.

    PubMed

    Stevens, Jens T; Latimer, Andrew M

    2015-06-01

    Montane regions worldwide have experienced relatively low plant invasion rates, a trend attributed to increased climatic severity, low rates of disturbance, and reduced propagule pressure relative to lowlands. Manipulative experiments at elevations above the invasive range of non-native species can clarify the relative contributions of these mechanisms to montane invasion resistance, yet such experiments are rare. Furthermore, global climate change and land use changes are expected to cause decreases in snowpack and increases in disturbance by fire and forest thinning in montane forests. We examined the importance of these factors in limiting montane invasions using a field transplant experiment above the invasive range of two non-native lowland shrubs, Scotch broom (Cytisus scoparius) and Spanish broom (Spartium junceum), in the rain-snow transition zone of the Sierra Nevada of California. We tested the effects of canopy closure, prescribed fire, and winter snow depth on demographic transitions of each species. Establishment of both species was most likely at intermediate levels of canopy disturbance, but at this intermediate canopy level, snow depth had negative effects on winter survival of seedlings. We used matrix population models to show that an 86% reduction in winter snowfall would cause a 2.8-fold increase in population growth rates in Scotch broom and a 3.5-fold increase in Spanish broom. Fall prescribed fire increased germination rates, but decreased overall population growth rates by reducing plant survival. However, at longer fire return intervals, population recovery between fires is likely to keep growth rates high, especially under low snowpack conditions. Many treatment combinations had positive growth rates despite being above the current invasive range, indicating that propagule pressure, disturbance, and climate can all strongly affect plant invasions in montane regions. We conclude that projected reductions in winter snowpack and increases in forest disturbance are likely to increase the risk of invasion from lower elevations. © 2014 John Wiley & Sons Ltd.

  15. Hydrocarbon characterization experiments in fully turbulent fires : results and data analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo-Anttila, Jill Marie; Blanchat, Thomas K.

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuelmore » evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. This report describes a set of fuel regression rates experiments to provide data for the development and validation of models. The experiments were performed with fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool was investigated and the total heat flux to the pool surface was measured. The importance of convection within the liquid fuel was assessed by restricting large scale liquid motion in some tests. These data sets provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.« less

  16. Distinguishing intrinsic from extrinsic factors underlying firing rate saturation in human motor units

    PubMed Central

    Lester, Rosemary A.; Johns, Richard K.

    2014-01-01

    During voluntary contraction, firing rates of individual motor units (MUs) increase modestly over a narrow force range beyond which little additional increase in firing rate is seen. Such saturation of MU discharge may be a consequence of extrinsic factors that limit net synaptic excitation acting on motor neurons (MNs) or may be due to intrinsic properties of the MNs. Two sets of experiments involving recording of human biceps brachii MUs were carried out to evaluate saturation. In the first set, the extent of saturation was quantified for 136 low-threshold MUs during isometric ramp contractions. Firing rate-force data were best fit by a saturating function for 90% of MUs recorded with a maximum rate of 14.8 ± 2.0 impulses/s. In the second set of experiments, to distinguish extrinsic from intrinsic factors underlying saturation, we artificially augmented descending excitatory drive to biceps MNs by activation of muscle spindle afferents through tendon vibration. We examined the change in firing rate caused by tendon vibration in 96 MUs that were voluntarily activated at rates below and at saturation. Vibration had little effect on the discharge of MUs that were firing at saturation frequencies but strongly increased firing rates of the same units when active at lower frequencies. These results indicate that saturation is likely caused by intrinsic mechanisms that prevent further increases in firing rate in the presence of increasing synaptic excitation. Possible intrinsic cellular mechanisms that limit firing rates of motor units during voluntary effort are discussed. PMID:25475356

  17. A reduction for spiking integrate-and-fire network dynamics ranging from homogeneity to synchrony.

    PubMed

    Zhang, J W; Rangan, A V

    2015-04-01

    In this paper we provide a general methodology for systematically reducing the dynamics of a class of integrate-and-fire networks down to an augmented 4-dimensional system of ordinary-differential-equations. The class of integrate-and-fire networks we focus on are homogeneously-structured, strongly coupled, and fluctuation-driven. Our reduction succeeds where most current firing-rate and population-dynamics models fail because we account for the emergence of 'multiple-firing-events' involving the semi-synchronous firing of many neurons. These multiple-firing-events are largely responsible for the fluctuations generated by the network and, as a result, our reduction faithfully describes many dynamic regimes ranging from homogeneous to synchronous. Our reduction is based on first principles, and provides an analyzable link between the integrate-and-fire network parameters and the relatively low-dimensional dynamics underlying the 4-dimensional augmented ODE.

  18. RELATIONSHIP BETWEEN ENTROPY OF SPIKE TIMING AND FIRING RATE IN ENTOPEDUNCULAR NUCLEUS NEURONS IN ANESTHETIZED RATS: FUNCTION OF THE NIGRO-STRIATAL PATHWAY

    PubMed Central

    Darbin, Olivier; Jin, Xingxing; von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K.; Alam, Mesbah

    2016-01-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus (entopeduncular nucleus, EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson’s disease (PD). In both control subjects and subjects with 6-OHDA lesion of the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15Hz and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25Hz. Our data establishes that nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions with movement disorders. PMID:26711712

  19. Economic susceptibility of fire-prone landscapes in natural protected areas of the southern Andean Range.

    PubMed

    Molina, Juan Ramón; Moreno, Roberto; Castillo, Miguel; Rodríguez Y Silva, Francisco

    2018-04-01

    Large fires are the most important disturbances at landscape-level due to their ecological and socioeconomic impacts. This study aimed to develop an approach for the assessment of the socio-economic landscape susceptibility to fire. Our methodology focuses on the integration of economic components of landscape management based on contingent valuation method (CVM) and net-value change (NVC). This former component has been estimated using depreciation rates or changes on the number of arrivals to different natural protected areas after a large fire occurrence. Landscape susceptibility concept has been motivated by the need to assist fire prevention programs and environmental management. There was a remarkable variation in annual economic value attributed to each protected area based on the CVM scenario, ranging from 40,189-46,887$/year ("Tolhuaca National Park") to 241,000-341,953$/year ("Conguillio National Park"). We added landscape susceptibility using depreciation rates or tourist arrival decrease which varied from 2.04% (low fire intensity in "Tolhuaca National Park") to 76.67% (high fire intensity in "Conguillio National Park"). The integration of this approach and future studies about vegetation resilience should seek management strategies to increase economic efficiency in the fire prevention activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Pseudacteon decapitating fly parasitism rates in fire ant colonies around Gainesville, Florida

    USDA-ARS?s Scientific Manuscript database

    In order to assess the impacts of phorid flies on fire ants in the Gainesville area, we collected 3 g of worker ants from 36 colonies. A total of 672 parasitized workers were recovered from the 36 colony samples. Confirmed parasitism rates ranged from 0-5% with an average of about 0.5%. Including c...

  1. Aircraft Engine Sump Fire Mitigation, Phase 2

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1978-01-01

    The effect of changes in the input parameters (air leakage flow rate and temperature and lubricating oil inlet flow rate and temperature) over a specified range on the flammability conditions within an aircraft engine bearing sump was investigated. An analytical study was performed to determine the effect of various parameters on the generation rate of oil vapor from oil droplets in a hot air stream flowing in a cylindrical tube. The ignition of the vapor-air mixture by an ignition source was considered. The experimental investigation demonstrated that fires would be ignited by a spark ignitor over the full range of air and oil flow rates and air temperatures evaluated. However, no fires could be ignited when the oil inlet temperature was maintained below 41.7 K (290 F). The severity of the fires ignited were found to be directly proportional to the hot air flow rate. Reasonably good correlation was found between the mixture temperature in the sump at the ignitor location and the flammability limits as defined by flammability theory; thus a fairly reliable experimental method of determining flammable conditions within a sump was demonstrated. The computerized mathematical model shows that oil droplet size and air temperature have the greatest influence on the generation rate of oil vapor.

  2. Evaluating crown fire rate of spread predictions from physics-based models

    Treesearch

    C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont

    2015-01-01

    Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...

  3. Effectiveness of three post-fire rehabilitation treatments in the Colorado Front Range

    Treesearch

    J. W. Wagenbrenner; L. H. MacDonald; D. Rough

    2006-01-01

    Post-fire rehabilitation treatments are commonly implemented after high-severity wildfires, but few data are available about the efficacy of these treatments. This study assessed post-fire erosion rates and the effectiveness of seeding, straw mulching, and contour felling in reducing erosion after a June 2000 wildfire northwest of Loveland, Colorado. Site...

  4. Noise shaping in populations of coupled model neurons.

    PubMed

    Mar, D J; Chow, C C; Gerstner, W; Adams, R W; Collins, J J

    1999-08-31

    Biological information-processing systems, such as populations of sensory and motor neurons, may use correlations between the firings of individual elements to obtain lower noise levels and a systemwide performance improvement in the dynamic range or the signal-to-noise ratio. Here, we implement such correlations in networks of coupled integrate-and-fire neurons using inhibitory coupling and demonstrate that this can improve the system dynamic range and the signal-to-noise ratio in a population rate code. The improvement can surpass that expected for simple averaging of uncorrelated elements. A theory that predicts the resulting power spectrum is developed in terms of a stochastic point-process model in which the instantaneous population firing rate is modulated by the coupling between elements.

  5. Restoring and managing low-severity fire in dry-forest landscapes of the western USA.

    PubMed

    Baker, William L

    2017-01-01

    Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could accurately predict two equivalent historical rates, population mean fire interval (PMFI) and fire rotation (FR). The best model, using Weibull mean ITFI, had low prediction error and R2adj = 0.972. I used this model to predict historical PMFI/FR at 252 sites spanning dry forests. Historical PMFI/FR for a pool of 342 calibration and predicted sites had a mean of 39 years and median of 30 years. Short (< 25 years) mean PMFI/FRs were in Arizona and New Mexico and scattered in other states. Long (> 55 years) mean PMFI/FRs were mainly from northern New Mexico to South Dakota. Mountain sites often had a large range in PMFI/FR. Nearly all 342 estimates are for old forests with a history of primarily low-severity fire, found across only about 34% of historical dry-forest area. Frequent fire (PMFI/FR < 25 years) was found across only about 14% of historical dry-forest area, with 86% having multidecadal rates of low-severity fire. Historical fuels (e.g., understory shrubs and small trees) could fully recover between multidecadal fires, allowing some denser forests and some ecosystem processes and wildlife habitat to be less limited by fire. Lower historical rates mean less restoration treatment is needed before beginning managed fire for resource benefits, where feasible. Mimicking patterns of variability in historical low-severity fire regimes would likely benefit biological diversity and ecosystem functioning.

  6. Restoring and managing low-severity fire in dry-forest landscapes of the western USA

    PubMed Central

    2017-01-01

    Low-severity fires that killed few canopy trees played a significant historical role in dry forests of the western USA and warrant restoration and management, but historical rates of burning remain uncertain. Past reconstructions focused on on dating fire years, not measuring historical rates of burning. Past statistics, including mean composite fire interval (mean CFI) and individual-tree fire interval (mean ITFI) have biases and inaccuracies if used as estimators of rates. In this study, I used regression, with a calibration dataset of 96 cases, to test whether these statistics could accurately predict two equivalent historical rates, population mean fire interval (PMFI) and fire rotation (FR). The best model, using Weibull mean ITFI, had low prediction error and R2adj = 0.972. I used this model to predict historical PMFI/FR at 252 sites spanning dry forests. Historical PMFI/FR for a pool of 342 calibration and predicted sites had a mean of 39 years and median of 30 years. Short (< 25 years) mean PMFI/FRs were in Arizona and New Mexico and scattered in other states. Long (> 55 years) mean PMFI/FRs were mainly from northern New Mexico to South Dakota. Mountain sites often had a large range in PMFI/FR. Nearly all 342 estimates are for old forests with a history of primarily low-severity fire, found across only about 34% of historical dry-forest area. Frequent fire (PMFI/FR < 25 years) was found across only about 14% of historical dry-forest area, with 86% having multidecadal rates of low-severity fire. Historical fuels (e.g., understory shrubs and small trees) could fully recover between multidecadal fires, allowing some denser forests and some ecosystem processes and wildlife habitat to be less limited by fire. Lower historical rates mean less restoration treatment is needed before beginning managed fire for resource benefits, where feasible. Mimicking patterns of variability in historical low-severity fire regimes would likely benefit biological diversity and ecosystem functioning. PMID:28199416

  7. Experimental study on burning rates of square/rectangular gasoline and methanol pool fires under longitudinal air flow in a wind tunnel.

    PubMed

    Hu, L H; Liu, S; Peng, W; Huo, R

    2009-09-30

    Square pool fires with length of 5, 7.5, 10, 15, 20, 25 and 30 cm and rectangular pool fires with dimensions of 10 cm x 20 cm and 10 cm x 40 cm were burned in a wind tunnel, under a longitudinal air flow ranged from 0 to 3m/s with incremental change of about 0.5m/s. Methanol and gasoline were burned and compared, with results indicated that their burning rates showed different response to the longitudinal air flow. With the increase of the longitudinal air flow speed, the burning rates of methanol pool fires, except the 5 cm square one, first decreased and then increased, but those of the 5 cm methanol square one and the gasoline pool fires increased monotonously. The burning rate of smaller square pool fires increased more significantly than that of the larger ones, as well as the enlargement of their flame attachment length along the ground. The burning rate of a rectangular pool fire with longer rim parallel to the longitudinal flow increased faster, but the flame attachment length seemed to increase more gradually, with the increase of the longitudinal air flow speed than that perpendicular to.

  8. Fire testing and infrared thermography of oak barrels filled with distilled spirits (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    de Vries, Jaap

    2017-05-01

    Adequate fire protection of distilled spirits stored in oak barrels requires understanding the failure mode of these barrels, including quantifying the leak rate. In this study, the use of a custom-calibrated, long-wave microbolometer camera is demonstrated to seek new protection methods for rack-stored distilled spirits. Individual oak barrels ranging between 200 L and 500 L filled with 75%/25% ethanol/water were exposed to both propane gas fires and pure ethanol pool fires. The IR camera was used to see through the smoke and flames showing the location of the leaks. The increase in HRR due to the leaked content was measured using gas calorimetry of the combustion products. This study showed that barrels leaked at a rate of approximately 4-8 lpm, resulting in heat release rates ranging between 1.2 and 2.4 MW. These numbers are confirmed by the quantitative measurements of gaseous H2O and CO¬2 in the exhaust. Surface temperature of the exposed oak could reach temperatures up to 750ºC.

  9. Neural correlates of high-gamma oscillations (60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography

    PubMed Central

    Crone, Nathan E.; Niebur, Ernst; Franaszczuk, Piotr J.; Hsiao, Steven S.

    2009-01-01

    Recent studies using electrocorticographic (ECoG) recordings in humans have shown that functional activation of cortex is associated with an increase in power in the high-gamma frequency range (∼60–200 Hz). Here we investigate the neural correlates of this high-gamma activity in local field potential (LFP). Single units and LFP were recorded with microelectrodes from the hand region of macaque SII cortex while vibrotactile stimuli of varying intensities were presented to the hand. We found that high-gamma power in the LFP was strongly correlated with the average firing rate recorded by the microelectrodes, both temporally and on a trial-by-trial basis. In comparison, the correlation between firing rate and low-gamma power (40–80 Hz) was much smaller. In order to explore the potential effects of neuronal firing on ECoG, we developed a model to estimate ECoG power generated by different firing patterns of the underlying cortical population and studied how ECoG power varies with changes in firing rate versus the degree of synchronous firing between neurons in the population. Both an increase in firing rate and neuronal synchrony increased high-gamma power in the simulated ECoG data. However, ECoG high-gamma activity was much more sensitive to increases in neuronal synchrony than firing rate. PMID:18987189

  10. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    PubMed

    Baker, William L

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984-2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984-2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046-2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in dry forests.

  11. Possible effects of depolarizing GABAA conductance on the neuronal input-output relationship: a modeling study.

    PubMed

    Morita, Kenji; Tsumoto, Kunichika; Aihara, Kazuyuki

    2005-06-01

    Recent in vitro experiments revealed that the GABAA reversal potential is about 10 mV higher than the resting potential in mature mammalian neocortical pyramidal cells; thus GABAergic inputs could have facilitatory, rather than inhibitory, effects on action potential generation under certain conditions. However, how the relationship between excitatory input conductances and the output firing rate is modulated by such depolarizing GABAergic inputs under in vivo circumstances has not yet been understood. We examine herewith the input-output relationship in a simple conductance-based model of cortical neurons with the depolarized GABAA reversal potential, and show that a tonic depolarizing GABAergic conductance up to a certain amount does not change the relationship between a tonic glutamatergic driving conductance and the output firing rate, whereas a higher GABAergic conductance prevents spike generation. When the tonic glutamatergic and GABAergic conductances are replaced by in vivo-like highly fluctuating inputs, on the other hand, the effect of depolarizing GABAergic inputs on the input-output relationship critically depends on the degree of coincidence between glutamatergic input events and GABAergic ones. Although a wide range of depolarizing GABAergic inputs hardly changes the firing rate of a neuron driven by noncoincident glutamatergic inputs, a certain range of these inputs considerably decreases the firing rate if a large number of driving glutamatergic inputs are coincident with them. These results raise the possibility that the depolarized GABAA reversal potential is not a paradoxical mystery, but is instead a sophisticated device for discriminative firing rate modulation.

  12. Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA.

    PubMed

    Engle, Mark A; Radke, Lawrence F; Heffern, Edward L; O'Keefe, Jennifer M K; Hower, James C; Smeltzer, Charles D; Hower, Judith M; Olea, Ricardo A; Eatwell, Robert J; Blake, Donald R; Emsbo-Mattingly, Stephen D; Stout, Scott A; Queen, Gerald; Aggen, Kerry L; Kolker, Allan; Prakash, Anupma; Henke, Kevin R; Stracher, Glenn B; Schroeder, Paul A; Román-Colón, Yomayra; ter Schure, Arnout

    2012-03-15

    Ground-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires. Additionally, gas samples were collected for volatile organic compound (VOC) analysis and showed a large range in variation between vents. The fires produce locally dangerous levels of CO, CO(2), H(2)S, and benzene, among other gases. At one fire in an abandoned coal mine, trends in gas and tar composition followed a change in topography. Total CO(2) fluxes for the fires from airborne, ground-based, and rate of fire advancement estimates ranged from 0.9 to 780mg/s/m(2) and are comparable to other coal fires worldwide. Samples of tar and coal-fire minerals collected from the mouth of vents provided insight into the behavior and formation of the coal fires. Published by Elsevier B.V.

  13. Adult mouse motor units develop almost all of their force in the subprimary range: a new all-or-none strategy for force recruitment?

    PubMed

    Manuel, Marin; Heckman, C J

    2011-10-19

    Classical studies of the mammalian neuromuscular system have shown an impressive adaptation match between the intrinsic properties of motoneurons and the contractile properties of their motor units. In these studies, the rate at which motoneurons start to fire repetitively corresponds to the rate at which individual twitches start to sum, and the firing rate increases linearly with the amount of excitation ("primary range") up to the point where the motor unit develops its maximal force. This allows for the gradation of the force produced by a motor unit by rate modulation. In adult mouse motoneurons, however, we recently described a regime of firing ("subprimary range") that appears at lower excitation than what is required for the primary range, a finding that might challenge the classical conception. To investigate the force production of mouse motor units, we simultaneously recorded, for the first time, the motoneuron discharge elicited by intracellular ramps of current and the force developed by its motor unit. We showed that the motor unit developed nearly its maximal force during the subprimary range. This was found to be the case regardless of the input resistance of the motoneuron, the contraction speed, or the tetanic force of the motor unit. Our work suggests that force modulation in small mammals mainly relies on the number of motor units that are recruited rather than on rate modulation of individual motor units.

  14. A Model-Based Approach to Infer Shifts in Regional Fire Regimes Over Time Using Sediment Charcoal Records

    NASA Astrophysics Data System (ADS)

    Itter, M.; Finley, A. O.; Hooten, M.; Higuera, P. E.; Marlon, J. R.; McLachlan, J. S.; Kelly, R.

    2016-12-01

    Sediment charcoal records are used in paleoecological analyses to identify individual local fire events and to estimate fire frequency and regional biomass burned at centennial to millenial time scales. Methods to identify local fire events based on sediment charcoal records have been well developed over the past 30 years, however, an integrated statistical framework for fire identification is still lacking. We build upon existing paleoecological methods to develop a hierarchical Bayesian point process model for local fire identification and estimation of fire return intervals. The model is unique in that it combines sediment charcoal records from multiple lakes across a region in a spatially-explicit fashion leading to estimation of a joint, regional fire return interval in addition to lake-specific local fire frequencies. Further, the model estimates a joint regional charcoal deposition rate free from the effects of local fires that can be used as a measure of regional biomass burned over time. Finally, the hierarchical Bayesian approach allows for tractable error propagation such that estimates of fire return intervals reflect the full range of uncertainty in sediment charcoal records. Specific sources of uncertainty addressed include sediment age models, the separation of local versus regional charcoal sources, and generation of a composite charcoal record The model is applied to sediment charcoal records from a dense network of lakes in the Yukon Flats region of Alaska. The multivariate joint modeling approach results in improved estimates of regional charcoal deposition with reduced uncertainty in the identification of individual fire events and local fire return intervals compared to individual lake approaches. Modeled individual-lake fire return intervals range from 100 to 500 years with a regional interval of roughly 200 years. Regional charcoal deposition to the network of lakes is correlated up to 50 kilometers. Finally, the joint regional charcoal deposition rate exhibits changes over time coincident with major climatic and vegetation shifts over the past 10,000 years. Ongoing work will use the regional charcoal deposition rate to estimate changes in biomass burned as a function of climate variability and regional vegetation pattern.

  15. Knowledge-Based Systems Approach to Wilderness Fire Management.

    NASA Astrophysics Data System (ADS)

    Saveland, James M.

    The 1988 and 1989 forest fire seasons in the Intermountain West highlight the shortcomings of current fire policy. To fully implement an optimization policy that minimizes the costs and net value change of resources affected by fire, long-range fire severity information is essential, yet lacking. This information is necessary for total mobility of suppression forces, implementing contain and confine suppression strategies, effectively dealing with multiple fire situations, scheduling summer prescribed burning, and wilderness fire management. A knowledge-based system, Delphi, was developed to help provide long-range information. Delphi provides: (1) a narrative of advice on where a fire might spread, if allowed to burn, (2) a summary of recent weather and fire danger information, and (3) a Bayesian analysis of long-range fire danger potential. Uncertainty is inherent in long-range information. Decision theory and judgment research can be used to help understand the heuristics experts use to make decisions under uncertainty, heuristics responsible both for expert performance and bias. Judgment heuristics and resulting bias are examined from a fire management perspective. Signal detection theory and receiver operating curve (ROC) analysis can be used to develop a long-range forecast to improve decisions. ROC analysis mimics some of the heuristics and compensates for some of the bias. Most importantly, ROC analysis displays a continuum of bias from which an optimum operating point can be selected. ROC analysis is especially appropriate for long-range forecasting since (1) the occurrence of possible future events is stated in terms of probability, (2) skill prediction is displayed, (3) inherent trade-offs are displayed, and (4) fire danger is explicitly defined. Statements on the probability of the energy release component of the National Fire Danger Rating System exceeding a critical value later in the fire season can be made early July in the Intermountain West. Delphi was evaluated formally and informally. Continual evaluation and feedback to update knowledge-based systems results in a repository for current knowledge, and a means to devise policy that will augment existing knowledge. Thus, knowledge-based systems can help implement adaptive resource management.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollingsworth, LaWen T.; Kurth, Laurie,; Parresol, Bernard, R.

    Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation System. The fundamental fire intensity algorithms in these systems require surface fire behavior fuel models and canopy cover to model surface fire behavior. Canopy base height, stand height, and canopy bulk density are required in addition to surface fire behavior fuel models and canopy cover to model crown fire activity. Several surface fuelmore » and canopy classification efforts have used various remote sensing and ecological relationships as core methods to develop the spatial layers. All of these methods depend upon consistent and temporally constant interpretations of crown attributes and their ecological conditions to estimate surface fuel conditions. This study evaluates modeled fire behavior for an 80,000 ha tract of land in the Atlantic Coastal Plain of the southeastern US using three different data sources. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the US using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern US using satellite imagery. Differences in modeled fire behavior, data development, and data utility are summarized to assist in determining which data source may be most applicable for various land management activities and required analyses. Characterizing fire behavior under different fuel relationships provides insights for natural ecological processes, management strategies for fire mitigation, and positive and negative features of different modeling systems. A comparison of flame length, rate of spread, crown fire activity, and burn probabilities modeled with FlamMap shows some similar patterns across the landscape from all three data sources, but there are potentially important differences. All data sources showed an expected range of fire behavior. Average flame lengths ranged between 1 and 1.4 m. Rate of spread varied the greatest with a range of 2.4-5.7 m min{sup -1}. Passive crown fire was predicted for 5% of the study area using FCCS and LANDFIRE while passive crown fire was not predicted using SWRA data. No active crown fire was predicted regardless of the data source. Burn probability patterns across the landscape were similar but probability was highest using SWRA and lowest using FCCS.« less

  17. Firing patterns of spontaneously active motor units in spinal cord-injured subjects.

    PubMed

    Zijdewind, Inge; Thomas, Christine K

    2012-04-01

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n =19 units) or irregular intervals (CV>0.15, n =14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5-15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (~20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs.Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated after hyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise.

  18. Neuronal Entropy-Rate Feature of Entopeduncular Nucleus in Rat Model of Parkinson's Disease.

    PubMed

    Darbin, Olivier; Jin, Xingxing; Von Wrangel, Christof; Schwabe, Kerstin; Nambu, Atsushi; Naritoku, Dean K; Krauss, Joachim K; Alam, Mesbah

    2016-03-01

    The function of the nigro-striatal pathway on neuronal entropy in the basal ganglia (BG) output nucleus, i.e. the entopeduncular nucleus (EPN) was investigated in the unilaterally 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD). In both control subjects and subjects with 6-OHDA lesion of dopamine (DA) the nigro-striatal pathway, a histological hallmark for parkinsonism, neuronal entropy in EPN was maximal in neurons with firing rates ranging between 15 and 25 Hz. In 6-OHDA lesioned rats, neuronal entropy in the EPN was specifically higher in neurons with firing rates above 25 Hz. Our data establishes that the nigro-striatal pathway controls neuronal entropy in motor circuitry and that the parkinsonian condition is associated with abnormal relationship between firing rate and neuronal entropy in BG output nuclei. The neuronal firing rates and entropy relationship provide putative relevant electrophysiological information to investigate the sensory-motor processing in normal condition and conditions such as movement disorders.

  19. Contributions of microgravity test results to the design of spacecraft fire-safety systems

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  20. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    PubMed Central

    Baker, William L.

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984–2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984–2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046–2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in dry forests. PMID:26351850

  1. Past and future changes in Canadian boreal wildfire activity.

    PubMed

    Girardin, Martin P; Mudelsee, Manfred

    2008-03-01

    Climate change in Canadian boreal forests is usually associated with increased drought severity and fire activity. However, future fire activity could well be within the range of values experienced during the preindustrial period. In this study, we contrast 21st century forecasts of fire occurrence (FireOcc, number of large forest fires per year) in the southern part of the Boreal Shield, Canada, with the historical range of the past 240 years statistically reconstructed from tree-ring width data. First, a historical relationship between drought indices and FireOcc is developed over the calibration period 1959-1998. Next, together with seven tree-ring based drought reconstructions covering the last 240 years and simulations from the CGCM3 and ECHAM4 global climate models, the calibration model is used to estimate past (prior to 1959) and future (post 1999) FireOcc. Last, time-dependent changes in mean FireOcc and in the occurrence rate of extreme fire years are evaluated with the aid of advanced methods of statistical time series analysis. Results suggest that the increase in precipitation projected toward the end of the 21st century will be insufficient to compensate for increasing temperatures and will be insufficient to maintain potential evapotranspiration at current levels. Limited moisture availability would cause FireOcc to increase as well. But will future FireOcc exceed its historical range? The results obtained from our approach suggest high probabilities of seeing future FireOcc reach the upper limit of the historical range. Predictions, which are essentially weighed on northwestern Ontario and eastern boreal Manitoba, indicate that, by 2061-2100, typical FireOcc could increase by more than 34% when compared with the past two centuries. Increases in fire activity as projected by this study could negatively affect the implementation in the next century of forest management inspired by historical or natural disturbance dynamics. This approach is indeed feasible only if current and future fire activities are sufficiently low compared with the preindustrial fire activity, so a substitution of fire by forest management could occur without elevating the overall frequency of disturbance. Conceivable management options will likely have to be directed toward minimizing the adverse impacts of the increasing fire activity.

  2. "Fire Moss" Cover and Function in Severely Burned Forests of the Western United States

    NASA Astrophysics Data System (ADS)

    Grover, H.; Doherty, K.; Sieg, C.; Robichaud, P. R.; Fulé, P. Z.; Bowker, M.

    2017-12-01

    With wildfires increasing in severity and extent throughout the Western United States, land managers need new tools to stabilize recently burned ecosystems. "Fire moss" consists of three species, Ceratodon purpureus, Funaria hygrometrica, and Bryum argentum. These mosses colonize burned landscapes quickly, aggregate soils, have extremely high water holding capacity, and can be grown rapidly ex-situ. In this talk, I will focus on our efforts to understand how Fire Moss naturally interacts with severely burned landscapes. We examined 14 fires in Arizona, New Mexico, Washington, and Idaho selecting a range of times since fire, and stratified plots within each wildfire by winter insolation and elevation. At 75+ plots we measured understory plant cover, ground cover, Fire Moss cover, and Fire Moss reproductive effort. On plots in the Southwest, we measured a suite of soil characteristics on moss covered and adjacent bare soil including aggregate stability, shear strength, compressional strength, and infiltration rates. Moss cover ranged from 0-75% with a mean of 16% across all plots and was inversely related to insolation (R2 = .32, p = <.01), directly related to elevation (R2 = .13, p = .02), and not related to slope (R2 = .02, p =.41). Moss covered areas had twice as much shear strength and compressional strength, and three times higher aggregate stability and infiltration rates as adjacent bare ground. These results will allow us to model locations where Fire Moss will naturally increase postfire hillslope soil stability, locations for targeting moss restoration efforts, and suggest that Fire Moss could be a valuable tool to mitigate post wildfire erosion.

  3. Use of MODIS-Derived Fire Radiative Energy to Estimate Smoke Aerosol Emissions over Different Ecosystems

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.

    2003-01-01

    Biomass burning is the main source of smoke aerosols and certain trace gases in the atmosphere. However, estimates of the rates of biomass consumption and emission of aerosols and trace gases from fires have not attained adequate reliability thus far. Traditional methods for deriving emission rates employ the use of emission factors e(sub x), (in g of species x per kg of biomass burned), which are difficult to measure from satellites. In this era of environmental monitoring from space, fire characterization was not a major consideration in the design of the early satellite-borne remote sensing instruments, such as AVHRR. Therefore, although they are able to provide fire location information, they were not adequately sensitive to variations in fire strength or size, because their thermal bands used for fire detection saturated at the lower end of fire radiative temperature range. As such, hitherto, satellite-based emission estimates employ proxy techniques using satellite derived fire pixel counts (which do not express the fire strength or rate of biomass consumption) or burned areas (which can only be obtained after the fire is over). The MODIS sensor, recently launched into orbit aboard EOS Terra (1999) and Aqua (2002) satellites, have a much higher saturation level and can, not only detect the fire locations 4 times daily, but also measures the at-satellite fire radiative energy (which is a measure of the fire strength) based on its 4 micron channel temperature. Also, MODIS measures the optical thickness of smoke and other aerosols. Preliminary analysis shows appreciable correlation between the MODIS-derived rates of emission of fire radiative energy and smoke over different regions across the globe. These relationships hold great promise for deriving emission coefficients, which can be used for estimating smoke aerosol emissions from MODIS active fire products. This procedure has the potential to provide more accurate emission estimates in near real-time, providing opportunities for various disaster management applications such as alerts, evacuation and, smoke dispersion forecasting.

  4. Spatial and temporal dimensions of fire activity in the fire-prone eastern Canadian taiga.

    PubMed

    Erni, Sandy; Arseneault, Dominique; Parisien, Marc-André; Bégin, Yves

    2017-03-01

    The forest age mosaic is a fundamental attribute of the North American boreal forest. Given that fires are generally lethal to trees, the time since last fire largely determines the composition and structure of forest stands and landscapes. Although the spatiotemporal dynamics of such mosaics has long been assumed to be random under the overwhelming influence of severe fire weather, no long-term reconstruction of mosaic dynamics has been performed from direct field evidence. In this study, we use fire length as a proxy for fire extent across the fire-prone eastern Canadian taiga and systematically reconstruct the spatiotemporal variability of fire extent and fire intervals, as well as the resulting forest age along a 340-km transect for the 1840-2013 time period. Our results indicate an extremely active fire regime over the last two centuries, with an overall burn rate of 2.1% of the land area yr -1 , mainly triggered by seasonal anomalies of high temperature and severe drought. However, the rejuvenation of the age mosaic was strongly patterned in space and time due to the intrinsically lower burn rates in wetland-dominated areas and, more importantly, to the much-reduced likelihood of burning of stands up to 50 years postfire. An extremely high burn rate of ~5% yr -1 would have characterized our study region during the last century in the absence of such fuel age effect. Although recent burn rates and fire sizes are within their range of variability of the last 175 years, a particularly severe weather event allowed a 2013 fire to spread across a large fire refuge, thus shifting the abundance of mature and old forest to a historic low. These results provide reference conditions to evaluate the significance and predict the spatiotemporal dynamics and impacts of the currently strengthening fire activity in the North American boreal forest. © 2016 John Wiley & Sons Ltd.

  5. Studies on the reduction kinetics of hematite iron ore pellets with noncoking coals for sponge iron plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, M.; Mohapatra, P.; Patel, S.K.

    2009-07-01

    In the present investigation, fired pellets were made by mixing hematite iron ore fines of -100, -16+18, and -8+10 mesh size in different ratios and studies on their reduction kinetics in Lakhanpur, Orient OC-2 and Belpahar coals were carried out at temperatures ranging from 850{sup o}C to 1000{sup o}C with a view toward promoting the massive utilization of fines in ironmaking. The rate of reduction in all the fired iron ore pellets increased markedly with an increase in temperature up to 1000{sup o}C, and it was more intense in the first 30min. The values of activation energy, calculated from integralmore » and differential approaches, for the reduction of fired pellets (prepared from iron ore fines of -100 mesh size) in coals were found to be in the range 131-148 and 130-181 kJ mol{sup -1} (for =0.2 to 0.8), indicating the process is controlled by a carbon gasification reaction. The addition of selected larger size particles in the matrix of -100 mesh size fines up to the extent studied decreased the activation energy and slightly increased the reduction rates of resultant fired pellets. In comparison to coal, the reduction of fired pellets in char was characterized by significantly lower reduction rates and higher activation energy.« less

  6. Firing patterns of spontaneously active motor units in spinal cord-injured subjects

    PubMed Central

    Zijdewind, Inge; Thomas, Christine K

    2012-01-01

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n = 19 units) or irregular intervals (CV > 0.15, n = 14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5–15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (∼20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs. Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated afterhyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise. PMID:22310313

  7. Contributions of Microgravity Test Results to the Design of Spacecraft Fire Safety Systems

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) as compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  8. Fire management strategies to maintain species population processes in a fragmented landscape of fire-interval extremes.

    PubMed

    Tulloch, Ayesha I T; Pichancourt, Jean-Baptiste; Gosper, Carl R; Sanders, Angela; Chadès, Iadine

    2016-10-01

    Changed fire regimes have led to declines of fire-regime-adapted species and loss of biodiversity globally. Fire affects population processes of growth, reproduction, and dispersal in different ways, but there is little guidance about the best fire regime(s) to maintain species population processes in fire-prone ecosystems. We use a process-based approach to determine the best range of fire intervals for keystone plant species in a highly modified Mediterranean ecosystem in southwestern Australia where current fire regimes vary. In highly fragmented areas, fires are few due to limited ignitions and active suppression of wildfire on private land, while in highly connected protected areas fires are frequent and extensive. Using matrix population models, we predict population growth of seven Banksia species under different environmental conditions and patch connectivity, and evaluate the sensitivity of species survival to different fire management strategies and burning intervals. We discover that contrasting, complementary patterns of species life-histories with time since fire result in no single best fire regime. All strategies result in the local patch extinction of at least one species. A small number of burning strategies secure complementary species sets depending on connectivity and post-fire growing conditions. A strategy of no fire always leads to fewer species persisting than prescribed fire or random wildfire, while too-frequent or too-rare burning regimes lead to the possible local extinction of all species. In low landscape connectivity, we find a smaller range of suitable fire intervals, and strategies of prescribed or random burning result in a lower number of species with positive growth rates after 100 years on average compared with burning high connectivity patches. Prescribed fire may reduce or increase extinction risk when applied in combination with wildfire depending on patch connectivity. Poor growing conditions result in a significantly reduced number of species exhibiting positive growth rates after 100 years of management. By exploring the consequences of managing fire, we are able to identify which species are likely to disappear under a given fire regime. Identifying the appropriate complementarity of fire intervals, and their species-specific as well as community-level consequences, is crucial to reduce local extinctions of species in fragmented fire-prone landscapes. © 2016 by the Ecological Society of America.

  9. Millimeter waves thermally alter the firing rate of the Lymnaea pacemaker neuron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, S.I.; Kochetkova, N.V.; Ziskin, M.C.

    1997-05-01

    The effects of millimeter waves (mm-waves, 75 GHz) and temperature elevation on the firing rate of the BP-4 pacemaker neuron of the pond snail Lymnaea stagnalis were studied by using microelectrode techniques. The open end of a rectangular waveguide covered with a thin Teflon film served as a radiator. Specific absorption rates (SARs), measured in physiological solution at the radiator outlet, ranged from 600 to 4,200 W/kg, causing temperature rises from 0.3 to 2.2 C, respectively. Irradiation at an SAR of 4,200 W/kg caused a biphasic change in the firing rate, i.e., a transient decrease in the firing rate followedmore » by a gradual increase to a new level that was 68 {+-} 21% above control. The biphasic changes in the firing rate were reproduced by heating under the condition that the magnitude (2 C) and the rate of temperature rise were equal to those produced by the irradiation. The addition of 0.05 mM of ouabain caused the disappearance of transient responses of the neuron to the irradiation. It was shown that the rate of temperature rise played an important role in the development of a transient neuronal response. The threshold stimulus for a transient response of the BP-4 neutron found in warming experiments was a temperature rise of 0.0025 C/s.« less

  10. Dynamics of excitatory synaptic components in sustained firing at low rates.

    PubMed

    Wyart, Claire; Cocco, Simona; Bourdieu, Laurent; Léger, Jean-Francois; Herr, Catherine; Chatenay, Didier

    2005-06-01

    Sustained firing is necessary for the persistent activity associated with working memory. The relative contributions of the reverberation of excitation and of the temporal dynamics of the excitatory postsynaptic potential (EPSP) to the maintenance of activity are difficult to evaluate in classical preparations. We used simplified models of synchronous excitatory networks, hippocampal autapses and pairs, to study the synaptic mechanisms underlying firing at low rates. Calcium imaging and cell attached recordings showed that these neurons spontaneously fired bursts of action potentials that lasted for seconds over a wide range of frequencies. In 2-wk-old cells, the median firing frequency was low (11 +/- 8.8 Hz), whereas in 3- to 4-wk-old cells, it decreased to a very low value (2 +/- 1.3 Hz). In both cases, we have shown that the slowest synaptic component supported firing. In 2-wk-old autapses, antagonists of N-methyl-d-aspartate receptors (NMDARs) induced rare isolated spikes showing that the NMDA component of the EPSP was essential for bursts at low frequency. In 3- to 4-wk-old neurons, the very low frequency firing was maintained without the NMDAR activation. However EGTA-AM or alpha-methyl-4-carboxyphenylglycine (MCPG) removed the very slow depolarizing component of the EPSP and prevented the sustained firing at very low rate. A metabotropic glutamate receptor (mGluR)-activated calcium sensitive conductance is therefore responsible for a very slow synaptic component associated with firing at very low rate. In addition, our observations suggested that the asynchronous release of glutamate might participate also in the recurring bursting.

  11. Demographic responses of Pinguicula ionantha to prescribed fire: a regression-design LTRE approach.

    PubMed

    Kesler, Herbert C; Trusty, Jennifer L; Hermann, Sharon M; Guyer, Craig

    2008-06-01

    This study describes the use of periodic matrix analysis and regression-design life table response experiments (LTRE) to investigate the effects of prescribed fire on demographic responses of Pinguicula ionantha, a federally listed plant endemic to the herb bog/savanna community in north Florida. Multi-state mark-recapture models with dead recoveries were used to estimate survival and transition probabilities for over 2,300 individuals in 12 populations of P. ionantha. These estimates were applied to parameterize matrix models used in further analyses. P. ionantha demographics were found to be strongly dependent on prescribed fire events. Periodic matrix models were used to evaluate season of burn (either growing or dormant season) for fire return intervals ranging from 1 to 20 years. Annual growing and biannual dormant season fires maximized population growth rates for this species. A regression design LTRE was used to evaluate the effect of number of days since last fire on population growth. Maximum population growth rates calculated using standard asymptotic analysis were realized shortly following a burn event (<2 years), and a regression design LTRE showed that short-term fire-mediated changes in vital rates translated into observed increases in population growth. The LTRE identified fecundity and individual growth as contributing most to increases in post-fire population growth. Our analyses found that the current four-year prescribed fire return intervals used at the study sites can be significantly shortened to increase the population growth rates of this rare species. Understanding the role of fire frequency and season in creating and maintaining appropriate habitat for this species may aid in the conservation of this and other rare herb bog/savanna inhabitants.

  12. Single motor unit firing rate after stroke is higher on the less-affected side during stable low-level voluntary contractions

    PubMed Central

    McNulty, Penelope A.; Lin, Gaven; Doust, Catherine G.

    2014-01-01

    Muscle weakness is the most common outcome after stroke and a leading cause of adult-acquired motor disability. Single motor unit properties provide insight into the mechanisms of post-stroke motor impairment. Motor units on the more-affected side are reported to have lower peak firing rates, reduced discharge variability and a more compressed dynamic range than healthy subjects. The activity of 169 motor units was discriminated from surface electromyography in 28 stroke patients during sustained voluntary contractions 10% of maximal and compared to 110 units recorded in 16 healthy subjects. Motor units were recorded in three series: ankle dorsiflexion, wrist flexion and elbow flexion. Mean firing rates after stroke were significantly lower on the more-affected than the less-affected side (p < 0.001) with no differences between dominant and non-dominant sides for healthy subjects. When data were combined, firing rates on the less-affected side were significantly higher than those either on the more-affected side or healthy subjects (p < 0.001). Motor unit mean firing rate was higher in the upper-limb than the lower-limb (p < 0.05). The coefficient of variation of motor unit discharge rate was lower for motor units after stroke compared to controls for wrist flexion (p < 0.05) but not ankle dorsiflexion. However the dynamic range of motor units was compressed only for motor units on the more-affected side during wrist flexion. Our results show that the pathological change in motor unit firing rate occurs on the less-affected side after stroke and not the more-affected side as previously reported, and suggest that motor unit behavior recorded in a single muscle after stroke cannot be generalized to muscles acting on other joints even within the same limb. These data emphasize that the less-affected side does not provide a valid control for physiological studies on the more-affected side after stroke and that both sides should be compared to data from age- and sex-matched healthy subjects. PMID:25100969

  13. An Accurate Fire-Spread Algorithm in the Weather Research and Forecasting Model Using the Level-Set Method

    NASA Astrophysics Data System (ADS)

    Muñoz-Esparza, Domingo; Kosović, Branko; Jiménez, Pedro A.; Coen, Janice L.

    2018-04-01

    The level-set method is typically used to track and propagate the fire perimeter in wildland fire models. Herein, a high-order level-set method using fifth-order WENO scheme for the discretization of spatial derivatives and third-order explicit Runge-Kutta temporal integration is implemented within the Weather Research and Forecasting model wildland fire physics package, WRF-Fire. The algorithm includes solution of an additional partial differential equation for level-set reinitialization. The accuracy of the fire-front shape and rate of spread in uncoupled simulations is systematically analyzed. It is demonstrated that the common implementation used by level-set-based wildfire models yields to rate-of-spread errors in the range 10-35% for typical grid sizes (Δ = 12.5-100 m) and considerably underestimates fire area. Moreover, the amplitude of fire-front gradients in the presence of explicitly resolved turbulence features is systematically underestimated. In contrast, the new WRF-Fire algorithm results in rate-of-spread errors that are lower than 1% and that become nearly grid independent. Also, the underestimation of fire area at the sharp transition between the fire front and the lateral flanks is found to be reduced by a factor of ≈7. A hybrid-order level-set method with locally reduced artificial viscosity is proposed, which substantially alleviates the computational cost associated with high-order discretizations while preserving accuracy. Simulations of the Last Chance wildfire demonstrate additional benefits of high-order accurate level-set algorithms when dealing with complex fuel heterogeneities, enabling propagation across narrow fuel gaps and more accurate fire backing over the lee side of no fuel clusters.

  14. The potential predictability of fire danger provided by ECMWF forecast

    NASA Astrophysics Data System (ADS)

    Di Giuseppe, Francesca

    2017-04-01

    The European Forest Fire Information System (EFFIS), is currently being developed in the framework of the Copernicus Emergency Management Services to monitor and forecast fire danger in Europe. The system provides timely information to civil protection authorities in 38 nations across Europe and mostly concentrates on flagging regions which might be at high danger of spontaneous ignition due to persistent drought. The daily predictions of fire danger conditions are based on the US Forest Service National Fire Danger Rating System (NFDRS), the Canadian forest service Fire Weather Index Rating System (FWI) and the Australian McArthur (MARK-5) rating systems. Weather forcings are provided in real time by the European Centre for Medium range Weather Forecasts (ECMWF) forecasting system. The global system's potential predictability is assessed using re-analysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 years of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire and low values correspond to non observed events. A more quantitative skill evaluation was performed using the Extremal Dependency Index which is a skill score specifically designed for rare events. It revealed that the three indices were more skilful on a global scale than the random forecast to detect large fires. The performance peaks in the boreal forests, in the Mediterranean, the Amazon rain-forests and southeast Asia. The skill-scores were then aggregated at country level to reveal which nations could potentiallty benefit from the system information in aid of decision making and fire control support. Overall we found that fire danger modelling based on weather forecasts, can provide reasonable predictability over large parts of the global landmass.

  15. Population and Individual Elephant Response to a Catastrophic Fire in Pilanesberg National Park

    PubMed Central

    Woolley, Leigh-Ann; Millspaugh, Joshua J.; Woods, Rami J.; Janse van Rensburg, Samantha; Mackey, Robin L.; Page, Bruce; Slotow, Rob

    2008-01-01

    In predator-free large herbivore populations, where density-dependent feedbacks occur at the limit where forage resources can no longer support the population, environmental catastrophes may play a significant role in population regulation. The potential role of fire as a stochastic mass-mortality event limiting these populations is poorly understood, so too the behavioural and physiological responses of the affected animals to this type of large disturbance event. During September 2005, a wildfire resulted in mortality of 29 (18% population mortality) and injury to 18, African elephants in Pilanesberg National Park, South Africa. We examined movement and herd association patterns of six GPS-collared breeding herds, and evaluated population physiological response through faecal glucocorticoid metabolite (stress) levels. We investigated population size, structure and projected growth rates using a simulation model. After an initial flight response post-fire, severely injured breeding herds reduced daily displacement with increased daily variability, reduced home range size, spent more time in non-tourist areas and associated less with other herds. Uninjured, or less severely injured, breeding herds also shifted into non-tourist areas post-fire, but in contrast, increased displacement rate (both mean and variability), did not adjust home range size and formed larger herds post-fire. Adult cow stress hormone levels increased significantly post-fire, whereas juvenile and adult bull stress levels did not change significantly. Most mortality occurred to the juvenile age class causing a change in post-fire population age structure. Projected population growth rate remained unchanged at 6.5% p.a., and at current fecundity levels, the population would reach its previous level three to four years post-fire. The natural mortality patterns seen in elephant populations during stochastic events, such as droughts, follows that of the classic mortality pattern seen in predator-free large ungulate populations, i.e. mainly involving juveniles. Fire therefore functions in a similar manner to other environmental catastrophes and may be a natural mechanism contributing to population limitation. Welfare concerns of arson fires, burning during “hot-fire” conditions and the conservation implications of fire suppression (i.e. removal of a potential contributing factor to natural population regulation) should be integrated into fire management strategies for conservation areas. PMID:18797503

  16. Fuel and fire behavior prediction in big sagebrush

    Treesearch

    James K. Brown

    1982-01-01

    Relationships between height of big sagebrush and crown area, fuel loading, bulk density, size distribution of foliage and stemwood, and fraction dead stemwood are presented. Based upon these relationships, modeled rate-of-fire spread and fireline intensity are shown for sagebrush ranging in height from 20 to 120 em and in coverage from 10 to 40 percent. Verification...

  17. A mathematical model for predicting fire spread in wildland fuels

    Treesearch

    Richard C. Rothermel

    1972-01-01

    A mathematical fire model for predicting rate of spread and intensity that is applicable to a wide range of wildland fuels and environment is presented. Methods of incorporating mixtures of fuel sizes are introduced by weighting input parameters by surface area. The input parameters do not require a prior knowledge of the burning characteristics of the fuel.

  18. The health of women in the US fire service

    PubMed Central

    2012-01-01

    Background Despite statements from national fire service organizations, including the International Association of Fire Fighters (IAFF) and the International Association of Fire Chiefs (IAFC), promoting a diverse work force related to gender within the fire service, rates of women firefighters remain very low. Thus, research into why this extensive gender disparity continues is a high priority. Recent years have seen a number of large scale studies on firefighter health and health risk behaviors however, none have focused on the health of women firefighters and nearly all have eliminated women from the sample due to small sample size. Data from the present report is drawn from all females in a large, randomly selected cohort of firefighters in an epidemiological study designed to assess health outcomes and health risk behaviors identified as most important to the fire service. Methods Data reported for the present study were collected as baseline data for the Firefighter Injury and Risk Evaluation (FIRE) Study, a longitudinal cohort study examining risk factors for injury in both career and volunteer firefighters in the IAFC Missouri Valley Region. Of the departments assessed, only 8 career and 6 volunteer departments had any women firefighters. All the women solicited for participation chose to enroll in the study. The number of women ranged from 1 to 7 in career departments and 1 to 6 in volunteer departments. Results Where possible, comparisons are made between female firefighters and published data on male firefighters as well as comparisons between female firefighters and military members. Compared to male firefighters, females had more favorable body composition among both career and volunteer firefighters. Tobacco use rates were generally higher among females than males and rates among female firefighters were similar to the rates of female military members. While rates of alcohol use were higher than the general population, only one of the participants evidenced responses in the range of concern on the CAGE screening. Conclusions In general, the findings offer an interesting glimpse of the health of women in the fire service as a generally healthy occupational workforce with some unique health risk behavior challenges. They also highlight some of the similarities and differences between male and female firefighters and bolster the argument for studying female firefighters as a unique occupational sub-population. PMID:23114186

  19. Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations

    PubMed Central

    Wu, Jingjing Sherry; Young, Eric D.

    2016-01-01

    Auditory nerve fibers (ANFs) exhibit a range of spontaneous firing rates (SRs) that are inversely correlated with threshold for sounds. To probe the underlying mechanisms and time course of SR differentiation during cochlear maturation, loose-patch extracellular recordings were made from ANF dendrites using acutely excised rat cochlear preparations of different ages after hearing onset. Diversification of SRs occurred mostly between the second and the third postnatal week. Statistical properties of ANF spike trains showed developmental changes that approach adult-like features in older preparations. Comparison with intracellularly recorded EPSCs revealed that most properties of ANF spike trains derive from the characteristics of presynaptic transmitter release. Pharmacological tests and waveform analysis showed that endogenous firing produces some fraction of ANF spikes, accounting for their unusual properties; the endogenous firing diminishes gradually during maturation. Paired recordings showed that ANFs contacting the same inner hair cell could have different SRs, with no correlation in their spike timing. SIGNIFICANCE STATEMENT The inner hair cell (IHC)/auditory nerve fiber (ANF) synapse is the first synapse of the auditory pathway. Remarkably, each IHC is the sole partner of 10–30 ANFs with a range of spontaneous firing rates (SRs). Low and high SR ANFs respond to sound differently, and both are important for encoding sound information across varying acoustical environments. Here we demonstrate SR diversification after hearing onset by afferent recordings in acutely excised rat cochlear preparations. We describe developmental changes in spike train statistics and endogenous firing in immature ANFs. Dual afferent recordings provide the first direct evidence that fibers with different SRs contact the same IHCs and do not show correlated spike timing at rest. These results lay the groundwork for understanding the differential sensitivity of ANFs to acoustic trauma. PMID:27733610

  20. Adaptation and inhibition underlie responses to time-varying interaural phase cues in a model of inferior colliculus neurons.

    PubMed

    Borisyuk, Alla; Semple, Malcolm N; Rinzel, John

    2002-10-01

    A mathematical model was developed for exploring the sensitivity of low-frequency inferior colliculus (IC) neurons to interaural phase disparity (IPD). The formulation involves a firing-rate-type model that does not include spikes per se. The model IC neuron receives IPD-tuned excitatory and inhibitory inputs (viewed as the output of a collection of cells in the medial superior olive). The model cell possesses cellular properties of firing rate adaptation and postinhibitory rebound (PIR). The descriptions of these mechanisms are biophysically reasonable, but only semi-quantitative. We seek to explain within a minimal model the experimentally observed mismatch between responses to IPD stimuli delivered dynamically and those delivered statically (McAlpine et al. 2000; Spitzer and Semple 1993). The model reproduces many features of the responses to static IPD presentations, binaural beat, and partial range sweep stimuli. These features include differences in responses to a stimulus presented in static or dynamic context: sharper tuning and phase shifts in response to binaural beats, and hysteresis and "rise-from-nowhere" in response to partial range sweeps. Our results suggest that dynamic response features are due to the structure of inputs and the presence of firing rate adaptation and PIR mechanism in IC cells, but do not depend on a specific biophysical mechanism. We demonstrate how the model's various components contribute to shaping the observed phenomena. For example, adaptation, PIR, and transmission delay shape phase advances and delays in responses to binaural beats, adaptation and PIR shape hysteresis in different ranges of IPD, and tuned inhibition underlies asymmetry in dynamic tuning properties. We also suggest experiments to test our modeling predictions: in vitro simulation of the binaural beat (phase advance at low beat frequencies, its dependence on firing rate), in vivo partial range sweep experiments (dependence of the hysteresis curve on parameters), and inhibition blocking experiments (to study inhibitory tuning properties by observation of phase shifts).

  1. Sensitivity of woody carbon stocks to bark investment strategy in Neotropical savannas and forests

    NASA Astrophysics Data System (ADS)

    Trugman, Anna T.; Medvigy, David; Hoffmann, William A.; Pellegrini, Adam F. A.

    2018-01-01

    Fire frequencies are changing in Neotropical savannas and forests as a result of forest fragmentation and increasing drought. Such changes in fire regime and climate are hypothesized to destabilize tropical carbon storage, but there has been little consideration of the widespread variability in tree fire tolerance strategies. To test how aboveground carbon stocks change with fire frequency and composition of plants with different fire tolerance strategies, we update the Ecosystem Demography model 2 (ED2) with (i) a fire survivorship module based on tree bark thickness (a key fire-tolerance trait across woody plants in savannas and forests), and (ii) plant functional types representative of trees in the region. With these updates, the model is better able to predict how fire frequency affects population demography and aboveground woody carbon. Simulations illustrate that the high survival rate of thick-barked, large trees reduces carbon losses with increasing fire frequency, with high investment in bark being particularly important in reducing losses in the wettest sites. Additionally, in landscapes that frequently burn, bark investment can broaden the range of climate and fire conditions under which savannas occur by reducing the range of conditions leading to either complete tree loss or complete grass loss. These results highlight that tropical vegetation dynamics depend not only on rainfall and changing fire frequencies but also on tree fire survival strategy. Further, our results indicate that fire survival strategy is fundamentally important in regulating tree size demography in ecosystems exposed to fire, which increases the preservation of aboveground carbon stocks and the coexistence of different plant functional groups.

  2. Pallidal neuronal discharge in Huntington's disease: support for selective loss of striatal cells originating the indirect pathway.

    PubMed

    Starr, Philip A; Kang, Gail A; Heath, Susan; Shimamoto, Shoichi; Turner, Robert S

    2008-05-01

    Chorea is the predominant motor manifestation in the early symptomatic phase of adult onset Huntington's disease (HD). Pathologically, this stage is marked by differential loss of striatal neurons contributing to the indirect pathway. This pattern of neuronal loss predicts decreased neuronal firing rates in GPi and increased firing rates in GPe, the opposite of the changes in firing rate known to occur in Parkinson's disease (PD). We present single-unit discharge characteristics (33 neurons) observed in an awake patient with HD (41 CAG repeats) undergoing microelectrode guided surgery for pallidal deep brain stimulation. Pallidal single-unit activity at "rest" and during voluntary movement was discriminated off line by principal component analysis and evaluated with respect to discharge rate, bursting, and oscillatory activity in the 0-200 Hz range. 24 GPi and 9 GPe units were studied, and compared with 132 GPi and 50 GPe units from 14 patients with PD. The mean (+/-SEM) spontaneous discharge rate for HD was 58+/-4 for GPi and 73+/-5 for GPe. This contrasted with discharge rates in PD of 95+/-2 for GPi and 57+/-3 for GPe. HD GPi units showed more bursting than PD GPi units but much less oscillatory activity in the 2-35 Hz frequency range at rest. These findings are consistent with selective early loss of striatal cells originating the indirect pathway.

  3. Runoff Response to Rainfall in Small Catchments Burned by the 2015 Valley Fire

    NASA Astrophysics Data System (ADS)

    Wagenbrenner, J. W.; Coe, D. B. R.; Lindsay, D.

    2016-12-01

    Burned areas often produce runoff volumes and peak flows much larger than unburned forests. However, very few studies demonstrate the effect of burn severity on runoff responses, and post-fire data are especially sparse in California. We measured the effects of different degrees of burn severity on rainfall-runoff responses in six small catchments (0.15-0.65 ha) in the Northern Coast Ranges. Weirs and tipping bucket rain gages were installed after the 2015 Valley Fire and prior to any substantial rainfall. In the first wet season (Nov 2015-May 2016), one runoff event was recorded in the catchment with the lowest burn severity (42% bare soil), while 13 runoff events occurred in the catchment with the highest burn severity (68% bare soil). Preliminary results indicate the thirty minute maximum rainfall intensity that generated runoff ranged from 27 mm hr-1 in the lowest severity catchment to only 8.6 mm hr-1 in the highest severity catchment. Peak flow rates for the most intense event (27 mm hr-1), a two-year, 30-min storm, were 1.1 m3 s-1 km-2 in the lowest severity catchment and 17 m3 s-1 km-2 in the highest severity catchment. Longer duration, moderate intensity rain events produced runoff in the highest severity catchments but not the lowest severity catchments. These results are on the high end of the range of post-fire peak flow rates reported in the western US and provide an idea of potential post-fire flood potential to land and emergency management agencies.

  4. Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons

    PubMed Central

    Patel, Ameera X.; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems. PMID:25816008

  5. Effects of an introduced pathogen and fire exclusion on the demography of sugar pine

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Stephenson, Nathan L.; Keifer, MaryBeth; Keeley, Jon E.

    2004-01-01

    An introduced pathogen, white pine blister rust (Cronartium ribicola), has caused declines in five-needled pines throughout North America. Simultaneously, fire exclusion has resulted in dense stands in many forest types, which may create additional stress for these generally shade-intolerant pines. Fire exclusion also allows fuels to accumulate, and it is unclear how affected populations will respond to the reintroduction of fire. Although white pine blister rust and fire exclusion are widely recognized threats, long-term demographic data that document the effects of these stressors are rare. We present population trends from 2168 individuals over 5–15 years for an affected species, sugar pine (Pinus lambertiana), at several burned and unburned sites in the Sierra Nevada of California. Size-based matrix models indicate that most unburned populations have negative growth rates (λ range: 0.82–1.04). The growth rate of most populations was, however, indistinguishable from replacement levels (λ = 1.0), implying that, if populations are indeed declining, the progression of any such decline is slow, and longer observations are needed to clearly determine population trends. We found significant differences among population growth rates, primarily due to variation in recruitment rates. Deaths associated with blister rust and stress (i.e., resource competition) were common, suggesting significant roles for both blister rust and fire exclusion in determining population trajectories. Data from 15 prescribed fires showed that the immediate effect of burning was the death of many small trees, with the frequency of mortality returning to pre-fire levels within five years. In spite of a poor prognosis for sugar pine, our results suggest that we have time to apply and refine management strategies to protect this species.

  6. Detection of Bursts and Pauses in Spike Trains

    PubMed Central

    Ko, D.; Wilson, C. J.; Lobb, C. J.; Paladini, C. A.

    2012-01-01

    Midbrain dopaminergic neurons in vivo exhibit a wide range of firing patterns. They normally fire constantly at a low rate, and speed up, firing a phasic burst when reward exceeds prediction, or pause when an expected reward does not occur. Therefore, the detection of bursts and pauses from spike train data is a critical problem when studying the role of phasic dopamine (DA) in reward related learning, and other DA dependent behaviors. However, few statistical methods have been developed that can identify bursts and pauses simultaneously. We propose a new statistical method, the Robust Gaussian Surprise (RGS) method, which performs an exhaustive search of bursts and pauses in spike trains simultaneously. We found that the RGS method is adaptable to various patterns of spike trains recorded in vivo, and is not influenced by baseline firing rate, making it applicable to all in vivo spike trains where baseline firing rates vary over time. We compare the performance of the RGS method to other methods of detecting bursts, such as the Poisson Surprise (PS), Rank Surprise (RS), and Template methods. Analysis of data using the RGS method reveals potential mechanisms underlying how bursts and pauses are controlled in DA neurons. PMID:22939922

  7. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography.

    PubMed

    Hu, Xiaogang; Suresh, Aneesha K; Rymer, William Z; Suresh, Nina L

    2016-08-01

    Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  8. Altered motor unit discharge patterns in paretic muscles of stroke survivors assessed using surface electromyography

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Suresh, Aneesha K.; Rymer, William Z.; Suresh, Nina L.

    2016-08-01

    Objective. Hemispheric stroke survivors often show impairments in voluntary muscle activation. One potential source of these impairments could come from altered control of muscle, via disrupted motor unit (MU) firing patterns. In this study, we sought to determine whether MU firing patterns are modified on the affected side of stroke survivors, as compared with the analogous contralateral muscle. Approach. Using a novel surface electromyogram (EMG) sensor array, coupled with advanced template recognition software (dEMG) we recorded surface EMG signals over the first dorsal interosseous (FDI) muscle on both paretic and contralateral sides. Recordings were made as stroke survivors produced isometric index finger abductions over a large force range (20%-60% of maximum). Utilizing the dEMG algorithm, MU firing rates, recruitment thresholds, and action potential amplitudes were estimated for concurrently active MUs in each trial. Main results. Our results reveal significant changes in the firing rate patterns in paretic FDI muscle, in that the discharge rates, characterized in relation to recruitment force threshold and to MU size, were less clearly correlated with recruitment force than in contralateral FDI muscles. Firing rates in the affected muscle also did not modulate systematically with the level of voluntary muscle contraction, as would be expected in intact muscles. These disturbances in firing properties also correlated closely with the impairment of muscle force generation. Significance. Our results provide strong evidence of disruptions in MU firing behavior in paretic muscles after a hemispheric stroke, suggesting that modified control of the spinal motoneuron pool could be a contributing factor to muscular weakness in stroke survivors.

  9. Model cerebellar granule cells can faithfully transmit modulated firing rate signals

    PubMed Central

    Rössert, Christian; Solinas, Sergio; D'Angelo, Egidio; Dean, Paul; Porrill, John

    2014-01-01

    A crucial assumption of many high-level system models of the cerebellum is that information in the granular layer is encoded in a linear manner. However, granule cells are known for their non-linear and resonant synaptic and intrinsic properties that could potentially impede linear signal transmission. In this modeling study we analyse how electrophysiological granule cell properties and spike sampling influence information coded by firing rate modulation, assuming no signal-related, i.e., uncorrelated inhibitory feedback (open-loop mode). A detailed one-compartment granule cell model was excited in simulation by either direct current or mossy-fiber synaptic inputs. Vestibular signals were represented as tonic inputs to the flocculus modulated at frequencies up to 20 Hz (approximate upper frequency limit of vestibular-ocular reflex, VOR). Model outputs were assessed using estimates of both the transfer function, and the fidelity of input-signal reconstruction measured as variance-accounted-for. The detailed granule cell model with realistic mossy-fiber synaptic inputs could transmit information faithfully and linearly in the frequency range of the vestibular-ocular reflex. This was achieved most simply if the model neurons had a firing rate at least twice the highest required frequency of modulation, but lower rates were also adequate provided a population of neurons was utilized, especially in combination with push-pull coding. The exact number of neurons required for faithful transmission depended on the precise values of firing rate and noise. The model neurons were also able to combine excitatory and inhibitory signals linearly, and could be replaced by a simpler (modified) integrate-and-fire neuron in the case of high tonic firing rates. These findings suggest that granule cells can in principle code modulated firing-rate inputs in a linear manner, and are thus consistent with the high-level adaptive-filter model of the cerebellar microcircuit. PMID:25352777

  10. Changes in contaminant loading and hydro-chemical storm behavior after the Station Fire

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Hogue, T. S.; Barco, J.; Wessel, C. J.

    2010-12-01

    The 2009 Station Fire, currently noted as the largest fire in Los Angeles County history, consumed over 650 square kilometers of National Forest land in the San Gabriel Mountain Range. These mountains, located on the east side (leeward) of the Los Angeles basin, are known to have some of the highest deposition rates of atmospheric pollutants in the nation. Even pre-fire, urban-fringe basins in this mountain range serve as an upstream source of contaminants to downstream urban streams. Burned watersheds undergo significant physical and chemical changes that dramatically alter hydrologic flowpaths, erosion potential, surface soil chemistry, and pollutant delivery. Much of the degradation in water quality is attributed to the extensive soil erosion during post-fire runoff events which carry large sediment loads, mobilizing and transporting contaminants to and within downstream waters. High resolution storm samples collected from a small front range watershed provide a unique opportunity to investigate the impacts of wildfire contaminant loading in a watershed that is significantly impacted by high atmospheric deposition of urban contaminates. Data includes four events from WY 2009 (pre-fire) and WY 2010 (post-fire), along with inter-storm grab samples from each storm season. Samples were analyzed for basic anions, nutrients, trace metals, and total suspended solids. Following the fire, storms with similar precipitation patterns yielded loads up to three orders of magnitude greater than pre-fire for some toxic metals, including lead and cadmium. Dramatic increases were also observed in trace metal concentrations typically associated with particulates, while weathering solute concentrations decreased. Post fire intra-storm dynamics exhibited a shift back toward pre-fire behavior by the end of the first rainy season for most of the measured constituents. Additionally, some unexpected behaviors were observed; specifically mercury loads continued to increase throughout the first post-fire rainy season regardless of storm size.

  11. L-type calcium channels refine the neural population code of sound level

    PubMed Central

    Grimsley, Calum Alex; Green, David Brian

    2016-01-01

    The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (CaL: CaV1.1–1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of CaL to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. CaL is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, CaL activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, CaL boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, CaL either suppresses or enhances firing at sound levels that evoke maximum firing. CaL multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. PMID:27605536

  12. Improved multiple-shot gun for use as a combustion stability rating device

    NASA Technical Reports Server (NTRS)

    Sokolowski, D. E.

    1973-01-01

    A program was conducted to develop and experimentally evaluate an improved version of a modified machine gun for use as a device for rating the relative combustion stability of various rocket combustors. Following the results of a previous study involving a caliber .30 machine gun, a caliber .50 machine gun was modified in order to extend the charge-size range of the device. Nitrocellulose charge sizes ranging from 1.004 to 9.720 grams were fired at rates up to four shots per second. Shock pressures up to 25,512 kN/sq m were measured near the end of a shortened gun barrel. A minimal resistance type of check valve permitted the gun to fire into pressurized regions; back pressures up to 3448 kN/sq m abs were tested. The final modified assembly was evaluated during combustion stability tests on rocket combustors burning a FLOX-methane propellant combination.

  13. Information Transmission and Anderson Localization in two-dimensional networks of firing-rate neurons

    NASA Astrophysics Data System (ADS)

    Natale, Joseph; Hentschel, George

    Firing-rate networks offer a coarse model of signal propagation in the brain. Here we analyze sparse, 2D planar firing-rate networks with no synapses beyond a certain cutoff distance. Additionally, we impose Dale's Principle to ensure that each neuron makes only or inhibitory outgoing connections. Using spectral methods, we find that the number of neurons participating in excitations of the network becomes insignificant whenever the connectivity cutoff is tuned to a value near or below the average interneuron separation. Further, neural activations exceeding a certain threshold stay confined to a small region of space. This behavior is an instance of Anderson localization, a disorder-induced phase transition by which an information channel is rendered unable to transmit signals. We discuss several potential implications of localization for both local and long-range computation in the brain. This work was supported in part by Grants JSMF/ 220020321 and NSF/IOS/1208126.

  14. Changes in Species, Areal Cover, and Production of Moss across a Fire Chronosequence in Interior Alaska

    USGS Publications Warehouse

    Harden, J.W.; Munster, J.; Manies, K.L.; Mack, M.C.; Bubier, J.L.

    2009-01-01

    In an effort to characterize the species and production rates of various upland mosses and their relationship to both site drainage and time since fire, annual net primary production of six common moss species was measured. Several stands located near Delta Junction, interior Alaska, were located. These stands ranged from one to 116 years since fire in well-drained (dry) and moderately to somewhat poorly drained (wet) black spruce (Picea mariana)-feathermoss systems. Moss species composition varied greatly during the fire cycle, with Ceratodon purpureus dominating the earliest years after a fire, Aulacomnium palustre dominating the transitional and older stages, and Hylocomium splendens dominating the oldest, mature sites. Polytrichum spp. was found at all sites. Average moss cover ranged from <10 percent in the youngest sites to almost 90 percent in the mature sites. Species from the genus Polytrichum were the most productive and contributed up to 30 g m2 of organic matter in one growing season. Least productive was Rhytidium rugosum, which contributed about 1.5 g m2 of organic matter in mature stands. Recovery of moss productivity after fire was not significantly different for wet and dry sites.

  15. Maximal physical work performance with European standard based fire-protective clothing system and equipment in relation to individual characteristics.

    PubMed

    Louhevaara, V; Ilmarinen, R; Griefahn, B; Künemund, C; Mäkinen, H

    1995-01-01

    Every fire fighter needs to wear fire-protective clothing and a self-contained breathing apparatus (SCBA) several times a year while carrying out various fire-fighting and rescue operations in hazardous work environments. The aim of the present study was to quantify the effects of a multilayer turnout suit designed to fulfil European standard EN 469 used over standardized (Nordic) clothing and with SCBA (total mass 25.9 kg) on maximal physical work performance, and to evaluate the relationship between individual characteristics and power output with the fire-protective clothing system and SCBA. The subjects were 12 healthy firemen aged 26-46 years. The range of their body mass, body fat and maximal oxygen consumption was 69-101 kg, 10-20% and 2.70-5.86 l.min-1, respectively. The maximal tests without (control) and with the fire-protective clothing system and SCBA were carried out on a treadmill in a thermoneutral environment. When compared to the control test, the decrease in the maximal power output in terms of maximal working time and walking speed averaged 25% (P < 0.001) varying from 18% to 34% with the fire-protective clothing system and SCBA. At maximum, no significant differences were found in pulmonary ventilation, absolute oxygen consumption, the respiratory exchange ratio, heart rate, systolic blood pressure, the rate-pressure product, mechanical efficiency, and the rating of perceived exertion between the tests with and without the fire-protective clothing system and SCBA. The reduction of the power output was related to the extra mass of the fire protective clothing and SCBA.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Decision time, slow inhibition, and theta rhythm.

    PubMed

    Smerieri, Anteo; Rolls, Edmund T; Feng, Jianfeng

    2010-10-20

    In this paper, we examine decision making in a spiking neuronal network and show that longer time constants for the inhibitory neurons can decrease the reaction times and produce theta rhythm. We analyze the mechanism and find that the spontaneous firing rate before the decision cues are applied can drift, and thereby influence the speed of the reaction time when the decision cues are applied. The drift of the firing rate in the population that will win the competition is larger if the time constant of the inhibitory interneurons is increased from 10 to 33 ms, and even larger if there are two populations of inhibitory neurons with time constants of 10 and 100 ms. Of considerable interest is that the decision that will be made can be influenced by the noise-influenced drift of the spontaneous firing rate over many seconds before the decision cues are applied. The theta rhythm associated with the longer time constant networks mirrors the greater integration in the firing rate drift produced by the recurrent connections over long time periods in the networks with slow inhibition. The mechanism for the effect of slow waves in the theta and delta range on decision times is suggested to be increased neuronal spiking produced by depolarization of the membrane potential on the positive part of the slow waves when the neuron's membrane potential is close to the firing threshold.

  17. Bistability and up/down state alternations in inhibition-dominated randomly connected networks of LIF neurons.

    PubMed

    Tartaglia, Elisa M; Brunel, Nicolas

    2017-09-20

    Electrophysiological recordings in cortex in vivo have revealed a rich variety of dynamical regimes ranging from irregular asynchronous states to a diversity of synchronized states, depending on species, anesthesia, and external stimulation. The average population firing rate in these states is typically low. We study analytically and numerically a network of sparsely connected excitatory and inhibitory integrate-and-fire neurons in the inhibition-dominated, low firing rate regime. For sufficiently high values of the external input, the network exhibits an asynchronous low firing frequency state (L). Depending on synaptic time constants, we show that two scenarios may occur when external inputs are decreased: (1) the L state can destabilize through a Hopf bifucation as the external input is decreased, leading to synchronized oscillations spanning d δ to β frequencies; (2) the network can reach a bistable region, between the low firing frequency network state (L) and a quiescent one (Q). Adding an adaptation current to excitatory neurons leads to spontaneous alternations between L and Q states, similar to experimental observations on UP and DOWN states alternations.

  18. Quantitative assessment of building fire risk to life safety.

    PubMed

    Guanquan, Chu; Jinhua, Sun

    2008-06-01

    This article presents a quantitative risk assessment framework for evaluating fire risk to life safety. Fire risk is divided into two parts: probability and corresponding consequence of every fire scenario. The time-dependent event tree technique is used to analyze probable fire scenarios based on the effect of fire protection systems on fire spread and smoke movement. To obtain the variation of occurrence probability with time, Markov chain is combined with a time-dependent event tree for stochastic analysis on the occurrence probability of fire scenarios. To obtain consequences of every fire scenario, some uncertainties are considered in the risk analysis process. When calculating the onset time to untenable conditions, a range of fires are designed based on different fire growth rates, after which uncertainty of onset time to untenable conditions can be characterized by probability distribution. When calculating occupant evacuation time, occupant premovement time is considered as a probability distribution. Consequences of a fire scenario can be evaluated according to probability distribution of evacuation time and onset time of untenable conditions. Then, fire risk to life safety can be evaluated based on occurrence probability and consequences of every fire scenario. To express the risk assessment method in detail, a commercial building is presented as a case study. A discussion compares the assessment result of the case study with fire statistics.

  19. Loss of Military Performance due to Individual NBC Protection in a Tropic Environment (belasting en prestatieverlies door individuele nbc-beschermin gin de tropen)

    DTIC Science & Technology

    2006-08-01

    SMP) 1 Trg Area 1330-1430 SMP 2 Trg Area 16 nov 0800-0900 SMP 3 Trg Area 0930-1200 Offensive Fire - LIVE FIRE Range 1 Range Complex 1300-1530 Command...Control Evaluation (C2) 1 Range Complex 1600-1700 SMP 4 Trg Area 17 nov 0930-1200 Defensive Fire - LIVE FIRE Range 2 Range Complex 1300-1530 Command...Control Evaluation (C2) 2 Range Complex 18 nov 0800-0900 SMP 5 Trg Area 0930-1200 Offensive Fire - LIVE FIRE Range 2 Range Complex 1300-1530

  20. L-type calcium channels refine the neural population code of sound level.

    PubMed

    Grimsley, Calum Alex; Green, David Brian; Sivaramakrishnan, Shobhana

    2016-12-01

    The coding of sound level by ensembles of neurons improves the accuracy with which listeners identify how loud a sound is. In the auditory system, the rate at which neurons fire in response to changes in sound level is shaped by local networks. Voltage-gated conductances alter local output by regulating neuronal firing, but their role in modulating responses to sound level is unclear. We tested the effects of L-type calcium channels (Ca L : Ca V 1.1-1.4) on sound-level coding in the central nucleus of the inferior colliculus (ICC) in the auditory midbrain. We characterized the contribution of Ca L to the total calcium current in brain slices and then examined its effects on rate-level functions (RLFs) in vivo using single-unit recordings in awake mice. Ca L is a high-threshold current and comprises ∼50% of the total calcium current in ICC neurons. In vivo, Ca L activates at sound levels that evoke high firing rates. In RLFs that increase monotonically with sound level, Ca L boosts spike rates at high sound levels and increases the maximum firing rate achieved. In different populations of RLFs that change nonmonotonically with sound level, Ca L either suppresses or enhances firing at sound levels that evoke maximum firing. Ca L multiplies the gain of monotonic RLFs with dynamic range and divides the gain of nonmonotonic RLFs with the width of the RLF. These results suggest that a single broad class of calcium channels activates enhancing and suppressing local circuits to regulate the sensitivity of neuronal populations to sound level. Copyright © 2016 the American Physiological Society.

  1. Moderate Image Spectrometer (MODIS) Fire Radiative Energy: Physics and Applications

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2004-01-01

    MODIS fire channel does not saturate in the presence of fires. The fire channel therefore is used to estimate the fire radiative energy, a measure of the rate of biomass consumption in the fire. We found correlation between the fire radiative energy, the rate of formation of burn scars and the rate of emission of aerosol from the fires. Others found correlations between the fire radiative energy and the rate of biomass consumption. This relationships can be used to estimates the emissions from the fires and to estimate the fire hazards.

  2. Characterization of motor units in behaving adult mice shows a wide primary range

    PubMed Central

    Ritter, Laura K.; Tresch, Matthew C.; Heckman, C. J.; Manuel, Marin

    2014-01-01

    The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10–60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units. PMID:24805075

  3. Characterization of motor units in behaving adult mice shows a wide primary range.

    PubMed

    Ritter, Laura K; Tresch, Matthew C; Heckman, C J; Manuel, Marin; Tysseling, Vicki M

    2014-08-01

    The mouse is essential for genetic studies of motor function in both normal and pathological states. Thus it is important to consider whether the structure of motor output from the mouse is in fact analogous to that recorded in other animals. There is a striking difference in the basic electrical properties of mouse motoneurons compared with those in rats, cats, and humans. The firing evoked by injected currents produces a unique frequency-current (F-I) function that emphasizes recruitment of motor units at their maximum force. These F-I functions, however, were measured in anesthetized preparations that lacked two key components of normal synaptic input: high levels of synaptic noise and neuromodulatory inputs. Recent studies suggest that the alterations in the F-I function due to these two components are essential for recreating firing behavior of motor units in human subjects. In this study we provide the first data on firing patterns of motor units in the awake mouse, focusing on steady output in quiet stance. The resulting firing patterns did not match the predictions from the mouse F-I behaviors but instead revealed rate modulation across a remarkably wide range (10-60 Hz). The low end of the firing range may be due to changes in the F-I relation induced by synaptic noise and neuromodulatory inputs. The high end of the range may indicate that, unlike other species, quiet standing in the mouse involves recruitment of relatively fast-twitch motor units. Copyright © 2014 the American Physiological Society.

  4. Successional changes in trophic interactions support a mechanistic model of post-fire population dynamics.

    PubMed

    Smith, Annabel L

    2018-01-01

    Models based on functional traits have limited power in predicting how animal populations respond to disturbance because they do not capture the range of demographic and biological factors that drive population dynamics, including variation in trophic interactions. I tested the hypothesis that successional changes in vegetation structure, which affected invertebrate abundance, would influence growth rates and body condition in the early-successional, insectivorous gecko Nephrurus stellatus. I captured geckos at 17 woodland sites spanning a succession gradient from 2 to 48 years post-fire. Body condition and growth rates were analysed as a function of the best-fitting fire-related predictor (invertebrate abundance or time since fire) with different combinations of the co-variates age, sex and location. Body condition in the whole population was positively affected by increasing invertebrate abundance and, in the adult population, this effect was most pronounced for females. There was strong support for a decline in growth rates in weight with time since fire. The results suggest that increased early-successional invertebrate abundance has filtered through to a higher trophic level with physiological benefits for insectivorous geckos. I integrated the new findings about trophic interactions into a general conceptual model of mechanisms underlying post-fire population dynamics based on a long-term research programme. The model highlights how greater food availability during early succession could drive rapid population growth by contributing to previously reported enhanced reproduction and dispersal. This study provides a framework to understand links between ecological and physiological traits underlying post-fire population dynamics.

  5. Recruitment and rate coding organisation for soleus motor units across entire range of voluntary isometric plantar flexions.

    PubMed

    Oya, Tomomichi; Riek, Stephan; Cresswell, Andrew G

    2009-10-01

    Unlike upper limb muscles, it remains undocumented as to how motor units in the soleus muscle are organised in terms of recruitment range and discharge rates with respect to their recruitment and de-recruitment thresholds. The possible influence of neuromodulation, such as persistent inward currents (PICs) on lower limb motor unit recruitment and discharge rates has also yet to be reported. To address these issues, electromyographic (EMG) activities from the soleus muscle were recorded using selective branched-wire intramuscular electrodes during ramp-and-hold contractions with intensities up to maximal voluntary contraction (MVC). The multiple single motor unit activities were then derived using a decomposition technique. The onset-offset hysteresis of motor unit discharge, i.e. a difference between recruitment and de-recruitment thresholds, as well as PIC magnitude calculated by a paired motor unit analysis were used to examine the neuromodulatory effects on discharge behaviours, such as minimum firing rate, peak firing rate and degree of increase in firing rate. Forty-two clearly identified motor units from five subjects revealed that soleus motor units are recruited progressively from rest to contraction strengths close to 95% of MVC, with low-threshold motor units discharging action potentials slower at their recruitment and with a lower peak rate than later recruited high-threshold units. This observation is in contrast to the 'onion skin phenomenon' often reported for the upper limb muscles. Based on positive correlations of the peak discharge rates, initial rates and recruitment order of the units with the magnitude of the onset-offset hysteresis and not PIC contribution, we conclude that discharge behaviours among motor units appear to be related to a variation in an intrinsic property other than PICs.

  6. Detection rates of the MODIS active fire product in the United States

    USGS Publications Warehouse

    Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.; Stewart, S.I.

    2008-01-01

    MODIS active fire data offer new information about global fire patterns. However, uncertainties in detection rates can render satellite-derived fire statistics difficult to interpret. We evaluated the MODIS 1??km daily active fire product to quantify detection rates for both Terra and Aqua MODIS sensors, examined how cloud cover and fire size affected detection rates, and estimated how detection rates varied across the United States. MODIS active fire detections were compared to 361 reference fires (??? 18??ha) that had been delineated using pre- and post-fire Landsat imagery. Reference fires were considered detected if at least one MODIS active fire pixel occurred within 1??km of the edge of the fire. When active fire data from both Aqua and Terra were combined, 82% of all reference fires were found, but detection rates were less for Aqua and Terra individually (73% and 66% respectively). Fires not detected generally had more cloudy days, but not when the Aqua data were considered exclusively. MODIS detection rates decreased with fire size, and the size at which 50% of all fires were detected was 105??ha when combining Aqua and Terra (195??ha for Aqua and 334??ha for Terra alone). Across the United States, detection rates were greatest in the West, lower in the Great Plains, and lowest in the East. The MODIS active fire product captures large fires in the U.S. well, but may under-represent fires in areas with frequent cloud cover or rapidly burning, small, and low-intensity fires. We recommend that users of the MODIS active fire data perform individual validations to ensure that all relevant fires are included. ?? 2008 Elsevier Inc. All rights reserved.

  7. Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus.

    PubMed

    Rau, Florian; Clemens, Jan; Naumov, Victor; Hennig, R Matthias; Schreiber, Susanne

    2015-11-01

    In many communication systems, information is encoded in the temporal pattern of signals. For rhythmic signals that carry information in specific frequency bands, a neuronal system may profit from tuning its inherent filtering properties towards a peak sensitivity in the respective frequency range. The cricket Gryllus bimaculatus evaluates acoustic communication signals of both conspecifics and predators. The song signals of conspecifics exhibit a characteristic pulse pattern that contains only a narrow range of modulation frequencies. We examined individual neurons (AN1, AN2, ON1) in the peripheral auditory system of the cricket for tuning towards specific modulation frequencies by assessing their firing-rate resonance. Acoustic stimuli with a swept-frequency envelope allowed an efficient characterization of the cells' modulation transfer functions. Some of the examined cells exhibited tuned band-pass properties. Using simple computational models, we demonstrate how different, cell-intrinsic or network-based mechanisms such as subthreshold resonances, spike-triggered adaptation, as well as an interplay of excitation and inhibition can account for the experimentally observed firing-rate resonances. Therefore, basic neuronal mechanisms that share negative feedback as a common theme may contribute to selectivity in the peripheral auditory pathway of crickets that is designed towards mate recognition and predator avoidance.

  8. Gamma loop contributing to maximal voluntary contractions in man.

    PubMed Central

    Hagbarth, K E; Kunesch, E J; Nordin, M; Schmidt, R; Wallin, E U

    1986-01-01

    A local anaesthetic drug was injected around the peroneal nerve in healthy subjects in order to investigate whether the resulting loss in foot dorsiflexion power in part depended on a gamma-fibre block preventing 'internal' activation of spindle end-organs and thereby depriving the alpha-motoneurones of an excitatory spindle inflow during contraction. The motor outcome of maximal dorsiflexion efforts was assessed by measuring firing rates of individual motor units in the anterior tibial (t.a.) muscle, mean voltage e.m.g. from the pretibial muscles, dorsiflexion force and range of voluntary foot dorsiflexion movements. The tests were performed with and without peripheral conditioning stimuli, such as agonist or antagonist muscle vibration or imposed stretch of the contracting muscles. As compared to control values of t.a. motor unit firing rates in maximal isometric voluntary contractions, the firing rates were lower and more irregular during maximal dorsiflexion efforts performed during subtotal peroneal nerve blocks. During the development of paresis a gradual reduction of motor unit firing rates was observed before the units ceased responding to the voluntary commands. This change in motor unit behaviour was accompanied by a reduction of the mean voltage e.m.g. activity in the pretibial muscles. At a given stage of anaesthesia the e.m.g. responses to maximal voluntary efforts were more affected than the responses evoked by electric nerve stimuli delivered proximal to the block, indicating that impaired impulse transmission in alpha motor fibres was not the sole cause of the paresis. The inability to generate high and regular motor unit firing rates during peroneal nerve blocks was accentuated by vibration applied over the antagonistic calf muscles. By contrast, in eight out of ten experiments agonist stretch or vibration caused an enhancement of motor unit firing during the maximal force tasks. The reverse effects of agonist and antagonist vibration on the ability to activate the paretic muscles were evidenced also by alterations induced in mean voltage e.m.g. activity, dorsiflexion force and range of dorsiflexion movements. The autogenetic excitatory and the reciprocal inhibitory effects of muscle vibration rose in strength as the vibration frequency was raised from 90 to 165 Hz. Reflex effects on maximal voluntary contraction strength similar to those observed during partial nerve blocks were not seen under normal conditions when the nerve supply was intact.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3612576

  9. Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.

    PubMed

    Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael

    2010-07-01

    The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain.

  10. Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora.

    PubMed

    Moreira, B; Tormo, J; Estrelles, E; Pausas, J G

    2010-04-01

    The role of fire as a germination cue for Mediterranean Basin (MB) plants is still unclear. The current idea is that heat stimulates germination mainly in Cistaceae and Fabaceae and that smoke has a limited role as a post-fire germination cue, in comparison with other Mediterranean-type ecosystems (MTEs), suggesting that fire-stimulated germination is less relevant in the MB than in other MTEs. However, recent studies showed that the assembly of Mediterranean plant communities is strongly driven by post-fire germination, suggesting an important role for fire as a germination cue. We hypothesize that both heat and smoke have important effects on the different post-fire recruitment processes of MB species (e.g. level and rate of germination and initial seedling growth). To ascertain the role of heat and smoke in the post-fire germination response of MB woody plants, a germination experiment was performed with seven heat and two smoke treatments on 30 MB woody species from seven different families, including species with water-permeable seeds and species with water-impermeable seeds. Heat stimulated the germination (probability and rate) of 21 species and smoke in eight species, out of the 30 species studied. In addition, six species showed enhanced initial seedling growth after the smoke treatments. The results suggest that both heat and smoke are important germination cues in a wide range of MB woody species and that fire-cued germination in woody plants of the MB may be as important as in other MTEs.

  11. Global Characterization of Biomass-Burning Patterns using Satellite Measurements of Fire Radiative Energy

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Giglio, Louis; Wooster, Martin J.; Remer, Lorraine A.

    2008-01-01

    Remote sensing is the most practical means of measuring energy release from large open-air biomass burning. Satellite measurement of fire radiative energy (FRE) release rate or power (FRP) enables distinction between fires of different strengths. Based on a 1-km resolution fire data acquired globally by the MODerate-resolution Imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites from 2000 to 2006, instanteaneous FRP values ranged between 0.02 MW and 1866 MW, with global daily means ranging between 20 and 40 MW. Regionally, at the Aqua-MODIS afternoon overpass, the mean FRP values for Alaska, Western US, Western Australia, Quebec and the rest of Canada are significantly higher than these global means, with Quebec having the overall highest value of 85 MW. Analysis of regional mean FRP per unit area of land (FRP flux) shows that a peak fire season in certain regions, fires can be responsible for up to 0.2 W/m(sup 2) at peak time of day. Zambia has the highest regional monthly mean FRP flux of approximately 0.045 W/m(sup 2) at peak time of day and season, while the Middle East has the lowest value of approximately 0.0005 W/m(sup 2). A simple scheme based on FRP has been devised to classify fires into five categories, to facilitate fire rating by strength, similar to earthquakes and hurricanes. The scheme uses MODIS measurements of FRP at 1-km resolution as follows: catagory 1 (less than 100 MW), category 2 (100 to less than 500 MW), category 3 (500 to less than 1000 MW), category 4 (1000 to less than 1500 MW), catagory 5 (greater than or equal to 1500 MW). In most regions of the world, over 90% of fires fall into category 1, while only less than 1% fall into each of categories 3 to 5, although these proportions may differ significantly from day to day and by season. The frequency of occurence of the larger fires is region specific, and could not be explained by ecosystem type alone. Time-series analysis of the propertions of higher category fires based on MODIS measured FRP from 2002 to 2006 does not show any moticeable trend because of the short time period.

  12. Ignition of combustible fluids by heated surfaces

    NASA Astrophysics Data System (ADS)

    Bennett, Joseph Michael

    The ignition of flammable fluids leaking onto hot machinery components is a common cause of fires and property loss to society. For example, the U.S. Air Force has over 100 engine fires per year. There is a comparable number in the civilian air fleet. Many of these fires are due to ruptured fuel, oil or hydraulic lines impinging on hot engine components. Also, over 500,000 vehicle fires occur each year on U.S. roads. Many of these are due to leaking fluids onto hot exhaust manifolds or other exhaust components. The design of fire protection systems for aircraft and road vehicles must take into account the problems of hot surface ignition as well as re-ignition that can occur once the fire is initially extinguished. The lack of understanding of ignition and re-ignition results in heavy, high-capacity fire extinguishers to address the fire threat. It is desired to better understand the mechanisms that control this phenomenon, and exploit this understanding in producing machinery designs that can mitigate this threat. The purpose of this effort is to gain a fundamental understanding of ignition by heated surfaces. This is done by performing experimental measurements on the impingement of vertical streams of combustible fluids onto horizontal heated surfaces, and then determine the mechanisms that control the process, in terms of physical, controllable parameters (such as fuel type, flow rate and surface temperature). An initial exhaustive review of the literature revealed a small sample of pertinent findings of previous investigators, focused on droplet ignition. Boiling modes present during contact with the heated surface were also shown to control evaporation rates and ignition delays, in addition to surface temperatures and fluid properties. An experimental apparatus was designed and constructed to create the scenario of interest in a controllable fashion, with a 20 cm horizontal heated plate with variable heating supply. Fuels were applied as streams ranging from 0.67 ml/sec to 9.5 ml/sec. Heptane, hexadecane, dodecane and kerosene were the fuels investigated in the study, and experiments were performed over a range of surface temperatures. Of the 388 fuel impingement experiments performed, 226 resulted in ignition events. Of these, 124 were classified as "airborne" ignitions, where spontaneous ignition occurred up to 60 cm above the surface. A model was derived as a predictor of ignition delays observed in these experiments, based upon a fuel evaporation rate-dominated process. This model, which utilized information derived from prior Nusselt number heat transfer correlations and simple plume models, exhibited a high degree of successful correlation with experimental data. This model was sufficiently robust to be applied to all the fuels studied, and all boiling modes (nucleate, transition and boiling) and flow rates. This facilitated a means of predicting ignition delay times based upon fundamental operating parameters of fuel type, flow rate and surface temperature, and assist in the design of fire-safe systems.

  13. Study to develop improved fire resistant aircraft passenger seat materials, phase 1

    NASA Technical Reports Server (NTRS)

    Trabold, E. L.

    1977-01-01

    The procurement and testing of a wide range of candidate materials is reported. Improved fire resistant nonmetallic materials were subjected to tests to evaluate their thermal characteristics, such as burn, smoke generation, heat release rate and toxicity. In addition, candidate materials were evaluated for mechanical, physical and aesthetic properties. Other properties considered included safety, comfort, durability and maintainability. The fiscal year 1977 and the projected 1980 cost data were obtained for aircraft seat materials.

  14. Brazil Fire Characterization and Burn Area Estimation Using the Airborne Infrared Disaster Assessment (AIRDAS) System

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Riggan, P. J.; Ambrosia, V. G.; Lockwood, R. N.; Pereira, J. A.; Higgins, R. G.; Peterson, David L. (Technical Monitor)

    1995-01-01

    Remotely sensed estimations of regional and global emissions from biomass combustion have been used to characterize fire behavior, determine fire intensity, and estimate burn area. Highly temporal, low resolution satellite data have been used to calculate estimates of fire numbers and area burned. These estimates of fire activity and burned area have differed dramatically, resulting in a wide range of predictions on the ecological and environmental impacts of fires. As part of the Brazil/United States Fire Initiative, an aircraft campaign was initiated in 1992 and continued in 1994. This multi-aircraft campaign was designed to assist in the characterization of fire activity, document fire intensity and determine area burned over prescribed, agricultural and wildland fires in the savanna and forests of central Brazil. Using a unique, multispectral scanner (AIRDAS), designed specifically for fire characterization, a variety of fires and burned areas were flown with a high spatial and high thermal resolution scanner. The system was used to measure flame front size, rate of spread, ratio of smoldering to flaming fronts and fire intensity. In addition, long transects were flown to determine the size of burned areas within the cerrado and transitional ecosystems. The authors anticipate that the fire activity and burned area estimates reported here will lead to enhanced information for precise regional trace gas prediction.

  15. Initial fuel temperature effects on burning rate of pool fire.

    PubMed

    Chen, Bing; Lu, Shou-Xiang; Li, Chang-Hai; Kang, Quan-Sheng; Lecoustre, Vivien

    2011-04-15

    The influence of the initial fuel temperature on the burning behavior of n-heptane pool fire was experimentally studied at the State Key Laboratory of Fire Science (SKLFS) large test hall. Circular pool fires with diameters of 100mm, 141 mm, and 200 mm were considered with initial fuel temperatures ranging from 290 K to 363 K. Burning rate and temperature distributions in fuel and vessel wall were recorded during the combustion. The burning rate exhibited five typical stages: initial development, steady burning, transition, bulk boiling burning, and decay. The burning rate during the steady burning stage was observed to be relatively independent of the initial fuel temperature. In contrast, the burning rate of the bulk boiling burning stage increases with increased initial fuel temperature. It was also observed that increased initial fuel temperature decreases the duration of steady burning stage. When the initial temperature approaches the boiling point, the steady burning stage nearly disappears and the burning rate moves directly from the initial development stage to the transition stage. The fuel surface temperature increases to its boiling point at the steady burning stage, shortly after ignition, and the bulk liquid reaches boiling temperature at the bulk boiling burning stage. No distinguished cold zone is formed in the fuel bed. However, boiling zone is observed and the thickness increases to its maximum value when the bulk boiling phenomena occurs. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The membrane properties and firing characteristics of rat jaw-elevator motoneurones.

    PubMed Central

    Moore, J; Appenteng, K

    1990-01-01

    1. We have determined the membrane and firing properties of fifty-six jaw-elevator motoneurones in rats that were anaesthetized with pentobarbitone, paralysed and artificially ventilated. 2. Forty-two neurones were identified as masseter motoneurones and fourteen as masseter synergist motoneurones. The membrane potentials for the sample ranged from -60 to -86 (mean = -68; S.D. = 7.3; n = 56), and spike amplitudes from 50 to 95 mV. The duration of the after-hyperpolarization following antidromic spikes in masseter motoneurones ranged from 15 to 50 ms (mean = 30; S.D. = 12.8) and their amplitudes from 1.0 to 4.5 mV (mean = 2.7; S.D. = 2.2; n = 42). 3. The mean input resistance for the total sample was 2.3 M omega (S.D. = 0.9; n = 56), membrane time constant 3.9 ms (S.D. = 0.9; n = 48) and rheobase 4.2 nA (S.D. = 2.6; n = 56). The distribution of these parameters was independent of membrane potential. We found no significant interrelationships between the membrane properties and one interpretation of this is that our sample may be drawn from a homogenous population of motoneurones. We also suggest that elevator motoneurones may have a lower Rm (specific membrane resistivity) value than cat hindlimb motoneurones because they have a similar range of input resistance values but only half the total surface area. 4. Forty-six out of forty-nine neurones fired repetitively to a depolarizing current pulse at a mean threshold of 1.6 x rheobase. Current-frequency plots were constructed for thirteen neurones and all but one showed a primary and secondary range in the firing of the first interspike interval. The mean slope in the primary range was 31 impulses s-1 nA-1 and 77 impulses s-1 nA-1 for the secondary range. The mean minimal firing frequency for steady firing was 26 impulses s-1 and, in response to an increase of stimulation, the rate increased monotonically with a slope of 11 impulses s-1 nA-1. 5. The dynamic sensitivity of twelve neurones was assessed from their response to ramp waveforms of current of constant amplitude but varying frequencies (0.2-2 Hz). Firing initially increased along a steep slope up to a frequency of between 40 and 60 impulses s-1 and then increased along a much shallower slope. Both the threshold for eliciting firing and the firing at the transition point of the two slopes remained constant with changes in ramp frequency.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2388148

  17. Biomonitoring of chemical exposure among New York City firefighters responding to the World Trade Center fire and collapse.

    PubMed

    Edelman, Philip; Osterloh, John; Pirkle, James; Caudill, Sam P; Grainger, James; Jones, Robert; Blount, Ben; Calafat, Antonia; Turner, Wayman; Feldman, Debra; Baron, Sherry; Bernard, Bruce; Lushniak, Boris D; Kelly, Kerry; Prezant, David

    2003-12-01

    The collapse of the World Trade Center (WTC) on 11 September 2001 exposed New York City firefighters to smoke and dust of unprecedented magnitude and duration. The chemicals and the concentrations produced from any fire are difficult to predict, but estimates of internal dose exposures can be assessed by the biological monitoring of blood and urine. We analyzed blood and urine specimens obtained from 321 firefighters responding to the WTC fires and collapse for 110 potentially fire-related chemicals. Controls consisted of 47 firefighters not present at the WTC. Sampling occurred 3 weeks after 11 September, while fires were still burning. When reference or background ranges were available, most chemical concentrations were found to be generally low and not outside these ranges. Compared with controls, the exposed firefighters showed significant differences in adjusted geometric means for six of the chemicals and significantly greater detection rates for an additional three. Arrival time was a significant predictor variable for four chemicals. Special Operations Command firefighters (n = 95), compared with other responding WTC firefighters (n = 226), had differences in concentrations or detection rate for 14 of the chemicals. Values for the Special Operations Command firefighters were also significantly different from the control group values for these same chemicals and for two additional chemicals. Generally, the chemical concentrations in the other firefighter group were not different from those of controls. Biomonitoring was used to characterize firefighter exposure at the WTC disaster. Although some of the chemicals analyzed showed statistically significant differences, these differences were generally small.

  18. The effects of dynamical synapses on firing rate activity: a spiking neural network model.

    PubMed

    Khalil, Radwa; Moftah, Marie Z; Moustafa, Ahmed A

    2017-11-01

    Accumulating evidence relates the fine-tuning of synaptic maturation and regulation of neural network activity to several key factors, including GABA A signaling and a lateral spread length between neighboring neurons (i.e., local connectivity). Furthermore, a number of studies consider short-term synaptic plasticity (STP) as an essential element in the instant modification of synaptic efficacy in the neuronal network and in modulating responses to sustained ranges of external Poisson input frequency (IF). Nevertheless, evaluating the firing activity in response to the dynamical interaction between STP (triggered by ranges of IF) and these key parameters in vitro remains elusive. Therefore, we designed a spiking neural network (SNN) model in which we incorporated the following parameters: local density of arbor essences and a lateral spread length between neighboring neurons. We also created several network scenarios based on these key parameters. Then, we implemented two classes of STP: (1) short-term synaptic depression (STD) and (2) short-term synaptic facilitation (STF). Each class has two differential forms based on the parametric value of its synaptic time constant (either for depressing or facilitating synapses). Lastly, we compared the neural firing responses before and after the treatment with STP. We found that dynamical synapses (STP) have a critical differential role on evaluating and modulating the firing rate activity in each network scenario. Moreover, we investigated the impact of changing the balance between excitation (E) and inhibition (I) on stabilizing this firing activity. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Application of a CO2 dial system for infrared detection of forest fire and reduction of false alarm

    NASA Astrophysics Data System (ADS)

    Bellecci, C.; Francucci, M.; Gaudio, P.; Gelfusa, M.; Martellucci, S.; Richetta, M.; Lo Feudo, T.

    2007-04-01

    Forest fires can be the cause of serious environmental and economic damages. For this reason considerable effort has been directed toward forest protection and fire fighting. The means traditionally used for early fire detection mainly consist in human observers dispersed over forest regions. A significant improvement in early warning capabilities could be obtained by using automatic detection apparatus. In order to early detect small forest fires and minimize false alarms, the use of a lidar system and dial technique will be considered. A first evaluation of the lowest detectable concentration will be estimated by numerical simulation. The theoretical model will also be used to get the capability of the dial system to control wooded areas. Fixing the burning rate for several fuels, the maximum range of detection will be evaluated. Finally results of simulations will be reported.

  20. Novel Tools in Determining the Physiological Demands and Nutritional Practices of Ontario FireRangers during Fire Deployments

    PubMed Central

    Robertson, A. H.; Larivière, C.; Leduc, C. R.; McGillis, Z.; Eger, T.; Godwin, A.; Larivière, M.; Dorman, S. C.

    2017-01-01

    Introduction The seasonal profession of wildland fire fighting in Canada requires individuals to work in harsh environmental conditions that are physically demanding. The purpose of this study was to use novel technologies to evaluate the physiological demands and nutritional practices of Canadian FireRangers during fire deployments. Methods Participants (n = 21) from a northern Ontario Fire Base volunteered for this study and data collection occurred during the 2014 fire season and included Initial Attack (IA), Project Fire (P), and Fire Base (B) deployments. Deployment-specific energy demands and physiological responses were measured using heart-rate variability (HRV) monitoring devices (Zephyr BioHarness3 units). Food consumption behaviour and nutrient quantity and quality were captured using audio-video food logs on iPod Touches and analyzed by NutriBase Pro 11 software. Results Insufficient kilocalories were consumed relative to expenditure for all deployment types. Average daily kilocalories consumed: IA: 3758 (80% consumption rate); P: 2945±888.8; B: 2433±570.8. Average daily kilocalorie expenditure: IA: 4538±106.3; P: 4012±1164.8; B: 2842±649.9. The Average Macronutrient Distribution Range (AMDR) for protein was acceptable: 22–25% (across deployment types). Whereas the AMDR for fat and carbohydrates were high: 40–50%; and low: 27–37% respectively, across deployment types. Conclusions This study is the first to use the described methodology to simultaneously evaluate energy expenditures and nutritional practices in an occupational setting. The results support the use of HRV monitoring and video-food capture, in occupational field settings, to assess job demands. FireRangers expended the most energy during IA, and the least during B deployments. These results indicate the need to develop strategies centered on maintaining physical fitness and improving food practices. PMID:28107380

  1. Novel Tools in Determining the Physiological Demands and Nutritional Practices of Ontario FireRangers during Fire Deployments.

    PubMed

    Robertson, A H; Larivière, C; Leduc, C R; McGillis, Z; Eger, T; Godwin, A; Larivière, M; Dorman, S C

    2017-01-01

    The seasonal profession of wildland fire fighting in Canada requires individuals to work in harsh environmental conditions that are physically demanding. The purpose of this study was to use novel technologies to evaluate the physiological demands and nutritional practices of Canadian FireRangers during fire deployments. Participants (n = 21) from a northern Ontario Fire Base volunteered for this study and data collection occurred during the 2014 fire season and included Initial Attack (IA), Project Fire (P), and Fire Base (B) deployments. Deployment-specific energy demands and physiological responses were measured using heart-rate variability (HRV) monitoring devices (Zephyr BioHarness3 units). Food consumption behaviour and nutrient quantity and quality were captured using audio-video food logs on iPod Touches and analyzed by NutriBase Pro 11 software. Insufficient kilocalories were consumed relative to expenditure for all deployment types. Average daily kilocalories consumed: IA: 3758 (80% consumption rate); P: 2945±888.8; B: 2433±570.8. Average daily kilocalorie expenditure: IA: 4538±106.3; P: 4012±1164.8; B: 2842±649.9. The Average Macronutrient Distribution Range (AMDR) for protein was acceptable: 22-25% (across deployment types). Whereas the AMDR for fat and carbohydrates were high: 40-50%; and low: 27-37% respectively, across deployment types. This study is the first to use the described methodology to simultaneously evaluate energy expenditures and nutritional practices in an occupational setting. The results support the use of HRV monitoring and video-food capture, in occupational field settings, to assess job demands. FireRangers expended the most energy during IA, and the least during B deployments. These results indicate the need to develop strategies centered on maintaining physical fitness and improving food practices.

  2. Postfire influences of snag attrition on albedo and radiative forcing

    NASA Astrophysics Data System (ADS)

    O'Halloran, Thomas L.; Acker, Steven A.; Joerger, Verena M.; Kertis, Jane; Law, Beverly E.

    2014-12-01

    This paper examines albedo perturbation and radiative forcing after a high-severity fire in a mature forest in the Oregon Cascade Range. Correlations between postfire albedo and seedling, sapling, and snag (standing dead tree) density were investigated across fire severity classes and seasons for years 4-15 after fire. Albedo perturbation was 14 times larger in winter compared to summer and increased with fire severity class for the first several years. Albedo perturbation increased linearly with time over the study period. Correlations between albedo perturbations and the vegetation densities were strongest with snags, and significant in all fire classes in both summer and winter (R < -0.92, p < 0.01). The resulting annual radiative forcing at the top of the atmosphere became more negative linearly at a rate of -0.86 W m-2 yr-1, reaching -15 W m-2 in year 15 after fire. This suggests that snags can be the dominant controller of postfire albedo on decadal time scales.

  3. Avian demographic responses to drought and fire: a community-level perspective.

    PubMed

    Saracco, James F; Fettig, Stephen M; San Miguel, George L; Mehlman, David W; Albert, Steven K

    2018-05-22

    Drought stress is an important consideration for wildlife in arid and semiarid regions under climate change. Drought can impact plant and animal populations directly, through effects on their physiology, as well as indirectly through effects on vegetation productivity and resource availability, and by creating conditions conducive to secondary disturbance, such as wildfire. We implemented a novel approach to understanding community-level demographic responses of birds and their habitats to these stressors in the context of climate change at 14 study sites in the Four Corners region of the southwestern United States. A large wildfire affecting three of the sites provided a natural experiment for also examining fire effects on vegetation and the bird community. We assessed (1) trends in drought and end-of-century (2071-2100) predicted average drought conditions under mid-range and high greenhouse gas concentration trajectory scenarios; (2) effects of drought and fire on habitat (vegetation greenness); and (3) effects of drought and fire on community-level avian productivity and adult apparent survival rates. Drought has increased and is expected to increase further at our study sites under climate change. Under spring drought conditions, vegetation greenness and avian productivity declined, while summer drought appeared to negatively affect adult apparent survival rates. Response to fire was mixed; in the year of the fire, avian productivity declined, but was higher than normal for several years post-fire. Our results highlight important links between environmental stressors and avian vital rates that will likely affect population trajectories in this region under climate change. We suggest that the use and continued development of community-level demographic models will provide useful tool for leveraging sparse species-level data to provide multi-species inferences and inform conservation. © 2018 by the Ecological Society of America.

  4. Health-hazard evaluation report HETA-91-161-2225, Denver Police Department, Denver, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.A.; McCammon, C.S.

    1992-05-01

    In response to a request from the Denver Police Department (SIC-9221) in Denver, Colorado, an investigation was made into lead (7439921) exposures during the use of different ammunition on the firing range. Ventilation rates were measured and personal breathing zone air samples were collected for ten officers during the firing of .45 caliber pistols. Nonlead primers were not yet available for .45 caliber ammunition. Air lead exposure ranged from 1.0 to 16 micrograms/cubic meter (microg/cu m). A slight improvement was noted in ventilation since an earlier NIOSH study had been performed at this site. The improvement resulted from the removalmore » of a 3 foot high partition along the floor on the firing line. There was still, however, turbulent air flow across the entire firing line and backflow in some of the shooting booths. The author concludes that there was no health hazard from lead overexposure at this site at this time, but recommends use of jacketed bullets, nonlead primers, and administrative controls to minimize lead exposures.« less

  5. Evaluation of a wearable physiological status monitor during simulated fire fighting activities.

    PubMed

    Smith, Denise L; Haller, Jeannie M; Dolezal, Brett A; Cooper, Christopher B; Fehling, Patricia C

    2014-01-01

    A physiological status monitor (PSM) has been embedded in a fire-resistant shirt. The purpose of this research study was to examine the ability of the PSM-shirt to accurately detect heart rate (HR) and respiratory rate (RR) when worn under structural fire fighting personal protective equipment (PPE) during the performance of various activities relevant to fire fighting. Eleven healthy, college-aged men completed three activities (walking, searching/crawling, and ascending/descending stairs) that are routinely performed during fire fighting operations while wearing the PSM-shirt under structural fire fighting PPE. Heart rate and RR recorded by the PSM-shirt were compared to criterion values measured concurrently with an ECG and portable metabolic measurement system, respectively. For all activities combined (overall) and for each activity, small differences were found between the PSM-shirt and ECG (mean difference [95% CI]: overall: -0.4 beats/min [-0.8, -0.1]; treadmill: -0.4 beats/min [-0.7, -0.1]; search: -1.7 beats/min [-3.1, -.04]; stairs: 0.4 beats/min [0.04, 0.7]). Standard error of the estimate was 3.5 beats/min for all tasks combined and 1.9, 5.9, and 1.9 beats/min for the treadmill walk, search, and stair ascent/descent, respectively. Correlations between the PSM-shirt and criterion heart rates were high (r = 0.95 to r = 0.99). The mean difference between RR recorded by the PSM-shirt and criterion overall was 1.1 breaths/min (95% CI: -1.9 to -0.4). The standard error of the estimate for RR ranged from 4.2 breaths/min (treadmill) to 8.2 breaths/min (search), with an overall value of 6.2 breaths/min. These findings suggest that the PSM-shirt provides valid measures of HR and useful approximations of RR when worn during fire fighting duties.

  6. Exploratory spatial data analysis of global MODIS active fire data

    NASA Astrophysics Data System (ADS)

    Oom, D.; Pereira, J. M. C.

    2013-04-01

    We performed an exploratory spatial data analysis (ESDA) of autocorrelation patterns in the NASA MODIS MCD14ML Collection 5 active fire dataset, for the period 2001-2009, at the global scale. The dataset was screened, resulting in an annual rate of false alarms and non-vegetation fires ranging from a minimum of 3.1% in 2003 to a maximum of 4.4% in 2001. Hot bare soils and gas flares were the major sources of false alarms and non-vegetation fires. The data were aggregated at 0.5° resolution for the global and local spatial autocorrelation Fire counts were found to be positively correlated up to distances of around 200 km, and negatively for larger distances. A value of 0.80 (p = 0.001, α = 0.05) for Moran's I indicates strong spatial autocorrelation between fires at global scale, with 60% of all cells displaying significant positive or negative spatial correlation. Different types of spatial autocorrelation were mapped and regression diagnostics allowed for the identification of spatial outlier cells, with fire counts much higher or lower than expected, considering their spatial context.

  7. FIRES: Fire Information Retrieval and Evaluation System - A program for fire danger rating analysis

    Treesearch

    Patricia L. Andrews; Larry S. Bradshaw

    1997-01-01

    A computer program, FIRES: Fire Information Retrieval and Evaluation System, provides methods for evaluating the performance of fire danger rating indexes. The relationship between fire danger indexes and historical fire occurrence and size is examined through logistic regression and percentiles. Historical seasonal trends of fire danger and fire occurrence can be...

  8. Pulvinar thalamic nucleus allows for asynchronous spike propagation through the cortex

    PubMed Central

    Cortes, Nelson; van Vreeswijk, Carl

    2015-01-01

    We create two multilayered feedforward networks composed of excitatory and inhibitory integrate-and-fire neurons in the balanced state to investigate the role of cortico-pulvino-cortical connections. The first network consists of ten feedforward levels where a Poisson spike train with varying firing rate is applied as an input in layer one. Although the balanced state partially avoids spike synchronization during the transmission, the average firing-rate in the last layer either decays or saturates depending on the feedforward pathway gain. The last layer activity is almost independent of the input even for a carefully chosen intermediate gain. Adding connections to the feedforward pathway by a nine areas Pulvinar structure improves the firing-rate propagation to become almost linear among layers. Incoming strong pulvinar spikes balance the low feedforward gain to have a unit input-output relation in the last layer. Pulvinar neurons evoke a bimodal activity depending on the magnitude input: synchronized spike bursts between 20 and 80 Hz and an asynchronous activity for very both low and high frequency inputs. In the first regime, spikes of last feedforward layer neurons are asynchronous with weak, low frequency, oscillations in the rate. Here, the uncorrelated incoming feedforward pathway washes out the synchronized thalamic bursts. In the second regime, spikes in the whole network are asynchronous. As the number of cortical layers increases, long-range pulvinar connections can link directly two or more cortical stages avoiding their either saturation or gradual activity falling. The Pulvinar acts as a shortcut that supplies the input-output firing-rate relationship of two separated cortical areas without changing the strength of connections in the feedforward pathway. PMID:26042026

  9. Differences in the motor unit firing rates and amplitudes in relation to recruitment thresholds during submaximal contractions of the first dorsal interosseous between chronically resistance trained and physically active men.

    PubMed

    Sterczala, Adam J; Miller, Jonathan D; Trevino, Michael A; Dimmick, Hannah L; Herda, Trent J

    2018-02-26

    Previous investigations report no changes in motor unit (MU) firing rates during submaximal contractions following resistance training. These investigations did not account for MU recruitment or examine firing rates as a function of recruitment threshold (REC).Therefore, MU recruitment and firing rates in chronically resistance trained (RT) and physically active controls (CON) were examined. Surface electromyography signals were collected from the first dorsal interosseous (FDI) during isometric muscle actions at 40% and 70% maximal voluntary contraction (MVC). For each MU, force at REC, mean firing rate (MFR) during the steady force, and MU action potential amplitude (MUAPAMP) were analyzed. For each individual and contraction, the MFRs were linearly regressed against REC, whereas, exponential models were applied to the MFR vs. MUAPAMP and MUAPAMP vs. REC relationships with the y-intercepts and slopes (linear) and A and B terms (exponential) calculated. For the 40% MVC, the RT group had less negative slopes (p=0.001) and lower y-intercepts (p=0.006) of the MFR vs. REC relationships and lower B terms (p=0.011) of the MUAPAMP vs. REC relationships. There were no differences in either relationship between groups for the 70% MVC. During the 40% MVC, the RT had a smaller range of MFRs and MUAPAMPS in comparison to the CON, likely due to reduced MU recruitment. The RT had lower MFRs and recruitment during the 40% MVC that may indicate a leftward shift in the force-frequency relationship, and thus require less excitation to the motoneuron pool to match the same relative force.

  10. Addition of deep brain stimulation signal to a local field potential driven Izhikevich model masks the pathological firing pattern of an STN neuron.

    PubMed

    Michmizos, Kostis P; Nikita, Konstantina S

    2011-01-01

    The crucial engagement of the subthalamic nucleus (STN) with the neurosurgical procedure of deep brain stimulation (DBS) that alleviates medically intractable Parkinsonian tremor augments the need to refine our current understanding of STN. To enhance the efficacy of DBS as a result of precise targeting, STN boundaries are accurately mapped using extracellular microelectrode recordings (MERs). We utilized the intranuclear MER to acquire the local field potential (LFP) and drive an Izhikevich model of an STN neuron. Using the model as the test bed for clinically acquired data, we demonstrated that stimulation of the STN neuron produces excitatory responses that tonically increase its average firing rate and alter the pattern of its neuronal activity. We also found that the spiking rhythm increases linearly with the increase of amplitude, frequency, and duration of the DBS pulse, inside the clinical range. Our results are in agreement with the current hypothesis that DBS increases the firing rate of STN and masks its pathological bursting firing pattern.

  11. Time-related changes in firing rates are influenced by recruitment threshold and twitch force potentiation in the first dorsal interosseous.

    PubMed

    Miller, Jonathan D; Herda, Trent J; Trevino, Michael A; Sterczala, Adam J; Ciccone, Anthony B

    2017-08-01

    What is the central question of this study? The influences of motor unit recruitment threshold and twitch force potentiation on the changes in firing rates during steady-force muscular contractions are not well understood. What is the main finding and its importance? The behaviour of motor units during steady force was influenced by recruitment threshold, such that firing rates decreased for lower-threshold motor units but increased for higher-threshold motor units. In addition, individuals with greater changes in firing rates possessed greater twitch force potentiation. There are contradictory reports regarding changes in motor unit firing rates during steady-force contractions. Inconsistencies are likely to be the result of previous studies disregarding motor unit recruitment thresholds and not examining firing rates on a subject-by-subject basis. It is hypothesized that firing rates are manipulated by twitch force potentiation during contractions. Therefore, in this study we examined time-related changes in firing rates at steady force in relationship to motor unit recruitment threshold in the first dorsal interosseous and the influence of twitch force potentiation on such changes in young versus aged individuals. Subjects performed a 12 s steady-force contraction at 50% maximal voluntary contraction, with evoked twitches before and after the contraction to quantify potentiation. Firing rates, in relationship to recruitment thresholds, were determined at the beginning, middle and end of the steady force. There were no firing rate changes for aged individuals. For the young, firing rates decreased slightly for lower-threshold motor units but increased for higher-threshold motor units. Twitch force potentiation was greater for young than aged subjects, and changes in firing rates were correlated with twitch force potentiation. Thus, individuals with greater increases in firing rates of higher-threshold motor units and decreases in lower-threshold motor units possessed greater twitch force potentiation. Overall, changes in firing rates during brief steady-force contractions are dependent on recruitment threshold and explained in part by twitch force potentiation. Given that firing rate changes were measured in relationship to recruitment threshold, this study illustrates a more complete view of firing rate changes during steady-force contractions. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  12. 33 CFR 334.440 - New River, N.C., and vicinity; Marine Corps firing ranges.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; Marine Corps firing ranges. 334.440 Section 334.440 Navigation and Navigable Waters CORPS OF ENGINEERS..., N.C., and vicinity; Marine Corps firing ranges. (a) Atlantic Ocean east of New River Inlet. The... section are referred to true meridian. (b) New River. The firing ranges include all waters to the high...

  13. 33 CFR 334.440 - New River, N.C., and vicinity; Marine Corps firing ranges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; Marine Corps firing ranges. 334.440 Section 334.440 Navigation and Navigable Waters CORPS OF ENGINEERS..., N.C., and vicinity; Marine Corps firing ranges. (a) Atlantic Ocean east of New River Inlet. The... section are referred to true meridian. (b) New River. The firing ranges include all waters to the high...

  14. 33 CFR 334.440 - New River, N.C., and vicinity; Marine Corps firing ranges.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; Marine Corps firing ranges. 334.440 Section 334.440 Navigation and Navigable Waters CORPS OF ENGINEERS..., N.C., and vicinity; Marine Corps firing ranges. (a) Atlantic Ocean east of New River Inlet. The... section are referred to true meridian. (b) New River. The firing ranges include all waters to the high...

  15. 33 CFR 334.440 - New River, N.C., and vicinity; Marine Corps firing ranges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; Marine Corps firing ranges. 334.440 Section 334.440 Navigation and Navigable Waters CORPS OF ENGINEERS..., N.C., and vicinity; Marine Corps firing ranges. (a) Atlantic Ocean east of New River Inlet. The... section are referred to true meridian. (b) New River. The firing ranges include all waters to the high...

  16. 33 CFR 334.440 - New River, N.C., and vicinity; Marine Corps firing ranges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; Marine Corps firing ranges. 334.440 Section 334.440 Navigation and Navigable Waters CORPS OF ENGINEERS..., N.C., and vicinity; Marine Corps firing ranges. (a) Atlantic Ocean east of New River Inlet. The... section are referred to true meridian. (b) New River. The firing ranges include all waters to the high...

  17. Fire and weather disturbances in terrestrial ecosystems of the eastern Cascades.

    Treesearch

    James K. Agee

    1994-01-01

    Fire has been an important ecological process in eastside Cascade ecosystems for millennia. Fire regimes ranged from low severity to high severity, and historic fire return intervals ranged from less than a decade to greater than 300 years. Fire history and effects are described for grassland and shrubland ecosystems, and the range of forested communities by plant...

  18. Aboveground carbon sequestration in dry temperate forests varies with climate not fire regime.

    PubMed

    Gordon, Christopher E; Bendall, Eli R; Stares, Mitchell G; Collins, Luke; Bradstock, Ross A

    2018-06-01

    The storage of carbon in plant tissues and debris has been proposed as a method to offset anthropogenic increases in atmospheric [CO 2 ]. Temperate forests represent significant above-ground carbon (AGC) "sinks" because their relatively fast growth and slow decay rates optimise carbon assimilation. Fire is a common disturbance event in temperate forests globally that should strongly influence AGC because: discrete fires consume above-ground biomass releasing carbon to the atmosphere, and the long-term application of different fire-regimes select for specific plant communities that sequester carbon at different rates. We investigated the latter process by quantifying AGC storage at 104 sites in the Sydney Basin Bioregion, Australia, relative to differences in components of the fire regime: frequency, severity and interfire interval. To predict the potential impacts of future climate change on fire/AGC interactions, we stratified our field sites across gradients of mean annual temperature and precipitation and quantified within- and between-factor interactions between the fire and climate variables. In agreement with previous studies, large trees were the primary AGC sink, accounting for ~70% of carbon at sites. Generalised additive models showed that mean annual temperature was the strongest predictor of AGC storage, with a 54% near-linear decrease predicted across the 6.1°C temperature range experienced at sites. Mean annual precipitation, fire frequency, fire severity and interfire interval were consistently poor predictors of total above-ground storage, although there were some significant relationships with component stocks. Our results show resilience of AGC to frequent and severe wildfire and suggest temperature mediated decreases in forest carbon storage under future climate change predictions. © 2018 John Wiley & Sons Ltd.

  19. Fire Frequency and Vegetation Composition Influence Soil Nitrogen Cycling and Base Cations in an Oak Savanna Ecosystem

    NASA Astrophysics Data System (ADS)

    McLauchlan, K. K.; Nelson, D. M.; Perakis, S.; Marcotte, A. L.

    2017-12-01

    Fire frequency is crucial for maintaining savannas in the transition between forests and grasslands. In general, increasing fire frequency has two effects: it increases herbaceous plant cover more than woody plant cover, and it lowers soil organic matter stocks. These effects have been demonstrated at a long-term prescribed fire experiment in an oak savanna ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, U.S.A. The fire experiment began in 1964 and oak savannas are burned at various frequencies ranging from every year to not at all. This has led to changes in vegetation ranging from almost 100% grassland to 100% oak forest. Additionally, nitrogen stocks almost doubled in the sites that were not burned, as it accumulated in the trees, leaf litter, and soil. We addressed additional soil changes taking place at this experiment by asking the question: How have fire and oak-grass balance affected soil nutrients, specifically nitrogen and base cations? Surface soils were collected from 12 plots on the oak savanna burn experiment. Soils were collected in increments to 100 cm depth, from under grass-dominated vegetation and from under tree-dominated vegetation. We non-destructively estimated soil base cations by measuring elemental concentrations of dried soil subsamples with a handheld x-ray fluorescence analyzer. We also measured carbon and nitrogen concentrations and isotopic composition of the soil samples. Soils in plots with high fire frequency had higher concentrations of calcium than soils in unburned plots (low fire frequency). Similar trends were seen for soil potassium, magnesium, and phosphorus concentrations. In contrast, soils in plots with high fire frequency had dramatically lowered nitrogen cycling rates and stocks across the oak savanna. The contrast between the responses of different nutrients to changing fire frequency has important implications for the consequences of fire and tree-grass composition on nutrient cycling dynamics.

  20. Optimal Detection of a Localized Perturbation in Random Networks of Integrate-and-Fire Neurons.

    PubMed

    Bernardi, Davide; Lindner, Benjamin

    2017-06-30

    Experimental and theoretical studies suggest that cortical networks are chaotic and coding relies on averages over large populations. However, there is evidence that rats can respond to the short stimulation of a single cortical cell, a theoretically unexplained fact. We study effects of single-cell stimulation on a large recurrent network of integrate-and-fire neurons and propose a simple way to detect the perturbation. Detection rates obtained from simulations and analytical estimates are similar to experimental response rates if the readout is slightly biased towards specific neurons. Near-optimal detection is attained for a broad range of intermediate values of the mean coupling between neurons.

  1. Optimal Detection of a Localized Perturbation in Random Networks of Integrate-and-Fire Neurons

    NASA Astrophysics Data System (ADS)

    Bernardi, Davide; Lindner, Benjamin

    2017-06-01

    Experimental and theoretical studies suggest that cortical networks are chaotic and coding relies on averages over large populations. However, there is evidence that rats can respond to the short stimulation of a single cortical cell, a theoretically unexplained fact. We study effects of single-cell stimulation on a large recurrent network of integrate-and-fire neurons and propose a simple way to detect the perturbation. Detection rates obtained from simulations and analytical estimates are similar to experimental response rates if the readout is slightly biased towards specific neurons. Near-optimal detection is attained for a broad range of intermediate values of the mean coupling between neurons.

  2. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors

    NASA Astrophysics Data System (ADS)

    Allen, John M.; Elbasiouny, Sherif M.

    2018-06-01

    Objective. Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. Approach. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Main results. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Significance. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.

  3. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors.

    PubMed

    Allen, John M; Elbasiouny, Sherif M

    2018-06-01

    Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.

  4. Forest Fire Smoke Exposures and Out-of-Hospital Cardiac Arrests in Melbourne, Australia: A Case-Crossover Study.

    PubMed

    Dennekamp, Martine; Straney, Lahn D; Erbas, Bircan; Abramson, Michael J; Keywood, Melita; Smith, Karen; Sim, Malcolm R; Glass, Deborah C; Del Monaco, Anthony; Haikerwal, Anjali; Tonkin, Andrew M

    2015-10-01

    Millions of people can potentially be exposed to smoke from forest fires, making this an important public health problem in many countries. In this study we aimed to measure the association between out-of-hospital cardiac arrest (OHCA) and forest fire smoke exposures in a large city during a severe forest fire season, and estimate the number of excess OHCAs due to the fire smoke. We investigated the association between particulate matter (PM) and other air pollutants and OHCA using a case-crossover study of adults (≥ 35 years of age) in Melbourne, Australia. Conditional logistic regression models were used to derive estimates of the percent change in the rate of OHCA associated with an interquartile range (IQR) increase in exposure. From July 2006 through June 2007, OHCA data were collected from the Victorian Ambulance Cardiac Arrest Registry. Hourly air pollution concentrations and meteorological data were obtained from a central monitoring site. There were 2,046 OHCAs with presumed cardiac etiology during our study period. Among men during the fire season, greater increases in OHCA were observed with IQR increases in the 48-hr lagged PM with diameter ≤ 2.5 μm (PM2.5) (8.05%; 95% CI: 2.30, 14.13%; IQR = 6.1 μg/m(3)) or ≤ 10 μm (PM10) (11.1%; 95% CI: 1.55, 21.48%; IQR = 13.7 μg/m(3)) and carbon monoxide (35.7%; 95% CI: 8.98, 68.92%; IQR = 0.3 ppm). There was no significant association between the rate of OHCA and air pollutants among women. One hundred seventy-four "fire-hours" (i.e., hours in which Melbourne's air quality was affected by forest fire smoke) were identified during 12 days of the 2006/2007 fire season, and 23.9 (95% CI: 3.1, 40.2) excess OHCAs were estimated to occur due to elevations in PM2.5 during these fire-hours. This study found an association between exposure to forest fire smoke and an increase in the rate of OHCA. These findings have implications for public health messages to raise community awareness and for planning of emergency services during forest fire seasons.

  5. Noise exposure assessment and abatement strategies at an indoor firing range.

    PubMed

    Kardous, Chucri A; Willson, Robert D; Hayden, Charles S; Szlapa, Piotr; Murphy, William J; Reeves, Efrem R

    2003-08-01

    Exposure to hazardous impulse noise is common during the firing of weapons at indoor firing ranges. The aims of this study were to characterize the impulse noise environment at a law enforcement firing range; document the insufficiencies found at the range from a health and safety standpoint; and provide noise abatement recommendations to reduce the overall health hazard to the auditory system. Ten shooters conducted a typical live-fire exercise using three different weapons--the Beretta.40 caliber pistol, the Remington.308 caliber shotgun, and the M4.223 caliber assault rifle. Measurements were obtained at 12 different positions throughout the firing range and adjacent areas using dosimeters and sound level meters. Personal and area measurements were recorded to a digital audio tape (DAT) recorder for further spectral analysis. Peak pressure levels inside the firing range reached 163 decibels (dB) in peak pressure. Equivalent sound levels (Leq) ranged from 78 decibels, A-weighted (dBA), in office area adjacent to the range to 122 dBA inside the range. Noise reductions from wall structures ranged from 29-44 dB. Noise abatement strategies ranged from simple noise control measures (such as sealing construction joints and leaks) to elaborate design modifications to eliminate structural-borne sounds using acoustical treatments. Further studies are needed to better characterize the effects of firing weapons in enclosed spaces on hearing and health in general.

  6. Post Wildfire Changes in Plant Functioning and Vegetation Dynamics: Implications for Water Fluxes in Re-sprouting Forests

    NASA Astrophysics Data System (ADS)

    Nolan, R. H.; Lane, P. N.; Mitchell, P. J.; Bradstock, R. A.

    2011-12-01

    Fire induced changes to the vegetation dynamics in temperate forests have been demonstrated to affect evapotranspiration (Et) rates through increases in plant size and density and stand-level transpiration and interception. In many cases these transient changes in forest structure result in substantial declines in stream flow for protracted periods after the disturbance. However to date research has focused on the wetter 'ash' forests of south-eastern Australia which solely regenerate via seedlings, it is unknown what changes in Et may occur in those forests which re-sprout post-fire. We hypothesize that Et fluxes track post-fire changes in sapwood area and leaf area index (L) in re-sprouting temperate forests, increasing as the forest regenerates. Following the 2009 Black Saturday wildfires in Victoria, we monitored Et rates for over a year in both damp and dry re-sprouting forest, incorporating a range of fire severity classes. Components of Et including overstorey transpiration, rainfall interception loss and forest floor Et were measured in conjunction with changes in L, sapwood area and leaf physiology. The monitoring period began one year post-fire with a typical hot, dry summer, at which stage Et rates in burnt forest were similar or less than those in unburnt forest. During the following summer, which was one of the wettest on record, Et increased across all monitoring plots but particularly so in the burnt forest where seedling regeneration resulted in an understorey L nearly twice that of unburnt forest. Forest floor Et was up to 46% higher in burnt forest, and rainfall interception values accounted for approximately 25% of rainfall compared to 15% in unburnt forest. The greatest increase in canopy transpiration rates over this period occurred in those trees subject to a low intensity fire where most of the canopy remained intact but there was also fire-triggered sprouting of new leaves along the trunk and main branches. In these trees rates of sapflow, standardized by sapwood area, were up to 50% greater than in unburnt trees. Measurements of leaf physiology in mature leaves, regenerating canopy leaves and in seedlings indicate higher rates of stomatal conductance in seedlings, and in the early regeneration phase of canopy leaves, which may be driving higher rates of water use per unit leaf area in the early stages of post-fire regeneration. This research indicates that disturbance-induced changes in vegetation dynamics are dependent on fire severity and can alter forest energy and water balances through changes in stand structure (i.e. L) and adjustments in plant functioning via leaf level increases in water use.

  7. Influence of the contractile properties of muscle on motor unit firing rates during a moderate-intensity contraction in vivo.

    PubMed

    Trevino, Michael A; Herda, Trent J; Fry, Andrew C; Gallagher, Philip M; Vardiman, John P; Mosier, Eric M; Miller, Jonathan D

    2016-08-01

    It is suggested that firing rate characteristics of motor units (MUs) are influenced by the physical properties of the muscle. However, no study has correlated MU firing rates at recruitment, targeted force, or derecruitment with the contractile properties of the muscle in vivo. Twelve participants (age = 20.67 ± 2.35 yr) performed a 40% isometric maximal voluntary contraction of the leg extensors that included linearly increasing, steady force, and decreasing segments. Muscle biopsies were collected with myosin heavy chain (MHC) content quantified, and surface electromyography (EMG) was recorded from the vastus lateralis. The EMG signal was decomposed into the firing events of single MUs. Slopes and y-intercepts were calculated for 1) firing rates at recruitment vs. recruitment threshold, 2) mean firing rates at steady force vs. recruitment threshold, and 3) firing rates at derecruitment vs. derecruitment threshold relationships for each subject. Correlations among type I %MHC isoform content and the slopes and y-intercepts from the three relationships were examined. Type I %MHC isoform content was correlated with MU firing rates at recruitment (y-intercepts: r = -0.577; slopes: r = 0.741) and targeted force (slopes: r = 0.853) vs. recruitment threshold and MU firing rates at derecruitment (y-intercept: r = -0.597; slopes: r = 0.701) vs. derecruitment threshold relationships. However, the majority of the individual MU firing rates vs. recruitment and derecruitment relationships were not significant (P > 0.05) and, thus, revealed no systematic pattern. In contrast, MU firing rates during the steady force demonstrated a systematic pattern with higher firing rates for the lower- than higher-threshold MUs and were correlated with the physical properties of MUs in vivo. Copyright © 2016 the American Physiological Society.

  8. Determination of the motor unit behavior of lumbar erector spinae muscles through surface EMG decomposition technology in healthy female subjects.

    PubMed

    Silva, Mariana Felipe; Dias, Josilainne Marcelino; Pereira, Ligia Maxwell; Mazuquin, Bruno Fles; Lindley, Steven; Richards, Jim; Cardoso, Jefferson Rosa

    2017-01-01

    The aims of this study were to determine the motor unit behavior of the erector spinae muscles and to assess whether differences exist between the dominant/nondominant sides of the back muscles. Nine healthy women, aged 21.7 years (SD = 0.7), performed a back extension test. Surface electromyographic decomposition data were collected from both sides of the erector spinae and decomposed into individual motor unit action potential trains. The mean firing rate for each motor unit was calculated, and a regression analysis was performed against the corresponding recruitment thresholds. The mean firing rate ranged from 15.9 to 23.9 pps and 15.8 to 20.6 pps on the dominant and nondominant sides, respectively. However, the early motor unit potentials of the nondominant lumbar erector spinae muscles were recruited at a lower firing rate. This technique may further our understanding of individuals with back pain and other underlying neuromuscular diseases. Muscle Nerve 55: 28-34, 2017. © 2016 Wiley Periodicals, Inc.

  9. Fire history and pattern in a Cascade Range landscape.

    Treesearch

    Peter H. Morrison; Frederick J. Swanson

    1990-01-01

    Fire history from years 1150 to 1985 was reconstructed by analyzing forest stands in two 1940-hectare areas in the central-western Cascade Range of Oregon. Serving as records for major fire episodes, these stands revealed a highly variable fire regime. The steeper, more dissected, lower elevation Cook-Quentin study area experienced more frequent fires (natural fire...

  10. Uncertainty in Wildfire Behavior

    NASA Astrophysics Data System (ADS)

    Finney, M.; Cohen, J. D.

    2013-12-01

    The challenge of predicting or modeling fire behavior is well recognized by scientists and managers who attempt predictions of fire spread rate or growth. At the scale of the spreading fire, the uncertainty in winds, moisture, fuel structure, and fire location make accurate predictions difficult, and the non-linear response of fire spread to these conditions means that average behavior is poorly represented by average environmental parameters. Even more difficult are estimations of threshold behaviors (e.g. spread/no-spread, crown fire initiation, ember generation and spotting) because the fire responds as a step-function to small changes in one or more environmental variables, translating to dynamical feedbacks and unpredictability. Recent research shows that ignition of fuel particles, itself a threshold phenomenon, depends on flame contact which is absolutely not steady or uniform. Recent studies of flame structure in both spreading and stationary fires reveals that much of the non-steadiness of the flames as they contact fuel particles results from buoyant instabilities that produce quasi-periodic flame structures. With fuel particle ignition produced by time-varying heating and short-range flame contact, future improvements in fire behavior modeling will likely require statistical approaches to deal with the uncertainty at all scales, including the level of heat transfer, the fuel arrangement, and weather.

  11. Heat transfer to small horizontal cylinders immersed in a fluidized bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, J.; Koundakjian, P.; Naylor, D.

    2006-10-15

    Heat transfer to horizontal cylinders immersed in fluidized beds has been extensively studied, but mainly in the context of heat transfer to boiler tubes in coal-fired beds. As a result, most correlations in the literature have been derived for cylinders of 25-50 mm diameter in vigorously fluidizing beds. In recent years, fluidized bed heat treating furnaces fired by natural gas have become increasingly popular, particularly in the steel wire manufacturing industry. These fluidized beds typically operate at relatively low fluidizing rates and with small diameter wires (1-6 mm). Nusselt number correlations developed based on boiler tube studies do not extrapolatemore » down to these small size ranges and low fluidizing rates. In order to obtain reliable Nusselt number data for these size ranges, an experimental investigation has been undertaken using two heat treating fluidized beds; one a pilot-scale industrial unit and the other a lab-scale (300 mm diameter) unit. Heat transfer measurements were obtained using resistively heated cylindrical samples ranging from 1.3 to 9.5 mm in diameter at fluidizing rates ranging from approximately 0.5 x G{sub mf} (packed bed condition) to over 10 x G{sub mf} using aluminum oxide sand particles ranging from d{sub p}=145-330 {mu}m (50-90 grit). It has been found that for all cylinder sizes tested, the Nusselt number reaches a maximum near 2 x G{sub mf}, then remains relatively steady ({+-}5-10%) to the maximum fluidizing rate tested, typically 8-12xG{sub mf}. A correlation for maximum Nusselt number is developed.« less

  12. Evaluation of Military Range Berm Effectiveness in Protecting Red-cockaded Woodpecker Foraging and Nesting Habitat

    DTIC Science & Technology

    2011-04-01

    Benning – Malone 5 Malone 5 is an unbermed SA machine gun (firing 7.62 mm or smaller caliber rounds) range with elevated firing and target boxes (~1...plots, not originally allocated. Fort Stewart – Kilo The Kilo range on Fort Stewart is an unbermed SA machine gun (firing 7.62 mm or smaller...is a bermed SA machine gun (firing 7.62 mm or smaller caliber rounds) range with elevated firing boxes and targets (~1-m high; Figures 6 and 7). The

  13. When do correlations increase with firing rates in recurrent networks?

    PubMed Central

    2017-01-01

    A central question in neuroscience is to understand how noisy firing patterns are used to transmit information. Because neural spiking is noisy, spiking patterns are often quantified via pairwise correlations, or the probability that two cells will spike coincidentally, above and beyond their baseline firing rate. One observation frequently made in experiments, is that correlations can increase systematically with firing rate. Theoretical studies have determined that stimulus-dependent correlations that increase with firing rate can have beneficial effects on information coding; however, we still have an incomplete understanding of what circuit mechanisms do, or do not, produce this correlation-firing rate relationship. Here, we studied the relationship between pairwise correlations and firing rates in recurrently coupled excitatory-inhibitory spiking networks with conductance-based synapses. We found that with stronger excitatory coupling, a positive relationship emerged between pairwise correlations and firing rates. To explain these findings, we used linear response theory to predict the full correlation matrix and to decompose correlations in terms of graph motifs. We then used this decomposition to explain why covariation of correlations with firing rate—a relationship previously explained in feedforward networks driven by correlated input—emerges in some recurrent networks but not in others. Furthermore, when correlations covary with firing rate, this relationship is reflected in low-rank structure in the correlation matrix. PMID:28448499

  14. Effects of fire intensity on vital rates of an endemic herb of the Florida keys, USA

    USGS Publications Warehouse

    Liu, H.; Menges, E.S.; Snyder, J.R.; Koptur, S.; Ross, M.S.

    2005-01-01

    Fire intensity is one of the important components of a fire regime. However, relatively few studies have linked fire intensity with post-fire population vital rates. In this study, we explored the effects of fire intensity on population vital rates of Chamaecrista keyensis Pennell (Fabaceae) up to two years post-fire. C. keyensis is an endemic understory plant of pine rockland, a fire-dependent ecosystem of the Lower Florida Keys. We measured one fire intensity indicator, fire temperature reached by steel plates on the ground, during three prescribed fires at different sites. We followed marked individuals up to two years post-fire to derive annual survival, annual growth rate, percentage of fruiting plants, mean number of fruits per reproductive plant, and number of seedlings per census plot (1 m2) of C. keyensis. We found fire intensity had significant effects on reproduction in the first year post-fire only. More specifically, mean number of fruits and percentage of fruiting plants increased as fire intensity increased. Results from this study suggest that extremely low fire intensity caused by very short fire return intervals (e.g., less than three years) may not provide sufficient stimulation to reproduction to achieve the best post-fire recovery for C. keyensis.

  15. Dynamical Scaling Relations and the Angular Momentum Problem in the FIRE Simulations

    NASA Astrophysics Data System (ADS)

    Schmitz, Denise; Hopkins, Philip F.; Quataert, Eliot; Keres, Dusan; Faucher-Giguere, Claude-Andre

    2015-01-01

    Simulations are an extremely important tool with which to study galaxy formation and evolution. However, even state-of-the-art simulations still fail to accurately predict important galaxy properties such as star formation rates and dynamical scaling relations. One possible explanation is the inadequacy of sub-grid models to capture the range of stellar feedback mechanisms which operate below the resolution limit of simulations. FIRE (Feedback in Realistic Environments) is a set of high-resolution cosmological galaxy simulations run using the code GIZMO. It includes more realistic models for various types of feedback including radiation pressure, supernovae, stellar winds, and photoionization and photoelectric heating. Recent FIRE results have demonstrated good agreement with the observed stellar mass-halo mass relation as well as more realistic star formation histories than previous simulations. We investigate the effects of FIRE's improved feedback prescriptions on the simulation "angular momentum problem," i.e., whether FIRE can reproduce observed scaling relations between galaxy stellar mass and rotational/dispersion velocities.

  16. Inhibition linearizes firing rate responses in human motor units: implications for the role of persistent inward currents.

    PubMed

    Revill, Ann L; Fuglevand, Andrew J

    2017-01-01

    Motor neurons are the output neurons of the central nervous system and are responsible for controlling muscle contraction. When initially activated during voluntary contraction, firing rates of motor neurons increase steeply but then level out at modest rates. Activation of an intrinsic source of excitatory current at recruitment onset may underlie the initial steep increase in firing rate in motor neurons. We attempted to disable this intrinsic excitatory current by artificially activating an inhibitory reflex. When motor neuron activity was recorded while the inhibitory reflex was engaged, firing rates no longer increased steeply, suggesting that the intrinsic excitatory current was probably responsible for the initial sharp rise in motor neuron firing rate. During graded isometric contractions, motor unit (MU) firing rates increase steeply upon recruitment but then level off at modest rates even though muscle force continues to increase. The mechanisms underlying such firing behaviour are not known although activation of persistent inward currents (PICs) might be involved. PICs are intrinsic, voltage-dependent currents that activate strongly when motor neurons (MNs) are first recruited. Such activation might cause a sharp escalation in depolarizing current and underlie the steep initial rise in MU firing rate. Because PICs can be disabled with synaptic inhibition, we hypothesized that artificial activation of an inhibitory pathway might curb this initial steep rise in firing rate. To test this, human subjects performed slow triangular ramp contractions of the ankle dorsiflexors in the absence and presence of tonic synaptic inhibition delivered to tibialis anterior (TA) MNs by sural nerve stimulation. Firing rate profiles (expressed as a function of contraction force) of TA MUs recorded during these tasks were compared for control and stimulation conditions. Under control conditions, during the ascending phase of the triangular contractions, 93% of the firing rate profiles were best fitted by rising exponential functions. With stimulation, however, firing rate profiles were best fitted with linear functions or with less steeply rising exponentials. Firing rate profiles for the descending phases of the contractions were best fitted with linear functions for both control and stimulation conditions. These results seem consistent with the idea that PICs contribute to non-linear firing rate profiles during ascending but not descending phases of contractions. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  17. Firing rate of noisy integrate-and-fire neurons with synaptic current dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrieux, David; Monnai, Takaaki; Department of Applied Physics, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555

    2009-08-15

    We derive analytical formulas for the firing rate of integrate-and-fire neurons endowed with realistic synaptic dynamics. In particular, we include the possibility of multiple synaptic inputs as well as the effect of an absolute refractory period into the description. The latter affects the firing rate through its interaction with the synaptic dynamics.

  18. Charts for interpreting wildland fire behavior characteristics

    Treesearch

    Patricia L. Andrews; Richard C. Rothermel

    1982-01-01

    The fire characteristics chart is proposed as a graphical method ofpresenting two primary characteristics of fire behavior – spread rate and intensity. Its primary use is communicating and interpreting either site-specific predictions of fire behavior or National Fire-Danger Rating System (NFDRS) indexes and components. Rate of spread, heat per unit area, flame length...

  19. Can the PHS model (ISO7933) predict reasonable thermophysiological responses while wearing protective clothing in hot environments?

    PubMed

    Wang, Faming; Kuklane, Kalev; Gao, Chuansi; Holmér, Ingvar

    2011-02-01

    In this paper, the prediction accuracy of the PHS (predicted heat strain) model on human physiological responses while wearing protective clothing ensembles was examined. Six human subjects (aged 29 ± 3 years) underwent three experimental trials in three different protective garments (clothing thermal insulation I(cl) ranges from 0.63 to 2.01 clo) in two hot environments (40 °C, relative humidities: 30% and 45%). The observed and predicted mean skin temperature, core body temperature and sweat rate were presented and statistically compared. A significant difference was found in the metabolic rate between FIRE (firefighting clothing) and HV (high visibility clothing) or MIL (military clothing) (p < 0.001). Also, the development of heart rate demonstrated the significant effects of the exposure time and clothing ensembles. In addition, the predicted evaporation rate during HV, MIL and FIRE was much lower than the experimental values. Hence, the current PHS model is not applicable for protective clothing with intrinsic thermal insulations above 1.0 clo. The results showed that the PHS model generated unreliable predictions on body core temperature when human subjects wore thick protective clothing such as firefighting clothing (I(cl) > 1.0 clo). The predicted mean skin temperatures in three clothing ensembles HV, MIL and FIRE were also outside the expected limits. Thus, there is a need for further extension for the clothing insulation validation range of the PHS model. It is recommended that the PHS model should be amended and validated by individual algorithms, physical or physiological parameters, and further subject studies.

  20. Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat

    NASA Astrophysics Data System (ADS)

    Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.; Feridun Turkman, K.

    2018-02-01

    We present a procedure that allows the operational generation of daily forecasts of fire danger over Mediterranean Europe. The procedure combines historical information about radiative energy released by fire events with daily meteorological forecasts, as provided by the Satellite Application Facility for Land Surface Analysis (LSA SAF) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Fire danger is estimated based on daily probabilities of exceedance of daily energy released by fires occurring at the pixel level. Daily probability considers meteorological factors by means of the Canadian Fire Weather Index (FWI) and is estimated using a daily model based on a generalized Pareto distribution. Five classes of fire danger are then associated with daily probability estimated by the daily model. The model is calibrated using 13 years of data (2004-2016) and validated against the period of January-September 2017. Results obtained show that about 72 % of events releasing daily energy above 10 000 GJ belong to the extreme class of fire danger, a considerably high fraction that is more than 1.5 times the values obtained when using the currently operational Fire Danger Forecast module of the European Forest Fire Information System (EFFIS) or the Fire Risk Map (FRM) product disseminated by the LSA SAF. Besides assisting in wildfire management, the procedure is expected to help in decision making on prescribed burning within the framework of agricultural and forest management practices.

  1. Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons.

    PubMed

    Tuckwell, Henry C

    2006-01-01

    The circuitry of cortical networks involves interacting populations of excitatory (E) and inhibitory (I) neurons whose relationships are now known to a large extent. Inputs to E- and I-cells may have their origins in remote or local cortical areas. We consider a rudimentary model involving E- and I-cells. One of our goals is to test an analytic approach to finding firing rates in neural networks without using a diffusion approximation and to this end we consider in detail networks of excitatory neurons with leaky integrate-and-fire (LIF) dynamics. A simple measure of synchronization, denoted by S(q), where q is between 0 and 100 is introduced. Fully connected E-networks have a large tendency to become dominated by synchronously firing groups of cells, except when inputs are relatively weak. We observed random or asynchronous firing in such networks with diverse sets of parameter values. When such firing patterns were found, the analytical approach was often able to accurately predict average neuronal firing rates. We also considered several properties of E-E networks, distinguishing several kinds of firing pattern. Included were those with silences before or after periods of intense activity or with periodic synchronization. We investigated the occurrence of synchronized firing with respect to changes in the internal excitatory postsynaptic potential (EPSP) magnitude in a network of 100 neurons with fixed values of the remaining parameters. When the internal EPSP size was less than a certain value, synchronization was absent. The amount of synchronization then increased slowly as the EPSP amplitude increased until at a particular EPSP size the amount of synchronization abruptly increased, with S(5) attaining the maximum value of 100%. We also found network frequency transfer characteristics for various network sizes and found a linear dependence of firing frequency over wide ranges of the external afferent frequency, with non-linear effects at lower input frequencies. The theory may also be applied to sparsely connected networks, whose firing behaviour was found to change abruptly as the probability of a connection passed through a critical value. The analytical method was also found to be useful for a feed-forward excitatory network and a network of excitatory and inhibitory neurons.

  2. Fire Ant Decapitating Fly Cooperative Release Programs (1994–2008): Two Pseudacteon Species, P. tricuspis and P. curvatus, Rapidly Expand Across Imported Fire Ant Populations in the Southeastern United States

    PubMed Central

    Callcott, Anne-Marie A.; Porter, Sanford D.; Weeks, Ronald D.; “Fudd” Graham, L. C.; Johnson, Seth J.; Gilbert, Lawrence E.

    2011-01-01

    Natural enemies of the imported fire ants, Solenopsis invicta Buren S. richteri Forel (Hymenoptera: Formicidae), and their hybrid, include a suite of more than 20 fire ant decapitating phorid flies from South America in the genus Pseudacteon. Over the past 12 years, many researchers and associates have cooperated in introducing several species as classical or self-sustaining biological control agents in the United States. As a result, two species of flies, Pseudacteon tricuspis Borgmeier and P. curvatus Borgmeier (Diptera: Phoridae), are well established across large areas of the southeastern United States. Whereas many researchers have published local and state information about the establishment and spread of these flies, here distribution data from both published and unpublished sources has been compiled for the entire United States with the goal of presenting confirmed and probable distributions as of the fall of 2008. Documented rates of expansion were also used to predict the distribution of these flies three years later in the fall of 2011. In the fall of 2008, eleven years after the first successful release, we estimate that P. tricuspis covered about 50% of the fire ant quarantined area and that it will occur in almost 65% of the quarantine area by 2011. Complete coverage of the fire ant quarantined area will be delayed or limited by this species' slow rate of spread and frequent failure to establish in more northerly portions of the fire ant range and also, perhaps, by its preference for red imported fire ants (S. invicta). Eight years after the first successful release of P. curvatus, two biotypes of this species (one biotype occurring predominantly in the black and hybrid imported fire ants and the other occurring in red imported fire ants) covered almost 60% of the fire ant quarantined area. We estimate these two biotypes will cover almost 90% of the quarantine area by 2011 and 100% by 2012 or 2013. Strategic selection of several distributional gaps for future releases will accelerate complete coverage of quarantine areas. However, some gaps may be best used for the release of additional species of decapitating flies because establishment rates may be higher in areas without competing species. PMID:21526930

  3. Cytosolic Calcium Coordinates Mitochondrial Energy Metabolism with Presynaptic Activity

    PubMed Central

    Chouhan, Amit K.; Ivannikov, Maxim V.; Lu, Zhongmin; Sugimori, Mutsuyuki; Llinas, Rodolfo R.; Macleod, Gregory T.

    2012-01-01

    Most neurons fire in bursts, imposing episodic energy demands, but how these demands are coordinated with oxidative phosphorylation is still unknown. Here, using fluorescence imaging techniques on presynaptic termini of Drosophila motor neurons (MNs), we show that mitochondrial matrix pH (pHm), inner membrane potential (Δψm), and NAD(P)H levels ([NAD(P)H]m) increase within seconds of nerve stimulation. The elevations of pHm, Δψm, and [NAD(P)H]m indicate an increased capacity for ATP production. Elevations in pHm were blocked by manipulations which blocked mitochondrial Ca2+ uptake, including replacement of extracellular Ca2+ with Sr2+, and application of either tetraphenylphosphonium chloride or KB-R7943, indicating that it is Ca2+ that stimulates presynaptic mitochondrial energy metabolism. To place this phenomenon within the context of endogenous neuronal activity, the firing rates of a number of individually identified MNs were determined during fictive locomotion. Surprisingly, although endogenous firing rates are significantly different, there was little difference in presynaptic cytosolic Ca2+ levels ([Ca2+]c) between MNs when each fires at its endogenous rate. The average [Ca2+]c level (329±11nM) was slightly above the average Ca2+ affinity of the mitochondria (281±13nM). In summary, we show that when MNs fire at endogenous rates [Ca2+]c is driven into a range where mitochondria rapidly acquire Ca2+. As we also show that Ca2+ stimulates presynaptic mitochondrial energy metabolism, we conclude that [Ca2+]c levels play an integral role in coordinating mitochondrial energy metabolism with presynaptic activity in Drosophila MNs. PMID:22279208

  4. Lead exposure at firing ranges-a review.

    PubMed

    Laidlaw, Mark A S; Filippelli, Gabriel; Mielke, Howard; Gulson, Brian; Ball, Andrew S

    2017-04-04

    Lead (Pb) is a toxic substance with well-known, multiple, long-term, adverse health outcomes. Shooting guns at firing ranges is an occupational necessity for security personnel, police officers, members of the military, and increasingly a recreational activity by the public. In the United States alone, an estimated 16,000-18,000 firing ranges exist. Discharge of Pb dust and gases is a consequence of shooting guns. The objectives of this study are to review the literature on blood lead levels (BLLs) and potential adverse health effects associated with the shooting population. The search terms "blood lead", "lead poisoning", "lead exposure", "marksmen", "firearms", "shooting", "guns", "rifles" and "firing ranges" were used in the search engines Google Scholar, PubMed and Science Direct to identify studies that described BLLs in association with firearm use and health effects associated with shooting activities. Thirty-six articles were reviewed that included BLLs from shooters at firing ranges. In 31 studies BLLs > 10 μg/dL were reported in some shooters, 18 studies reported BLLs > 20 μg/dL, 17 studies > 30 μg/d, and 15 studies BLLs > 40 μg/dL. The literature indicates that BLLs in shooters are associated with Pb aerosol discharge from guns and air Pb at firing ranges, number of bullets discharged, and the caliber of weapon fired. Shooting at firing ranges results in the discharge of Pb dust, elevated BLLs, and exposures that are associated with a variety of adverse health outcomes. Women and children are among recreational shooters at special risk and they do not receive the same health protections as occupational users of firing ranges. Nearly all BLL measurements compiled in the reviewed studies exceed the current reference level of 5 μg/dL recommended by the U.S. Centers for Disease Control and Prevention/National Institute of Occupational Safety and Health (CDC/NIOSH). Thus firing ranges, regardless of type and user classification, currently constitute a significant and unmanaged public health problem. Prevention includes clothing changed after shooting, behavioural modifications such as banning of smoking and eating at firing ranges, improved ventilation systems and oversight of indoor ranges, and development of airflow systems at outdoor ranges. Eliminating lead dust risk at firing ranges requires primary prevention and using lead-free primers and lead-free bullets.

  5. Fire characteristics charts for fire behavior and U.S. fire danger rating

    Treesearch

    Faith Ann Heinsch; Pat Andrews

    2010-01-01

    The fire characteristics chart is a graphical method of presenting U.S. National Fire Danger Rating indices or primary surface or crown fire behavior characteristics. A desktop computer application has been developed to produce fire characteristics charts in a format suitable for inclusion in reports and presentations. Many options include change of scales, colors,...

  6. How to generate and interpret fire characteristics charts for the U.S. fire danger rating system

    Treesearch

    Faith Ann Heinsch; Patricia L. Andrews; Deb Tirmenstein

    2017-01-01

    The fire characteristics chart is a graphical method of presenting U.S. National Fire Danger Rating System (NFDRS) indexes and components as well as primary surface or crown fire behavior characteristics. Computer software has been developed to produce fire characteristics charts for both fire danger and fire behavior in a format suitable for inclusion in reports and...

  7. Postfire Forest Recovery in California's National Forests

    NASA Astrophysics Data System (ADS)

    Welch, K.; Young, T.; Safford, H.

    2012-12-01

    Due to fire suppression policies and other management practices over the last century, many low- to mid-elevation forest types in the Sierra Nevada have accumulated high fuel loads that promote stand-replacing high-intensity fires. Current and future projected trends in climate are predicted to increase the occurrence of such fires. We established over 1,000 plots in a range of elevations, environments, forest types, climate zones and fire severity classes to provide insight into the factors that promote natural tree regeneration after wildfires, the limiting factors in species establishment, and the differences in post-fire responses of conifers and hardwoods. We employed a standardized protocol that measured site characteristics, seedling densities, and woody plant growth. Preliminary results reveal that fire severity generally has a unimodal relationship with rates of natural regeneration, although effects of site and local environment act to modulate the shape of the relationship. Above low to moderate severities, natural regeneration rates of all tree species decrease with increasing severity, possibly due to a combination of factors including seed mortality, increasing distance to the nearest living seed tree, and more severe microclimatic conditions. Though hardwoods (oaks) are able to both seed and resprout from top-killed root crowns in a postfire environment, conifers still have the numerical advantage over hardwoods through seeding alone. We did not find evidence that shrubs have a strong either facilitative or competitive effect on conifer seedling establishment or growth in the first five years of forest recovery. Understanding forest recovery and regeneration processes after high severity fires is critical to appropriately applying management strategies on National Forest lands.

  8. The Neural Substrate for Binaural Masking Level Differences in the Auditory Cortex

    PubMed Central

    Gilbert, Heather J.; Krumbholz, Katrin; Palmer, Alan R.

    2015-01-01

    The binaural masking level difference (BMLD) is a phenomenon whereby a signal that is identical at each ear (S0), masked by a noise that is identical at each ear (N0), can be made 12–15 dB more detectable by inverting the waveform of either the tone or noise at one ear (Sπ, Nπ). Single-cell responses to BMLD stimuli were measured in the primary auditory cortex of urethane-anesthetized guinea pigs. Firing rate was measured as a function of signal level of a 500 Hz pure tone masked by low-passed white noise. Responses were similar to those reported in the inferior colliculus. At low signal levels, the response was dominated by the masker. At higher signal levels, firing rate either increased or decreased. Detection thresholds for each neuron were determined using signal detection theory. Few neurons yielded measurable detection thresholds for all stimulus conditions, with a wide range in thresholds. However, across the entire population, the lowest thresholds were consistent with human psychophysical BMLDs. As in the inferior colliculus, the shape of the firing-rate versus signal-level functions depended on the neurons' selectivity for interaural time difference. Our results suggest that, in cortex, BMLD signals are detected from increases or decreases in the firing rate, consistent with predictions of cross-correlation models of binaural processing and that the psychophysical detection threshold is based on the lowest neural thresholds across the population. PMID:25568115

  9. Influence of slope on fire spread rate

    Treesearch

    B.W. Butler; W.R. Anderson; E.A. Catchpole

    2007-01-01

    Data demonstrate the effect of slope on heading and backing fires burning through woody fuels. The data indicate that the upper limit of heading fire rate of spread is defined by the rate of spread up a vertical fuel array, and the lower limit is defined by the rate of spread of a backing fire burning downslope. The minimum spread rate is found to occur at nominally --...

  10. Effects of self-coupling and asymmetric output on metastable dynamical transient firing patterns in arrays of neurons with bidirectional inhibitory coupling.

    PubMed

    Horikawa, Yo

    2016-04-01

    Metastable dynamical transient patterns in arrays of bidirectionally coupled neurons with self-coupling and asymmetric output were studied. First, an array of asymmetric sigmoidal neurons with symmetric inhibitory bidirectional coupling and self-coupling was considered and the bifurcations of its steady solutions were shown. Metastable dynamical transient spatially nonuniform states existed in the presence of a pair of spatially symmetric stable solutions as well as unstable spatially nonuniform solutions in a restricted range of the output gain of a neuron. The duration of the transients increased exponentially with the number of neurons up to the maximum number at which the spatially nonuniform steady solutions were stabilized. The range of the output gain for which they existed reduced as asymmetry in a sigmoidal output function of a neuron increased, while the existence range expanded as the strength of inhibitory self-coupling increased. Next, arrays of spiking neuron models with slow synaptic inhibitory bidirectional coupling and self-coupling were considered with computer simulation. In an array of Class 1 Hindmarsh-Rose type models, in which each neuron showed a graded firing rate, metastable dynamical transient firing patterns were observed in the presence of inhibitory self-coupling. This agreed with the condition for the existence of metastable dynamical transients in an array of sigmoidal neurons. In an array of Class 2 Bonhoeffer-van der Pol models, in which each neuron had a clear threshold between firing and resting, long-lasting transient firing patterns with bursting and irregular motion were observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fire danger rating in the United States of America: An evolution since 1916

    Treesearch

    Colin C. Hardy; Charles E. Hardy

    2007-01-01

    Fire scientists in the United States began exploring the relationships of fire-danger and hazard with weather, fuel moisture, and ignition probabilities as early as 1916. Many of the relationships identified then persist today in the form of our National Fire-Danger-Rating System. This paper traces the evolution of fire-danger rating in the United States, including...

  12. Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance.

    PubMed

    Guo, Wenwen; Wang, Xin; Zhang, Ping; Liu, Jiajia; Song, Lei; Hu, Yuan

    2018-09-01

    Thermally insulating materials made from renewable resources are desirable for energy efficient buildings. Traditional petroleum-derived insulating materials such as rigid polyurethane foam and expanded polystyrene display poor flame retardancy and inorganic insulating materials such as silica aerogel are fragile. Herein, we reported a facile approach to prepare cellulose nanofiber (CNF)-hydroxyapatite (HAP) composite foam by a simple freeze-drying process. The resultant HAP-CNF composite foams showed a thermal conductivity in the range of 38.5-39.1 mW/(m K) and very low peak heat release rate (20.4 kW/m 2 ) and total heat release (1.21 MJ/m 2 ). Vertical burning tests also manifested excellent fire resistance and self-extinguishing behaviours. Considering the excellent fire resistance of this composite foam, it is of significance to fire safety solution for buildings insulating materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Characterization of a mine fire using atmospheric monitoring system sensor data.

    PubMed

    Yuan, L; Thomas, R A; Zhou, L

    2017-06-01

    Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth - in terms of heat release rate - and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division's Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy.

  14. Investigating dynamic underground coal fires by means of numerical simulation

    NASA Astrophysics Data System (ADS)

    Wessling, S.; Kessels, W.; Schmidt, M.; Krause, U.

    2008-01-01

    Uncontrolled burning or smoldering of coal seams, otherwise known as coal fires, represents a worldwide natural hazard. Efficient application of fire-fighting strategies and prevention of mining hazards require that the temporal evolution of fire propagation can be sufficiently precise predicted. A promising approach for the investigation of the temporal evolution is the numerical simulation of involved physical and chemical processes. In the context of the Sino-German Research Initiative `Innovative Technologies for Detection, Extinction and Prevention of Coal Fires in North China,' a numerical model has been developed for simulating underground coal fires at large scales. The objective of such modelling is to investigate observables, like the fire propagation rate, with respect to the thermal and hydraulic parameters of adjacent rock. In the model, hydraulic, thermal and chemical processes are accounted for, with the last process complemented by laboratory experiments. Numerically, one key challenge in modelling coal fires is to circumvent the small time steps resulting from the resolution of fast reaction kinetics at high temperatures. In our model, this problem is solved by means of an `operator-splitting' approach, in which transport and reactive processes of oxygen are independently calculated. At high temperatures, operator-splitting has the decisive advantage of allowing the global time step to be chosen according to oxygen transport, so that time-consuming simulation through the calculation of fast reaction kinetics is avoided. Also in this model, because oxygen distribution within a coal fire has been shown to remain constant over long periods, an additional extrapolation algorithm for the coal concentration has been applied. In this paper, we demonstrate that the operator-splitting approach is particularly suitable for investigating the influence of hydraulic parameters of adjacent rocks on coal fire propagation. A study shows that dynamic propagation strongly depends on permeability variations. For the assumed model, no fire exists for permeabilities k < 10-10m2, whereas the fire propagation velocity ranges between 340ma-1 for k = 10-8m2, and drops to lower than 3ma-1 for k = 5 × 10-10m2. Additionally, strong temperature variations are observed for the permeability range 5 × 10-10m2 < k < 10-8m2.

  15. Flame quality monitor system for fixed firing rate oil burners

    DOEpatents

    Butcher, Thomas A.; Cerniglia, Philip

    1992-01-01

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  16. A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations

    PubMed Central

    Lin, Shih-Chieh; Nicolelis, Miguel A. L.

    2011-01-01

    The medial septum-vertical limb of the diagonal band of Broca (MSvDB) is important for normal hippocampal functions and theta oscillations. Although many previous studies have focused on understanding how MSVDB neurons fire rhythmic bursts to pace hippocampal theta oscillations, a significant portion of MSVDB neurons are slow-firing and thus do not pace theta oscillations. The function of these MSVDB neurons, especially their role in modulating hippocampal activity, remains unknown. We recorded MSVDB neuronal ensembles in behaving rats, and identified a distinct physiologically homogeneous subpopulation of slow-firing neurons (overall firing <4 Hz) that shared three features: 1) much higher firing rate during rapid eye movement sleep than during slow-wave (SW) sleep; 2) temporary activation associated with transient arousals during SW sleep; 3) brief responses (latency 15∼30 ms) to auditory stimuli. Analysis of the fine temporal relationship of their spiking and theta oscillations showed that unlike the theta-pacing neurons, the firing of these “pro-arousal” neurons follows theta oscillations. However, their activity precedes short-term increases in hippocampal oscillation power in the theta and gamma range lasting for a few seconds. Together, these results suggest that these pro-arousal slow-firing MSvDB neurons may function collectively to promote hippocampal activation. PMID:21865435

  17. Variable synaptic strengths controls the firing rate distribution in feedforward neural networks.

    PubMed

    Ly, Cheng; Marsat, Gary

    2018-02-01

    Heterogeneity of firing rate statistics is known to have severe consequences on neural coding. Recent experimental recordings in weakly electric fish indicate that the distribution-width of superficial pyramidal cell firing rates (trial- and time-averaged) in the electrosensory lateral line lobe (ELL) depends on the stimulus, and also that network inputs can mediate changes in the firing rate distribution across the population. We previously developed theoretical methods to understand how two attributes (synaptic and intrinsic heterogeneity) interact and alter the firing rate distribution in a population of integrate-and-fire neurons with random recurrent coupling. Inspired by our experimental data, we extend these theoretical results to a delayed feedforward spiking network that qualitatively capture the changes of firing rate heterogeneity observed in in-vivo recordings. We demonstrate how heterogeneous neural attributes alter firing rate heterogeneity, accounting for the effect with various sensory stimuli. The model predicts how the strength of the effective network connectivity is related to intrinsic heterogeneity in such delayed feedforward networks: the strength of the feedforward input is positively correlated with excitability (threshold value for spiking) when firing rate heterogeneity is low and is negatively correlated with excitability with high firing rate heterogeneity. We also show how our theory can be used to predict effective neural architecture. We demonstrate that neural attributes do not interact in a simple manner but rather in a complex stimulus-dependent fashion to control neural heterogeneity and discuss how it can ultimately shape population codes.

  18. A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks

    PubMed Central

    Schaffer, Evan S.; Ostojic, Srdjan; Abbott, L. F.

    2013-01-01

    Firing-rate models provide an attractive approach for studying large neural networks because they can be simulated rapidly and are amenable to mathematical analysis. Traditional firing-rate models assume a simple form in which the dynamics are governed by a single time constant. These models fail to replicate certain dynamic features of populations of spiking neurons, especially those involving synchronization. We present a complex-valued firing-rate model derived from an eigenfunction expansion of the Fokker-Planck equation and apply it to the linear, quadratic and exponential integrate-and-fire models. Despite being almost as simple as a traditional firing-rate description, this model can reproduce firing-rate dynamics due to partial synchronization of the action potentials in a spiking model, and it successfully predicts the transition to spike synchronization in networks of coupled excitatory and inhibitory neurons. PMID:24204236

  19. Synthesis and characterization of non halogen fire retardant composite through combination of epoxy resin, Al(OH)3 additive and filler

    NASA Astrophysics Data System (ADS)

    Saputra, Asep Handaya; Sungkar, Faraj

    2017-11-01

    Epoxy has a wide range of applications in many sectors, but it still has deficiency in fire retardancy. Therefore, it is combined with fire retardant additives. Fire retardant additive commonly contains halogen compounds that causes environmental and health problems. Therefore Al (OH)3 additive is used to improve the fire retardancy properties of composite through decomposition that produced water vapour and formation of oxide layer on its surface. In this research, synthesis of fire retardant composite has been conducted by varying filler carbon black and silica (1%, 2.5%, 5%, 7.5%, 10%wt) with composition of Al (OH)3 50%wt and epoxy 50%wt. Fire retardancy of composite was observed by UL-94V standard, while thermal degradation behaviour of composite was analyzed by thermal gravimetric analysis and differential scanning calorimetry. Whereas, mechanical properties was studied based on its tensile strength and hardness. It was found that the best concentration for carbon black and silica is 1%wt and 2.5%wt respectively. The addition of carbon black 1%wt and silica 2.5%wt could improve the flame retardancy and gives V-0 flammability rating. Besides that, the addition of carbon black 1%wt is able to increase the thermal stability of composite by reducing mass loss rate until 10.75%/minute and total mass loss until 53.76%. While adding silica 2.5%wt could also enhance its thermal stability by decreasing mass loss rate until 9.32%/minute and total mass loss until 51.06%. Furthermore, the addition of carbon black and silica could decrease its tensile strength and hardness. The addition of carbon black 1%wt yields composite with 6.59 MPa for tensile strength and 65.8 shore D for hardness. Whereas the addition of of silica 2.5%wt produces composite with the tensile strength up to 9.89MPa and hardness up to71.2 shore D.

  20. Quaternary Charcoal Records from Western North and South America: Linkages to Fire, Climate, and Vegetation Change

    NASA Astrophysics Data System (ADS)

    Whitlock, C.; Marlon, J.; Bartlein, P.

    2006-12-01

    Particulate charcoal preserved in lake sediments has become an important tool for examining the long-term role of fire as an ecosystem process. The record of microscopic charcoal (100 micron diameter or less) offers information on regional burning patterns, whereas macroscopic particles travel less far and are used to infer local fire history. Reconstruction of past fire activity is based on observations of modern charcoal production, transport, and deposition; modeling; and information on current fire regimes. Approaches and statistics used to interpret charcoal records generally focus on (1) quantifying charcoal content in contiguous samples, (2) determining an appropriate age model, (3) converting raw data to charcoal accumulation rates, and (4) extracting fire signal from noise. Detection of signal in charcoal time series is based on knowledge of recent fires provided by dendrochronological and documentary data. Additional paleofire information is obtained from stratigraphic changes in charcoal composition, pollen assemblages adapted to fire, and other paleoenvironmental proxy. Fire-history studies from western North and South America provide examples of Holocene fire-history reconstructions at spatial scales ranging from watershed to regional. Individual sites show dramatic shifts from crown to surface fire regimes associated with major changes in vegetation. Networks of records reveal regional variations in fire activity and vegetation that are attributed to insolation- driven shifts in atmospheric circulation and changes in short-term climate variability. A global database of paleofire records under development offers an opportunity to consider continental-scale fire patterns and their broad consequences for vegetation dynamics, biogeochemical cycling, and atmospheric chemistry.

  1. Effects of fire frequency and season on resprouting of woody plants in southeastern US pine-grassland communities.

    PubMed

    Robertson, Kevin M; Hmielowski, Tracy L

    2014-03-01

    Past studies suggest that rates of woody plant resprouting following a "topkilling" disturbance relate to timing of disturbance because of temporal patterns of below-ground carbohydrate storage. Accordingly, we hypothesized that fire-return interval (1 or 2 years) and season of burn (late dormant or early growing season) would influence the change in resprout growth rate from one fire-free interval to the next (Δ growth rate) for broadleaf woody plants in a pine-grassland in Georgia, USA. Resprout growth rate during one fire-free interval strongly predicted growth rate during the following fire-free interval, presumably reflecting root biomass. Length of fire-free interval did not have a significant effect on mean Δ growth rate. Plants burned in the late dormant season (February-March) had a greater positive Δ growth rate than those burned in the early growing season (April-June), consistent with the presumption that root carbohydrates are depleted and thus limiting during spring growth. Plants with resprout growth rates above a certain level had zero or negative Δ growth rates, indicating an equilibrium of maximum resprout size under a given fire-return interval. This equilibrium, as well as relatively reduced resprout growth rate following growing season fires, provide insight into how historic lightning-initiated fires in the early growing season limited woody plant dominance and maintained the herb-dominated structure of pine-grassland communities. Results also indicate tradeoffs between applying prescribed fire at 1- versus 2-year intervals and in the dormant versus growing seasons with the goal of limiting woody vegetation.

  2. Properties of human motoneurones and their synaptic noise deduced from motor unit recordings with the aid of computer modelling.

    PubMed

    Matthews, P B

    1999-01-01

    This paper reviews two new facets of the behaviour of human motoneurones; these were demonstrated by modelling combined with analysis of long periods of low-frequency tonic motor unit firing (sub-primary range). 1) A novel transformation of the interval histogram has shown that the effective part of the membrane's post-spike voltage trajectory is a segment of an exponential (rather than linear), with most spikes being triggered by synaptic noise before the mean potential reaches threshold. The curvature of the motoneurone's trajectory affects virtually all measures of its behaviour and response to stimulation. The 'trajectory' is measured from threshold, and so includes any changes in threshold during the interspike interval. 2) A novel rhythmic stimulus (amplitude-modulated pulsed vibration) has been used to show that the motoneurone produces appreciable phase-advance during sinusoidal excitation. At low frequencies, the advance increases with rising stimulus frequency but then, slightly below the motoneurones mean firing rate, it suddenly becomes smaller. The gain has a maximum for stimuli at the mean firing rate (the 'carrier'). Such behaviour is functionally important since it affects the motoneurone's response to any rhythmic input, whether generated peripherally by the receptors (as in tremor) or by the CNS (as with cortical oscillations). Low mean firing rates favour tremor, since the high gain and reduced phase advance at the 'carrier' reduce the stability of the stretch reflex.

  3. Fire-danger rating and observed wildfire behavior in the Northeastern United States.

    Treesearch

    Donald A. Haines; William A. Main; Albert J. Simard

    1986-01-01

    Compares the 1978 National Fire-Danger Rating System and its 20 fuel models, along with other danger rating systems, with observed fire behavior and rates the strengths and weaknesses of models and systems.

  4. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River, Maryland, danger zones. (a) Aerial firing range—(1) The danger zone. The waters...

  5. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River, Maryland, danger zones. (a) Aerial firing range—(1) The danger zone. The waters...

  6. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River, Maryland, danger zones. (a) Aerial firing range—(1) The danger zone. The waters...

  7. VEGETATION MEDIATED THE IMPACTS OF POSTGLACIAL CLIMATIC CHANGE ON FIRE REGIMES IN THE SOUTHCENTRAL BROOKS RANGE, ALASKA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higuera, P E; Brubaker, L B; Anderson, P M

    We examine direct and indirect impacts of millennial-scale climatic change on fire regimes in the southcentral Brooks Range, Alaska, using four lake-sediment records and existing paleoclimate interpretations. New techniques are introduced to identify charcoal peaks semi-objectively and detect statistical differences in fire regimes. Peaks in charcoal accumulation rates (CHARs) provide estimates of fire return intervals (FRIs) which are compared between vegetation zones described by fossil pollen and stomata. Climatic warming from ca 15-9 ka BP (calendar years before CE 1950) coincides with shifts in vegetation from herb tundra to shrub tundra to deciduous woodlands, all novel species assemblages relative tomore » modern vegetation. Two sites cover this period and show increased CHARs and decreased FRIs with the transition from herb to shrub tundra ca 13.3-14.3 ka BP. Short FRIs in the Betula-dominated shrub tundra (mean [m] FRI 144 yr; 95% CI 119-170) primarily reflect the effects of flammable, continuous fuels on the fire regime. FRIs increased significantly with the transition to Populus-dominated deciduous woodlands ca 10.5 ka BP (mFRI 251 yr [158-352]), despite evidence of warmer- and drier-than-present summers. We attribute reduced fire activity under these conditions to low flammability of deciduous fuels. Three sites record the mid to late Holocene, when cooler and moister conditions allowed Picea glauca forest-tundra and P. mariana boreal forests to establish ca 8 and 5.5 ka BP. Forest-tundra FRIs did not differ significantly from the previous period (mFRIs range from 131-238 yr), but FRIs decreased with the transition to boreal forest (mFRI 145 yr [129-163]). Overall, fire-regime shifts in the study area showed greater correspondence with vegetation characteristics than with inferred climate, and we conclude that vegetation mediated the impacts of millennial-scale climatic change on fire regimes by modifying landscape flammability. Our findings emphasize the importance of biological-physical feedbacks in determining the response of arctic and subarctic ecosystems to past, and by inference, future climatic change.« less

  8. Optimal firing rate estimation

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.

    2001-01-01

    We define a measure for evaluating the quality of a predictive model of the behavior of a spiking neuron. This measure, information gain per spike (Is), indicates how much more information is provided by the model than if the prediction were made by specifying the neuron's average firing rate over the same time period. We apply a maximum Is criterion to optimize the performance of Gaussian smoothing filters for estimating neural firing rates. With data from bullfrog vestibular semicircular canal neurons and data from simulated integrate-and-fire neurons, the optimal bandwidth for firing rate estimation is typically similar to the average firing rate. Precise timing and average rate models are limiting cases that perform poorly. We estimate that bullfrog semicircular canal sensory neurons transmit in the order of 1 bit of stimulus-related information per spike.

  9. Comparing erosion rates in burnt forests and agricultural fields for a mountain catchment in NW Iberia

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Marisa Santos, Juliana; Bernard-Jannin, Léonard; Keizer, Jan Jacob

    2013-04-01

    A large part of northwestern Iberia is nowadays covered by commercial forest plantations of eucalypts and maritime pines, which have partly replaced traditional agricultural land-uses. The humid Mediterranean climate, with mild wet winters and warm dry summers, creates favorable conditions for the occurrence of frequent and recurrent forest fires. Erosion rates in recently burnt areas have been the subject of numerous studies; however, there is still a lack of information on their relevance when compared with agricultural erosion rates, impairing a comprehensive assessment of the role of forests for soil protection. This study focuses on Macieira de Alcoba, head-water catchment in the Caramulo Mountain Range, north-central Portugal, with a mixture of agricultural fields (mostly a rotation between winter pastures and summer cereals) on the lower slopes and forest plantations (mostly eucalypts) on the upper slopes. Agricultural erosion in this catchment has been monitored since 2010; a forest fire in 2011 presented an opportunity to compare post-fire and agricultural erosion rates at nearby sites with comparable soil and climatic conditions. Erosion rates were monitored between 2010 and 2013 by repeated surveys of visible erosion features and, in particular, by mapping and measuring rills and gullies after important rainfall events. During the 2011/2012 hydrological year, erosion rates in the burnt forest were two orders of magnitude above those in agricultural fields, amounting to 17.6 and. 0.1 Mg ha-1, respectively. Rills were widespread in the burnt area, while in the agricultural area they were limited to a small number of fields with higher slope; these particular fields experienced an erosion rate of 2.3 Mg ha-1, still one order of magnitude lower than at the burnt forest site. The timing of the erosion features was also quite distinct for the burnt area and the agricultural fields. During the first nine months after the fire, rill formation was not observed in the burnt area; in agricultural fields, rill formation occurred during the post-harvest period and before the full development of winter pasture. After this period, post-fire management operations (clear-cutting, deep plowing and replanting) disturbed the soil profiles and left little protective vegetation and litter cover. Relatively mild rainstorms provoked most of the erosion features in the burnt area, but none were observed in the agricultural fields which were fully covered by pasture at this time. The present results indicate that forest fires and especially post-fire management operations can lead to much higher erosion rates than agricultural practices. Different timings of soil losses throughout a year would be linked with different periods when soils are exposed: typically 2-3 years following fire and plowing/terracing as opposed to 2- 3 months following the harvest of annual crops (October-December). Assuming a recurrence period of forest fires of c. 25 years, burnt forests in the region would suffer similar long-term erosion rates as agricultural fields under comparable conditions, casting doubt on the role of forest plantations for soil protection in this region.

  10. [Fire behavior of Mongolian oak leaves fuel-bed under no-wind and zero-slope conditions. I. Factors affecting fire spread rate and modeling].

    PubMed

    Jin, Sen; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Zhang, Ji-Li

    2012-01-01

    Aimed to understand the fire behavior of Mongolian oak leaves fuel-bed under field condition, the leaves of a secondary Mongolian oak forest in Northeast Forestry University experimental forest farm were collected and brought into laboratory to construct fuel-beds with varied loading, height, and moisture content, and a total of 100 experimental fires were burned under no-wind and zero-slope conditions. It was observed that the fire spread rate of the fuel-beds was less than 0.5 m x min(-1). Fuel-bed loading, height, and moisture contents all had significant effects on the fire spread rate. The effect of fuel-bed moisture content on the fire spread had no significant correlations with fuel-bed loading and height, but the effect of fuel-bed height was related to the fuel-bed loading. The packing ratio of fuel-beds had less effect on the fire spread rate. Taking the fuel-bed loading, height, and moisture content as predictive variables, a prediction model for the fire spread rate of Mongolian oak leaves fuel-bed was established, which could explain 83% of the variance of the fire spread rate, with a mean absolute error 0.04 m x min(-1) and a mean relative error less than 17%.

  11. Characterization of a mine fire using atmospheric monitoring system sensor data

    PubMed Central

    Yuan, L.; Thomas, R.A.; Zhou, L.

    2017-01-01

    Atmospheric monitoring systems (AMS) have been widely used in underground coal mines in the United States for the detection of fire in the belt entry and the monitoring of other ventilation-related parameters such as airflow velocity and methane concentration in specific mine locations. In addition to an AMS being able to detect a mine fire, the AMS data have the potential to provide fire characteristic information such as fire growth — in terms of heat release rate — and exact fire location. Such information is critical in making decisions regarding fire-fighting strategies, underground personnel evacuation and optimal escape routes. In this study, a methodology was developed to calculate the fire heat release rate using AMS sensor data for carbon monoxide concentration, carbon dioxide concentration and airflow velocity based on the theory of heat and species transfer in ventilation airflow. Full-scale mine fire experiments were then conducted in the Pittsburgh Mining Research Division’s Safety Research Coal Mine using an AMS with different fire sources. Sensor data collected from the experiments were used to calculate the heat release rates of the fires using this methodology. The calculated heat release rate was compared with the value determined from the mass loss rate of the combustible material using a digital load cell. The experimental results show that the heat release rate of a mine fire can be calculated using AMS sensor data with reasonable accuracy. PMID:28845058

  12. Fire Danger Rating: The next 20 Years

    Treesearch

    John E. Deeming

    1987-01-01

    For the next 10 years, few changes will be made to the fire-danger rating system. During that time, the focus will be on the automation of weather observing systems and the streamlining of the computation and display of ratings. The time horizon for projecting fire danger will be pushed to 30 days by the late 1990's. A close alignment of the fire-danger rating...

  13. Fire resistance of structural composite lumber products

    Treesearch

    Robert H. White

    2006-01-01

    Use of structural composite lumber products is increasing. In applications requiring a fire resistance rating, calculation procedures are used to obtain the fire resistance rating of exposed structural wood products. A critical factor in the calculation procedures is char rate for ASTM E 119 fire exposure. In this study, we tested 14 structural composite lumber...

  14. Estimation of Thalamocortical and Intracortical Network Models from Joint Thalamic Single-Electrode and Cortical Laminar-Electrode Recordings in the Rat Barrel System

    PubMed Central

    Blomquist, Patrick; Devor, Anna; Indahl, Ulf G.; Ulbert, Istvan; Einevoll, Gaute T.; Dale, Anders M.

    2009-01-01

    A new method is presented for extraction of population firing-rate models for both thalamocortical and intracortical signal transfer based on stimulus-evoked data from simultaneous thalamic single-electrode and cortical recordings using linear (laminar) multielectrodes in the rat barrel system. Time-dependent population firing rates for granular (layer 4), supragranular (layer 2/3), and infragranular (layer 5) populations in a barrel column and the thalamic population in the homologous barreloid are extracted from the high-frequency portion (multi-unit activity; MUA) of the recorded extracellular signals. These extracted firing rates are in turn used to identify population firing-rate models formulated as integral equations with exponentially decaying coupling kernels, allowing for straightforward transformation to the more common firing-rate formulation in terms of differential equations. Optimal model structures and model parameters are identified by minimizing the deviation between model firing rates and the experimentally extracted population firing rates. For the thalamocortical transfer, the experimental data favor a model with fast feedforward excitation from thalamus to the layer-4 laminar population combined with a slower inhibitory process due to feedforward and/or recurrent connections and mixed linear-parabolic activation functions. The extracted firing rates of the various cortical laminar populations are found to exhibit strong temporal correlations for the present experimental paradigm, and simple feedforward population firing-rate models combined with linear or mixed linear-parabolic activation function are found to provide excellent fits to the data. The identified thalamocortical and intracortical network models are thus found to be qualitatively very different. While the thalamocortical circuit is optimally stimulated by rapid changes in the thalamic firing rate, the intracortical circuits are low-pass and respond most strongly to slowly varying inputs from the cortical layer-4 population. PMID:19325875

  15. Dilution-based emissions sampling from stationary sources: Part 2--Gas-fired combustors compared with other fuel-fired systems.

    PubMed

    England, Glenn C; Watson, John G; Chow, Judith C; Zielinska, Barbara; Chang, M C Oliver; Loos, Karl R; Hidy, George M

    2007-01-01

    With the recent focus on fine particle matter (PM2.5), new, self-consistent data are needed to characterize emissions from combustion sources. Such data are necessary for health assessment and air quality modeling. To address this need, emissions data for gas-fired combustors are presented here, using dilution sampling as the reference. The dilution method allows for collection of emitted particles under conditions simulating cooling and dilution during entry from the stack into the air. The sampling and analysis of the collected particles in the presence of precursor gases, SO2 nitrogen oxide, volatile organic compound, and NH3 is discussed; the results include data from eight gas fired units, including a dual-fuel institutional boiler and a diesel engine powered electricity generator. These data are compared with results in the literature for heavy-duty diesel vehicles and stationary sources using coal or wood as fuels. The results show that the gas-fired combustors have very low PM2.5 mass emission rates in the range of approximately 10(-4) lb/million Btu (MMBTU) compared with the diesel backup generator with particle filter, with approximately 5 x 10(-3) lb/MMBTU. Even higher mass emission rates are found in coal-fired systems, with rates of approximately 0.07 lb/MMBTU for a bag-filter-controlled pilot unit burning eastern bituminous coal. The characterization of PM2.5 chemical composition from the gas-fired units indicates that much of the measured primary particle mass in PM2.5 samples is organic or elemental carbon and, to a much less extent, sulfate. Metal emissions are quite low compared with the diesel engines and the coal- or wood-fueled combustors. The metals found in the gas-fired combustor particles are low in concentration, similar in concentration to ambient particles. The interpretation of the particulate carbon emissions is complicated by the fact that an approximately equal amount of particulate carbon (mainly organic carbon) is found on the particle collector and a backup filter. It is likely that measurement artifacts, mostly adsorption of volatile organic compounds on quartz filters, are positively biasing "true" particulate carbon emission results.

  16. Descriptive epidemiology of unintentional residential fire injuries in King County, WA, 1984 and 1985.

    PubMed Central

    Ballard, J E; Koepsell, T D; Rivara, F P; Van Belle, G

    1992-01-01

    Although most studies have concentrated on fatal residential fire injuries, which are a leading cause of fatal injuries in the United States, few investigators have examined in detail nonfatal injuries as a consequence of residential fires. This population-based study used the Washington State Fire Incident Reporting System to assess the incidence and descriptive epidemiology of fatal and nonfatal burns or respiratory tract damage resulting from unintentional residential fires. For the 2-year period 1984-85 in King County, WA, the mortality rate due to injury in a residential fire was 0.7 per 100,000 per year, and the incidence of nonfatal injuries was 5.6 per 100,000 per year. Of 17 fatalities, 59 percent of the deaths occurred at the scene of the fire. Of 128 persons with nonfatal injuries, 19 percent were hospitalized; although the 55 percent seen as outpatients and the 26 percent treated by the fire department or paramedics at the fire scene usually had minor injuries, they would not have been captured if only traditional data sources had been employed. Those injured averaged 2.8 days of restricted activity, but the range was from less than 1 day to 1 year. Injuries were more common in the households with a low socioeconomic status and among nonwhites, especially American Indians. Variation in incidence by age, sex, and source of ignition for deaths and nonfatal injuries suggests appropriate targets for future fire injury prevention programs. PMID:1641436

  17. Relative influence of wildfire on soil properties and erosion processes in different Mediterranean environments in NE Spain.

    PubMed

    Pardini, Giovanni; Gispert, Maria; Dunjó, Gemma

    2004-07-26

    Abandonment of terraced soils and increased brushland cover has increased wildfire occurrence to almost an annual rate in the Cap de Creus Peninsula, NE Pyrenees Range, Province of Girona, Spain. A wildfire occurred in August 2000 and affected an area of 6760 ha of shrubs and cork trees, whereas still cultivated plots were only slightly affected. Five stations of erosion measurements, corresponding to five different environments (from present cultivation to late abandonment) were destroyed by the passage of fire, and were promptly replaced to allow to monitoring post-fire effects on soil erosion. Selected soil properties were determined monthly before the fire and during 6 months after the fire at a monthly rate. Runoff and sediment yield together with dissolved organic carbon (DOC) in runoff water and organic carbon losses in eroded sediments (EOC) were evaluated throughout 2000. The last stage of abandonment, stands of cork trees, had the highest soil stability. Nevertheless, evidence of unfavourable soil conditions was detected at the shrub stage, when Cistus monspeliensis cover was the dominant opportunistic plant. This stage was considered to be a critical threshold leading either to degradation or regeneration processes according to fire frequency. A drastic change in soil properties, erosion and nutrient depletion occurred after the fire in all the environments. Statistics enabled to state that environments differed significantly in main soil properties. By statistically comparing the measured variables between the environments before and after the fire, DOC was found to be the soil parameter showing the highest significance between environments. Absolute values of erosion were low with respect to other Mediterranean environments although the shallow nature of these soils might deserve special attention because of a comparatively higher risk of degradation. Copyright 2004 Elsevier B.V.

  18. A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure.

    PubMed

    Miconi, Thomas; VanRullen, Rufin

    2016-02-01

    Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space. Several existing models of attention suggest that these effects arise from selective modulation of neural inputs. However, anatomical and physiological observations suggest that attentional modulation targets higher levels of the visual system (such as V4 or MT) rather than input areas (such as V1). Here we propose a simple mechanism that explains how a top-down attentional modulation, falling on higher visual areas, can produce the observed effects of attention on neural responses. Our model requires only the existence of modulatory feedback connections between areas, and short-range lateral inhibition within each area. Feedback connections redistribute the top-down modulation to lower areas, which in turn alters the inputs of other higher-area cells, including those that did not receive the initial modulation. This produces firing rate modulations and receptive field shifts. Simultaneously, short-range lateral inhibition between neighboring cells produce competitive effects that are automatically scaled to receptive field size in any given area. Our model reproduces the observed attentional effects on response rates (response gain, input gain, biased competition automatically scaled to receptive field size) and receptive field structure (shifts and resizing of receptive fields both spatially and in complex feature space), without modifying model parameters. Our model also makes the novel prediction that attentional effects on response curves should shift from response gain to contrast gain as the spatial focus of attention drifts away from the studied cell.

  19. Dayton Aircraft Cabin Fire Model, Version 3. Volume II. Program User’s Guide and Appendices.

    DTIC Science & Technology

    1982-06-01

    HEAT RELEASE RATE (BTU/FT*FT*SEC) FOR A FIRE C FLML - FLAME LENGTH OF A FIRE. SUBSCR IS FIRE NUMBER (FT) C FSN1 - COUNTER OF NUMBER OF FLAMING...53H ENTRMNT FLAME LENGTH ABSN COEFF SMOKE GEN RATE 0 2 *14HXY CNSPTN RATE/ 3 9X,53H(SG FT) (CU FT/SEC) (BTU/SEC) (CU FT/SEC) 4 .53H (FT) (l/FT) (PART...THE CENTER OF THE FIRE BASE FROM THE C FLOOR C C YZ - THE HYDRAULIC RADIUS OF THE FIRE BASE AREA C C FLML - THE FLAME LENGTH FOR THE FIRE C C ALPC

  20. Fire resistance of wood members with directly applied protection

    Treesearch

    Robert H. White

    2009-01-01

    Fire-resistive wood construction is achieved either by having the structural elements be part of fire-rated assemblies or by using elements of sufficient size that the elements themselves have the required fire-resistance ratings. For exposed structural wood elements, the ratings in the United States are calculated using either the T.T. Lie method or the National...

  1. Remote sensing fire and fuels in southern California

    Treesearch

    Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen

    2011-01-01

    Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...

  2. Physiological responses to fire fighting activities.

    PubMed

    Romet, T T; Frim, J

    1987-01-01

    Eight professional fire fighters participated in six fire fighting scenarios at a training facility. Data on heart rate (HR), rectal temperature (Tre), and skin temperatures at the chest and thigh were collected using a portable data acquisition system. Average HR ranged from 122 to 151 beats.min-1 during the six scenarios. Detailed analyses indicated that HR and Tre increases are related to both the physical and environmental stresses of the various activities carried out. The most demanding activity, that of building search and victim rescue, resulted in an average HR of 153 beats.min-1 and Tre rise of 1.3 degree C, while the least demanding activity, that of the crew captain who directs the fire fighting, resulted in an average HR of only 122 beats.min-1 and a Tre rise of only 0.3 degree C. This study shows that fire fighting is strenuous work for those directly entering a building and performing related duties, but that the physical demands of other activities are considerably less. The results further suggest that heat strain injuries in fire fighters could perhaps be reduced by rotating duties frequently with other crew members performing less stressful work.

  3. Evoking prescribed spike times in stochastic neurons

    NASA Astrophysics Data System (ADS)

    Doose, Jens; Lindner, Benjamin

    2017-09-01

    Single cell stimulation in vivo is a powerful tool to investigate the properties of single neurons and their functionality in neural networks. We present a method to determine a cell-specific stimulus that reliably evokes a prescribed spike train with high temporal precision of action potentials. We test the performance of this stimulus in simulations for two different stochastic neuron models. For a broad range of parameters and a neuron firing with intermediate firing rates (20-40 Hz) the reliability in evoking the prescribed spike train is close to its theoretical maximum that is mainly determined by the level of intrinsic noise.

  4. Effect of tank diameter on thermal behavior of gasoline and diesel storage tanks fires.

    PubMed

    Leite, Ricardo Machado; Centeno, Felipe Roman

    2018-01-15

    Studies on fire behavior are extremely important as they contribute in a firefighting situation or even to avoid such hazard. Experimental studies of fire in real scale are unfeasible, implying that reduced-scale experiments must be performed, and results extrapolated to the range of interest. This research aims to experimentally study the fire behavior in tanks of 0.04m, 0.20m, 0.40m, 0.80m and 4.28m diameter, burning regular gasoline or diesel oil S-500. The following parameters were here obtained: burning rates, burning velocities, heat release rates, flame heights, and temperature distributions adjacent to the tank. Such parameters were obtained for each tank diameter with the purpose of correlating the results and understanding the relationship of each parameter for the different geometrical scale of the tanks. Asymptotic results for larger tanks were found as (regular gasoline and diesel oil S-500, respectively): burning rates 0.050kg/(m 2 s) and 0.031kg/(m 2 s), burning velocities 4.0mm/min and 2.5mm/min, heat release rates per unit area 2200kW/m 2 and 1500kW/m 2 , normalized averaged flame heights (H i /D, where H i is the average flame height, D is the tank diameter) 0.9 and 0.8. Maximum temperatures for gasoline pools were higher than for diesel oil pools, and temperature gradients close to the tanks were also higher for the former fuel. The behavior of the maximum temperature was correlated as a function of the tank diameter, the heat release rate of each fuel and the dimensionless distance from the tank. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Passivation layer breakdown during laser-fired contact formation for photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan, A.; DebRoy, T.; Palmer, T. A.

    2014-07-14

    Low resistance laser-fired ohmic contacts (LFCs) can be formed on the backside of Si-based solar cells using microsecond pulses. However, the impact of these longer pulse durations on the dielectric passivation layer is not clear. Retention of the passivation layer during processing is critical to ensure low recombination rates of electron-hole pairs at the rear surface of the device. In this work, advanced characterization tools are used to demonstrate that although the SiO{sub 2} passivation layer melts directly below the laser, it is well preserved outside the immediate LFC region over a wide range of processing parameters. As a result,more » low recombination rates at the passivation layer/wafer interface can be expected despite higher energy densities associated with these pulse durations.« less

  6. Resistance of the boreal forest to high burn rates.

    PubMed

    Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André

    2014-09-23

    Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30-500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks.

  7. Resistance of the boreal forest to high burn rates

    PubMed Central

    Héon, Jessie; Arseneault, Dominique; Parisien, Marc-André

    2014-01-01

    Boreal ecosystems and their large carbon stocks are strongly shaped by extensive wildfires. Coupling climate projections with records of area burned during the last 3 decades across the North American boreal zone suggests that area burned will increase by 30–500% by the end of the 21st century, with a cascading effect on ecosystem dynamics and on the boreal carbon balance. Fire size and the frequency of large-fire years are both expected to increase. However, how fire size and time since previous fire will influence future burn rates is poorly understood, mostly because of incomplete records of past fire overlaps. Here, we reconstruct the length of overlapping fires along a 190-km-long transect during the last 200 y in one of the most fire-prone boreal regions of North America to document how fire size and time since previous fire will influence future fire recurrence. We provide direct field evidence that extreme burn rates can be sustained by a few occasional droughts triggering immense fires. However, we also show that the most fire-prone areas of the North American boreal forest are resistant to high burn rates because of overabundant young forest stands, thereby creating a fuel-mediated negative feedback on fire activity. These findings will help refine projections of fire effect on boreal ecosystems and their large carbon stocks. PMID:25201981

  8. Poisson-Like Spiking in Circuits with Probabilistic Synapses

    PubMed Central

    Moreno-Bote, Rubén

    2014-01-01

    Neuronal activity in cortex is variable both spontaneously and during stimulation, and it has the remarkable property that it is Poisson-like over broad ranges of firing rates covering from virtually zero to hundreds of spikes per second. The mechanisms underlying cortical-like spiking variability over such a broad continuum of rates are currently unknown. We show that neuronal networks endowed with probabilistic synaptic transmission, a well-documented source of variability in cortex, robustly generate Poisson-like variability over several orders of magnitude in their firing rate without fine-tuning of the network parameters. Other sources of variability, such as random synaptic delays or spike generation jittering, do not lead to Poisson-like variability at high rates because they cannot be sufficiently amplified by recurrent neuronal networks. We also show that probabilistic synapses predict Fano factor constancy of synaptic conductances. Our results suggest that synaptic noise is a robust and sufficient mechanism for the type of variability found in cortex. PMID:25032705

  9. GABAB-receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra.

    PubMed

    Engberg, G; Kling-Petersen, T; Nissbrandt, H

    1993-11-01

    Previous electrophysiological experiments have emphasized the importance of the firing pattern for the functioning of midbrain dopamine (DA) neurons. In this regard, excitatory amino acid receptors appear to constitute an important modulatory control mechanism. In the present study, extracellular recording techniques were used to investigate the significance of GABAB-receptor activation for the firing properties of DA neurons in the substantia nigra (SN) in the rat. Intravenous administration of the GABAB-receptor agonist baclofen (1-16 mg/kg) was associated with a dose-dependent regularization of the firing pattern, concomitant with a reduction in burst firing. At higher doses (16-32 mg/kg), the firing rate of the DA neurons was dose-dependently decreased. Also, microiontophoretic application of baclofen regularized the firing pattern of nigral DA neurons, including a reduction of burst firing. Both the regularization of the firing pattern and inhibition of firing rate produced by systemic baclofen administration was antagonized by the GABAB-receptor antagonist CGP 35348 (200 mg/kg, i.v.). The GABAA-receptor agonist muscimol produced effects on the firing properties of DA neurons that were opposite to those observed following baclofen, i.e., an increase in firing rate accompanied by a decreased regularity. The NMDA receptor antagonist MK 801 (0.4-3.2 mg/kg, i.v.) produced a moderate, dose-dependent increase in the firing rate of the nigral DA neurons as well as a slightly regularized firing pattern. Pretreatment with MK 801 (3.2 mg/kg, i.v., 3-10 min) did neither promote nor prevent the regularization of the firing pattern or inhibition of firing rate on the nigral DA neurons produced by baclofen. The present results clearly show that GABAB-receptors can alter the firing pattern of nigral DA neurons, hereby counterbalancing the previously described ability of glutamate to induce burst firing activity on these neurons.

  10. Noise in Attractor Networks in the Brain Produced by Graded Firing Rate Representations

    PubMed Central

    Webb, Tristan J.; Rolls, Edmund T.; Deco, Gustavo; Feng, Jianfeng

    2011-01-01

    Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribution that is usually investigated. In integrate-and-fire simulations of an attractor decision-making network, we show that the noise is indeed greater for a given sparseness of the representation for graded, exponential, than for binary firing rate distributions. The greater noise was measured by faster escaping times from the spontaneous firing rate state when the decision cues are applied, and this corresponds to faster decision or reaction times. The greater noise was also evident as less stability of the spontaneous firing state before the decision cues are applied. The implication is that spiking-related noise will continue to be a factor that influences processes such as decision-making, signal detection, short-term memory, and memory recall even with the quite large networks found in the cerebral cortex. In these networks there are several thousand recurrent collateral synapses onto each neuron. The greater noise with graded firing rate distributions has the advantage that it can increase the speed of operation of cortical circuitry. PMID:21931607

  11. Exact solutions for rate and synchrony in recurrent networks of coincidence detectors.

    PubMed

    Mikula, Shawn; Niebur, Ernst

    2008-11-01

    We provide analytical solutions for mean firing rates and cross-correlations of coincidence detector neurons in recurrent networks with excitatory or inhibitory connectivity, with rate-modulated steady-state spiking inputs. We use discrete-time finite-state Markov chains to represent network state transition probabilities, which are subsequently used to derive exact analytical solutions for mean firing rates and cross-correlations. As illustrated in several examples, the method can be used for modeling cortical microcircuits and clarifying single-neuron and population coding mechanisms. We also demonstrate that increasing firing rates do not necessarily translate into increasing cross-correlations, though our results do support the contention that firing rates and cross-correlations are likely to be coupled. Our analytical solutions underscore the complexity of the relationship between firing rates and cross-correlations.

  12. Aeolian Dust and Forest Fire Smoke in Urban Air

    NASA Astrophysics Data System (ADS)

    Brimblecombe, P.

    2006-12-01

    Particles of aeolian dust and forest fire smoke are now regularly detected in urban air. Although dusts are common on the Asian Pacific Rim and forest fire smoke characteristic of South East Asia they also frequently detected elsewhere. In the past dust was treated as though it was fairly inert and reactions on the surface limited to the neutralizing ability of alkaline minerals. More recent work shows that that dust has a complex organic chemistry. Observations in China found fatty acids from urban areas (oleic acid and linoleic acid from cooking) on dust derived aerosols. The fatty acids and PAHs decreased sharply after dust storms, suggesting a role for dust in removal processes. When silica particles absorb unsaturated compounds they can react with ozone and release compounds such as formaldehyde. Particles from forest fires have a similarly complex chemistry and the acid-alkaline balance may vary depend on the balance of removal rates of alkaline materials (ammonia, potassium carbonate) and inorganic and organic acids. Airborne dust and forest fire soot can contain humic like substances (HULIS) either as primary material or as secondary oxidation products of the surface of soot. This paper will report on the role polluted air masses in the generation humic materials, particularly those that are surface active. These materials of high molecular weight oxygen rich organic compounds, which exhibit a range of properties of importance in aerosols: they can form complexes with metal ions and thus enhance their solubility, photosensitize the oxidation of organic compounds and lower the surface tension of aqueous aerosols. HULIS can be oxidized to form a range of simpler acids such as formic, acetic and oxalic acid. Dust and forest fire smoke particles have a different composition and size range to that of typical urban combustion particles, so it is likely that the health impacts will be different, yet current regulation often does not recognize any significant difference.

  13. Comparative ratings of 1951 forest fire weather in western Oregon.

    Treesearch

    Owen P. Cramer; Robert Kirkpatrick

    1951-01-01

    The 1951 forest fire weather in western Oregon is generally conceded to have been unusually severe. In order to compare this season with others, this report uses a scheme for rating fire seasons recently developed by the Fire Research section of the Experiment Station, The rating is based on indices of three weather characteristics which generally control burning...

  14. Burning rates of wood cribs with implications for wildland fires

    Treesearch

    Sara McAllister; Mark Finney

    2016-01-01

    Wood cribs are often used as ignition sources for room fire tests and the well characterized burning rates may also have applications to wildland fires. The burning rate of wildland fuel structures, whether the needle layer on the ground or trees and shrubs themselves, is not addressed in any operational fire model and no simple model exists. Several relations...

  15. Analysis of toxic effluents released from PVC carpet under different fire conditions.

    PubMed

    Stec, A A; Readman, J; Blomqvist, P; Gylestam, D; Karlsson, D; Wojtalewicz, D; Dlugogorski, B Z

    2013-01-01

    A large number of investigations have been reported on minimising the PAH and PCDD/F yields during controlled combustion, such as incineration. This study is an attempt to quantify acute and chronic toxicants including PAH and PCDD/F in conditions relating to unwanted fires. This paper investigates distribution patterns of fire effluents between gas and aerosol phase, and the different particle size-ranges produced under different fire conditions. PVC carpet was selected as the fuel as a precursor for both PAH and PCDD/F. In order to generate fire effluents under controlled fire conditions, the steady-state tube furnace, was chosen as the physical fire model. Fire scenarios included oxidative pyrolysis, well-ventilated and under-ventilated fires. Fire effluent measurements included: carbon monoxide, carbon dioxide, hydrogen chloride, polycyclic aromatic hydrocarbons, chlorinated dibenzo-dioxins and furans and soot. The distribution patterns between gas and particle phase, and the size-ranges of the particles produced in these fires together with their chemical composition is also reported. Significant quantities of respirable submicron particles were detected, together with a range of PAHs. Lower levels of halogenated dioxins were detected in the fire residue compared with those found in other studies. Nevertheless, the findings do have implications for the health and safety of fire and rescue personnel, fire investigators, and other individuals exposed to the residue from unwanted fires. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Appraising fuels and flammability in western aspen: a prescribed fire guide

    Treesearch

    James K. Brown; Dennis G. Simmerman

    1986-01-01

    Describes a method for appraising fuels and fire behavior potential in aspen forests to guide the use of prescribed fire and the preparation of fire prescriptions. Includes an illustrated classification of aspen fuels; appraisals of fireline intensity, rate of spread, adjective ratings for fire behavior and probability of burn success; and evaluations of seasonal...

  17. Objective definition of rainfall intensity-duration thresholds for post-fire flash floods and debris flows in the area burned by the Waldo Canyon fire, Colorado, USA

    USGS Publications Warehouse

    Staley, Dennis M.; Gartner, Joseph E.; Kean, Jason W.

    2015-01-01

    We present an objectively defined rainfall intensity-duration (I-D) threshold for the initiation of flash floods and debris flows for basins recently burned in the 2012 Waldo Canyon fire near Colorado Springs, Colorado, USA. Our results are based on 453 rainfall records which include 8 instances of hazardous flooding and debris flow from 10 July 2012 to 14 August 2013. We objectively defined the thresholds by maximizing the number of correct predictions of debris flow or flood occurrence while minimizing the rate of both Type I (false positive) and Type II (false negative) errors. The equation I = 11.6D−0.7 represents the I-D threshold (I, in mm/h) for durations (D, in hours) ranging from 0.083 h (5 min) to 1 h for basins burned by the 2012 Waldo Canyon fire. As periods of high-intensity rainfall over short durations (less than 1 h) produced all of the debris flow and flood events, real-time monitoring of rainfall conditions will result in very short lead times for early-warning. Our results highlight the need for improved forecasting of the rainfall rates during short-duration, high-intensity convective rainfall events.

  18. Prevalence and correlates of fire-setting in the United States: results from the National Epidemiological Survey on Alcohol and Related Conditions.

    PubMed

    Vaughn, Michael G; Fu, Qiang; Delisi, Matt; Wright, John Paul; Beaver, Kevin M; Perron, Brian E; Howard, Matthew O

    2010-01-01

    Fire-setting is a serious and costly form of antisocial behavior. Our objective in this study was to examine the prevalence and correlates of intentional fire-setting behavior in the United States. Data were derived from a nationally representative sample of US residents 18 years and older. Structured psychiatric interviews (N = 43,093) were completed by trained lay interviewers between 2001 and 2002. Fire-setting as well as mood, anxiety, substance use, and personality disorders of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition were assessed with the Alcohol Use Disorder and Associated Disabilities Interview Schedule (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition) version. The prevalence of lifetime fire-setting in the US population was 1.0%. Respondents who were men, white, 18 to 35 years old, born in the United States, and living in the western region of the United States had significantly higher rates of fire-setting than their counterparts. Fire-setting was significantly associated with a wide range of antisocial behaviors. Multivariate logistic regression analyses identified strong associations between lifetime alcohol and marijuana use disorders, conduct disorder, antisocial and obsessive-compulsive personality disorders, and family history of antisocial behavior. Intentional illicit fire-setting behavior is associated with a broad array of antisocial behaviors and psychiatric comorbidities. Given the substantial personal and social costs related to arson, prevention and treatment interventions targeting fire-setters potentially could save lives and property. 2010 Elsevier Inc. All rights reserved.

  19. Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk.

    PubMed

    Baeza, M J; De Luís, M; Raventós, J; Escarré, A

    2002-06-01

    Fire behaviour under experimental conditions is described in nine Mediterranean gorse shrublands ranging from 3-12 years of age with different fuel loads. Significant differences in the fire-line intensity, fuel load and rate of fire spread have been found to be related to the stage of development of the communities. Fire spread is correlated with fuel moisture using multiple regression techniques. Differences in fuel moisture between mature and young communities under moderate weather conditions have been found. The lower moisture content identified in the mature shrubland is due both to the decreasing moisture content of senescent shrubland in some species, mainly in live fractions of Ulex parviflorus Pour. fuel, and to a substantial increase in dead fuel fractions with low percentages of moisture content. The result is that the older the shrubland is, the greater will be the decrease in the total moisture content of the vegetation. In these moderate weather conditions, the fire intensity of the mature community was as high as the maximum intensity recommended for prescribed fires. This fact seems to indicate that, even under moderate conditions, prescribed burning as an alternative management tool in the mature shrubland must always take into account fuel control; on the other hand, this technique could be applied more easily when the shrubland is at an intermediate growth stage (4-5 years of age). Therefore, more frequent low-intensity prescribed fires are indicated to abate the risk of catastrophic fire.

  20. Natural radionuclide emission from coal-fired power plants in the southwestern of Turkey and the population exposure to external radiation in their vicinity.

    PubMed

    Gür, Filiz; Yaprak, Günseli

    2010-12-01

    To evaluate the effect of radionuclide emission on the environment from Yatagan, Yenikoy and Kemerkoy coal-fired power plants which are located in southwestern Anatolia of Turkey, the concentrations of natural radionuclides such as (226)Ra, (232)Th and (40)K in coal, bottom ash and fly ash samples, have been measured, as well as the concentration of the same radionuclides in surface soils. The dose rate arises from the total radioactivity content of soil that the people living by the power plants are exposed to be assessed additionally. The average activity concentrations of (226)Ra for Yatagan CPP is 80 ± 22 Bq kg(-1) ranging from 56 to 131 Bq kg(-1), for Yenikoy CPP is 138 ± 20 Bq kg(-1) ranging from 115 to 189 Bq kg(-1), for Kemerkoy CPP is 238 ± 80 Bq kg(-1) ranging from 134 to 356 Bq kg(-1) in coal; average activity concentrations of (226)Ra in fly ash and in bottom ash for above-mentioned power plants are 334 ± 60 Bq kg(-1) ranging from 291 to 481 Bq kg(-1), 461 ± 33 Bq kg(-1) ranging from 398 to 511 Bq kg(-1), 815 ± 254 Bq kg(-1) ranging from 316 to 1260 Bq kg(-1), 276 ± 51 Bq kg(-1) ranging from 222 to 349 Bq kg(-1), 285 ± 69 Bq kg(-1) ranging from 213 to 409 Bq kg(-1), 743 ± 234 Bq kg(-1) ranging from 366 to 1098 Bq kg(-1), respectively. The radionuclides activity concentrations of surface soil in the vicinity of coal-fired power plants are 32 ± 9 Bq kg(-1) (18-53 Bq kg(-1)) for (226)Ra, 37 ± 16 Bq kg(-1) (17-89 Bq kg(-1)) for (232)Th, 455 ± 165 Bq kg(-1) (203-794 Bq kg(-1)) for (40)K relevant to Yatagan CPP; 42 ± 30 Bq kg(-1) (9-168 Bq kg(-1)) for (226)Ra, 32 ± 14 Bq kg(-1) (6-74 Bq kg(-1)) for (232)Th, 365 ± 151 Bq kg(-1) (117-937 Bq kg(-1)) for (40)K relevant to Yenikoy and Kemerkoy CPP. As a result, average dose rates in the vicinity of coal-fired power plants have been calculated to be 56 ± 16 nGy h(-1) ranging from 30 to 100 nGy h(-1) for Yatagan CPP, 54 ± 22 nGy h(-1) ranging from 15 to 126 nGy h(-1) for Yenikoy and Kemerkoy CPP. To sum up, the natural radionuclide activity concentrations of burnt coal and ashes thrown out from these three power plants are quite high relative to the world average UNSCEAR[1] data. In addition, the average (226)Ra, (232)Th and (40)K activity concentration values of surface soil samples and the calculated gamma dose rates in the vicinity of power plants were located within the worldwide intervals reported by UNSCEAR,[30] with some local differences.

  1. Lead Exposure in Military Outdoor Firing Ranges.

    PubMed

    Greenberg, Nili; Frimer, Ron; Meyer, Robert; Derazne, Estella; Chodick, Gabrial

    2016-09-01

    Several studies have reported significant airborne lead exposures during training at indoor firing ranges. Scarce attention has been given to airborne lead exposures in outdoor shooting ranges with automatic weapons. To assess the prevalence and magnitude of airborne and blood lead levels (BLL) among firing instructors and shooters in military outdoor ranges. Exposure assessment, for both trainees and instructors, included airborne and BLL during basic and advanced training at outdoor firing ranges. Personal airborne samples were collected in both day and night shooting during both training periods. During basic training, there is 95% likelihood that up to 25% of instructors and 99% likelihood that up to 5% of trainees might be exposed above the action level (AL) (25 μg/m(3)). During advanced training, there is 90% likelihood that 10% of instructors and 99% likelihood that up to 10% of trainees might be exposed above the AL. Military personnel participating in automatic weapon marksmanship training can be exposed to considerable levels of airborne lead during outdoor firing range training. As a result, the Israel Defense Force Medical Corp has classified firing range instructors as workers that require periodic medical examinations. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  2. An investigation on polycyclic aromatic hydrocarbon emissions from pulverized coal combustion systems

    PubMed

    Pisupati; Wasco; Scaroni

    2000-05-29

    Results from a series of tests conducted to study the emission of polynuclear or polycyclic aromatic hydrocarbons (PAHs) from bench-scale and small industrial, water-tube boiler are discussed. A Middle Kittanning, and Upper Freeport seam coals were used in the study. Samples were extracted from the reactor outlet and from the inlet and outlet sides of the research boiler's (RB) baghouse using EPA promulgated methods.Only acenaphthene and fluoranthene were detected in down-fired combustor (DFC) samples. In addition to these two, naphthalene was detected in the RB samples. Emission factors ranged from 80 to 320 &mgr;g/kg of fuel fired. Although there were minor trends in the emissions' data, given the reproducibility limits for PAH compounds, no significant differences were found in the emissions with respect to the fuel type or form (pulverized coal (PC) vs. coal-water slurry fuel (CWSF), and raw vs. cleaned coal) and firing conditions (high and low excess air). The PAH emissions showed a decrease with increase in the firing rate.A bench-scale drop-tube reactor (DTR) was used to study the effects of temperature and residence time on PAH formation. The results revealed near constant PAH concentrations in the solid-phase samples, while the PAH concentrations in the vapor-phase samples increased as a function of temperature. At a temperature of around 1300 degrees C, the rate of PAH formation was exceeded by the rate of PAH oxidation, and PAH concentrations in the vapor phase began to decrease.

  3. Optimization of Skill Retention in the U. S. Army through Initial Training Analysis and Design: Skill Sustainment Exercises. Volume 3.

    DTIC Science & Technology

    1983-05-01

    Firing data cards. PROCEDURES I. Prior to live fire exercises all firers must be oriented on range procedures. 2. Preparatory marksmanship training...Ordnance detail. 2. Range safety officer. 7. Medical personnel. 3. Firing line safety NCOs. 8. Control tower operators. i 4. Scorer (I per firer ). 9. Pit...phones and wire (for PIT commo). PROCEDURES I. Prior to live fire exercises, all firers must be oriented on range procedures. 2. Scorers are responsible

  4. Noise promotes independent control of gamma oscillations and grid firing within recurrent attractor networks

    PubMed Central

    Solanka, Lukas; van Rossum, Mark CW; Nolan, Matthew F

    2015-01-01

    Neural computations underlying cognitive functions require calibration of the strength of excitatory and inhibitory synaptic connections and are associated with modulation of gamma frequency oscillations in network activity. However, principles relating gamma oscillations, synaptic strength and circuit computations are unclear. We address this in attractor network models that account for grid firing and theta-nested gamma oscillations in the medial entorhinal cortex. We show that moderate intrinsic noise massively increases the range of synaptic strengths supporting gamma oscillations and grid computation. With moderate noise, variation in excitatory or inhibitory synaptic strength tunes the amplitude and frequency of gamma activity without disrupting grid firing. This beneficial role for noise results from disruption of epileptic-like network states. Thus, moderate noise promotes independent control of multiplexed firing rate- and gamma-based computational mechanisms. Our results have implications for tuning of normal circuit function and for disorders associated with changes in gamma oscillations and synaptic strength. DOI: http://dx.doi.org/10.7554/eLife.06444.001 PMID:26146940

  5. Synthesis and characterization of carbon microsphere for extinguishing sodium fire

    NASA Astrophysics Data System (ADS)

    Snehalatha, V.; Ponraju, D.; Nashine, B. K.; Chellapandi, P.

    2013-06-01

    In Sodium cooled Fast breeder Reactors (SFRs), accidental leakage of liquid sodium leads to sodium fire. Carbon microsphere is a promising and novel extinguishant for sodium fire since it possesses high thermal conductivity, chemical inertness and excellent flow characteristics. Low density Carbon microsphere (CMS) with high thermal stability was successfully synthesized from functionalized styrene divinyl benzene copolymer by carbonization under inert atmosphere. Protocol for stepwise carbonization was developed by optimizing heating rate and time of heating. The synthesized CMS was characterized by Densimeter, Scanning Electron Microscope (SEM), Fourier Transfer Infra-Red spectroscopy (FTIR), Thermogravimetry (TG), X-ray Diffraction (XRD) and RAMAN spectroscopy. CMS thus obtained was spherical in shape having diameters ranging between 60 to 80μm with narrow size distribution. The smooth surface of CMS ensures its free flow characteristics. The yield of carbonization process was about 38%. The performance of CMS was tested on small scale sodium. This paper describes the development of carbon microsphere for extinguishing sodium fire and its characteristics.

  6. Exact Solutions for Rate and Synchrony in Recurrent Networks of Coincidence Detectors

    PubMed Central

    Mikula, Shawn; Niebur, Ernst

    2009-01-01

    We provide analytical solutions for mean firing rates and cross-correlations of coincidence detector neurons in recurrent networks with excitatory or inhibitory connectivity with rate-modulated steady-state spiking inputs. We use discrete-time finite-state Markov chains to represent network state transition probabilities, which are subsequently used to derive exact analytical solutions for mean firing rates and cross-correlations. As illustrated in several examples, the method can be used for modeling cortical microcircuits and clarifying single-neuron and population coding mechanisms. We also demonstrate that increasing firing rates do not necessarily translate into increasing cross-correlations, though our results do support the contention that firing rates and cross-correlations are likely to be coupled. Our analytical solutions underscore the complexity of the relationship between firing rates and cross-correlations. PMID:18439133

  7. Small, modular, low-cost coal-fired power plants for the international market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zauderer, B.; Frain, B.; Borck, B.

    1997-12-31

    This paper presents recent operating results of Coal Tech`s second generation, air cooled, slagging coal combustor, and its application to power plants in the 1 to 20 MW range. This 20 MMBtu/hour combustor was installed in a new demonstration plant in Philadelphia, PA in 1995. It contains the combustion components of a 1 MWe coal fired power plant, a 17,500 lb/hour steam boiler, coal storage and feed components, and stack gas cleanup components. The plant`s design incorporates improvements resulting from 2,000 hours of testing between 1987 and 1993 on a first generation, commercial scale, air cooled combustor of equal thermalmore » rating. Since operations began in early 1996, a total of 51 days of testing have been successfully completed. Major results include durability of the combustor`s refractory wall, excellent combustion with high ash concentration in the fuel, removal of 95% to 100% of the slag in the combustor, very little ash deposition in the boiler, major reduction of in-plant parasitic power, and simplified power system control through the use of modular designs of sub-systems and computer control. Rapid fuel switching between oil, gas, and coal and turndown of up to a factor of three was accomplished. All these features have been incorporated in advanced coal fired plant designs in the 1 to 20 MWe range. Incremental capital costs are only $100 to $200/kW higher than comparable rated gas or oil fired steam generating systems. Most of its components and subsystems can be factory assembled for very rapid field installation. The low capital, low operating costs, fuel flexibility, and compatibility with very high ash fuels, make this power system very attractive in regions of the world having domestic supplies of these fuels.« less

  8. Developmental metaplasticity in neural circuit codes of firing and structure.

    PubMed

    Baram, Yoram

    2017-01-01

    Firing-rate dynamics have been hypothesized to mediate inter-neural information transfer in the brain. While the Hebbian paradigm, relating learning and memory to firing activity, has put synaptic efficacy variation at the center of cortical plasticity, we suggest that the external expression of plasticity by changes in the firing-rate dynamics represents a more general notion of plasticity. Hypothesizing that time constants of plasticity and firing dynamics increase with age, and employing the filtering property of the neuron, we obtain the elementary code of global attractors associated with the firing-rate dynamics in each developmental stage. We define a neural circuit connectivity code as an indivisible set of circuit structures generated by membrane and synapse activation and silencing. Synchronous firing patterns under parameter uniformity, and asynchronous circuit firing are shown to be driven, respectively, by membrane and synapse silencing and reactivation, and maintained by the neuronal filtering property. Analytic, graphical and simulation representation of the discrete iteration maps and of the global attractor codes of neural firing rate are found to be consistent with previous empirical neurobiological findings, which have lacked, however, a specific correspondence between firing modes, time constants, circuit connectivity and cortical developmental stages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range.

    PubMed

    Sherriff, Rosemary L; Platt, Rutherford V; Veblen, Thomas T; Schoennagel, Tania L; Gartner, Meredith H

    2014-01-01

    Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions.

  10. Historical, Observed, and Modeled Wildfire Severity in Montane Forests of the Colorado Front Range

    PubMed Central

    Sherriff, Rosemary L.; Platt, Rutherford V.; Veblen, Thomas T.; Schoennagel, Tania L.; Gartner, Meredith H.

    2014-01-01

    Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions. PMID:25251103

  11. A systematic approach to selecting task relevant neurons.

    PubMed

    Kahn, Kevin; Saxena, Shreya; Eskandar, Emad; Thakor, Nitish; Schieber, Marc; Gale, John T; Averbeck, Bruno; Eden, Uri; Sarma, Sridevi V

    2015-04-30

    Since task related neurons cannot be specifically targeted during surgery, a critical decision to make is to select which neurons are task-related when performing data analysis. Including neurons unrelated to the task degrade decoding accuracy and confound neurophysiological results. Traditionally, task-related neurons are selected as those with significant changes in firing rate when a stimulus is applied. However, this assumes that neurons' encoding of stimuli are dominated by their firing rate with little regard to temporal dynamics. This paper proposes a systematic approach for neuron selection, which uses a likelihood ratio test to capture the contribution of stimulus to spiking activity while taking into account task-irrelevant intrinsic dynamics that affect firing rates. This approach is denoted as the model deterioration excluding stimulus (MDES) test. MDES is compared to firing rate selection in four case studies: a simulation, a decoding example, and two neurophysiology examples. The MDES rankings in the simulation match closely with ideal rankings, while firing rate rankings are skewed by task-irrelevant parameters. For decoding, 95% accuracy is achieved using the top 8 MDES-ranked neurons, while the top 12 firing-rate ranked neurons are needed. In the neurophysiological examples, MDES matches published results when firing rates do encode salient stimulus information, and uncovers oscillatory modulations in task-related neurons that are not captured when neurons are selected using firing rates. These case studies illustrate the importance of accounting for intrinsic dynamics when selecting task-related neurons and following the MDES approach accomplishes that. MDES selects neurons that encode task-related information irrespective of these intrinsic dynamics which can bias firing rate based selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Disturbances of motor unit rate modulation are prevalent in muscles of spastic-paretic stroke survivors

    PubMed Central

    Heckman, C. J.; Powers, R. K.; Rymer, W. Z.; Suresh, N. L.

    2014-01-01

    Stroke survivors often exhibit abnormally low motor unit firing rates during voluntary muscle activation. Our purpose was to assess the prevalence of saturation in motor unit firing rates in the spastic-paretic biceps brachii muscle of stroke survivors. To achieve this objective, we recorded the incidence and duration of impaired lower- and higher-threshold motor unit firing rate modulation in spastic-paretic, contralateral, and healthy control muscle during increases in isometric force generated by the elbow flexor muscles. Impaired firing was considered to have occurred when firing rate became constant (i.e., saturated), despite increasing force. The duration of impaired firing rate modulation in the lower-threshold unit was longer for spastic-paretic (3.9 ± 2.2 s) than for contralateral (1.4 ± 0.9 s; P < 0.001) and control (1.1 ± 1.0 s; P = 0.005) muscles. The duration of impaired firing rate modulation in the higher-threshold unit was also longer for the spastic-paretic (1.7 ± 1.6 s) than contralateral (0.3 ± 0.3 s; P = 0.007) and control (0.1 ± 0.2 s; P = 0.009) muscles. This impaired firing rate of the lower-threshold unit arose, despite an increase in the overall descending command, as shown by the recruitment of the higher-threshold unit during the time that the lower-threshold unit was saturating, and by the continuous increase in averages of the rectified EMG of the biceps brachii muscle throughout the rising phase of the contraction. These results suggest that impairments in firing rate modulation are prevalent in motor units of spastic-paretic muscle, even when the overall descending command to the muscle is increasing. PMID:24572092

  13. Delayed excitatory and inhibitory feedback shape neural information transmission

    NASA Astrophysics Data System (ADS)

    Chacron, Maurice J.; Longtin, André; Maler, Leonard

    2005-11-01

    Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges.

  14. Characterization of exposure to byproducts from firing lead-free frangible ammunition in an enclosed, ventilated firing range.

    PubMed

    Grabinski, Christin M; Methner, Mark M; Jackson, Jerimiah M; Moore, Alexander L; Flory, Laura E; Tilly, Trevor; Hussain, Saber M; Ott, Darrin K

    2017-06-01

    U.S. Air Force small arms firing ranges began using copper-based, lead-free frangible ammunition in the early 2000s due to environmental and health concerns related to the use of lead-based ammunition. Exposure assessments at these firing ranges have routinely detected chemicals and metals in amounts much lower than their mass-based occupational exposure limits, yet, instructors report work-related health concerns including respiratory distress, nausea, and headache. The objective of this study at one firing range was to characterize the aerosol emissions produced by weapons during firing events and evaluate the ventilation system's effectiveness in controlling instructor exposure to these emissions. The ventilation system was assessed by measuring the range static air pressure differential and the air velocity at the firing line. Air flow patterns were near the firing line. Instructor exposure was sampled using a filter-based air sampling method for metals and a wearable, real-time ultrafine particle counter. Area air sampling was simultaneously performed to characterize the particle size distribution, morphology, and composition. In the instructor's breathing zone, the airborne mass concentration of copper was low (range = <1 µg/m 3 to 16 µg/m 3 ), yet the ultrafine (nanoscale) particle number concentration increased substantially during each firing event. Ultrafine particles contained some copper and were complex in morphology and composition. The ventilation assessment found that the average velocity across all shooting lanes was acceptable compared to the recommended guideline (20% of the ideal 0.38 m/s (75 ft/min). However, uniform, downrange airflow pattern requirements were not met. These results suggest that the mass-based occupational exposure limits, as applied to this environment, may not be protective enough to eliminate health complaints reported by instructors whose full-time job involves training personnel on weapons that fire lead-free frangible ammunition. Using an ultrafine particle counter appears to be an alternative method of assessing ventilation effectiveness in removing ultrafine particulate produced during firing events.

  15. Variations in soil detachment rates after wildfire as a function of soil depth, flow properties, and root properties

    USGS Publications Warehouse

    Moody, John A.; Nyman, Peter

    2013-01-01

    Wildfire affects hillslope erosion through increased surface runoff and increased sediment availability, both of which contribute to large post-fire erosion events. Relations between soil detachment rate, soil depth, flow and root properties, and fire impacts are poorly understood and not represented explicitly in commonly used post-fire erosion models. Detachment rates were measured on intact soil cores using a modified tilting flume. The cores were mounted flush with the flume-bed and a measurement was made on the surface of the core. The core was extruded upward, cut off, and another measurement was repeated at a different depth below the original surface of the core. Intact cores were collected from one site burned by the 2010 Fourmile Canyon (FMC) fire in Colorado and from one site burned by the 2010 Pozo fire in California. Each site contained contrasting vegetation and soil types. Additional soil samples were collected alongside the intact cores and were analyzed in the laboratory for soil properties (organic matter, bulk density, particle-size distribution) and for root properties (root density and root-length density). Particle-size distribution and root properties were different between sites, but sites were similar in terms of bulk density and organic matter. Soil detachment rates had similar relations with non-uniform shear stress and non-uniform unit stream power. Detachment rates within single sampling units displayed a relatively weak and inconsistent relation to flow variables. When averaged across all clusters, the detachment rate displayed a linear relation to shear stress, but variability in soil properties meant that the shear stress accounted for only a small proportion of the overall variability in detachment rates (R2 = 0.23; R2 is the coefficient of determination). Detachment rate was related to root-length density in some clusters (R2 values up to 0.91) and unrelated in others (R2 values 2 value improved and the range of exponents became narrower by applying a multivariate regression model where boundary shear stress and root-length density were included as explanatory variables. This suggests that an erodibility parameter which incorporates the effects of both flow and root properties on detachment could improve the representation of sediment availability after wildfire.

  16. BehavePlus fire modeling system: Past, present, and future

    Treesearch

    Patricia L. Andrews

    2007-01-01

    Use of mathematical fire models to predict fire behavior and fire effects plays an important supporting role in wildland fire management. When used in conjunction with personal fire experience and a basic understanding of the fire models, predictions can be successfully applied to a range of fire management activities including wildfire behavior prediction, prescribed...

  17. The 2002 Hayman Fire - ecological benefit or catastrophe? An understory plant community perspective

    Treesearch

    Paula Fornwalt

    2013-01-01

    Fire has long been a keystone ecological process in Western forests. In ponderosa pine (Pinus ponderosa)/Douglas-fir (Pseudotsuga menziesii) forests of the Colorado Front Range, historical fires are believed to have been "mixed severity" in nature. That means that these fires are believed to have typically burned within a range of severities from low severity...

  18. Implications of introducing realistic fire response traits in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Kelley, D.; Harrison, S. P.; Prentice, I. C.

    2013-12-01

    Bark thickness is a key trait protecting woody plants against fire damage, while the ability to resprout is a trait that confers competitive advantage over non-resprouting individuals in fire-prone landscapes. Neither trait is well represented in fire-enabled dynamic global vegetation models (DGVMs). Here we describe a version of the Land Processes and eXchanges (LPX-Mv1) DGVM that incorporates both of these traits in a realistic way. From a synthesis of a large number of field studies, we show there is considerable innate variability in bark thickness between species within a plant-functional type (PFT). Furthermore, bark thickness is an adaptive trait at ecosystem level, increasing with fire frequency. We use the data to specify the range of bark thicknesses characteristic of each model PFT. We allow this distribution to change dynamically: thinner-barked trees are killed preferentially by fire, shifting the distribution of bark thicknesses represented in a model grid cell. We use the PFT-specific bark-thickness probability range for saplings during re-establishment. Since it is rare to destroy all trees in a grid cell, this treatment results in average bark thickness increasing with fire frequency and intensity. Resprouting is a prominent adaptation of temperate and tropical trees in fire-prone areas. The ability to resprout from above-ground tissue (apical or epicormic resprouting) results in the fastest recovery of total biomass after disturbance; resprouting from basal or below-ground meristems results in slower recovery, while non-resprouting species must regenerate from seed and therefore take the longest time to recover. Our analyses show that resprouting species have thicker bark than non-resprouting species. Investment in resprouting is accompanied by reduced efficacy of regeneration from seed. We introduce resprouting PFTs in LPX-Mv1 by specifying an appropriate range of bark thickness, allowing resprouters to survive fire and regenerate vegetatively in the next growing season, while regenerating from seed at 10% the rate of non-resprouters. Tests of LPX-Mv1 for Australia - a continent with a wide range of fire-adapted ecosystems - show that it produces a 33% improvement in the simulation of vegetation composition compared to the previous version of the model, with more realistic vegetation transitions from forests to woodland/savanna. It also produces a 19% improvement in the simulation of burnt area compared to the original model. Resprouting PFTs dominate tropical and temperate areas where the climate is semi-humid but are not common in very dry or very wet areas. Comparison with site-based observations of the abundance of resprouters indicate this is realistic. Ecosystems dominated by resprouters in the simulations recover to pre-fire levels of biomass within 5-7 years, much faster than ecosystems dominated by non-resprouters; again this is confirmed by our analyses of the observations. Simulations of the response to projected future climate change show that the incorporation of adaptive bark thickness and of resprouting has a significant effect on terrestrial carbon stocks in fire-affected areas.

  19. Contents and leachability of heavy metals (Pb, Cu, Sb, Zn, As) in soil at the Pantex firing range, Amarillo, Texas.

    PubMed

    Basunia, S; Landsberger, S

    2001-10-01

    Pantex firing range soil samples were analyzed for Pb, Cu, Sb, Zn, and As. One hundred ninety-seven samples were collected from the firing range and vicinity area. There was a lack of knowledge about the distribution of Pb in the firing range, so a random sampling with proportional allocation was chosen. Concentration levels of Pb and Cu in the firing range were found to be in the range of 11-4675 and 13-359 mg/kg, respectively. Concentration levels of Sb were found to be in the range of 1-517 mg/kg. However, the Zn and As concentration levels were close to average soil background levels. The Sn concentration level was expected to be higher in the Pantex firing range soil samples. However, it was found to be below the neutron activation analysis (NAA) detection limit of 75 mg/kg. Enrichment factor analysis showed that Pb and Sb were highly enriched in the firing range with average magnitudes of 55 and 90, respectively. Cu was enriched approximately 6 times more than the usual soil concentration levels. Toxicity characteristic leaching procedure (TCLP) was carried out on size-fractionated homogeneous soil samples. The concentration levels of Pb in leachates were found to be approximately 12 times higher than the U.S. Environmental Protection Agency (EPA) regulatory concentration level of 5 mg/L. Sequential extraction (SE) was also performed to characterize Pb and other trace elements into five different fractions. The highest Pb fraction was found with organic matter in the soil.

  20. Assessing fire risk in Portugal during the summer fire season

    NASA Astrophysics Data System (ADS)

    Dacamara, C. C.; Pereira, M. G.; Trigo, R. M.

    2009-04-01

    Since 1998, Instituto de Meteorologia, the Portuguese Weather Service has relied on the Canadian Fire Weather Index (FWI) System (van Wagner, 1987) to produce daily forecasts of fire risk. The FWI System consists of six components that account for the effects of fuel moisture and wind on fire behavior. The first three components, i.e. the Fine Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC) and the Drought Code (DC) respectively rate the average moisture content of surface litter, decomposing litter, and organic (humus) layers of the soil. Wind effects are then added to FFMC leading to the Initial Spread Index (ISI) that rates fire spread. The remaining two fuel moisture codes (DMC and DC) are in turn combined to produce the Buildup Index (BUI) that is a rating of the total amount of fuel available for combustion. BUI is finally combined with ISI to produce the Fire Weather Index (FWI) that represents the rate of fire intensity. Classes of fire danger and levels of preparedness are commonly defined on an empirical way for a given region by calibrating the FWI System against wildfire activity as defined by the recorded number of events and by the observed burned area over a given period of time (Bovio and Camia, 1998). It is also a well established fact that distributions of burned areas are heavily skewed to the right and tend to follow distributions of the exponential-type (Cumming, 2001). Based on the described context, a new procedure is presented for calibrating the FWI System during the summer fire season in Portugal. Two datasets were used covering a 28-year period (1980-2007); i) the official Portuguese wildfire database which contains detailed information on fire events occurred in the 18 districts of Continental Portugal and ii) daily values of the six components of the FWI System as derived from reanalyses (Uppala et al., 2005) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Calibration of the FWI System is then performed in two steps; 1) a truncated Weibull distribution is fitted to the sample of burned areas and 2) the quality of the fitted statistical model is improved by incorporating components of the FWI System as covariates. Obtained model allows estimating on a daily basis the probability of occurrence of fires larger than a given threshold as well as producing maps of fire risk. Results as obtained from a prototype currently being developed will be presented and discussed. In particular, it will be shown that results provide additional evidence of the known fact that the extent of burned area in Portugal is controlled by two main atmospheric factors (Pereira et al. 2005): i) a long-term control related to the regime of temperature and precipitation in spring and ii) a short-term control exerted by the occurrence of very intense dry spells in days of extreme synoptic situations. Bovio, G., and A. Camia. 1998. An analysis of large forest fire danger conditions in Europe. In Proc. 3rd Int. Conf. on Forest Fire Research & 14th Conf. on Fire and Forest Meteorology, Viegas, D.X. (Ed.), Luso, 16-20 Nov., ADAI, 975-994. Cumming, S.G., 2001. Parametric models of the fire size distribution. Can J. For. Res., 31, 1297-1303. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C. and Leite, S.M., 2005. Synoptic patterns associated with large summer forest fires in Portugal. Agr. and For. Meteorol., 129 (1-2), 11-25. Uppala, S.M. et al., 2005: The ERA-40 re-analysis. Quart. J. R. Meteorol. Soc., 131, 2961-3012. Van Wagner, C.E., 1987. Development and structure of the Canadian forest fire weather index system. Canadian Forestry Service, Forest Technical Report 35, Ottawa, 37 pp.

  1. Post-fire land management: Comparative effects of different strategies on hillslope sediment yield

    NASA Astrophysics Data System (ADS)

    Cole, R.; Bladon, K. D.; Wagenbrenner, J.; Coe, D. B. R.

    2017-12-01

    High-severity wildfire can increase erosion on burned, forested hillslopes. Salvage logging is a post-fire land management practice to extract economic value from burned landscapes, reduce fuel loads, and improve forest safety. Few studies assess the impact of post-fire salvage logging or alternative land management approaches on erosion in forested landscapes, especially in California. In September 2015, the Valley Fire burned approximately 31,366 ha of forested land and wildland-urban interface in the California's Northern Coast Range, including most of Boggs Mountain Demonstration State Forest. The primary objective of our study is to quantify erosion rates at the plot scale ( 75 m2) for different post-fire land management practices, including mechanical logging and subsoiling (or ripping) after logging. We measured sediment yields using sediment fences in four sets of replicated plots. We also estimated ground cover in each plot using three randomly positioned 1-meter quadrats. We are also measuring rainfall near each plot to understand hydrologic factors that influence erosion. Preliminary results indicate that burned, unlogged reference plots yielded the most sediment over the winter rainy season (3.3 kg m-2). Sediment yields of burned and logged (0.9 kg m-2), and burned, logged, and ripped (0.7 kg m-2), were substantially lower. Burned and unlogged reference plots had the least ground cover (49%), while ground cover was higher and more similar between logged (65%) and logged and ripped (72%) plots. These initial results contrast with previous studies in which the effect of post-fire salvage logging ranged from no measured impact to increased sediment yield related to salvage logging.

  2. Experimental research on the infrared gas fire detection system

    NASA Astrophysics Data System (ADS)

    Jiang, Yalong; Liu, Yangyang

    2018-02-01

    Open fires and smoldering fires were differentiated using five experiments: wood pyrolysis, polyurethane smoldering, wood fire, polyurethane fire and cotton rope smoldering. At the same time, the distribution of CO2 and CO concentration in combustion products at different heights was studied. Real fire and environmental interference were distinguished using burning cigarettes and sandalwood. The results showed that open fires and smoldering fires produced significantly different ratios of CO2 and CO concentrations. By judging the order of magnitudes of the ratio CO2 and CO concentrations in the combustion products, open fire and smoldering fire could be effectively distinguished. At the same time, the comparison experiment showed that the rate of increase of the concentration of CO in the smoldering fire was higher than that under non-fire conditions. With the criterion of the rate of increase of CO concentration, smoldering fire and non-fire could be distinguished.

  3. Ventilation of Animal Shelters in Wildland Fire Scenarios

    NASA Astrophysics Data System (ADS)

    Bova, A. S.; Bohrer, G.; Dickinson, M. B.

    2009-12-01

    The effects of wildland fires on cavity-nesting birds and bats, as well as fossorial mammals and burrow-using reptiles, are of considerable interest to the fire management community. However, relatively little is known about the degree of protection afforded by various animal shelters in wildland fire events. We present results from our ongoing investigation, utilizing NIST’s Fire Dynamics Simulator (FDS) and experimental data, of the effectiveness of common shelter configurations in protecting animals from combustion products. We compare two sets of simulations with observed experimental results. In the first set, wind tunnel experiments on single-entry room ventilation by Larsen and Heiselberg (2008) were simulated in a large domain resolved into 10 cm cubic cells. The set of 24 simulations comprised all combinations of incident wind speeds of 1,3 and 5 m/s; angles of attack of 0, 45, 90 and 180 degrees from the horizontal normal to the entrance; and temperature differences of 0 and 10 degrees C between the building interior and exterior. Simulation results were in good agreement with experimental data, thus providing a validation of FDS code for further ventilation experiments. In the second set, a cubic simulation domain of ~1m on edge and resolved into 1 cm cubic cells, was set up to represent the experiments by Ar et al. (2004) of wind-induced ventilation of woodpecker cavities. As in the experiments, we simulated wind parallel and perpendicular to the cavity entrance with different mean forcing velocities, and monitored the rates of evacuation of a neutral-buoyancy tracer from the cavity. Simulated ventilation rates in many, though not all, cases fell within the range of experimental data. Reasons for these differences, which include vagueness in the experimental setup, will be discussed. Our simulations provide a tool to estimate the viability of an animal in a shelter as a function of the shelter geometry and the fire intensity. In addition to the above, we explore the role of turbulence and its effect on ventilation rates, especially in single-entrance shelters. The goal of this work is to provide engineering formulas to estimate the probable levels of harmful or irritating combustion products in animal shelters during wildland fires.

  4. Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA

    NASA Astrophysics Data System (ADS)

    Jackson, Molly; Roering, Joshua J.

    2009-06-01

    The role of fire in shaping steep, forested landscapes depends on a suite of hydrologic, biologic, and geological characteristics, including the propensity for hydrophobic soil layers to promote runoff erosion during subsequent rainfall events. In the Oregon Coast Range, several studies postulate that fire primarily modulates sediment production via root reinforcement and shallow landslide susceptibility, although few studies have documented post-fire geomorphic response. Here, we describe field observations and topographic analyses for three sites in the central Oregon Coast Range that burned in 1999, 2002, and 2003. The fires generated strongly hydrophobic soil layers that did not promote runoff erosion because the continuity of the layers was interrupted by pervasive discontinuities that facilitated rapid infiltration. At each of our sites, fire generated significant colluvial transport via dry ravel, consistent with other field-based studies in the western United States. Fire-driven dry ravel accumulation in low-order valleys of our Sulphur Creek site equated to a slope-averaged landscape lowering of 2.5 mm. Given Holocene estimates of fire frequency, these results suggest that fire may contribute 10-20% of total denudation across steep, dissected portions of the Oregon Coast Range. In addition, we documented more rapid decline of root strength at our sites than has been observed after timber harvest, suggesting that root strength was compromised prior to fire or that intense heat damaged roots in the shallow subsurface. Given that fire frequencies in the Pacific Northwest are predicted to increase with continued climate change, our findings highlight the importance of fire-induced dry ravel and post-fire debris flow activity in controlling sediment delivery to channels.

  5. Occupational Lead Exposure from Indoor Firing Ranges in Korea

    PubMed Central

    Lee, Suk-Ho; Lee, Se-Ho; Yoon, Hye-Sik

    2016-01-01

    Military personnel often use ammunitions that contain lead. The present study aimed to identify the risks for lead exposure and lead poisoning among workers at indoor firing ranges. A special health examination, including blood lead level (BLL) testing, was performed for all 120 workers at the indoor firing ranges of the Republic of Korea’s Air Force, Navy, and Armed Forces Athletic Corps. The overall mean BLL was 11.3 ± 9.4 µg/dL (range: 2.0–64.0 µg/dL). The arithmetic mean of the BLL for professional shooters belong to Armed Forces Athletic Corps was 14.0 ± 8.3 µg/dL, while those of shooting range managers and shooting range supervisors were 13.8 ± 11.1 µg/dL and 6.4 ± 3.1 µg/dL, respectively. One individual had a BLL of 64 µg/dL, and ultimately completed chelation treatment (with CaNa2-ethylenediaminetetraacetic acid) without any adverse effects. These findings indicate that indoor firing range workers are exposed to elevated levels of lead. Therefore, when constructing an indoor firing range, a specialist should be engaged to design and assess the ventilation system; and safety guidelines regarding ammunition and waste handling must be mandatory. Moreover, workplace environmental monitoring should be implemented for indoor firing ranges, and the workers should undergo regularly scheduled special health examinations. PMID:27051231

  6. Occupational Lead Exposure from Indoor Firing Ranges in Korea.

    PubMed

    Park, Won-Ju; Lee, Suk-Ho; Lee, Se-Ho; Yoon, Hye-Sik; Moon, Jai-Dong

    2016-04-01

    Military personnel often use ammunitions that contain lead. The present study aimed to identify the risks for lead exposure and lead poisoning among workers at indoor firing ranges. A special health examination, including blood lead level (BLL) testing, was performed for all 120 workers at the indoor firing ranges of the Republic of Korea's Air Force, Navy, and Armed Forces Athletic Corps. The overall mean BLL was 11.3 ± 9.4 µg/dL (range: 2.0-64.0 µg/dL). The arithmetic mean of the BLL for professional shooters belong to Armed Forces Athletic Corps was 14.0 ± 8.3 µg/dL, while those of shooting range managers and shooting range supervisors were 13.8 ± 11.1 µg/dL and 6.4 ± 3.1 µg/dL, respectively. One individual had a BLL of 64 µg/dL, and ultimately completed chelation treatment (with CaNa2-ethylenediaminetetraacetic acid) without any adverse effects. These findings indicate that indoor firing range workers are exposed to elevated levels of lead. Therefore, when constructing an indoor firing range, a specialist should be engaged to design and assess the ventilation system; and safety guidelines regarding ammunition and waste handling must be mandatory. Moreover, workplace environmental monitoring should be implemented for indoor firing ranges, and the workers should undergo regularly scheduled special health examinations.

  7. Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wildland fire management decision support

    Treesearch

    Zachary A. Holden; W. Matt Jolly

    2011-01-01

    Fire danger rating systems commonly ignore fine scale, topographically-induced weather variations. These variations will likely create heterogeneous, landscape-scale fire danger conditions that have never been examined in detail. We modeled the evolution of fuel moistures and the Energy Release Component (ERC) from the US National Fire Danger Rating System across the...

  8. Computer program for calculating and plotting fire direction and rate of spread.

    Treesearch

    James E. Eenigenburg

    1987-01-01

    Presents an analytical procedure that uses a FORTRAN 77 program to estimate fire direction and rate of spread. The program also calculates the variability of these parameters, both for subsections of the fire and for the fires as a whole. An option in the program allows users with a CALCOMP plotter to obtain a map of the fire with spread vectors.

  9. Rates of initial spread of free-burning fires on the National Forests of California

    Treesearch

    C.A. Abell

    1940-01-01

    As early as 1914 Coert DuBois and his staff recognized that knowledge of the rates which fires spread was essential to sound fire control planning, strategy, and tactics, and therefore designed the fire report form so that such data might be accumulated. Although the individual fire report form has changed appreciably since that time, the supply of data has grown...

  10. Control effects of stimulus paradigms on characteristic firings of parkinsonism

    NASA Astrophysics Data System (ADS)

    Zhang, Honghui; Wang, Qingyun; Chen, Guanrong

    2014-09-01

    Experimental studies have shown that neuron population located in the basal ganglia of parkinsonian primates can exhibit characteristic firings with certain firing rates differing from normal brain activities. Motivated by recent experimental findings, we investigate the effects of various stimulation paradigms on the firing rates of parkinsonism based on the proposed dynamical models. Our results show that the closed-loop deep brain stimulation is superior in ameliorating the firing behaviors of the parkinsonism, and other control strategies have similar effects according to the observation of electrophysiological experiments. In addition, in conformity to physiological experiments, we found that there exists optimal delay of input in the closed-loop GPtrain|M1 paradigm, where more normal behaviors can be obtained. More interestingly, we observed that W-shaped curves of the firing rates always appear as stimulus delay varies. We furthermore verify the robustness of the obtained results by studying three pallidal discharge rates of the parkinsonism based on the conductance-based model, as well as the integrate-and-fire-or-burst model. Finally, we show that short-term plasticity can improve the firing rates and optimize the control effects on parkinsonism. Our conclusions may give more theoretical insight into Parkinson's disease studies.

  11. SCAR-B fires in the tropics: Properties and remote sensing from EOS-MODIS

    NASA Astrophysics Data System (ADS)

    Kaufman, Yoram J.; Kleidman, Richard G.; King, Michael D.

    1998-12-01

    Two moderate resolution imaging spectroradiometer (MODIS) instruments are planned for launch in 1999 and 2000 on the NASA Earth Observing System (EOS) AM-1 and EOS PM-1 satellites. The MODIS instrument will sense fires with designated 3.9 and 11 μm channels that saturate at high temperatures (450 and 400 K, respectively). MODIS data will be used to detect fires, to estimate the rate of emission of radiative energy from the fire, and to estimate the fraction of biomass burned in the smoldering phase. The rate of emission of radiative energy is a measure of the rate of combustion of biomass in the fires. In the Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment the NASA ER-2 aircraft flew the MODIS airborne simulator (MAS) to measure the fire thermal and mid-IR signature with a 50 m spatial resolution. These data are used to observe the thermal properties and sizes of fires in the cerrado grassland and Amazon forests of Brazil and to simulate the performance of the MODIS 1 km resolution fire observations. Although some fires saturated the MAS 3.9 μm channel, all the fires were well within the MODIS instrument saturation levels. Analysis of MAS data over different ecosystems, shows that the fire size varied from single MAS pixels (50×50 m) to over 1 km2. The 1×1 km resolution MODIS instrument can observe only 30-40% of these fires, but the observed fires are responsible for 80 to nearly 100% of the emitted radiative energy and therefore for 80 to 100% of the rate of biomass burning in the region. The rate of emission of radiative energy from the fires correlated very well with the formation of fire burn scars (correlation coefficient = 0.97). This new remotely sensed quantity should be useful in regional estimates of biomass consumption.

  12. Soil charcoal from the plains to tundra in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Sanford, R. L.; Licata, C.

    2010-12-01

    Throughout the forests of the central Rockies, soil charcoal from Holocene wildfires has been produced in response to wildland natural fire regimes. The extent and spatial distribution of soil charcoal production is poorly documented in this region, especially with regard to forests and shrublands at different elevations. Soil charcoal is a super-passive C pool derived from woody biomass that can be sequestered for millennia in forest soils. Recent research indicates that soil charcoal may promote enhanced soil fertility. Additionally, soil charcoal is an often overlooked component of soil C mass and flux. We hypothesize that differences in forest and shrubland fire regimes over the millennia have resulted in different soil charcoal amounts. Geospatial data were used to locate random sample plots in foothills shrublands (Cercocarpus montanus), and four forest types; ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus contorta) and spruce-fir (Picea engelmannii - Abies lasiocarpa). Sample plots were stratified to occur with the mid 200 m elevation band of each vegetation type with east aspect, and 10-30% slope. Soils were sampled widely at 0-10 cm depth and analyzed for total soil C and soil charcoal C via chemical digestion and dry combustion techniques. Overall, soil charcoal is four times more abundant in spruce-fir forests than in foothills shrublands (1.9 +/- 0.92 Mg C/ha versus 0.54 +/- 0.44 Mg C/ha). Soil charcoal is also abundant in lodgepole pine and ponderosa pine soils (1.4 +/- 1.02 Mg C/ha and 1.4 +/- 0.54 Mg C/ha respectively) but is less plentiful in Douglas-fir soils (1.0 +/- 0.67). Spruce-fir forests have the most above ground biomass, slower decomposition rates and a less frequent mean fire return interval than the other four forests, hence it makes sense that high per-fire rates of charcoal production would occur in the spruce-fir zone, given large amounts of surface fuels at the time of fire. In contrast, low amounts of coarse woody debris in ponderosa, lodgepole, and shrub communities would cause less charcoal to form, despite higher fire frequencies. The Douglas-fir soil charcoal seems anomalously low, but it may reflect a combination of low forest floor woody debris and low fire frequency. Foothills shrublands have the least biomass, comparatively rapid decomposition rates and a more frequent mean fire return interval. We propose that high biomass and slow turnover rates in the spruce-fir forests creates conditions for relatively higher net soil charcoal accumulation.

  13. 33 CFR 334.650 - Gulf of Mexico, south of St. George Island, Fla.; test firing range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Gulf of Mexico, south of St. George Island, Fla.; test firing range. 334.650 Section 334.650 Navigation and Navigable Waters CORPS OF....650 Gulf of Mexico, south of St. George Island, Fla.; test firing range. (a) The danger zone. A fan...

  14. 33 CFR 334.650 - Gulf of Mexico, south of St. George Island, Fla.; test firing range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Gulf of Mexico, south of St. George Island, Fla.; test firing range. 334.650 Section 334.650 Navigation and Navigable Waters CORPS OF....650 Gulf of Mexico, south of St. George Island, Fla.; test firing range. (a) The danger zone. A fan...

  15. 33 CFR 334.650 - Gulf of Mexico, south of St. George Island, Fla.; test firing range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Gulf of Mexico, south of St. George Island, Fla.; test firing range. 334.650 Section 334.650 Navigation and Navigable Waters CORPS OF....650 Gulf of Mexico, south of St. George Island, Fla.; test firing range. (a) The danger zone. A fan...

  16. 33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a) The... meanderings of the shore to the point of beginning. (b) The regulations. (1) The fact that aerial rocket...

  17. 33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a) The... meanderings of the shore to the point of beginning. (b) The regulations. (1) The fact that aerial rocket...

  18. 33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a) The... meanderings of the shore to the point of beginning. (b) The regulations. (1) The fact that aerial rocket...

  19. 33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a) The... meanderings of the shore to the point of beginning. (b) The regulations. (1) The fact that aerial rocket...

  20. 33 CFR 334.640 - Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Bay, Fla.; Air Force rocket firing range. 334.640 Section 334.640 Navigation and Navigable Waters... REGULATIONS § 334.640 Gulf of Mexico south of Apalachee Bay, Fla.; Air Force rocket firing range. (a) The... meanderings of the shore to the point of beginning. (b) The regulations. (1) The fact that aerial rocket...

  1. Significant or negligible sediment and nutrient losses after fire? Pre- and post-fire comparisons

    NASA Astrophysics Data System (ADS)

    Shakesby, R. A.; Ferreira, A. J. D.; Ferreira, C. S. S.; Stoof, C. R.; Urbanek, E.; Walsh, R. P. D.

    2009-04-01

    Prescribed fire (or a controlled burn) is a management tool used in wildfire-prone areas to reduce the fuel load of living and dead biomass, while attempting to keep disturbance of the ground surface and soil to a minimum. We know that wildfire, particularly of moderate or extreme severity, can cause important changes to the chemical and physical properties of soil, typically leading to a reduction in aggregate stability, surface roughness and water storage capacity, and an increase in overland flow. It has also been shown that wildfire disturbance can cause major loss of soil, particularly at plot and hillslope scales. There is less information on soil losses at catchment scales, but it is known that losses particularly of organic-rich fine sediment and nutrients can undergo hillslope to channel transfer, where they can affect water quality. Far less research has been carried out into the effects of prescribed fire on soil and nutrient losses at all scales, but particularly at catchment scales. This paper considers the impact of an experimental fire (equivalent to a severe prescribed fire) on soil and nutrient losses. These losses have been monitored at a range of scales (small rainfall simulation plots, long-term erosion plot, erosion plot, hillslope sediment traps (sediment fences) and catchment) before and after the fire in a 10-ha catchment near Góis, central Portugal, which forms part of the 5-year DESIRE research programme concerning desertification and its mitigation at a range of study sites worldwide. The catchment has steep slopes covered mainly with scrub vegetation ranging from c. 0.15 to 2m in height. The soil is thin, stony and highly water repellent. Long-term pre-burn erosion rates are known from a c. 10-year record of soil losses from a small erosion plot (8 x 2m in size) and sediment accumulation in the weir pool of a subcatchment gauging station. Rainfall simulations carried out under dry and wet antecedent conditions before and after the fire, eroded soil collected in sediment fences installed in strategic locations on the catchment slopes and suspended sediment and bedload determinations at the catchment gauging station provide the evidence for pre- and post-fire erosional losses. Comparison with wildfire effects is provided by instrumented scrub-covered hillslopes burnt in early summer 2008 in the same area. In addition to monitoring soil losses in the small catchment, losses of selected nutrients in eroded soil and runoff together with determinations of pre- and post-fire vegetation cover, fuel loads and soil water repellency have been determined. The soil degradational implications are discussed and placed in the context of the literature on prescribed fire and wildfire impacts from elsewhere in the Mediterranean and from further afield.

  2. Pigments which reflect infrared radiation from fire

    DOEpatents

    Berdahl, Paul H.

    1998-01-01

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  3. Fire flame detection based on GICA and target tracking

    NASA Astrophysics Data System (ADS)

    Rong, Jianzhong; Zhou, Dechuang; Yao, Wei; Gao, Wei; Chen, Juan; Wang, Jian

    2013-04-01

    To improve the video fire detection rate, a robust fire detection algorithm based on the color, motion and pattern characteristics of fire targets was proposed, which proved a satisfactory fire detection rate for different fire scenes. In this fire detection algorithm: (a) a rule-based generic color model was developed based on analysis on a large quantity of flame pixels; (b) from the traditional GICA (Geometrical Independent Component Analysis) model, a Cumulative Geometrical Independent Component Analysis (C-GICA) model was developed for motion detection without static background and (c) a BP neural network fire recognition model based on multi-features of the fire pattern was developed. Fire detection tests on benchmark fire video clips of different scenes have shown the robustness, accuracy and fast-response of the algorithm.

  4. Measuring wildland fire fighter performance with wearable technology.

    PubMed

    Parker, Richard; Vitalis, Antonios; Walker, Robyn; Riley, David; Pearce, H Grant

    2017-03-01

    Wildland (rural) fire fighting is a physically demanding and hazardous occupation. An observational study was conducted to explore the use of new technologies for the field study of fire fighters at wildfires and to understand the work pressures of wildland fire fighting. The research was carried out with two fire fighters at real fires wearing microphones, miniature video cameras, heart rate monitors and GPS units to record their actions and location at wildfire events. The fire fighters were exposed to high physiological workloads (heart rates of up to 180 beats per minute) and walked considerable distances at the fires. Results from this study have been used in presentations to fire fighters and non-operational fire personnel to understand the pressures fire fighters are under and how others complete the fire fighting tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Spike Phase Locking in CA1 Pyramidal Neurons depends on Background Conductance and Firing Rate

    PubMed Central

    Broiche, Tilman; Malerba, Paola; Dorval, Alan D.; Borisyuk, Alla; Fernandez, Fernando R.; White, John A.

    2012-01-01

    Oscillatory activity in neuronal networks correlates with different behavioral states throughout the nervous system, and the frequency-response characteristics of individual neurons are believed to be critical for network oscillations. Recent in vivo studies suggest that neurons experience periods of high membrane conductance, and that action potentials are often driven by membrane-potential fluctuations in the living animal. To investigate the frequency-response characteristics of CA1 pyramidal neurons in the presence of high conductance and voltage fluctuations, we performed dynamic-clamp experiments in rat hippocampal brain slices. We drove neurons with noisy stimuli that included a sinusoidal component ranging, in different trials, from 0.1 to 500 Hz. In subsequent data analysis, we determined action potential phase-locking profiles with respect to background conductance, average firing rate, and frequency of the sinusoidal component. We found that background conductance and firing rate qualitatively change the phase-locking profiles of CA1 pyramidal neurons vs. frequency. In particular, higher average spiking rates promoted band-pass profiles, and the high-conductance state promoted phase-locking at frequencies well above what would be predicted from changes in the membrane time constant. Mechanistically, spike-rate adaptation and frequency resonance in the spike-generating mechanism are implicated in shaping the different phase-locking profiles. Our results demonstrate that CA1 pyramidal cells can actively change their synchronization properties in response to global changes in activity associated with different behavioral states. PMID:23055508

  6. Temperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus.

    PubMed

    Santin, Joseph M; Watters, Kayla C; Putnam, Robert W; Hartzler, Lynn K

    2013-12-15

    The locus coeruleus (LC) is a chemoreceptive brain stem region in anuran amphibians and contains neurons sensitive to physiological changes in CO2/pH. The ventilatory and central sensitivity to CO2/pH is proportional to the temperature in amphibians, i.e., sensitivity increases with increasing temperature. We hypothesized that LC neurons from bullfrogs, Lithobates catesbeianus, would increase CO2/pH sensitivity with increasing temperature and decrease CO2/pH sensitivity with decreasing temperature. Further, we hypothesized that cooling would decrease, while warming would increase, normocapnic firing rates of LC neurons. To test these hypotheses, we used whole cell patch-clamp electrophysiology to measure firing rate, membrane potential (V(m)), and input resistance (R(in)) in LC neurons in brain stem slices from adult bullfrogs over a physiological range of temperatures during normocapnia and hypercapnia. We found that cooling reduced chemosensitive responses of LC neurons as temperature decreased until elimination of CO2/pH sensitivity at 10°C. Chemosensitive responses increased at elevated temperatures. Surprisingly, chemosensitive LC neurons increased normocapnic firing rate and underwent membrane depolarization when cooled and decreased normocapnic firing rate and underwent membrane hyperpolarization when warmed. These responses to temperature were not observed in nonchemosensitive LC neurons or neurons in a brain stem slice 500 μm rostral to the LC. Our results indicate that modulation of cellular chemosensitivity within the LC during temperature changes may influence temperature-dependent respiratory drive during acid-base disturbances in amphibians. Additionally, cold-activated/warm-inhibited LC neurons introduce paradoxical temperature sensitivity in respiratory control neurons of amphibians.

  7. Assessment of the non-Gaussianity and non-linearity levels of simulated sEMG signals on stationary segments.

    PubMed

    Messaoudi, Noureddine; Bekka, Raïs El'hadi; Ravier, Philippe; Harba, Rachid

    2017-02-01

    The purpose of this paper was to evaluate the effects of the longitudinal single differential (LSD), the longitudinal double differential (LDD) and the normal double differential (NDD) spatial filters, the electrode shape, the inter-electrode distance (IED) on non-Gaussianity and non-linearity levels of simulated surface EMG (sEMG) signals when the maximum voluntary contraction (MVC) varied from 10% to 100% by a step of 10%. The effects of recruitment range thresholds (RR), the firing rate (FR) strategy and the peak firing rate (PFR) of motor units were also considered. A cylindrical multilayer model of the volume conductor and a model of motor unit (MU) recruitment and firing rate were used to simulate sEMG signals in a pool of 120 MUs for 5s. Firstly, the stationarity of sEMG signals was tested by the runs, the reverse arrangements (RA) and the modified reverse arrangements (MRA) tests. Then the non-Gaussianity was characterised with bicoherence and kurtosis, and non-linearity levels was evaluated with linearity test. The kurtosis analysis showed that the sEMG signals detected by the LSD filter were the most Gaussian and those detected by the NDD filter were the least Gaussian. In addition, the sEMG signals detected by the LSD filter were the most linear. For a given filter, the sEMG signals detected by using rectangular electrodes were more Gaussian and more linear than that detected with circular electrodes. Moreover, the sEMG signals are less non-Gaussian and more linear with reverse onion-skin firing rate strategy than those with onion-skin strategy. The levels of sEMG signal Gaussianity and linearity increased with the increase of the IED, RR and PFR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Ponderosa pine in the Colorado Front Range: long historical fire and tree recruitment intervals and a case for landscape heterogeneity

    Treesearch

    M. R. Kaufmann; L. S. Huckaby; P. Gleason

    2000-01-01

    An unlogged forest landscape in the Colorado Front Range provides insight into historical characteristics of ponderosa pine/Douglas-fir landscapes where the past fire regime was mixed severity with mean fire intervals of 50 years or more. Natural fire and tree recruitment patterns resulted in considerable spatial and temporal heterogeneity, whereas nearby forest...

  9. Firing properties of rat lateral mammillary single units: head direction, head pitch, and angular head velocity.

    PubMed

    Stackman, R W; Taube, J S

    1998-11-01

    Many neurons in the rat anterodorsal thalamus (ADN) and postsubiculum (PoS) fire selectively when the rat points its head in a specific direction in the horizontal plane, independent of the animal's location and ongoing behavior. The lateral mammillary nuclei (LMN) are interconnected with both the ADN and PoS and, therefore, are in a pivotal position to influence ADN/PoS neurophysiology. To further understand how the head direction (HD) cell signal is generated, we recorded single neurons from the LMN of freely moving rats. The majority of cells discharged as a function of one of three types of spatial correlates: (1) directional heading, (2) head pitch, or (3) angular head velocity (AHV). LMN HD cells exhibited higher peak firing rates and greater range of directional firing than that of ADN and PoS HD cells. LMN HD cells were modulated by angular head velocity, turning direction, and anticipated the rat's future HD by a greater amount of time (approximately 95 msec) than that previously reported for ADN HD cells (approximately 25 msec). Most head pitch cells discharged when the rostrocaudal axis of the rat's head was orthogonal to the horizontal plane. Head pitch cell firing was independent of the rat's location, directional heading, and its body orientation (i.e., the cell discharged whenever the rat pointed its head up, whether standing on all four limbs or rearing). AHV cells were categorized as fast or slow AHV cells depending on whether their firing rate increased or decreased in proportion to angular head velocity. These data demonstrate that LMN neurons code direction and angular motion of the head in both horizontal and vertical planes and support the hypothesis that the LMN play an important role in processing both egocentric and allocentric spatial information.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, D.W.; Tompkins, T.A.; Pratapas, J.M.

    The Coal Quality Impact Model (CQIM{trademark}) was used to evaluate the economic and performance impacts of gas co-firing at Mississippi Power Company`s Plant Watson. One of the most important benefits of gas co-firing considered was the ability to burn lower quality, less expensive fuels. Four coals and petroleum coke were evaluated at 0, 5, 10, 20, and 30 percent gas co-firing. These fuels vary widely in their geographic source, heating value, moisture, volatile matter, and sulfur contents. Performance and economic evaluations were conducted at individual load points of 100, 75, 50, 40, 30, and 20 percent of full load. Additionalmore » analyses were made for seasonal load-demand curves and for an average annual load-demand curve. Operating cost in $/MWh, net plant heat rate in Btu/kWh, and break-even gas price in $/MBtu are presented as a function of load and percent gas co-firing. Results illustrate that with the Illinois Basin Coal currently burned at Plant Watson, gas co-firing can be economically justified over a range of gas market prices on either an annual or seasonal basis. Other findings indicate that petroleum coke and South American coal co-fired with natural gas offer significant fuel cost savings and are attractive candidate fuels for combustion verification testing.« less

  11. Fall rates of prescribed fire-killed ponderosa pine. Forest Service research paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, M.G.

    1996-05-01

    Fall rates of prescribed fire-killed ponderosa pine were evaluated relative to tree and fire damage characteristics. High crown scorch and short survival time after fire injury were factors leading to a high probability of early tree fall. The role of chemical defense mechanisms is discussed. Results apply to prescribed-fire injured, second-growth ponderosa pine less than 16 inches diameter at breast height.

  12. Post-fire bedload sediment delivery across spatial scales in the interior western United States

    Treesearch

    Joseph W. Wagenbrenner; Peter R. Robichaud

    2014-01-01

    Post-fire sediment yields can be up to three orders of magnitude greater than sediment yields in unburned forests. Much of the research on post-fire erosion rates has been at small scales (100m2 or less), and post-fire sediment delivery rates across spatial scales have not been quantified in detail. We developed relationships for post-fire bedload sediment delivery...

  13. Flash-Fire Propensity and Heat-Release Rate Studies of Improved Fire Resistant Materials

    NASA Technical Reports Server (NTRS)

    Fewell, L. L.

    1978-01-01

    Twenty-six improved fire resistant materials were tested for flash-fire propensity and heat release rate properties. The tests were conducted to obtain a descriptive index based on the production of ignitable gases during the thermal degradation process and on the response of the materials under a specific heat load.

  14. Fire danger rating network density

    Treesearch

    Rudy M. King; R. William Furman

    1976-01-01

    Conventional statistical techniques are used to answer the question, "What is the necessary station density for a fire danger network?" The Burning Index of the National Fire-Danger Rating System is used as an indicator of fire danger. Results are presented as station spacing in tabular form for each of six regions in the western United States.

  15. Fire prevention film spots . . . reception by television public service directors

    Treesearch

    Gene C. Bemardi

    1974-01-01

    Television public service directors in California were asked to rate fire prevention film spots they had received from the California Division of Forestry. Most directors recalled receiving the spot announcements and rated them high in technical quality and interest. Delivery of the films by a fire prevention officer impressed directors favorably. Fire prevention...

  16. Enclosure fire hazard analysis using relative energy release criteria. [burning rate and combustion control

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.

    1978-01-01

    A method for predicting the probable course of fire development in an enclosure is presented. This fire modeling approach uses a graphic plot of five fire development constraints, the relative energy release criteria (RERC), to bound the heat release rates in an enclosure as a function of time. The five RERC are flame spread rate, fuel surface area, ventilation, enclosure volume, and total fuel load. They may be calculated versus time based on the specified or empirical conditions describing the specific enclosure, the fuel type and load, and the ventilation. The calculation of these five criteria, using the common basis of energy release rates versus time, provides a unifying framework for the utilization of available experimental data from all phases of fire development. The plot of these criteria reveals the probable fire development envelope and indicates which fire constraint will be controlling during a criteria time period. Examples of RERC application to fire characterization and control and to hazard analysis are presented along with recommendations for the further development of the concept.

  17. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions.

    PubMed

    Ficken, Cari D; Wright, Justin P

    2017-01-01

    Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system.

  18. Effects of fire frequency on litter decomposition as mediated by changes to litter chemistry and soil environmental conditions

    PubMed Central

    Wright, Justin P.

    2017-01-01

    Litter quality and soil environmental conditions are well-studied drivers influencing decomposition rates, but the role played by disturbance legacy, such as fire history, in mediating these drivers is not well understood. Fire history may impact decomposition directly, through changes in soil conditions that impact microbial function, or indirectly, through shifts in plant community composition and litter chemistry. Here, we compared early-stage decomposition rates across longleaf pine forest blocks managed with varying fire frequencies (annual burns, triennial burns, fire-suppression). Using a reciprocal transplant design, we examined how litter chemistry and soil characteristics independently and jointly influenced litter decomposition. We found that both litter chemistry and soil environmental conditions influenced decomposition rates, but only the former was affected by historical fire frequency. Litter from annually burned sites had higher nitrogen content than litter from triennially burned and fire suppression sites, but this was correlated with only a modest increase in decomposition rates. Soil environmental conditions had a larger impact on decomposition than litter chemistry. Across the landscape, decomposition differed more along soil moisture gradients than across fire management regimes. These findings suggest that fire frequency has a limited effect on litter decomposition in this ecosystem, and encourage extending current decomposition frameworks into disturbed systems. However, litter from different species lost different masses due to fire, suggesting that fire may impact decomposition through the preferential combustion of some litter types. Overall, our findings also emphasize the important role of spatial variability in soil environmental conditions, which may be tied to fire frequency across large spatial scales, in driving decomposition rates in this system. PMID:29023560

  19. A land management history for central Queensland, Australia as determined from land-holder questionnaire and aerial photography.

    PubMed

    Fensham, Roderick J; Fairfax, Russell J

    2003-08-01

    Features of the land management history over a 125,755 km(2) area of central Queensland, Australia were determined from a variety of sources. A random sample of 205 site locations provided the basis for determining trends in land use. Trends in vegetation clearing were determined using sequential aerial photography for the sample sites, revealing a steady rate averaging nearly 1% of the region per annum over 41 years. This measure of sustained clearing over a large region is higher than recently published clearing rates from South America. Land types have been selectively cleared with over 90% of the Acacia on clay land type having been cleared. A land-holder questionnaire pertaining to the random sites yielded a response rate of 71% and provided information on vegetation clearing, ploughing, tree killing (ring-barking or tree poisoning), and fire frequency, season and intensity. The land-holder responses were compared with independent data sources where possible and revealed no mis-information. However, land-holders may have been marginally less likely to respond if the sample area had been cleared, although this effect was not statistically significant. Ploughing and tree killing are variable depending on land type, but the former has affected about 40% of the Acacia on clay land type, effectively eliminating options for natural regrowth. The proportion of decade-site combinations that were reported as having no fires increased from 22% in the 1950s to an average of 42% for subsequent decades, although the reporting of more than one fire per decade has been relatively constant through the study period. The reporting of at least one fire per decade varies from 46% for the Acacia on sand land type to 77% for the Eucalypt on sand land type for decade-site combinations. Fires are more intense when associated with clearing than in uncleared vegetation, but the proportion of cool and hot fires is relatively constant between land types in uncleared vegetation. Nearly all fires reported were either in spring or summer and this seasonally restricted regime is probably at variance with Aboriginal fire regimes. This study describes the rapid transformation of central Queensland. This has yielded substantially increased agricultural production but may also result in a range of negative impacts and these are discussed.

  20. Noise Trauma Induced Plastic Changes in Brain Regions outside the Classical Auditory Pathway

    PubMed Central

    Chen, Guang-Di; Sheppard, Adam; Salvi, Richard

    2017-01-01

    The effects of intense noise exposure on the classical auditory pathway have been extensively investigated; however, little is known about the effects of noise-induced hearing loss on non-classical auditory areas in the brain such as the lateral amygdala (LA) and striatum (Str). To address this issue, we compared the noise-induced changes in spontaneous and tone-evoked responses from multiunit clusters (MUC) in the LA and Str with those seen in auditory cortex (AC). High-frequency octave band noise (10–20 kHz) and narrow band noise (16–20 kHz) induced permanent thresho ld shifts (PTS) at high-frequencies within and above the noise band but not at low frequencies. While the noise trauma significantly elevated spontaneous discharge rate (SR) in the AC, SRs in the LA and Str were only slightly increased across all frequencies. The high-frequency noise trauma affected tone-evoked firing rates in frequency and time dependent manner and the changes appeared to be related to severity of noise trauma. In the LA, tone-evoked firing rates were reduced at the high-frequencies (trauma area) whereas firing rates were enhanced at the low-frequencies or at the edge-frequency dependent on severity of hearing loss at the high frequencies. The firing rate temporal profile changed from a broad plateau to one sharp, delayed peak. In the AC, tone-evoked firing rates were depressed at high frequencies and enhanced at the low frequencies while the firing rate temporal profiles became substantially broader. In contrast, firing rates in the Str were generally decreased and firing rate temporal profiles become more phasic and less prolonged. The altered firing rate and pattern at low frequencies induced by high frequency hearing loss could have perceptual consequences. The tone-evoked hyperactivity in low-frequency MUC could manifest as hyperacusis whereas the discharge pattern changes could affect temporal resolution and integration. PMID:26701290

  1. Fire characteristics associated with firefighter injury on large federal wildland fires.

    PubMed

    Britton, Carla; Lynch, Charles F; Torner, James; Peek-Asa, Corinne

    2013-02-01

    Wildland fires present many injury hazards to firefighters. We estimate injury rates and identify fire-related factors associated with injury. Data from the National Interagency Fire Center from 2003 to 2007 provided the number of injuries in which the firefighter could not return to his or her job assignment, person-days worked, and fire characteristics (year, region, season, cause, fuel type, resistance to control, and structures destroyed). We assessed fire-level risk factors of having at least one reported injury using logistic regression. Negative binomial regression was used to examine incidence rate ratios associated with fire-level risk factors. Of 867 fires, 9.5% required the most complex management and 24.7% required the next-highest level of management. Fires most often occurred in the western United States (82.8%), during the summer (69.6%), caused by lightening (54.9%). Timber was the most frequent fuel source (40.2%). Peak incident management level, person-days of exposure, and the fire's resistance to control were significantly related to the odds of a fire having at least one reported injury. However, the most complex fires had a lower injury incidence rate than less complex fires. Although fire complexity and the number of firefighters were associated with the risk for at least one reported injury, the more experienced and specialized firefighting teams had lower injury incidence. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The critical role of fire in catchment coevolution in South Eastern Australia

    NASA Astrophysics Data System (ADS)

    Nyman, P.; Inbar, A.; Lane, P. N. J.; Sheridan, G. J.

    2016-12-01

    Temperate south east Australian forested uplands are characterised by complex spatial patterns in forest types, soils and fire regimes, even within areas with similar geologies and landscape position. Preliminary measurements and experiments suggest that positive and negative feedbacks between the vegetation, fuels, fire frequency and soil erosion may control the coevolution of these observed system states. Here we propose the hypotheses that in this landscape post-fire soil erosion has played a dominant role in the coevolved system-state combinations of standing biomass, fire frequency and soil depth. To test the hypothesis a 1D simulation model was developed that links together an ecohydrological model to drive the biomass production and water and energy partitioning, a stochastic fire model that is controlled by climate, fuel load and moisture conditions, and a geomorphic model that controls soil production and fluvial and diffusive sediment transport rates. The model was calibrated to the range of existing observed quasi-equalibrium system-states of soil depth, standing biomass, fuel loading and fire frequency using field measurements from 12 instrumented eco-hydrologic microclimate research sites. The long-term partitioning of rainfall into evaporation, transpiration, and streamflow was calibrated against field and literature values. Fuel moisture and micro-climate variables were calibrated to the field microclimate stations. The calibrated model was able to reasonably replicate the observed quasi-equilibrium system-states and hydrologic outputs using current climate forcings operating over a 10,000 year period, providing confidence in the model structure and performance. The model was then used to test the hypothesis stated above, by alternatively including or excluding the post fire erosion process. An alternate hypothesis, whereby the observed system states are dominated by climate related differences in soil production rates was also tested in this way. The results support the hypothesis that feedbacks between fire, ecology, hydrology and geomorphology have played a critical role in the coevolution of south east Australian forested uplands. Similar pyro-eco-hydrologic feedbacks may play a critical role in catchment coevolution in other forested systems globally.

  3. Fires: Pushing the Reset Button or a Flash in the Pan?

    NASA Astrophysics Data System (ADS)

    MacDonald, L. H.; Wagenbrenner, J. W.; Robichaud, P. R.; Nelson, P. A.; Kampf, S. K.; Brogan, D. J.

    2016-12-01

    High and moderate severity wildfires can reduce infiltration rates to less than 10 mm/hr, and the resulting surface runoff can increase small-scale peak flows by one or more orders of magnitude. Fires can increase hillslope erosion rates by several orders of magnitude, but this increase is less linear with rainfall intensity because it also depends on sediment supply and detachment processes as well as transport capacity. These localized and shorter-term effects have been relatively well documented, but there is much more uncertainty in how these fire-induced changes can lead to larger-scale and/or longer-term effects. The goal of this presentation is to provide a process-based analysis of how, where, and when wildfires can cause either longer-term or larger-scale changes, effectively resetting the system as opposed to a more transient "flash in the pan". An understanding of vegetation, climatic, and geomorphic dynamics are are critical for predicting larger-scale and longer-term effects. First is the potential for the vegetation to return to pre-fire conditions, and this depends on vegetation type, spatial extent of the fire, and if the pre-fire vegetation is marginalized by climate change, land use, or other factors. The trajectory of post-fire regrowth controls the duration of increased runoff and erosion as well as the size and severity of future fires, which then sets the scene for longer-term hydrologic and geomorphic change. Climate defines the dominant storm type and how they match up with the spatial extent of a fire. Historic data help estimate the extent and magnitude of post-fire rainfall, but there is a strong stochastic component and the more extreme events are of greatest concern. Geomorphic controls on larger-scale effects include the valley and drainage network characteristics that help govern the storage and delivery of water and sediment. Assessing each component involves multiple site factors, but the biggest problem is understanding their complex interactions to predict resource impacts, landscape change over different temporal and spatial scales, and the potential to ameliorate adverse impacts. Data from multiple field studies are used to illustrate the range of post-fire effects, selected interactions of the different components, and identify key research needs.

  4. Burning phylogenies: fire, molecular evolutionary rates, and diversification.

    PubMed

    Verdú, Miguel; Pausas, Juli G; Segarra-Moragues, José Gabriel; Ojeda, Fernando

    2007-09-01

    Mediterranean-type ecosystems are among the most remarkable plant biodiversity "hot spots" on the earth, and fire has traditionally been invoked as one of the evolutionary forces explaining this exceptional diversity. In these ecosystems, adult plants of some species are able to survive after fire (resprouters), whereas in other species fire kills the adults and populations are only maintained by an effective post-fire recruitment (seeders). Seeders tend to have shorter generation times than resprouters, particularly under short fire return intervals, thus potentially increasing their molecular evolutionary rates and, ultimately, their diversification. We explored whether seeder lineages actually have higher rates of molecular evolution and diversification than resprouters. Molecular evolutionary rates in different DNA regions were compared in 45 phylogenetically paired congeneric taxa from fire-prone Mediterranean-type ecosystems with contrasting seeder and resprouter life histories. Differential diversification was analyzed with both topological and chronological approaches in five genera (Banksia, Daviesia, Lachnaea, Leucadendron, and Thamnochortus) from two fire-prone regions (Australia and South Africa). We found that seeders had neither higher molecular rates nor higher diversification than resprouters. Such lack of differences in molecular rates between seeders and resprouters-which did not agree with theoretical predictions-may occur if (1) the timing of the switch from seeding to resprouting (or vice versa) occurs near the branch tip, so that most of the branch length evolves under the opposite life-history form; (2) resprouters suffer more somatic mutations and therefore counterbalancing the replication-induced mutations of seeders; and (3) the rate of mutations is not related to shorter generation times because plants do not undergo determinate germ-line replication. The absence of differential diversification is to be expected if seeders and resprouters do not differ from each other in their molecular evolutionary rate, which is the fuel for speciation. Although other factors such as the formation of isolated populations may trigger diversification, we can conclude that fire acting as a throttle for diversification is by no means the rule in fire-prone ecosystems.

  5. Income, housing, and fire injuries: a census tract analysis.

    PubMed

    Shai, Donna

    2006-01-01

    This study investigates the social and demographic correlates of nonfatal structural fire injury rates for the civilian population for Philadelphia census tracts during 1993-2001. The author analyzed 1,563 fire injuries by census tract using the 1990 census (STF 3) and unpublished data from the Office of the Fire Marshal of the Philadelphia Fire Department. Injury rates were calculated per 1,000 residents of a given census tract. Multiple regression was used to determine significant variables in predicting fire injuries in a given census tract over a nine-year period and interaction effects between two of these variables-age of housing and income. Multiple regression analysis indicates that older housing (prior to 1940), low income, the prevalence of vacant houses, and the ability to speak English have significant independent effects on fire injury rates in Philadelphia. In addition, the results show a significant interaction between older housing and low income. Given the finding of very high rates of fire injuries in census tracts that are both low income and have older housing, fire prevention units can take preventative measures. Fire protection devices, especially smoke alarms, should be distributed in the neighborhoods most at risk. Multiple occupancy dwellings should have sprinkler systems and fire extinguishers. Laws concerning the maintenance of older rental housing need to be strictly enforced. Vacant houses should be effectively boarded up or renovated for residential use. Fire prevention material should be distributed in a number of languages to meet local needs.

  6. 33 CFR 334.200 - Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cedar Point; aerial and surface firing range and target area, U.S. Naval Air Station, Patuxent River... Chesapeake Bay, Point Lookout to Cedar Point; aerial and surface firing range and target area, U.S. Naval Air...) The regulations. (i) Through navigation of surface craft outside the target areas will be permitted at...

  7. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  8. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  9. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  10. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  11. 33 CFR 334.1120 - Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. 334.1120 Section 334.1120 Navigation and Navigable... REGULATIONS § 334.1120 Pacific Ocean in the vicinity of Point Mugu, Calif.; naval small arms firing range. (a...

  12. Triphasic behavioral response of motor units to submaximal fatiguing exercise.

    PubMed

    Dorfman, L J; Howard, J E; McGill, K C

    1990-07-01

    We have measured the firing rate and amplitude of 4551 motor unit action potentials (MUAPs) recorded with concentric needle electrodes from the brachial biceps muscles of 10 healthy young adults before, during, and after 45 minutes of intermittent isometric exercise at 20% of maximum voluntary contraction (MVC), using an automatic method for decomposition of electromyographic activity (ADEMG). During and after exercise, MUAPs derived from contractions of 30% MVC showed progressive increase in mean firing rate (P less than or equal to .01) and amplitude (P less than or equal to .05). The firing rate increase preceded the rise in mean amplitude, and was evident prior to the development of fatigue, defined as reduction of MVC. Analysis of individual potentials revealed that the increase in firing rate and in amplitude reflected different MUAP subpopulations. A short-term (less than 1 minute) reduction in MUAP firing rates (P less than or equal to .05) was also observed at the onset of each test contraction. These findings suggest that motor units exhibit a triphasic behavioral response to prolonged submaximal exercise: (1) short-term decline and stabilization of onset firing rates, followed by (2) gradual and progressive increase in firing rates and firing variability, and then by (3) recruitment of additional (larger) motor units. The (2) and (3) components presumably compensate for loss of force-generating capacity in the exercising muscle, and give rise jointly to the well-known increase in total surface EMG which accompanies muscle fatigue.

  13. Manual fire suppression methods on typical machinery space spray fires

    NASA Astrophysics Data System (ADS)

    Carhart, H. W.; Leonard, J. T.; Budnick, E. K.; Ouellette, R. J.; Shanley, J. H., Jr.

    1990-07-01

    A series of tests was conducted to evaluate the effectiveness of Aqueous Film Forming Foam (AFFF), potassium bicarbonate powder (PKP) and Halon 1211, alone and in various combinations, in extinguishing spray fires. The sprays were generated by JP-5 jet fuel issuing from an open sounding tube, and open petcock, a leaking flange or a slit pipe, and contacting an ignition source. The results indicate that typical fuel spray fires, such as those simulated in this series, are very severe. Flame heights ranged from 6.1 m (20 ft) for the split pipe to 15.2 m (50 ft) for the sounding tube scenario. These large flame geometries were accompanied by heat release rates of 6 MW to greater than 50 MW, and hazardous thermal radiation levels in the near field environment, up to 9.1 m (30 ft) away. Successful suppression of these fires requires both a significant reduction in flame radiation and delivery of a suppression agent to shielded areas. Of the nine suppression methods tested, the 95 gpm AFFF hand line and the hand line in conjunction with PKP were particularly effective in reducing the radiant flux.

  14. High-speed uncooled MWIR hostile fire indication sensor

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Pantuso, F. P.; Jin, G.; Mazurenko, A.; Erdtmann, M.; Radhakrishnan, S.; Salerno, J.

    2011-06-01

    Hostile fire indication (HFI) systems require high-resolution sensor operation at extremely high speeds to capture hostile fire events, including rocket-propelled grenades, anti-aircraft artillery, heavy machine guns, anti-tank guided missiles and small arms. HFI must also be conducted in a waveband with large available signal and low background clutter, in particular the mid-wavelength infrared (MWIR). The shortcoming of current HFI sensors in the MWIR is the bandwidth of the sensor is not sufficient to achieve the required frame rate at the high sensor resolution. Furthermore, current HFI sensors require cryogenic cooling that contributes to size, weight, and power (SWAP) in aircraft-mounted applications where these factors are at a premium. Based on its uncooled photomechanical infrared imaging technology, Agiltron has developed a low-SWAP, high-speed MWIR HFI sensor that breaks the bandwidth bottleneck typical of current infrared sensors. This accomplishment is made possible by using a commercial-off-the-shelf, high-performance visible imager as the readout integrated circuit and physically separating this visible imager from the MWIR-optimized photomechanical sensor chip. With this approach, we have achieved high-resolution operation of our MWIR HFI sensor at 1000 fps, which is unprecedented for an uncooled infrared sensor. We have field tested our MWIR HFI sensor for detecting all hostile fire events mentioned above at several test ranges under a wide range of environmental conditions. The field testing results will be presented.

  15. Human and climatic influences on fire occurrence in California's north coast range

    Treesearch

    Carl Skinner; Celeste Abbott; Danny Fry; Scott Stephens; Alan Taylor; Valerie Trouet

    2009-01-01

    Outside of the immediate coastal environments, little is known of fire history in the North Coast Range of California. Fire scar specimens were collected from ponderosa pine (Pinus ponderosa C. Lawson), sugar pine (Pinus lambertiana Douglas), incense cedar (Calocedrus decurrens [Torr] Florin), and...

  16. Climate, rain shadow, and human-use influences on fire regimes in the eastern Sierra Nevada, California, USA

    Treesearch

    M.P. North; K.M. van de Water; S.L. Stephens; B.M. Collins

    2009-01-01

    There have been few fire history studies of eastern Sierra Nevada forests in California, USA, where a steep elevation gradient, rain shadow conditions, and forest stand isolation may produce different fire regimes than those found on the range’s western slope. We investigated historic fire regimes and potential climate influences on four forest types ranging in...

  17. Pyrolysis Model Development for a Multilayer Floor Covering

    PubMed Central

    McKinnon, Mark B.; Stoliarov, Stanislav I.

    2015-01-01

    Comprehensive pyrolysis models that are integral to computational fire codes have improved significantly over the past decade as the demand for improved predictive capabilities has increased. High fidelity pyrolysis models may improve the design of engineered materials for better fire response, the design of the built environment, and may be used in forensic investigations of fire events. A major limitation to widespread use of comprehensive pyrolysis models is the large number of parameters required to fully define a material and the lack of effective methodologies for measurement of these parameters, especially for complex materials. The work presented here details a methodology used to characterize the pyrolysis of a low-pile carpet tile, an engineered composite material that is common in commercial and institutional occupancies. The studied material includes three distinct layers of varying composition and physical structure. The methodology utilized a comprehensive pyrolysis model (ThermaKin) to conduct inverse analyses on data collected through several experimental techniques. Each layer of the composite was individually parameterized to identify its contribution to the overall response of the composite. The set of properties measured to define the carpet composite were validated against mass loss rate curves collected at conditions outside the range of calibration conditions to demonstrate the predictive capabilities of the model. The mean error between the predicted curve and the mean experimental mass loss rate curve was calculated as approximately 20% on average for heat fluxes ranging from 30 to 70 kW·m−2, which is within the mean experimental uncertainty. PMID:28793556

  18. Muzzle flash localization for the dismounted soldier

    NASA Astrophysics Data System (ADS)

    Kennedy Scott, Will

    2015-05-01

    The ability to accurately and rapidly know the precise location of enemy fire would be a substantial capability enhancement to the dismounted soldier. Acoustic gun-shot detections systems can provide an approximate bearing but it is desired to precisely know the location (direction and range) of enemy fire; for example to know from `which window' the fire is coming from. Funded by the UK MOD (via Roke Manor Research) QinetiQ is developing an imaging solution built around an InGaAs camera. This paper presents work that QinetiQ has undertaken on the Muzzle Flash Locator system. Key technical challenges that have been overcome are explained and discussed in this paper. They include; the design of the optical sensor and processing hardware to meet low size, weight and power requirements; the algorithm approach required to maintain sensitivity whilst rejecting false alarms from sources such as close passing insects and sun glint from scene objects; and operation on the move. This work shows that such a sensor can provide sufficient sensitivity to detect muzzle flash events to militarily significant ranges and that such a system can be combined with an acoustic gunshot detection system to minimize the false alarm rate. The muzzle flash sensor developed in this work operates in real-time and has a field of view of approximately 29° (horizontal) by 12° (vertical) with a pixel resolution of 0.13°. The work has demonstrated that extension to a sensor with realistic angular rotation rate is feasible.

  19. Pigments which reflect infrared radiation from fire

    DOEpatents

    Berdahl, P.H.

    1998-09-22

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

  20. Controlling cheatgrass in winter range to restore habitat and endemic fire

    Treesearch

    Jennifer L. Vollmer; Joseph G. Vollmer

    2008-01-01

    Habitat managers can better prepare a program for prescribed burns, wildfire management, and maximum forage biomass by understanding the response of key shrubs to the tools utilized to reduce cheatgrass (Bromus spp.) competition. Application of Plateau® herbicide, prior to annual brome germination, at rates up to 8 oz/acre with or without surfactant...

  1. Independence of motor unit recruitment and rate modulation during precision force control.

    PubMed

    Kamen, G; Du, D C

    1999-01-01

    The vertebrate motor system chiefly employs motor unit recruitment and rate coding to modulate muscle force output. In this paper, we studied how the recruitment of new motor units altered the firing rate of already-active motor units during precision force production in the first dorsal interosseous muscle. Six healthy adults performed linearly increasing isometric voluntary contractions while motor unit activity and force output were recorded. After motor unit discharges were identified, motor unit firing rates were calculated before and after the instances of new motor unit recruitment. Three procedures were applied to compute motor unit firing rate, including the mean of a fixed number of inter-spike intervals and the constant width weighted Hanning window filter method, as well as a modified boxcar technique. In contrast to previous reports, the analysis of the firing rates of over 200 motor units revealed that reduction of the active firing rates was not a common mechanism used to accommodate the twitch force produced by the recruitment of a new motor unit. Similarly, during de-recruitment there was no tendency for motor unit firing rates to increase immediately following the cessation of activity in other motor units. Considerable consistency in recruitment behavior was observed during repeated contractions. However, firing rates during repeated contractions demonstrated considerably more fluctuation. It is concluded that the neuromuscular system does not use short-term preferential motor unit disfacilitation to effect precise regulation of muscular force output.

  2. Production rates for crews using hand tools on firelines

    Treesearch

    Lisa Haven; T. Parkin Hunter; Theodore G. Storey

    1982-01-01

    Reported rates at which hand crews construct firelines can vary widely because of differences in fuels, fire and measurement conditions, and fuel resistance-to-control classification schemes. Real-time fire dispatching and fire simulation planning models, however, require accurate estimates of hand crew productivity. Errors in estimating rate of fireline production...

  3. An Analysis of Stochastic Duels Involving Fixed Rates of Fire

    DTIC Science & Technology

    The thesis presents an analysis of stochastic duels involving two opposing weapon systems with constant rates of fire. The duel was developed as a...process stochastic duels . The analysis was then extended to the two versus one duel where the three weapon systems were assumed to have fixed rates of fire.

  4. Motor unit firing rates and synchronisation affect the fractal dimension of simulated surface electromyogram during isometric/isotonic contraction of vastus lateralis muscle.

    PubMed

    Mesin, Luca; Dardanello, Davide; Rainoldi, Alberto; Boccia, Gennaro

    2016-12-01

    During fatiguing contractions, many adjustments in motor units behaviour occur: decrease in muscle fibre conduction velocity; increase in motor units synchronisation; modulation of motor units firing rate; increase in variability of motor units inter-spike interval. We simulated the influence of all these adjustments on synthetic EMG signals in isometric/isotonic conditions. The fractal dimension of the EMG signal was found mainly influenced by motor units firing behaviour, being affected by both firing rate and synchronisation level, and least affected by muscle fibre conduction velocity. None of the calculated EMG indices was able to discriminate between firing rate and motor units synchronisation. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Conversion tables for use with the National Fire-Danger Rating System in the Intermountain area

    Treesearch

    Dwight S. Stockstad; Richard J. Barney

    1964-01-01

    Two tables prepared for use with the National Fire-Danger Rating System replace 10 tables previously used with the Model-8 Fire-Danger Rating System. They provide for the conversion of Spread Index values at various altitudes, aspects, and times of day. A rate of spread table facilitates converting Spread Index values to chains per hour of perimeter increase for...

  6. Current status and future needs of the BehavePlus Fire Modeling System

    Treesearch

    Patricia L. Andrews

    2014-01-01

    The BehavePlus Fire Modeling System is among the most widely used systems for wildland fire prediction. It is designed for use in a range of tasks including wildfire behaviour prediction, prescribed fire planning, fire investigation, fuel hazard assessment, fire model understanding, communication and research. BehavePlus is based on mathematical models for fire...

  7. The role of wildfires and forest succession in stream biogeochemistry within the continuous permafrost zone of Central Siberia

    NASA Astrophysics Data System (ADS)

    Prokushkin, Anatoly

    2016-04-01

    Wildfires transform boreal and subarctic forested landscapes leading to the changes in organic matter and inorganic nutrient turnover in terrestrial ecosystems. To get an insight to the fire effect on C fluxes and general hydrochemical characteristics of streams draining continuous permafrost terrains of Central Siberian Plateau (64o N 100o E), we have selected the chronosequence of basins (n = 17) which were severely affected by fires (>80% of basin area) in the time range from 1 to 116 years ago. Stream waters were sampled continuously during frost free seasons (May-September) of 2006-2015. Four streams have been equipped with water level, temperature and conductivity probes for continuous monitoring. The strongest negative effect of wildfires on dissolved organic carbon (DOC) concentrations in streams has occurred right after a fire event, and minimum mean annual concentrations of DOC appeared between 15 and 20 years elapsed after a fire. The most pronounced decrease in DOC concentrations during an annual cycle found in freshet period (May-June) and summer-fall storm events: differences of DOC concentrations among "intact" (>100 years after fire) and recent fire basins (<6 years) reached as much as 2-fold. Less differentiation among basins appears under lowflow conditions, as DOC-depleted solutes from deeper soil layers become dominating in stream flow. Following the post-fire forest recovery, the seasonal mean DOC concentrations in streams demonstrated linear growth at the rate of ca. 0.11 mgC/l/a and approached the initial values already after ca. 60 years after fire disturbance. An opposite trend (i.e. increasing load to streams after fire impact) was observed for dissolved inorganic carbon, major anions and cations. Sulfate was found to be a good tracer of fire affect as increased 200-fold in stream waters right after a fire and steady decreased at the rate [SO42-] = 3.65 x (year after fire)^-0.75 as terrestrial ecosystems were recovering after a fire. For study area, Na+ and Cl- in streams appear to be good indicators of permafrost degradation as they reflect talik formation and connection of a stream to underlying evaporitic deposits. While evidence of permafrost degradation is currently not apparent in the region, we expect increasing concentrations of Na+ and Cl- in streams of Central Siberian Plateau as permafrost degrades due to decreased fire return interval and warming temperatures. The generalized data of active layer thickness (ALT) within analyzed watersheds have demonstrated that fire-driven deepening of ALT results in increasing stream inorganic compounds concentrations. The inverse relationship found between DOC and ALT might be attributed to deeper infiltration of solutions, sorption of DOC on clay minerals, and an increasing rate of DOC microbiological mineralization to CO2 due to increased soil temperatures. Post-fire forest recovery and, particularly, the accumulation of organic mater in the moss-lichen layer and soil organic horizon on watersheds accounted for increasing mean DOC concentrations in the streams. In opposite, increased insulation of soils by organic matter accumulating on the soil surface leads to steadily decreasing ALT and constrains an infiltration of solutes to subsoil. As a result, inorganic solute loading to stream channels is tended to decrease during post-fire forest succession in permafrost affected terrains.

  8. Effect of firing rate on the performance of shock wave lithotriptors.

    PubMed

    Pishchalnikov, Yuri A; McAteer, James A; Williams, James C

    2008-12-01

    To determine the mechanism that underlies the effect of shock wave (SW) rate on the performance of clinical lithotripters. The effect of firing rate on the pressure characteristics of SWs was assessed using a fibre-optic probe hydrophone (FOPH 500, RP Acoustics, Leutenbach, Germany). Shock waves were fired at slow (5-27 SW/min) and fast (100-120 SW/min) rates using a conventional high-pressure lithotriptor (DoLi-50, Dornier MedTech America, Inc., Kennesaw, GA, USA), and a new low-pressure lithotriptor (XX-ES, Xi Xin Medical Instruments Co. Ltd, Suzhou, PRC). A digital camcorder (HDR-HC3, Sony, Japan) was used to record cavitation fields, and an ultrafast multiframe high-speed camera (Imacon 200, DRS Data & Imaging Systems, Inc., Oakland, NJ, USA) was used to follow the evolution of bubbles throughout the cavitation cycle. Firing rate had little effect on the leading positive-pressure phase of the SWs with the DoLi lithotriptor. A slight reduction ( approximately 7%) of peak positive pressure (P+) was detected only in the very dense cavitation fields (approximately 1000 bubbles/cm(3)) generated at the fastest firing rate (120 SW/min) in nondegassed water. The negative pressure of the SWs, on the other hand, was dramatically affected by firing rate. At 120 SW/min the peak negative pressure was reduced by approximately 84%, the duration and area of the negative pressure component was reduced by approximately 80% and approximately 98%, respectively, and the energy density of negative pressure was reduced by >99%. Whereas cavitation bubbles proliferated at fast firing rates, HS-camera images showed the bubbles that persisted between SWs were very small (<10 microm). Similar results were obtained with the XX-ES lithotriptor but only after recognizing a rate-dependent charging artefact with that machine. Increasing the firing rate of a lithotriptor can dramatically reduce the negative pressure component of the SWs, while the positive pressure remains virtually unaffected. Cavitation increases as the firing rate is increased but as the bubbles collapse, they break into numerous microbubbles that, because of their very small size, do not pose a barrier to the leading positive pressure of the next SW. These findings begin to explain why stone breakage in SWL becomes less efficient as the firing rate is increased.

  9. Assessment of Small Arms Munitions Impacts on Natural Infrastructure in Sensitive Downrange Areas on Military Installations

    DTIC Science & Technology

    2016-02-01

    forecasting the risk of munitions constituents (MC), such as high explosives and metals , that leave firing and training ranges and contaminate the...quality terrestrial natural infrastructure exist down- range of small arms training ranges on Department of Defense (DoD) in- stallations. Live- fire ...CERL TN-16-1 iv Illustrations Figures A-1 Initial horizontal trajectory of a tracer bullet fired at a 600 m target at the Malone 5 range on Fort

  10. Soil properties and root biomass responses to prescribed burning in young Corsican pine (Pinus nigra Arn.) stands.

    PubMed

    Tufekcioglu, Aydin; Kucuk, Mehmet; Saglam, Bulent; Bilgili, Ertugrul; Altun, Lokman

    2010-05-01

    Fire is an important tool in the management of forest ecosystems. Although both prescribed and wildland fires are common in Turkey, few studies have addressed the influence of such disturbances on soil properties and root biomass dynamics. In this study, soil properties and root biomass responses to prescribed fire were investigated in 25-year-old corsican pine (Pinus nigra Arn.) stands in Kastamonu, Turkey. The stands were established by planting and were subjected to prescribed burning in July 2003. Soil respiration rates were determined every two months using soda-lime method over a two-year period. Fine (0-2 mm diameter) and small root (2-5 mm diameter) biomass were sampled approximately bimonthly using sequential coring method. Mean daily soil respiration ranged from 0.65 to 2.19 g Cm(-2) d(-1) among all sites. Soil respiration rates were significantly higher in burned sites than in controls. Soil respiration rates were correlated significantly with soil moisture and soil temperature. Fine root biomass was significantly lower in burned sites than in control sites. Mean fine root biomass values were 4940 kg ha(-1) for burned and 5450 kg ha(-1) for control sites. Soil pH was significantly higher in burned sites than in control sites in 15-35 cm soil depth. Soil organic matter content did not differ significantly between control and burned sites. Our results indicate that, depending on site conditions, fire could be used successfully as a tool in the management of forest stands in the study area.

  11. Comparison of Coupled Radiative Flow Solutions with Project Fire 2 Flight Data

    NASA Technical Reports Server (NTRS)

    Olynick, David R.; Henline, W. D.; Chambers, Lin Hartung; Candler, G. V.

    1995-01-01

    A nonequilibrium, axisymmetric, Navier-Stokes flow solver with coupled radiation has been developed for use in the design or thermal protection systems for vehicles where radiation effects are important. The present method has been compared with an existing now and radiation solver and with the Project Fire 2 experimental data. Good agreement has been obtained over the entire Fire 2 trajectory with the experimentally determined values of the stagnation radiation intensity in the 0.2-6.2 eV range and with the total stagnation heating. The effects of a number of flow models are examined to determine which combination of physical models produces the best agreement with the experimental data. These models include radiation coupling, multitemperature thermal models, and finite rate chemistry. Finally, the computational efficiency of the present model is evaluated. The radiation properties model developed for this study is shown to offer significant computational savings compared to existing codes.

  12. A preliminary test method for masonry heater particulate matter and carbon monoxide emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stern, C.H.; Jaasma, D.R.; Shelton, J.W.

    1991-08-01

    A test method for determining carbon monoxide (CO) and particulate matter (PM) emissions from masonry heaters is described and results of tests on two masonry heaters are presented. The method specifies fueling protocol and laboratory measurement procedures for determination of both emission factors (g/kg) and rates (g/hr). The fuel load size and fueling intervals are dependent upon the firebox volume of the masonry heater. The test method starts with a room temperature masonry heater and involves five firings to achieve burn rates in two ranges, where the burn rate is defined as the dry mass of the fuel load dividedmore » by the time between loadings. Emission samples are extracted from a dilution tunnel with a set flow rate and configuration. Particulate matter sampling is similar to US EPA Method 5G for woodstoves, and Co concentration is measured by a nondispersive infrared (NDIR) gas analyzer. The emissions results for each firing are weighted according to EPA Method 28 to obtain the overall emission totals for the test.« less

  13. Evaluating the impacts of wildland fires on caribou in interior Alaska

    USGS Publications Warehouse

    Joly, Kyle; Adams, Layne G.; Dale, Bruce W.; Collins, William

    2002-01-01

    Caribou are found throughout the boreal forests of interior Alaska, a region subject to chronic and expansive wildland fires. Fruticose lichens, if available, constitute the majority of the winter diet of caribou throughout their range and are common in mature boreal forests but largely absent from early successional stages. Fire, the dominant ecological driving force, increases vegetative diversity and productivity across the landscape but may reduce the availability of caribou winter forage for decades.Increasingly, wildland fire regimes are influenced by humans seeking to reduce fire hazards or mitigate the effects of years of fire suppression. Consequently, biologists have debated the importance of forage lichens to the dynamics of caribou populations, and land managers have questioned the importance of fire regime to wintering caribou. To better understand the impacts of wildland fire on caribou, we are simultaneously investigating the relationships between fire history, caribou movements, forage lichen availability, and caribou nutritional performance on their winter range.

  14. Changing Weather Extremes Call for Early Warning of Potential for Catastrophic Fire

    NASA Astrophysics Data System (ADS)

    Boer, Matthias M.; Nolan, Rachael H.; Resco De Dios, Víctor; Clarke, Hamish; Price, Owen F.; Bradstock, Ross A.

    2017-12-01

    Changing frequencies of extreme weather events and shifting fire seasons call for enhanced capability to forecast where and when forested landscapes switch from a nonflammable (i.e., wet fuel) state to the highly flammable (i.e., dry fuel) state required for catastrophic forest fires. Current forest fire danger indices used in Europe, North America, and Australia rate potential fire behavior by combining numerical indices of fuel moisture content, potential rate of fire spread, and fire intensity. These numerical rating systems lack the physical basis required to reliably quantify forest flammability outside the environments of their development or under novel climate conditions. Here, we argue that exceedance of critical forest flammability thresholds is a prerequisite for major forest fires and therefore early warning systems should be based on a reliable prediction of fuel moisture content plus a regionally calibrated model of how forest fire activity responds to variation in fuel moisture content. We demonstrate the potential of this approach through a case study in Portugal. We use a physically based fuel moisture model with historical weather and fire records to identify critical fuel moisture thresholds for forest fire activity and then show that the catastrophic June 2017 forest fires in central Portugal erupted shortly after fuels in the region dried out to historically unprecedented levels.

  15. Woody encroachment in northern Great Plains grasslands: Perceptions, actions, and needs

    USGS Publications Warehouse

    Symstad, Amy J.; Leis, Sherry A.

    2017-01-01

    The United States Northern Great Plains (NGP) has a high potential for landscape-scale conservation, but this grassland landscape is threatened by encroachment of woody species. We surveyed NGP land managers to identify patterns in, and illustrate a broad range of, individual managers' perceptions on (1) the threat of woody encroachment to grasslands they manage, and (2) what management practices they use that may influence woody encroachment in this region. In the 34 surveys returned, which came from predominantly public lands in the study area, 79% of responses reported moderate or substantial woody encroachment. Eastern redcedar (Juniperus virginiana) and Rocky Mountain juniper (Juniperus scopulorum) were the most problematic encroachers. Thirty-one survey respondents said that prescribed fire was used on the lands they manage, and 64% of these responses reported that controlling woody encroachment was a fire management objective. However, only 18% of survey respondents using prescribed fire were achieving their desired fire return interval. Most respondents reported using mechanical and/or chemical methods to control woody species. In contrast to evidence from the central and southern Great Plains, few survey respondents viewed grazing as affecting encroachment. Although the NGP public land managers we surveyed clearly recognize woody encroachment as a problem and are taking steps to address it, many feel that the rate of their management is not keeping pace with the rate of encroachment. Developing strategies for effective woody plant control in a variety of NGP management contexts requires filling ecological science gaps and overcoming societal barriers to using prescribed fire.

  16. Burns and Fire Safety

    MedlinePlus

    Number of Deaths Death Rate Burns and Fire Safety Fact Sheet (2015) Fatalities • 334 children ages 19 and under died from fires or burns ... burns were ages 4 and under. 1 The death rate for children this age (0.73 per 100, ...

  17. Determine Neuronal Tuning Curves by Exploring Optimum Firing Rate Distribution for Information Efficiency

    PubMed Central

    Han, Fang; Wang, Zhijie; Fan, Hong

    2017-01-01

    This paper proposed a new method to determine the neuronal tuning curves for maximum information efficiency by computing the optimum firing rate distribution. Firstly, we proposed a general definition for the information efficiency, which is relevant to mutual information and neuronal energy consumption. The energy consumption is composed of two parts: neuronal basic energy consumption and neuronal spike emission energy consumption. A parameter to model the relative importance of energy consumption is introduced in the definition of the information efficiency. Then, we designed a combination of exponential functions to describe the optimum firing rate distribution based on the analysis of the dependency of the mutual information and the energy consumption on the shape of the functions of the firing rate distributions. Furthermore, we developed a rapid algorithm to search the parameter values of the optimum firing rate distribution function. Finally, we found with the rapid algorithm that a combination of two different exponential functions with two free parameters can describe the optimum firing rate distribution accurately. We also found that if the energy consumption is relatively unimportant (important) compared to the mutual information or the neuronal basic energy consumption is relatively large (small), the curve of the optimum firing rate distribution will be relatively flat (steep), and the corresponding optimum tuning curve exhibits a form of sigmoid if the stimuli distribution is normal. PMID:28270760

  18. Modeling spatially explicit fire impact on gross primary production in interior Alaska using satellite images coupled with eddy covariance

    USGS Publications Warehouse

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Welp, Lisa R.; Liu, Jinxun; Liu, Shuguang

    2013-01-01

    In interior Alaska, wildfires change gross primary production (GPP) after the initial disturbance. The impact of fires on GPP is spatially heterogeneous, which is difficult to evaluate by limited point-based comparisons or is insufficient to assess by satellite vegetation index. The direct prefire and postfire comparison is widely used, but the recovery identification may become biased due to interannual climate variability. The objective of this study is to propose a method to quantify the spatially explicit GPP change caused by fires and succession. We collected three Landsat images acquired on 13 July 2004, 5 August 2004, and 6 September 2004 to examine the GPP recovery of burned area from 1987 to 2004. A prefire Landsat image acquired in 1986 was used to reconstruct satellite images assuming that the fires of 1987–2004 had not occurred. We used a light-use efficiency model to estimate the GPP. This model was driven by maximum light-use efficiency (Emax) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR). We applied this model to two scenarios (i.e., an actual postfire scenario and an assuming-no-fire scenario), where the changes in Emax and FPAR were taken into account. The changes in Emax were represented by the change in land cover of evergreen needleleaf forest, deciduous broadleaf forest, and shrub/grass mixed, whose Emax was determined from three fire chronosequence flux towers as 1.1556, 1.3336, and 0.5098 gC/MJ PAR. The changes in FPAR were inferred from NDVI change between the actual postfire NDVI and the reconstructed NDVI. After GPP quantification for July, August, and September 2004, we calculated the difference between the two scenarios in absolute and percent GPP changes. Our results showed rapid recovery of GPP post-fire with a 24% recovery immediately after burning and 43% one year later. For the fire scars with an age range of 2–17 years, the recovery rate ranged from 54% to 95%. In addition to the averaging, our approach further revealed the spatial heterogeneity of fire impact on GPP, allowing one to examine the spatially explicit GPP change caused by fires.

  19. Fine root production and carbohydrate concentrations of mature longleaf pine (Pinus palustris P. Mill.) as affected by season of prescribed fire and drought

    Treesearch

    Mary Anne Sword Sayer; James D. Haywood

    2005-01-01

    The historical range of longleaf pine (Pinus palustris P. Mill) has been greatly reduced, in part, by lack of fire. Recently, the application of fire has become an accepted practice for the restoration of longleaf pine to former parts of its natural range. This study was designed to evaluate the effects of season of prescribed fire on the root growth...

  20. Fire-related deaths among Aboriginal people in British Columbia, 1991-2001.

    PubMed

    Gilbert, Mark; Dawar, Meenakshi; Armour, Rosemary

    2006-01-01

    Fire-related mortality rates are known to be higher in Aboriginal people in BC. The purpose of this study was to describe the epidemiology and context of fire-related deaths in this population. All death registrations attributable to fires in the province were identified by the B.C. Vital Statistics Agency (1991-2001). Age-specific death rates (ASDR) and age-standardized mortality rates (ASMR) were calculated for Status Indians and other residents. Data from Coroner's reports from the B.C. Coroners' Service (1997-2001) were used to describe the context of Aboriginal fire-related deaths. The overall fire-related ASMR for Status Indians and other residents were 0.66 deaths and 0.07 deaths/10,000 population respectively. Annual ASMR for both populations were constant over the study period. ASDR were higher in every age category for Status Indians; children and seniors had higher rates in both populations. Twenty-seven Aboriginal fatalities (20 fires) were identified for the contextual analysis. Key findings were: 48% of the total sample had elevated blood alcohol levels; 30% of the fires were caused by lit cigarettes (majority of decedents were intoxicated); 15% of the fires were caused by electric heating sources; at least 34% of fires occurred in homes with absent or non-functional smoke alarms. Fire-related mortality among Aboriginal people in BC is a preventable public health concern. In this population, fire safety and prevention programs should consider improving the prevalence of functioning smoke alarms, promoting the safe use of heat sources, and decreasing smoking behaviours and the use of alcohol.

  1. Chapter 5. Borderlands fire regimes

    Treesearch

    Margot Wilkinson-Kaye; Thomas Swetnam; Christopher R. Baisan

    2006-01-01

    Fire is a keystone process in most natural, terrestrial ecosystems. The vital role that fire plays in controlling the structure of an ecosystem underscores the need for us to increase our knowledge of past and current fire regimes (Morgan and others 1994). Dendrochronological reconstructions of fire histories provide descriptions of past fire regimes across a range of...

  2. Error-eliminating rapid ultrasonic firing

    DOEpatents

    Borenstein, Johann; Koren, Yoram

    1993-08-24

    A system for producing reliable navigation data for a mobile vehicle, such as a robot, combines multiple range samples to increase the "confidence" of the algorithm in the existence of an obstacle. At higher vehicle speed, it is crucial to sample each sensor quickly and repeatedly to gather multiple samples in time to avoid a collision. Erroneous data is rejected by delaying the issuance of an ultrasonic energy pulse by a predetermined wait-period, which may be different during alternate ultrasonic firing cycles. Consecutive readings are compared, and the corresponding data is rejected if the readings differ by more than a predetermined amount. The rejection rate for the data is monitored and the operating speed of the navigation system is reduced if the data rejection rate is increased. This is useful to distinguish and eliminate noise from the data which truly represents the existence of an article in the field of operation of the vehicle.

  3. Error-eliminating rapid ultrasonic firing

    DOEpatents

    Borenstein, J.; Koren, Y.

    1993-08-24

    A system for producing reliable navigation data for a mobile vehicle, such as a robot, combines multiple range samples to increase the confidence'' of the algorithm in the existence of an obstacle. At higher vehicle speed, it is crucial to sample each sensor quickly and repeatedly to gather multiple samples in time to avoid a collision. Erroneous data is rejected by delaying the issuance of an ultrasonic energy pulse by a predetermined wait-period, which may be different during alternate ultrasonic firing cycles. Consecutive readings are compared, and the corresponding data is rejected if the readings differ by more than a predetermined amount. The rejection rate for the data is monitored and the operating speed of the navigation system is reduced if the data rejection rate is increased. This is useful to distinguish and eliminate noise from the data which truly represents the existence of an article in the field of operation of the vehicle.

  4. A Study of Aircraft Fire Hazards Related to Natural Electrical Phenomena

    NASA Technical Reports Server (NTRS)

    Kester, Frank L.; Gerstein, Melvin; Plumer, J. A.

    1960-01-01

    The problems of natural electrical phenomena as a fire hazard to aircraft are evaluated. Assessment of the hazard is made over the range of low level electrical discharges, such as static sparks, to high level discharges, such as lightning strikes to aircraft. In addition, some fundamental work is presented on the problem of flame propagation in aircraft fuel vent systems. This study consists of a laboratory investigation in five parts: (1) a study of the ignition energies and flame propagation rates of kerosene-air and JP-6-air foams, (2) a study of the rate of flame propagation of n-heptane, n-octane, n-nonane, and n-decane in aircraft vent ducts, (3) a study of the damage to aluminum, titanium, and stainless steel aircraft skin materials by lightning strikes, (4) a study of fuel ignition by lightning strikes to aircraft skins, and (5) a study of lightning induced flame propagation in an aircraft vent system.

  5. Detection, mapping and estimation of rate of spread of grass fires from southern African ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Wightman, J. M.

    1973-01-01

    Sequential band-6 imagery of the Zambesi Basin of southern Africa recorded substantial changes in burn patterns resulting from late dry season grass fires. One example from northern Botswana, indicates that a fire consumed approximately 70 square miles of grassland over a 24-hour period. Another example from western Zambia indicates increased fire activity over a 19-day period. Other examples clearly define the area of widespread grass fires in Angola, Botswana, Rhodesia and Zambia. From the fire patterns visible on the sequential portions of the imagery, and the time intervals involved, the rates of spread of the fires are estimated and compared with estimates derived from experimental burning plots in Zambia and Canada. It is concluded that sequential ERTS-1 imagery, of the quality studied, clearly provides the information needed to detect and map grass fires and to monitor their rates of spread in this region during the late dry season.

  6. Predicting behavior and size of crown fires in the northern Rocky Mountains

    Treesearch

    Richard C. Rothermel

    1991-01-01

    Describes methods for approximating behavior and size of a wind-driven crown fire in mountainous terrain. Covers estimation of average rate of spread, energy release from tree crowns and surface fuel, fireline intensity, flame length, and unit area power of the fire and ambient wind. Plume-dominated fires, which may produce unexpectedly fast spread rates even with low...

  7. Forest landowner decisions and the value of information under fire risk.

    Treesearch

    Gregory S. Amacher; Arun S. Malik; Robert G. Haight

    2005-01-01

    We estimate the value of three types of information about fire risk to a nonindustrial forest landowner: the relationship between fire arrival rates and stand age, the magnitude of fire arrival rates, and the efficacy of fuel reduction treatment. Our model incorporates planting density and the level and timing of fuel reduction treatment as landowner decisions. These...

  8. The national fire-danger rating system: basic equations

    Treesearch

    Jack D. Cohen; John E. Deeming

    1985-01-01

    Updating the National Fire-Danger Rating System (NFDRS) was completed in 1977, and operational use of it was begun the next year. The System provides a guide to wildfire control and suppression by its indexes that measure the relative potential of initiating fires. Such fires do not behave erratically–they spread without spotting through continuous ground fuels....

  9. Fire danger and fire behavior modeling systems in Australia, Europe, and North America

    Treesearch

    Francis M. Fujioka; A. Malcolm Gill; Domingos X. Viegas; B. Mike Wotton

    2009-01-01

    Wildland fire occurrence and behavior are complex phenomena involving essentially fuel (vegetation), topography, and weather. Fire managers around the world use a variety of systems to track and predict fire danger and fire behavior, at spatial scales that span from local to global extents, and temporal scales ranging from minutes to seasons. The fire management...

  10. A new website with real-time dissemination of information on fire activity and meteorological fire danger in Portugal

    NASA Astrophysics Data System (ADS)

    DaCamara, Carlos; Trigo, Ricardo; Nunes, Sílvia; Pinto, Miguel; Oliveira, Tiago; Almeida, Rui

    2017-04-01

    In Portugal, like in Mediterranean Europe, fire activity is a natural phenomenon linking climate, humans and vegetation and is therefore conditioned by natural and anthropogenic factors. Natural factors include topography, vegetation cover and prevailing weather conditions whereas anthropogenic factors encompass land management practices and fire prevention policies. Land management practices, in particular the inadequate use of fire, is a crucial anthropogenic factor that accounts for about 90% of fire ignitions. Fire prevention policies require adequate and timely information about wildfire potential assessment, which is usually based on fire danger rating systems that provide indices to be used on an operational and tactical basis in decision support systems. We present a new website designed to provide the user community with relevant real-time information on fire activity and meteorological fire danger that will allow adopting the adequate measures to mitigate fire damage. The fire danger product consists of forecasts of fire danger over Portugal based on a statistical procedure that combines information about fire history derived from the Fire Radiative Power product disseminated by the Land Surface Analysis Satellite Application Facility (LSA SAF) with daily meteorological forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The aim of the website is fourfold; 1) to concentrate all information available (databases and maps) relevant to fire management in a unique platform so that access by end users becomes easier, faster and friendlier; 2) to supervise the access of users to the different products available; 3) to control and assist the access to the platform and obtain feedbacks from users for further improvements; 4) to outreach the operational community and foster the use of better information that increase efficiency in risk management. The website is sponsored by The Navigator Company, a leading force in the global pulp and paper market. Since the operational start of the website, the number of registered users has been steadily increasing up to a total of 300 users from a wide community that encompasses forest managers, firemen and civil protection officers, personnel from municipalities, academic researchers and private owners.

  11. A Coupled Model for Simulating Future Wildfire Regimes in the Western U.S.

    NASA Astrophysics Data System (ADS)

    Bart, R. R.; Kennedy, M. C.; Tague, C.; Hanan, E. J.

    2017-12-01

    Higher temperatures and larger fuel loads in the western U.S. have increased the size and intensity of wildfires over the past decades. However, it is unclear if this trend will continue over the long-term since increased wildfire activity has the countering effect of reducing landscape fuel loads, while higher temperatures alter the rate of vegetation recovery following fire. In this study, we introduce a coupled ecohydrologic-fire model for investigating how changes in vegetation, forest management, climate, and hydrology may affect future fire regimes. The spatially-distributed ecohydrologic model, RHESSys, simulates hydrologic, carbon and nutrient fluxes at watershed scales; the fire-spread model, WMFire, stochastically propagates fire on a landscape based on conditions in the ecohydrologic model. We use the coupled model to replicate fire return intervals in multiple ecoregions within the western U.S., including the southern Sierra Nevada and southern California. We also examine the sensitivity of fire return intervals to various model processes, including litter production, fire severity, and post-fire vegetation recovery rates. Results indicate that the coupled model is able to replicate expected fire return intervals in the selected locations. Fire return intervals were highly sensitive to the rate of vegetation growth, with longer fire return intervals associated with slower growing vegetation. Application of the model is expected to aid in our understanding of how fuel treatments, climate change and droughts may affect future fire regimes.

  12. Canadian and Siberian Boreal Fire Activity during ARCTAS Spring and Summer Phases

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Fromm, M. D.; Soja, A. J.; Servranckx, R.; Lindsey, D.; Hyer, E.

    2009-12-01

    The summer phase of ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) was designed specifically around forest fire activity in the Canadian boreal forest, and located in areas of northern Canada where summer forest fires are ubiquitous. Lightning fires are most often allowed to burn naturally in these regions, and a number of large free-burning fires in northern Saskatchewan in late June/early July 2008 provided excellent targets during the summer phase of ARCTAS. Smoke generated by a large number of early spring fires in Kazakhstan and southern Siberia unexpectedly made a significant contribution to arctic haze during the Alaska-based spring phase of ARCTAS, Numerous smoke plumes were sampled during the spring phase of ARCTAS, creating interest in the origin and characteristics of the fires in the source regions of East Asia. This presentation is designed to connect aircraft and satellite smoke chemistry/transport measurements with ground-based measurements of fire activity during the spring and summer phases of ARCTAS. The Canadian Forest Fire Danger Rating System (CFFDRS) is used to determine forest fire danger conditions in regions of fire activity, and these measurements are in turn used to project fire behavior characteristics. Fuel consumption, spread rates, and frontal fire intensity are calculated using the CFFDRS. Energy release rates at ground level are related to convection/smoke column development and smoke injection heights.

  13. From Spiking Neuron Models to Linear-Nonlinear Models

    PubMed Central

    Ostojic, Srdjan; Brunel, Nicolas

    2011-01-01

    Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates. PMID:21283777

  14. From spiking neuron models to linear-nonlinear models.

    PubMed

    Ostojic, Srdjan; Brunel, Nicolas

    2011-01-20

    Neurons transform time-varying inputs into action potentials emitted stochastically at a time dependent rate. The mapping from current input to output firing rate is often represented with the help of phenomenological models such as the linear-nonlinear (LN) cascade, in which the output firing rate is estimated by applying to the input successively a linear temporal filter and a static non-linear transformation. These simplified models leave out the biophysical details of action potential generation. It is not a priori clear to which extent the input-output mapping of biophysically more realistic, spiking neuron models can be reduced to a simple linear-nonlinear cascade. Here we investigate this question for the leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) and conductance-based Wang-Buzsáki models in presence of background synaptic activity. We exploit available analytic results for these models to determine the corresponding linear filter and static non-linearity in a parameter-free form. We show that the obtained functions are identical to the linear filter and static non-linearity determined using standard reverse correlation analysis. We then quantitatively compare the output of the corresponding linear-nonlinear cascade with numerical simulations of spiking neurons, systematically varying the parameters of input signal and background noise. We find that the LN cascade provides accurate estimates of the firing rates of spiking neurons in most of parameter space. For the EIF and Wang-Buzsáki models, we show that the LN cascade can be reduced to a firing rate model, the timescale of which we determine analytically. Finally we introduce an adaptive timescale rate model in which the timescale of the linear filter depends on the instantaneous firing rate. This model leads to highly accurate estimates of instantaneous firing rates.

  15. Next generation fire suppressants

    NASA Technical Reports Server (NTRS)

    Brown, Jerry A.

    1995-01-01

    Spectrex, Inc., located in Cedar Grove, NJ is a manufacturer of fire detection and suppression equipment. Spectrex is one of the original pioneers in high speed fire detection and suppression systems for combat vehicles. Spectrex has installed fire suppressions systems in thousands of combat vehicles and ships throughout the world. Additionally, they manufacture flame explosion detectors, ship damage control systems, and optical gas and vapor detectors. The culmination of several years of research and development has recently produced an innovative electro-optical continuous monitoring systems called SharpEye 20/20I IR(sup 3) and SAFEYE that provide fast and reliable gas, vapor, aerosol, flame, and explosion detection. SharpEye 20/20I IR(sup 3) is a self-contained triple spectrum flame detector which scans for oscillating IR radiation (1 to 10 Hz) in the spectral bands ranging from 4.0 to 5.0 microns and uses programmed algorithms to check the ratio and correlation of data received by the three sensors to make the system highly immune to false alarms. It is extremely sensitive as it can detect a 1 x 1 square foot gasoline pan fire at 200 feet in less than 3 seconds. The sensitivity is user programmable, offering 4 ranges of detection. SAFEYE is comprised of a selected number of multispectral ban microprocessors controlled detectors which are in communication with one or more radiation sources that is projected along a 600 feet optical path. The signals from the selected narrow bands are processed and analyzed by highly sophisticated algorithms. It is ideal for high risk, remote, large areas such as petroleum and chemical manufacturing sites, waste dumps, aircraft cargo bays, and ship compartments. The SAFEYE will perform direct readings of the presence or rate of rise of concentrations of gases, vapors, or aerosols at the range of parts per million and provide alarms at various set points at different levels of concentrations.

  16. The National Fire Danger Rating System: Derivation of Spread Index for Eastern and Southern States

    Treesearch

    Ralph M. Nelson

    1964-01-01

    Presents standards for locating, operating, and maintaining forest fire danger stations in Eastern and Southern States. Includes tables and forms for deriving the Spread Index of the new National Fire-Danger Rating System.

  17. Medium-range fire weather forecasts

    Treesearch

    J.O. Roads; K. Ueyoshi; S.C. Chen; J. Alpert; F. Fujioka

    1991-01-01

    The forecast skill of theNational Meteorological Center's medium range forecast (MRF) numerical forecasts of fire weather variables is assessed for the period June 1,1988 to May 31,1990. Near-surface virtual temperature, relative humidity, wind speed and a derived fire weather index (FWI) are forecast well by the MRF model. However, forecast relative humidity has...

  18. Mapping forest canopy fuels in Yellowstone National Park using lidar and hyperspectral data

    NASA Astrophysics Data System (ADS)

    Halligan, Kerry Quinn

    The severity and size of wildland fires in the forested western U.S have increased in recent years despite improvements in fire suppression efficiency. This, along with increased density of homes in the wildland-urban interface, has resulted in high costs for fire management and increased risks to human health, safety and property. Crown fires, in comparison to surface fires, pose an especially high risk due to their intensity and high rate of spread. Crown fire models require a range of quantitative fuel parameters which can be difficult and costly to obtain, but advances in lidar and hyperspectral sensor technologies hold promise for delivering these inputs. Further research is needed, however, to assess the strengths and limitations of these technologies and the most appropriate analysis methodologies for estimating crown fuel parameters from these data. This dissertation focuses on retrieving critical crown fuel parameters, including canopy height, canopy bulk density and proportion of dead canopy fuel, from airborne lidar and hyperspectral data. Remote sensing data were used in conjunction with detailed field data on forest parameters and surface reflectance measurements. A new method was developed for retrieving Digital Surface Model (DSM) and Digital Canopy Models (DCM) from first return lidar data. Validation data on individual tree heights demonstrated the high accuracy (r2 0.95) of the DCMs developed via this new algorithm. Lidar-derived DCMs were used to estimate critical crown fire parameters including available canopy fuel, canopy height and canopy bulk density with linear regression model r2 values ranging from 0.75 to 0.85. Hyperspectral data were used in conjunction with Spectral Mixture Analysis (SMA) to assess fuel quality in the form of live versus dead canopy proportions. Severity and stage of insect-caused forest mortality were estimated using the fractional abundance of green vegetation, non-photosynthetic vegetation and shade obtained from SMA. Proportion of insect attack was estimated with a linear model producing an r2 of 0.6 using SMA and bark endmembers from image and reference libraries. Fraction of red attack, with a possible link to increased crown fire risk, was estimated with an r2 of 0.45.

  19. BOREAS TGB-12 Soil Carbon and Flux Data of NSA-MSA in Raster Format

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David E. (Editor); Rapalee, Gloria; Davidson, Eric; Harden, Jennifer W.; Trumbore, Susan E.; Veldhuis, Hugo

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites. This data set provides: (1) estimates of soil carbon stocks by horizon based on soil survey data and analyses of data from individual soil profiles; (2) estimates of soil carbon fluxes based on stocks, fire history, drain-age, and soil carbon inputs and decomposition constants based on field work using radiocarbon analyses; (3) fire history data estimating age ranges of time since last fire; and (4) a raster image and an associated soils table file from which area-weighted maps of soil carbon and fluxes and fire history may be generated. This data set was created from raster files, soil polygon data files, and detailed lab analysis of soils data that were received from Dr. Hugo Veldhuis, who did the original mapping in the field during 1994. Also used were soils data from Susan Trumbore and Jennifer Harden (BOREAS TGB-12). The binary raster file covers a 733-km 2 area within the NSA-MSA.

  20. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...

  1. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...

  2. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...

  3. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...

  4. The Response of Tundra to Biophysical Changes Ten Years Following the Anaktuvuk River Fire, Arctic Foothills, Alaska.

    NASA Astrophysics Data System (ADS)

    Jones, B. M.; Miller, E. A.; Jandt, R.; Baughman, C. A.

    2017-12-01

    Ten years following a large and severe wildfire in the arctic foothills of the Brooks Range, Alaska, tundra is experiencing rapid biophysical changes. Plant communities are responding to primary disturbance by fire but also to ground-ice melt, terrain subsidence, and apparent increase in soil drainage or evapotranspiration.The Anaktuvuk River Fire burned about 104,000 ha in 2007, spreading over broad ranges in soils, topography, hydrography, and permafrost features. Fourteen marked transects were measured between 2008-2011 and again in 2017 for cover of ground-layer vegetation, tall shrub abundance, thaw depth, and soil properties. A complementary set of 11 reference transects surrounding the burn was also sampled.We observed much higher rates of thermokarst inside the burn than out. Even low severity burn areas experienced noticeable thaw subsidence. Mean annual ground temperature at 1 m depth has warmed 1.5°C relative to unburned tundra. In cases ice wedge troughs have deepened by more than 1 m in areas underlain by yedoma soils. Troughs were characterized by cracking soil and slumping tussocks, often into ponded water. Troughs and degraded ice features appear to be draining adjacent polygon centers leading to a general drying of the tundra. Tussockgrasses inside the burn continue to grow and flower vigorously, suggesting a continued flush of soil nutrients. Post-fire accumulation of organic material is generally <5 cm of mostly moss and plant litter. Species of tall willow are responding by increases in stature and colonization of thermokarst areas.Other studies suggest that tundra north of the Brooks Range is responding to climate change with widespread expansion of and dominance by tall shrubs. Our observations from the Anaktuvuk River Burn, as well as at several other older burns, suggest that fire greatly accelerates this succession. Records and observations suggest that lightning and ignitions are becoming more frequent north of the Brooks Range.Our monitoring of this burn over the last ten years reveals a story much more complicated than our team can tell, inviting involvement of other disciplines, particularly hydrology, soil and landform science, remote sensing, and wildlife and subsistence resource management.

  5. An Earth-Based Equivalent Low Stretch Apparatus to Assess Material Flammability for Microgravity and Extraterrestrial Fire-Safety Applications

    NASA Technical Reports Server (NTRS)

    Olson, S. L.; Beeson, H.; Haas, J. P.

    2003-01-01

    The objective of this project is to modify the standard oxygen consumption (cone) calorimeter (described in ASTM E 1354 and NASA STD 6001 Test 2) to provide a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by or around a burning surface in a spacecraft or extraterrestrial gravity level. This apparatus will allow us to conduct normal gravity experiments that accurately and quantitatively evaluate a material's flammability characteristics in the real-use environment of spacecraft or extra-terrestrial gravitational acceleration. The Equivalent Low Stretch Apparatus (ELSA) uses an inverted cone geometry with the sample burning in a ceiling fire configuration that provides a reproducible bench-scale test environment that simulates the buoyant or ventilation flow that would be generated by a flame in a spacecraft or extraterrestrial gravity level. Prototype unit testing results are presented in this paper. Ignition delay times and regression rates for PMMA are presented over a range of radiant heat flux levels and equivalent stretch rates which demonstrate the ability of ELSA to simulate key features of microgravity and extraterrestrial fire behavior.

  6. Respiratory signaling of locus coeruleus neurons during hypercapnic acidosis in the bullfrog, Lithobates catesbeianus.

    PubMed

    Santin, J M; Hartzler, L K

    2013-02-01

    The locus coeruleus (LC) in the brainstem senses alterations in CO(2)/pH and influences ventilatory adjustments that restore blood gas values to starting levels in bullfrogs (Lithobates catesbeianus). We hypothesized that neurons of the bullfrog LC are sensitive to changes in CO(2)/pH and that chemosensitive responses are intrinsic to individual neurons. In addition, we hypothesized putative respiratory control neurons of the bullfrog LC would be stimulated by hypercapnic acidosis within physiological ranges of P(CO(2))/pH. 84% of LC neurons depolarized and increased firing rates during exposure to hypercapnic acidosis (HA). A pH dose response curve shows LC neurons from bullfrogs increase firing rates during physiologically relevant CO(2)/pH changes. With chemical synapses blocked, half of chemosensitive neurons lost sensitivity to HA; however, gap junction blockade did not alter chemosensitive responses. Intrinsically chemosensitive neurons increased input resistance during HA. These data demonstrate that majority of neurons within the bullfrog LC elicit robust firing responses during physiological ΔCO(2)/pH, likely enabling adjustment of acid-base balance through breathing. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Viability of Carbon Capture and Sequestration Retrofits for Existing Coal-Fired Power Plants under an Emission Trading Scheme.

    PubMed

    Talati, Shuchi; Zhai, Haibo; Morgan, M Granger

    2016-12-06

    Using data on the coal-fired electric generating units (EGUs) in Texas we assess the economic feasibility of retrofitting existing units with carbon capture and sequestration (CCS) in order to comply with the Clean Power Plan's rate-based emission standards under an emission trading scheme. CCS with 90% capture is shown to be more economically attractive for a range of existing units than purchasing emission rate credits (ERCs) from a trading market at an average credit price above $28 per MWh under the final state standard and $35 per MWh under the final national standard. The breakeven ERC trading prices would decrease significantly if the captured CO 2 were sold for use in enhanced oil recovery, making CCS retrofits viable at lower trading prices. The combination of ERC trading and CO 2 use can greatly reinforce economic incentives and market demands for CCS and hence accelerate large-scale deployment, even under scenarios with high retrofit costs. Comparing the levelized costs of electricity generation between CCS retrofits and new renewable plants under the ERC trading scheme, retrofitting coal-fired EGUs with CCS may be significantly cheaper than new solar plants under some market conditions.

  8. Motor unit firing rate patterns during voluntary muscle force generation: a simulation study

    NASA Astrophysics Data System (ADS)

    Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.

    2014-04-01

    Objective. Muscle force is generated by a combination of motor unit (MU) recruitment and changes in the discharge rate of active MUs. There have been two basic MU recruitment and firing rate paradigms reported in the literature, which describe the control of the MUs during force generation. The first (termed the reverse ‘onion skin’ profile), exhibits lower firing rates for lower threshold units, with higher firing rates occurring in higher threshold units. The second (termed the ‘onion skin’ profile), exhibits an inverse arrangement, with lower threshold units reaching higher firing rates. Approach. Using a simulation of the MU activity in a hand muscle, this study examined the force generation capacity and the variability of the muscle force magnitude at different excitation levels of the MU pool under these two different MU control paradigms. We sought to determine which rate/recruitment scheme was more efficient for force generation, and which scheme gave rise to the lowest force variability. Main results. We found that the force output of both firing patterns leads to graded force output at low excitation levels, and that the force generation capacity of the two different paradigms diverged around 50% excitation. In the reverse ‘onion skin’ pattern, at 100% excitation, the force output reached up to 88% of maximum force, whereas for the ‘onion skin’ pattern, the force output only reached up to 54% of maximum force at 100% excitation. The force variability was lower at the low to moderate force levels under the ‘onion skin’ paradigm than with the reverse ‘onion skin’ firing patterns, but this effect was reversed at high force levels. Significance. This study captures the influence of MU recruitment and firing rate organization on muscle force properties, and our results suggest that the different firing organizations can be beneficial at different levels of voluntary muscle force generation and perhaps for different tasks.

  9. Relation between the National Fire Danger spread component and fire activity in the Lake States.

    Treesearch

    Donald A. Haines; William A. Main; Von J. Johnson

    1970-01-01

    Relationships between the 1964 version of the spread component of the National Fire Danger Rating System and fire activity were established for Michigan, Minnesota, and Wisconsin. The measures of fire activity included the probability of a fire-day as well as a C, D, or E fire-day, number of fires per fire-day, and acres burned per fire. These measures were examined by...

  10. Ecological effects of the Hayman Fire - Part 1: Historical (pre-1860) and current (1860-2002) fire regimes

    Treesearch

    William H. Romme; Thomas T. Veblen; Merrill R. Kaufmann; Rosemary Sherriff; Claudia M. Regan

    2003-01-01

    To address historical and current fire regimes in the Hayman landscape, we first present the concepts of “historical range of variability” and ”fire regime” to provide the necessary conceptual tools for evaluating fire occurrence, fire behavior, and fire effects. Next we summarize historical (pre-1860) fire frequency and fire effects for the major forest types of the...

  11. Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Sun, Xiaojuan

    2017-06-01

    In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.

  12. Stochastic representation of fire behavior in a wildland fire protection planning model for California.

    Treesearch

    J. Keith Gilless; Jeremy S. Fried

    1998-01-01

    A fire behavior module was developed for the California Fire Economics Simulator version 2 (CFES2), a stochastic simulation model of initial attack on wildland fire used by the California Department of Forestry and Fire Protection. Fire rate of spread (ROS) and fire dispatch level (FDL) for simulated fires "occurring" on the same day are determined by making...

  13. Tree mortality patterns following prescribed fire for Pinus and Abies across the southwestern United States

    USGS Publications Warehouse

    van Mantgem, Philip J.; Nesmith, Jonathan C. B.; Keifer, MaryBeth; Brooks, Matthew

    2012-01-01

    The reintroduction of fire to historically fire-prone forests has been repeatedly shown to reduce understory fuels and promote resistance to high severity fire. However, there is concern that prescribed fire may also have unintended consequences, such as high rates of mortality for large trees and fire-tolerant Pinus species. To test this possibility we evaluated mortality patterns for two common genera in the western US, Pinus and Abies, using observations from a national-scale prescribed fire effects monitoring program. Our results show that mortality rates of trees >50 DBH were similar for Pinus (4.6% yr-1) and Abies (4.0% yr-1) 5 years following prescribed fires across seven sites in the southwestern US. In contrast, mortality rates of trees >50 cm DBH differed between Pinus (5.7% yr-1) and Abies (9.0% yr-1). Models of post-fire mortality probabilities suggested statistically significant differences between the genera (after including differences in bark thickness), but accounting for these differences resulted in only small improvements in model classification. Our results do not suggest unusually high post-fire mortality for large trees or for Pinus relative to the other common co-occurring genus, Abies, following prescribed fire in the southwestern US.

  14. Size-dependent enhancement of water relations during post-fire resprouting.

    PubMed

    Schafer, Jennifer L; Breslow, Bradley P; Hollingsworth, Stephanie N; Hohmann, Matthew G; Hoffmann, William A

    2014-04-01

    In resprouting species, fire-induced topkill causes a reduction in height and leaf area without a comparable reduction in the size of the root system, which should lead to an increase in the efficiency of water transport after fire. However, large plants undergo a greater relative reduction in size, compared with small plants, so we hypothesized that this enhancement in hydraulic efficiency would be greatest among large growth forms. In the ecotone between long-leaf pine (Pinus palustris Mill.) savannas and wetlands, we measured stomatal conductance (gs), mid-day leaf water potential (Ψleaf), leaf-specific whole-plant hydraulic conductance (KL.p), leaf area and height of 10 species covering a range of growth forms in burned and unburned sites. As predicted, KL.p was higher in post-fire resprouts than in unburned plants, and the post-fire increase in KL.p was positively related to plant size. Specifically, large-statured species tended to undergo the greatest relative reductions in leaf area and height, and correspondingly experienced the greatest increases in KL.p. The post-fire increase in KL.p was smaller than expected, however, due to a decrease in absolute root hydraulic conductance (i.e., not scaled to leaf area). The higher KL.p in burned sites was manifested as an increase in gs rather than an increase in Ψleaf. Post-fire increases in gs should promote high rates of photosynthesis for recovery of carbohydrate reserves and aboveground biomass, which is particularly important for large-statured species that require more time to recover their pre-fire size.

  15. Effects of fire on spotted owl site occupancy in a late-successional forest

    USGS Publications Warehouse

    Roberts, Susan L.; van Wagtendonk, Jan W.; Miles, A. Keith; Kelt, Douglas A.

    2011-01-01

    The spotted owl (Strix occidentalis) is a late-successional forest dependent species that is sensitive to forest management practices throughout its range. An increase in the frequency and spatial extent of standreplacing fires in western North America has prompted concern for the persistence of spotted owls and other sensitive late-successional forest associated species. However, there is sparse information on the effects of fire on spotted owls to guide conservation policies. In 2004-2005, we surveyed for California spotted owls during the breeding season at 32 random sites (16 burned, 16 unburned) throughout late-successional montane forest in Yosemite National Park, California. Our burned areas burned at all severities, but predominately involved low to moderate fire severity. Based on an information theoretic approach, spotted owl detection and occupancy rates were similar between burned and unburned sites. Nest and roost site occupancy was best explained by a model that combined total tree basal area (positive effect) with cover by coarse woody debris (negative effect). The density estimates of California spotted owl pairs were similar in burned and unburned forests, and the overall mean density estimate for Yosemite was higher than previously reported for montane forests. Our results indicate that low to moderate severity fires, historically common within montane forests of the Sierra Nevada, California, maintain habitat characteristics essential for spotted owl site occupancy. These results suggest that managed fires that emulate the historic fire regime of these forests may maintain spotted owl habitat and protect this species from the effects of future catastrophic fires.

  16. Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance

    PubMed Central

    Smithwick, Erica A. H.; Naithani, Kusum J.; Balser, Teri C.; Romme, William H.; Turner, Monica G.

    2012-01-01

    Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R2<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21st Century. PMID:23226324

  17. Low-threshold mechanoreceptors play a frequency-dependent dual role in subjective ratings of mechanical allodynia.

    PubMed

    Löken, Line S; Duff, Eugene P; Tracey, Irene

    2017-12-01

    In the setting of injury, myelinated primary afferent fibers that normally signal light touch are thought to switch modality and instead signal pain. In the absence of injury, touch is perceived as more intense when firing rates of Aβ afferents increase. However, it is not known if varying the firing rates of Aβ afferents have any consequence to the perception of dynamic mechanical allodynia (DMA). We hypothesized that, in the setting of injury, the unpleasantness of DMA would be intensified as the firing rates of Aβ afferents increase. Using a stimulus-response protocol established in normal skin, where an increase in brush velocity results in an increase of Aβ afferent firing rates, we tested if brush velocity modulated the unpleasantness of capsaicin-induced DMA. We analyzed how changes in estimated low-threshold mechanoreceptor firing activity influenced perception and brain activity (functional MRI) of DMA. Brushing on normal skin was perceived as pleasant, but brushing on sensitized skin produced both painful and pleasant sensations. Surprisingly, there was an inverse relationship between Aβ firing rates and unpleasantness such that brush stimuli that produced low firing rates were most painful and those that elicited high firing rates were rated as pleasant. Concurrently to this, we found increased cortical activity in response to low Aβ firing rates in regions previously implicated in pain processing during brushing of sensitized skin, but not normal skin. We suggest that Aβ signals do not merely switch modality to signal pain during injury. Instead, they exert a high- and low-frequency-dependent dual role in the injured state, with respectively both pleasant and unpleasant consequences. NEW & NOTEWORTHY We suggest that Aβ signals do not simply switch modality to signal pain during injury but play a frequency-dependent and dual role in the injured state with both pleasant and unpleasant consequences. These results provide a framework to resolve the apparent paradox of how touch can inhibit pain, as proposed by the Gate Control Theory and the existence of dynamic mechanical allodynia.

  18. Combustion Processes in the Aerospace Environment

    NASA Technical Reports Server (NTRS)

    Huggett, Clayton

    1969-01-01

    The aerospace environment introduces new and enhanced fire hazards because the special atmosphere employed may increase the frequency and intensity of fires, because the confinement associated with aerospace systems adversely affects the dynamics of fire development and control, and because the hostile external environments limit fire control and rescue operations. Oxygen enriched atmospheres contribute to the fire hazard in aerospace systems by extending the list of combustible fuels, increasing the probability of ignition, and increasing the rates of fire spread and energy release. A system for classifying atmospheres according to the degree of fire hazard, based on the heat capacity of the atmosphere per mole of oxygen, is suggested. A brief exploration of the dynamics of chamber fires shows that such fires will exhibit an exponential growth rate and may grow to dangerous size in a very short time. Relatively small quantities of fuel and oxygen can produce a catastrophic fire in a closed chamber.

  19. Estimating wildland fire rate of spread in a spatially nonuniform environment

    Treesearch

    Francis M Fujioka

    1985-01-01

    Estimating rate of fire spread is a key element in planning for effective fire control. Land managers use the Rothermel spread model, but the model assumptions are violated when fuel, weather, and topography are nonuniform. This paper compares three averaging techniques--arithmetic mean of spread rates, spread based on mean fuel conditions, and harmonic mean of spread...

  20. Fire effects on infiltration rates after prescribed fire in northern Rocky Mountain forests, USA

    Treesearch

    Peter R. Robichaud

    2000-01-01

    Infiltration rates in undisturbed forest environments are generally high. These high infiltration rates may be reduced when forest management activities such as timber harvesting and/or prescribed fires are used. Post-harvest residue burning is a common site preparation treatment used in the Northern Rocky Mountains, USA, to reduce forest fuels and to prepare sites for...

  1. RDX binds to the convulsant site of the GABAA receptor and increases spontaneous firing rates of cortical neurons in vitro

    EPA Science Inventory

    RDX (hexahydro-1 ,3,5-trinitro-1 ,3,5-triazine, hexogen, Royal Demolition eXplosive) is an explosive widely used by the military and has been found in soil and ground water in and surrounding training ranges, creating potential hazards to the environment and human health. Oral RD...

  2. Application of data fusion technology based on D-S evidence theory in fire detection

    NASA Astrophysics Data System (ADS)

    Cai, Zhishan; Chen, Musheng

    2015-12-01

    Judgment and identification based on single fire characteristic parameter information in fire detection is subject to environmental disturbances, and accordingly its detection performance is limited with the increase of false positive rate and false negative rate. The compound fire detector employs information fusion technology to judge and identify multiple fire characteristic parameters in order to improve the reliability and accuracy of fire detection. The D-S evidence theory is applied to the multi-sensor data-fusion: first normalize the data from all sensors to obtain the normalized basic probability function of the fire occurrence; then conduct the fusion processing using the D-S evidence theory; finally give the judgment results. The results show that the method meets the goal of accurate fire signal identification and increases the accuracy of fire alarm, and therefore is simple and effective.

  3. An assessment of the impact of home safety assessments on fires and fire-related injuries: a case study of Cheshire Fire and Rescue Service.

    PubMed

    Arch, B N; Thurston, M N

    2013-06-01

    Deaths and injuries related to fires are largely preventable events. In the UK, a plethora of community-based fire safety initiatives have been introduced over the last 25 years, often led by fire and rescue services, to address this issue. This paper focuses on one such initiative--home safety assessments (HSAs). Cheshire Fire and Rescue Service (in England) implemented a uniquely large-scale HSA intervention. This paper assesses its effectiveness. The impact of HSAs was assessed in relation to three outcomes: accidental dwelling fires (ADFs), ADFs contained and injuries arising from ADFs. A two-period comparison in fire-related rates of incidences in Cheshire between 2002 and 2011 was implemented, using Poisson regression and adjusting for the national temporal trend using a control group comprising the 37 other English non-metropolitan fire-services. Significant reductions were observed in rates of ADFs [incidence rate ratios (IRR): 0.79, 95% confidence interval (CI): 0.74-0.83, P < 0.001, 2002/03-2007/08 versus 2008/09-2010/11] and associated injuries (IRR: 0.49, 95% CI: 0.39-0.60, P < 0.001, 2002/03-2006/07 versus 2007/08-2010/11), but not in the proportion of fires contained to room of origin. There is strong evidence to suggest that the intervention was successful in reducing domestic fires and related injuries.

  4. Monthly fire behavior patterns

    Treesearch

    Mark J. Schroeder; Craig C. Chandler

    1966-01-01

    From tabulated frequency distributions of fire danger indexes for a nationwide network of 89 stations, the probabilities of four types of fire behavior ranging from 'fire out' to 'critical' were calculated for each month and are shown in map form.

  5. Response of integrate-and-fire neurons to noisy inputs filtered by synapses with arbitrary timescales: firing rate and correlations.

    PubMed

    Moreno-Bote, Rubén; Parga, Néstor

    2010-06-01

    Delivery of neurotransmitter produces on a synapse a current that flows through the membrane and gets transmitted into the soma of the neuron, where it is integrated. The decay time of the current depends on the synaptic receptor's type and ranges from a few (e.g., AMPA receptors) to a few hundred milliseconds (e.g., NMDA receptors). The role of the variety of synaptic timescales, several of them coexisting in the same neuron, is at present not understood. A prime question to answer is which is the effect of temporal filtering at different timescales of the incoming spike trains on the neuron's response. Here, based on our previous work on linear synaptic filtering, we build a general theory for the stationary firing response of integrate-and-fire (IF) neurons receiving stochastic inputs filtered by one, two, or multiple synaptic channels, each characterized by an arbitrary timescale. The formalism applies to arbitrary IF model neurons and arbitrary forms of input noise (i.e., not required to be gaussian or to have small amplitude), as well as to any form of synaptic filtering (linear or nonlinear). The theory determines with exact analytical expressions the firing rate of an IF neuron for long synaptic time constants using the adiabatic approach. The correlated spiking (cross-correlations function) of two neurons receiving common as well as independent sources of noise is also described. The theory is illustrated using leaky, quadratic, and noise-thresholded IF neurons. Although the adiabatic approach is exact when at least one of the synaptic timescales is long, it provides a good prediction of the firing rate even when the timescales of the synapses are comparable to that of the leak of the neuron; it is not required that the synaptic time constants are longer than the mean interspike intervals or that the noise has small variance. The distribution of the potential for general IF neurons is also characterized. Our results provide powerful analytical tools that can allow a quantitative description of the dynamics of neuronal networks with realistic synaptic dynamics.

  6. Hierarchical control of motor units in voluntary contractions.

    PubMed

    De Luca, Carlo J; Contessa, Paola

    2012-01-01

    For the past five decades there has been wide acceptance of a relationship between the firing rate of motor units and the afterhyperpolarization of motoneurons. It has been promulgated that the higher-threshold, larger-soma, motoneurons fire faster than the lower-threshold, smaller-soma, motor units. This relationship was based on studies on anesthetized cats with electrically stimulated motoneurons. We questioned its applicability to motor unit control during voluntary contractions in humans. We found that during linearly force-increasing contractions, firing rates increased as exponential functions. At any time and force level, including at recruitment, the firing rate values were inversely related to the recruitment threshold of the motor unit. The time constants of the exponential functions were directly related to the recruitment threshold. From the Henneman size principle it follows that the characteristics of the firing rates are also related to the size of the soma. The "firing rate spectrum" presents a beautifully simple control scheme in which, at any given time or force, the firing rate value of earlier-recruited motor units is greater than that of later-recruited motor units. This hierarchical control scheme describes a mechanism that provides an effective economy of force generation for the earlier-recruited lower force-twitch motor units, and reduces the fatigue of later-recruited higher force-twitch motor units-both characteristics being well suited for generating and sustaining force during the fight-or-flight response.

  7. Hierarchical control of motor units in voluntary contractions

    PubMed Central

    Contessa, Paola

    2012-01-01

    For the past five decades there has been wide acceptance of a relationship between the firing rate of motor units and the afterhyperpolarization of motoneurons. It has been promulgated that the higher-threshold, larger-soma, motoneurons fire faster than the lower-threshold, smaller-soma, motor units. This relationship was based on studies on anesthetized cats with electrically stimulated motoneurons. We questioned its applicability to motor unit control during voluntary contractions in humans. We found that during linearly force-increasing contractions, firing rates increased as exponential functions. At any time and force level, including at recruitment, the firing rate values were inversely related to the recruitment threshold of the motor unit. The time constants of the exponential functions were directly related to the recruitment threshold. From the Henneman size principle it follows that the characteristics of the firing rates are also related to the size of the soma. The “firing rate spectrum” presents a beautifully simple control scheme in which, at any given time or force, the firing rate value of earlier-recruited motor units is greater than that of later-recruited motor units. This hierarchical control scheme describes a mechanism that provides an effective economy of force generation for the earlier-recruited lower force-twitch motor units, and reduces the fatigue of later-recruited higher force-twitch motor units—both characteristics being well suited for generating and sustaining force during the fight-or-flight response. PMID:21975447

  8. Geophysical features influence the climate change sensitivity of northern Wisconsin pine and oak forests.

    PubMed

    Tweiten, Michael A; Calcote, Randy R; Lynch, Elizabeth A; Hotchkiss, Sara C; Schuurman, Gregor W

    2015-10-01

    Landscape-scale vulnerability assessment from multiple sources, including paleoecological site histories, can inform climate change adaptation. We used an array of lake sediment pollen and charcoal records to determine how soils and landscape factors influenced the variability of forest composition change over the past 2000 years. The forests in this study are located in northwestern Wisconsin on a sandy glacial outwash plain. Soils and local climate vary across the study area. We used the Natural Resource Conservation Service's Soil Survey Geographic soil database and published fire histories to characterize differences in soils and fire history around each lake site. Individual site histories differed in two metrics of past vegetation dynamics: the extent to which white pine (Pinus strobus) increased during the Little Ice Age (LIA) climate period and the volatility in the rate of change between samples at 50-120 yr intervals. Greater increases of white pine during the LIA occurred on sites with less sandy soils (R² = 0.45, P < 0.0163) and on sites with relatively warmer and drier local climate (R² = 0.55, P < 0.0056). Volatility in the rate of change between samples was positively associated with LIA fire frequency (R² = 0.41, P < 0.0256). Over multi-decadal to centennial timescales, forest compositional change and rate-of-change volatility were associated with higher fire frequency. Over longer (multi-centennial) time frames, forest composition change, especially increased white pine, shifted most in sites with more soil moisture. Our results show that responsiveness of forest composition to climate change was influenced by soils, local climate, and fire. The anticipated climatic changes in the next century will not produce the same community dynamics on the same soil types as in the past, but understanding past dynamics and relationships can help us assess how novel factors and combinations of factors in the future may influence various site types. Our results support climate change adaptation efforts to monitor and conserve the landscape's full range of geophysical features.

  9. Evaluating the Efficiency of Air Shower in Removing Lead from Army Combat Uniform Swatches Loaded with Gunshot Residue

    DTIC Science & Technology

    2016-03-25

    well-known toxicant and the exposure on indoor firing ranges presents a health risk to both range employees and shooters. Contaminated clothing... firing ranges have employed a new control – air shower (AS), although its effectiveness in this particular application has not been examined. The... firing lead- containing ammunition inside a sealed chamber and allowing the gunshot residue to settle on swatches placed inside the chamber. The

  10. Effects of Climate Change and Urban Development on Army Training Capabilities: Firing Ranges and Maneuver Areas

    DTIC Science & Technology

    2016-08-01

    ER D C TR -1 6- 1 Integrated Climate Assessment for Army Enterprise Planning Effects of Climate Change and Urban Development on Army...ERDC TR-16-1 January 2016 Effects of Climate Change and Urban Development on Army Training Capabilities Firing Ranges and Maneuver Areas Michelle E... changes associated with climate and urban development might affect the ability of Army installa- tions to continue to conduct training on firing ranges

  11. Potential health impacts from range fires at Aberdeen Proving Ground, Maryland.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willians, G.P.; Hermes, A.M.; Policastro, A.J.

    1998-03-01

    This study uses atmospheric dispersion computer models to evaluate the potential for human health impacts from exposure to contaminants that could be dispersed by fires on the testing ranges at Aberdeen Proving Ground, Maryland. It was designed as a screening study and does not estimate actual human health risks. Considered are five contaminants possibly present in the soil and vegetation from past human activities at APG--lead, arsenic, trichloroethylene (TCE), depleted uranium (DU), and dichlorodiphenyltrichloroethane (DDT); and two chemical warfare agents that could be released from unexploded ordnance rounds heated in a range fire--mustard and phosgene. For comparison, dispersion of twomore » naturally occurring compounds that could be released by burning of uncontaminated vegetation--vinyl acetate and 2-furaldehyde--is also examined. Data from previous studies on soil contamination at APG are used in conjunction with conservative estimates about plant uptake of contaminants, atmospheric conditions, and size and frequency of range fires at APG to estimate dispersion and possible human exposure. The results are compared with US Environmental Protection Agency action levels. The comparisons indicate that for all of the anthropogenic contaminants except arsenic and mustard, exposure levels would be at least an order of magnitude lower than the corresponding action levels. Because of the compoundingly conservative nature of the assumptions made, they conclude that the potential for significant human health risks from range fires is low. The authors recommend that future efforts be directed at fire management and control, rather than at conducting additional studies to more accurately estimate actual human health risk from range fires.« less

  12. Efficacy of a proactive health and safety risk management system in the fire service.

    PubMed

    Poplin, Gerald S; Griffin, Stephanie; Pollack Porter, Keshia; Mallett, Joshua; Hu, Chengcheng; Day-Nash, Virginia; Burgess, Jefferey L

    2018-04-16

    This study evaluated the efficacy of a fire department proactive risk management program aimed at reducing firefighter injuries and their associated costs. Injury data were collected for the intervention fire department and a contemporary control department. Workers' compensation claim frequency and costs were analyzed for the intervention fire department only. Total, exercise, patient transport, and fireground operations injury rates were calculated for both fire departments. There was a post-intervention average annual reduction in injuries (13%), workers' compensation injury claims (30%) and claims costs (21%). Median monthly injury rates comparing the post-intervention to the pre-intervention period did not show statistically significant changes in either the intervention or control fire department. Reduced workers' compensation claims and costs were observed following the risk management intervention, but changes in injury rates were not statistically significant.

  13. Prevention of residential roof fires by use of a class "A" fire rated roof system.

    PubMed

    Edlich, Richard F; Winters, Kathryne L; Long, William B; Britt, L D

    2004-01-01

    Because residential roof fires remain a life-threatening danger to residential homeowners in the United States, we describe in detail a national fire prevention program for reducing residential roof fires by use of an Underwriters Laboratories Inc. (UL) and National Fire Protection Association Class A fire rated roof system. This Class A system should comply with the test requirements for fire resistance of roof coverings, as outlined in UL 790 or in ASTM International (ASTM) E-108. Both the Asphalt Roofing Manufacturer's Association (ARMA) and the National Roofing Contractors Association (NRCA) have set up guidelines for selecting a new roof for the homeowner. Class A, fiber-glass-based asphalt roofing shingles represent an overwhelming share of the United States residential roofing market, and, as such, the Class A rated roofing system remains an excellent alternative to wood shingles and shakes. Fortunately, the Class A fire rating is available for certain wood shingle products that incorporate a factory-applied, fire resistant treatment. However, in this circumstance, wood products labeled as Class B shakes or shingles must be installed over spaced or solid sheathing that have been covered either with one layer of 1/4 in. (6.4 mm) thick noncombustible roof board, or with one layer of minimum 72-lb. fiber-glass-based mineral surfaced cap sheet, or with another specialty roofing sheet to obtain the Class A fire rating. Clay, tile, slate, and metal have been assigned Class A fire ratings in the codes (but often without testing). These alternative roofing materials are often considerably more expensive. Proper application, ventilation, and insulation of roofing systems are required to prevent heat and moisture buildup in the attic, which can damage the roofing system, making it more susceptible to water leakage as well as ignition in the event of a fire. The NRCA has devised excellent recommendations for the homeowner to prequalify the contractor. In addition, a warranty for any new roofing material is important for the homeowner to ensure that the roofing can be repaired by the contractor or manufacturer during the specified warranty period, in case of contractor error or a manufacturing defect. In addition, the homeowner should ensure that the warranty is transferable to any future owner of the home to allow the buyer to have the same warranty benefits as the original owner. The State of California has mandated strict roofing requirements to prevent residential fires. In the absence of this legislation in other states, the homeowner must follow the guidelines outlined in this collective review to ensure that a roofing system with Class A fire protection is installed. Other fire safety precautions that should also be considered mandatory are to include smoke alarms, escape plans, and retrofit fire sprinklers.

  14. Influence of fire on black-tailed prairie dog colony expansion in shortgrass steppe

    USGS Publications Warehouse

    Augustine, D.J.; Cully, J.F.; Johnson, T.L.

    2007-01-01

    Factors influencing the distribution and abundance of black-tailed prairie dog (Cynomys ludovicianus) colonies are of interest to rangeland managers because of the significant influence prairie dogs can exert on both livestock and biodiversity. We examined the influence of 4 prescribed burns and one wildfire on the rate and direction of prairie dog colony expansion in shortgrass steppe of southeastern Colorado. Our study was conducted during 2 years with below-average precipitation, when prairie dog colonies were expanding throughout the study area. Under these dry conditions, the rate of black-tailed prairie dog colony expansion into burned grassland (X?? = 2.6 ha??100-m perimeter-1??y-1; range = 0.8-5.9 ha??100-m perimeter-1??y-1; N = 5 colonies) was marginally greater than the expansion rate into unburned grassland (X?? =1.3 ha??100-m perimeter-1??y-1; range = 0.2-4.9 ha??100-m perimeter-1??y-1; N = 23 colonies; P = 0.066). For 3 colonies that were burned on only a portion of their perimeter, we documented consistently high rates of expansion into the adjacent burned grassland (38%-42% of available burned habitat colonized) but variable expansion rates into the adjacent unburned grassland (2%-39% of available unburned habitat colonized). While our results provide evidence that burning can increase colony expansion rate even under conditions of low vegetative structure, this effect was minor at the scale of the overall colony complex because some unburned colonies were also able to expand at high rates. This result highlights the need to evaluate effects of fire on colony expansion during above-average rainfall years, when expansion into unburned grassland may be considerably lower.

  15. Water immersion for post incident cooling of firefighters; a review of practical fire ground cooling modalities.

    PubMed

    Brearley, Matt; Walker, Anthony

    2015-01-01

    Rapidly cooling firefighters post emergency response is likely to increase the operational effectiveness of fire services during prolonged incidents. A variety of techniques have therefore been examined to return firefighters core body temperature to safe levels prior to fire scene re-entry or redeployment. The recommendation of forearm immersion (HFI) in cold water by the National Fire and Protection Association preceded implementation of this active cooling modality by a number of fire services in North America, South East Asia and Australia. The vascularity of the hands and forearms may expedite body heat removal, however, immersion of the torso, pelvis and/or lower body, otherwise known as multi-segment immersion (MSI), exposes a greater proportion of the body surface to water than HFI, potentially increasing the rates of cooling conferred. Therefore, this review sought to establish the efficacy of HFI and MSI to rapidly reduce firefighters core body temperature to safe working levels during rest periods. A total of 38 studies with 55 treatments (43 MSI, 12 HFI) were reviewed. The core body temperature cooling rates conferred by MSI were generally classified as ideal (n = 23) with a range of ~0.01 to 0.35 °C min(-1). In contrast, all HFI treatments resulted in unacceptably slow core body temperature cooling rates (~0.01 to 0.05 °C min(-1)). Based upon the extensive field of research supporting immersion of large body surface areas and comparable logistics of establishing HFI or MSI, it is recommended that fire and rescue management reassess their approach to fireground rehabilitation of responders. Specifically, we question the use of HFI to rapidly lower firefighter core body temperature during rest periods. By utilising MSI to restore firefighter Tc to safe working levels, fire and rescue services would adopt an evidence based approach to maintaining operational capability during arduous, sustained responses. While the optimal MSI protocol will be determined by the specifics of an individual response, maximising the body surface area immersed in circulated water of up to 26 °C for 15 min is likely to return firefighter Tc to safe working levels during rest periods. Utilising cooler water temperatures will expedite Tc cooling and minimise immersion duration.

  16. Human versus lightning ignition of presettlement surface fires in costal pine forests of the upper Great Lakes

    USGS Publications Warehouse

    Loope, Walter L.; Anderton, John B.

    1998-01-01

    To recover direct evidence of surface fires before European settlement, we sectioned fire-scarred logging-era stumps and trees in 39 small, physically isolated sand patches along the Great Lakes coast of northern Michigan and northern Wisconsin. While much information was lost to postharvest fire and stump deterioration, 147 fire-free intervals revealed in cross-sections from 29 coastal sand patches document numerous close interval surface fires before 1910; only one post-1910 fire was documented. Cross-sections from the 10 sections with records spanning >150 yr suggest local fire occurrence rates before 1910 ca. 10 times the present rate of lightning-caused fire. Since fire spread between or into coastal sand patches is rare, and seasonal use of the patches by Native people before 1910 is well documented, both historically and ethnographically, ignition by humans probably accounts for more than half of the pre-1910 fires recorded in cross-sections.

  17. Incidence of fires and related injuries after giving out free smoke alarms: cluster randomised controlled trial.

    PubMed

    DiGuiseppi, Carolyn; Roberts, Ian; Wade, Angie; Sculpher, Mark; Edwards, Phil; Godward, Catherine; Pan, Huiqi; Slater, Suzanne

    2002-11-02

    To measure the effect of giving out free smoke alarms on rates of fires and rates of fire related injury in a deprived multiethnic urban population. Cluster randomised controlled trial. Forty electoral wards in two boroughs of inner London, United Kingdom. Primarily households including elderly people or children and households that are in housing rented from the borough council. 20 050 smoke alarms, fittings, and educational brochures distributed free and installed on request. Rates of fires and related injuries during two years after the distribution; alarm ownership, installation, and function. Giving out free smoke alarms did not reduce injuries related to fire (rate ratio 1.3; 95% confidence interval 0.9 to 1.9), admissions to hospital and deaths (1.3; 0.7 to 2.3), or fires attended by the fire brigade (1.1; 0.96 to 1.3). Similar proportions of intervention and control households had installed alarms (36/119 (30%) v 35/109 (32%); odds ratio 0.9; 95% confidence interval 0.5 to 1.7) and working alarms (19/118 (16%) v 18/108 (17%); 0.9; 0.4 to 1.8). Giving out free smoke alarms in a deprived, multiethnic, urban community did not reduce injuries related to fire, mostly because few alarms had been installed or were maintained.

  18. Charring rate of wood exposed to a constant heat flux

    Treesearch

    R. H. White; H. C. Tran

    1996-01-01

    A critical factor in the fire endurance of a wood member is its rate of charring. Most available charring rate data have been obtained using the time-temperature curves of the standard fire resistance tests (ASTM E 119 and ISO 834) to define the fire exposure. The increased use of heat release calorimeters using exposures of constant heat flux levels has broadened the...

  19. A laboratory-scale comparison of rate of spread model predictions using chaparral fuel beds – preliminary results

    Treesearch

    D.R. Weise; E. Koo; X. Zhou; S. Mahalingam

    2011-01-01

    Observed fire spread rates from 240 laboratory fires in horizontally-oriented single-species live fuel beds were compared to predictions from various implementations and modifications of the Rothermel rate of spread model and a physical fire spread model developed by Pagni and Koo. Packing ratio of the laboratory fuel beds was generally greater than that observed in...

  20. Variability of fire behavior, fire effects, and emissions in Scotch pine forests of central Siberia

    Treesearch

    D. J. McRae; Susan Conard; G. A. Ivanova; A. I. Sukhinin; Steve Baker; Y. N. Samsonov; T. W. Blake; V. A. Ivanov; A. V. Ivanov; T. V. Churkina; WeiMin Hao; K. P. Koutzenogij; Nataly Kovaleva

    2006-01-01

    As part of the Russian FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project, replicated 4-ha experimental fires were conducted on a dry Scotch pine (Pinus sylvestris)/lichen (Cladonia sp.)/feathermoss (Pleurozeum schreberi) forest site in central Siberia. Observations from the initial seven surface fires (2000-2001) ignited under a range of burning...

  1. Radiant flux density, energy density, and fuel consumption in mixed-oak forest surface fires

    Treesearch

    R.L. Kremens; M.B. Dickinson; A.S. Bova

    2012-01-01

    Closing the wildland fire heat budget involves characterising the heat source and energy dissipation across the range of variability in fuels and fire behaviour. Meeting this challenge will lay the foundation for predicting direct ecological effects of fires and fire-atmosphere coupling. In this paper, we focus on the relationships between the fire radiation field, as...

  2. 308-nm excimer laser ablation of human cartilage

    NASA Astrophysics Data System (ADS)

    Prodoehl, John A.; Rhodes, Anthony L.; Meller, Menachem M.; Sherk, Henry H.

    1993-07-01

    The XeCl excimer laser was investigated as an ablating tool for human fibrocartilage and hyaline cartilage. Quantitative measurements were made of tissue ablation rates as a function of fluence in meniscal fibrocartilage and articular hyaline cartilage. A force of 1.47 Newtons was applied to an 800 micrometers fiber with the laser delivering a range of fluences (40 to 190 mj/mm2) firing at a frequency of 5 Hz. To assess the effect of repetition rate on ablation rate, a set of measurements was made at a constant fluence of 60 mj/mm2, with the repetition rate varying from 10 to 40 Hz. Histologic and morphometric analysis was performed using light microscopy. The results of these studies revealed that the ablation rate was directly proportional to fluence over the range tested. Fibrocartilage was ablated at a rate 2.56 times faster than hyaline cartilage at the maximum fluence tested. Repetition rate had no effect on the penetration per pulse. Adjacent tissue damage was noted to be minimal (10 - 70 micrometers ).

  3. On the use of satellite VEGETATION time series for monitoring post fire vegetation recovery

    NASA Astrophysics Data System (ADS)

    de Santis, F.; Didonna, I.

    2009-04-01

    Fire is one of the most critical factors of disturbance in worldwide ecosystems. The effects of fires on soil, plants, landscape and ecosystems depend on many factors, among them fire frequency, fire severity and plant resistance. The characterization of vegetation post-fire behaviour is a fundamental issue to model and evaluate the fire resilience, which the ability of vegetation to recover after fire. Recent changes in fire regime, due to abandonment of local land use practice and climate change, can induce significant variations in vegetation fire resilience. In the Mediterranean-type communities, post fire vegetation trends have been analysed in a wide range of habitats, although pre- and post-fire investigation has been widely performed at stand level. But, factors controlling regeneration at the landscape scale are less well known. In this study, a time series of normalized difference vegetation index (NDVI) data derived from SPOT-VEGETATION was used to examine the recovery characteristics of fire affected vegetation in some test areas of the Mediterranean ecosystems of Southern Italy. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) data from 1998 to 2005 were analyzed in order to evaluate the resilient effects in a some significant test sites of southern Italy. In particular, we considered: (i) one stable area site, one site affected by one fire during the investigated time window, (iii) one site affected by two consecutive fires during the investigated time window. In order to eliminate the phenological fluctuations, for each decadal composition of each pixel, we focused on the departure NDVId = [NDVI - ]/, where is the decadal mean and  is the decadal standard deviation. The decadal mean and the standard deviation were calculated for each decade, e.g. 1st decade of January, by averaging over all years in the record. We analyzed both: 1) Time variation of NDVI from 1998 to 2005 of pixels for the fire affected and fire unaffected areas. 2) Post-fire NDVI spatial patterns on each image date were compared to the pre-fire pattern to determine the extent to which the pre-fire pattern was re-established, and the rate of this recovery. Results show the ability of vegetation to recovery after a single fire. Nevertheless, such ability can be strongly reduced by successive fires. The recursive fire occurrence can significantly diminish the green biomass especially when disturbances occur at short intervals of time.

  4. Vorticity and turbulence observations during a wildland fire on sloped terrain

    NASA Astrophysics Data System (ADS)

    Contezac, J.; Clements, C. B.; Hall, D.; Seto, D.; Davis, B.

    2013-12-01

    Fire-atmosphere interactions represent an atmospheric boundary-layer regime typically associated with complex circulations that interact with the fire front. In mountainous terrain, these interactions are compounded by terrain-driven circulations that often lead to extreme fire behavior. To better understand the role of complex terrain on fire behavior, a set of field experiments was conducted in June 2012 in the Coast Range of central California. The experiments were conducted on steep valley sidewalls to allow fires to spread upslope. Instrumentation used to measure fire-atmosphere interactions included three micrometeorological towers arranged along the slope and equipped with sonic anemometers, heat flux radiometers, and fine-wire thermocouples. In addition, a scanning Doppler lidar was used to measured winds within and above the valley, and airborne video imagery was collected to monitor fire behavior characteristics. The experimental site was located on the leeside of a ridge where terrain-induced flow and opposing mesoscale winds aloft interacted to create a zone of high wind shear. During the burn, the interaction between the fire and atmosphere caused the generation of several fire whirls that develop as a result of several environmental conditions including shear-generated vorticity and fire front geometry. Airborne video imagery indicated that upon ignition, the plume tilted in the opposite direction from the fire movement suggesting that higher horizontal momentum from aloft was brought to the surface, resulting in much slower fire spread rates due to opposing winds. However, after the fire front had passed the lowest tower located at the base of the slope, a shift in wind speed and direction caused a fire whirl to develop near an L-shaped kink in the fire front. Preliminary results indicate that at this time, winds at the bottom of the slope began to rotate with horizontal vorticity values of -0.2 s^-1. Increased heat flux values at this time indicated that winds were continuing to transport heat towards the slope. As the winds shifted with the fire whirl, heat flux values returned to ambient indicating the passage of the fire plume. A 0.15 hPa decrease in pressure was also observed at the first tower during this period. Further analyses to be presented include vorticity estimates from the Doppler lidar and turbulence kinetic energy measurements from the in situ towers.

  5. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.

  6. Integrating remote sensing and terrain data in forest fire modeling

    NASA Astrophysics Data System (ADS)

    Medler, Michael Johns

    Forest fire policies are changing. Managers now face conflicting imperatives to re-establish pre-suppression fire regimes, while simultaneously preventing resource destruction. They must, therefore, understand the spatial patterns of fires. Geographers can facilitate this understanding by developing new techniques for mapping fire behavior. This dissertation develops such techniques for mapping recent fires and using these maps to calibrate models of potential fire hazards. In so doing, it features techniques that strive to address the inherent complexity of modeling the combinations of variables found in most ecological systems. Image processing techniques were used to stratify the elements of terrain, slope, elevation, and aspect. These stratification images were used to assure sample placement considered the role of terrain in fire behavior. Examination of multiple stratification images indicated samples were placed representatively across a controlled range of scales. The incorporation of terrain data also improved preliminary fire hazard classification accuracy by 40%, compared with remotely sensed data alone. A Kauth-Thomas transformation (KT) of pre-fire and post-fire Thematic Mapper (TM) remotely sensed data produced brightness, greenness, and wetness images. Image subtraction indicated fire induced change in brightness, greenness, and wetness. Field data guided a fuzzy classification of these change images. Because fuzzy classification can characterize a continuum of a phenomena where discrete classification may produce artificial borders, fuzzy classification was found to offer a range of fire severity information unavailable with discrete classification. These mapped fire patterns were used to calibrate a model of fire hazards for the entire mountain range. Pre-fire TM, and a digital elevation model produced a set of co-registered images. Training statistics were developed from 30 polygons associated with the previously mapped fire severity. Fuzzy classifications of potential burn patterns were produced from these images. Observed field data values were displayed over the hazard imagery to indicate the effectiveness of the model. Areas that burned without suppression during maximum fire severity are predicted best. Areas with widely spaced trees and grassy understory appear to be misrepresented, perhaps as a consequence of inaccuracies in the initial fire mapping.

  7. Thermal tests of the SGT5-4000F gas-turbine plant of the PGU-420T power-generating unit at Combined Heat And Power Plant 16 of Mosenergo

    NASA Astrophysics Data System (ADS)

    Teplov, B. D.; Radin, Yu. A.; Filin, A. A.; Rudenko, D. V.

    2016-08-01

    In December 2014, the PGU-420T power-generating unit was put into operation at the Combined Heat and Power Plant 16, an affiliated company of PAO Mosenergo. In 2014-2015, thermal tests of the SGT5- 4000F gas-turbine plant (GTP) integrated into the power-generating unit were carried out. In the article, the test conditions are described and the test results are presented and analyzed. During the tests, 92 operating modes within a wide range of electrical loads and ambient air temperatures and operating conditions of the GTP when fired with fuel oil were investigated. In the tests, an authorized automated measuring system was applied. The experimental data were processed according to ISO 2314:2009 "Gas turbines—Acceptance tests" standard. The available capacity and the GTP efficiency vary from 266 MW and 38.8% to 302 MW and 39.8%, respectively, within the ambient air temperature range from +24 to-12°C, while the turbine inlet temperature decreases from 1200 to 1250°C. The switch to firing fuel oil results in a reduction in the turbine inlet temperature and the capacity of the GTP. With the full load and a reduction in the ambient temperature from +24 to-12°C, the compressor efficiency decreases from 89.6 to 86.4%. The turbine efficiency is approximately 89-91%. Within the investigated range of power output, the emissions of nitrogen oxides do not exceed 35 ppm for the gas-fired plant and 65 ppm for the fuel-oil-fired plant. Within the range of the GTP power output from 50 to 100% of the rated output, the combustion chamber operates without underburning and with hardly any CO being formed. At low loads close to the no-load operation mode, the CO emissions drastically increase.

  8. Emergent gamma synchrony in all-to-all interneuronal networks.

    PubMed

    Ratnadurai-Giridharan, Shivakeshavan; Khargonekar, Pramod P; Talathi, Sachin S

    2015-01-01

    We investigate the emergence of in-phase synchronization in a heterogeneous network of coupled inhibitory interneurons in the presence of spike timing dependent plasticity (STDP). Using a simple network of two mutually coupled interneurons (2-MCI), we first study the effects of STDP on in-phase synchronization. We demonstrate that, with STDP, the 2-MCI network can evolve to either a state of stable 1:1 in-phase synchronization or exhibit multiple regimes of higher order synchronization states. We show that the emergence of synchronization induces a structural asymmetry in the 2-MCI network such that the synapses onto the high frequency firing neurons are potentiated, while those onto the low frequency firing neurons are de-potentiated, resulting in the directed flow of information from low frequency firing neurons to high frequency firing neurons. Finally, we demonstrate that the principal findings from our analysis of the 2-MCI network contribute to the emergence of robust synchronization in the Wang-Buzsaki network (Wang and Buzsáki, 1996) of all-to-all coupled inhibitory interneurons (100-MCI) for a significantly larger range of heterogeneity in the intrinsic firing rate of the neurons in the network. We conclude that STDP of inhibitory synapses provide a viable mechanism for robust neural synchronization.

  9. Emergent gamma synchrony in all-to-all interneuronal networks

    PubMed Central

    Ratnadurai-Giridharan, Shivakeshavan; Khargonekar, Pramod P.; Talathi, Sachin S.

    2015-01-01

    We investigate the emergence of in-phase synchronization in a heterogeneous network of coupled inhibitory interneurons in the presence of spike timing dependent plasticity (STDP). Using a simple network of two mutually coupled interneurons (2-MCI), we first study the effects of STDP on in-phase synchronization. We demonstrate that, with STDP, the 2-MCI network can evolve to either a state of stable 1:1 in-phase synchronization or exhibit multiple regimes of higher order synchronization states. We show that the emergence of synchronization induces a structural asymmetry in the 2-MCI network such that the synapses onto the high frequency firing neurons are potentiated, while those onto the low frequency firing neurons are de-potentiated, resulting in the directed flow of information from low frequency firing neurons to high frequency firing neurons. Finally, we demonstrate that the principal findings from our analysis of the 2-MCI network contribute to the emergence of robust synchronization in the Wang-Buzsaki network (Wang and Buzsáki, 1996) of all-to-all coupled inhibitory interneurons (100-MCI) for a significantly larger range of heterogeneity in the intrinsic firing rate of the neurons in the network. We conclude that STDP of inhibitory synapses provide a viable mechanism for robust neural synchronization. PMID:26528174

  10. Fire dynamics and implications for nitrogen cycling in boreal forests

    USGS Publications Warehouse

    Harden, J.W.; Mack, M.; Veldhuis, H.; Gower, S.T.

    2003-01-01

    We used a dynamic, long-term mass balance approach to track cumulative carbon (C) and nitrogen (N) losses to fire in boreal Manitoba over the 6500 years since deglaciation. Estimated C losses to decomposition and fire, combined with measurements of N pools in mature and burned forest floors, suggest that loss of N by combustion has likely resulted in a long-term loss that exceeds the amount of N stored in soil today by 2 to 3 times. These estimates imply that biological N fixation rates could be as high as 5 to 10 times atmospheric deposition rates in boreal regions. At the site scale, the amount of N lost is due to N content of fuels, which varies by stand type and fire severity, which in turn vary with climate and fire dynamics. The interplay of fire frequency, fire severity, and N partitioning during regrowth are important for understanding rates and sustainability of nutrient and carbon cycling over millenia and over broad regions.

  11. Dynamic, nonlinear feedback regulation of slow pacemaking by A-type potassium current in ventral tegmental area neurons.

    PubMed

    Khaliq, Zayd M; Bean, Bruce P

    2008-10-22

    We analyzed ionic currents that regulate pacemaking in dopaminergic neurons of the mouse ventral tegmental area by comparing voltage trajectories during spontaneous firing with ramp-evoked currents in voltage clamp. Most recordings were made in brain slice, with key experiments repeated using acutely dissociated neurons, which gave identical results. During spontaneous firing, net ionic current flowing between spikes was calculated from the time derivative of voltage multiplied by cell capacitance, signal-averaged over many firing cycles to enhance resolution. Net inward interspike current had a distinctive nonmonotonic shape, reaching a minimum (generally <1 pA) between -60 and -55 mV. Under voltage clamp, ramps over subthreshold voltages elicited a time- and voltage-dependent outward current that peaked near -55 mV. This current was undetectable with 5 mV/s ramps and increased steeply with depolarization rate over the range (10-50 mV/s) typical of natural pacemaking. Ramp-evoked subthreshold current was resistant to alpha-dendrotoxin, paxilline, apamin, and tetraethylammonium but sensitive to 4-aminopyridine and 0.5 mM Ba2+, consistent with A-type potassium current (I(A)). Same-cell comparison of currents elicited by various ramp speeds with natural spontaneous depolarization showed how the steep dependence of I(A) on depolarization rate results in small net inward currents during pacemaking. These results reveal a mechanism in which subthreshold I(A) is near zero at steady state, but is engaged at depolarization rates >10 mV/s to act as a powerful, supralinear feedback element. This feedback mechanism explains how net ionic current can be constrained to <1-2 pA but reliably inward, thus enabling slow, regular firing.

  12. 33 CFR 334.630 - Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude 27°50...

  13. An Approximation to the Adaptive Exponential Integrate-and-Fire Neuron Model Allows Fast and Predictive Fitting to Physiological Data.

    PubMed

    Hertäg, Loreen; Hass, Joachim; Golovko, Tatiana; Durstewitz, Daniel

    2012-01-01

    For large-scale network simulations, it is often desirable to have computationally tractable, yet in a defined sense still physiologically valid neuron models. In particular, these models should be able to reproduce physiological measurements, ideally in a predictive sense, and under different input regimes in which neurons may operate in vivo. Here we present an approach to parameter estimation for a simple spiking neuron model mainly based on standard f-I curves obtained from in vitro recordings. Such recordings are routinely obtained in standard protocols and assess a neuron's response under a wide range of mean-input currents. Our fitting procedure makes use of closed-form expressions for the firing rate derived from an approximation to the adaptive exponential integrate-and-fire (AdEx) model. The resulting fitting process is simple and about two orders of magnitude faster compared to methods based on numerical integration of the differential equations. We probe this method on different cell types recorded from rodent prefrontal cortex. After fitting to the f-I current-clamp data, the model cells are tested on completely different sets of recordings obtained by fluctuating ("in vivo-like") input currents. For a wide range of different input regimes, cell types, and cortical layers, the model could predict spike times on these test traces quite accurately within the bounds of physiological reliability, although no information from these distinct test sets was used for model fitting. Further analyses delineated some of the empirical factors constraining model fitting and the model's generalization performance. An even simpler adaptive LIF neuron was also examined in this context. Hence, we have developed a "high-throughput" model fitting procedure which is simple and fast, with good prediction performance, and which relies only on firing rate information and standard physiological data widely and easily available.

  14. 32 CFR 644.523 - Restricting future of artillery and other ranges.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ranges. Experience indicates that, on ranges where high explosive projectiles have been fired or dropped... 32 National Defense 4 2014-07-01 2013-07-01 true Restricting future of artillery and other ranges... concentration of fire, and the properties of these projectiles are such that many duds are deeply buried. Depth...

  15. 32 CFR 644.523 - Restricting future of artillery and other ranges.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ranges. Experience indicates that, on ranges where high explosive projectiles have been fired or dropped... 32 National Defense 4 2012-07-01 2011-07-01 true Restricting future of artillery and other ranges... concentration of fire, and the properties of these projectiles are such that many duds are deeply buried. Depth...

  16. 32 CFR 644.523 - Restricting future of artillery and other ranges.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ranges. Experience indicates that, on ranges where high explosive projectiles have been fired or dropped... 32 National Defense 4 2013-07-01 2013-07-01 false Restricting future of artillery and other ranges... concentration of fire, and the properties of these projectiles are such that many duds are deeply buried. Depth...

  17. FEES: design of a Fire Economics Evaluation System

    Treesearch

    Thomas J. Mills; Frederick W. Bratten

    1982-01-01

    The Fire Economics Evaluation System (FEES)--a simulation model--is being designed for long-term planning application by all public agencies with wildland fire management responsibilities. A fully operational version of FEES will be capable of estimating the economic efficiency, fire-induced changes in resource outputs, and risk characteristics of a range of fire...

  18. Impacts of prescribed fire on Pinus rigida Mill. in upland forests of the Atlantic Coastal Plain.

    PubMed

    Carlo, Nicholas J; Renninger, Heidi J; Clark, Kenneth L; Schäfer, Karina V R

    2016-08-01

    A comparative analysis of the impacts of prescribed fire on three upland forest stands in the Northeastern Atlantic Plain, NJ, USA, was conducted. Effects of prescribed fire on water use and gas exchange of overstory pines were estimated via sap-flux rates and photosynthetic measurements on Pinus rigida Mill. Each study site had two sap-flux plots, one experiencing prescribed fire and one control (unburned) plot for comparison before and after the fire. We found that photosynthetic capacity in terms of Rubisco-limited carboxylation rate and intrinsic water-use efficiency was unaffected, while light compensation point and dark respiration rate were significantly lower in the burned vs control plots post-fire. Furthermore, quantum yield in pines in the pine-dominated stands was less affected than pines in the mixed oak/pine stand, as there was an increase in quantum yield in the oak/pine stand post-fire compared with the control (unburned) plot. We attribute this to an effect of forest type but not fire per se. Average daily sap-flux rates of the pine trees increased compared with control (unburned) plots in pine-dominated stands and decreased in the oak/pine stand compared with control (unburned) plots, potentially due to differences in fuel consumption and pre-fire sap-flux rates. Finally, when reference canopy stomatal conductance was analyzed, pines in the pine-dominated stands were more sensitive to changes in vapor pressure deficit (VPD), while stomatal responses of pines in the oak/pine stand were less affected by VPD. Therefore, prescribed fire affects physiological functioning and water use of pines, but the effects may be modulated by forest stand type and fuel consumption pattern, which suggests that these factors may need to be taken into account for forest management in fire-dominated systems. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.12 Specific provisions for monitoring NOX emission rate. (a) Coal-fired units, gas-fired nonpeaking units or oil-fired... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Specific provisions for monitoring NOX...

  20. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.12 Specific provisions for monitoring NOX emission rate. (a) Coal-fired units, gas-fired nonpeaking units or oil-fired... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Specific provisions for monitoring NOX...

  1. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.12 Specific provisions for monitoring NOX emission rate. (a) Coal-fired units, gas-fired nonpeaking units or oil-fired... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Specific provisions for monitoring NOX...

  2. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.12 Specific provisions for monitoring NOX emission rate. (a) Coal-fired units, gas-fired nonpeaking units or oil-fired... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Specific provisions for monitoring NOX...

  3. 40 CFR 75.12 - Specific provisions for monitoring NOX emission rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.12 Specific provisions for monitoring NOX emission rate. (a) Coal-fired units, gas-fired nonpeaking units or oil-fired... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Specific provisions for monitoring NOX...

  4. Air quality and human health improvements from reduced deforestation in Brazil

    NASA Astrophysics Data System (ADS)

    Reddington, C.; Butt, E. W.; Ridley, D. A.; Artaxo, P.; Morgan, W.; Coe, H.; Spracklen, D. V.

    2015-12-01

    Significant areas of the Brazilian Amazon have been deforested over the past few decades, with fire being the dominant method through which forests and vegetation are cleared. Fires emit large quantities of particulate matter into the atmosphere, degrading air quality and negatively impacting human health. Since 2004, Brazil has achieved substantial reductions in deforestation rates and associated deforestation fires. Here we assess the impact of this reduction on air quality and human health. We show that dry season (August - October) aerosol optical depth (AOD) retrieved by satellite over southwest Brazil and Bolivia is positively related to Brazil's annual deforestation rate (r=0.96, P<0.001). Observed dry season AOD is more than a factor two greater in years with high deforestation rates compared to years with low deforestation rates, suggesting regional air quality is degraded substantially by fire emissions associated with deforestation. This link is further demonstrated by the positive relationship between observed AOD and satellite-derived particulate emissions from deforestation fires (r=0.89, P<0.01). Using a global aerosol model with satellite-derived fire emissions, we show that reductions in fires associated with reduced deforestation have reduced regional dry season mean surface particulate matter concentrations by ~30%. Using concentration response functions we estimate that this reduction in particulate matter may be preventing 1060 (388-1721) premature adult mortalities annually across South America. Future increases in Brazil's deforestation rates and associated fires may threaten the improved air quality reported here.

  5. Holocene vegetation and fire history of the Coast Range, western Oregon, USA

    Treesearch

    Colin J. Long; Cathy Whitlock; Patrick J. Bartlein

    2007-01-01

    Pollen and high-resolution charcoal records from three lakes were examined to reconstruct the vegetation and fire history of the Oregon Coast Range for the last 9000 years. The sites are located along a north to- south effective precipitation gradient and changes in vegetation and fire activity provided information on the nature of this gradient in the past. The...

  6. Frequent fire protects shortleaf pine (Pinus echinata) from introgression by loblolly pine (P. taeda).

    Treesearch

    John F Stewart; Rodney E Will; Kevin M Robertson; Dana Nelson

    2014-01-01

    Across much of the globe, fire is a major disturbance agent of forest and grassland communities. The removal of fire from previously fire-maintained ecosystems, which has occurred in many areas, changes species composition, favoring later less fire tolerant species over fire-adapted ones. A recent measured increase in the rate of hybridization between the fire-adapted...

  7. How to generate and interpret fire characteristics charts for surface and crown fire behavior

    Treesearch

    Patricia L. Andrews; Faith Ann Heinsch; Luke Schelvan

    2011-01-01

    A fire characteristics chart is a graph that presents primary related fire behavior characteristics-rate of spread, flame length, fireline intensity, and heat per unit area. It helps communicate and interpret modeled or observed fire behavior. The Fire Characteristics Chart computer program plots either observed fire behavior or values that have been calculated by...

  8. Estimating fire behavior with FIRECAST: user's manual

    Treesearch

    Jack D. Cohen

    1986-01-01

    FIRECAST is a computer program that estimates fire behavior in terms of six fire parameters. Required inputs vary depending on the outputs desired by the fire manager. Fuel model options available to users are these: Northern Forest Fire Laboratory (NFFL), National Fire Danger Rating System (NFDRS), and southern California brushland (SCAL). The program has been...

  9. Modeling the effects of vegetation heterogeneity on wildland fire behavior

    NASA Astrophysics Data System (ADS)

    Atchley, A. L.; Linn, R.; Sieg, C.; Middleton, R. S.

    2017-12-01

    Vegetation structure and densities are known to drive fire-spread rate and burn severity. Many fire-spread models incorporate an average, homogenous fuel density in the model domain to drive fire behavior. However, vegetation communities are rarely homogenous and instead present significant heterogeneous structure and fuel densities in the fires path. This results in observed patches of varied burn severities and mosaics of disturbed conditions that affect ecological recovery and hydrologic response. Consequently, to understand the interactions of fire and ecosystem functions, representations of spatially heterogeneous conditions need to be incorporated into fire models. Mechanistic models of fire disturbance offer insight into how fuel load characterization and distribution result in varied fire behavior. Here we use a physically-based 3D combustion model—FIRETEC—that solves conservation of mass, momentum, energy, and chemical species to compare fire behavior on homogenous representations to a heterogeneous vegetation distribution. Results demonstrate the impact vegetation heterogeneity has on the spread rate, intensity, and extent of simulated wildfires thus providing valuable insight in predicted wildland fire evolution and enhanced ability to estimate wildland fire inputs into regional and global climate models.

  10. 79. VIEW OF VAL FIRING RANGE LOOKING SOUTHWEST SHOWING LAUNCHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. VIEW OF VAL FIRING RANGE LOOKING SOUTHWEST SHOWING LAUNCHER BRIDGE, BARGES, SONAR BUOY RANGE AND MORRIS DAM IN BACKGROUND, June 10, 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  11. SP industry calorimeter for rate of heat release measurements up to 10MW

    NASA Astrophysics Data System (ADS)

    Dahlberg, Martin

    The Swedish National Testing and Research Institute (SP) has installed a 10 MW fire calorimeter for rate of heat release measurements, similar to the one at Factory Mutual Research Corporation (FMRC). It can be used to classify commodities with respect to their fire hazard, to evaluate the efficiency of sprinkler systems, for chemical analysis of the combustion gases from hazardous fires, to produce input data for the fire modelling, etc. A large hood collects the fire gases and leads them into a duct where gas velocity, gas temperature, smoke density, and contents of oxygen, carbon dioxide, and carbon monoxide are measured. On the basis of these measurements, mass flow and rate of heat release are calculated. The rate of heat release is calculated according to the oxygen consumption principle. The upper limit for measurements is approximately 10 MW and the lower is 0.1 MW.

  12. Modeling of fire smoke movement in multizone garments building using two open source platforms

    NASA Astrophysics Data System (ADS)

    Khandoker, Md. Arifur Rahman; Galib, Musanna; Islam, Adnan; Rahman, Md. Ashiqur

    2017-06-01

    Casualty of garment factory workers from factory fire in Bangladesh is a recurring tragedy. Smoke, which is more fatal than fire itself, often propagates through different pathways from lower to upper floors during building fire. Among the toxic gases produced from a building fire, carbon monoxide (CO) can be deadly, even in small amounts. This paper models the propagation and transportation of fire induced smoke (CO) that resulted from the burning of synthetic polyester fibers using two open source platforms, CONTAM and Fire Dynamics Simulator (FDS). Smoke migration in a generic multistoried garment factory building in Bangladesh is modeled using CONTAM where each floor is compartmentalized by different zones. The elevator and stairway shafts are modeled by phantom zones to simulate contaminant (CO) transport from one floor to upper floors. FDS analysis involves burning of two different stacks of polyester jacket of six feet height and with a maximum heat release rate per unit area of 1500kw/m2 over a storage area 50m2 and 150m2, respectively. The resulting CO generation and removal rates from FDS are used in CONTAM to predict fire-borne CO propagation in different zones of the garment building. Findings of the study exhibit that the contaminant flow rate is a strong function of the position of building geometry, location of initiation of fire, amount of burnt material, presence of AHU and contaminant generation and removal rate of CO from the source location etc. The transport of fire-smoke in the building Hallways, stairways and lifts are also investigated in detail to examine the safe egress of the occupants in case of fire.

  13. The Bee Fire: a case study validation of BEHAVE in chaparral fuels

    Treesearch

    David Weise; A. Gelobter; J. Regelbrugge; J. Millar

    2002-01-01

    The Bee Fire burned 9,620 acres of grass and chaparral in the San Bernardino National Forest in southern California from June 29 to July 2, 1996. Rate of spread data were determined from successive fire perimeters and compared with rate of spread predicted by the Rothermel rate of spread model using fuel model 4 (heavy brush) and a custom fuel model for chamise...

  14. Fuel variability following wildfire in forests with mixed severity fire regimes, Cascade Range, USA

    Treesearch

    Jessica L. Hudec; David L. Peterson

    2012-01-01

    Fire severity influences post-burn structure and composition of a forest and the potential for a future fire to burn through the area. The effects of fire on forests with mixed severity fire regimes are difficult to predict and interpret because the quantity, structure, and composition of forest fuels vary considerably. This study examines the relationship between fire...

  15. Influence of proprioceptive feedback on the firing rate and recruitment of motoneurons

    NASA Astrophysics Data System (ADS)

    De Luca, C. J.; Kline, J. C.

    2012-02-01

    We investigated the relationships of the firing rate and maximal recruitment threshold of motoneurons recorded during isometric contraction with the number of spindles in individual muscles. At force levels above 10% of maximal voluntary contraction, the firing rate was inversely related to the number of spindles in a muscle, with the slope of the relationship increasing with force. The maximal recruitment threshold of motor units increased linearly with the number of spindles in the muscle. Thus, muscles with a greater number of spindles had lower firing rates and a greater maximal recruitment threshold. These findings may be explained by a mechanical interaction between muscle fibres and adjacent spindles. During low-level (0% to 10%) voluntary contractions, muscle fibres of recruited motor units produce force twitches that activate nearby spindles to respond with an immediate excitatory feedback that reaches maximal level. As the force increases further, the twitches overlap and tend towards tetanization, the muscle fibres shorten, the spindles slacken, their excitatory firings decrease, and the net excitation to the homonymous motoneurons decreases. Motoneurons of muscles with greater number of spindles receive a greater decrease in excitation which reduces their firing rates, increases their maximal recruitment threshold, and changes the motoneuron recruitment distribution.

  16. Fuselage ventilation due to wind flow about a postcrash aircraft

    NASA Technical Reports Server (NTRS)

    Stuart, J. W.

    1980-01-01

    Postcrash aircraft fuselage fire development, dependent on the internal and external fluid dynamics is discussed. The natural ventilation rate, a major factor in the internal flow patterns and fire development is reviewed. The flow about the fuselage as affected by the wind and external fire is studied. An analysis was performend which estimated the rates of ventilation produced by the wind for a limited idealized environmental configuration. The simulation utilizes the empirical pressure coefficient distribution of an infinite circular cylinder near a wall with its boundary later flow to represent the atmospheric boundary layer. The resulting maximum ventilation rate for two door size openings, with varying circumferential location in a common 10 mph wind was an order of magnitude greater than the forced ventilation specified in full scale fire testing. The parameter discussed are: (1) fuselage size and shape, (2) fuselage orientation and proximity to the ground, (3) fuselage-openings size and location, (4) wind speed and direction, and (5) induced flow of the external fire plume is recommended. The fire testing should be conducted to a maximum ventilation rate at least an order of magnitude greater than the inflight air conditioning rates.

  17. Fire Safety Technician

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Fire protection is one of the most important considerations in the construction and operation of industrial plants and commercial buildings. Fire insurance rates are determined by fire probability factors, such as the type of construction, ease of transporting personnel, and the quality and quantity of fire protection equipment available. Because…

  18. Effects of barbell deadlift training on submaximal motor unit firing rates for the vastus lateralis and rectus femoris.

    PubMed

    Stock, Matt S; Thompson, Brennan J

    2014-01-01

    Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age  = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units.

  19. Fire Detection Tradeoffs as a Function of Vehicle Parameters

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Dietrich, Daniel L.; Brooker, John E.; Meyer, Marit E.; Ruff, Gary A.

    2016-01-01

    Fire survivability depends on the detection of and response to a fire before it has produced an unacceptable environment in the vehicle. This detection time is the result of interplay between the fire burning and growth rates; the vehicle size; the detection system design; the transport time to the detector (controlled by the level of mixing in the vehicle); and the rate at which the life support system filters the atmosphere, potentially removing the detected species or particles. Given the large differences in critical vehicle parameters (volume, mixing rate and filtration rate) the detection approach that works for a large vehicle (e.g. the ISS) may not be the best choice for a smaller crew capsule. This paper examines the impact of vehicle size and environmental control and life support system parameters on the detectability of fires in comparison to the hazard they present. A lumped element model was developed that considers smoke, heat, and toxic product release rates in comparison to mixing and filtration rates in the vehicle. Recent work has quantified the production rate of smoke and several hazardous species from overheated spacecraft polymers. These results are used as the input data set in the lumped element model in combination with the transport behavior of major toxic products released by overheating spacecraft materials to evaluate the necessary alarm thresholds to enable appropriate response to the fire hazard.

  20. Thermal weapon sights with integrated fire control computers: algorithms and experiences

    NASA Astrophysics Data System (ADS)

    Rothe, Hendrik; Graswald, Markus; Breiter, Rainer

    2008-04-01

    The HuntIR long range thermal weapon sight of AIM is deployed in various out of area missions since 2004 as a part of the German Future Infantryman system (IdZ). In 2007 AIM fielded RangIR as upgrade with integrated laser Range finder (LRF), digital magnetic compass (DMC) and fire control unit (FCU). RangIR fills the capability gaps of day/night fire control for grenade machine guns (GMG) and the enhanced system of the IdZ. Due to proven expertise and proprietary methods in fire control, fast access to military trials for optimisation loops and similar hardware platforms, AIM and the University of the Federal Armed Forces Hamburg (HSU) decided to team for the development of suitable fire control algorithms. The pronounced ballistic trajectory of the 40mm GMG requires most accurate FCU-solutions specifically for air burst ammunition (ABM) and is most sensitive to faint effects like levelling or firing up/downhill. This weapon was therefore selected to validate the quality of the FCU hard- and software under relevant military conditions. For exterior ballistics the modified point mass model according to STANAG 4355 is used. The differential equations of motions are solved numerically, the two point boundary value problem is solved iteratively. Computing time varies according to the precision needed and is typical in the range from 0.1 - 0.5 seconds. RangIR provided outstanding hit accuracy including ABM fuze timing in various trials of the German Army and allied partners in 2007 and is now ready for series production. This paper deals mainly with the fundamentals of the fire control algorithms and shows how to implement them in combination with any DSP-equipped thermal weapon sights (TWS) in a variety of light supporting weapon systems.

  1. Evapotranspiration from a cypress and pine forest subjected to natural fires, Volusia County, Florida, 1998-99

    USGS Publications Warehouse

    Sumner, D.M.

    2001-01-01

    Daily values of evapotranspiration from a watershed in Volusia County, Florida, were estimated for a 2-year period (January 1998 through December 1999) by using an energy-budget variant of the eddy correlation method and a Priestley-Taylor model. The watershed consisted primarily of pine flatwood uplands interspersed within cypress wetlands. A drought-induced fire in spring 1998 burned about 40 percent of the watershed, most of which was subsequently logged. The model reproduced the 449 measured values of evapotranspiration reasonably well (r2=0.90) over a wide range of seasonal and surface-cover conditions. Annual evapotranspiration from the watershed was estimated to be 916 millimeters (36 inches) for 1998 and 1,070 millimeters (42 inches) for 1999. Evapotranspiration declined from near potential rates in the wet conditions of January 1998 to less than 50 percent of potential evapotranspiration after the fire and at the peak of the drought in June 1998. After the drought ended in early July 1998 and water levels returned to near land-surface, evapotranspiration increased sharply; however, the evapotranspiration rate was only about 60 percent of the potential rate in the burned areas, compared to about 90 percent of the potential rate in the unburned areas. This discrepancy can be explained as a result of fire damage to vegetation. Beginning in spring 1999, evapotranspiration from burned areas increased sharply relative to unburned areas, sometimes exceeding unburned evapotranspiration by almost 100 percent. Possible explanations for the dramatic increase in evapotranspiration from burned areas could include phenological changes associated with maturation or seasonality of plants that emerged after the fire or successional changes in composition of plant community within burned areas. Variations in daily evapotranspiration are primarily the result of variations in surface cover, net radiation, photosynthetically active radiation, air temperature, and water-table depth. A water budget for the watershed supports the validity of the daily measurements and estimates of evapotranspiration. A water budget constructed using independent estimates of average rates of rainfall, runoff, and deep leakage, as well as evapotranspiration, was consistent within 3.8 percent. An alternative water budget constructed using evapotrans-piration estimated by the standard eddy correlation method was consistent only within 9.1 percent. This result indicates that the standard eddy correlation method is not as accurate as the energy-budget variant.

  2. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  3. California Spotted Owl (Strix occidentalis occidentalis) habitat use patterns in a burned landscape

    USGS Publications Warehouse

    Eyes, Stephanie; Roberts, Susan L.; Johnson, Matthew D.

    2017-01-01

    Fire is a dynamic ecosystem process of mixed-conifer forests of the Sierra Nevada, but there is limited scientific information addressing wildlife habitat use in burned landscapes. Recent studies have presented contradictory information regarding the effects of stand-replacing wildfires on Spotted Owls (Strix occidentalis) and their habitat. While fire promotes heterogeneous forest landscapes shown to be favored by owls, high severity fire may create large canopy gaps that can fragment the closed-canopy habitat preferred by Spotted Owls. We used radio-telemetry to determine whether foraging California Spotted Owls (S. o. occidentalis) in Yosemite National Park, California, USA, showed selection for particular fire severity patch types within their home ranges. Our results suggested that Spotted Owls exhibited strong habitat selection within their home ranges for locations near the roost and edge habitats, and weak selection for lower fire severity patch types. Although owls selected high contrast edges with greater relative probabilities than low contrast edges, we did not detect a statistical difference between these probabilities. Protecting forests from stand-replacing fires via mechanical thinning or prescribed fire is a priority for management agencies, and our results suggest that fires of low to moderate severity can create habitat conditions within California Spotted Owls' home ranges that are favored for foraging.

  4. Metabolism Regulates the Spontaneous Firing of Substantia Nigra Pars Reticulata Neurons via KATP and Nonselective Cation Channels

    PubMed Central

    Lutas, Andrew; Birnbaumer, Lutz

    2014-01-01

    Neurons use glucose to fuel glycolysis and provide substrates for mitochondrial respiration, but neurons can also use alternative fuels that bypass glycolysis and feed directly into mitochondria. To determine whether neuronal pacemaking depends on active glucose metabolism, we switched the metabolic fuel from glucose to alternative fuels, lactate or β-hydroxybutyrate, while monitoring the spontaneous firing of GABAergic neurons in mouse substantia nigra pars reticulata (SNr) brain slices. We found that alternative fuels, in the absence of glucose, sustained SNr spontaneous firing at basal rates, but glycolysis may still be supported by glycogen in the absence of glucose. To prevent any glycogen-fueled glycolysis, we directly inhibited glycolysis using either 2-deoxyglucose or iodoacetic acid. Inhibiting glycolysis in the presence of alternative fuels lowered SNr firing to a slower sustained firing rate. Surprisingly, we found that the decrease in SNr firing was not mediated by ATP-sensitive potassium (KATP) channel activity, but if we lowered the perfusion flow rate or omitted the alternative fuel, KATP channels were activated and could silence SNr firing. The KATP-independent slowing of SNr firing that occurred with glycolytic inhibition in the presence of alternative fuels was consistent with a decrease in a nonselective cationic conductance. Although mitochondrial metabolism alone can prevent severe energy deprivation and KATP channel activation in SNr neurons, active glucose metabolism appears important for keeping open a class of ion channels that is crucial for the high spontaneous firing rate of SNr neurons. PMID:25471572

  5. Root disease can rival fire and harvest in reducing forest carbon storage

    Treesearch

    Sean P. Healey; Crystal L. Raymond; I. Blakey Lockman; Alexander J. Hernandez; Chris Garrard; Chengquan Huang

    2016-01-01

    Root diseases are known to suppress forest regeneration and reduce growth rates, and they may become more common as susceptible tree species become maladapted in parts of their historic ranges due to climate change. However, current ecosystem models do not track the effects of root disease on net productivity, and there has been little research on how the dynamics of...

  6. Effects of Invasive European Fire Ants (Myrmica rubra) on Herring Gull (Larus argentatus) Reproduction

    PubMed Central

    DeFisher, Luke E.; Bonter, David N.

    2013-01-01

    Various invasive ant species have negatively affected reproductive success in birds by disrupting nest site selection, incubation patterns, food supply, and by direct predation on nestlings. Impacts can be particularly severe when non-native ants colonize seabird nesting islands where thousands of birds may nest in high densities on the ground or in burrows or crevices. Here we report on the first documented effects of Myrmica rubra, the European fire ant, on the reproduction of birds in its non-native range. We documented herring gulls (Larus argentatus) on Appledore Island, Maine, engaging in more erratic incubation behaviors at nests infested by the ants. Newly-hatched chicks in some nests were swarmed by ants, leading to rapid chick death. Due to high overall rates of chick mortality, survival probabilities did not vary between nests with and without ant activity, however chick growth rates were slower at nests with ants than at ant-free nests. Ant infestation likely leads to longer-term fitness consequences because slower growth rates early in life may ultimately lead to lower post-fledging survival probabilities. PMID:23691168

  7. Impact of Fire on Streamflow in Southern California Watersheds

    NASA Astrophysics Data System (ADS)

    Bart, R. R.; Hope, A. S.

    2007-12-01

    Post-fire streamflow dynamics in Southern California have primarily been studied using small watershed experiments. These studies have concluded that increases in streamflow are a consequence of an increase in soil hydrophobicity, along with a decrease in transpiration rates associated with less vegetation. Extrapolation of the results from these studies to large watersheds (>50 km2) has been limited because large watersheds may not burn completely and other processes may emerge at these scales. In this study, six paired watersheds were used to test the hypothesis that there is an increase in streamflow following fire in large California watersheds (54-632 km2). The percentage of area burned in these watersheds ranged from 23 to 100%. The effects of fires on streamflow were examined at annual, seasonal, and monthly time-steps for the five years following fire. In addition, this study attempted to address fundamental regression assumptions that are commonly ignored, and create uncertainty bounds for evaluating the changes in streamflow before and after fire. Results of this experiment indicate that differences in pre and post-fire streamflows, at all time scales and in all the test catchments, were generally within the 95% uncertainty bounds of the regression equation. It is uncertain whether the apparent lack of significant difference between the pre and post-fire streamflow reflects no actual change in streamflow or is a consequence of the errors and uncertainties in the streamflow data. Furthermore, persistent drought in the years following fire made it challenging to interpret differences in pre and post-fire flows using the paired watershed methodology. The effects of hydrophobicity on post-fire streamflow may have been reduced by a limited number of storm flow events during these drought years. Under these dry conditions, soil moisture was the dominant control over transpirational losses, minimizing the effects of a reduction in vegetation cover. These results indicate that the consequences of fires are likely to vary depending on the post-fire meteorological conditions. The study addresses the challenges of using non-experimental watersheds for paired watershed studies.

  8. Partial agonists for α4β2 nicotinic receptors stimulate dopaminergic neuron firing with relatively enhanced maximal effects

    PubMed Central

    Chen, Ying; Broad, Lisa M; Phillips, Keith G; Zwart, Ruud

    2012-01-01

    BACKGROUND AND PURPOSE Partial agonists selective for α4β2 nicotinic ACh receptors have been developed for smoking cessation as they induce weak activation of native α4β2* receptors and inhibit effect of nicotine. However, it is unclear whether at brain functions there is an existence of receptor reserve that allows weak receptor activation to induce maximum physiological effects. We assessed the extent of α4β2 partial agonist-induced increase of firing rate in dopaminergic neurons and evaluated the influence of receptor reserve. EXPERIMENTAL APPROACH The relative maximal effects and potencies of six nicotinic agonists were assessed on recombinant human α4β2 and α7 receptors expressed in mammalian cell lines by measuring calcium influx. Agonist-induced increase of the spontaneous firing rate of dopaminergic neurons was recorded using microelectrodes in the ventral tegmental area of rat brain slices. KEY RESULTS All α4β2 partial and full agonists increased the firing rate concentration-dependently. Their sensitivity to subtype-selective antagonists showed predominant activation of native α4β2* receptors. However, partial agonists with relative maximal effects as low as 33% on α4β2 receptors maximally increased the firing rate and induced additional depolarization block of firing, demonstrating that partial activation of receptors caused the maximum increase in firing rate in the presence of a receptor reserve. CONCLUSIONS AND IMPLICATIONS Partial α4β2 agonists induced relatively enhanced effects on the firing rate of dopaminergic neurons, and the effect was mainly attributed to the existence of native α4β2* receptor reserve. The results have implications in the understanding of physiological effects and therapeutic efficacies of α4β2 partial agonists. PMID:21838750

  9. Fire on the mountain: birds and burns in the Rocky Mountains

    Treesearch

    Natasha B. Kotliar; Victoria A. Saab; Richard L. Hutto

    2005-01-01

    The diversity of climate and topography across the Rocky Mountains has resulted in a broad spectrum of fire regimes ranging from frequent, low-severity fires to infrequent stand-replacement events. Such variation in fire history contributes to landscape structure and dynamics, and in turn can influence subsequent fire behavior (Allen et al. 2002). In essence,...

  10. The impact of state fire safe cigarette policies on fire fatalities, injuries, and incidents.

    PubMed

    Folz, David H; Shults, Chris

    Cigarettes are a leading cause of civilian deaths in home fires. Over the last decade, state fire service leaders and allied interest groups succeeded in persuading state lawmakers to require manufacturers to sell only low-ignition strength or "fire safe" cigarettes as a strategy to reduce these fatalities and the injuries and losses that stem from them. This article examines whether the states' fire safe cigarette laws actually helped to save lives, prevent injuries, and reduce the incidence of home fires ignited by cigarettes left unattended by smokers. Controlling for the effects of key demographic, social, economic, and housing variables, this study finds that the states' fire-safe cigarette policies had significant impacts on reducing the rate of smoking-related civilian fire deaths and the incidence of fires started by tobacco products. The findings also suggest that the states' fire safe cigarette policies may have helped to reduce the rate of smoking-related fire injuries. The study shows that collective actions by leaders in the fire service across the states can result in meaningful policy change that protects lives and advances public safety even when a political consensus for action is absent at the national level.

  11. Estimation of fire emissions from satellite-based measurements

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Kaufman, Y. J.

    2004-12-01

    Biomass burning is a worldwide phenomenon affecting many vegetated parts of the globe regularly. Fires emit large quantities of aerosol and trace gases into the atmosphere, thus influencing the atmospheric chemistry and climate. Traditional methods of fire emissions estimation achieved only limited success, because they were based on peripheral information such as rainfall patterns, vegetation types and changes, agricultural practices, and surface ozone concentrations. During the last several years, rapid developments in satellite remote sensing has allowed more direct estimation of smoke emissions using remotely-sensed fire data. However, current methods use fire pixel counts or burned areas, thereby depending on the accuracy of independent estimations of the biomass fuel loadings, combustion efficiency, and emission factors. With the enhanced radiometric range of its 4-micron fire channel, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which flies aboard both of the Earth Observing System (EOS) Terra and Aqua Satellites, is able to measure the rate of release of fire radiative energy (FRE) in MJ/s (something that older sensors could not do). MODIS also measures aerosol distribution. Taking advantage of these new resources, we have developed a procedure combining MODIS fire and aerosol products to derive FRE-based smoke emission coefficients (Ce in kg/MJ) for different regions of the globe. These coefficients are simply used to multiply FRE from MODIS to derive the emitted smoke aerosol mass. Results from this novel methodology are very encouraging. For instance, it was found that the smoke total particulate mass emission coefficient for the Brazilian Cerrado ecosystem (approximately 0.022 kg/MJ) is about twice the value for North America or Australia, but about 50 percent lower than the value for Zambia in southern Africa.

  12. Estimation of Fire Emissions from Satellite-Based Measurements

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.

    2004-01-01

    Biomass burning is a worldwide phenomenon affecting many vegetated parts of the globe regularly. Fires emit large quantities of aerosol and trace gases into the atmosphere, thus influencing the atmospheric chemistry and climate. Traditional methods of fire emissions estimation achieved only limited success, because they were based on peripheral information such as rainfall patterns, vegetation types and changes, agricultural practices, and surface ozone concentrations. During the last several years, rapid developments in satellite remote sensing has allowed more direct estimation of smoke emissions using remotely-sensed fire data. However, current methods use fire pixel counts or burned areas, thereby depending on the accuracy of independent estimations of the biomass fuel loadings, combustion efficiency, and emission factors. With the enhanced radiometric range of its 4-micron fire channel, the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, which flies aboard both of the Earth Observing System EOS) Terra and Aqua Satellites, is able to measure the rate of release of fire radiative energy (FRE) in MJ/s (something that older sensors could not do). MODIS also measures aerosol distribution. Taking advantage of these new resources, we have developed a procedure combining MODIS fire and aerosol products to derive FRE-based smoke emission coefficients (C(e), in kg/MJ) for different regions of the globe. These coefficients are simply used to multiply FRE from MODIS to derive the emitted smoke aerosol mass. Results from this novel methodology are very encouraging. For instance, it was found that the smoke total particulate mass emission coefficient for the Brazilian Cerrado ecosystem (approximately 0.022 kg/MJ) is about twice the value for North America, Western Europe, or Australia, but about 50% lower than the value for southern Africa.

  13. Comparison of crown fire modeling systems used in three fire management applications

    Treesearch

    Joe H. Scott

    2006-01-01

    The relative behavior of surface-crown fire spread rate modeling systems used in three fire management applications-CFIS (Crown Fire Initiation and Spread), FlamMap and NEXUS- is compared using fire environment characteristics derived from a dataset of destructively measured canopy fuel and associated stand characteristics. Although the surface-crown modeling systems...

  14. An Overview of FlamMap Fire Modeling Capabilities

    Treesearch

    Mark A. Finney

    2006-01-01

    Computerized and manual systems for modeling wildland fire behavior have long been available (Rothermel 1983, Andrews 1986). These systems focus on one-dimensional behaviors and assume the fire geometry is a spreading line-fire (in contrast with point or area-source fires). Models included in these systems were developed to calculate fire spread rate (Rothermel 1972,...

  15. Simulating spatial and temporally related fire weather

    Treesearch

    Isaac C. Grenfell; Mark Finney; Matt Jolly

    2010-01-01

    Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...

  16. Pocket calculator for local fire-danger ratings

    Treesearch

    Richard J. Barney; William C. Fischer

    1967-01-01

    In 1964, Stockstad and Barney published tables that provided conversion factors for calculating local fire danger in the Intermountain area according to fuel types, locations, steepness of terrain, aspects, and times of day. These tables were based on the National Fire-Danger Rating System published earlier that year. This system was adopted for operational use in...

  17. Control of voluntary and optogenetically perturbed locomotion by spike rate and timing of neurons of the mouse cerebellar nuclei

    PubMed Central

    Sarnaik, Rashmi

    2018-01-01

    Neurons of the cerebellar nuclei (CbN), which generate cerebellar output, are inhibited by Purkinje cells. With extracellular recordings during voluntary locomotion in head-fixed mice, we tested how the rate and coherence of inhibition influence CbN cell firing and well-practiced movements. Firing rates of Purkinje and CbN cells were modulated systematically through the stride cycle (~200–300 ms). Optogenetically stimulating ChR2-expressing Purkinje cells with light steps or trains evoked either asynchronous or synchronous inhibition of CbN cells. Steps slowed CbN firing. Trains suppressed CbN cell firing less effectively, but consistently altered millisecond-scale spike timing. Steps or trains that perturbed stride-related modulation of CbN cell firing rates correlated well with irregularities of movement, suggesting that ongoing locomotion is sensitive to alterations in modulated CbN cell firing. Unperturbed locomotion continued more often during trains than steps, however, suggesting that stride-related modulation of CbN spiking is less readily disrupted by synchronous than asynchronous inhibition. PMID:29659351

  18. An Experimental Study on Burning Characteristics of n-Heptane/Ethanol Mixture Pool Fires in a Reduced Scaled Tunnel

    NASA Astrophysics Data System (ADS)

    Yozgatligil, Ahmet; Shafee, Sina

    2016-11-01

    Fire accidents in recent decades have drawn attention to safety issues associated with the design, construction and maintenance of tunnels. A reduced scale tunnel model constructed based on Froude scaling technique is used in the current work. Mixtures of n-heptane and ethanol are burned with ethanol volumetric fraction up to 30 percent and the longitudinal ventilation velocity varying from 0.5 to 2.5 m/s. The burning rates of the pool fires are measured using a precision load cell. The heat release rates of the fires are calculated according to oxygen calorimetry method and the temperature distributions inside the tunnel are also measured. Results of the experiments show that the ventilation velocity variation has a significant effect on the pool fire burning rate, smoke temperature and the critical ventilation velocity. With increased oxygen depletion in case of increased ethanol content of blended pool fires, the quasi-steady heat release rate values tend to increase as well as the ceiling temperatures while the combustion duration decreases.

  19. Tremor-related activity of neurons in the 'motor' thalamus: changes in firing rate and pattern in the MPTP vervet model of parkinsonism.

    PubMed

    Guehl, D; Pessiglione, M; François, C; Yelnik, J; Hirsch, E C; Féger, J; Tremblay, L

    2003-06-01

    The pathophysiology of parkinsonian tremor remains a matter of debate with two opposing hypotheses proposing a peripheral and a central origin, respectively. A central origin of tremor could arise either from a rhythmic activity of the internal segment of the globus pallidus (GPi) or from a structure such as the thalamus, outside the basal ganglia. In this study, single-unit recordings were performed in three 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys within the GPi and within three territories of the motor thalamus (delimited by their afferent inputs from the GPi, the substantia nigra and the cerebellum, respectively). For each recorded neuron, we compared the variations in firing rate and pattern in tremor and no tremor periods. Tremor either occurred spontaneously or was induced by external stimulation. When the animals entered into a tremor period we observed: (i) an increase in the mean firing rate in about half of the recorded neurons of the motor thalamus; and (ii), a change from an irregular to a rhythmic discharge within the range of tremor frequency (5-7 Hz) in about 10% of the recorded neurons of the motor thalamus (pallidal and cerebellar territories) and the GPi. Most of the thalamic neurons that exhibited a rhythmic discharge during tremor were found to be sensitive to external stimulation. Because the changes in firing rate occurred predominantly in the motor thalamus and not in the GPi, and because a fast rhythmic discharge of 10-15 Hz was frequently observed in the GPi and not in the motor thalamus, we conclude that thalamic activity is not a simple reproduction of basal ganglia output. Moreover, we suggest that thalamic processing of basal ganglia outputs could participate in the genesis of tremor, and that this thalamic processing could be influenced by sensory inputs and/or changes in attentional level elicited by external stimulation.

  20. ERMiT: Estimating Post-Fire Erosion in Probabilistic Terms

    NASA Astrophysics Data System (ADS)

    Pierson, F. B.; Robichaud, P. R.; Elliot, W. J.; Hall, D. E.; Moffet, C. A.

    2006-12-01

    Mitigating the impact of post-wildfire runoff and erosion on life, property, and natural resources have cost the United States government tens of millions of dollars over the past decade. The decision of where, when, and how to apply the most effective mitigation treatments requires land managers to assess the risk of damaging runoff and erosion events occurring after a fire. The Erosion Risk Management Tool (ERMiT) is a web-based application that estimates erosion in probabilistic terms on burned and recovering forest, range, and chaparral lands. Unlike most erosion prediction models, ERMiT does not provide `average annual erosion rates;' rather, it provides a distribution of erosion rates with the likelihood of their occurrence. ERMiT combines rain event variability with spatial and temporal variabilities of hillslope burn severity, soil properties, and ground cover to estimate Water Erosion Prediction Project (WEPP) model input parameter values. Based on 20 to 40 individual WEPP runs, ERMiT produces a distribution of rain event erosion rates with a probability of occurrence for each of five post-fire years. Over the 5 years of modeled recovery, the occurrence probability of the less erodible soil parameters is increased and the occurrence probability of the more erodible soil parameters is decreased. In addition, the occurrence probabilities and the four spatial arrangements of burn severity (arrangements of overland flow elements (OFE's)), are shifted toward lower burn severity with each year of recovery. These yearly adjustments are based on field measurements made through post-fire recovery periods. ERMiT also provides rain event erosion rate distributions for hillslopes that have been treated with seeding, straw mulch, straw wattles and contour-felled log erosion barriers. Such output can help managers make erosion mitigation treatment decisions based on the probability of high sediment yields occurring, the value of resources at risk for damage, cost, and other management considerations.

  1. LSA SAF Meteosat FRP Products: Part 2 - Evaluation and demonstration of use in the Copernicus Atmosphere Monitoring Service (CAMS)

    NASA Astrophysics Data System (ADS)

    Roberts, G.; Wooster, M. J.; Xu, W.; Freeborn, P. H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Kaiser, J.

    2015-06-01

    Characterising the dynamics of landscape scale wildfires at very high temporal resolutions is best achieved using observations from Earth Observation (EO) sensors mounted onboard geostationary satellites. As a result, a number of operational active fire products have been developed from the data of such sensors. An example of which are the Fire Radiative Power (FRP) products, the FRP-PIXEL and FRP-GRID products, generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from imagery collected by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board the Meteosat Second Generation (MSG) series of geostationary EO satellites. The processing chain developed to deliver these FRP products detects SEVIRI pixels containing actively burning fires and characterises their FRP output across four geographic regions covering Europe, part of South America and northern and southern Africa. The FRP-PIXEL product contains the highest spatial and temporal resolution FRP dataset, whilst the FRP-GRID product contains a spatio-temporal summary that includes bias adjustments for cloud cover and the non-detection of low FRP fire pixels. Here we evaluate these two products against active fire data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), and compare the results to those for three alternative active fire products derived from SEVIRI imagery. The FRP-PIXEL product is shown to detect a substantially greater number of active fire pixels than do alternative SEVIRI-based products, and comparison to MODIS on a per-fire basis indicates a strong agreement and low bias in terms of FRP values. However, low FRP fire pixels remain undetected by SEVIRI, with errors of active fire pixel detection commission and omission compared to MODIS ranging between 9-13 and 65-77% respectively in Africa. Higher errors of omission result in greater underestimation of regional FRP totals relative to those derived from simultaneously collected MODIS data, ranging from 35% over the Northern Africa region to 89% over the European region. High errors of active fire omission and FRP underestimation are found over Europe and South America, and result from SEVIRI's larger pixel area over these regions. An advantage of using FRP for characterising wildfire emissions is the ability to do so very frequently and in near real time (NRT). To illustrate the potential of this approach, wildfire fuel consumption rates derived from the SEVIRI FRP-PIXEL product are used to characterise smoke emissions of the 2007 Peloponnese wildfires within the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS), as a demonstration of what can be achieved when using geostationary active fire data within the Copernicus Atmosphere Monitoring System (CAMS). Qualitative comparison of the modelled smoke plumes with MODIS optical imagery illustrates that the model captures the temporal and spatial dynamics of the plume very well, and that high temporal resolution emissions estimates such as those available from geostationary orbit are important for capturing the sub-daily variability in smoke plume parameters such as aerosol optical depth (AOD), which are increasingly less well resolved using daily or coarser temporal resolution emissions datasets. Quantitative comparison of modelled AOD with coincident MODIS and AERONET AOD indicates that the former is overestimated by ∼ 20-30%, but captures the observed AOD dynamics with a high degree of fidelity. The case study highlights the potential of using geostationary FRP data to drive fire emissions estimates for use within atmospheric transport models such as those currently implemented as part of the Monitoring Atmospheric Composition and Climate (MACC) programme within the CAMS.

  2. Response of forest soil Acari to prescribed fire following stand structure manipulation in the southern Cascade Range.Can

    Treesearch

    Michael A. Camann; Nancy E. Gillette; Karen L. Lamoncha; Sylvia R. Mori

    2008-01-01

    We studied responses of Acari, especially oribatid mites, to prescribed low-intensity fire in an east side pine site in the southern Cascade Range in California. We compared oribatid population and assemblage responses to prescribed fire in stands that had been selectively logged to enhance old growth characteristics, in logged stands to minimize old growth...

  3. Landscape patterns of montane forest age structure relative to fire history at Cheesman Lake in the Colorado Front Range

    Treesearch

    Laurie S. Huckaby; Merrill R. Kaufmann; Jason M. Stoker; Paula J. Fornwalt

    2001-01-01

    Lack of Euro-American disturbance, except fire suppression, has preserved the patterns of forest structure that resulted from the presettlement disturbance regime in a ponderosa pine/Douglas-fir landscape at Cheesman Lake in the Colorado Front Range. A mixed-severity fire regime and variable timing of tree recruitment created a heterogeneous forest age structure with...

  4. A New Approach for Determining Phase Response Curves Reveals that Purkinje Cells Can Act as Perfect Integrators

    PubMed Central

    Roth, Arnd; Häusser, Michael

    2010-01-01

    Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe the dynamical properties of Purkinje cells we measured their phase response curves (PRCs). PRCs quantify the change in spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons. These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of Purkinje cells depends on their firing rate. PMID:20442875

  5. Air To Air Helicopter Fire Control Equations and Software Generation.

    DTIC Science & Technology

    1979-11-01

    A A A A v D1. Bin), velocity (VTs, VTI. VTm). and acceleration (ATs, ATI. ATm) using the measured values of range. Rm. angular rate of the LOS W s...10 second time constant. Note that the input to each integrator also has cross channel coupling terms which are cross products of the LOS angular rate...ownship’s velocity (Vs. V1. Vm). This is subtracted from the estimated target velocity ( VsT . 01T. VmT) before the inal integration so that the

  6. Aircraft engine sump-fire studies

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.

    1976-01-01

    Results of ongoing experimental studies are reported in which a 125-millimeter-diameter-advanced-bearing test rig simulating an engine sump is being used to find the critical range of conditions for fires to occur. Design, material, and operating concepts and techniques are being studied with the objective of minimizing the problem. It has been found that the vapor temperature near a spark ignitor is most important in determining ignition potential. At temperatures producing oil vapor pressures below or much above the calculated flammability limits, fires have not been ignited. But fires have been routinely started within the theoretical flammability range. This indicates that generalizing the sump-fire problem may make it amenable to analysis, with the potential for realistic solutions.

  7. The interactive effects of fire and diversity on short-term responses of ecosystem processes in experimental mediterranean grasslands.

    PubMed

    Dimitrakopoulos, Panayiotis G; Siamantziouras, Akis-Stavros D; Galanidis, Alexandros; Mprezetou, Irene; Troumbis, Andreas Y

    2006-06-01

    We conducted a field experiment using constructed communities to test whether species richness contributed to the maintenance of ecosystem processes under fire disturbance. We studied the effects of diversity components (i.e., species richness and species composition) upon productivity, structural traits of vegetation, decomposition rates, and soil nutrients between burnt and unburnt experimental Mediterranean grassland communities. Our results demonstrated that fire and species richness had interactive effects on aboveground biomass production and canopy structure components. Fire increased biomass production of the highest-richness communities. The effects of fire on aboveground biomass production at different levels of species richness were derived from changes in both vertical and horizontal canopy structure of the communities. The most species-rich communities appeared to be more resistant to fire in relation to species-poor ones, due to both compositional and richness effects. Interactive effects of fire and species richness were not important for belowground processes. Decomposition rates increased with species richness, related in part to increased levels of canopy structure traits. Fire increased soil nutrients and long-term decomposition rate. Our results provide evidence that composition within richness levels had often larger effects on the stability of aboveground ecosystem processes in the face of fire disturbance than species richness per se.

  8. Only multi-taxon studies show the full range of arthropod responses to fire

    PubMed Central

    Pryke, James S.; Gaigher, René; Samways, Michael J.

    2018-01-01

    Fire is a major driver in many ecosystems. Yet, little is known about how different ground-living arthropods survive fire. Using three sampling methods, and time-since-fire (last fire event: 3 months, 1 year, and 7 years), we investigate how ground-living arthropod diversity responds to fire, and how species richness, diversity, abundance, and composition of the four dominant taxa: ants, beetles, cockroaches and mites, respond. We did this in the naturally fire-prone Mediterranean-type scrubland vegetation (fynbos) of the Cape Floristic Region. Surprisingly, overall species richness and diversity was the same for all time-since-fire categories. However, when each dominant taxon was analysed separately, effect of fire on species richness and abundance varied among taxa. This emphasizes that many taxa must be investigated to really understand fire-driven events. We also highlight the importance of using different diversity measures, as fire did not influence species richness and abundance of particular taxa, while it affected others, overall greatly affecting assemblages of all taxa. Rockiness affected species richness, abundance and composition of a few taxa. We found that all time-since-fire categories supported distinctive assemblages. Some indicator species occurred across all time-since-fire categories, while others were restricted to a single time-since-fire category, showing that there is a wide range of responses to fire between taxa. Details of local landscape structure, abiotic and biotic, and frequency and intensity of fire add complexity to the fire-arthropod interaction. Overall, we show that the relationship between fire and arthropods is phylogenetically constrained, having been honed by many millennia of fire events, and highly complex. Present-day species manifest a variety of adaptations for surviving the great natural selective force of fire. PMID:29614132

  9. Effects of prescribed fire, supplemental feeding, and mammalian predator exclusion on hispid cotton rat populations.

    PubMed

    Morris, Gail; Hostetler, Jeffrey A; Conner, L Mike; Oli, Madan K

    2011-12-01

    Predation and food resources can strongly affect small mammal population dynamics directly by altering vital rates or indirectly by influencing behaviors. Fire may also strongly influence population dynamics of species inhabiting fire-adapted habitats because fire can alter food and cover availability. We used capture-mark-recapture and radio-telemetry studies to experimentally examine how supplemental feeding, mammalian predator exclusion, and prescribed fire affected survival, abundance, and reproduction of hispid cotton rats (Sigmodon hispidus) in southwestern Georgia, USA. Prescribed fire reduced survival, abundance, and rates of transitions to reproductive states. Food supplementation increased survival, transitions to reproductive states, and abundance, but was not sufficient to prevent post-fire declines in any of these parameters. Mammalian predator exclusion did not strongly affect any of the considered parameters. Our results show that fire strongly influenced cotton rat populations in our study site, primarily by reducing cover and increasing predation risk from non-mammalian predators.

  10. Identifying key climate and environmental factors affecting rates of post-fire big sagebrush (Artemisia tridentata) recovery in the northern Columbia Basin, USA

    USGS Publications Warehouse

    Shinneman, Douglas; McIlroy, Susan

    2016-01-01

    Sagebrush steppe of North America is considered highly imperilled, in part owing to increased fire frequency. Sagebrush ecosystems support numerous species, and it is important to understand those factors that affect rates of post-fire sagebrush recovery. We explored recovery of Wyoming big sagebrush (Artemisia tridentata ssp.wyomingensis) and basin big sagebrush (A. tridentata ssp. tridentata) communities following fire in the northern Columbia Basin (Washington, USA). We sampled plots across 16 fires that burned in big sagebrush communities from 5 to 28 years ago, and also sampled nearby unburned locations. Mixed-effects models demonstrated that density of large–mature big sagebrush plants and percentage cover of big sagebrush were higher with time since fire and in plots with more precipitation during the winter immediately following fire, but were lower when precipitation the next winter was higher than average, especially on soils with higher available water supply, and with greater post-fire mortality of mature big sagebrush plants. Bunchgrass cover 5 to 28 years after fire was predicted to be lower with higher cover of both shrubs and non-native herbaceous species, and only slightly higher with time. Post-fire recovery of big sagebrush in the northern Columbia Basin is a slow process that may require several decades on average, but faster recovery rates may occur under specific site and climate conditions.

  11. The Fire-Walker’s High: Affect and Physiological Responses in an Extreme Collective Ritual

    PubMed Central

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual. PMID:24586315

  12. Mixture of natural fiber with gypsum to improve the fire resistance rating of a fire door: The effect of kapok fiber

    NASA Astrophysics Data System (ADS)

    Azieyanti, N. A.; Hakim, Alif; Hasini, Hasril

    2017-10-01

    A composite mixture of gypsum and natural fibers has been considered in this study to enhance the fire resistance rating of a fire door. Previously the materials used to make a fire door are gypsum and fiber wool where it acts as a protective coating. Normally this fire door must be compact and able to close on its own. Natural fibers have the ability to replace glass fiber cotton because of its features that are available in fiber glass wool. When using fiberglass, it can cause health problem once it is swallowed and inhaled, and may remain in the lungs indefinitely. It also can contribute to lungs cancer. Kapok fiber has been used in this experiment as natural fibers. The objective of the experiment is to analyze the fire resistant rating of the composite mixture of gypsum with kapok fiber. The scopes of the experiment consist of a preparation of composite mixture samples of gypsum with kapok fiber with different composition and thickness, and the fabrication of a fire resistant testing furnace. A testing of samples which were conducted in accordance with the standard MS 1073: PART 2:1996.

  13. The fire-walker's high: affect and physiological responses in an extreme collective ritual.

    PubMed

    Fischer, Ronald; Xygalatas, Dimitris; Mitkidis, Panagiotis; Reddish, Paul; Tok, Penny; Konvalinka, Ivana; Bulbulia, Joseph

    2014-01-01

    How do people feel during extreme collective rituals? Despite longstanding speculation, few studies have attempted to quantify ritual experiences. Using a novel pre/post design, we quantified physiological fluctuations (heart rates) and self-reported affective states from a collective fire-walking ritual in a Mauritian Hindu community. Specifically, we compared changes in levels of happiness, fatigue, and heart rate reactivity among high-ordeal participants (fire-walkers), low-ordeal participants (non-fire-walking participants with familial bonds to fire-walkers) and spectators (unrelated/unknown to the fire-walkers). We observed that fire-walkers experienced the highest increase in heart rate and reported greater happiness post-ritual compared to low-ordeal participants and spectators. Low-ordeal participants reported increased fatigue after the ritual compared to both fire-walkers and spectators, suggesting empathetic identification effects. Thus, witnessing the ritualistic suffering of loved ones may be more exhausting than experiencing suffering oneself. The findings demonstrate that the level of ritual involvement is important for shaping affective responses to collective rituals. Enduring a ritual ordeal is associated with greater happiness, whereas observing a loved-one endure a ritual ordeal is associated with greater fatigue post-ritual.

  14. Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs

    PubMed Central

    Kline, Joshua C.

    2015-01-01

    Synchronous motor unit firing instances have been attributed to anatomical inputs shared by motoneurons. Yet, there is a lack of empirical evidence confirming the notion that common inputs elicit synchronization under voluntary conditions. We tested this notion by measuring synchronization between motor unit action potential trains (MUAPTs) as their firing rates progressed within a contraction from a relatively low force level to a higher one. On average, the degree of synchronization decreased as the force increased. The common input notion provides no empirically supported explanation for the observed synchronization behavior. Therefore, we investigated a more probable explanation for synchronization. Our data set of 17,546 paired MUAPTs revealed that the degree of synchronization varies as a function of two characteristics of the motor unit firing rate: the similarity and the slope as a function of force. Both are measures of the excitation of the motoneurons. As the force generated by the muscle increases, the firing rate slope decreases, and the synchronization correspondingly decreases. Different muscles have motor units with different firing rate characteristics and display different amounts of synchronization. Although this association is not proof of causality, it consistently explains our observations and strongly suggests further investigation. So viewed, synchronization is likely an epiphenomenon, subject to countless unknown neural interactions. As such, synchronous firing instances may not be the product of a specific design and may not serve a specific physiological purpose. Our explanation for synchronization has the advantage of being supported by empirical evidence, whereas the common input does not. PMID:26490288

  15. Synchronization of motor unit firings: an epiphenomenon of firing rate characteristics not common inputs.

    PubMed

    Kline, Joshua C; De Luca, Carlo J

    2016-01-01

    Synchronous motor unit firing instances have been attributed to anatomical inputs shared by motoneurons. Yet, there is a lack of empirical evidence confirming the notion that common inputs elicit synchronization under voluntary conditions. We tested this notion by measuring synchronization between motor unit action potential trains (MUAPTs) as their firing rates progressed within a contraction from a relatively low force level to a higher one. On average, the degree of synchronization decreased as the force increased. The common input notion provides no empirically supported explanation for the observed synchronization behavior. Therefore, we investigated a more probable explanation for synchronization. Our data set of 17,546 paired MUAPTs revealed that the degree of synchronization varies as a function of two characteristics of the motor unit firing rate: the similarity and the slope as a function of force. Both are measures of the excitation of the motoneurons. As the force generated by the muscle increases, the firing rate slope decreases, and the synchronization correspondingly decreases. Different muscles have motor units with different firing rate characteristics and display different amounts of synchronization. Although this association is not proof of causality, it consistently explains our observations and strongly suggests further investigation. So viewed, synchronization is likely an epiphenomenon, subject to countless unknown neural interactions. As such, synchronous firing instances may not be the product of a specific design and may not serve a specific physiological purpose. Our explanation for synchronization has the advantage of being supported by empirical evidence, whereas the common input does not. Copyright © 2016 the American Physiological Society.

  16. Examining Fire Department Injury Data as a Tool for Epidemiological Investigation

    PubMed Central

    Perry, Elise C.; Shields, Wendy C.; O’Brocki, Raymond; Bishai, David; Frattaroli, Shannon; Jones, Vanya; Gielen, Andrea C.

    2014-01-01

    Objective Residential fires, while constituting a small fraction of fire incidents, are responsible for the majority of civilian fire-related injuries. This study investigates census tract neighborhood socioeconomic factors as correlates of civilian injuries occurring during residential fires in Baltimore, Maryland between 2004 and 2007. Methods Civilian residential-fire related injuries were geocoded and linked to the American Community Survey 2005–2009 data. Negative binomial regression was used to analyze the relationship between fire-injury rates and neighborhood socioeconomic indicators including household income and percentages of households below the poverty line, persons 25 years or older with at least a bachelor’s degree, homes built in 1939 or earlier, vacant properties, and owner occupied homes. Results Between January 2004 and July 2007, there were 482 civilian fire-related injuries that occurred during 309 fires. At the census tract level, a ten percent increase in the number of vacant homes was associated with an increase in injury rates by a factor of 1.28 (95% CI 1.05, 1.55). A ten percent increase in persons over 25 years with at least a bachelor’s degree was associated with a decrease in injury rates by a factor of 0.86 (95% CI 0.77, 0.96). Conclusions Neighborhood measures of education and housing age proved good indicators for identifying areas with a higher burden of fire-related injuries. Such analyses can be useful for fire department planning. PMID:24823338

  17. Dimensional Analysis on Forest Fuel Bed Fire Spread.

    PubMed

    Yang, Jiann C

    2018-01-01

    A dimensional analysis was performed to correlate the fuel bed fire rate of spread data previously reported in the literature. Under wind condition, six pertinent dimensionless groups were identified, namely dimensionless fire spread rate, dimensionless fuel particle size, fuel moisture content, dimensionless fuel bed depth or dimensionless fuel loading density, dimensionless wind speed, and angle of inclination of fuel bed. Under no-wind condition, five similar dimensionless groups resulted. Given the uncertainties associated with some of the parameters used to estimate the dimensionless groups, the dimensionless correlations using the resulting dimensionless groups correlate the fire rates of spread reasonably well under wind and no-wind conditions.

  18. The design of a simulated forcible entry test for fire fighters.

    PubMed

    Pelot, R P; Dwyer, J W; Deakin, J M; McCabe, J F

    1999-04-01

    This study investigated the physiological responses and performances for 20 fire fighters when completing simulated forcible entry tests. The purpose was to establish the validity of using a tire striking test and to examine the effects of varying the test parameters. The tests consisted of striking a reinforced structure and a weighted truck tire on a plywood covered table with either a 4.54 or a 5.60 kg sledge hammer. The results indicate that the simulated forcible entry tests are short in duration (range = 8.0-17.6 s), but are also physically demanding in terms of cardiovascular response (range = 86.5-97.2 for a percentage of heart rate reserve). The differences in striking a reinforced structure versus hitting a tire were insignificant according to most of the measures taken. The parameters for the simulated forcible entry test that were determined to be most appropriate were to move the tire 30 cm and use the 4.54 kg sledge hammer.

  19. Head Direction Cell Instability in the Anterior Dorsal Thalamus after Lesions of the Interpeduncular Nucleus

    PubMed Central

    Clark, Benjamin J.; Sarma, Asha; Taube, Jeffrey S.

    2009-01-01

    Previous research has identified a population of cells throughout the limbic system that discharge as a function of the animals head direction (HD). Altering normal motor cues can alter the HD cell responses and disrupt the updating of their preferred firing directions, thus suggesting that motor cues contribute to processing the HD signal. A pathway that conveys motor information may stem from the interpeduncular nucleus (IPN), a brain region that has reciprocal connections with HD cell circuitry. To test this hypothesis, we produced electrolytic or neurotoxic lesions of the IPN and recorded HD cells in the anterior dorsal thalamus (ADN) of rats. Direction-specific firing remained present in the ADN after lesions of the IPN, but measures of HD cell properties showed that cells had reduced peak firing rates, large directional firing ranges, and firing that predicted the animal’s future heading more than in intact controls. Furthermore, preferred firing directions were moderately less influenced by rotation of a salient visual landmark. Finally, the preferred directions of cells in lesioned rats exhibited large shifts when the animals foraged for scattered food-pellets in a darkened environment and when locomoting from a familiar environment to a novel one. We propose that the IPN contributes motor information about the animal’s movements to the HD cell circuitry. Further, these results suggest that the IPN plays a broad role in the discharge properties and stability of direction-specific activity in the HD cell circuit. PMID:19144850

  20. Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhu, Xuan; Yebra, Marta; Harris, Sarah; Tapper, Nigel

    2016-10-01

    Fuel structural characteristics affect fire behavior including fire intensity, spread rate, flame structure, and duration, therefore, quantifying forest fuel structure has significance in understanding fire behavior as well as providing information for fire management activities (e.g., planned burns, suppression, fuel hazard assessment, and fuel treatment). This paper presents a method of forest fuel strata classification with an integration between terrestrial light detection and ranging (LiDAR) data and geographic information system for automatically assessing forest fuel structural characteristics (e.g., fuel horizontal continuity and vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR scanning (TLS) data was assessed by field measured surface fuel depth and fuel percentage covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover at surface fuel layer with the field measurements produced root mean square error values of 1.1 cm and 5.4%, respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics are strongly consistent with field measured values. TLS can be used to efficiently and consistently classify forest vertical layers to provide more precise information for forest fuel hazard assessment and surface fuel load estimation in order to assist forest fuels management and fire-related operational activities. It can also be beneficial for mapping forest habitat, wildlife conservation, and ecosystem management.

  1. Time and length scales within a fire and implications for numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TIESZEN,SHELDON R.

    2000-02-02

    A partial non-dimensionalization of the Navier-Stokes equations is used to obtain order of magnitude estimates of the rate-controlling transport processes in the reacting portion of a fire plume as a function of length scale. Over continuum length scales, buoyant times scales vary as the square root of the length scale; advection time scales vary as the length scale, and diffusion time scales vary as the square of the length scale. Due to the variation with length scale, each process is dominant over a given range. The relationship of buoyancy and baroclinc vorticity generation is highlighted. For numerical simulation, first principlesmore » solution for fire problems is not possible with foreseeable computational hardware in the near future. Filtered transport equations with subgrid modeling will be required as two to three decades of length scale are captured by solution of discretized conservation equations. By whatever filtering process one employs, one must have humble expectations for the accuracy obtainable by numerical simulation for practical fire problems that contain important multi-physics/multi-length-scale coupling with up to 10 orders of magnitude in length scale.« less

  2. Early forest dynamics in stand-replacing fire patches in the northern Sierra Nevada, California, USA

    Treesearch

    Brandon M. Collins; Gary B. Roller

    2013-01-01

    There is considerable concern over the occurrence of stand-replacing fire in forest types historically associated with low- to moderate-severity fire. The concern is largely over whether contemporary levels of stand-replacing fire are outside the historical range of variability, and what natural forest recovery is in these forest types following stand-replacing fire....

  3. Managing fire and fuels in a warmer climate

    Treesearch

    David L. Peterson

    2010-01-01

    This historical perspective on fire provides a window into the future of fire in the Pacific Northwest. Although fire will always be more common in the interior portion of the region, a warmer climate could bring more fire to the westside of the Cascade Range where summers are typically dry and will probably become drier. If future climate resembles the climate now...

  4. Wildland fire emissions, carbon, and climate: U.S. emissions inventories

    Treesearch

    Narasimhan K. Larkin; Sean M. Raffuse; Tara M. Strand

    2014-01-01

    Emissions from wildland fire are both highly variable and highly uncertain over a wide range of temporal and spatial scales. Wildland fire emissions change considerably due to fluctuations from year to year with overall fire season severity, from season to season as different regions pass in and out of wildfire and prescribed fire periods, and from day to day as...

  5. Lightning fires in southwestern forests

    Treesearch

    Jack S. Barrows

    1978-01-01

    Lightning is the leading cause of fires in southwestern forests. On all protected private, state and federal lands in Arizona and New Mexico, nearly 80 percent of the forest, brush and range fires are ignited by lightning. The Southwestern region leads all other regions of the United States both in total number of lightning fires and in the area burned by these fires...

  6. Post-fire surface fuel dynamics in California forests across three burn severity classes

    Treesearch

    Bianca N. I. Eskelson; Vicente J. Monleon

    2018-01-01

    Forest wildfires consume fuel and are followed by post-fire fuel accumulation. This study examines post-fire surface fuel dynamics over 9 years across a wide range of conditions characteristic of California fires in dry conifer and hardwood forests. We estimated post-fire surface fuel loadings (Mg ha _1) from 191 repeatedly measured United States...

  7. Field procedures for verification and adjustment of fire behavior predictions

    Treesearch

    Richard C. Rothermel; George C. Rinehart

    1983-01-01

    The problem of verifying predictions of fire behavior, primarily rate of spread, is discussed in terms of the fire situation for which predictions are made, and the type of fire where data are to be collected. Procedures for collecting data and performing analysis are presented for both readily accessible fires where data should be complete, and for inaccessible fires...

  8. FireFamily Plus user's guide, Version 2.0

    Treesearch

    Larry Bradshaw; Erin McCormick

    2000-01-01

    FireFamily Plus is the new software for summarizing and analyzing daily weather observations and computing fire danger indexes based on the National Fire Danger Rating System (NFDRS). While the software and packaging are new, many of the reports are not. FireFamily Plus addressed the year 2000 issues that confronted a litany of DOS programs that operated against fire...

  9. Effect of Experimentally Manipulated Fire Regimes on the Response of Forests to Drought

    NASA Astrophysics Data System (ADS)

    Refsland, T. K.; Knapp, B.; Fraterrigo, J.

    2017-12-01

    Climate change is expected to increase drought stress in many forests and alter fire regimes. Fire can reduce tree density and thus competition for limited water, but the effects of changing fire regimes on forest productivity during drought remain poorly understood. We measured the annual ring-widths of adult oak (Quercus spp.) trees in Mark Twain National Forest, Missouri USA that experienced unburned, annual or periodic (every 4 years) surface fire treatments from 1951 - 2015. Severe drought events were identified using the BILJOU water balance model. We determined the effect of fire treatment on stand-level annual growth rates as well as stand-level resistance and resilience to drought, defined as the drought-induced reduction in growth and post-drought recovery in growth, respectively. During favorable wet years, annual and periodic fire treatments reduced annual growth rates by approximately 10-15% relative to unburned controls (P < 0.001). Stand-level growth rates declined 22-40% during drought events (P < 0.001), but fire-driven changes to stand basal area had no effect on the resistance or resilience of trees to drought. The decline in annual growth rates of burned stands during favorable wet years was likely caused by increased nitrogen (N) limitation in burned plots. After 60 years of treatment, burned plots experienced 30% declines in total soil N relative to unburned plots. Our finding that drought resistance and resilience were similar across all treatments suggest that fire-driven reductions in stand density may have negligible effects on soil moisture availability during drought. Our results highlight that climate-fire interactions can have important long-term effects on forest productivity.

  10. Compliance with Electrical and Fire Protection Standards of U.S. Controlled and Occupied Facilities in Afghanistan

    DTIC Science & Technology

    2013-07-18

    are subject to damage and abrasion (figure 5). The use of an extension cord instead of fixed wiring creates the possibility of fire , electrical shock...Medical Clinic has an adjacent warehouse that is of a higher hazard and is not separated by 1-hour fire resistance rated construction. KMC 17-May...higher hazard and is not separated by 1-hour fire resistance rated construction. DynCorp NO Awaiting USG Decision DI has not received governmental

  11. Examination of motor unit control properties of the vastus lateralis in an individual that had acute paralytic poliomyelitis.

    PubMed

    Herda, Trent J; Cooper, Michael A

    2014-08-01

    The purpose of the study was to examine motor unit (MU) recruitment and derecruitment thresholds and firing rates of the vastus lateralis between 2 healthy (HE) individuals (women, ages = 19 and 23 years) and 1 individual (man, age = 22 years) who acquired acute poliomyelitis (PO). Each participant performed submaximal isometric trapezoid muscle actions of the leg extensors from 20% to 90% maximal voluntary contraction in 10% increments with a sensor placed on the vastus lateralis to record electromyography. Electromyographic signals were decomposed into the firing events of single MUs. Linear regressions were performed on the firing rates at recruitment and peak firing rates versus the recruitment thresholds and the derecruitment versus recruitment thresholds. In addition, data were pooled together from all contractions to examine differences between PO and HE with independent samples t-tests calculated for firing rates at recruitment, peak firing rates, recruitment thresholds, derecruitment thresholds, and duration of MU activity. The results demonstrated systematic differences in MU control strategies between the PO and HE. There were differences in the recruitment thresholds (P < 0.001; HE = 30.5% ± 22.2% maximal voluntary contraction; PO = 14.5% ± 5.0% maximal voluntary contraction), firing rates at recruitment (P < 0.001; HE = 7.4 ± 2.5 pulses per second; PO = 6.2 ± 1.7 pulses per second) and peak firing rates across the force spectrum (P = 0.001; HE = 22.2 ± 5.8 pulses per second; PO = 20.3 ± 2.3 pulses per second), altered derecruitment versus recruitment relationships (HE slope = 0.82 derec/rec, PO slope = 1.78 derec/rec), and duration of MU activity (P < 0.001) between the PO (18.6 ± 2.4 seconds) and HE (15.3 ± 3.0 seconds). Future research should examine the possible differences in MU behavior between PO and HE as a result of fatigue to further elucidate disease-related changes in MU properties.

  12. Ia Afferent input alters the recruitment thresholds and firing rates of single human motor units.

    PubMed

    Grande, G; Cafarelli, E

    2003-06-01

    Vibration of the patellar tendon recruits motor units in the knee extensors via excitation of muscle spindles and subsequent Ia afferent input to the alpha-motoneuron pool. Our first purpose was to determine if the recruitment threshold and firing rate of the same motor unit differed when recruited involuntarily via reflex or voluntarily via descending spinal pathways. Although Ia input is excitatory to the alpha-motoneuron pool, it has also been shown paradoxically to inhibit itself. Our second purpose was to determine if vibration of the patellar tendon during a voluntary knee extension causes a change in the firing rate of already recruited motor units. In the first protocol, 10 subjects voluntarily reproduced the same isometric force profile of the knee extensors that was elicited by vibration of the patellar tendon. Single motor unit recordings from the vastus lateralis (VL) were obtained with tungsten microelectrodes and unitary behaviour was examined during both reflex and voluntary knee extensions. Recordings from 135 single motor units showed that both recruitment thresholds and firing rates were lower during reflex contractions. In the second protocol, 7 subjects maintained a voluntary knee extension at 30 N for approximately 40-45 s. Three bursts of patellar tendon vibration were superimposed at regular intervals throughout the contraction and changes in the firing rate of already recruited motor units were examined. A total of 35 motor units were recorded and each burst of superimposed vibration caused a momentary reduction in the firing rates and recruitment of additional units. Our data provide evidence that Ia input modulates the recruitment thresholds and firing rates of motor units providing more flexibility within the neuromuscular system to grade force at low levels of force production.

  13. Effects of Barbell Deadlift Training on Submaximal Motor Unit Firing Rates for the Vastus Lateralis and Rectus Femoris

    PubMed Central

    Stock, Matt S.; Thompson, Brennan J.

    2014-01-01

    Previous investigations that have studied motor unit firing rates following strength training have been limited to small muscles, isometric training, or interventions involving exercise machines. We examined the effects of ten weeks of supervised barbell deadlift training on motor unit firing rates for the vastus lateralis and rectus femoris during a 50% maximum voluntary contraction (MVC) assessment. Twenty-four previously untrained men (mean age  = 24 years) were randomly assigned to training (n = 15) or control (n = 9) groups. Before and following the intervention, the subjects performed isometric testing of the right knee extensors while bipolar surface electromyographic signals were detected from the two muscles. The signals were decomposed into their constituent motor unit action potential trains, and motor units that demonstrated accuracy levels less than 92.0% were not considered for analysis. One thousand eight hundred ninety-two and 2,013 motor units were examined for the vastus lateralis and rectus femoris, respectively. Regression analyses were used to determine the linear slope coefficients (pulses per second [pps]/% MVC) and y-intercepts (pps) of the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. Deadlift training significantly improved knee extensor MVC force (Cohen's d = .70), but did not influence force steadiness. Training had no influence on the slopes and y-intercepts for the mean firing rate and firing rate at recruitment versus recruitment threshold relationships. In agreement with previous cross-sectional comparisons and randomized control trials, our findings do not support the notion that strength training affects the submaximal control of motor units. PMID:25531294

  14. Nomographs for estimating surface fire behavior characteristics

    Treesearch

    Joe H. Scott

    2007-01-01

    A complete set of nomographs for estimating surface fire rate of spread and flame length for the original 13 and new 40 fire behavior fuel models is presented. The nomographs allow calculation of spread rate and flame length for wind in any direction with respect to slope and allow for nonheading spread directions. Basic instructions for use are included.

  15. Wildland fire emissions, carbon, and climate: Modeling fuel consumption

    Treesearch

    Roger D. Ottmar

    2014-01-01

    Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic...

  16. Measuring fire spread rates from repeat pass airborne thermal infrared imagery

    Treesearch

    Douglas A. Stow; Philip J. Riggan; Emanual A. Storey; Lloyd L. Coulter

    2014-01-01

    The objective is to evaluate procedures for direct measurement of fire spread rates (FSRs) based on archived repeat pass airborne thermal infrared (ATIR) imagery and to identify requirements for more refined measurements of FSR and environmental factors that influence FSR. Flaming front positions are delineated on sequential FireMapper ATIR images captured at...

  17. Self-motion improves head direction cell tuning

    PubMed Central

    Shinder, Michael E.

    2014-01-01

    Head direction (HD) cells respond when an animal faces a particular direction in the environment and form the basis for the animal's perceived directional heading. When an animal moves through its environment, accurate updating of the HD signal is required to reflect the current heading, but the cells still maintain a representation of HD even when the animal is motionless. This finding suggests that the HD system holds its current state in the absence of input, a view that we tested by rotating a head-restrained rat in the presence of a prominent visual landmark and then stopping it suddenly when facing the cell's preferred firing direction (PFD). Firing rates were unchanged for the first 100 ms, but then progressively decreased over the next 4 s and stabilized at ∼42% of their initial values. When the rat was stopped facing away from the PFD, there was no initial effect of braking, but the firing rate then increased steadily over 4 s and plateaued at ∼14% of its peak firing rate, substantially above initial background firing rates. In experiment 2, the rat was serially placed facing one of eight equidistant directions over 360° and held there for 30 s. Compared with the cell's peak firing rate during a passive rotation session, firing rates were reduced (51%) for in-PFD directions and increased (∼300%) from background levels for off-PFD directions, values comparable to those observed in the braking protocol. These differential HD cell responses demonstrate the importance of self-motion to the HD signal integrity. PMID:24671528

  18. Dynamics of self-sustained asynchronous-irregular activity in random networks of spiking neurons with strong synapses

    PubMed Central

    Kriener, Birgit; Enger, Håkon; Tetzlaff, Tom; Plesser, Hans E.; Gewaltig, Marc-Oliver; Einevoll, Gaute T.

    2014-01-01

    Random networks of integrate-and-fire neurons with strong current-based synapses can, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze the mechanisms underlying the emergence, lifetime and irregularity of such self-sustained activity states. We first demonstrate how the competition between the mean and the variance of the synaptic input leads to a non-monotonic firing-rate transfer in the network. Thus, by increasing the synaptic coupling strength, the system can become bistable: In addition to the quiescent state, a second stable fixed-point at moderate firing rates can emerge by a saddle-node bifurcation. Inherently generated fluctuations of the population firing rate around this non-trivial fixed-point can trigger transitions into the quiescent state. Hence, the trade-off between the magnitude of the population-rate fluctuations and the size of the basin of attraction of the non-trivial rate fixed-point determines the onset and the lifetime of self-sustained activity states. During self-sustained activity, individual neuronal activity is moreover highly irregular, switching between long periods of low firing rate to short burst-like states. We show that this is an effect of the strong synaptic weights and the finite time constant of synaptic and neuronal integration, and can actually serve to stabilize the self-sustained state. PMID:25400575

  19. Dynamics of self-sustained asynchronous-irregular activity in random networks of spiking neurons with strong synapses.

    PubMed

    Kriener, Birgit; Enger, Håkon; Tetzlaff, Tom; Plesser, Hans E; Gewaltig, Marc-Oliver; Einevoll, Gaute T

    2014-01-01

    Random networks of integrate-and-fire neurons with strong current-based synapses can, unlike previously believed, assume stable states of sustained asynchronous and irregular firing, even without external random background or pacemaker neurons. We analyze the mechanisms underlying the emergence, lifetime and irregularity of such self-sustained activity states. We first demonstrate how the competition between the mean and the variance of the synaptic input leads to a non-monotonic firing-rate transfer in the network. Thus, by increasing the synaptic coupling strength, the system can become bistable: In addition to the quiescent state, a second stable fixed-point at moderate firing rates can emerge by a saddle-node bifurcation. Inherently generated fluctuations of the population firing rate around this non-trivial fixed-point can trigger transitions into the quiescent state. Hence, the trade-off between the magnitude of the population-rate fluctuations and the size of the basin of attraction of the non-trivial rate fixed-point determines the onset and the lifetime of self-sustained activity states. During self-sustained activity, individual neuronal activity is moreover highly irregular, switching between long periods of low firing rate to short burst-like states. We show that this is an effect of the strong synaptic weights and the finite time constant of synaptic and neuronal integration, and can actually serve to stabilize the self-sustained state.

  20. Motor unit activation patterns during concentric wrist flexion in humans with different muscle fibre composition.

    PubMed

    Søgaard, K; Christensen, H; Fallentin, N; Mizuno, M; Quistorff, B; Sjøgaard, G

    1998-10-01

    Muscle activity was recorded from the flexor carpi radialis muscle during static and dynamic-concentric wrist flexion in six subjects, who had exhibited large differences in histochemically identified muscle fibre composition. Motor unit recruitment patterns were identified by sampling 310 motor units and counting firing rates in pulses per second (pps). During concentric wrist flexion at 30% of maximal exercise intensity the mean firing rate was 27 (SD 13) pps. This was around twice the value of 12 (SD 5) pps recorded during sustained static contraction at 30% of maximal voluntary contraction, despite a larger absolute force level during the static contraction. A similar pattern of higher firing rates during dynamic exercise was seen when concentric wrist flexion at 60% of maximal exercise intensity [30 (SD 14) pps] was compared with sustained static contraction at 60% of maximal voluntary contraction [19 (SD 8) pps]. The increase in dynamic exercise intensity was accomplished by recruitment of additional motor units rather than by increasing the firing rate as during static contractions. No difference in mean firing rates was found among subjects with different muscle fibre composition, who had previously exhibited marked differences in metabolic response during corresponding dynamic contractions. It was concluded that during submaximal dynamic contractions motor unit firing rate cannot be deduced from observations during static contractions and that muscle fibre composition may play a minor role.

  1. Metabolism regulates the spontaneous firing of substantia nigra pars reticulata neurons via KATP and nonselective cation channels.

    PubMed

    Lutas, Andrew; Birnbaumer, Lutz; Yellen, Gary

    2014-12-03

    Neurons use glucose to fuel glycolysis and provide substrates for mitochondrial respiration, but neurons can also use alternative fuels that bypass glycolysis and feed directly into mitochondria. To determine whether neuronal pacemaking depends on active glucose metabolism, we switched the metabolic fuel from glucose to alternative fuels, lactate or β-hydroxybutyrate, while monitoring the spontaneous firing of GABAergic neurons in mouse substantia nigra pars reticulata (SNr) brain slices. We found that alternative fuels, in the absence of glucose, sustained SNr spontaneous firing at basal rates, but glycolysis may still be supported by glycogen in the absence of glucose. To prevent any glycogen-fueled glycolysis, we directly inhibited glycolysis using either 2-deoxyglucose or iodoacetic acid. Inhibiting glycolysis in the presence of alternative fuels lowered SNr firing to a slower sustained firing rate. Surprisingly, we found that the decrease in SNr firing was not mediated by ATP-sensitive potassium (KATP) channel activity, but if we lowered the perfusion flow rate or omitted the alternative fuel, KATP channels were activated and could silence SNr firing. The KATP-independent slowing of SNr firing that occurred with glycolytic inhibition in the presence of alternative fuels was consistent with a decrease in a nonselective cationic conductance. Although mitochondrial metabolism alone can prevent severe energy deprivation and KATP channel activation in SNr neurons, active glucose metabolism appears important for keeping open a class of ion channels that is crucial for the high spontaneous firing rate of SNr neurons. Copyright © 2014 the authors 0270-6474/14/3416336-12$15.00/0.

  2. State-space decoding of primary afferent neuron firing rates

    NASA Astrophysics Data System (ADS)

    Wagenaar, J. B.; Ventura, V.; Weber, D. J.

    2011-02-01

    Kinematic state feedback is important for neuroprostheses to generate stable and adaptive movements of an extremity. State information, represented in the firing rates of populations of primary afferent (PA) neurons, can be recorded at the level of the dorsal root ganglia (DRG). Previous work in cats showed the feasibility of using DRG recordings to predict the kinematic state of the hind limb using reverse regression. Although accurate decoding results were attained, reverse regression does not make efficient use of the information embedded in the firing rates of the neural population. In this paper, we present decoding results based on state-space modeling, and show that it is a more principled and more efficient method for decoding the firing rates in an ensemble of PA neurons. In particular, we show that we can extract confounded information from neurons that respond to multiple kinematic parameters, and that including velocity components in the firing rate models significantly increases the accuracy of the decoded trajectory. We show that, on average, state-space decoding is twice as efficient as reverse regression for decoding joint and endpoint kinematics.

  3. Spatial Attention Reduces Burstiness in Macaque Visual Cortical Area MST.

    PubMed

    Xue, Cheng; Kaping, Daniel; Ray, Sonia Baloni; Krishna, B Suresh; Treue, Stefan

    2017-01-01

    Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms. © The Author 2016. Published by Oxford University Press.

  4. Spatial Attention Reduces Burstiness in Macaque Visual Cortical Area MST

    PubMed Central

    Xue, Cheng; Kaping, Daniel; Ray, Sonia Baloni; Krishna, B. Suresh; Treue, Stefan

    2017-01-01

    Abstract Visual attention modulates the firing rate of neurons in many primate cortical areas. In V4, a cortical area in the ventral visual pathway, spatial attention has also been shown to reduce the tendency of neurons to fire closely separated spikes (burstiness). A recent model proposes that a single mechanism accounts for both the firing rate enhancement and the burstiness reduction in V4, but this has not been empirically tested. It is also unclear if the burstiness reduction by spatial attention is found in other visual areas and for other attentional types. We therefore recorded from single neurons in the medial superior temporal area (MST), a key motion-processing area along the dorsal visual pathway, of two rhesus monkeys while they performed a task engaging both spatial and feature-based attention. We show that in MST, spatial attention is associated with a clear reduction in burstiness that is independent of the concurrent enhancement of firing rate. In contrast, feature-based attention enhances firing rate but is not associated with a significant reduction in burstiness. These results establish burstiness reduction as a widespread effect of spatial attention. They also suggest that in contrast to the recently proposed model, the effects of spatial attention on burstiness and firing rate emerge from different mechanisms. PMID:28365773

  5. Influence of proprioceptive feedback on the firing rate and recruitment of motoneurons

    PubMed Central

    De Luca, C J; Kline, J C

    2012-01-01

    We investigated the relationships of the firing rate and maximal recruitment threshold of motoneurons recorded during isometric contraction with the number of spindles in individual muscles. At force levels above 10% of maximal voluntary contraction, the firing rate was inversely related to the number of spindles in a muscle, with the slope of the relationship increasing with force. The maximal recruitment threshold of motor units increased linearly with the number of spindles in the muscle. Thus, muscles with a greater number of spindles had lower firing rates and a greater maximal recruitment threshold. These findings may be explained by a mechanical interaction between muscle fibres and adjacent spindles. During low-level (0 to 10%) voluntary contractions, muscle fibres of recruited motor units produce force-twitches that activate nearby spindles to respond with an immediate excitatory feedback that reaches maximal level. As the force increases further, the twitches overlap and tend towards tetanization, the muscle fibres shorten, the spindles slacken, their excitatory firings decrease, and the net excitation to the homonymous motoneurons decreases. Motoneurons of muscles with greater number of spindles receive a greater decrease in excitation which reduces their firing rates, increases their maximal recruitment threshold, and changes the motoneuron recruitment distribution. PMID:22183300

  6. Using tree recruitment patterns and fire history to guide restoration of an unlogged ponderosa pine/Douglas‐fir landscape in the southern Rocky Mountains after a century of fire suppression

    USGS Publications Warehouse

    Kaufmann, M.R.; Huckaby, L.S.; Fornwalt, P.J.; Stoker, J.M.; Romme, W.H.

    2003-01-01

    Tree age and fire history were studied in an unlogged ponderosa pine/Douglas‐fir ( Pinus ponderosa/Pseudotsuga menziesii ) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post‐fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an ecologically sustainable landscape. Comparisons of two independent tree age data sets indicated that sampling what subjectively appear to be the five oldest trees in a forest polygon could identify the oldest tree. Comparisons of the ages of the oldest trees in each data set with maps of fire history suggested that delays in establishment of trees, after stand‐replacing fire, ranged from a few years to more than a century. These data indicate that variable fire severity, including patches of stand replacement, and variable temporal patterns of tree recruitment into openings after fire were major causes of spatial heterogeneity of patch structure in the landscape. These effects suggest that restoring current dense and homogeneous ponderosa pine forests to an ecologically sustainable and dynamic condition should reflect the roles of fires and variable patterns of tree recruitment in regulating landscape structure.

  7. Cost-effectiveness Analysis on Measures to Improve China's Coal-fired Industrial Boiler

    DOE PAGES

    Liu, Manzhi; Shen, Bo; Han, Yafeng; ...

    2015-08-01

    Tackling coal-burning industrial boiler is becoming one of the key programs to solve the environmental problem in China. Assessing the economics of various options to address coal-fired boiler is essential to identify cost-effective solutions. This paper discusses our work in conducting a cost-effectiveness analysis on various types of improvement measures ranging from energy efficiency retrofits to switch from coal to other fuels in China. Sensitivity analysis was also performed in order to understand the impacts of some economic factors such as discount rate and energy price on the economics of boiler improvement options. The results show that nine out ofmore » 14 solutions are cost-effective, and a lower discount rate and higher energy price will result in more energy efficiency measures being cost-effective. Both monetary and non-monetary barriers to energy-efficiency improvement are discussed and policies to tackle these barriers are recommended. Our research aims at providing a methodology to assess cost-effective solutions to boiler problems.« less

  8. NCEP-ECPC monthly to seasonal US fire danger forecasts

    Treesearch

    J. Roads; P. Tripp; H. Juang; J. Wang; F. Fujioka; S. Chen

    2010-01-01

    Five National Fire Danger Rating System indices (including the Ignition Component, Energy Release Component, Burning Index, Spread Component, and the Keetch–Byram Drought Index) and the Fosberg Fire Weather Index are used to characterise US fire danger. These fire danger indices and input meteorological variables, including temperature, relative humidity, precipitation...

  9. Left-right asymmetry in firing rate of extra-retinal photosensitive neurons in the crayfish.

    PubMed

    Pacheco-Ortiz, José A; Sánchez-Hernández, Juan C; Rodríguez-Sosa, Leonardo; Calderón-Rosete, Gabina; Villagran-Vargas, Edgar

    2018-01-01

    The purpose of this paper is to explore the firing rate of the caudal photoreceptors (CPRs) from the sixth abdominal ganglion of the crayfish Cherax quadricarinatus. We use simultaneous extracellular recordings on left and right CPR in the isolated ganglion (n = 10). The CPRs showed an asymmetry in the spontaneous activity and light-induced response. In darkness, we observed one subgroup (70%) in which the left CPR (CPR-L) and right CPR (CPR-R) had spontaneous firing rates with a median of 18 impulses/s and 6 impulses/s, respectively. In another subgroup (20%), the CPR-R had a median of 15 impulses/s and the CPR-L had 8 impulses/s. In both groups, the differences were significant. Furthermore, the CPRs showed an asymmetrical photoresponse induced by a pulse of white light (700 Lux, 4 s). In one subgroup (30%), the CPR-L showed light-induced activity with a median of 73%, (interquartile range, IQR = 51), while the CPR-R had a median of 41%, (IQR = 47). In another subgroup (70%), the CPR-R showed a median of 56%, (IQR = 51) and the CPR-L had a median of 42%, (IQR = 46). In both groups, the differences were significant. Moreover, we observed a differential effect of temperature on CPR activity. These results suggest a functional asymmetry in both activities from left and right CPRs. These CPR activity fluctuations may modulate the processing of information by the nervous system.

  10. Novel Experience Induces Persistent Sleep-Dependent Plasticity in the Cortex but not in the Hippocampus

    PubMed Central

    Ribeiro, Sidarta; Shi, Xinwu; Engelhard, Matthew; Zhou, Yi; Zhang, Hao; Gervasoni, Damien; Lin, Shi-Chieh; Wada, Kazuhiro; Lemos, Nelson A.M.

    2007-01-01

    Episodic and spatial memories engage the hippocampus during acquisition but migrate to the cerebral cortex over time. We have recently proposed that the interplay between slow-wave (SWS) and rapid eye movement (REM) sleep propagates recent synaptic changes from the hippocampus to the cortex. To test this theory, we jointly assessed extracellular neuronal activity, local field potentials (LFP), and expression levels of plasticity-related immediate-early genes (IEG) arc and zif-268 in rats exposed to novel spatio-tactile experience. Post-experience firing rate increases were strongest in SWS and lasted much longer in the cortex (hours) than in the hippocampus (minutes). During REM sleep, firing rates showed strong temporal dependence across brain areas: cortical activation during experience predicted hippocampal activity in the first post-experience hour, while hippocampal activation during experience predicted cortical activity in the third post-experience hour. Four hours after experience, IEG expression was specifically upregulated during REM sleep in the cortex, but not in the hippocampus. Arc gene expression in the cortex was proportional to LFP amplitude in the spindle-range (10–14 Hz) but not to firing rates, as expected from signals more related to dendritic input than to somatic output. The results indicate that hippocampo-cortical activation during waking is followed by multiple waves of cortical plasticity as full sleep cycles recur. The absence of equivalent changes in the hippocampus may explain its mnemonic disengagement over time. PMID:18982118

  11. Response of selected plants to fire on white sands missile range, New Mexico

    Treesearch

    Kenneth G. Boykin

    2008-01-01

    Little was known about the ecology, impacts, effects, and history of fire related to manyplants and communities within White Sands Missile Range. I began by identifying the knownaspects and the gaps in knowledge for White Sands Missile Range. I analyzed existing dataavailable for the Installation taken from the Integrated Training...

  12. Long-term effects of prescribed fire on mixed conifer forest structure in the Sierra Nevada, California

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Stephenson, Nathan L.; Knapp, Eric; Keeley, Jon E.

    2011-01-01

    The capacity of prescribed fire to restore forest conditions is often judged by changes in forest structure within a few years following burning. However, prescribed fire might have longer-term effects on forest structure, potentially changing treatment assessments. We examined annual changes in forest structure in five 1 ha old-growth plots immediately before prescribed fire and up to eight years after fire at Sequoia National Park, California. Fire-induced declines in stem density (67% average decrease at eight years post-fire) were nonlinear, taking up to eight years to reach a presumed asymptote. Declines in live stem biomass were also nonlinear, but smaller in magnitude (32% average decrease at eight years post-fire) as most large trees survived the fires. The preferential survival of large trees following fire resulted in significant shifts in stem diameter distributions. Mortality rates remained significantly above background rates up to six years after the fires. Prescribed fire did not have a large influence on the representation of dominant species. Fire-caused mortality appeared to be spatially random, and therefore did not generally alter heterogeneous tree spatial patterns. Our results suggest that prescribed fire can bring about substantial changes to forest structure in old-growth mixed conifer forests in the Sierra Nevada, but that long-term observations are needed to fully describe some measures of fire effects.

  13. Fire management of California shrubland landscapes

    USGS Publications Warehouse

    Keeley, Jon E.

    2002-01-01

    Fire management of California shrublands has been heavily influenced by policies designed for coniferous forests, however, fire suppression has not effectively excluded fire from chaparral and coastal sage scrub landscapes and catastrophic wildfires are not the result of unnatural fuel accumulation. There is no evidence that prescribed burning in these shrublands provides any resource benefit and in some areas may negatively impact shrublands by increasing fire frequency. Therefore, fire hazard reduction is the primary justification for prescription burning, but it is doubtful that rotational burning to create landscape age mosaics is a cost effective method of controlling catastrophic wildfires. There are problems with prescription burning in this crown-fire ecosystem that are not shared by forests with a natural surface-fire regime. Prescription weather conditions preclude burning at rotation intervals sufficient to effect the control of fires ignited under severe weather conditions. Fire management should focus on strategic placement of prescription burns to both insure the most efficient fire hazard reduction and to minimize the amount of landscape exposed to unnaturally high fire frequency. A major contributor to increased fire suppression costs and increased loss of property and lives is the continued urban sprawl into wildlands naturally subjected to high intensity crown fires. Differences in shrubland fire history suggest there may be a need for different fire management tactics between central coastal and southern California. Much less is known about shrubland fire history in the Sierra Nevada foothills and interior North Coast Ranges, and thus it would be prudent to not transfer these ideas too broadly across the range of chaparral until we have a clearer understanding of the extent of regional variation in shrubland fire regimes.

  14. Fire management of California shrubland landscapes.

    PubMed

    Keeley, Jon E

    2002-03-01

    Fire management of California shrublands has been heavily influenced by policies designed for coniferous forests, however, fire suppression has not effectively excluded fire from chaparral and coastal sage scrub landscapes and catastrophic wildfires are not the result of unnatural fuel accumulation. There is no evidence that prescribed burning in these shrublands provides any resource benefit and in some areas may negatively impact shrublands by increasing fire frequency. Therefore, fire hazard reduction is the primary justification for prescription burning, but it is doubtful that rotational burning to create landscape age mosaics is a cost effective method of controlling catastrophic wildfires. There are problems with prescription burning in this crown-fire ecosystem that are not shared by forests with a natural surface-fire regime. Prescription weather conditions preclude burning at rotation intervals sufficient to effect the control of fires ignited under severe weather conditions. Fire management should focus on strategic placement of prescription burns to both insure the most efficient fire hazard reduction and to minimize the amount of landscape exposed to unnaturally high fire frequency. A major contributor to increased fire suppression costs and increased loss of property and lives is the continued urban sprawl into wildlands naturally subjected to high intensity crown fires. Differences in shrubland fire history suggest there may be a need for different fire management tactics between central coastal and southern California. Much less is known about shrubland fire history in the Sierra Nevada foothills and interior North Coast Ranges, and thus it would be prudent to not transfer these ideas too broadly across the range of chaparral until we have a clearer understanding of the extent of regional variation in shrubland fire regimes.

  15. Validation of behave fire behavior predictions in oak savannas

    USGS Publications Warehouse

    Grabner, Keith W.; Dwyer, John; Cutter, Bruce E.

    1997-01-01

    Prescribed fire is a valuable tool in the restoration and management of oak savannas. BEHAVE, a fire behavior prediction system developed by the United States Forest Service, can be a useful tool when managing oak savannas with prescribed fire. BEHAVE predictions of fire rate-of-spread and flame length were validated using four standardized fuel models: Fuel Model 1 (short grass), Fuel Model 2 (timber and grass), Fuel Model 3 (tall grass), and Fuel Model 9 (hardwood litter). Also, a customized oak savanna fuel model (COSFM) was created and validated. Results indicate that standardized fuel model 2 and the COSFM reliably estimate mean rate-of-spread (MROS). The COSFM did not appreciably reduce MROS variation when compared to fuel model 2. Fuel models 1, 3, and 9 did not reliably predict MROS. Neither the standardized fuel models nor the COSFM adequately predicted flame lengths. We concluded that standardized fuel model 2 should be used with BEHAVE when predicting fire rates-of-spread in established oak savannas.

  16. Basal Ganglia Outputs Map Instantaneous Position Coordinates during Behavior

    PubMed Central

    Barter, Joseph W.; Li, Suellen; Sukharnikova, Tatyana; Rossi, Mark A.; Bartholomew, Ryan A.

    2015-01-01

    The basal ganglia (BG) are implicated in many movement disorders, yet how they contribute to movement remains unclear. Using wireless in vivo recording, we measured BG output from the substantia nigra pars reticulata (SNr) in mice while monitoring their movements with video tracking. The firing rate of most nigral neurons reflected Cartesian coordinates (either x- or y-coordinates) of the animal's head position during movement. The firing rates of SNr neurons are either positively or negatively correlated with the coordinates. Using an egocentric reference frame, four types of neurons can be classified: each type increases firing during movement in a particular direction (left, right, up, down), and decreases firing during movement in the opposite direction. Given the high correlation between the firing rate and the x and y components of the position vector, the movement trajectory can be reconstructed from neural activity. Our results therefore demonstrate a quantitative and continuous relationship between BG output and behavior. Thus, a steady BG output signal from the SNr (i.e., constant firing rate) is associated with the lack of overt movement, when a stable posture is maintained by structures downstream of the BG. Any change in SNr firing rate is associated with a change in position (i.e., movement). We hypothesize that the SNr output quantitatively determines the direction, velocity, and amplitude of voluntary movements. By changing the reference signals to downstream position control systems, the BG can produce transitions in body configurations and initiate actions. PMID:25673860

  17. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.

    PubMed

    Ly, Cheng

    2015-12-01

    Heterogeneity of neural attributes has recently gained a lot of attention and is increasing recognized as a crucial feature in neural processing. Despite its importance, this physiological feature has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks. In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be considered systematically despite the fact that both are known to exist and likely have significant roles in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these two forms of heterogeneity lead to different distributions of excitatory firing rates. To analytically characterize how these types of heterogeneities affect the network, we employ a dimension reduction method that relies on a combination of Monte Carlo simulations and probability density function equations. We find that the relationship between intrinsic and network heterogeneity has a strong effect on the overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification or attenuation of firing rate heterogeneity, and these effects depend on whether the recurrent network is firing asynchronously or rhythmically firing. These observations are captured with the aforementioned reduction method, and furthermore simpler analytic descriptions based on this dimension reduction method are developed. The final analytic descriptions provide compact and descriptive formulas for how the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity dynamics in various settings.

  18. Management and climate contributions to satellite-derived active fire trends in the contiguous United States

    PubMed Central

    Lin, Hsiao-Wen; McCarty, Jessica L; Wang, Dongdong; Rogers, Brendan M; Morton, Douglas C; Collatz, G James; Jin, Yufang; Randerson, James T

    2014-01-01

    Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001–2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001–2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems. Key Points Wildland, cropland, and prescribed fires had different trends and patterns Sensitivity to climate varied with fire type Intensity of air quality regulation influenced cropland burning trends PMID:26213662

  19. Management and climate contributions to satellite-derived active fire trends in the contiguous United States.

    PubMed

    Lin, Hsiao-Wen; McCarty, Jessica L; Wang, Dongdong; Rogers, Brendan M; Morton, Douglas C; Collatz, G James; Jin, Yufang; Randerson, James T

    2014-04-01

    Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001-2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems. Wildland, cropland, and prescribed fires had different trends and patternsSensitivity to climate varied with fire typeIntensity of air quality regulation influenced cropland burning trends.

  20. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fleet Combat Center, Atlantic, Dam Neck, Virginia Beach, Virginia. After darkness, night vision systems... firing on the range during periods of low visibility which would prevent the recognition of a vessel (to...

  1. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fleet Combat Center, Atlantic, Dam Neck, Virginia Beach, Virginia. After darkness, night vision systems... firing on the range during periods of low visibility which would prevent the recognition of a vessel (to...

  2. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fleet Combat Center, Atlantic, Dam Neck, Virginia Beach, Virginia. After darkness, night vision systems... firing on the range during periods of low visibility which would prevent the recognition of a vessel (to...

  3. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fleet Combat Center, Atlantic, Dam Neck, Virginia Beach, Virginia. After darkness, night vision systems... firing on the range during periods of low visibility which would prevent the recognition of a vessel (to...

  4. 33 CFR 334.390 - Atlantic Ocean south of entrance to Chesapeake Bay; firing range.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fleet Combat Center, Atlantic, Dam Neck, Virginia Beach, Virginia. After darkness, night vision systems... firing on the range during periods of low visibility which would prevent the recognition of a vessel (to...

  5. Optical Communications With A Geiger Mode APD Array

    DTIC Science & Technology

    2016-02-09

    spurious fires from numerous sources, including crosstalk from other detectors in the same array . Additionally, after a 9 successful detection, the...be combined into arrays with large numbers of detectors , allowing for scaling of dynamic range with relatively little overhead on space and power...overall higher rate of dark counts than a single detector , this is more than compensated for by the extra detectors . A sufficiently large APD array could

  6. Environmental factors affecting corrosion of munitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bundy, K.; Bricka, M.; Morales, A.

    1995-12-31

    Spent small arms munitions have accumulated for years at outdoor firing ranges operated by the DoD and other groups. Used bullets are often subjected to moisture sources. There is increasing concern that accumulations of lead-based munitions represent potential sources of water and soil pollution. To understand both the severity of and solutions to this problem, it is necessary to measure how rapidly bullets corrode and to determine the soil variables affecting the process. In this study M16 bullets were buried in samples of soil taken from Louisiana army firing ranges. Four environmental conditions were simulated; rain water, acid rain, seamore » water, and 50% sea water/50% acid rain. The three electrode technique was used to measure the bullet corrosion. Graphite rods served as counter electrodes. A saturated calomel reference electrode was used along with a specially constructed salt bridge. Electrochemical measurements were conducted using a computer-controlled potentiostat to determine corrosion potential, soil resistance, and corrosion current. The rate of corrosion was found to markedly increase with decreasing soil pH and increasing chloride and moisture contents, with the chloride content being the most influential variable. High soil resistance and noble corrosion potential were found to be associated with low corrosion rates. This is important since both parameters can be readily measured in the field.« less

  7. Assessing post-fire Douglas-fir mortality and Douglas-fir beetle attacks in the northern Rocky Mountains

    Treesearch

    Sharon Hood; Barbara Bentz; Ken Gibson; Kevin Ryan; Gregg DeNitto

    2007-01-01

    Douglas-fir has life history traits that greatly enhance resistance to injury from fire, thereby increasing post-fire survival rates. Tools for predicting the probability of tree mortality following fire are important components of both pre-fire planning and post-fire management efforts. Using data from mixed-severity wildfire in Montana and Wyoming, Hood and Bentz (...

  8. Fire exclusion as a disturbance in the temperate forests of the USA: examples from longleaf pine forests

    Treesearch

    W. Keith Moser; Dale D. Wade

    2005-01-01

    Forest fires are a disturbance where the effects can range from benign to extreme devastation within a given ecosystem. The stage of stand development coupled with prior management dictates the amount and composition of potential fuels. Thus, fire policy exerts a strong influence on fire effects. Changes in cultural acceptance and use of tire typically drive fire...

  9. Soil, fire, water, and wind: how the elements conspire in the forest context

    Treesearch

    Ralph E.J. Boerner

    2006-01-01

    Reviews our current understanding of the impact of fires typical of eastern oak forests on soil properties, soil organisms, and water quality. Most oak ecosystem fires are dormant-season fires whose intensity falls at the low end of the range of wildland fires. Direct heating of the mineral soil generally is minor except where accumulations of woody debris smolder for...

  10. Proposed wildland fire amendment to the Coronado National Forest Land and Resource Management Plan

    Treesearch

    Sherry A. Tune; Erin M. Boyle

    2005-01-01

    The Coronado National Forest proposed amending its 1986 Land and Resource Management Plan to conform to the 2001 Federal Wildland Fire Management Policy. This Policy emphasizes fire’s essential role in maintaining natural ecosystems and allows a broader range of management options for wildland fires. Under the current Forest Plan, fires must be suppressed in areas...

  11. Contribution from motor unit firing adaptations and muscle co-activation during fatigue.

    PubMed

    Contessa, Paola; Letizi, John; De Luca, Gianluca; Kline, Joshua C

    2018-03-14

    The control of motor unit firing behavior during fatigue is still debated in the literature. Most studies agree that the central nervous system increases the excitation to the motoneuron pool to compensate for decreased force contributions of individual motor units and sustain muscle force output during fatigue. However, some studies claim that motor units may decrease their firing rates despite increased excitation, contradicting the direct relationship between firing rates and excitation that governs the voluntary control of motor units. To investigate whether the control of motor units in fact changes with fatigue, we measured motor unit firing behavior during repeated contractions of the first dorsal interosseous (FDI) muscle while concurrently monitoring the activation of surrounding muscles - including the flexor carpi radialis, extensor carpi radialis, and pronator teres. Across all subjects, we observed an overall increase in FDI activation and motor unit firing rates by the end of the fatigue task. However, in some subjects we observed increases in FDI activation and motor unit firing rates only during the initial phase of the fatigue task, followed by subsequent decreases during the late phase of the fatigue task while the co-activation of surrounding muscles increased. These findings indicate that the strategy for sustaining force output may occasionally change leading to increases in the relative activation of surrounding muscles while the excitation to the fatiguing muscle decreases. Importantly, irrespective of changes in the strategy for sustaining force output, the control properties regulating motor unit firing behavior remain unchanged during fatigue.

  12. Incidence of fires and related injuries after giving out free smoke alarms: cluster randomised controlled trial

    PubMed Central

    DiGuiseppi, Carolyn; Roberts, Ian; Wade, Angie; Sculpher, Mark; Edwards, Phil; Godward, Catherine; Pan, Huiqi; Slater, Suzanne

    2002-01-01

    Objective To measure the effect of giving out free smoke alarms on rates of fires and rates of fire related injury in a deprived multiethnic urban population. Design Cluster randomised controlled trial. Setting Forty electoral wards in two boroughs of inner London, United Kingdom. Participants Primarily households including elderly people or children and households that are in housing rented from the borough council. Intervention 20 050 smoke alarms, fittings, and educational brochures distributed free and installed on request. Main outcome measures Rates of fires and related injuries during two years after the distribution; alarm ownership, installation, and function. Results Giving out free smoke alarms did not reduce injuries related to fire (rate ratio 1.3; 95% confidence interval 0.9 to 1.9), admissions to hospital and deaths (1.3; 0.7 to 2.3), or fires attended by the fire brigade (1.1; 0.96 to 1.3). Similar proportions of intervention and control households had installed alarms (36/119 (30%) v 35/109 (32%); odds ratio 0.9; 95% confidence interval 0.5 to 1.7) and working alarms (19/118 (16%) v 18/108 (17%); 0.9; 0.4 to 1.8). Conclusions Giving out free smoke alarms in a deprived, multiethnic, urban community did not reduce injuries related to fire, mostly because few alarms had been installed or were maintained. What is already known on this topicIn the United Kingdom, residential fires caused 466 deaths and 14 600 non-fatal injuries in 1999The risk of death from fire is associated with socioeconomic classOne study reported an 80% decline in hospitalisations and deaths from residential fires after free smoke alarms were distributed in an area at high risk, but these results may not apply in other settings, and evidence from randomised controlled trials is lackingWhat this study addsGiving out free smoke alarms in a multiethnic poor urban population did not reduce injuries related to fire or firesGiving smoke alarms away may be a waste of resources and of little benefit unless alarm installation and maintenance is assured PMID:12411355

  13. Using tree recruitment patterns and fire history to guide restoration of an unlogged ponderosa pine/Douglas-fir landscape in the southern Rocky Mountains after a century of fire suppression

    Treesearch

    Merrill R. Kaufmann; Laurie S. Huckaby; Paula J. Fornwalt; Jason M. Stoker; William H. Romme

    2003-01-01

    Tree age and fire history were studied in an unlogged ponderosa pine/Douglas-fir (Pinus ponderosa/Pseudotsuga menziesii) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post-fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an...

  14. Characterizing fire-related spatial patterns in fire-prone ecosystems using optical and microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Henry, Mary Catherine

    The use of active and passive remote sensing systems for relating forest spatial patterns to fire history was tested over one of the Arizona Sky Islands. Using Landsat Thematic Mapper (TM), Shuttle Imaging Radar (SIR-C), and data fusion I examined the relationship between landscape metrics and a range of fire history characteristics. Each data type (TM, SIR-C, and fused) was processed in the following manner: each band, channel, or derived feature was simplified to a thematic layer and landscape statistics were calculated for plots with known fire history. These landscape metrics were then correlated with fire history characteristics, including number of fire-free years in a given time period, mean fire-free interval, and time since fire. Results from all three case studies showed significant relationships between fire history and forest spatial patterns. Data fusion performed as well or better than Landsat TM alone, and better than SIR-C alone. These comparisons were based on number and strength of significant correlations each method achieved. The landscape metric that was most consistent and obtained the greatest number of significant correlations was Shannon's Diversity Index. Results also agreed with field-based research that has linked higher fire frequency to increased landscape diversity and patchiness. An additional finding was that the fused data seem to detect fire-related spatial patterns over a range of scales.

  15. Simulation of the FRP Product

    NASA Astrophysics Data System (ADS)

    Paugam, Ronan; Wooster, Martin; Johnston, Joshua; Gastellu-Etchegorry, Jean-Philippe

    2014-05-01

    Among the different alternative of remote sensing technologies for estimating global fire carbon emission, the thermally-based measures of fire radiative power (FRP; and its temporal integration, fire radiative energy or FRE) has the potential to capture the spatial and temporal variability of fire occurrence. It was shown that a strong linear relationship exists between the total amount of thermal radiant energy emitted by a fire over its lifetime (the FRE) and the amount of fuel burned. Since all vegetation is 50(±5)% carbon, it is therefore in theory a potentially simple matter to measure the FRE and estimate the carbon release. In a fire inventory like the Global Fire Assimilation System (GFAS), the total carbon emission is derived from a gridded FRE product forced by the MODIS observation, using Ct = β x FRE x Ef, where β is a conversion factor initially estimated from small scale experiment as β=0.368 and later derived for different bio dome by comparison with the Global Fire Emission Database (GFED). The sensitivities of the above equation to (i) different types of fire activity (ie, flaming, smoldering, torching), (ii) sensor view angles or (iii) soot/smoke absorption have not yet been well studied. The investigation of these types of sensitivity, and of the information content of thermal IR observations of actively burning fires in general, is one of the primary subjects of this study. Our approach is based on a combination of observational work and simulations conducted via the linkage of different fire models and the 3D radiative transfer (RT) model DART operating in the thermal domain. The radiation properties of a fire as seen from above its plume (e.g. space/air borne sensor) depend on the temperature distribution, the gas concentration (mainly CO2, H2O), and the amount, shape, distribution and optical properties of the soot particles in the flame (where they are emitting) and in the cooling plume (where they are mainly absorbing). While gas and soot radiative properties can be estimated from the literature, their concentration and temperature are calculated from output of fire models. Due to the large range of length scale involved in fire dynamics, a twofold approach is use to model the fire scene with (i) first the multi-phases model WFDS which can handle fire size ranging from a 1m2 to 1ha with a particular focus on flame-plume interaction, (ii) and then the meso scale model WRF-fire which can handle larger fires and the interaction plume-atmosphere (e.g. pyroconvection). In the former case, as the Radiative Transfer is WFDS is based on a Gray Body assumption (WFDS only focuses on fire dynamics) the main challenge is to derive the radiative properties of the different component of the fire scene (soot and gas) for the different bands (optical and IR) solved in DART to re-process a multispectral RT. In the later case, because WRF-fire is running at a resolution of tens of meters, pyrolysis and combustion processes cannot be resolved and to predict the fire front dynamics, the use of an empirical model based on the Rothermel equation and the level set method is required. In this later case, it is therefore necessary to use empirical relationship to determine: (i) the 3D structure of the flame defined by: flame length, flame height and fire front depth derived from Rate of Spread and residence time, (ii) the gas and soot concentration profile within the flame, and (iii) the convective flux generated by the flame. The development of these empirical relationships presents one of the main challenges of this work. Thought this work is still undergoing, first results show the potential impact of view angle on the evaluation of FRP.

  16. The effect of wind on burning rate of wood cribs

    Treesearch

    Sara McAllister; Mark Finney

    2016-01-01

    Wood cribs are often used as ignition sources for room fire tests. A wood crib may also apply to studies of burning rate in wildland fires, because wildland fuel beds are porous and three dimensional. A unique aspect of wildland fires is the ubiquitous presence of wind. However, very little is known about what effect the increased ventilation has on the...

  17. Heat release from wood wall assemblies using oxygen consumption method

    Treesearch

    Hao C. Tran; Robert E. White

    1990-01-01

    The concept of heat release rate is gaining acceptance in the evaluation of fire performance of materials and assemblies. However, this concept has not been incorporated into fire endurance testing such as the ASTM E-119 test method. Heat release rate of assemblies can be useful in determining the time at which the assemblies start to contribute to the controlled fire...

  18. Solar radiation and forest fuel moisture

    Treesearch

    George M. Byram; George M. Jemison

    1943-01-01

    A major contribution to progress in forest fire prevention and control during the past 10 years has been the development and widespread application of methods of rating forest fire danger. Fire danger rating systems are now in use in all the forest regions of the United States. They have been described by Gisborne, Brown and Davis, Curry et al., Matthews, Jemison, and...

  19. Error associated with model predictions of wildland fire rate of spread

    Treesearch

    Miguel G. Cruz; Martin E. Alexander

    2015-01-01

    How well can we expect to predict the spread rate of wildfires and prescribed fires? The degree of accuracy in model predictions of wildland fire behaviour characteristics are dependent on the model's applicability to a given situation, the validity of the model's relationships, and the reliability of the model input data (Alexander and Cruz 2013b#. We...

  20. Federal Aviation Administration Plan for Research, Engineering & Development, 1998.

    DTIC Science & Technology

    1998-02-01

    release rate. • Improved fracture toughness of non-combustible geopolymer composite fire barriers to enable use as interior and secondary composites ...Fire Resistant, Non-Toxic Interior Panels for Evaluation of Heat Release Rate ♦ Improved Fracture Toughness of Non-Combustible Geopolymer Composite ... composites , atmospheric hazards, crash worthiness, fire safety, and forensics capabilities to support accident investigations. Aviation Security R,E&D

Top