Sample records for first-principles density functional

  1. First principle study of transport properties of a graphene nano structure

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Sharma, Munish; Sharma, Jyoti Dhar; Ahluwalia, P. K.

    2013-06-01

    The first principle quantum transport calculations have been performed for graphene using Tran SIESTA which calculates transport properties using nonequilibrium Green's function method in conjunction with density-functional theory. Transmission functions, electron density of states and current-voltage characteristic have been calculated for a graphene nano structure using graphene electrodes. Transmission function, density of states and projected density of states show a discrete band structure which varies with applied voltage. The value of current is very low for applied voltage between 0.0 V to 5.0 V and lies in the range of pico ampere. In the V-I characteristic current shows non-linear fluctuating pattern with increase in voltage.

  2. Dispersion correction derived from first principles for density functional theory and Hartree-Fock theory.

    PubMed

    Guidez, Emilie B; Gordon, Mark S

    2015-03-12

    The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.

  3. Multigrid based First-Principles Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fattebert, Jean-Luc; Osei-Kuffuor, Daniel; Dunn, Ian

    2017-06-01

    MGmol ls a First-Principles Molecular Dynamics code. It relies on the Born-Oppenheimer approximation and models the electronic structure using Density Functional Theory, either LDA or PBE. Norm-conserving pseudopotentials are used to model atomic cores.

  4. Coupled structural, thermal, phase-change and electromagnetic analysis for superconductors, volume 2

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Farhat, Charbel; Park, K. C.; Militello, Carmelo; Schuler, James J.

    1993-01-01

    Two families of parametrized mixed variational principles for linear electromagnetodynamics are constructed. The first family is applicable when the current density distribution is known a priori. Its six independent fields are magnetic intensity and flux density, magnetic potential, electric intensity and flux density and electric potential. Through appropriate specialization of parameters the first principle reduces to more conventional principles proposed in the literature. The second family is appropriate when the current density distribution and a conjugate Lagrange multiplier field are adjoined, giving a total of eight independently varied fields. In this case it is shown that a conventional variational principle exists only in the time-independent (static) case. Several static functionals with reduced number of varied fields are presented. The application of one of these principles to construct finite elements with current prediction capabilities is illustrated with a numerical example.

  5. LSMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenbach, Markus; Li, Ying Wai; Liu, Xianglin

    2017-12-01

    LSMS is a first principles, Density Functional theory based, electronic structure code targeted mainly at materials applications. LSMS calculates the local spin density approximation to the diagonal part of the electron Green's function. The electron/spin density and energy are easily determined once the Green's function is known. Linear scaling with system size is achieved in the LSMS by using several unique properties of the real space multiple scattering approach to the Green's function.

  6. Efficient Predictions of Excited State for Nanomaterials Using Aces 3 and 4

    DTIC Science & Technology

    2017-12-20

    by first-principle methods in the software package ACES by using large parallel computers, growing tothe exascale. 15. SUBJECT TERMS Computer...modeling, excited states, optical properties, structure, stability, activation barriers first principle methods , parallel computing 16. SECURITY...2 Progress with new density functional methods

  7. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

    PubMed

    Kvaal, Simen; Helgaker, Trygve

    2015-11-14

    The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

  8. Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation

    Treesearch

    ShunLi Shang; Louis G. Hector Jr.; Paul Saxe; Zi-Kui Liu; Robert J. Moon; Pablo D. Zavattieri

    2014-01-01

    Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500...

  9. Work-function calculations for a symmetrical total-charge-density profile at the metallic surface

    NASA Astrophysics Data System (ADS)

    Wojciechowski, K. F.; Sobańska-Nowotnik, M.

    1983-07-01

    It is shown that, if the total-charge-density profile nT(x) at the surface of jellium satisfies the Budd-Vannimenus constraint and also is a symmetrical function of x, relative to the ordinate axis, then the work-function variation versus the Wigner-Seitz radius rs does not depend on the form of nT(x). Also the simple linear-density profile is used to calculate the work function by application of the variational principle for the energy, including the first and second density-gradient corrections to the kinetic energy and the first gradient correction to the exchange and correlation energy. The results for the work function are in good agreement with the polycrystalline values for low-density metals.

  10. Predicting vapor liquid equilibria using density functional theory: A case study of argon

    NASA Astrophysics Data System (ADS)

    Goel, Himanshu; Ling, Sanliang; Ellis, Breanna Nicole; Taconi, Anna; Slater, Ben; Rai, Neeraj

    2018-06-01

    Predicting vapor liquid equilibria (VLE) of molecules governed by weak van der Waals (vdW) interactions using the first principles approach is a significant challenge. Due to the poor scaling of the post Hartree-Fock wave function theory with system size/basis functions, the Kohn-Sham density functional theory (DFT) is preferred for systems with a large number of molecules. However, traditional DFT cannot adequately account for medium to long range correlations which are necessary for modeling vdW interactions. Recent developments in DFT such as dispersion corrected models and nonlocal van der Waals functionals have attempted to address this weakness with a varying degree of success. In this work, we predict the VLE of argon and assess the performance of several density functionals and the second order Møller-Plesset perturbation theory (MP2) by determining critical and structural properties via first principles Monte Carlo simulations. PBE-D3, BLYP-D3, and rVV10 functionals were used to compute vapor liquid coexistence curves, while PBE0-D3, M06-2X-D3, and MP2 were used for computing liquid density at a single state point. The performance of the PBE-D3 functional for VLE is superior to other functionals (BLYP-D3 and rVV10). At T = 85 K and P = 1 bar, MP2 performs well for the density and structural features of the first solvation shell in the liquid phase.

  11. Glass polymorphism in amorphous germanium probed by first-principles computer simulations

    NASA Astrophysics Data System (ADS)

    Mancini, G.; Celino, M.; Iesari, F.; Di Cicco, A.

    2016-01-01

    The low-density (LDA) to high-density (HDA) transformation in amorphous Ge at high pressure is studied by first-principles molecular dynamics simulations in the framework of density functional theory. Previous experiments are accurately reproduced, including the presence of a well-defined LDA-HDA transition above 8 GPa. The LDA-HDA density increase is found to be about 14%. Pair and bond-angle distributions are obtained in the 0-16 GPa pressure range and allowed us a detailed analysis of the transition. The local fourfold coordination is transformed in an average HDA sixfold coordination associated with different local geometries as confirmed by coordination number analysis and shape of the bond-angle distributions.

  12. Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutsker, V.; Niehaus, T. A., E-mail: thomas.niehaus@physik.uni-regensburg.de; Aradi, B.

    2015-11-14

    Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply themore » method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.« less

  13. First principles calculation of two dimensional antimony and antimony arsenide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pillai, Sharad Babu, E-mail: sbpillai001@gmail.com; Narayan, Som; Jha, Prafulla K.

    2016-05-23

    This work focuses on the strain dependence of the electronic properties of two dimensional antimony (Sb) material and its alloy with As (SbAs) using density functional theory based first principles calculations. Both systems show indirect bandgap semiconducting character which can be transformed into a direct bandgap material with the application of relatively small strain.

  14. Nuclear quantum effects of light and heavy water studied by all-electron first principles path integral simulations

    NASA Astrophysics Data System (ADS)

    Machida, Masahiko; Kato, Koichiro; Shiga, Motoyuki

    2018-03-01

    The isotopologs of liquid water, H2O, D2O, and T2O, are studied systematically by first principles PIMD simulations, in which the whole entity of the electrons and nuclei are treated quantum mechanically. The simulation results are in reasonable agreement with available experimental data on isotope effects, in particular, on the peak shift in the radial distributions of H2O and D2O and the shift in the evaporation energies. It is found that, due to differences in nuclear quantum effects, the H atoms in the OH bonds more easily access the dissociative region up to the hydrogen bond center than the D (T) atoms in the OD (OT) bonds. The accuracy and limitation in the use of the current density-functional-theory-based first principles PIMD simulations are also discussed. It is argued that the inclusion of the dispersion correction or relevant improvements in the density functionals are required for the quantitative estimation of isotope effects.

  15. Adsorption of organic molecules on mineral surfaces studied by first-principle calculations: A review.

    PubMed

    Zhao, Hongxia; Yang, Yong; Shu, Xin; Wang, Yanwei; Ran, Qianping

    2018-04-09

    First-principle calculations, especially by the density functional theory (DFT) methods, are becoming a power technique to study molecular structure and properties of organic/inorganic interfaces. This review introduces some recent examples on the study of adsorption models of organic molecules or oligomers on mineral surfaces and interfacial properties obtained from first-principles calculations. The aim of this contribution is to inspire scientists to benefit from first-principle calculations and to apply the similar strategies when studying and tailoring interfacial properties at the atomistic scale, especially for those interested in the design and development of new molecules and new products. Copyright © 2017. Published by Elsevier B.V.

  16. JDFTx: Software for joint density-functional theory

    DOE PAGES

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.; ...

    2017-11-14

    Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less

  17. JDFTx: Software for joint density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties from first principles in physics, chemistry and materials science. Continuing development of new methods is necessary for accurate predictions of new classes of materials and properties, and for connecting to nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source electronic DFT software designed specifically to facilitate rapid development of new theories, models and algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the development of joint density-functional theory (JDFT) thatmore » combines electronic DFT with classical DFT and continuum models of liquids for first-principles calculations of solvated and electrochemical systems. In addition, the modular nature of the code makes it easy to extend and interface with, facilitating the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier dynamics combining electron and phonon calculations with electromagnetic simulations.« less

  18. Electronic and thermodynamic properties of layered Hf2Sfrom first-principles calculations

    NASA Astrophysics Data System (ADS)

    Nandadasa, Chandani; Yoon, Mina; Kim, Seong-Gon; Erwin, Steve; Kim, Sungho; Kim, Sung Wng; Lee, Kimoon

    Theoretically we explored two stable phases of inorganic fullerene-like structure of the layered dihafnium sulfide (Hf2 S) . We investigated structural and electronic properties of the two phases of Hf2 S by using first-principles calculations. Our calculation identifies experimentally observed anti-NbS2 structure of Hf2 S . Our electronic calculation results indicate that the density of states of anti- NbS2 structure of Hf2 S at fermi level is less than that of the other phase of Hf2 S . To study the relative stability of different phases at finite temperature Helmholtz free energies of two phases are obtained using density functional theory and density functional perturbation theory. The free energy of the anti-NbS2 structure of Hf2 S always lies below the free energy of the other phase by confirming the most stable structure of Hf2 S . The phonon dispersion, phonon density of states including partial density of states and total density of states are obtained within density functional perturbation theory. Our calculated zero-pressure phonon dispersion curves confirm that the thermodynamic stability of Hf2 S structures. For further investigation of thermodynamic properties, the temperature dependency of thermal expansion, heat capacities at constant pressure and volume are evaluated within the quasiharmonic approximations (QHA).

  19. Effects of interlayer screening and temperature on dielectric functions of graphene by first-principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J. Y.; Liu, L. H., E-mail: lhliu@hit.edu.cn; Department of Physics, Harbin Institute of Technology, Harbin 150001

    2016-07-21

    The dielectric functions of few-layer graphene and the related temperature dependence are investigated from the atomic scale using first-principles calculations. Compared with ellipsometry experiments in the spectral range of 190–2500 nm, the normalized optical constants of mono-layer graphene demonstrate good agreement and further validate first-principles calculations. To interpret dielectric function of mono-layer graphene, the electronic band structure and density of states are analyzed. By comparing dielectric functions of mono-, bi-, and tri-layer graphene, it shows that interlayer screening strengthens intraband transition and greatly enhances the absorption peak located around 1 eV. The strengthened optical absorption is intrinsically caused by the increasing electronmore » states near the Fermi level. To investigate temperature effect, the first-principles calculations and lattice dynamics are combined. The lattice vibration enhances parallel optical absorption peak around 1 eV and induces redshift. Moreover, it is observed that the van der Waals force plays a key role in keeping the interlayer distance stable during dynamics simulations.« less

  20. The structural, electronic and optical properties of Au-ZnO interface structure from the first-principles calculation

    NASA Astrophysics Data System (ADS)

    Huo, Jin-Rong; Li, Lu; Cheng, Hai-Xia; Wang, Xiao-Xu; Zhang, Guo-Hua; Qian, Ping

    2018-03-01

    The interface structure, electronic and optical properties of Au-ZnO are studied using the first-principles calculation based on density functional theory (DFT). Given the interfacial distance, bonding configurations and terminated surface, we built the optimal interface structure and calculated the electronic and optical properties of the interface. The total density of states, partial electronic density of states, electric charge density and atomic populations (Mulliken) are also displayed. The results show that the electrons converge at O atoms at the interface, leading to a stronger binding of interfaces and thereby affecting the optical properties of interface structures. In addition, we present the binding energies of different interface structures. When the interface structure of Au-ZnO gets changed, furthermore, varying optical properties are exhibited.

  1. First-principles simulations of shock front propagation in liquid deuterium

    NASA Astrophysics Data System (ADS)

    Gygi, Francois; Galli, Giulia

    2001-03-01

    We present large-scale first-principles molecular dynamics simulations of the formation and propagation of a shock front in liquid deuterium. Molecular deuterium was subjected to supersonic impacts at velocities ranging from 10 to 30 km/s. We used Density Functional Theory in the local density approximation, and simulation cells containing 1320 deuterium atoms. The formation of a shock front was observed and its velocity was measured and compared with the results of laser-driven shock experiments [1]. The pressure and density in the compressed fluid were also computed directly from statistical averages in appropriate regions of the simulation cell, and compared with previous first-principles calculations performed at equilibrium [2]. Details of the electronic structure at the shock front, and their influence on the properties of the compressed fluid will be discussed. [1] J.W.Collins et al. Science 281, 1178 (1998). [2] G.Galli, R.Q.Hood, A.U.Hazi and F.Gygi, Phys.Rev. B61, 909 (2000).

  2. First-principles study of length dependence of conductance in alkanedithiols

    NASA Astrophysics Data System (ADS)

    Zhou, Y. X.; Jiang, F.; Chen, H.; Note, R.; Mizuseki, H.; Kawazoe, Y.

    2008-01-01

    Electronic transport properties of alkanedithiols are calculated by a first-principles method based on density functional theory and nonequilibrium Green's function formalism. At small bias, the I-V characteristics are linear and the resistances conform to the Magoga's exponential law. The calculated length-dependent decay constant γ which reflects the effect of internal molecular structure is in accordance with most experiments quantitatively. Also, the calculated effective contact resistance R0 is in good agreement with the results of repeatedly measuring molecule-electrode junctions [B. Xu and N. Tao, Science 301, 1221 (2003)].

  3. First-principles molecular transport calculation for the benzenedithiolate molecule

    NASA Astrophysics Data System (ADS)

    Rumetshofer, M.; Dorn, G.; Boeri, L.; Arrigoni, E.; von der Linden, W.

    2017-10-01

    A first-principles approach based on density functional theory and non-equilibrium Green’s functions is used to study the molecular transport system consisting of benzenedithiolate connected with monoatomic gold and platinum electrodes. Using symmetry arguments we explain why the conductance mechanism is different for gold and platinum electrodes. We present the charge stability diagram for the benzenedithiolate connected with monoatomic platinum electrodes including many-body effects in terms of an extended Hubbard Hamiltonian and discuss how the electrodes and the many-body effects influence the transport properties of the system.

  4. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    NASA Astrophysics Data System (ADS)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  5. Nonequilibrium BN-ZnO: Optical properties and excitonic effects from first principles

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Schleife, André

    2018-03-01

    The nonequilibrium boron nitride (BN) phase of zinc oxide (ZnO) has been reported for thin films and nanostructures, however, its properties are not well understood due to a persistent controversy that prevents reconciling experimental and first-principles results for its atomic coordinates. We use first-principles theoretical spectroscopy to accurately compute electronic and optical properties, including single-quasiparticle and excitonic effects: Band structures and densities of states are computed using density functional theory, hybrid functionals, and the G W approximation. Accurate optical absorption spectra and exciton binding energies are computed by solving the Bethe-Salpeter equation for the optical polarization function. Using this data we show that the band-gap difference between BN-ZnO and wurtzite (WZ) ZnO agrees very well with experiment when the theoretical lattice geometry is used, but significantly disagrees for the experimental atomic coordinates. We also show that the optical anisotropy of BN-ZnO differs significantly from that of WZ-ZnO, allowing us to optically distinguish both polymorphs. By using the transfer-matrix method to solve Maxwell's equations for thin films composed of both polymorphs, we illustrate that this opens up a promising route for tuning optical properties.

  6. First-principles study of complex material systems

    NASA Astrophysics Data System (ADS)

    He, Lixin

    This thesis covers several topics concerning the study of complex materials systems by first-principles methods. It contains four chapters. A brief, introductory motivation of this work will be given in Chapter 1. In Chapter 2, I will give a short overview of the first-principles methods, including density-functional theory (DFT), planewave pseudopotential methods, and the Berry-phase theory of polarization in crystallines insulators. I then discuss in detail the locality and exponential decay properties of Wannier functions and of related quantities such as the density matrix, and their application in linear-scaling algorithms. In Chapter 3, I investigate the interaction of oxygen vacancies and 180° domain walls in tetragonal PbTiO3 using first-principles methods. Our calculations indicate that the oxygen vacancies have a lower formation energy in the domain wall than in the bulk, thereby confirming the tendency of these defects to migrate to, and pin, the domain walls. The pinning energies are reported for each of the three possible orientations of the original Ti--O--Ti bonds, and attempts to model the results with simple continuum models are discussed. CaCu3Ti4O12 (CCTO) has attracted a lot of attention recently because it was found to have an enormous dielectric response over a very wide temperature range. In Chapter 4, I study the electronic and lattice structure, and the lattice dynamical properties, of this system. Our first-principles calculations together with experimental results point towards an extrinsic mechanism as the origin of the unusual dielectric response.

  7. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    PubMed

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  8. In and Si adatoms on Si(111)5×2-Au : Scanning tunneling microscopy and first-principles density functional calculations

    NASA Astrophysics Data System (ADS)

    Stępniak, A.; Nita, P.; Krawiec, M.; Jałochowski, M.

    2009-09-01

    Structural properties of monatomic indium chains on Si(111)5×2-Au surface are investigated by scanning tunneling microscopy (STM) and first-principles density functional calculations (DFT). The STM topography data show that submonolayer coverage of indium leads to a well-ordered chain structure with the same periodicity as the Si adatoms form on Si(111)5×2-Au surface. Bias-dependent STM topography and spectroscopy reveal two different mechanisms of In-atoms adsorption on the surface: bonding to Si adatoms and substitution for Si atoms in the adatom positions. Those mechanisms are further corroborated by DFT calculations. The obtained structural model of In-modified Si(111)5×2-Au surface remains in good agreement with the experimental data.

  9. Assessing Density Functionals Using Many Body Theory for Hybrid Perovskites

    NASA Astrophysics Data System (ADS)

    Bokdam, Menno; Lahnsteiner, Jonathan; Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg

    2017-10-01

    Which density functional is the "best" for structure simulations of a particular material? A concise, first principles, approach to answer this question is presented. The random phase approximation (RPA)—an accurate many body theory—is used to evaluate various density functionals. To demonstrate and verify the method, we apply it to the hybrid perovskite MAPbI3 , a promising new solar cell material. The evaluation is done by first creating finite temperature ensembles for small supercells using RPA molecular dynamics, and then evaluating the variance between the RPA and various approximate density functionals for these ensembles. We find that, contrary to recent suggestions, van der Waals functionals do not improve the description of the material, whereas hybrid functionals and the strongly constrained appropriately normed (SCAN) density functional yield very good agreement with the RPA. Finally, our study shows that in the room temperature tetragonal phase of MAPbI3 , the molecules are preferentially parallel to the shorter lattice vectors but reorientation on ps time scales is still possible.

  10. Density functional theory calculations of III-N based semiconductors with mBJLDA

    NASA Astrophysics Data System (ADS)

    Gürel, Hikmet Hakan; Akıncı, Özden; Ünlü, Hilmi

    2017-02-01

    In this work, we present first principles calculations based on a full potential linear augmented plane-wave method (FP-LAPW) to calculate structural and electronic properties of III-V based nitrides such as GaN, AlN, InN in a zinc-blende cubic structure. First principles calculation using the local density approximation (LDA) and generalized gradient approximation (GGA) underestimate the band gap. We proposed a new potential called modified Becke-Johnson local density approximation (MBJLDA) that combines modified Becke-Johnson exchange potential and the LDA correlation potential to get better band gap results compared to experiment. We compared various exchange-correlation potentials (LSDA, GGA, HSE, and MBJLDA) to determine band gaps and structural properties of semiconductors. We show that using MBJLDA density potential gives a better agreement with experimental data for band gaps III-V nitrides based semiconductors.

  11. First Principles Optical Absorption Spectra of Organic Molecules Adsorbed on Titania Nanoparticles

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol; Ogut, Serdar; Mete, Ersen; Gulseren, Oguz; Ellialtioglu, Sinasi

    2012-02-01

    We present results from first principles computations on passivated rutile TiO2 nanoparticles in both free-standing and dye-sensitized configurations to investigate the size dependence of their optical absorption spectra. The computations are performed using time-dependent density functional theory (TDDFT) as well as GW-Bethe-Salpeter-Equation (GWBSE) methods and compared with each other. We interpret the first principles spectra for free-standing TiO2 nanoparticles within the framework of the classical Mie-Gans theory using the bulk dielectric function of TiO2. We investigate the effects of the titania support on the absorption spectra of a particular set of perylene-diimide (PDI) derived dye molecules, namely brominated PDI (Br2C24H8N2O4) and its glycine and aspartine derivatives.

  12. Hierarchical Coupling of First-Principles Molecular Dynamics with Advanced Sampling Methods.

    PubMed

    Sevgen, Emre; Giberti, Federico; Sidky, Hythem; Whitmer, Jonathan K; Galli, Giulia; Gygi, Francois; de Pablo, Juan J

    2018-05-14

    We present a seamless coupling of a suite of codes designed to perform advanced sampling simulations, with a first-principles molecular dynamics (MD) engine. As an illustrative example, we discuss results for the free energy and potential surfaces of the alanine dipeptide obtained using both local and hybrid density functionals (DFT), and we compare them with those of a widely used classical force field, Amber99sb. In our calculations, the efficiency of first-principles MD using hybrid functionals is augmented by hierarchical sampling, where hybrid free energy calculations are initiated using estimates obtained with local functionals. We find that the free energy surfaces obtained from classical and first-principles calculations differ. Compared to DFT results, the classical force field overestimates the internal energy contribution of high free energy states, and it underestimates the entropic contribution along the entire free energy profile. Using the string method, we illustrate how these differences lead to different transition pathways connecting the metastable minima of the alanine dipeptide. In larger peptides, those differences would lead to qualitatively different results for the equilibrium structure and conformation of these molecules.

  13. AB INITIO STUDY OF PHONON DISPERSION AND ELASTIC PROPERTIES OF L12 INTERMETALLICS Ti3Al AND Y3Al

    NASA Astrophysics Data System (ADS)

    Arikan, N.; Ersen, M.; Ocak, H. Y.; Iyigör, A.; Candan, A.; UǦUR, Ş.; UǦUR, G.; Khenata, R.; Varshney, D.

    2013-12-01

    In this paper, the structural, elastic and phonon properties of Ti3Al and Y3Al in L12(Cu3Al) phase are studied by performing first-principles calculations within the generalized gradient approximation. The calculated lattice constants, static bulk moduli, first-order pressure derivative of bulk moduli and elastic constants for both compounds are reported. The phonon dispersion curves along several high-symmetry lines at the Brillouin zone, together with the corresponding phonon density of states, are determined using the first-principles linear-response approach of the density functional perturbation theory. Temperature variations of specific heat in the range of 0-500 K are obtained using the quasi-harmonic model.

  14. First-principles studies of PETN molecular crystal vibrational frequencies under high pressure

    NASA Astrophysics Data System (ADS)

    Perger, Warren; Zhao, Jijun

    2005-07-01

    The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The pressure-induced shift of the vibrational frequencies will be presented and compared with experiment. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used.

  15. Pressure-enabled phonon engineering in metals

    PubMed Central

    Lanzillo, Nicholas A.; Thomas, Jay B.; Watson, Bruce; Washington, Morris; Nayak, Saroj K.

    2014-01-01

    We present a combined first-principles and experimental study of the electrical resistivity in aluminum and copper samples under pressures up to 2 GPa. The calculations are based on first-principles density functional perturbation theory, whereas the experimental setup uses a solid media piston–cylinder apparatus at room temperature. We find that upon pressurizing each metal, the phonon spectra are blue-shifted and the net electron–phonon interaction is suppressed relative to the unstrained crystal. This reduction in electron–phonon scattering results in a decrease in the electrical resistivity under pressure, which is more pronounced for aluminum than for copper. We show that density functional perturbation theory can be used to accurately predict the pressure response of the electrical resistivity in these metals. This work demonstrates how the phonon spectra in metals can be engineered through pressure to achieve more attractive electrical properties. PMID:24889627

  16. Possibility of transforming the electronic structure of one species of graphene adatoms into that of another by application of gate voltage: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Chan, Kevin T.; Lee, Hoonkyung; Cohen, Marvin L.

    2011-10-01

    Graphene provides many advantages for controlling the electronic structure of adatoms and other adsorbates via gating. Using the projected density of states and charge density obtained from first-principles density-functional periodic supercell calculations, we investigate the possibility of performing “alchemy” of adatoms on graphene, i.e., transforming the electronic structure of one species of adatom into that of another species by application of a gate voltage. Gating is modeled as a change in the number of electrons in the unit cell, with the inclusion of a compensating uniform background charge. Within this model and the generalized gradient approximation to the exchange-correlation functional, we find that such transformations are possible for K, Ca, and several transition-metal adatoms. Gate control of the occupation of the p states of In on graphene is also investigated. The validity of the supercell approximation with uniform compensating charge and the model for exchange and correlation is also discussed.

  17. Electronic and thermal properties of germanene and stanene by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Jomehpour Zaveh, S.; Roknabadi, M. R.; Morshedloo, T.; Modarresi, M.

    2016-03-01

    The electronic, vibrational and thermal properties of germanene and stanene have been investigated based on density functional theory (DFT) and density functional perturbation theory (DFPT). The electronic band structure, total and partial density of states and phonon dispersion spectrum and states are analyzed. The phonon spectrum is positive for all modes in the first Brillouin zone and there is a phonon energy band gap between acoustic and optical modes which is around 50 cm-1 for both structure. The constant-volume specific heats of two structures are calculated by using phonon spectrum and density of states. The spin-orbit coupling (SOC) opens a direct energy band gap at the Dirac point, softens phonon spectrum and decreases phonon group velocity of ZA mode.

  18. First-principles study of Li decorated coronene graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Yafei; Cheng, Xinlu

    2017-11-01

    We use the first-principles calculation based on density functional theory (DFT) to investigate the hydrogen storage of Li decorated coronene graphene. Our result indicates that single Li atom can adsorb three H2 molecules and the adsorption energy per H2 is -0.224 eV. When four Li atoms doped, the largest hydrogen gravimetric density is 6.82 wt.% and this is higher than the 2017 target by the US department of energy (DOE). Meanwhile, the adsorption energy per H2 is -0.220 eV, which is suitable for H2 molecules to store. Therefore, Li decorated coronene graphene will be a candidate for hydrogen storage materials in the future.

  19. Back in the saddle: large-deviation statistics of the cosmic log-density field

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Codis, S.; Pichon, C.; Bernardeau, F.; Reimberg, P.

    2016-08-01

    We present a first principle approach to obtain analytical predictions for spherically averaged cosmic densities in the mildly non-linear regime that go well beyond what is usually achieved by standard perturbation theory. A large deviation principle allows us to compute the leading order cumulants of average densities in concentric cells. In this symmetry, the spherical collapse model leads to cumulant generating functions that are robust for finite variances and free of critical points when logarithmic density transformations are implemented. They yield in turn accurate density probability distribution functions (PDFs) from a straightforward saddle-point approximation valid for all density values. Based on this easy-to-implement modification, explicit analytic formulas for the evaluation of the one- and two-cell PDF are provided. The theoretical predictions obtained for the PDFs are accurate to a few per cent compared to the numerical integration, regardless of the density under consideration and in excellent agreement with N-body simulations for a wide range of densities. This formalism should prove valuable for accurately probing the quasi-linear scales of low-redshift surveys for arbitrary primordial power spectra.

  20. Molecular density functional theory of water including density-polarization coupling.

    PubMed

    Jeanmairet, Guillaume; Levy, Nicolas; Levesque, Maximilien; Borgis, Daniel

    2016-06-22

    We present a three-dimensional molecular density functional theory of water derived from first-principles that relies on the particle's density and multipolar polarization density and includes the density-polarization coupling. This brings two main benefits: (i) scalar density and vectorial multipolar polarization density fields are much more tractable and give more physical insight than the full position and orientation densities, and (ii) it includes the full density-polarization coupling of water, that is known to be non-vanishing but has never been taken into account. Furthermore, the theory requires only the partial charge distribution of a water molecule and three measurable bulk properties, namely the structure factor and the Fourier components of the longitudinal and transverse dielectric susceptibilities.

  1. First-principles study of the effect of functional groups on polyaniline backbone

    PubMed Central

    Chen, X. P.; Jiang, J. K.; Liang, Q. H.; Yang, N.; Ye, H. Y.; Cai, M.; Shen, L.; Yang, D. G.; Ren, T. L.

    2015-01-01

    We present a first-principles density functional theory study focused on how the chemical and electronic properties of polyaniline are adjusted by introducing suitable substituents on a polymer backbone. Analyses of the obtained energy barriers, reaction energies and minimum energy paths indicate that the chemical reactivity of the polyaniline derivatives is significantly enhanced by protonic acid doping of the substituted materials. Further study of the density of states at the Fermi level, band gap, HOMO and LUMO shows that both the unprotonated and protonated states of these polyanilines are altered to different degrees depending on the functional group. We also note that changes in both the chemical and electronic properties are very sensitive to the polarity and size of the functional group. It is worth noting that these changes do not substantially alter the inherent chemical and electronic properties of polyaniline. Our results demonstrate that introducing different functional groups on a polymer backbone is an effective approach to obtain tailored conductive polymers with desirable properties while retaining their intrinsic properties, such as conductivity. PMID:26584671

  2. Investigation of structural stability and elastic properties of CrH and MnH: A first principles study

    NASA Astrophysics Data System (ADS)

    Kanagaprabha, S.; Rajeswarapalanichamy, R.; Sudhapriyanga, G.; Murugan, A.; Santhosh, M.; Iyakutti, K.

    2015-06-01

    The structural and mechanical properties of CrH and MnH are investigated using first principles calculation based on density functional theory as implemented in VASP code with generalized gradient approximation. The calculated ground state properties are in good agreement with previous experimental and other theoretical results. A structural phase transition from NaCl to NiAs phase at a pressure of 76 GPa is predicted for both CrH and MnH.

  3. Origin of Spinel Nanocheckerboards via First Principles

    NASA Astrophysics Data System (ADS)

    Kornbluth, Mordechai; Marianetti, Chris A.

    2015-06-01

    Self-organizing nanocheckerboards have been experimentally fabricated in Mn-based spinels but have not yet been explained with first principles. Using density-functional theory, we explain the phase diagram of the ZnMnxGa2 -xO4 system and the origin of nanocheckerboards. We predict total phase separation at zero temperature and then show the combination of kinetics, thermodynamics, and Jahn-Teller physics that generates the system's observed behavior. We find that the {011 } surfaces are strongly preferred energetically, which mandates checkerboard ordering by purely geometrical considerations.

  4. Electronic structure and microscopic model of CoNb2O6

    NASA Astrophysics Data System (ADS)

    Molla, Kaimujjaman; Rahaman, Badiur

    2018-05-01

    We present the first principle density functional calculations to figure out the underlying spin model of CoNb2O6. The first principles calculations define the main paths of superexchange interaction between Co spins in this compound. We discuss the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modeling based on analysis of the electronic structure of this system puts it in the interesting class of weakly couple geometrically frustrated isosceles triangular Ising antiferromagnet.

  5. First-Principles Studies of Pentaerythritol Tetranitrate (PETN) Single Crystal Unit Cell Volumes and Vibrational Frequencies under Hydrostatic Pressure

    NASA Astrophysics Data System (ADS)

    Perger, Warren F.; Zhao, Jijun; Winey, J. M.; Gupta, Y. M.

    2006-07-01

    The vibrational frequencies of the PETN molecular crystal were calculated using the first-principles CRYSTAL03 program which employs an all-electron LCAO approach and calculates analytic first derivatives of the total energy with respect to atomic displacements. Numerical second derivatives were used to enable calculation of the vibrational frequencies at ambient pressure and under various states of compression. Three different density functionals, B3LYP, PW91, and X3LYP were used to examine the effect of the exchange-correlation functional on the vibrational frequencies. The average deviation with experimental results is shown to be on the order of 2-3%, depending on the functional used. The pressure-induced shift of the vibrational frequencies is presented.

  6. Pressure induced structural phase transition in solid oxidizer KClO3: A first-principles study

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Ghule, Vikas D.; Vaitheeswaran, G.

    2013-05-01

    High pressure behavior of potassium chlorate (KClO3) has been investigated from 0 to 10 GPa by means of first principles density functional theory calculations. The calculated ground state parameters, transition pressure, and phonon frequencies using semiempirical dispersion correction scheme are in excellent agreement with experiment. It is found that KClO3 undergoes a pressure induced first order phase transition with an associated volume collapse of 6.4% from monoclinic (P21/m) → rhombohedral (R3m) structure at 2.26 GPa, which is in good accord with experimental observation. However, the transition pressure was found to underestimate (0.11 GPa) and overestimate (3.57 GPa) using local density approximation and generalized gradient approximation functionals, respectively. Mechanical stability of both the phases is explained from the calculated single crystal elastic constants. In addition, the zone center phonon frequencies have been calculated using density functional perturbation theory at ambient as well as at high pressure and the lattice modes are found to soften under pressure between 0.6 and 1.2 GPa. The present study reveals that the observed structural phase transition leads to changes in the decomposition mechanism of KClO3 which corroborates with the experimental results.

  7. Pressure induced structural phase transition in solid oxidizer KClO3: a first-principles study.

    PubMed

    Yedukondalu, N; Ghule, Vikas D; Vaitheeswaran, G

    2013-05-07

    High pressure behavior of potassium chlorate (KClO3) has been investigated from 0 to 10 GPa by means of first principles density functional theory calculations. The calculated ground state parameters, transition pressure, and phonon frequencies using semiempirical dispersion correction scheme are in excellent agreement with experiment. It is found that KClO3 undergoes a pressure induced first order phase transition with an associated volume collapse of 6.4% from monoclinic (P2(1)/m) → rhombohedral (R3m) structure at 2.26 GPa, which is in good accord with experimental observation. However, the transition pressure was found to underestimate (0.11 GPa) and overestimate (3.57 GPa) using local density approximation and generalized gradient approximation functionals, respectively. Mechanical stability of both the phases is explained from the calculated single crystal elastic constants. In addition, the zone center phonon frequencies have been calculated using density functional perturbation theory at ambient as well as at high pressure and the lattice modes are found to soften under pressure between 0.6 and 1.2 GPa. The present study reveals that the observed structural phase transition leads to changes in the decomposition mechanism of KClO3 which corroborates with the experimental results.

  8. SnO as a potential oxide thermoelectric candidate

    DOE PAGES

    Miller, Samuel A.; Gorai, Prashun; Aydemir, Umut; ...

    2017-08-08

    Here we search for new thermoelectric materials, high-throughput calculations using a combination of semiempirical models and first principles density functional theory present a path to screen large numbers of compounds for the most promising candidates.

  9. Properties of amorphous GaN from first-principles simulations

    NASA Astrophysics Data System (ADS)

    Cai, B.; Drabold, D. A.

    2011-08-01

    Amorphous GaN (a-GaN) models are obtained from first-principles simulations. We compare four a-GaN models generated by “melt-and-quench” and the computer alchemy method. We find that most atoms tend to be fourfold, and a chemically ordered continuous random network is the ideal structure for a-GaN albeit with some coordination defects. Where the electronic structure is concerned, the gap is predicted to be less than 1.0 eV, underestimated as usual by a density functional calculation. We observe a highly localized valence tail and a remarkably delocalized exponential conduction tail in all models generated. Based upon these results, we speculate on potential differences in n- and p-type doping. The structural origin of tail and defect states is discussed. The vibrational density of states and dielectric function are computed and seem consistent with experiment.

  10. Experimental and first principle studies on electronic structure of BaTiO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagdeo, Archna, E-mail: archnaj@rrcat.gov.in; Ghosh, Haranath, E-mail: archnaj@rrcat.gov.in; Chakrabarti, Aparna, E-mail: archnaj@rrcat.gov.in

    2014-04-24

    We have carried out photoemission experiments to obtain valence band spectra of various crystallographic symmetries of BaTiO{sub 3} system which arise as a function of temperature. We also present results of a detailed first principle study of these symmetries of BaTiO{sub 3} using generalized gradient approximation for the exchange-correlation potential. Here we present theoretical results of density of states obtained from DFT based simulations to compare with the experimental valence band spectra. Further, we also perform calculations using post density functional approaches like GGA + U method as well as non-local hybrid exchange-correlation potentials like PBE0, B3LYP, HSE in ordermore » to understand the extent of effect of correlation on band gaps of different available crystallographic symmetries (5 in number) of BaTiO{sub 3}.« less

  11. A first-principles examination of the asymmetric induction model in the binap/Rh(I)-catalysed 1,4-addition of phenylboronic acid to cyclic enones by density functional theory calculations.

    PubMed

    Qin, Hua-Li; Chen, Xiao-Qing; Huang, Yi-Zhen; Kantchev, Eric Assen B

    2014-09-26

    First-principles modelling of the diastereomeric transition states in the enantiodiscrimination stage of the catalytic cycle can reveal intimate details about the mechanism of enantioselection. This information can be invaluable for further improvement of the catalytic protocols by rational design. Herein, we present a density functional theory (IEFPCM/PBE0/DGDZVP level of theory) modelling of the carborhodation step for the asymmetric 1,4-arylation of cyclic α,β-unsaturated ketones mediated by a [(binap)Rh(I)] catalyst. The calculations completely support the older, qualitative, pictorial model predicting the sense of the asymmetric induction for both the chelating diphosphane (binap) and the more recent chiral diene (Phbod) ligands, while also permitting quantification of the enantiomeric excess (ee). The effect of dispersion interaction correction and basis sets has been also investigated. Dispersion-corrected functionals and solvation models significantly improve the predicted ee values. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Self-consistent many-electron theory of electron work functions and surface potential characteristics for selected metals

    NASA Technical Reports Server (NTRS)

    Smith, J. R.

    1969-01-01

    Electron work functions, surface potentials, and electron number density distributions and electric fields in the surface region of 26 metals were calculated from first principles within the free electron model. Calculation proceeded from an expression of the total energy as a functional of the electron number density, including exchange and correlation energies, as well as a first inhomogeneity term. The self-consistent solution was obtained via a variational procedure. Surface barriers were due principally to many-body effects; dipole barriers were small only for some alkali metals, becoming quite large for the transition metals. Surface energies were inadequately described by this model, which neglects atomistic effects. Reasonable results were obtained for electron work functions and surface potential characteristics, maximum electron densities varying by a factor of over 60.

  13. Grain growth in U–7Mo alloy: A combined first-principles and phase field study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Zhi-Gang; Liang, Linyun; Kim, Yeon Soo

    2016-05-01

    Grain size is an important factor in controlling the swelling behavior in irradiated U-Mo dispersion fuels. Increasing the grain size in UeMo fuel particles by heat treatment is believed to delay the fuel swelling at high fission density. In this work, a multiscale simulation approach combining first-principles calculation and phase field modeling is used to investigate the grain growth behavior in U-7Mo alloy. The density functional theory based first-principles calculations were used to predict the material properties of U-7Mo alloy. The obtained grain boundary energies were then adopted as an input parameter for mesoscale phase field simulations. The effects ofmore » annealing temperature, annealing time and initial grain structures of fuel particles on the grain growth in U-7Mo alloy were examined. The predicted grain growth rate compares well with the empirical correlation derived from experiments. (C) 2016 Elsevier B.V. All rights reserved.« less

  14. On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density

    NASA Astrophysics Data System (ADS)

    Dorini, F. A.; Cecconello, M. S.; Dorini, L. B.

    2016-04-01

    It is recognized that handling uncertainty is essential to obtain more reliable results in modeling and computer simulation. This paper aims to discuss the logistic equation subject to uncertainties in two parameters: the environmental carrying capacity, K, and the initial population density, N0. We first provide the closed-form results for the first probability density function of time-population density, N(t), and its inflection point, t*. We then use the Maximum Entropy Principle to determine both K and N0 density functions, treating such parameters as independent random variables and considering fluctuations of their values for a situation that commonly occurs in practice. Finally, closed-form results for the density functions and statistical moments of N(t), for a fixed t > 0, and of t* are provided, considering the uniform distribution case. We carried out numerical experiments to validate the theoretical results and compared them against that obtained using Monte Carlo simulation.

  15. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis

    DOE PAGES

    Fattebert, Jean-Luc; Lau, Edmond Y.; Bennion, Brian J.; ...

    2015-10-22

    Enzymes are complicated solvated systems that typically require many atoms to simulate their function with any degree of accuracy. We have recently developed numerical techniques for large scale First-Principles molecular dynamics simulations and applied them to study the enzymatic reaction catalyzed by acetylcholinesterase. We carried out Density functional theory calculations for a quantum mechanical (QM) sub- system consisting of 612 atoms with an O(N) complexity finite-difference approach. The QM sub-system is embedded inside an external potential field representing the electrostatic effect due to the environment. We obtained finite temperature sampling by First-Principles molecular dynamics for the acylation reaction of acetylcholinemore » catalyzed by acetylcholinesterase. Our calculations shows two energies barriers along the reaction coordinate for the enzyme catalyzed acylation of acetylcholine. In conclusion, the second barrier (8.5 kcal/mole) is rate-limiting for the acylation reaction and in good agreement with experiment.« less

  16. Accurate atomistic first-principles calculations of electronic stopping

    DOE PAGES

    Schleife, André; Kanai, Yosuke; Correa, Alfredo A.

    2015-01-20

    In this paper, we show that atomistic first-principles calculations based on real-time propagation within time-dependent density functional theory are capable of accurately describing electronic stopping of light projectile atoms in metal hosts over a wide range of projectile velocities. In particular, we employ a plane-wave pseudopotential scheme to solve time-dependent Kohn-Sham equations for representative systems of H and He projectiles in crystalline aluminum. This approach to simulate nonadiabatic electron-ion interaction provides an accurate framework that allows for quantitative comparison with experiment without introducing ad hoc parameters such as effective charges, or assumptions about the dielectric function. Finally, our work clearlymore » shows that this atomistic first-principles description of electronic stopping is able to disentangle contributions due to tightly bound semicore electrons and geometric aspects of the stopping geometry (channeling versus off-channeling) in a wide range of projectile velocities.« less

  17. Surface regulated arsenenes as Dirac materials: From density functional calculations

    NASA Astrophysics Data System (ADS)

    Yuan, Junhui; Xie, Qingxing; Yu, Niannian; Wang, Jiafu

    2017-02-01

    Using first principle calculations based on density functional theory (DFT), we have systematically investigated the structure stability and electronic properties of chemically decorated arsenenes, AsX (X = CN, NC, NCO, NCS and NCSe). Phonon dispersion and formation energy analysis reveal that all the five chemically decorated buckled arsenenes are energetically favorable and could be synthesized. Our study shows that wide-bandgap arsenene would turn into Dirac materials when functionalized by -X (X = CN, NC, NCO, NCS and NCSe) groups, rendering new promises in next generation high-performance electronic devices.

  18. A Scalable Implementation of Van der Waals Density Functionals

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Gygi, Francois

    2010-03-01

    Recently developed Van der Waals density functionals[1] offer the promise to account for weak intermolecular interactions that are not described accurately by local exchange-correlation density functionals. In spite of recent progress [2], the computational cost of such calculations remains high. We present a scalable parallel implementation of the functional proposed by Dion et al.[1]. The method is implemented in the Qbox first-principles simulation code (http://eslab.ucdavis.edu/software/qbox). Application to large molecular systems will be presented. [4pt] [1] M. Dion et al. Phys. Rev. Lett. 92, 246401 (2004).[0pt] [2] G. Roman-Perez and J. M. Soler, Phys. Rev. Lett. 103, 096102 (2009).

  19. Enhanced superconductivity in the high pressure phase of SnAs studied from first principles

    NASA Astrophysics Data System (ADS)

    Sreenivasa Reddy, P. V.; Kanchana, V.; Millichamp, T. E.; Vaitheeswaran, G.; Dugdale, S. B.

    2017-01-01

    First principles calculations are performed using density functional theory and density functional perturbation theory for SnAs. Total energy calculations show the first order phase transition from an NaCl structure to a CsCl one at around 37 GPa, which is also confirmed from enthalpy calculations and agrees well with experimental work. Calculations of the phonon structure and hence the electron-phonon coupling, λep, and superconducting transition temperature, Tc, across the phase diagram are performed. These calculations give an ambient pressure Tc, in the NaCl structure, of 3.08 K, in good agreement with experiment whilst at the transition pressure, in the CsCl structure, a drastically increased value of Tc = 12.2 K is found. Calculations also show a dramatic increase in the electronic density of states at this pressure. The lowest energy acoustic phonon branch in each structure also demonstrates some softening effects. Electronic structure calculations of the Fermi surface in both phases are presented for the first time as well as further calculations of the generalised susceptibility with the inclusion of matrix elements. These calculations indicate that the softening is not derived from Fermi surface nesting and it is concluded to be due to a wavevector-dependent enhancement of the electron-phonon coupling.

  20. Self-consistent pseudopotential calculation of the bulk properties of Mo and W

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zunger, A.; Cohen, M.L.

    The bulk properties of Mo and W are calculated using the recently developed momentum-space approach for calculating total energy via a nonlocal pseudopotential. This approach avoids any shape approximation to the variational charge density (e.g., muffin tins), is fully self-consistent, and replaces the multidimensional and multicenter integrals akin to real-space representations by simple and readily convergent reciprocal-space lattice sums. We use first-principles atomic pseudopotentials which have been previously demonstrated to yield band structures and charge densities for both semiconductors and transition metals in good agreement with experiment and all-electron calculations. Using a mixed-basis representation for the crystalline wave function, wemore » are able to accurately reproduce both the localized and itinerant features of the electronic states in these systems. These first-principles pseudopotentials, together with the self-consistent density-functional representation for both the exchange and the correlation screening, yields agreement with experiment of 0.2% in the lattice parameters, 2% and 11% for the binding energies of Mo and W, respectively, and 12% and 7% for the bulk moduli of Mo and W, respectively.« less

  1. Oxygen reduction on a Pt(111) catalyst in HT-PEM fuel cells by density functional theory

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Li, Jie; Almheiri, Saif; Xiao, Jianyu

    2017-08-01

    The oxygen reduction reaction plays an important role in the performance of high-temperature proton exchange membrane (HT-PEM) fuel cells. In this study, a molecular dynamics model, which is based on the density functional theory and couples the system's energy, the exchange-correlation energy functional, the charge density distribution function, and the simplified Kohn-Sham equation, was developed to simulate the oxygen reduction reaction on a Pt(111) surface. Additionally, an electrochemical reaction system on the basis of a four-electron reaction mechanism was also developed for this simulation. The reaction path of the oxygen reduction reaction, the product structure of each reaction step and the system's energy were simulated. It is found that the first step reaction of the first hydrogen ion with the oxygen molecule is the controlling step of the overall reaction. Increasing the operating temperature speeds up the first step reaction rate and slightly decreases its reaction energy barrier. Our results provide insight into the working principles of HT-PEM fuel cells.

  2. Cyclic density functional theory: A route to the first principles simulation of bending in nanostructures

    NASA Astrophysics Data System (ADS)

    Banerjee, Amartya S.; Suryanarayana, Phanish

    2016-11-01

    We formulate and implement Cyclic Density Functional Theory (Cyclic DFT) - a self-consistent first principles simulation method for nanostructures with cyclic symmetries. Using arguments based on Group Representation Theory, we rigorously demonstrate that the Kohn-Sham eigenvalue problem for such systems can be reduced to a fundamental domain (or cyclic unit cell) augmented with cyclic-Bloch boundary conditions. Analogously, the equations of electrostatics appearing in Kohn-Sham theory can be reduced to the fundamental domain augmented with cyclic boundary conditions. By making use of this symmetry cell reduction, we show that the electronic ground-state energy and the Hellmann-Feynman forces on the atoms can be calculated using quantities defined over the fundamental domain. We develop a symmetry-adapted finite-difference discretization scheme to obtain a fully functional numerical realization of the proposed approach. We verify that our formulation and implementation of Cyclic DFT is both accurate and efficient through selected examples. The connection of cyclic symmetries with uniform bending deformations provides an elegant route to the ab-initio study of bending in nanostructures using Cyclic DFT. As a demonstration of this capability, we simulate the uniform bending of a silicene nanoribbon and obtain its energy-curvature relationship from first principles. A self-consistent ab-initio simulation of this nature is unprecedented and well outside the scope of any other systematic first principles method in existence. Our simulations reveal that the bending stiffness of the silicene nanoribbon is intermediate between that of graphene and molybdenum disulphide - a trend which can be ascribed to the variation in effective thickness of these materials. We describe several future avenues and applications of Cyclic DFT, including its extension to the study of non-uniform bending deformations and its possible use in the study of the nanoscale flexoelectric effect.

  3. First-principles investigations on structural, elastic, electronic properties and Debye temperature of orthorhombic Ni3Ta under pressure

    NASA Astrophysics Data System (ADS)

    Li, Pan; Zhang, Jianxin; Ma, Shiyu; Jin, Huixin; Zhang, Youjian; Zhang, Wenyang

    2018-06-01

    The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν are calculated by the Voigt-Reuss-Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature ΘD calculated from elastic modulus increases along with the pressure.

  4. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    NASA Astrophysics Data System (ADS)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  5. First-principles calculations of lattice dynamics and thermal properties of polar solids

    DOE PAGES

    Wang, Yi; Shang, Shun -Li; Fang, Huazhi; ...

    2016-05-13

    Although the theory of lattice dynamics was established six decades ago, its accurate implementation for polar solids using the direct (or supercell, small displacement, frozen phonon) approach within the framework of density-function-theory-based first-principles calculations had been a challenge until recently. It arises from the fact that the vibration-induced polarization breaks the lattice periodicity, whereas periodic boundary conditions are required by typical first-principles calculations, leading to an artificial macroscopic electric field. In conclusion, the article reviews a mixed-space approach to treating the interactions between lattice vibration and polarization, its applications to accurately predicting the phonon and associated thermal properties, and itsmore » implementations in a number of existing phonon codes.« less

  6. Toward Computational Design of High-Efficiency Photovoltaics from First-Principles

    DTIC Science & Technology

    2016-08-15

    dependence of exciton diffusion in conjugated small molecules, Applied Physics Letters, (04 2014): 0. doi: 10.1063/1.4871303 Guangfen Wu, Zi Li, Xu...principle approach based on the time- dependent density functional theory (TDDFT) to describe exciton states, including energy levels and many-body wave... depends more sensitively on the dimension and crystallinity of the acceptor parallel to the interface than normal to the interface. Reorganization

  7. First-principles phase stability at high temperatures and pressure in Nb 90Zr 10 alloy

    DOE PAGES

    Landa, A.; Soderlind, P.

    2016-08-18

    The phase stability of Nb 90Zr 10 alloy at high temperatures and compression is explored by means of first-principles electronic-structure calculations. Utilizing the self-consistent ab initio lattice dynamics (SCAILD) approach in conjunction with density-functional theory, we show that pressure-induced mechanical instability of the body-centered cubic phase, which results in formation of a rhombohedral phase at around 50 GPa, will prevail significant heating. As a result, the body-centered cubic structure will recover before melting at ~1800 K.

  8. First-Principles Framework to Compute Sum-Frequency Generation Vibrational Spectra of Semiconductors and Insulators.

    PubMed

    Wan, Quan; Galli, Giulia

    2015-12-11

    We present a first-principles framework to compute sum-frequency generation (SFG) vibrational spectra of semiconductors and insulators. The method is based on density functional theory and the use of maximally localized Wannier functions to compute the response to electric fields, and it includes the effect of electric field gradients at surfaces. In addition, it includes quadrupole contributions to SFG spectra, thus enabling the verification of the dipole approximation, whose validity determines the surface specificity of SFG spectroscopy. We compute the SFG spectra of ice I_{h} basal surfaces and identify which spectra components are affected by bulk contributions. Our results are in good agreement with experiments at low temperature.

  9. Work function tunability of borophene via doping: A first principle study

    NASA Astrophysics Data System (ADS)

    Katoch, Neha; Sharma, Munish; Thakur, Rajesh; Ahluwalia, P. K.

    2018-04-01

    A first principle study of structural properties, work function and electronic properties of pristine and substitutional doped borophene atomic layer with X atoms (X = F, Cl, H, Li, Na) have been carried out within the framework of density functional theory (DFT). Studied adsorption energies are high for all dopants indicating adsorption to be chemisorption type. The reduction in work function of pristine borophene has been found with n-type (Li, Na) dopants is of the order of 0.42 eV which is higher than that of the reduction in work function of borophene with p-type (F, Cl) dopants. For H dopants there is no reduction in work function of borophene. Quantum ballistic conductance has been found to modulate with doping. The quantum ballistic conductance is decreasing for doped borophene in the order Li > Cl ˜ H ˜ Na > F as compared to pristine borophene.

  10. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Miceli, Giacomo; de Gironcoli, Stefano; Pasquarello, Alfredo

    2015-01-01

    We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed analysis comprising the study of the partial radial distribution functions, various local order indices, the hydrogen-bond network, and the selfdiffusion coefficient. The explicit treatment of the van der Waals interactions leads to an overall improved description of liquid water.

  11. First-principles simulations of heat transport

    NASA Astrophysics Data System (ADS)

    Puligheddu, Marcello; Gygi, Francois; Galli, Giulia

    2017-11-01

    Advances in understanding heat transport in solids were recently reported by both experiment and theory. However an efficient and predictive quantum simulation framework to investigate thermal properties of solids, with the same complexity as classical simulations, has not yet been developed. Here we present a method to compute the thermal conductivity of solids by performing ab initio molecular dynamics at close to equilibrium conditions, which only requires calculations of first-principles trajectories and atomic forces, thus avoiding direct computation of heat currents and energy densities. In addition the method requires much shorter sequential simulation times than ordinary molecular dynamics techniques, making it applicable within density functional theory. We discuss results for a representative oxide, MgO, at different temperatures and for ordered and nanostructured morphologies, showing the performance of the method in different conditions.

  12. Visible-light absorption and large band-gap bowing of GaN 1-xSb x from first principles

    DOE PAGES

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; ...

    2011-08-01

    Applicability of the Ga(Sb x)N 1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sb x)N 1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sb x)N 1-x alloys could be potential candidates for splitting watermore » under visible light irradiation.« less

  13. Density functional theory for field emission from carbon nano-structures.

    PubMed

    Li, Zhibing

    2015-12-01

    Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.

  14. High-pressure structural study of MnF 2

    DOE PAGES

    Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; ...

    2015-02-01

    In this study, manganese fluoride (MnF 2) with the tetragonal rutile-type structure has been studied using a synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy in a diamond anvil cell up to 60 GPa at room temperature combined with first-principles density functional calculations. The experimental data reveal two pressure-induced structural phase transitions with the following sequence: rutile → SrI 2 type (3 GPa)→ α–PbCl 2 type (13 GPa). Complete structural information, including interatomic distances, has been determined in the case of MnF 2 including the exact structure of the debated first high-pressure phase. First-principles density functional calculations confirm this phasemore » transition sequence, and the two calculated transition pressures are in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phases. The results are discussed in line with the possible practical use of rutile-type fluorides in general and specifically MnF 2 as a model compound to reveal the HP structural behavior of rutile-type SiO 2 (Stishovite).« less

  15. Graphene for amino acid biosensing: Theoretical study of the electronic transport

    NASA Astrophysics Data System (ADS)

    Rodríguez, S. J.; Makinistian, L.; Albanesi, E. A.

    2017-10-01

    The study of biosensors based on graphene has increased in the last years, the combination of excellent electrical properties and low noise makes graphene a material for next generation electronic devices. This work discusses the application of a graphene-based biosensor for the detection of amino acids histidine (His), alanine (Ala), aspartic acid (Asp), and tyrosine (Tyr). First, we present the results of modeling from first principles the adsorption of the four amino acids on a graphene sheet, we calculate adsorption energy, substrate-adsorbate distance, equilibrium geometrical configurations (upon relaxation) and densities of states (DOS) for each biomolecule adsorbed. Furthermore, in order to evaluate the effects of amino acid adsorption on the electronic transport of graphene, we modeled a device using first-principles calculations with a combination of Density Functional Theory (DFT) and Nonequilibrium Greens Functions (NEGF). We provide with a detailed discussion in terms of transmission, current-voltage curves, and charge transfer. We found evidence of differences in the electronic transport through the graphene sheet due to amino acid adsorption, reinforcing the possibility of graphene-based sensors for amino acid sequencing of proteins.

  16. Half-metallic ferromagnetism in Fe, Co and Ni doped BaS: First principles calculations

    NASA Astrophysics Data System (ADS)

    Maurya, Savita; Sharma, Ramesh; Bhamu, K. C.

    2018-04-01

    The first principle investigation of structural, electronic, magnetic and optical properties of Ba1-xTMxS (x = 0.25) have been done using FPLAW method within the density functional theory (DFT) using generalized gradient approximation (GGA) for exchange correlation potential using two different functionals which are the PBE-sol and the modified Becke and Johnson local (spin) density approximation (mBJLDA). It was found that mBJLDA functional offer better account for the electronic structure of the Fe, Co and Ni-doped BaS. It was also observed that Fe/Co/Ni d, S p and Ba d states play a major role in determining the electronic properties of this alloy system. Investigation results shows that Ba0.75(Fe/Co/Ni)0.25S is ferromagnetic with magnetic moment of 3.72 µB, 2.73908 µB and 1.74324 µB at Fe, Co and Ni sites respectively. Complex dielectric constant ɛ(ω) and normal incidence reflectivity R(ω) are also been investigate for broad range of photon energies. These results are compared with the some reported existing experimental values.

  17. Analysis of STM images with pure and CO-functionalized tips: A first-principles and experimental study

    NASA Astrophysics Data System (ADS)

    Gustafsson, Alexander; Okabayashi, Norio; Peronio, Angelo; Giessibl, Franz J.; Paulsson, Magnus

    2017-08-01

    We describe a first-principles method to calculate scanning tunneling microscopy (STM) images, and compare the results to well-characterized experiments combining STM with atomic force microscopy (AFM). The theory is based on density functional theory with a localized basis set, where the wave functions in the vacuum gap are computed by propagating the localized-basis wave functions into the gap using a real-space grid. Constant-height STM images are computed using Bardeen's approximation method, including averaging over the reciprocal space. We consider copper adatoms and single CO molecules adsorbed on Cu(111), scanned with a single-atom copper tip with and without CO functionalization. The calculated images agree with state-of-the-art experiments, where the atomic structure of the tip apex is determined by AFM. The comparison further allows for detailed interpretation of the STM images.

  18. Spin resolved electronic transport through N@C20 fullerene molecule between Au electrodes: A first principles study

    NASA Astrophysics Data System (ADS)

    Caliskan, Serkan

    2018-05-01

    Using first principles study, through Density Functional Theory combined with Non Equilibrium Green's Function Formalism, electronic properties of endohedral N@C20 fullerene molecule joining Au electrodes (Au-N@C20) was addressed in the presence of spin property. The electronic transport behavior across the Au-N@C20 molecular junction was investigated by spin resolved transmission, density of states, molecular orbitals, differential conductance and current-voltage (I-V) characteristics. Spin asymmetric variation was clearly observed in the results due to single N atom encapsulated in the C20 fullerene cage, where the N atom played an essential role in the electronic behavior of Au-N@C20. This N@C20 based molecular bridge, exhibiting a spin dependent I-V variation, revealed a metallic behavior within the bias range from -1 V to 1 V. The induced magnetic moment, spin polarization and other relevant quantities associated with the spin resolved transport were elucidated.

  19. First-principles analysis of anharmonic nuclear motion and thermal transport in thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Tadano, Terumasa; Tsuneyuki, Shinji

    2015-12-01

    We show a first-principles approach for analyzing anharmonic properties of lattice vibrations in solids. We firstly extract harmonic and anharmonic force constants from accurate first-principles calculations based on the density functional theory. Using the many-body perturbation theory of phonons, we then estimate the phonon scattering probability due to anharmonic phonon-phonon interactions. We show the validity of the approach by computing the lattice thermal conductivity of Si, a typical covalent semiconductor, and selected thermoelectric materials PbTe and Bi2Te3 based on the Boltzmann transport equation. We also show that the phonon lifetime and the lattice thermal conductivity of the high-temperature phase of SrTiO3 can be estimated by employing the perturbation theory on top of the solution of the self-consistent phonon equation.

  20. A minimal model for the structural energetics of VO2

    NASA Astrophysics Data System (ADS)

    Kim, Chanul; Marianetti, Chris; The Marianetti Group Team

    Resolving the structural, magnetic, and electronic structure of VO2 from the first-principles of quantum mechanics is still a forefront problem despite decades of attention. Hybrid functionals have been shown to qualitatively ruin the structural energetics. While density functional theory (DFT) combined with cluster extensions of dynamical mean-field theory (DMFT) have demonstrated promising results in terms of the electronic properties, structural phase stability has not yet been addressed. In order to capture the basic physics of the structural transition, we propose a minimal model of VO2 based on the one dimensional Peierls-Hubbard model and parameterize this based on DFT calculations of VO2. The total energy versus dimerization in the minimal mode is then solved numerically exactly using density matrix renormalization group (DMRG) and compared to the Hartree-Fock solution. We demonstrate that the Hartree-Fock solution exhibits the same pathologies as DFT+U, and spin density functional theory for that matter, while the DMRG solution is consistent with experimental observation. Our results demonstrate the critical role of non-locality in the total energy, and this will need to be accounted for to obtain a complete description of VO2 from first-principles. The authors acknowledge support from FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  1. First principles molecular dynamics of metal/water interfaces under bias potential

    NASA Astrophysics Data System (ADS)

    Pedroza, Luana; Brandimarte, Pedro; Rocha, Alexandre; Fernandez-Serra, Marivi

    2014-03-01

    Understanding the interaction of the water-metal system at an atomic level is extremely important in electrocatalysts for fuel cells, photocatalysis among other systems. The question of the interface energetics involves a detailed study of the nature of the interactions between water-water and water-substrate. A first principles description of all components of the system is the most appropriate methodology in order to advance understanding of electrochemically processes. In this work we describe, using first principles molecular dynamics simulations, the dynamics of a combined surface(Au and Pd)/water system both in the presence and absence of an external bias potential applied to the electrodes, as one would come across in electrochemistry. This is accomplished using a combination of density functional theory (DFT) and non-equilibrium Green's functions methods (NEGF), thus accounting for the fact that one is dealing with an out-of-equilibrium open system, with and without van der Waals interactions. DOE Early Career Award No. DE-SC0003871.

  2. Anisotropy of the elastic properties of crystalline cellulose Iß from first principles density functional theory with Van der Waals interactions

    Treesearch

    Fernando L. Dri; Louis G. Jr. Hector; Robert J. Moon; Pablo D. Zavattieri

    2013-01-01

    In spite of the significant potential of cellulose nanocrystals as functional nanoparticles for numerous applications, a fundamental understanding of the mechanical properties of defect-free, crystalline cellulose is still lacking. In this paper, the elasticity matrix for cellulose Iß with hydrogen bonding network A was calculated using ab initio...

  3. The electronic and optical properties of Cs adsorbed GaAs nanowires via first-principles study

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Feng, Shu; Lu, Feifei

    2018-07-01

    In this study, we investigate the Cs adsorption mechanism on (110) surface of zinc-blende GaAs nanowire. The adsorption energy, work function, dipole moment, geometric structure, Mulliken charge distribution, charge transfer index, band structures, density of state and optical properties of Cs adsorption structures are calculated utilizing first-principles method based on density function theory. Total-energy calculations show that all the adsorption energies are negative, indicating that Cs adsorption process is exothermic and Cs covered GaAs nanowires are stable. The work function of nanowire surface has an obvious decrease after Cs adsorption. Besides, the ionization of nanowire surface is enhanced as well. More importantly, Cs adsorption contributes to a lower side shift of bands near Fermi level, and the corresponding band gap disappears. Additionally, the absorption peak and energy loss function after Cs adsorption are far higher than those before adsorption, implying better light absorption characteristic of nanowire surface after Cs adsorption. These theoretical calculations can directly guide the Cs activation experiment for negative electron affinity GaAs nanowire, and also lay a foundation for the further study of Cs/O co-adsorption on the nanowire surface.

  4. First-Principles Molecular Dynamics Simulations of NaCl in Water: Performance of Advanced Exchange-Correlation Approximations in Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Yao, Yi; Kanai, Yosuke

    Our ability to correctly model the association of oppositely charged ions in water is fundamental in physical chemistry and essential to various technological and biological applications of molecular dynamics (MD) simulations. MD simulations using classical force fields often show strong clustering of NaCl in the aqueous ionic solutions as a consequence of a deep contact pair minimum in the potential of mean force (PMF) curve. First-Principles Molecular Dynamics (FPMD) based on Density functional theory (DFT) with the popular PBE exchange-correlation approximation, on the other hand, show a different result with a shallow contact pair minimum in the PMF. We employed two of most promising exchange-correlation approximations, ωB97xv by Mardiorossian and Head-Gordon and SCAN by Sun, Ruzsinszky and Perdew, to examine the PMF using FPMD simulations. ωB97xv is highly empirically and optimized in the space of range-separated hybrid functional with a dispersion correction while SCAN is the most recent meta-GGA functional that is constructed by satisfying various known conditions in well-defined physical limits. We will discuss our findings for PMF, charge transfer, water dipoles, etc.

  5. Electronic structure and photoabsorption of Ti 3+ ions in reduced anatase and rutile TiO 2

    DOE PAGES

    Wen, Bo; Hao, Qunqing; Yin, Wen-Jin; ...

    2018-01-01

    We have used two-photon photoemission (2PPE) spectroscopy and first-principles density functional theory calculations to investigate the electronic structure and photoabsorption of the reduced anatase TiO 2 (101) and rutile TiO 2 (110) surfaces.

  6. First principles calculations for interaction of tyrosine with (ZnO)3 cluster

    NASA Astrophysics Data System (ADS)

    Singh, Satvinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-04-01

    First Principles Calculations have been performed to study interactions of Phenol ring of Tyrosine (C6H5OH) with (ZnO)3 atomic cluster. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/C6H5OH have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations. The compatibility of the results with previous studies has been presented here.

  7. Materials Databases Infrastructure Constructed by First Principles Calculations: A Review

    DOE PAGES

    Lin, Lianshan

    2015-10-13

    The First Principles calculations, especially the calculation based on High-Throughput Density Functional Theory, have been widely accepted as the major tools in atom scale materials design. The emerging super computers, along with the powerful First Principles calculations, have accumulated hundreds of thousands of crystal and compound records. The exponential growing of computational materials information urges the development of the materials databases, which not only provide unlimited storage for the daily increasing data, but still keep the efficiency in data storage, management, query, presentation and manipulation. This review covers the most cutting edge materials databases in materials design, and their hotmore » applications such as in fuel cells. By comparing the advantages and drawbacks of these high-throughput First Principles materials databases, the optimized computational framework can be identified to fit the needs of fuel cell applications. The further development of high-throughput DFT materials database, which in essence accelerates the materials innovation, is discussed in the summary as well.« less

  8. First-Principle Calculation of Quasiparticle Excitations and Optical Absorption in NiO

    NASA Astrophysics Data System (ADS)

    Li, Je-Luen; Rignanese, Gian-Marco; Louie, Steven G.

    2001-03-01

    We present a first-principle study of the quasiparticle excitations and optical absorption spectrum in NiO. The ground state electronic structure is calculated with the generalized gradient approximation in density functional theory and ab initio pseudopotential. The quasiparticle energies are then computed employing the GW approximation. In addition to comparing to photoemisson result, comparison between the measured and calculated complex dielectric function helps to identify the onset of excitations in this system. We illustrate some subtleties of pseudopotential calculations: the effect of including 3 s and 3p electrons in Ni pseudopotential; the difference between using velocity and momentum operators in the RPA dielectric function. Finally, we discuss a recent effort to solve the Bethe-Salpeter equation for the optical spectrum in this spin polarized system to address the remaining discrepancy between theory and experiment.

  9. Balanced design for the feasible super rocket fuels: A first-principle study on gauche CHN7 and CHN3.

    PubMed

    Yu, Tao; Lin, Maohua; Wu, Bo; Wang, Jintian; Tsai, Chi-Tay

    2018-05-16

    On the basis of the framework of cubic gauche nitrogen (cg-N), six one-eighth methanetriyl groups (>CH-) substitutes and fifteen one-fourth >CH- substitutes were optimized using the first-principle calculations based on density functional theory (DFT). Both one-eighth and one-fourth substitutes still keep the gauche structures with the simple formula CHN 7 and CHN 3 , respectively. The most thermodynamic stable gauche CHN 7 and CHN 3 are P2 1 qtg-C 2 H 2 N 14 I and P2 1 qtg-C 4 H 4 N 12 III, respectively. No probability density of C-C single bonds and high probability densities of C-N-C structures were found in the two substitutes. Although gauche CHN 7 and CHN 3 lose energy density in contrast to cg-N, they win kinetic stability and combustion temperature (T c ). Thus, they are more feasible than cg-N, and more effective than the traditional rocket fuels. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. First-principles study of the structure properties of Al(111)/6H-SiC(0001) interfaces

    NASA Astrophysics Data System (ADS)

    Wu, Qingjie; Xie, Jingpei; Wang, Changqing; Li, Liben; Wang, Aiqin; Mao, Aixia

    2018-04-01

    This paper presents a systematic study on the energetic and electronic structure of the Al(111)/6H-SiC(0001) interfaces by using first-principles calculation with density functional theory (DFT). There are all three situations for no-vacuum layer of Al/SiC superlattics, and two cases of C-terminated and Si-terminated interfaces are compared and analyzed. Through the density of states analysis, the initial information of interface combination is obtained. Then the supercells are stretched vertically along the z-axis, and the fracture of the interface is obtained, and it is pointed out that C-terminated SiC and Al interfaces have a better binding property. And, the fracture positions of C-terminated and Si-terminated interfaces are different in the process of stretching. Then, the distance variation in the process of stretching, the charge density differences, and the distribution of the electrons near the interface are analyzed. Al these work makes the specific reasons for the interface fracture are obtained at last.

  11. First Principles Electronic Structure of Mn doped GaAs, GaP, and GaN Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulthess, Thomas C; Temmerman, Walter M; Szotek, Zdzislawa

    We present first-principles electronic structure calculations of Mn doped III-V semiconductors based on the local spin-density approximation (LSDA) as well as the self-interaction corrected local spin density method (SIC-LSD). We find that it is crucial to use a self-interaction free approach to properly describe the electronic ground state. The SIC-LSD calculations predict the proper electronic ground state configuration for Mn in GaAs, GaP, and GaN. Excellent quantitative agreement with experiment is found for magnetic moment and p-d exchange in (GaMn)As. These results allow us to validate commonly used models for magnetic semiconductors. Furthermore, we discuss the delicate problem of extractingmore » binding energies of localized levels from density functional theory calculations. We propose three approaches to take into account final state effects to estimate the binding energies of the Mn-d levels in GaAs. We find good agreement between computed values and estimates from photoemisison experiments.« less

  12. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  13. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE PAGES

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  14. Accurately predicting the structure, density, and hydrostatic compression of crystalline β-1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane based on its wave-function-based potential

    NASA Astrophysics Data System (ADS)

    Song, H.-J.; Huang, F.

    2011-09-01

    A wave-function-based intermolecular potential of the β phase 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) molecule has been constructed from first principles using the Williams-Stone-Misquitta method and the symmetry-adapted perturbation theory. Using the potential and its derivatives, we have accurately predicted not only the structure and lattice energy of the crystalline β-HMX at 0 K, but also its densities at temperatures of 0-403 K within an accuracy of 1% of density. The calculated densities at pressures within 0-6 GPa excellently agree with the results from the experiments on hydrostatic compression.

  15. Compton profiles of NiO and TiO2 obtained from first principles GWA spectral function

    NASA Astrophysics Data System (ADS)

    S, M. Khidzir; M, F. M. Halid; W, A. T. Wan Abdullah

    2016-06-01

    In this work, we first use momentum density studies to understand strongly correlated electron behavior, which is typically seen in transition metal oxides. We observe that correlated electron behavior as seen in bulk NiO is due to the Fermi break located in the middle of overlapping spectral functions obtained from a GW (G is Green’s function and W is the screened Coulomb interaction) approximation (GWA) calculation while in the case of TiO2 we can see that the origin of the constant momentum distribution in lower momenta is due to a pile up of spectra before the Fermi energy. These observations are then used to compare our calculated Compton profiles with previous experimental studies of Fukamachi and Limandri. Our calculations for NiO are observed to follow the same trend as the experimental profile but it is seen to have a wide difference in the case of TiO2before the Fermi break. The ground state momentum densities differ significantly from the quasiparticle momentum density, thus stressing the importance of the quasiparticle wave function as the input for the study of charge density and the electron localization function. Finally we perform a calculation of the quasiparticle renormalization function, giving a quantitative description of the discontinuity of the GWA momentum density.

  16. Microscopically based energy density functionals for nuclei using the density matrix expansion: Implementation and pre-optimization

    NASA Astrophysics Data System (ADS)

    Stoitsov, M.; Kortelainen, M.; Bogner, S. K.; Duguet, T.; Furnstahl, R. J.; Gebremariam, B.; Schunck, N.

    2010-11-01

    In a recent series of articles, Gebremariam, Bogner, and Duguet derived a microscopically based nuclear energy density functional by applying the density matrix expansion (DME) to the Hartree-Fock energy obtained from chiral effective field theory two- and three-nucleon interactions. Owing to the structure of the chiral interactions, each coupling in the DME functional is given as the sum of a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the finite-range pion exchanges. Because the contact contributions have essentially the same structure as those entering empirical Skyrme functionals, a microscopically guided Skyrme phenomenology has been suggested in which the contact terms in the DME functional are released for optimization to finite-density observables to capture short-range correlation energy contributions from beyond Hartree-Fock. The present article is the first attempt to assess the ability of the newly suggested DME functional, which has a much richer set of density dependencies than traditional Skyrme functionals, to generate sensible and stable results for nuclear applications. The results of the first proof-of-principle calculations are given, and numerous practical issues related to the implementation of the new functional in existing Skyrme codes are discussed. Using a restricted singular value decomposition optimization procedure, it is found that the new DME functional gives numerically stable results and exhibits a small but systematic reduction of our test χ2 function compared to standard Skyrme functionals, thus justifying its suitability for future global optimizations and large-scale calculations.

  17. First Principles Study of Chemically Functionalized Graphene

    NASA Astrophysics Data System (ADS)

    Jha, Sanjiv; Vasiliev, Igor

    2015-03-01

    The electronic, structural and vibrational properties of carbon nanomaterials can be affected by chemical functionalization. We applied ab initio computational methods based on density functional theory to study the covalent functionalization of graphene with benzyne, carboxyl groups and tetracyanoethylene oxide (TCNEO). Our calculations were carried out using the SIESTA and Quantum-ESPRESSO electronic structure codes combined with the local density and generalized gradient approximations for the exchange correlation functional and norm-conserving Troullier-Martins pseudopotentials. The simulated Raman and infrared spectra of graphene functionalized with carboxyl groups and TCNEO were consistent with the available experimental results. The computed vibrational spectra of graphene functionalized with carboxyl groups showed that the presence of point defects near the functionalization site affects the Raman and infrared spectroscopic signatures of functionalized graphene. Supported by NSF CHE-1112388.

  18. Diffusion Mechanisms of Ag atom in ZnO crystal: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Masoumi, Saeed; Noori, Amirreza; Nadimi, Ebrahim

    2017-12-01

    Zinc oxide (ZnO) is currently under intensive investigation, as a result of its various applications in micro, nano and optoelectronics. However, a stable and reproducible p-type doping of ZnO is still a main challenging issue. Group IB elements such as Au, Cu and Ag, are promising candidates for p-type doping. Particularly, Ag atoms has been shown to be able to easily diffuse through the crystal structure of ZnO and lead to the p-type doping of the host crystal. However, the current understanding of Ag defects and their mobility in the ZnO crystal is still not fully explored. In this work, we report the results of our first-principles calculations based on density functional theory for Ag defects, particularly the interstitial and substitutional defects in ZnO crystal. Defect formation energies are calculated in different charged states as a function of Fermi energy in order to clarify the p-type behaviour of Ag-doped ZnO. We also investigate the diffusion behaviour and migration paths of Ag in ZnO crystal in the framework of density functional theory applying climbing image (CI) nudged elastic band method (NEB).

  19. Strong interplay between structure and electronic properties in CuIn(S,Se){2}: a first-principles study.

    PubMed

    Vidal, Julien; Botti, Silvana; Olsson, Pär; Guillemoles, Jean-François; Reining, Lucia

    2010-02-05

    We present a first-principles study of the electronic properties of CuIn(S,Se){2} (CIS) using state-of-the-art self-consistent GW and hybrid functionals. The calculated band gap depends strongly on the anion displacement u, an internal structural parameter that measures lattice distortion. This contrasts with the observed stability of the band gap of CIS solar panels under operating conditions, where a relatively large dispersion of values for u occurs. We solve this apparent paradox considering the coupled effect on the band gap of copper vacancies and lattice distortions. The correct treatment of d electrons in these materials requires going beyond density functional theory, and GW self-consistency is critical to evaluate the quasiparticle gap and the valence band maximum.

  20. First-principles calculations of the structural, elastic and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2)

    NASA Astrophysics Data System (ADS)

    Wen, Xiangli; Liang, Yuxuan; Bai, Pengpeng; Luo, Bingwei; Fang, Teng; Yue, Luo; An, Teng; Song, Weiyu; Zheng, Shuqi

    2017-11-01

    The thermodynamic properties of Fe-S compounds with different crystal structure are very different. In this study, the structural, elastic and thermodynamic properties of mackinawite (FeS) and pyrite (FeS2) were investigated by first-principles calculations. Examination of the electronic density of states shows that mackinawite (FeS) is metallic and that pyrite (FeS2) is a semiconductor with a band gap of Eg = 1.02 eV. Using the stress-strain method, the elastic properties including the bulk modulus and shear modulus were derived from the elastic Cij data. Density functional perturbation theory (DFPT) calculations within the quasi-harmonic approximation (QHA) were used to calculate the thermodynamic properties, and the two Fe-S compounds are found to be dynamically stable. The isothermal bulk modulus, thermal expansion coefficient, heat capacities, Gibbs free energy and entropy of the Fe-S compounds are obtained by first-principles phonon calculations. Furthermore, the temperature of the mackinawite (FeS) ⟶ pyrite (FeS2) phase transition at 0 GPa was predicted. Based on the calculation results, the model for prediction of Fe-S compounds in the Fe-H2S-H2O system was improved.

  1. Interaction potential for indium phosphide: a molecular dynamics and first-principles study of the elastic constants, generalized stacking fault and surface energies.

    PubMed

    Branicio, Paulo Sergio; Rino, José Pedro; Gan, Chee Kwan; Tsuzuki, Hélio

    2009-03-04

    Indium phosphide is investigated using molecular dynamics (MD) simulations and density-functional theory calculations. MD simulations use a proposed effective interaction potential for InP fitted to a selected experimental dataset of properties. The potential consists of two- and three-body terms that represent atomic-size effects, charge-charge, charge-dipole and dipole-dipole interactions as well as covalent bond bending and stretching. Predictions are made for the elastic constants as a function of density and temperature, the generalized stacking fault energy and the low-index surface energies.

  2. Investigation of thermoelectricity in KScSn half-Heusler compound

    NASA Astrophysics Data System (ADS)

    Shrivastava, Deepika; Acharya, Nikita; Sanyal, Sankar P.

    2018-05-01

    The electronic and transport properties of KScSn half-Heusler (HH) compound have been investigated using first-principles density functional theory and semi classical Boltzmann transport theory. The electronic band structure and density of states (total and partial) show semiconducting nature of KScSn with band gap 0.48 eV which agree well with previously reported results. The transport coefficient such as electrical conductivity, Seebeck coefficient, electronic thermal conductivity and power factor as a function of chemical potential are evaluated. KScSn has high power factor for p-type doping and is a potential candidate for thermoelectric applications.

  3. First-principles calculation of the reflectance of shock-compressed xenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, G. E.; Saitov, I. M., E-mail: saitovilnur@gmail.com; Stegailov, V. V.

    2015-05-15

    Within electron density functional theory (DFT), the reflectance of radiation from shock-compressed xenon plasma is calculated. The dependence of the reflectance on the frequency of the incident radiation and on the plasma density is considered. The Fresnel formula is used. The expression for the longitudinal dielectric tensor in the long-wavelength limit is used to calculate the imaginary part of the dielectric function (DF). The real part of the DF is determined by the Kramers-Kronig transformation. The results are compared with experimental data. An approach is proposed to estimate the plasma frequency in shock-compressed xenon.

  4. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Boehly, T. R.; Ding, Y. H.; Radha, P. B.; Goncharov, V. N.; Karasiev, V. V.; Collins, G. W.; Regan, S. P.; Campbell, E. M.

    2018-05-01

    Polystyrene (CH), commonly known as "plastic," has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation-hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ = 0.1 to 100 g/cm3 and T = 103 to 4 × 106 K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have built several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state, the QMD-based thermal conductivity (κQMD) and ionization, and the first-principles opacity table. This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles-based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation-hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. Finally, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.

  5. Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach

    PubMed Central

    Calzolari, Arrigo; Nardelli, Marco Buongiorno

    2013-01-01

    Using first principles calculations based on density functional theory and a coupled finite-fields/finite-differences approach, we study the dielectric properties, phonon dispersions and Raman spectra of ZnO, a material whose internal polarization fields require special treatment to correctly reproduce the ground state electronic structure and the coupling with external fields. Our results are in excellent agreement with existing experimental measurements and provide an essential reference for the characterization of crystallinity, composition, piezo- and thermo-electricity of the plethora of ZnO-derived nanostructured materials used in optoelectronics and sensor devices. PMID:24141391

  6. Structural study of Co doped MnV2O4 from first principles

    NASA Astrophysics Data System (ADS)

    Krishna, Jyoti; Maitra, Tulika

    2017-05-01

    Inspired by the recent experiments, we have theoretically investigated the compound Mn1-xCoxV2O4 using first-principles density functional theory for x = 0.0, 0.25, 0.5, 0.75. On increasing Co doping on Mn site, chemical pressure on V-V bonds increases which make the system more itinerant as indicated by decrease in the calculated RV-V values with increasing x. The calculated band gap is also seen to decrease with increasing x. This Co-doping induced itinerancy facilitates superexchange interaction among Co and V ions leading to an increase in the magnetic transition temperature.

  7. First principles investigation of structural, vibrational and thermal properties of black and blue phosphorene

    NASA Astrophysics Data System (ADS)

    Arif Khalil, R. M.; Ahmad, Javed; Rana, Anwar Manzoor; Bukhari, Syed Hamad; Tufiq Jamil, M.; Tehreem, Tuba; Nissar, Umair

    2018-05-01

    In this investigation, structural, dynamical and thermal properties of black and blue phosphorene (P) are presented through the first principles calculations based on the density functional theory (DFT). These DFT calculations depict that due to the approximately same values of ground state energy at zero Kelvin and Helmholtz free energy at room-temperature, it is expected that both structures can coexist at transition temperature. Lattice dynamics of both phases were investigated by using the finite displacement supercell approach. It is noticed on the basis of harmonic approximation thermodynamic calculations that the blue phase is thermodynamically more stable than the black phase above 155 K.

  8. Stability of vacancy-type defect clusters in Ni based on first-principles and molecular dynamics simulations

    DOE PAGES

    Zhao, Shijun; Zhang, Yanwen; Weber, William J.

    2017-10-17

    Using first-principles calculations based on density-functional theory, the energetics of different vacancy-type defects, including voids, stacking fault tetrahedra (SFT) and vacancy loops, in Ni are investigated. It is found that voids are more stable than SFT at 0 K, which is also the case after taking into account the volumetric strains. By carrying out ab initio molecular dynamics simulations at temperatures up to 1000 K, direct transformations from vacancy loops and voids into SFT are observed. Our results suggest the importance of temperature effects in determining thermodynamic stability of vacancy clusters in face-centered cubic metals.

  9. First-principles study of magnetoelastic effect in the difluoride compounds MF2 (M=Mn, Fe, Co, Ni)

    NASA Astrophysics Data System (ADS)

    Das, Hena; Kanungo, Sudipta; Saha-Dasgupta, T.

    2012-08-01

    Employing first-principles density-functional-theory-based calculations, we study the electronic structure and magnetoelastic effect in difluoride compounds MF2 (M=Mn, Fe, Co, Ni). The magnetoelastic-effect-driven cell-parameter changes across the series are found to exhibit nonmonotonic behavior in agreement with recent experimental reports. Our study reveals that this originates from the nonmonotonicity in the exchange striction of the bond-stretching phonon mode associated with the short M-F bond. Our study also uncovers the role of M-F covalency in driving the nonmonotonic behavior of the M-M exchange interaction across the series.

  10. Chemical dynamics of the first proton-coupled electron transfer of water oxidation on TiO2 anatase.

    PubMed

    Chen, Jia; Li, Ye-Fei; Sit, Patrick; Selloni, Annabella

    2013-12-18

    Titanium dioxide (TiO2) is a prototype, water-splitting (photo)catalyst, but its performance is limited by the large overpotential for the oxygen evolution reaction (OER). We report here a first-principles density functional theory study of the chemical dynamics of the first proton-coupled electron transfer (PCET), which is considered responsible for the large OER overpotential on TiO2. We use a periodic model of the TiO2/water interface that includes a slab of anatase TiO2 and explicit water molecules, sample the solvent configurations by first principles molecular dynamics, and determine the energy profiles of the two electronic states involved in the electron transfer (ET) by hybrid functional calculations. Our results suggest that the first PCET is sequential, with the ET following the proton transfer. The ET occurs via an inner sphere process, which is facilitated by a state in which one electronic hole is shared by the two oxygen ions involved in the transfer.

  11. Mapping the conduction band edge density of states of γ-In2Se3 by diffuse reflectance spectra

    NASA Astrophysics Data System (ADS)

    Kumar, Pradeep; Vedeshwar, Agnikumar G.

    2018-03-01

    It is demonstrated that the measured diffuse reflectance spectra of γ-In2Se3 can be used to map the conduction band edge density of states through Kubelka-Munk analysis. The Kubelka-Munk function derived from the measured spectra almost mimics the calculated density of states in the vicinity of conduction band edge. The calculation of density of states was carried out using first-principles approach yielding the structural, electronic, and optical properties. The calculations were carried out implementing various functionals and only modified Tran and Blaha (TB-MBJ) results tally closest with the experimental result of band gap. The electronic and optical properties were calculated using FP-LAPW + lo approach based on the Density Functional Theory formalism implementing only TB-mBJ functional. The electron and hole effective masses have been calculated as me * = 0.25 m 0 and mh * = 1.11 m 0 , respectively. The optical properties clearly indicate the anisotropic nature of γ-In2Se3.

  12. First-principles photoemission spectroscopy in DNA and RNA nucleobases from Koopmans-compliant functionals

    NASA Astrophysics Data System (ADS)

    Nguyen, Ngoc Linh; Borghi, Giovanni; Ferretti, Andrea; Marzari, Nicola

    The determination of spectral properties of the DNA and RNA nucleobases from first principles can provide theoretical interpretation for experimental data, but requires complex electronic-structure formulations that fall outside the domain of applicability of common approaches such as density-functional theory. In this work, we show that Koopmans-compliant functionals, constructed to enforce piecewise linearity in energy functionals with respect to fractional occupation-i.e., with respect to charged excitations-can predict not only frontier ionization potentials and electron affinities of the nucleobases with accuracy comparable or superior with that of many-body perturbation theory and high-accuracy quantum chemistry methods, but also the molecular photoemission spectra are shown to be in excellent agreement with experimental ultraviolet photoemsision spectroscopy data. The results highlight the role of Koopmans-compliant functionals as accurate and inexpensive quasiparticle approximations to the spectral potential, which transform DFT into a novel dynamical formalism where electronic properties, and not only total energies, can be correctly accounted for.

  13. Smallest fullerene-like clusters in two-probe device junctions: first principle study

    NASA Astrophysics Data System (ADS)

    Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick

    2017-07-01

    First principle calculations based on density functional theory are realised to investigate the electron transport of the smallest fullerene-like clusters as two-probe junction devices. The junction devices are constructed by mechanically controlled break junction techniques to ensure the maximum stability of the Be20, B20 and N20 cluster molecular junctions. We investigate the density of states, transmission spectrum, molecular orbitals, current and differential conductance characteristics at discrete bias voltages to gain insight about the various transport phenomena occurring in these nano-junctions. The results show that B20 molecule when stringed to gold electrodes works as an ideal nano-device similar to the pure C20 device and is more symmetric in its characteristic nature. However, in N20 molecular device, the conduction is negligible due to the higher atomic interactions within N20 molecule, despite the fact that it is constructed with penta-valent atoms.

  14. First-Principles and Thermodynamic Simulation of Elastic Stress Effect on Energy of Hydrogen Dissolution in Alpha Iron

    NASA Astrophysics Data System (ADS)

    Rakitin, M. S.; Mirzoev, A. A.; Mirzaev, D. A.

    2018-04-01

    Mobile hydrogen, when dissolving in metals, redistributes due to the density gradients and elastic stresses, and enables destruction processes or phase transformations in local volumes of a solvent metal. It is rather important in solid state physics to investigate these interactions. The first-principle calculations performed in terms of the density functional theory, are used for thermodynamic simulation of the elastic stress effect on the energy of hydrogen dissolution in α-Fe crystal lattice. The paper presents investigations of the total energy of Fe-H system depending on the lattice parameter. As a result, the relation is obtained between the hydrogen dissolution energy and stress. A good agreement is shown between the existing data and simulation results. The extended equation is suggested for the chemical potential of hydrogen atom in iron within the local stress field. Two parameters affecting the hydrogen distribution are compared, namely local stress and phase transformations.

  15. The effects of alloying elements Al and In on Ni-Mn-Ga shape memory alloys, from first principles.

    PubMed

    Chen, Jie; Li, Yan; Shang, Jia-Xiang; Xu, Hui-Bin

    2009-01-28

    The electronic structures and formation energies of the Ni(9)Mn(4)Ga(3-x)Al(x) and Ni(9)Mn(4)Ga(3-x)In(x) alloys have been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The results show that both the austenite and martensite phases of Ni(9)Mn(4)Ga(3) alloy are stabilized by Al alloying, while they become unstable with In alloying. According to the partial density of states and structural energy analysis, different effects of Al and In alloying on the phase stability are mainly attributed to their chemical effects. The formation energy difference between the austenite and martensite phases decreases with Al or In alloying, correlating with the experimentally reported changes in martensitic transformation temperature. The shape factor plays an important role in the decrease of the formation energy difference.

  16. First-principles study of direct and narrow band gap semiconducting β -CuGaO 2

    DOE PAGES

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; ...

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point ofmore » Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less

  17. Corrosion Thermodynamics of Magnesium and Alloys from First Principles as a Function of Solvation

    NASA Astrophysics Data System (ADS)

    Limmer, Krista; Williams, Kristen; Andzelm, Jan

    Thermodynamics of corrosion processes occurring on magnesium surfaces, such as hydrogen evolution and water dissociation, have been examined with density functional theory (DFT) to evaluate the effect of impurities and dilute alloying additions. The modeling of corrosion thermodynamics requires examination of species in a variety of chemical and electronic states in order to accurately represent the complex electrochemical corrosion process. In this study, DFT calculations for magnesium corrosion thermodynamics were performed with two DFT codes (VASP and DMol3), with multiple exchange-correlation functionals for chemical accuracy, as well as with various levels of implicit and explicit solvation for surfaces and solvated ions. The accuracy of the first principles calculations has been validated against Pourbaix diagrams constructed from solid, gas and solvated charged ion calculations. For aqueous corrosion, it is shown that a well parameterized implicit solvent is capable of accurately representing all but the first coordinating layer of explicit water for charged ions.

  18. First-principles calculations of structural, elastic, electronic, and optical properties of perovskite-type KMgH3 crystals: novel hydrogen storage material.

    PubMed

    Reshak, Ali H; Shalaginov, Mikhail Y; Saeed, Yasir; Kityk, I V; Auluck, S

    2011-03-31

    We report a first-principles study of structural and phase stability in three different structures of perovskite-types KMgH(3) according to H position. While electronic and optical properties were measured only for stable perovskite-type KMgH(3), our calculated structural parameters are found in good agreement with experiment and other theoretical results. We also study the electronic charge density space distribution contours in the (200), (101), and (100) crystallographic planes, which gives better insight picture of chemical bonding between K-H, K-Mg-H, and Mg-H. Moreover, we have calculated the electronic band structure dispersion, total, and partial density of electron states to study the band gap origin and the contribution of s-band of H, s and p-band of Mg in the valence band, and d-band of K in the conduction band. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients, optical conductivities, and loss functions of stable KMgH(3) were calculated for photon energies up to 40 eV.

  19. Understanding the pseudocapacitance of RuO2 from joint density functional theory

    NASA Astrophysics Data System (ADS)

    Zhan, Cheng; Jiang, De-en

    2016-11-01

    Pseudocapacitors have been experimentally studied for many years in electric energy storage. However, first principles understanding of the pseudocapacitive behavior is still not satisfactory due to the complexity involved in modeling electrochemistry. In this paper, we applied joint density functional theory (JDFT) to simulate the pseudocapacitive behavior of RuO2, a prototypical material, in a model electrolyte. We obtained from JDFT a capacitive curve which showed a redox peak position comparable to that in the experimental cyclic voltammetry (CV) curve. We found that the experimental turning point from double-layer to pseudocapacitive charge storage at low scan rates could be explained by the hydrogen adsorption at low coverage. As the electrode voltage becomes more negative, H coverage increases and causes the surface-structure change, leading to bended -OH bonds at the on-top oxygen atoms and large capacitance. This H coverage-dependent capacitance can explain the high pseudocapacitance of hydrous RuO2. Our work here provides a first principles understanding of the pseudocapacitance for RuO2 in particular and for transition-metal oxides in general.

  20. First-principles calculations of two cubic fluoropervskite compounds: RbFeF3 and RbNiF3

    NASA Astrophysics Data System (ADS)

    Mubarak, A. A.; Al-Omari, Saleh

    2015-05-01

    We present first-principles calculations of the structural, elastic, electronic, magnetic and optical properties for RbFeF3 and RbNiF3. The full-potential linear augmented plan wave (FP-LAPW) method within the density functional theory was utilized to perform the present calculations. We employed the generalized gradient approximation as exchange-correlation potential. It was found that the calculated analytical lattice parameters agree with previous studies. The analysis of elastic constants showed that the present compounds are elastically stable and anisotropic. Moreover, both compounds are classified as a ductile compound. The calculations of the band structure and density functional theory revealed that the RbFeF3 compound has a half-metallic behavior while the RbNiF3 compound has a semiconductor behavior with indirect (M-Γ) band gap. The ferromagnetic behavior was studied for both compounds. The optical properties were calculated for the radiation of up to 40 eV. A beneficial optics technology is predicted as revealed from the optical spectra.

  1. First principles DFT study of dye-sensitized CdS quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Kalpna; Singh, Kh. S.; Kishor, Shyam, E-mail: shyam387@gmail.com

    2014-04-24

    Dye-sensitized quantum dots (QDs) are considered promising candidates for dye-sensitized solar cells. In order to maximize their efficiency, detailed theoretical studies are important. Here, we report a first principles density functional theory (DFT) investigation of experimentally realized dye - sensitized QD / ligand systems, viz., Cd{sub 16}S{sub 16}, capped with acetate molecules and a coumarin dye. The hybrid B3LYP functional and a 6−311+G(d,p)/LANL2dz basis set are used to study the geometric, energetic and electronic properties of these clusters. There is significant structural rearrangement in all the clusters studied - on the surface for the bare QD, and in the positionsmore » of the acetate / dye ligands for the ligated QDs. The density of states (DOS) of the bare QD shows states in the band gap, which disappear on surface passivation with the acetate molecules. Interestingly, in the dye-sensitised QD, the HOMO is found to be localized mainly on the dye molecule, while the LUMO is on the QD, as required for photo-induced electron injection from the dye to the QD.« less

  2. First principles calculation of thermo-mechanical properties of thoria using Quantum ESPRESSO

    NASA Astrophysics Data System (ADS)

    Malakkal, Linu; Szpunar, Barbara; Zuniga, Juan Carlos; Siripurapu, Ravi Kiran; Szpunar, Jerzy A.

    2016-05-01

    In this work, we have used Quantum ESPRESSO (QE), an open source first principles code, based on density-functional theory, plane waves, and pseudopotentials, along with quasi-harmonic approximation (QHA) to calculate the thermo-mechanical properties of thorium dioxide (ThO2). Using Python programming language, our group developed qe-nipy-advanced, an interface to QE, which can evaluate the structural and thermo-mechanical properties of materials. We predicted the phonon contribution to thermal conductivity (kL) using the Slack model. We performed the calculations within local density approximation (LDA) and generalized gradient approximation (GGA) with the recently proposed version for solids (PBEsol). We employed a Monkhorst-Pack 5 × 5 × 5 k-points mesh in reciprocal space with a plane wave cut-off energy of 150 Ry to obtain the convergence of the structure. We calculated the dynamical matrices of the lattice on a 4 × 4 × 4 mesh. We have predicted the heat capacity, thermal expansion and the phonon contribution to thermal conductivity, as a function of temperature up to 1400K, and compared them with the previous work and known experimental results.

  3. Excitons and Davydov splitting in sexithiophene from first-principles many-body Green's function theory

    NASA Astrophysics Data System (ADS)

    Leng, Xia; Yin, Huabing; Liang, Dongmei; Ma, Yuchen

    2015-09-01

    Organic semiconductors have promising and broad applications in optoelectronics. Understanding their electronic excited states is important to help us control their spectroscopic properties and performance of devices. There have been a large amount of experimental investigations on spectroscopies of organic semiconductors, but theoretical calculation from first principles on this respect is still limited. Here, we use density functional theory (DFT) and many-body Green's function theory, which includes the GW method and Bethe-Salpeter equation, to study the electronic excited-state properties and spectroscopies of one prototypical organic semiconductor, sexithiophene. The exciton energies of sexithiophene in both the gas and bulk crystalline phases are very sensitive to the exchange-correlation functionals used in DFT for ground-state structure relaxation. We investigated the influence of dynamical screening in the electron-hole interaction on exciton energies, which is found to be very pronounced for triplet excitons and has to be taken into account in first principles calculations. In the sexithiophene single crystal, the energy of the lowest triplet exciton is close to half the energy of the lowest singlet one. While lower-energy singlet and triplet excitons are intramolecular Frenkel excitons, higher-energy excitons are of intermolecular charge-transfer type. The calculated optical absorption spectra and Davydov splitting are in good agreement with experiments.

  4. First-principles atomistic Wulff constructions for an equilibrium rutile TiO2 shape modeling

    NASA Astrophysics Data System (ADS)

    Jiang, Fengzhou; Yang, Lei; Zhou, Dali; He, Gang; Zhou, Jiabei; Wang, Fanhou; Chen, Zhi-Gang

    2018-04-01

    Identifying the exposed surfaces of rutile TiO2 crystal is crucial for its industry application and surface engineering. In this study, the shape of the rutile TiO2 was constructed by applying equilibrium thermodynamics of TiO2 crystals via first-principles density functional theory (DFT) and Wulff principles. From the DFT calculations, the surface energies of six low-index stoichiometric facets of TiO2 are determined after the calibrations of crystal structure. And then, combined surface energy calculations and Wulff principles, a geometric model of equilibrium rutile TiO2 is built up, which is coherent with the typical morphology of fully-developed equilibrium TiO2 crystal. This study provides fundamental theoretical guidance for the surface analysis and surface modification of the rutile TiO2-based materials from experimental research to industry manufacturing.

  5. Tuning of electronic band gaps and optoelectronic properties of binary strontium chalcogenides by means of doping of magnesium atom(s)- a first principles based theoretical initiative with mBJ, B3LYP and WC-GGA functionals

    NASA Astrophysics Data System (ADS)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.

  6. Resolving phase stability in the Ti-O binary with first-principles statistical mechanics methods

    NASA Astrophysics Data System (ADS)

    Gunda, N. S. Harsha; Puchala, Brian; Van der Ven, Anton

    2018-03-01

    The Ti-O system consists of a multitude of stable and metastable oxides that are used in wide ranging applications. In this work we investigate phase stability in the Ti-O binary from first principles. We perform a systematic search for ground state structures as a function of oxygen concentration by considering oxygen-vacancy and/or titanium-vacancy orderings over four parent crystal structures: (i) hcp Ti, (ii) ω -Ti, (iii) rocksalt, and (iv) hcp oxygen containing interstitial titanium. We explore phase stability at finite temperature using cluster expansion Hamiltonians and Monte Carlo simulations. The calculations predict a high oxygen solubility in hcp Ti and the stability of suboxide phases that undergo order-disorder transitions upon heating. Vacancy ordered rocksalt phases are also predicted at low temperature that disorder to form an extended solid solution at high temperatures. Predicted stable and metastable phase diagrams are qualitatively consistent with experimental observations, however, important discrepancies are revealed between first-principles density functional theory predictions of phase stability and the current understanding of phase stability in this system.

  7. First-Principles pH Theory

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hyun; Zhang, S. B.

    2006-03-01

    Despite being one of the most important macroscopic measures and a long history even before the quantum mechanics, the concept of pH has rarely been mentioned in microscopic theories, nor being incorporated computationally into first-principles theory of aqueous solutions. Here, we formulate a theory for the pH dependence of solution formation energy by introducing the proton chemical potential as the microscopic counterpart of pH in atomistic solution models. Within the theory, the general acid-base chemistry can be cast in a simple pictorial representation. We adopt density-functional molecular dynamics to demonstrate the usefulness of the method by studying a number of solution systems including water, small solute molecules such as NH3 and HCOOH, and more complex amino acids with several functional groups. For pure water, we calculated the auto- ionization constant to be 13.2 with a 95 % accuracy. For other solutes, the calculated dissociation constants, i.e., the so- called pKa, are also in reasonable agreement with experiments. Our first-principles pH theory can be readily applied to broad solution chemistry problems such as redox reactions.

  8. GPU acceleration of the Locally Selfconsistent Multiple Scattering code for first principles calculation of the ground state and statistical physics of materials

    NASA Astrophysics Data System (ADS)

    Eisenbach, Markus; Larkin, Jeff; Lutjens, Justin; Rennich, Steven; Rogers, James H.

    2017-02-01

    The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn-Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. We present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. We reimplement the scattering matrix calculation for GPUs with a block matrix inversion algorithm that only uses accelerator memory. Using the Cray XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code.

  9. Charge optimized many-body potential for aluminum.

    PubMed

    Choudhary, Kamal; Liang, Tao; Chernatynskiy, Aleksandr; Lu, Zizhe; Goyal, Anuj; Phillpot, Simon R; Sinnott, Susan B

    2015-01-14

    An interatomic potential for Al is developed within the third generation of the charge optimized many-body (COMB3) formalism. The database used for the parameterization of the potential consists of experimental data and the results of first-principles and quantum chemical calculations. The potential exhibits reasonable agreement with cohesive energy, lattice parameters, elastic constants, bulk and shear modulus, surface energies, stacking fault energies, point defect formation energies, and the phase order of metallic Al from experiments and density functional theory. In addition, the predicted phonon dispersion is in good agreement with the experimental data and first-principles calculations. Importantly for the prediction of the mechanical behavior, the unstable stacking fault energetics along the [Formula: see text] direction on the (1 1 1) plane are similar to those obtained from first-principles calculations. The polycrsytal when strained shows responses that are physical and the overall behavior is consistent with experimental observations.

  10. First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties

    DOE PAGES

    von Lilienfeld, O. Anatole

    2013-02-26

    A well-defined notion of chemical compound space (CCS) is essential for gaining rigorous control of properties through variation of elemental composition and atomic configurations. Here, we give an introduction to an atomistic first principles perspective on CCS. First, CCS is discussed in terms of variational nuclear charges in the context of conceptual density functional and molecular grand-canonical ensemble theory. Thereafter, we revisit the notion of compound pairs, related to each other via “alchemical” interpolations involving fractional nuclear charges in the electronic Hamiltonian. We address Taylor expansions in CCS, property nonlinearity, improved predictions using reference compound pairs, and the ounce-of-gold prizemore » challenge to linearize CCS. Finally, we turn to machine learning of analytical structure property relationships in CCS. Here, these relationships correspond to inferred, rather than derived through variational principle, solutions of the electronic Schrödinger equation.« less

  11. GPU acceleration of the Locally Selfconsistent Multiple Scattering code for first principles calculation of the ground state and statistical physics of materials

    DOE PAGES

    Eisenbach, Markus; Larkin, Jeff; Lutjens, Justin; ...

    2016-07-12

    The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn–Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. In this paper, we present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. We reimplement the scattering matrix calculation for GPUs with a block matrix inversion algorithm that only uses accelerator memory. Finally, using the Craymore » XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code.« less

  12. First-principles investigation of mechanical properties of silicene, germanene and stanene

    NASA Astrophysics Data System (ADS)

    Mortazavi, Bohayra; Rahaman, Obaidur; Makaremi, Meysam; Dianat, Arezoo; Cuniberti, Gianaurelio; Rabczuk, Timon

    2017-03-01

    Two-dimensional allotropes of group-IV substrates including silicene, germanene and stanene have recently attracted considerable attention in nanodevice fabrication industry. These materials involving the buckled structure have been experimentally fabricated lately. In this study, first-principles density functional theory calculations were utilized to investigate the mechanical properties of single-layer and free-standing silicene, germanene and stanene. Uniaxial tensile and compressive simulations were carried out to probe and compare stress-strain properties; such as the Young's modulus, Poisson's ratio and ultimate strength. We evaluated the chirality effect on the mechanical response and bond structure of the 2D substrates. Our first-principles simulations suggest that in all studied samples application of uniaxial loading can alter the electronic nature of the buckled structures into the metallic character. Our investigation provides a general but also useful viewpoint with respect to the mechanical properties of silicene, germanene and stanene.

  13. Vibrational dynamics of rutile-type GeO2 from micro-Raman spectroscopy experiments and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Sanson, A.; Pokrovski, G. S.; Giarola, M.; Mariotto, G.

    2015-01-01

    The vibrational dynamics of germanium dioxide in the rutile structure has been investigated by using polarized micro-Raman scattering spectroscopy coupled with first-principles calculations. Raman spectra were carried out in backscattering geometry at room temperature from micro-crystalline samples either unoriented or oriented by means of a micromanipulator, which enabled successful detection and identification of all the Raman active modes expected on the basis of the group theory. In particular, the Eg mode, incorrectly assigned or not detected in the literature, has been definitively observed by us and unambiguously identified at 525 \\text{cm}-1 under excitation by certain laser lines, thus revealing an unusual resonance phenomenon. First-principles calculations within the framework of the density functional theory allow quantifying both wave number and intensity of the Raman vibrational spectra. The excellent agreement between calculated and experimental data corroborates the reliability of our findings.

  14. Oxygen vacancy effects in HfO2-based resistive switching memory: First principle study

    NASA Astrophysics Data System (ADS)

    Dai, Yuehua; Pan, Zhiyong; Wang, Feifei; Li, Xiaofeng

    2016-08-01

    The work investigated the shape and orientation of oxygen vacancy clusters in HfO2-base resistive random access memory (ReRAM) by using the first-principle method based on the density functional theory. Firstly, the formation energy of different local Vo clusters was calculated in four established orientation systems. Then, the optimized orientation and charger conductor shape were identified by comparing the isosurface plots of partial charge density, formation energy, and the highest isosurface value of oxygen vacancy. The calculated results revealed that the [010] orientation was the optimal migration path of Vo, and the shape of system D4 was the best charge conductor in HfO2, which effectively influenced the SET voltage, formation voltage and the ON/OFF ratio of the device. Afterwards, the PDOS of Hf near Vo and total density of states of the system D4_010 were obtained, revealing the composition of charge conductor was oxygen vacancy instead of metal Hf. Furthermore, the migration barriers of the Vo hopping between neighboring unit cells were calculated along four different orientations. The motion was proved along [010] orientation. The optimal circulation path for Vo migration in the HfO2 super-cell was obtained.

  15. Point defects in thorium nitride: A first-principles study

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2016-11-01

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  16. Electronic damping of anharmonic adsorbate vibrations at metallic surfaces

    NASA Astrophysics Data System (ADS)

    Tremblay, Jean Christophe; Monturet, Serge; Saalfrank, Peter

    2010-03-01

    The nonadiabatic coupling of an adsorbate close to a metallic surface leads to electronic damping of adsorbate vibrations and line broadening in vibrational spectroscopy. Here, a perturbative treatment of the electronic contribution to the lifetime broadening serves as a building block for a new approach, in which anharmonic vibrational transition rates are calculated from a position-dependent coupling function. Different models for the coupling function will be tested, all related to embedding theory. The first two are models based on a scattering approach with (i) a jellium-type and (ii) a density functional theory based embedding density, respectively. In a third variant a further refined model is used for the embedding density, and a semiempirical approach is taken in which a scaling factor is chosen to match harmonic, single-site, first-principles transition rates, obtained from periodic density functional theory. For the example of hydrogen atoms on (adsorption) and below (subsurface absorption) a Pd(111) surface, lifetimes of and transition rates between vibrational levels are computed. The transition rates emerging from different models serve as input for the selective subsurface adsorption of hydrogen in palladium starting from an adsorption site, by using sequences of infrared laser pulses in a laser distillation scheme.

  17. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction.

    PubMed

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-02-14

    Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.

  18. Coverage dependent work function of graphene on a Cu(111) substrate with intercalated alkali metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Brandon G.; Russakoff, Arthur; Varga, Kalman

    2015-05-26

    Using first-principles calculations, it is shown that the work function of graphene on copper can be adjusted by varying the concentration of intercalated alkali metals. Using density functional theory, we calculate the modulation of work function when Li, Na, or K are intercalated between graphene and a Cu(111) surface. Furthermore, the physical origins of the change in work function are explained in terms of phenomenological models accounting for the formation and depolarization of interfacial dipoles and the shift in the Fermi-level induced via charge transfer.

  19. Origin of photovoltage in perovskite solar cells probed by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Echeverría-Arrondo, C.

    2018-06-01

    Hybrid halide perovskite solar cells hold great potential for photovoltaic applications, but suffer, however, from anomalous current density-voltage characteristics. With a view to further understanding the performance of these optoelectronic devices, we investigate a prototypical electron selective contact with density functional theory methods. Our computations on a TiO2/CH3NH3PbI3 heterojunction doped with Schottky defects at open circuit reveal a consistent picture of ions and interlayer excitons at the origin of photovoltage formation.

  20. First-Principles Prediction of Densities of Amorphous Materials: The Case of Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoritaka; Matsushita, Yu-ichiro

    2018-02-01

    A novel approach to predict the atomic densities of amorphous materials is explored on the basis of Car-Parrinello molecular dynamics (CPMD) in density functional theory. Despite the determination of the atomic density of matter being crucial in understanding its physical properties, no first-principles method has ever been proposed for amorphous materials until now. We have extended the conventional method for crystalline materials in a natural manner and pointed out the importance of the canonical ensemble of the total energy in the determination of the atomic densities of amorphous materials. To take into account the canonical distribution of the total energy, we generate multiple amorphous structures with several different volumes by CPMD simulations and average the total energies at each volume. The density is then determined as the one that minimizes the averaged total energy. In this study, this approach is implemented for amorphous silicon (a-Si) to demonstrate its validity, and we have determined the density of a-Si to be 4.1% lower and its bulk modulus to be 28 GPa smaller than those of the crystal, which are in good agreement with experiments. We have also confirmed that generating samples through classical molecular dynamics simulations produces a comparable result. The findings suggest that the presented method is applicable to other amorphous systems, including those for which experimental knowledge is lacking.

  1. DFT calculations of electronic and optical properties of SrS with LDA, GGA and mGGA functionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Shatendra, E-mail: shatendra@gmai.com; Sharma, Jyotsna; Sharma, Yogita

    2016-05-06

    The theoretical investigations of electronic and optical properties of SrS are made using the first principle DFT calculations. The calculations are performed for the local-density approximation (LDA), generalized gradient approximation (GGA) and for an alternative form of GGA i.e. metaGGA for both rock salt type (B1, Fm3m) and cesium chloride (B2, Pm3m) structures. The band structure, density of states and optical spectra are calculated under various available functional. The calculations with LDA and GGA functional underestimate the values of band gaps with all functional, however the values with mGGA show reasonably good agreement with experimental and those calculated by usingmore » other methods.« less

  2. NMR shifts for polycyclic aromatic hydrocarbons from first-principles

    NASA Astrophysics Data System (ADS)

    Thonhauser, T.; Ceresoli, Davide; Marzari, Nicola

    We present first-principles, density-functional theory calculations of the NMR chemical shifts for polycyclic aromatic hydrocarbons, starting with benzene and increasing sizes up to the one- and two-dimensional infinite limits of graphene ribbons and sheets. Our calculations are performed using a combination of the recently developed theory of orbital magnetization in solids, and a novel approach to NMR calculations where chemical shifts are obtained from the derivative of the orbital magnetization with respect to a microscopic, localized magnetic dipole. Using these methods we study on equal footing the 1H and 13 shifts in benzene, pyrene, coronene, in naphthalene, anthracene, naphthacene, and pentacene, and finally in graphene, graphite, and an infinite graphene ribbon. Our results show very good agreement with experiments and allow us to characterize the trends for the chemical shifts as a function of system size.

  3. First principles calculations of optical properties of the armchair SiC nanoribbons with O, F and H termination

    NASA Astrophysics Data System (ADS)

    Lu, Dao-Bang; Song, Yu-Ling

    2018-03-01

    Based on density functional theory, we perform first-principles investigations to study the optical properties of the O-, F- and H-terminated SiC nanoribbons with armchair edges (ASiCNRs). By irradiating with an external electromagnetic field, we calculate the dielectric function, reflection spectra, energy loss coefficient and the real part of the conductance. It is demonstrated that the optical constants are sensitive to the low-energy range, different terminal atoms do not make much difference in the shape of the curves of the optical constants for the same-width ASiCNR, and the optical constants of wider nanoribbons usually have higher peaks than that of the narrower ones in low energy range. We hope that our study helps in experimental technology of fabricating high-quality SiC-based nanoscale photoelectric device.

  4. First-principle calculation of the electronic structure, DOS and effective mass TlInSe2

    NASA Astrophysics Data System (ADS)

    Ismayilova, N. A.; Orudzhev, G. S.; Jabarov, S. H.

    2017-05-01

    The electronic structure, density of states (DOS), effective mass are calculated for tetragonal TlInSe2 from first principle in the framework of density functional theory (DFT). The electronic structure of TlInSe2 has been investigated by Quantum Wise within GGA. The calculated band structure by Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials (psp) shows both the valence band maximum and conduction band minimum located at the T point of the Brillouin zone. Valence band maximum at the T point and the surrounding parts originate mainly from 6s states of univalent Tl ions. Bottom of the conduction band is due to the contribution of 6p-states of Tl and 5s-states of In atoms. Calculated DOS effective mass for holes and electrons are mDOS h∗ = 0.830m e, mDOS h∗ = 0.492m e, respectively. Electron effective masses are fairly isotropic, while the hole effective masses show strong anisotropy. The calculated electronic structure, density of states and DOS effective masses of TlInSe2 are in good agreement with existing theoretical and experimental results.

  5. First-principles study of Al2Sm intermetallic compound on structural, mechanical properties and electronic structure

    NASA Astrophysics Data System (ADS)

    Lin, Jingwu; Wang, Lei; Hu, Zhi; Li, Xiao; Yan, Hong

    2017-02-01

    The structural, thermodynamic, mechanical and electronic properties of cubic Al2Sm intermetallic compound are investigated by the first-principles method on the basis of density functional theory. In light of the strong on-site Coulomb repulsion between the highly localized 4f electrons of Sm atoms, the local spin density approximation approach paired with additional Hubbard terms is employed to achieve appropriate results. Moreover, to examine the reliability of this study, the experimental value of lattice parameter is procured from the analysis of the TEM image and diffraction pattern of Al2Sm phase in the AZ31 alloy to verify the authenticity of the results originated from the computational method. The value of cohesive energy reveals Al2Sm to be a stable in absolute zero Kelvin. According to the stability criteria, the subject of this work is mechanically stable. Afterward, elastic moduli are deduced by performing Voigt-Reuss-Hill approximation. Furthermore, elastic anisotropy and anisotropy of sound velocity are discussed. Finally, the calculation of electronic density of states is implemented to explore the underlying mechanism of structural stability.

  6. Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state

    EPA Science Inventory

    A mixing model derived from first principles describes the bulk density (BD) of intertidal wetland sediments as a function of loss on ignition (LOI). The model assumes the bulk volume of sediment equates to the sum of self-packing volumes of organic and mineral components or BD =...

  7. Anharmonicity and atomic distribution of SnTe and PbTe thermoelectrics

    DOE PAGES

    Li, C. W.; Ma, J.; Cao, H. B.; ...

    2014-12-29

    The structure and lattice dynamics of rock-salt thermoelectric materials SnTe and PbTe are investigated with single crystal and powder neutron diffraction, inelastic neutron scattering (INS), and first-principles simulations. Our first-principles calculations of the radial distribution function (RDF) in both SnTe and PbTe show a clear asymmetry in the first nearest-neighbor (1NN) peak, which increases with temperature, in agreement with experimental reports (Ref. 1,2). We show that this peak asymmetry for the 1NN Sn–Te or Pb–Te bond results from large-amplitude anharmonic vibrations (phonons). No atomic off-centering is found in our simulations. In addition, the atomic mean square displacements derived from ourmore » diffraction data reveal stiffer bonding at the anion site, in good agreement with the partial phonon densities of states from INS, and first-principles calculations. In conclusion, these results provide clear evidence for large-amplitude anharmonic phonons associated with the resonant bonding leading to the ferroelectric instability.« less

  8. Thermoelectric properties of bismuth telluride nanoplate thin films determined using combined infrared spectroscopy and first-principles calculation

    NASA Astrophysics Data System (ADS)

    Wada, Kodai; Tomita, Koji; Takashiri, Masayuki

    2018-06-01

    The thermoelectric properties of bismuth telluride (Bi2Te3) nanoplate thin films were estimated using combined infrared spectroscopy and first-principles calculation, followed by comparing the estimated properties with those obtained using the standard electrical probing method. Hexagonal single-crystalline Bi2Te3 nanoplates were first prepared using solvothermal synthesis, followed by preparing Bi2Te3 nanoplate thin films using the drop-casting technique. The nanoplates were joined by thermally annealing them at 250 °C in Ar (95%)–H2 (5%) gas (atmospheric pressure). The electronic transport properties were estimated by infrared spectroscopy using the Drude model, with the effective mass being determined from the band structure using first-principles calculations based on the density functional theory. The electrical conductivity and Seebeck coefficient obtained using the combined analysis were higher than those obtained using the standard electrical probing method, probably because the contact resistance between the nanoplates was excluded from the estimation procedure of the combined analysis method.

  9. Structure, bonding nature, and binding energy of alkanethiolate on As-rich GaAs (001) surface: a density functional theory study.

    PubMed

    Voznyy, Oleksandr; Dubowski, Jan J

    2006-11-30

    Chemisorption of alkanethiols on As-rich GaAs (001) surface under a low coverage condition was studied using first principles density functional calculations in a periodic supercell approach. The thiolate adsorption site, tilt angle and its direction are dictated by the high directionality of As dangling bond and sulfur 3p orbital participating in bonding and steric repulsion of the first three CH2 units from the surface. Small charge transfer between thiolate and surface, strong dependence of total energy on tilt angle, and a relatively short length of 2.28 A of the S-As bond indicate the highly covalent nature of the bonding. Calculated binding energy of 2.1 eV is consistent with the available experimental data.

  10. Site specific interaction between ZnO nanoparticles and tyrosine: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Singh, Satvinder; Singh, Janpreet; Singh, Baljinder; Singh, Gurinder; Kaura, Aman; Tripathi, S. K.

    2018-05-01

    First Principles Calculations have been performed on ZnO/Tyrosine atomic complex to study site specific interaction of Tyrosine and ZnO nanoparticles. Calculated results shows that -COOH group present in Tyrosine is energetically more favorable than -NH2 group. Interactions show ionic bonding between ZnO and Tyrosine. All the calculations have been performed under the Density Functional Theory (DFT) framework. Structural and electronic properties of (ZnO)3/Tyrosine complex have been studied. Gaussian basis set approach has been adopted for the calculations. A ring type most stable (ZnO)3 atomic cluster has been modeled, analyzed and used for the calculations.

  11. Charge-density study on layered oxyarsenides (LaO)MAs (M = Mn, Fe, Ni, Zn)

    NASA Astrophysics Data System (ADS)

    Takase, Kouichi; Hiramoto, Shozo; Fukushima, Tetsuya; Sato, Kazunori; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2017-12-01

    Using synchrotron X-ray powder diffraction, we investigate the charge-density distributions of the layered oxypnictides (LaO)MnAs, (LaO)FeAs, (LaO)NiAs, and (LaO)ZnAs, which are an antiferromagnetic semiconductor, a parent material of an iron-based superconductor, a low-temperature superconductor, and a non-magnetic semiconductor, respectively. For the metallic samples, clear charge densities are observed in both the transition-metal pnictide layers and the rare-earth-oxide layers. However, in the semiconducting samples, there is no finite charge density between the transition-metal element and As. These differences in charge density reflect differences in physical properties. First-principles calculations using density functional theory reproduce the experimental results reasonably well.

  12. First principles investigation of structural, mechanical, dynamical and thermodynamic properties of AgMg under pressure

    NASA Astrophysics Data System (ADS)

    Cui, Rong Hua; Chao Dong, Zheng; Gui Zhong, Chong

    2017-12-01

    The effects of pressure on the structural, mechanical, dynamical and thermodynamic properties of AgMg have been investigated using first principles based on density functional theory. The optimized lattice constants agree well with previous experimental and theoretical results. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature under pressures were calculated. The calculated results of Cauchy pressure and B/G ratio indicate that AgMg shows ductile nature. Phonon dispersion curves suggest the dynamical stability of AgMg. The pressure dependent behavior of thermodynamic properties are calculated, the Helmholtz free energy and internal energy increase with increase of pressure, while entropy and heat capacity decrease.

  13. Structural electronic and mechanical properties of YM2 (M=Mn, Fe, Co) laves phase compounds: First principle calculations analyzed with datamining approach

    NASA Astrophysics Data System (ADS)

    Saidi, F.; Sebaa, N.; Mahmoudi, A.; Aourag, H.; Merad, G.; Dergal, M.

    2018-06-01

    We performed first-principle calculations to investigate structural, phase stability, electronic and mechanical properties for the Laves phases YM2 (M = Mn, Fe, Co) with C15, C14 and C36 structures. We used the density functional theory within the framework of both pseudo-potentials and plane wave basis using VASP (Vienna Ab Initio Software Package). The calculated equilibrium structural parameters are in accordance with available theoretical values. Mechanical properties were calculated, discussed, and analyzed with data mining approach in terms of structure stability. The results reveal that YCo2 is harder than YFe2 and YMn2.

  14. First-principles study of structural and electronic properties of Be0.25Zn0.75S mixed compound

    NASA Astrophysics Data System (ADS)

    Paliwal, U.; Joshi, K. B.

    2018-05-01

    In this work the first-principles study of structural and electronic properties of Be0.25Zn0.75S mixed compound is presented. The calculations are performed applying the QUANTUM ESPRESSO code utilizing the Perdew, Becke, Ernzerhof generalized gradient approximation in the framework of density functional theory. Adopting standard optimization strategy, the ground state equilibrium lattice constant and bulk modulus are calculated. After settling the structure the electronic band structure, bandgap and static dielectric constant are evaluated. In absence of any experimental work on this system our findings are compared with the available theoretical calculations which are found to follow well anticipated general trends.

  15. Prediction of a new class of half-metallic ferromagnets from first principles [A new class of half-metallic ferromagnets from first principles

    DOE PAGES

    Griffin, Sinead M.; Neaton, Jeffrey B.

    2017-09-12

    Half-metallic ferromagnetism (HMFM) occurs rarely in materials and yet offers great potential for spintronic devices. Recent experiments suggest a class of compounds with the `ThCrmore » $$_{2}$$Si$$_{2}$$' (122) structure -- isostructural and containing elements common with Fe pnictide-based superconductors -- can exhibit HMFM. Here we use $ab$ $initio$ density-functional theory calculations to understand the onset of half-metallicity in this family of materials and explain the appearance of ferromagnetism at a quantum critical point. We also predict new candidate materials with HMFM and high Curie temperatures through A-site alloying.« less

  16. First-principles study of crystal structure, elastic stiffness constants, piezoelectric constants, and spontaneous polarization of orthorhombic Pna21-M2O3 (M = Al, Ga, In, Sc, Y)

    NASA Astrophysics Data System (ADS)

    Shimada, Kazuhiro

    2018-03-01

    We perform first-principles calculations to investigate the crystal structure, elastic and piezoelectric properties, and spontaneous polarization of orthorhombic M2O3 (M = Al, Ga, In, Sc, Y) with Pna21 space group based on density functional theory. The lattice parameters, full elastic stiffness constants, piezoelectric stress and strain constants, and spontaneous polarization are successfully predicted. Comparison with available experimental and computational results indicates the validity of our computational results. Detailed analysis of the results clarifies the difference in the bonding character and the origin of the strong piezoelectric response and large spontaneous polarization.

  17. Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green's function transport simulations

    NASA Astrophysics Data System (ADS)

    Sadasivam, Sridhar; Ye, Ning; Feser, Joseph P.; Charles, James; Miao, Kai; Kubis, Tillmann; Fisher, Timothy S.

    2017-02-01

    Heat transfer across metal-semiconductor interfaces involves multiple fundamental transport mechanisms such as elastic and inelastic phonon scattering, and electron-phonon coupling within the metal and across the interface. The relative contributions of these different transport mechanisms to the interface conductance remains unclear in the current literature. In this work, we use a combination of first-principles calculations under the density functional theory framework and heat transport simulations using the atomistic Green's function (AGF) method to quantitatively predict the contribution of the different scattering mechanisms to the thermal interface conductance of epitaxial CoSi2-Si interfaces. An important development in the present work is the direct computation of interfacial bonding from density functional perturbation theory (DFPT) and hence the avoidance of commonly used "mixing rules" to obtain the cross-interface force constants from bulk material force constants. Another important algorithmic development is the integration of the recursive Green's function (RGF) method with Büttiker probe scattering that enables computationally efficient simulations of inelastic phonon scattering and its contribution to the thermal interface conductance. First-principles calculations of electron-phonon coupling reveal that cross-interface energy transfer between metal electrons and atomic vibrations in the semiconductor is mediated by delocalized acoustic phonon modes that extend on both sides of the interface, and phonon modes that are localized inside the semiconductor region of the interface exhibit negligible coupling with electrons in the metal. We also provide a direct comparison between simulation predictions and experimental measurements of thermal interface conductance of epitaxial CoSi2-Si interfaces using the time-domain thermoreflectance technique. Importantly, the experimental results, performed across a wide temperature range, only agree well with predictions that include all transport processes: elastic and inelastic phonon scattering, electron-phonon coupling in the metal, and electron-phonon coupling across the interface.

  18. Underscreening in ionic liquids: a first principles analysis.

    PubMed

    Rotenberg, Benjamin; Bernard, Olivier; Hansen, Jean-Pierre

    2018-02-07

    An attempt is made to understand the underscreening effect, observed in concentrated electrolyte solutions or melts, on the basis of simple, admittedly crude models involving charged (for the ions) and neutral (for the solvent molecules) hard spheres. The thermodynamic and structural properties of these 'primitive' and 'semi-primitive' models are calculated within mean spherical approximation, which provides the basic input required to determine the partial density response functions. The screening length [Formula: see text], which is unambiguously defined in terms of the wave-number-dependent response functions, exhibits a cross-over from a low density, Debye-like regime, to a regime where [Formula: see text] increases with density beyond a critical density at which the Debye length [Formula: see text] becomes comparable to the ion diameter. In this high density regime the ratio [Formula: see text] increases according to a power law, in qualitative agreement with experimental measurements, albeit at a much slower rate.

  19. Underscreening in ionic liquids: a first principles analysis

    NASA Astrophysics Data System (ADS)

    Rotenberg, Benjamin; Bernard, Olivier; Hansen, Jean-Pierre

    2018-02-01

    An attempt is made to understand the underscreening effect, observed in concentrated electrolyte solutions or melts, on the basis of simple, admittedly crude models involving charged (for the ions) and neutral (for the solvent molecules) hard spheres. The thermodynamic and structural properties of these ‘primitive’ and ‘semi-primitive’ models are calculated within mean spherical approximation, which provides the basic input required to determine the partial density response functions. The screening length λS , which is unambiguously defined in terms of the wave-number-dependent response functions, exhibits a cross-over from a low density, Debye-like regime, to a regime where λS increases with density beyond a critical density at which the Debye length λD becomes comparable to the ion diameter. In this high density regime the ratio λ_S/λD increases according to a power law, in qualitative agreement with experimental measurements, albeit at a much slower rate.

  20. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    NASA Astrophysics Data System (ADS)

    Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K.

    2014-05-01

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in the dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.

  1. Modeling L2,3-Edge X-ray Absorption Spectroscopy with Real-Time Exact Two-Component Relativistic Time-Dependent Density Functional Theory.

    PubMed

    Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong

    2018-04-10

    X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.

  2. Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory

    DTIC Science & Technology

    2017-04-18

    fundamental gap but there is little effect on the optical spectra. We therefore believe that the method is robust and can be used for studies of... quantitative DFT- based prediction of excited-state properties in molecu- lar solids.[28, 29] In this approach, one first computes the underlying gas...gradient ap- proximation (GGA). In some cases , the fraction of SR Fock exchange, α, can be determined from first-principles based on satisfaction of

  3. The electronic and optical properties of quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs: a first-principles study.

    PubMed

    Ma, Xiaoyang; Li, Dechun; Zhao, Shengzhi; Li, Guiqiu; Yang, Kejian

    2014-01-01

    First-principles calculations based on density functional theory have been performed for the quaternary GaAs1-x-y N x Bi y alloy lattice-matched to GaAs. Using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, electronic, and optical properties were obtained, including band structures, density of states (DOSs), dielectric function, absorption coefficient, refractive index, energy loss function, and reflectivity. It is found that the lattice constant of GaAs1-x-y N x Bi y alloy with y/x =1.718 can match to GaAs. With the incorporation of N and Bi into GaAs, the band gap of GaAs1-x-y N x Bi y becomes small and remains direct. The calculated optical properties indicate that GaAs1-x-y N x Bi y has higher optical efficiency as it has less energy loss than GaAs. In addition, it is also found that the electronic and optical properties of GaAs1-x-y N x Bi y alloy can be further controlled by tuning the N and Bi compositions in this alloy. These results suggest promising applications of GaAs1-x-y N x Bi y quaternary alloys in optoelectronic devices.

  4. Optical properties from time-dependent current-density-functional theory: the case of the alkali metals Na, K, Rb, and Cs

    NASA Astrophysics Data System (ADS)

    Ferradás, R.; Berger, J. A.; Romaniello, Pina

    2018-06-01

    We present the optical conductivity as well as the electron-energy loss spectra of the alkali metals Na, K, Rb, and Cs calculated within time-dependent current-density functional theory. Our ab initio formulation describes from first principles both the Drude-tail and the interband absorption of these metals as well as the most dominant relativistic effects. We show that by using a recently derived current functional [Berger, Phys. Rev. Lett. 115, 137402 (2015)] we obtain an overall good agreement with experiment at a computational cost that is equivalent to the random-phase approximation. We also highlight the importance of the choice of the exchange-correlation potential of the ground state.

  5. First principles study of structural, electronic and optical properties of polymorphic forms of Rb 2Te

    NASA Astrophysics Data System (ADS)

    Alay-e-Abbas, S. M.; Shaukat, A.

    2011-05-01

    First-principles density functional theory calculations have been performed for structural, electronic and optical properties of three polymorphic forms of rubidium telluride. Our calculations show that the sequence of pressure induced phase transitions for Rb 2Te is Fm3¯m → Pnma → P6 3/mmc which is governed by the coordination numbers of the anions. From our calculated low transition pressure value for the Fm3¯m phase to the Pnma phase transition of Rb 2Te, the experimentally observed meta-stability of Fm3¯m phase at ambient conditions seems reasonable. The electronic band structure has been calculated for all the three phases and the change in the energy band gap is discussed for the transitioning phases. The energy band gaps obtained for the three phases of Rb 2Te decrease on going from the meta-stable phase to the high-pressure phases. Total and partial density of states for the polymorphs of Rb 2Te has been computed to elucidate the contribution of various atomic states on the electronic band structure. Furthermore, optical properties for all the polymorphic forms have been presented in form of the complex dielectric function.

  6. First-principles calculations of 17O nuclear magnetic resonance chemical shielding in Pb(Zr(1/2)Ti(1/2))O3 and Pb(Mg(1/3)Nb(2/3))O3: linear dependence on transition-metal/oxygen bond lengths.

    PubMed

    Pechkis, Daniel L; Walter, Eric J; Krakauer, Henry

    2011-09-21

    First-principles density functional theory oxygen chemical shift tensors were calculated for A(B,B')O(3) perovskite alloys Pb(Zr(1/2)Ti(1/2))O(3) (PZT) and Pb(Mg(1/3)Nb(2/3))O(3) (PMN). Quantum chemistry methods for embedded clusters and the gauge including projector augmented waves (GIPAW) method [C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001)] for periodic boundary conditions were used. Results from both methods are in good agreement for PZT and prototypical perovskites. PMN results were obtained using only GIPAW. Both isotropic δ(iso) and axial δ(ax) chemical shifts were found to vary approximately linearly as a function of the nearest-distance transition-metal/oxygen bond length, r(s). Using these results, we argue against Ti clustering in PZT, as conjectured from recent (17)O NMR magic-angle-spinning measurements. Our findings indicate that (17)O NMR measurements, coupled with first-principles calculations, can be an important probe of local structure in complex perovskite solid solutions.

  7. First-principles calculations of 17O nuclear magnetic resonance chemical shielding in Pb(Zr1/2Ti1/2)O3 and Pb(Mg1/3Nb2/3)O3: Linear dependence on transition-metal/oxygen bond lengths

    NASA Astrophysics Data System (ADS)

    Pechkis, Daniel L.; Walter, Eric J.; Krakauer, Henry

    2011-09-01

    First-principles density functional theory oxygen chemical shift tensors were calculated for A(B,B')O3 perovskite alloys Pb(Zr1/2Ti1/2)O3 (PZT) and Pb(Mg1/3Nb2/3)O3 (PMN). Quantum chemistry methods for embedded clusters and the gauge including projector augmented waves (GIPAW) method [C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001)], 10.1103/PhysRevB.63.245101 for periodic boundary conditions were used. Results from both methods are in good agreement for PZT and prototypical perovskites. PMN results were obtained using only GIPAW. Both isotropic δiso and axial δax chemical shifts were found to vary approximately linearly as a function of the nearest-distance transition-metal/oxygen bond length, rs. Using these results, we argue against Ti clustering in PZT, as conjectured from recent 17O NMR magic-angle-spinning measurements. Our findings indicate that 17O NMR measurements, coupled with first-principles calculations, can be an important probe of local structure in complex perovskite solid solutions.

  8. Solvatochromic shifts from coupled-cluster theory embedded in density functional theory

    NASA Astrophysics Data System (ADS)

    Höfener, Sebastian; Gomes, André Severo Pereira; Visscher, Lucas

    2013-09-01

    Building on the framework recently reported for determining general response properties for frozen-density embedding [S. Höfener, A. S. P. Gomes, and L. Visscher, J. Chem. Phys. 136, 044104 (2012)], 10.1063/1.3675845, in this work we report a first implementation of an embedded coupled-cluster in density-functional theory (CC-in-DFT) scheme for electronic excitations, where only the response of the active subsystem is taken into account. The formalism is applied to the calculation of coupled-cluster excitation energies of water and uracil in aqueous solution. We find that the CC-in-DFT results are in good agreement with reference calculations and experimental results. The accuracy of calculations is mainly sensitive to factors influencing the correlation treatment (basis set quality, truncation of the cluster operator) and to the embedding treatment of the ground-state (choice of density functionals). This allows for efficient approximations at the excited state calculation step without compromising the accuracy. This approximate scheme makes it possible to use a first principles approach to investigate environment effects with specific interactions at coupled-cluster level of theory at a cost comparable to that of calculations of the individual subsystems in vacuum.

  9. Liquid li structure and dynamics: A comparison between OFDFT and second nearest-neighbor embedded-atom method

    DOE PAGES

    Chen, Mohan; Vella, Joseph R.; Panagiotopoulos, Athanassios Z.; ...

    2015-04-08

    The structure and dynamics of liquid lithium are studied using two simulation methods: orbital-free (OF) first-principles molecular dynamics (MD), which employs OF density functional theory (DFT), and classical MD utilizing a second nearest-neighbor embedded-atom method potential. The properties we studied include the dynamic structure factor, the self-diffusion coefficient, the dispersion relation, the viscosity, and the bond angle distribution function. Our simulation results were compared to available experimental data when possible. Each method has distinct advantages and disadvantages. For example, OFDFT gives better agreement with experimental dynamic structure factors, yet is more computationally demanding than classical simulations. Classical simulations can accessmore » a broader temperature range and longer time scales. The combination of first-principles and classical simulations is a powerful tool for studying properties of liquid lithium.« less

  10. First-Principles Studies of the Excited States and Optical Properties of Xanthene Derivative Chromophores

    NASA Astrophysics Data System (ADS)

    Hamed, Samia; Sharifzadeh, Sahar; Neaton, Jeffrey

    2014-03-01

    Elucidation of the energy transfer mechanism in natural photosynthetic systems remains an exciting challenge. In particular, biomimetic protein-pigment complexes provide a unique study space in which individual parameters are adjusted and the impact of those changes captured. Here, we compute the excited state properties of a group of xanthene-derivative chromophores to be employed in the construction of new biomimetic light harvesting frameworks. Excitation energies, transition dipoles, and natural transition orbitals for the low-lying singlet and triplet states of these experimentally-relevant chromophores are obtained from first-principles density functional theory. The performance of several exchange-correlation functionals, including an optimally-tuned range-separated hybrid, are evaluated and compared with many body perturbation theory and experiment. Finally, we will discuss the implication of our results for the bottom-up design of new chromophores. This work is supported by the DOE and computational resources are provided by NERSC.

  11. All-phosphorus flexible devices with non-collinear electrodes: a first principles study.

    PubMed

    Li, Junjun; Ruan, Lufeng; Wu, Zewen; Zhang, Guiling; Wang, Yin

    2018-03-07

    With the continuous expansion of the family of two-dimensional (2D) materials, flexible electronics based on 2D materials have quickly emerged. Theoretically, predicting the transport properties of the flexible devices made up of 2D materials using first principles is of great importance. Using density functional theory combined with the non-equilibrium Green's function formalism, we calculated the transport properties of all-phosphorus flexible devices with non-collinear electrodes, and the results predicted that the device with compressed metallic phosphorene electrodes sandwiching a P-type semiconducting phosphorene shows a better and robust conducting behavior against the bending of the semiconducting region when the angle between the two electrodes is less than 45°, which indicates that this system is very promising for flexible electronics. The calculation of a quantum transport system with non-collinear electrodes demonstrated in this work will provide more interesting information on mesoscopic material systems and related devices.

  12. First-Principle Study of the Optical Properties of Dilute-P GaN1-xPx Alloys.

    PubMed

    Borovac, Damir; Tan, Chee-Keong; Tansu, Nelson

    2018-04-16

    An investigation on the optical properties of dilute-P GaN 1-x P x alloys by First-Principle Density Functional Theory (DFT) methods is presented, for phosphorus (P) content varying from 0% up to 12.5%. Findings on the imaginary and real part of the dielectric function are analyzed and the results are compared with previously reported theoretical works on GaN. The complex refractive index, normal-incidence reflectivity and birefringence are presented and a difference in the refractive index in the visible regime between GaN and GaNP alloys of ~0.3 can be engineered by adding minute amounts of phosphorus, indicating strong potential for refractive index tunability. The optical properties of the GaN 1-x P x alloys indicate their strong potential for implementation in various III-nitride-based photonic waveguide applications and Distributed Bragg Reflectors (DBR).

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Tuomas P., E-mail: tuomas.rossi@alumni.aalto.fi; Sakko, Arto; Puska, Martti J.

    We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate thatmore » the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.« less

  14. Compositional bowing of band energies and their deformation potentials in strained InGaAs ternary alloys: A first-principles study

    NASA Astrophysics Data System (ADS)

    Khomyakov, Petr A.; Luisier, Mathieu; Schenk, Andreas

    2015-08-01

    Using first-principles calculations, we show that the conduction and valence band energies and their deformation potentials exhibit a non-negligible compositional bowing in strained ternary semiconductor alloys such as InGaAs. The electronic structure of these compounds has been calculated within the framework of local density approximation and hybrid functional approach for large cubic supercells and special quasi-random structures, which represent two kinds of model structures for random alloys. We find that the predicted bowing effect for the band energy deformation potentials is rather insensitive to the choice of the functional and alloy structural model. The direction of bowing is determined by In cations that give a stronger contribution to the formation of the InxGa1-xAs valence band states with x ≳ 0.5, compared to Ga cations.

  15. A first-principles study of electronic properties of H and F-terminated zigzag BNC nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alaal, Naresh; Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.; Department of Materials Engineering, Monash University, Clayton, Victoria -3800, Australia.

    2016-05-06

    Nanoribbons are quasi one-dimensional structures which have interesting electronic properties on the basis of their edge geometries, and width. We studied the electronic properties of hydrogen and fluorine-terminated zigzag BNC nanoribbons (BNCNRs) using a first-principles based density functional theory approach. We considered BNCNRs that were composed of an equal number of C-C and B-N dimers; one of the edges ends with an N atom and opposite edge ends with a C atom. These two edge atoms are passivated by H or F atoms. Our results suggest that hydrogen-terminated BNCNRs (H-BNCNRs) and flourine-terminated BNCNRs (F-BNCNRs) have different electronic properties. H-BNCNRs exhibitmore » intrinsic half-metallic behavior while F-BNCNRs are indirect band gap semiconductors. Chemical functionalization of BNCNRs with H and F atoms show that BNCNRs have a diverse range of electronic properties.« less

  16. The converse approach to NMR chemical shifts from first-principles: application to finite and infinite aromatic compounds

    NASA Astrophysics Data System (ADS)

    Thonhauser, T.; Ceresoli, D.; Marzari, N.

    2009-03-01

    We present first-principles, density-functional theory calculations of the NMR chemical shifts for polycyclic aromatic hydrocarbons, starting with benzene and increasing sizes up to the one- and two-dimensional infinite limits of graphene ribbons and sheets. Our calculations are performed using a combination of the recently developed theory of orbital magnetization in solids, and a novel approach to NMR calculations where chemical shifts are obtained from the derivative of the orbital magnetization with respect to a microscopic, localized magnetic dipole. Using these methods we study on equal footing the ^1H and ^13C shifts in benzene, pyrene, coronene, in naphthalene, anthracene, naphthacene, and pentacene, and finally in graphene, graphite, and an infinite graphene ribbon. Our results show very good agreement with experiments and allow us to characterize the trends for the chemical shifts as a function of system size.

  17. First principles and Debye model study of the thermodynamic, electronic and optical properties of MgO under high-temperature and pressure

    NASA Astrophysics Data System (ADS)

    Miao, Yurun; Li, Huayang; Wang, Hongjuan; He, Kaihua; Wang, Qingbo

    2018-02-01

    First principles and quasi-harmonic Debye model have been used to study the thermodynamic properties, enthalpies, electronic and optical properties of MgO up to the core-mantle boundary (CMB) condition (137 GPa and 3700 K). Thermodynamic properties calculation includes thermal expansion coefficient and capacity, which have been studied up to the CMB pressure (137 GPa) and temperature (3700 K) by the Debye model with generalized gradient approximation (GGA) and local-density approximation (LDA). First principles with hybrid functional method (PBE0) has been used to calculate the electronic and optical properties under pressure up to 137 GPa and 0 K. Our results show the Debye model with LDA and first principles with PBE0 can provide accurate thermodynamic properties, enthalpies, electronic and optical properties. Calculated enthalpies show that MgO keep NaCl (B1) structure up to 137 GPa. And MgO is a direct bandgap insulator with a 7.23 eV calculated bandgap. The bandgap increased with increasing pressure, which will induce a blue shift of optical properties. We also calculated the density of states (DOS) and discussed the relation between DOS and band, optical properties. Equations were used to fit the relations between pressure and bandgaps, absorption coefficient (α(ω)) of MgO. The equations can be used to evaluate pressure after careful calibration. Our calculations can not only be used to identify some geological processes, but also offer a reference to the applications of MgO in the future.

  18. First-Principles Equation of State and Shock Compression of Warm Dense Aluminum and Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Driver, Kevin; Soubiran, Francois; Zhang, Shuai; Militzer, Burkhard

    2017-10-01

    Theoretical studies of warm dense plasmas are a key component of progress in fusion science, defense science, and astrophysics programs. Path integral Monte Carlo (PIMC) and density functional theory molecular dynamics (DFT-MD), two state-of-the-art, first-principles, electronic-structure simulation methods, provide a consistent description of plasmas over a wide range of density and temperature conditions. Here, we combine high-temperature PIMC data with lower-temperature DFT-MD data to compute coherent equations of state (EOS) for aluminum and hydrocarbon plasmas. Subsequently, we derive shock Hugoniot curves from these EOSs and extract the temperature-density evolution of plasma structure and ionization behavior from pair-correlation function analyses. Since PIMC and DFT-MD accurately treat effects of atomic shell structure, we find compression maxima along Hugoniot curves attributed to K-shell and L-shell ionization, which provide a benchmark for widely-used EOS tables, such as SESAME and LEOS, and more efficient models. LLNL-ABS-734424. Funding provided by the DOE (DE-SC0010517) and in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Computational resources provided by Blue Waters (NSF ACI1640776) and NERSC. K. Driver's and S. Zhang's current address is Lawrence Livermore Natl. Lab, Livermore, CA, 94550, USA.

  19. Design of BAs-AlN monolayered honeycomb heterojunction structures: A first-principles study

    NASA Astrophysics Data System (ADS)

    Camacho-Mojica, Dulce C.; López-Urías, Florentino

    2016-04-01

    BAs and AlN are semiconductor materials with an indirect and direct gap respectively in the bulk phase. Recently, electronic calculations have demonstrated that a single-layer or few layers of BAs and AlN exhibit a graphite-like structure with interesting electronic properties. In this work, infinite sheets single-layer heterojunction structures based on alternated strips with honeycomb BAs and AlN layers are investigated using first-principles density functional theory calculations. Optimized geometries, density of states, band-gaps, formation energies, and wave functions are studied for different strip widths joined along zigzag and armchair edges. Results in optimized heterojunction geometries revealed that BAs narrow strips exhibit a corrugation effect due to a lattice mismatch. It was found that zigzag heterojunctions are more energetically favored than armchair heterojunctions. Furthermore, the formation energy presents a maximum at the point where the heterojunction becomes a planar structure. Electronic charge density results yielded a more ionic behavior in Alsbnd N bonds than the Bsbnd As bonds in accordance with monolayer results. It was observed that the conduction band minimum for both heterojunctions exhibit confined states located mainly at the entire AlN strips whereas the valence band maximum exhibits confined states located mainly at BAs strips. We expect that the present investigation will motivate more experimental and theoretical studies on new layered materials made of III-V semiconductors.

  20. First-principles equation-of-state table of beryllium based on density-functional theory calculations

    DOE PAGES

    Ding, Y. H.; Hu, S. X.

    2017-06-06

    Beryllium has been considered a superior ablator material for inertial confinement fusion (ICF) target designs. An accurate equation-of-state (EOS) of beryllium under extreme conditions is essential for reliable ICF designs. Based on density-functional theory (DFT) calculations, we have established a wide-range beryllium EOS table of density ρ = 0.001 to 500 g/cm 3 and temperature T = 2000 to 10 8 K. Our first-principle equation-of-state (FPEOS) table is in better agreement with the widely used SESAME EOS table (SESAME 2023) than the average-atom INFERNO and Purgatorio models. For the principal Hugoniot, our FPEOS prediction shows ~10% stiffer than the lastmore » two models in the maximum compression. Although the existing experimental data (only up to 17 Mbar) cannot distinguish these EOS models, we anticipate that high-pressure experiments at the maximum compression region should differentiate our FPEOS from INFERNO and Purgatorio models. Comparisons between FPEOS and SESAME EOS for off-Hugoniot conditions show that the differences in the pressure and internal energy are within ~20%. By implementing the FPEOS table into the 1-D radiation–hydrodynamic code LILAC, we studied in this paper the EOS effects on beryllium-shell–target implosions. Finally, the FPEOS simulation predicts higher neutron yield (~15%) compared to the simulation using the SESAME 2023 EOS table.« less

  1. First-principles equation-of-state table of beryllium based on density-functional theory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Y. H.; Hu, S. X.

    Beryllium has been considered a superior ablator material for inertial confinement fusion (ICF) target designs. An accurate equation-of-state (EOS) of beryllium under extreme conditions is essential for reliable ICF designs. Based on density-functional theory (DFT) calculations, we have established a wide-range beryllium EOS table of density ρ = 0.001 to 500 g/cm 3 and temperature T = 2000 to 10 8 K. Our first-principle equation-of-state (FPEOS) table is in better agreement with the widely used SESAME EOS table (SESAME 2023) than the average-atom INFERNO and Purgatorio models. For the principal Hugoniot, our FPEOS prediction shows ~10% stiffer than the lastmore » two models in the maximum compression. Although the existing experimental data (only up to 17 Mbar) cannot distinguish these EOS models, we anticipate that high-pressure experiments at the maximum compression region should differentiate our FPEOS from INFERNO and Purgatorio models. Comparisons between FPEOS and SESAME EOS for off-Hugoniot conditions show that the differences in the pressure and internal energy are within ~20%. By implementing the FPEOS table into the 1-D radiation–hydrodynamic code LILAC, we studied in this paper the EOS effects on beryllium-shell–target implosions. Finally, the FPEOS simulation predicts higher neutron yield (~15%) compared to the simulation using the SESAME 2023 EOS table.« less

  2. Rock-salt structure lithium deuteride formation in liquid lithium with high-concentrations of deuterium: a first-principles molecular dynamics study

    DOE PAGES

    Chen, Mohan; Abrams, T.; Jaworski, M. A.; ...

    2015-12-17

    Because of lithium's possible use as a first wall material in a fusion reactor, a fundamental understanding of the interactions between liquid lithium (Li) and deuterium (D) is important. Here, we predict structural and dynamical properties of liquid Li samples with high concentrations of D, as derived from first-principles molecular dynamics simulations. Liquid Li samples with four concentrations of inserted D atoms (LiDmore » $$_{\\beta}$$ , $$\\beta =0.25$$ , 0.50, 0.75, and 1.00) are studied at temperatures ranging from 470 to 1143 K. Densities, diffusivities, pair distribution functions, bond angle distribution functions, geometries, and charge transfer between Li and D atoms are calculated and analyzed. The analysis suggests liquid–solid phase transitions can occur at some concentrations and temperatures, forming rock-salt LiD within liquid Li. Finally, we observed the formation of some D 2 molecules at high D concentrations.« less

  3. Shot noise in parallel atomic wires from first principles

    NASA Astrophysics Data System (ADS)

    Lagerqvist, Johan; Chen, Yu-Chang; di Ventra, Massimiliano

    2003-03-01

    We report first-principles calculations of shot noise in two parallel carbon atomic wires as a function of the wires separation and length. The calculations have been performed with a novel field-theoretic approach to calculate shot noise [1] in terms of the single-particle wavefunctions obtained with density-functional theory.[2] We find that current fluctuations are a non-linear function of the distance between the wires and can be suppressed at wires separations small compared to the independent-wire distance. We discuss these results in terms of the coherence effects between the wires and the interference effects at the contacts. Work supported in part by NSF, Carilion Biomedical Institute and ACS-Petroleum Research Fund. [1] Y.-C. Chen and M. Di Ventra, submitted. [2] N.D. Lang, Phys. Rev. B 52, 5335 (1995); M. Di Ventra and N.D. Lang, Phys. Rev. B 65, 045402 (2002); Z. Yang, A. Tackett and M. Di Ventra, Phys. Rev. B 66, 041405 (2002).

  4. First-principles calculations of phonons and Raman and infrared spectra in Cd-IV-N2 compounds

    NASA Astrophysics Data System (ADS)

    Lyu, Sai; Lambrecht, Walter R. L.

    2018-05-01

    A first-principles study of the phonons at the zone center in Cd-IV-N2 compounds is presented with IV = Si, Ge, Sn. The calculations are performed for the most likely Pbn21 crystal structure, after showing that it is indeed lower in total energy compared to the closely related Pmc21 structure. The normal mode frequencies are calculated using density functional perturbation theory and symmetry labeled. The longitudinal optical-transverse optical splittings are determined using the Born effective charges which are also reported. These are used to simulate polarized Raman spectra for different scattering configurations as well as the infrared absorption and reflection spectra. The mode frequencies are found to decrease from Si to Ge to Sn as group-IV cation. The spectra show a wide variety of number of prominent peaks and relative intensities in spite of the great similarities of these three materials. Phonon densities of states and their analysis in atom by atom contributions are also reported.

  5. Surface structure in simple liquid metals: An orbital-free first-principles study

    NASA Astrophysics Data System (ADS)

    González, D. J.; González, L. E.; Stott, M. J.

    2006-07-01

    Molecular dynamics simulations of the liquid-vapor interfaces in simple sp-bonded liquid metals have been performed using first-principles methods. Results are presented for liquid Li, Na, K, Rb, Cs, Mg, Ba, Al, Tl, and Si at thermodynamic conditions near their respective triple points, for samples of 2000 particles in a slab geometry. The longitudinal ionic density profiles exhibit a pronounced stratification extending several atomic diameters into the bulk, which is a feature already experimentally observed in liquid K, Ga, In, Sn, and Hg. The wavelength of the ionic oscillations shows a good scaling with the radii of the associated Wigner-Seitz spheres. The structural rearrangements at the interface are analyzed in terms of the transverse pair correlation function, the coordination number, and the bond-angle distribution between nearest neighbors. The valence electronic density profile also shows (weaker) oscillations whose phase, with respect to those of the ionic profile, changes from opposite phase in the alkalis to almost in-phase for Si.

  6. Lattice structures and electronic properties of CIGS/CdS interface: First-principles calculations

    NASA Astrophysics Data System (ADS)

    Tang, Fu-Ling; Liu, Ran; Xue, Hong-Tao; Lu, Wen-Jiang; Feng, Yu-Dong; Rui, Zhi-Yuan; Huang, Min

    2014-07-01

    Using first-principles calculations within density functional theory, we study the atomic structures and electronic properties of the perfect and defective (2VCu+InCu) CuInGaSe2/CdS interfaces theoretically, especially the interface states. We find that the local lattice structure of (2VCu+InCu) interface is somewhat disorganized. By analyzing the local density of states projected on several atomic layers of the two interfaces models, we find that for the (2VCu+InCu) interface the interface states near the Fermi level in CuInGaSe2 and CdS band gap regions are mainly composed of interfacial Se-4p, Cu-3d and S-3p orbitals, while for the perfect interface there are no clear interface states in the CuInGaSe2 region but only some interface states which are mainly composed of S-3p orbitals in the valance band of CdS region.

  7. First-principles study of anhydrite, polyhalite and carnallite

    NASA Astrophysics Data System (ADS)

    Weck, Philippe F.; Kim, Eunja; Jové-Colón, Carlos F.; Sassani, David C.

    2014-02-01

    We report density functional calculations of the structures and properties of anhydrite (CaSO4), polyhalite (K2SO4·MgSO4·2CaSO4·2H2O) and carnallite (KCl·MgCl2·6H2O). Densities of states are systematically investigated and phonon analysis using density functional perturbation theory is performed at constant equilibrium volume for anhydrite and polyhalite in order to derive their isochoric thermal properties. Thermal properties at constant atmospheric pressure are also calculated using the quasi-harmonic approximation. The computed molar entropy and isobaric heat capacity for anhydrite reproduce experimental data up to 800 K to within 3% and 10%, respectively, while further experimental work is needed to assess our theoretical predictions for polyhalite.

  8. Magnetism, structures and stabilities of cluster assembled TM@Si nanotubes (TM = Cr, Mn and Fe): a density functional study.

    PubMed

    Dhaka, Kapil; Bandyopadhyay, Debashis

    2016-08-02

    The present study reports transition metal (TM = Cr, Mn and Fe) doped silicon nanotubes with tunable band structures and magnetic properties by careful selection of cluster assemblies as building blocks using the first-principles density functional theory. We found that the transition metal doping and in addition, the hydrogen termination process can stabilize the pure silicon nanoclusters or cluster assemblies and then it could be extended as magnetic nanotubes with finite magnetic moments. Study of the band structures and density of states (DOS) of different empty and TM doped nanotubes (Type 1 to Type 4) show that these nanotubes are useful as metals, semiconductors, semi-metals and half-metals. These designer magnetic materials could be useful in spintronics and magnetic devices of nanoscale order.

  9. First-principles calculations on the four phases of BaTiO3.

    PubMed

    Evarestov, Robert A; Bandura, Andrei V

    2012-04-30

    The calculations based on linear combination of atomic orbitals basis functions as implemented in CRYSTAL09 computer code have been performed for cubic, tetragonal, orthorhombic, and rhombohedral modifications of BaTiO(3) crystal. Structural and electronic properties as well as phonon frequencies were obtained using local density approximation, generalized gradient approximation, and hybrid exchange-correlation density functional theory (DFT) functionals for four stable phases of BaTiO(3). A comparison was made between the results of different DFT techniques. It is concluded that the hybrid PBE0 [J. P. Perdew, K. Burke, M. Ernzerhof, J. Chem. Phys. 1996, 105, 9982.] functional is able to predict correctly the structural stability and phonon properties both for cubic and ferroelectric phases of BaTiO(3). The comparative phonon symmetry analysis in BaTiO(3) four phases has been made basing on the site symmetry and irreducible representation indexes for the first time. Copyright © 2012 Wiley Periodicals, Inc.

  10. Stability of Li- and Mn-Rich Layered-Oxide Cathodes within the First-Charge Voltage Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iddir, Hakim; Bareño, Javier; Benedek, Roy

    Li and Mn rich layered oxides xLi 2MnO 3•(1-x)LiMO 2 enable high capacity and energy density Li-ion batteries, but undergo structural transformations during the first charge that degrade their performance, and result in Voltage Fade upon cycling. First-principles density-functional-theory simulations reveal atomic transformations that occur in the bulk during the first charge. The simulations and experiment (particularly XRD) show that the O and Mn sublattices remain intact during the early part of the voltage plateau, and significant transformations occur only well into the voltage plateau, with perhaps close to half of the Li in the Li 2MnO 3 domains removed.more » That Voltage Fade is actually observed experimentally for a first charge with only minimal activation (extending only slightly beyond the onset of the voltage plateau) may be a consequence of surface and interface instabilities. Implications for the achievement of high energy-density, low-fade battery operation are discussed.« less

  11. Comparative study of DFT+U functionals for non-collinear magnetism

    NASA Astrophysics Data System (ADS)

    Ryee, Siheon; Han, Myung Joon

    2018-07-01

    We performed comparative analysis for DFT+U functionals to better understand their applicability to non-collinear magnetism. Taking LiNiPO4 and Sr2IrO4 as examples, we investigated the results out of two formalisms based on charge-only density and spin density functional plus U calculations. Our results show that the ground state spin order in terms of tilting angle is strongly dependent on Hund J. In particular, the opposite behavior of canting angles as a function of J is found for LiNiPO4. The dependence on the other physical parameters such as Hubbard U and Slater parameterization is investigated. We also discuss the formal aspects of these functional dependences as well as parameter dependences. The current study provides useful information and important intuition for the first-principles calculation of non-collinear magnetic materials.

  12. Understanding the effects of packing and chemical terminations on the optical excitations of azobenzene-functionalized self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Cocchi, Caterina; Draxl, Claudia

    2017-10-01

    In a first-principles study based on many-body perturbation theory, we analyze the optical excitations of azobenzene-functionalized self-assembled monolayers (SAMs) with increasing packing density and different terminations, considering for comparison the corresponding gas-phase molecules and dimers. Intermolecular coupling increases with the density of the chromophores independently of the functional groups. The intense π → π* resonance that triggers photo-isomerization is present in the spectra of isolated dimers and diluted SAMs, but it is almost completely washed out in tightly packed architectures. Intermolecular coupling is partially inhibited by mixing differently functionalized azobenzene derivatives, in particular when large groups are involved. In this way, the excitation band inducing the photo-isomerization process is partially preserved and the effects of dense packing partly counterbalanced. Our results suggest that a tailored design of azobenzene-functionalized SAMs which optimizes the interplay between the packing density of the chromophores and their termination can lead to significant improvements in the photo-switching efficiency of these systems.

  13. Structure of naturally hydrated ferrihydrite revealed through neutron diffraction and first-principles modeling

    NASA Astrophysics Data System (ADS)

    Chappell, Helen F.; Thom, William; Bowron, Daniel T.; Faria, Nuno; Hasnip, Philip J.; Powell, Jonathan J.

    2017-08-01

    Ferrihydrite, with a ``two-line'' x-ray diffraction pattern (2L-Fh), is the most amorphous of the iron oxides and is ubiquitous in both terrestrial and aquatic environments. It also plays a central role in the regulation and metabolism of iron in bacteria, algae, higher plants, and animals, including humans. In this study, we present a single-phase model for ferrihydrite that unifies existing analytical data while adhering to fundamental chemical principles. The primary particle is small (20-50 Å) and has a dynamic and variably hydrated surface, which negates long-range order; collectively, these features have hampered complete characterization and frustrated our understanding of the mineral's reactivity and chemical/biochemical function. Near and intermediate range neutron diffraction (NIMROD) and first-principles density functional theory (DFT) were employed in this study to generate and interpret high-resolution data of naturally hydrated, synthetic 2L-Fh at standard temperature. The structural optimization overcomes transgressions of coordination chemistry inherent within previously proposed structures, to produce a robust and unambiguous single-phase model.

  14. Structural, electronic and vibrational properties of lanthanide monophosphide at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panchal, J. M., E-mail: amitjignesh@yahoo.co.in; Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat; Joshi, Mitesh

    2016-05-06

    A first-principles plane wave self-consistent method with the ultra-soft-pseudopotential scheme in the framework of the density functional theory (DFT) is performed to study structural, electronic and vibrational properties of LaP for Rock-salt (NaCl/Bl) and Cesium-chloride (CsCl/B2) phases. The instability of Rock-salt (NaCl/Bl) phases around the transition is discussed. Conclusions based on electronic energy band structure, density of state, phonon dispersion and phonon density of states in both phases are outlined. The calculated results are consistence and confirm the successful applicability of quasi-harmonic phonon theory for structural instability studies for the alloys.

  15. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways

    NASA Astrophysics Data System (ADS)

    Mathew, Kiran; Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T. A.; Hennig, Richard G.

    2014-02-01

    Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the SN2 reaction.

  16. Quantum Crystallography: Density Matrix-Density Functional Theory and the X-Ray Diffraction Experiment

    NASA Astrophysics Data System (ADS)

    Soirat, Arnaud J. A.

    Density Matrix Theory is a Quantum Mechanical formalism in which the wavefunction is eliminated and its role taken over by reduced density matrices. The interest of this is that, it allows one, in principle, to calculate any electronic property of a physical system, without having to solve the Schrodinger equation, using only two entities much simpler than an N-body wavefunction: first and second -order reduced density matrices. In practice, though, this very promising possibility faces the tremendous theoretical problem of N-representability, which has been solved for the former, but, until now, voids any hope of theoretically determining the latter. However, it has been shown that single determinant reduced density matrices of any order may be recovered from coherent X-ray diffraction data, if one provides a proper Quantum Mechanical description of the Crystallography experiment. A deeper investigation of this method is the purpose of this work, where we, first, further study the calculation of X-ray reduced density matrices N-representable by a single Slater determinant. In this context, we independently derive necessary and sufficient conditions for the uniqueness of the method. We then show how to account for electron correlation in this model. For the first time, indeed, we derive highly accurate, yet practical, density matrices approximately N-representable by correlated-determinant wavefunctions. The interest of such a result lies in the Quantum Mechanical validity of these density matrices, their property of being entirely obtainable from X-ray coherent diffraction data, their very high accuracy conferred by this known property of the N-representing wavefunction, as well as their definition as explicit functionals of the density. All of these properties are finally used in both a theoretical and a numerical application: in the former, we show that these density matrices may be used in the context of Density Functional Theory to highly accurately determine the unknown HK functional, associated with the theorem of Hohenberg and Kohn. The latter is provided by the calculation of helium correlation energy, where we test approximating the second-order density function by the leading term of its McLaurin's series expansion.

  17. Structural, Electronic and Dynamical Properties of Curium Monopnictides: Density Functional Calculations

    NASA Astrophysics Data System (ADS)

    Roondhe, Basant; Upadhyay, Deepak; Som, Narayan; Pillai, Sharad B.; Shinde, Satyam; Jha, Prafulla K.

    2017-03-01

    The structural, electronic, dynamical and thermodynamical properties of CmX (X = N, P, As, Sb, and Bi) compounds are studied using first principles calculations within density functional theory. The Perdew-Burke-Ernzerhof spin polarized generalized gradient approximation and Perdew-Wang (PW) spin polarized local density approximation as the exchange correlational functionals are used in these calculations. There is a good agreement between the present and previously reported data. The calculated electronic density of states suggests that the curium monopnictides are metallic in nature, which is consistent with earlier studies. The significant values of magnetic moment suggest their magnetic nature. The phonon dispersion curves and phonon density of states are also calculated, which depict the dynamical stability of these compounds. There is a significant separation between the optical and acoustical phonon branches. The temperature dependence of the thermodynamical functions are also calculated and discussed. Internal energy and vibrational contribution to the Helmholtz free energy increases and decreases, respectively, with temperature. The entropy increases with temperature. The specific heat at constant volume and Debye temperature obey Debye theory. The temperature variation of the considered thermodynamical functions is in line with those of other crystalline solids.

  18. First-principles study for the enhanced sulfur tolerance of Ni(1 1 1) surface alloyed with Pb

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxing; Yang, Zongxian

    2018-04-01

    The adsorption of H2S, HS, S, H and the dissociation of H2S on the Ni2Pb/Ni (1 1 1) are systematically studied using the first-principles method based on density functional theory. It is found that H2S dissociation barriers are greatly increased by alloying with Pb atoms in the Ni(1 1 1) surface, while the barrier for H2S formation is greatly reduced. In addition, the adsorption of sulfur atom is weakened a lot. The results indicate that alloying with Pb may be a good way to increase the sulfur tolerance of Ni based anode catalysts of solid oxide fuel cells.

  19. Near-infrared radiation absorption properties of covellite (CuS) using first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Lihua, E-mail: xiaolihua@git.edu.cn; College of Physics and Information Science, Hunan Normal University, Changsha 410081; Guizhou Special Functional Materials 2011 Collaborative Innovation Center, Guizhou Institute of Technology, Guiyang 550003

    2016-08-15

    First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR) absorption of covellite (CuS). The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS) as a NIR absorbing material. Our results show that covellite (CuS) exhibits NIR absorption due to its metal-like plasma oscillation inmore » the NIR range.« less

  20. First principles investigation of the initial stage of H-induced missing-row reconstruction of Pd(110) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padama, Allan Abraham B.; Kasai, Hideaki, E-mail: kasai@dyn.ap.eng.osaka-u.ac.jp; Center for Atomic and Molecular Technologies, Osaka University, Suita, Osaka 565-0871

    2014-06-28

    The pathway of H diffusion that will induce the migration of Pd atom is investigated by employing first principles calculations based on density functional theory to explain the origin of missing-row reconstruction of Pd(110).The calculated activation barrier and the H-induced reconstruction energy reveal that the long bridge-to-tetrahedral configuration is the energetically favored process for the initial stage of reconstruction phenomenon. While the H diffusion triggers the migration of Pd atom, it is the latter process that significantly contributes to the activated missing-row reconstruction of Pd(110). Nonetheless, the strong interaction between the diffusing H and the Pd atoms dictates the occurrencemore » of reconstructed surface.« less

  1. First-principles quantum-mechanical investigations of biomass conversion at the liquid-solid interfaces

    NASA Astrophysics Data System (ADS)

    Dang, Hongli; Xue, Wenhua; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2014-03-01

    We report first-principles density-functional calculations and ab initio molecular dynamics (MD) simulations for the reactions involving furfural, which is an important intermediate in biomass conversion, at the catalytic liquid-solid interfaces. The different dynamic processes of furfural at the water-Cu(111) and water-Pd(111) interfaces suggest different catalytic reaction mechanisms for the conversion of furfural. Simulations for the dynamic processes with and without hydrogen demonstrate the importance of the liquid-solid interface as well as the presence of hydrogen in possible catalytic reactions including hydrogenation and decarbonylation of furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  2. Calculation of NMR chemical shifts in organic solids: accounting for motional effects.

    PubMed

    Dumez, Jean-Nicolas; Pickard, Chris J

    2009-03-14

    NMR chemical shifts were calculated from first principles for well defined crystalline organic solids. These density functional theory calculations were carried out within the plane-wave pseudopotential framework, in which truly extended systems are implicitly considered. The influence of motional effects was assessed by averaging over vibrational modes or over snapshots taken from ab initio molecular dynamics simulations. It is observed that the zero-point correction to chemical shifts can be significant, and that thermal effects are particularly noticeable for shielding anisotropies and for a temperature-dependent chemical shift. This study provides insight into the development of highly accurate first principles calculations of chemical shifts in solids, highlighting the role of motional effects on well defined systems.

  3. Lattice dynamics of Ru2FeX (X = Si, Ge) Full Heusler alloys

    NASA Astrophysics Data System (ADS)

    Rizwan, M.; Afaq, A.; Aneeza, A.

    2018-05-01

    In present work, the lattice dynamics of Ru2FeX (X = Si, Ge) full Heusler alloys are investigated using density functional theory (DFT) within generalized gradient approximation (GGA) in a plane wave basis, with norm-conserving pseudopotentials. Phonon dispersion curves and phonon density of states are obtained using first-principles linear response approach of density functional perturbation theory (DFPT) as implemented in Quantum ESPRESSO code. Phonon dispersion curves indicates for both Heusler alloys that there is no imaginary phonon in whole Brillouin zone, confirming dynamical stability of these alloys in L21 type structure. There is a considerable overlapping between acoustic and optical phonon modes predicting no phonon band gap exists in dispersion curves of alloys. The same result is shown by phonon density of states curves for both Heusler alloys. Reststrahlen band for Ru2FeSi is found smaller than Ru2FeGe.

  4. First-principle study of structural, electronic and magnetic properties of (FeC)n (n = 1-8) and (FeC)8TM (TM = V, Cr, Mn and Co) clusters.

    PubMed

    Li, Cheng-Gang; Zhang, Jie; Zhang, Wu-Qin; Tang, Ya-Nan; Ren, Bao-Zeng; Hu, Yan-Fei

    2017-12-13

    The structural, electronic and magnetic properties of the (FeC) n (n = 1-8) clusters are studied using the unbiased CALYPSO structure search method and density functional theory. A combination of the PBE functional and 6-311 + G* basis set is used for determining global minima on potential energy surfaces of (FeC) n clusters. Relatively stabilities are analyzed via computing their binding energies, second order difference and HOMO-LUMO gaps. In addition, the origin of magnetic properties, spin density and density of states are discussed in detail, respectively. At last, based on the same computational method, the structures, magnetic properties and density of states are systemically investigated for the 3d (V, Cr, Mn and Co) atom doped (FeC) 8 cluster.

  5. Structural, elastic, electronic and dynamical properties of OsB and ReB: Density functional calculations

    NASA Astrophysics Data System (ADS)

    Li, Yanling; Zeng, Zhi; Lin, Haiqing

    2010-06-01

    The structural, elastic, electronic and dynamical properties of ReB and OsB are investigated by first-principles calculations based on density functional theory. It turns out that ReB and OsB are metallic ultra-incompressible solids with small elastic anisotropy and high hardness. The change of c/ a ratio in OsB indicates that there is a structural phase transition at about 31 GPa. Phonon spectra calculations show that both OsB and ReB are stable dynamically and there are abnormal phonon dispersions along special directions in Brillouin zone. OsB and ReB do not show superconductivity due to very weak electron-phonon interactions in them.

  6. Shapes matter: examining the optical response evolution in stretched aluminium nanoparticles via time-dependent density functional theory.

    PubMed

    Mokkath, Junais Habeeb

    2017-12-20

    Using first-principles time-dependent density functional theory calculations, we investigate the shape-anisotropy effects on the optical response of a spherical aluminium nanoparticle subjected to a stretching process in different directions. Progressively increased stretching in one direction resulted in prolate spheroid (nanorice) geometries and produced a couple of well-distinguishable dominant peaks together with some satellite peaks in the UV-visible region of the electromagnetic spectrum. On the other hand, progressively increased stretching in two directions caused multiple peaks to appear in the UV-visible region of the electromagnetic spectrum. We believe that our findings can be beneficial for the emerging and potentially far-reaching field of aluminum plasmonics.

  7. A molecular heterojunction of zinc phthalocyanine and peanut-shaped fullerene polymer: A density functional study

    NASA Astrophysics Data System (ADS)

    Tanikawa, Kousei; Ohno, Kaoru; Noda, Yusuke; Ono, Shota; Kuwahara, Riichi; Takashima, Akito; Nakaya, Masato; Onoe, Jun

    2017-10-01

    We have performed first-principles density functional calculations of a molecular heterojunction of a zinc phthalocyanine (ZnPc) molecule and a peanut-shaped fullerene polymer (PSFP) made from several coalesced cross-linked C60 molecules. The PSFP has many isomers and all have both spatially localized (near ZnPc) and metallic conducting levels. Here we consider four typical isomers. From the resulting electronic structure, we discuss the applicability of these isomers to organic photovoltaics (OPV), electrodes, and light harvesting materials. If one of the isomers called T3, which has the largest energy gap, is used together with ZnPc for OPV, this system shows more than 20% energy conversion efficiency.

  8. Layered uranium(VI) hydroxides: structural and thermodynamic properties of dehydrated schoepite α-UO₂(OH)₂.

    PubMed

    Weck, Philippe F; Kim, Eunja

    2014-12-07

    The structure of dehydrated schoepite, α-UO2(OH)2, was investigated using computational approaches that go beyond standard density functional theory and include van der Waals dispersion corrections (DFT-D). Thermal properties of α-UO2(OH)2, were also obtained from phonon frequencies calculated with density functional perturbation theory (DFPT) including van der Waals dispersion corrections. While the isobaric heat capacity computed from first-principles reproduces available calorimetric data to within 5% up to 500 K, some entropy estimates based on calorimetric measurements for UO3·0.85H2O were found to overestimate by up to 23% the values computed in this study.

  9. Corrigendum: First principles calculation of field emission from nanostructures using time-dependent density functional theory: A simplified approach

    NASA Astrophysics Data System (ADS)

    Tawfik, Sherif A.; El-Sheikh, S. M.; Salem, N. M.

    2016-09-01

    Recently we have become aware that the description of the quantum wave functions in Sec. 2.1 is incorrect. In the published version of the paper, we have stated that the states are expanded in terms of plane waves. However, the correct description of the quantum states in the context of the real space implementation (using the Octopus code) is that states are represented by discrete points in a real space grid.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, U. P.; Nayak, V.

    Quantum mechanical first principle calculations have been performed to study the electronic and structural properties of TiN and TiAs in zinc blende (ZB) and rock salt (RS) structures. The full-potential linearized augmented plane wave (FP-LAPW) method has been used within the framework of density functional theory (DFT). The exchange correlation functional has been solved employing generalized gradient approximation (GGA). Our predicted results for lattice constants are in good agreement with the earlier findings. The electronic band structures of TiX are metallic in both the phases.

  11. Electronic and Optical Properties of Titanium Nitride Bulk and Surfaces from First Principles Calculations (Postprint)

    DTIC Science & Technology

    2015-11-18

    thickness of the film, or substrate. In this work, we report calculations for titanium nitride ( TiN ), a promising material for plasmonic applications...stoichiometric bulk TiN , as well as of the TiN (100), TiN (110), and TiN (111) outermost surfaces. Density functional theory (DFT) and many-body GW methods...and the band structure for bulk TiN were shown to be consistent with previous work. Calculated dielectric functions, plasma frequencies, reflectivity

  12. The journey from forensic to predictive materials science using density functional theory

    DOE PAGES

    Schultz, Peter A.

    2017-09-12

    Approximate methods for electronic structure, implemented in sophisticated computer codes and married to ever-more powerful computing platforms, have become invaluable in chemistry and materials science. The maturing and consolidation of quantum chemistry codes since the 1980s, based upon explicitly correlated electronic wave functions, has made them a staple of modern molecular chemistry. Here, the impact of first principles electronic structure in physics and materials science had lagged owing to the extra formal and computational demands of bulk calculations.

  13. The journey from forensic to predictive materials science using density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter A.

    Approximate methods for electronic structure, implemented in sophisticated computer codes and married to ever-more powerful computing platforms, have become invaluable in chemistry and materials science. The maturing and consolidation of quantum chemistry codes since the 1980s, based upon explicitly correlated electronic wave functions, has made them a staple of modern molecular chemistry. Here, the impact of first principles electronic structure in physics and materials science had lagged owing to the extra formal and computational demands of bulk calculations.

  14. Emission properties of body-centered cubic elemental metal photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tuo; Rickman, Benjamin L., E-mail: brickm2@uic.edu; Schroeder, W. Andreas

    2015-04-07

    A first principles analysis of photoemission is developed to explain the lower than expected rms transverse electron momentum measured using the solenoid scan technique for the body-centered cubic Group Vb (V, Nb, and Ta) and Group VIb (Cr, Mo, and W) metallic photocathodes. The density functional theory based analysis elucidates the fundamental role that the electronic band structure (and its dispersion) plays in determining the emission properties of solid-state photocathodes and includes evaluation of work function anisotropy using a thin-slab method.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisti, F.; Stroppa, A.; Picozzi, S.

    The electronic structure of Croconic Acid in the condensed phase has been studied by comparing core level and valence band x-ray photoelectron spectroscopy experiments and first principles density functional theory calculations using the Heyd-Scuseria-Ernzerhof screened hybrid functional and the GW approximation. By exploring the photoemission spectra for different deposition thicknesses, we show how the formation of the hydrogen bond network modifies the O 1s core level lineshape. Moreover, the valence band can be explained only if the intermolecular interactions are taken into account in the theoretical approach.

  16. First-principles quantum transport method for disordered nanoelectronics: Disorder-averaged transmission, shot noise, and device-to-device variability

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Wang, Shizhuo; Xia, Ke; Ke, Youqi

    2017-03-01

    Because disorders are inevitable in realistic nanodevices, the capability to quantitatively simulate the disorder effects on electron transport is indispensable for quantum transport theory. Here, we report a unified and effective first-principles quantum transport method for analyzing effects of chemical or substitutional disorder on transport properties of nanoelectronics, including averaged transmission coefficient, shot noise, and disorder-induced device-to-device variability. All our theoretical formulations and numerical implementations are worked out within the framework of the tight-binding linear muffin tin orbital method. In this method, we carry out the electronic structure calculation with the density functional theory, treat the nonequilibrium statistics by the nonequilbrium Green's function method, and include the effects of multiple impurity scattering with the generalized nonequilibrium vertex correction (NVC) method in coherent potential approximation (CPA). The generalized NVC equations are solved from first principles to obtain various disorder-averaged two-Green's-function correlators. This method provides a unified way to obtain different disorder-averaged transport properties of disordered nanoelectronics from first principles. To test our implementation, we apply the method to investigate the shot noise in the disordered copper conductor, and find all our results for different disorder concentrations approach a universal Fano factor 1 /3 . As the second test, we calculate the device-to-device variability in the spin-dependent transport through the disordered Cu/Co interface and find the conductance fluctuation is very large in the minority spin channel and negligible in the majority spin channel. Our results agree well with experimental measurements and other theories. In both applications, we show the generalized nonequilibrium vertex corrections play a determinant role in electron transport simulation. Our results demonstrate the effectiveness of the first-principles generalized CPA-NVC for atomistic analysis of disordered nanoelectronics, extending the capability of quantum transport simulation.

  17. On extending Kohn-Sham density functionals to systems with fractional number of electrons.

    PubMed

    Li, Chen; Lu, Jianfeng; Yang, Weitao

    2017-06-07

    We analyze four ways of formulating the Kohn-Sham (KS) density functionals with a fractional number of electrons, through extending the constrained search space from the Kohn-Sham and the generalized Kohn-Sham (GKS) non-interacting v-representable density domain for integer systems to four different sets of densities for fractional systems. In particular, these density sets are (I) ensemble interacting N-representable densities, (II) ensemble non-interacting N-representable densities, (III) non-interacting densities by the Janak construction, and (IV) non-interacting densities whose composing orbitals satisfy the Aufbau occupation principle. By proving the equivalence of the underlying first order reduced density matrices associated with these densities, we show that sets (I), (II), and (III) are equivalent, and all reduce to the Janak construction. Moreover, for functionals with the ensemble v-representable assumption at the minimizer, (III) reduces to (IV) and thus justifies the previous use of the Aufbau protocol within the (G)KS framework in the study of the ground state of fractional electron systems, as defined in the grand canonical ensemble at zero temperature. By further analyzing the Aufbau solution for different density functional approximations (DFAs) in the (G)KS scheme, we rigorously prove that there can be one and only one fractional occupation for the Hartree Fock functional, while there can be multiple fractional occupations for general DFAs in the presence of degeneracy. This has been confirmed by numerical calculations using the local density approximation as a representative of general DFAs. This work thus clarifies important issues on density functional theory calculations for fractional electron systems.

  18. Artificial Oxide Heterostructures with Tunable Band Gap

    DTIC Science & Technology

    2016-12-20

    PIs: Xiaoxing Xi 1, and Jon Spanier2 1. Department of Physics , Temple University, Philadelphia, PA 19122, USA 2. Department of Materials Science...been summarized in the following. Our thin-film experimental group under the leadership of Prof. Xiaoxing Xi at physics department of Temple...theoretical group of Xifan Wu at physics department of Temple University. The first- principles calculations were performed by using density functional theory

  19. Characterizing water-metal interfaces and machine learning potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Ryczko, Kevin

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  20. Low-Dimensional Materials for Optoelectronic and Bioelectronic Applications

    NASA Astrophysics Data System (ADS)

    Hong, Tu

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  1. Design rules of heteroatom-doped graphene to achieve high performance lithium-sulfur batteries: Both strong anchoring and catalysing based on first principles calculation.

    PubMed

    Zhang, Lin; Liang, Pei; Shu, Hai B; Man, Xiao L; Du, Xiao Q; Chao, Dong L; Liu, Zu G; Sun, Yu P; Wan, Hou Z; Wang, Hao

    2018-06-18

    A number of observations have been reported on chemical capture and catalysis of anchoring materials for lithium-sulfur batteries. Here, we propose the design principles for the chemical functioned graphene as an anchor material to realize both strong chemical trapping and catalysis. Through the first principle, the periodic law is calculated from the theory. Seven different co-doping series were investigated, e.g. MN 4 @graphene (M = V, Cr, Mn, Fe, Co, Ni, and Cu). From binding energy, partial density of state, and charge density difference analysis, the FeN 4 and CrN 4 co-doped graphene show good performance for the lithium-sulfur battery from both strong anchoring and catalytic effects. For the most kinds of Li 2 S x (x = 1, 2, 4, 6, 8) absorption, two combinations can be achieved, including S-bonding and Li-bonding. The competition between the MS and the NLi shows the main difference of the co-doped configurations. Moreover, the S-bonding systems have better performance for both moderate chemical trapping and strong catalysis. The binding energies of Li 2 S x and Li decomposed properties considered as the key descriptors for the rational design of lithium-sulfur battery. Lastly, we offer design rules for high performance lithium-sulfur batteries based on the chemical functional graphene materials. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Electronic and optical properties of RESn{sub 3} (RE=Pr & Nd) intermetallics: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagare, G., E-mail: gita-pagare@yahoo.co.in; Abraham, Jisha A.; Department of Physics, National Defence Academy, Pune-411023

    2015-06-24

    A theoretical study of structural, electronic and optical properties of RESn{sub 3} (RE = Pr & Nd) intermetallics have been investigated systematically using first principles density functional theory. The calculations are carried out within the PBE-GGA and LSDA for the exchange correlation potential. The ground state properties such as lattice parameter (a{sub 0}), bulk modulus (B) and its pressure derivative (B′) are calculated and the calculated lattice parameters show well agreement with the experimental results. We first time predict elastic constants for these compounds. From energy dispersion curves, it is found that these compounds are metallic in nature. The linearmore » optical response of these compounds are also studied and the higher value of static dielectric constant shows the possibility to use them as good dielectric materials.« less

  3. First-principles study of point defects in thorium carbide

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A. M.; Mosca, H. O.

    2014-11-01

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure.

  4. Applications of large-scale density functional theory in biology

    NASA Astrophysics Data System (ADS)

    Cole, Daniel J.; Hine, Nicholas D. M.

    2016-10-01

    Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.

  5. Hybrid Density Functional Study of the Local Structures and Energy Levels of CaAl2O4:Ce3.

    PubMed

    Lou, Bibo; Jing, Weiguo; Lou, Liren; Zhang, Yongfan; Yin, Min; Duan, Chang-Kui

    2018-05-03

    First-principles calculations were carried out for the electronic structures of Ce 3+ in calcium aluminate phosphors, CaAl 2 O 4 , and their effects on luminescence properties. Hybrid density functional approaches were used to overcome the well-known underestimation of band gaps of conventional density functional approaches and to calculate the energy levels of Ce 3+ ions more accurately. The obtained 4f-5d excitation and emission energies show good consistency with measured values. A detailed energy diagram of all three sites is obtained, which explains qualitatively all of the luminescent phenomena. With the results of energy levels calculated by combining the hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06) and the constraint occupancy approach, we are able to construct a configurational coordinate diagram to analyze the processes of capture of a hole or an electron and luminescence. This approach can be applied for systematic high-throughput calculations in predicting Ce 3+ activated luminescent materials with a moderate computing requirement.

  6. Using first-principles calculations to screen for fragile magnetism: Case study of LaCrGe 3 and LaCrSb 3

    DOE PAGES

    Nguyen, Manh Cuong; Taufour, Valentin; Bud'ko, Sergey L.; ...

    2018-05-02

    In this study, we present a coupled experimental/theoretical investigation of pressure effect on the ferromagnetism of LaCrGe 3 and LaCrSb 3 compounds. The magnetic, electronic, elastic, and mechanical properties of LaCrGe 3 and LaCrSb 3 at ambient condition are studied by first-principles density-functional theory calculations. The pressure dependences of the magnetic properties of LaCrGe 3 and LaCrSb 3 are also investigated. The ferromagnetism in LaCrGe 3 is rather fragile, with a ferro- to paramagnetic transition at a relatively small pressure (around 7 GPa from our calculations, and 2 GPa in experiments). The key parameter controlling the magnetic properties of LaCrGemore » 3 is found to be the proximity of the peak of Cr density of states to the Fermi level, a proximity that is strongly correlated with the distance between Cr atoms along the c axis, suggesting that there would be a simple way to suppress magnetism in systems with one-dimensional arrangement of magnetic atoms. By contrast, the ferromagnetism in LaCrSb 3 is not fragile. In conclusion, our theoretical results are consistent with our experimental results and demonstrate the feasibility of using first-principles calculations to aid experimental explorations in screening for materials with fragile magnetism.« less

  7. Using first-principles calculations to screen for fragile magnetism: Case study of LaCrGe 3 and LaCrSb 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Manh Cuong; Taufour, Valentin; Bud'ko, Sergey L.

    In this study, we present a coupled experimental/theoretical investigation of pressure effect on the ferromagnetism of LaCrGe 3 and LaCrSb 3 compounds. The magnetic, electronic, elastic, and mechanical properties of LaCrGe 3 and LaCrSb 3 at ambient condition are studied by first-principles density-functional theory calculations. The pressure dependences of the magnetic properties of LaCrGe 3 and LaCrSb 3 are also investigated. The ferromagnetism in LaCrGe 3 is rather fragile, with a ferro- to paramagnetic transition at a relatively small pressure (around 7 GPa from our calculations, and 2 GPa in experiments). The key parameter controlling the magnetic properties of LaCrGemore » 3 is found to be the proximity of the peak of Cr density of states to the Fermi level, a proximity that is strongly correlated with the distance between Cr atoms along the c axis, suggesting that there would be a simple way to suppress magnetism in systems with one-dimensional arrangement of magnetic atoms. By contrast, the ferromagnetism in LaCrSb 3 is not fragile. In conclusion, our theoretical results are consistent with our experimental results and demonstrate the feasibility of using first-principles calculations to aid experimental explorations in screening for materials with fragile magnetism.« less

  8. First-principles simulation and low-energy effective modeling of three-dimensional skyrmion in MnGe

    NASA Astrophysics Data System (ADS)

    Choi, Hongchul; Tai, Yuan-Yen; Zhu, Jian-Xin; T-4 Team

    The skyrmion spin textures are mostly observed in two-dimensional (2D) space, which can be topologically mapped onto the surface of the sphere with an integer multiple of topological winding number. Recently, MnGe has been reported as a candidate of 3D skyrmion crystal, showing the variation of the skyrmion size along the z-direction. We have performed the first-principles simulation and constructed a tight-binding model with calculated electronic-structure information to investigate the 3D skyrmion phase in MnGe. Our first-principles study within density functional theory shows that the calculated magnetic moment is larger than that for MnSi (with different lattice constant), implying the possibility of a multiple magnetic transition under pressure. We have also found that the small-sized skyrmion could be stabilized in a 2D structure. Such a high density of the skyrmion is in good agreement with the experimental finding of large topological Hall effect. Finally, we will extend our study to consider the 3D skyrmion structure based on the constructed tight-binding model. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory (LANL) under Contract No. DE-AC52-06NA25396, and was supported by the LANL LDRD Program.

  9. Using first-principles calculations to screen for fragile magnetism: Case study of LaCrGe3 and LaCrSb3

    NASA Astrophysics Data System (ADS)

    Nguyen, Manh Cuong; Taufour, Valentin; Bud'ko, Sergey L.; Canfield, Paul C.; Antropov, Vladimir P.; Wang, Cai-Zhuang; Ho, Kai-Ming

    2018-05-01

    In this paper, we present a coupled experimental/theoretical investigation of pressure effect on the ferromagnetism of LaCrGe3 and LaCrSb3 compounds. The magnetic, electronic, elastic, and mechanical properties of LaCrGe3 and LaCrSb3 at ambient condition are studied by first-principles density-functional theory calculations. The pressure dependences of the magnetic properties of LaCrGe3 and LaCrSb3 are also investigated. The ferromagnetism in LaCrGe3 is rather fragile, with a ferro- to paramagnetic transition at a relatively small pressure (around 7 GPa from our calculations, and 2 GPa in experiments). The key parameter controlling the magnetic properties of LaCrGe3 is found to be the proximity of the peak of Cr density of states to the Fermi level, a proximity that is strongly correlated with the distance between Cr atoms along the c axis, suggesting that there would be a simple way to suppress magnetism in systems with one-dimensional arrangement of magnetic atoms. By contrast, the ferromagnetism in LaCrSb3 is not fragile. Our theoretical results are consistent with our experimental results and demonstrate the feasibility of using first-principles calculations to aid experimental explorations in screening for materials with fragile magnetism.

  10. Functionalization-induced changes in the structural and physical properties of amorphous polyaniline: a first-principles and molecular dynamics study.

    PubMed

    Chen, X P; Liang, Q H; Jiang, J K; Wong, Cell K Y; Leung, Stanley Y Y; Ye, H Y; Yang, D G; Ren, T L

    2016-02-09

    In this paper, we present a first-principles and molecular dynamics study to delineate the functionalization-induced changes in the local structure and the physical properties of amorphous polyaniline. The results of radial distribution function (RDF) demonstrate that introducing -SO3(-)Na(+) groups at phenyl rings leads to the structural changes in both the intrachain and interchain ordering of polyaniline at shorter distances (≤5 Å). An unique RDF feature in 1.8-2.1 Å regions is usually observed in both the interchain and intrachain RDF profiles of the -SO3(-)Na(+) substituted polymer (i.e. Na-SPANI). Comparative studies of the atom-atom pairs, bond structures, torsion angles and three-dimensional structures show that EB-PANI has much better intrachain ordering than that of Na-SPANI. In addition, investigation of the band gap, density of states (DOS), and absorption spectra indicates that the derivatization at ring do not substantially alter the inherent electronic properties but greatly change the optical properties of polyaniline. Furthermore, the computed diffusion coefficient of water in Na-SPANI is smaller than that of EB-PANI. On the other hand, the Na-SPANI shows a larger density than that of EB-PANI. The computed RDF profiles, band gaps, absorption spectra, and diffusion coefficients are in quantitative agreement with the experimental data.

  11. Optical properties of an indium doped CdSe nanocrystal: A density functional approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salini, K.; Mathew, Vincent, E-mail: vincent@cukerala.ac.in; Mathew, Thomas

    2016-05-06

    We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantlymore » alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.« less

  12. Nuclear spin relaxation due to chemical shift anisotropy of gas-phase 129Xe.

    PubMed

    Hanni, Matti; Lantto, Perttu; Vaara, Juha

    2011-08-14

    Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.

  13. Pressure-induced Lifshitz transition in NbP: Raman, x-ray diffraction, electrical transport, and density functional theory

    NASA Astrophysics Data System (ADS)

    Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Muthu, D. V. S.; Shekhar, C.; Qi, Yanpeng; Naumov, Pavel G.; Medvedev, Sergey A.; Felser, C.; Waghmare, U. V.; Sood, A. K.

    2018-02-01

    We report high-pressure Raman, synchrotron x-ray diffraction, and electrical transport studies on Weyl semimetals NbP and TaP along with first-principles density functional theoretical (DFT) analysis. The frequencies of first-order Raman modes of NbP harden with increasing pressure and exhibit a slope change at Pc˜9 GPa. The pressure-dependent resistivity exhibits a minimum at Pc. The temperature coefficient of resistivity below Pc is positive as expected for semimetals but changes significantly in the high-pressure phase. Using DFT calculations, we show that these anomalies are associated with a pressure-induced Lifshitz transition, which involves the appearance of electron and hole pockets in its electronic structure. In contrast, the results of Raman and synchrotron x-ray diffraction experiments on TaP and DFT calculations show that TaP is quite robust under pressure and does not undergo any phase transition.

  14. Structural, electronic, mechanical, and dynamical properties of graphene oxides: A first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabhi, Shweta D.; Gupta, Sanjay D.; Jha, Prafulla K., E-mail: prafullaj@yahoo.com

    We report the results of a theoretical study on the structural, electronic, mechanical, and vibrational properties of some graphene oxide models (GDO, a-GMO, z-GMO, ep-GMO and mix-GMO) at ambient pressure. The calculations are based on the ab-initio plane-wave pseudo potential density functional theory, within the generalized gradient approximations for the exchange and correlation functional. The calculated values of lattice parameters, bulk modulus, and its first order pressure derivative are in good agreement with other reports. A linear response approach to the density functional theory is used to derive the phonon frequencies. We discuss the contribution of the phonons in themore » dynamical stability of graphene oxides and detailed analysis of zone centre phonon modes in all the above mentioned models. Our study demonstrates a wide range of energy gap available in the considered models of graphene oxide and hence the possibility of their use in nanodevices.« less

  15. Phonon-defect scattering and thermal transport in semiconductors: developing guiding principles

    NASA Astrophysics Data System (ADS)

    Polanco, Carlos; Lindsay, Lucas

    First principles calculations of thermal conductivity have shown remarkable agreement with measurements for high-quality crystals. Nevertheless, most materials contain defects that provide significant extrinsic resistance and lower the conductivity from that of a perfect sample. This effect is usually accounted for with simplified analytical models that neglect the atomistic details of the defect and the exact dynamical properties of the system, which limits prediction capabilities. Recently, a method based on Greens functions was developed to calculate the phonon-defect scattering rates from first principles. This method has shown the important role of point defects in determining thermal transport in diamond and boron arsenide, two competitors for the highest bulk thermal conductivity. Here, we study the role of point defects on other relatively high thermal conductivity semiconductors, e.g., BN, BeSe, SiC, GaN and Si. We compare their first principles defect-phonon scattering rates and effects on transport properties with those from simplified models and explore common principles that determine these. Efforts will focus on basic vibrational properties that vary from system to system, such as density of states, interatomic force constants and defect deformation. Research supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  16. The electronic structures and work functions of (100) surface of typical binary and doped REB6 single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Hongliang; Zhang, Xin; Xiao, Yixin; Zhang, Jiuxing

    2018-03-01

    The density function theory been used to calculate the electronic structures of binary and doped rare earth hexaborides (REB6), which exhibits the large density of states (DOS) near Fermi level. The d orbital elections of RE element contribute the electronic states of election emission near the Fermi level, which imply that the REB6 (RE = La, Ce, Gd) with wide distribution of high density d orbital electrons could provide a lower work function and excellent emission properties. Doping RE elements into binary REB6 can adjust DOS and the position of the Fermi energy level. The calculated work functions of considered REB6 (100) surface show that the REB6 (RE = La, Ce, Gd) have lower work function and doping RE elements with active d orbital electrons can significantly reduce work function of binary REB6. The thermionic emission test results are basically accordant with the calculated value, proving the first principles calculation could provide a good theoretical guidance for the study of electron emission properties of REB6.

  17. A first principles study of the mechanical, electronic, and vibrational properties of lead oxide

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Yu. N.; Korabel'nikov, D. V.

    2017-11-01

    The first principles study of the crystal structure, chemical bonds, elastic and mechanical properties, electron energy band structure and density, and normal long-wave vibrations of nine phases of lead monoxide, dioxide, and tetraoxide has been performed under normal and external pressure within the framework of density functional theory (DFT) with the Perdew-Becke-Ernzerhof (PBE) gradient exchange-correlation functional and its hybrid version with a 25-% Hartree-Fock (HF) exchange contribution in the basis of localized atom orbitals. The behavior of physical parameters has been studied using the cold four- and threeparameter equations of state. The parameters of the crystal structures are in satisfactory agreement with experimental data, and elastic constants indicate their mechanical stability and anisotropy in the elastic properties. The elasticity, shear, and Young moduli, hardness, acoustic velocities, and Debye temperature of dioxide on the one hand and monoxide and tetraoxide on the other hand appreciably differ from each other. The difference between electron properties may be explained by the character of hybridization in the upper filled and lower empty energy bands as evident from the density of states. In monoxide, the indirect band gap width decreases with increasing pressure at a rate of 0.16 eV/GPa, and the direct band gap width increases at a rate of 0.13 eV/GPa. To identify crystalline phases, the frequencies and intensities of long-wave modes active in IR and Raman spectra have been calculated.

  18. Time-dependent vibrational spectral analysis of first principles trajectory of methylamine with wavelet transform.

    PubMed

    Biswas, Sohag; Mallik, Bhabani S

    2017-04-12

    The fluctuation dynamics of amine stretching frequencies, hydrogen bonds, dangling N-D bonds, and the orientation profile of the amine group of methylamine (MA) were investigated under ambient conditions by means of dispersion-corrected density functional theory-based first principles molecular dynamics (FPMD) simulations. Along with the dynamical properties, various equilibrium properties such as radial distribution function, spatial distribution function, combined radial and angular distribution functions and hydrogen bonding were also calculated. The instantaneous stretching frequencies of amine groups were obtained by wavelet transform of the trajectory obtained from FPMD simulations. The frequency-structure correlation reveals that the amine stretching frequency is weakly correlated with the nearest nitrogen-deuterium distance. The frequency-frequency correlation function has a short time scale of around 110 fs and a longer time scale of about 1.15 ps. It was found that the short time scale originates from the underdamped motion of intact hydrogen bonds of MA pairs. However, the long time scale of the vibrational spectral diffusion of N-D modes is determined by the overall dynamics of hydrogen bonds as well as the dangling ND groups and the inertial rotation of the amine group of the molecule.

  19. Modeling ultrafast solvated electronic dynamics using time-dependent density functional theory and polarizable continuum model.

    PubMed

    Liang, Wenkel; Chapman, Craig T; Ding, Feizhi; Li, Xiaosong

    2012-03-01

    A first-principles solvated electronic dynamics method is introduced. Solvent electronic degrees of freedom are coupled to the time-dependent electronic density of a solute molecule by means of the implicit reaction field method, and the entire electronic system is propagated in time. This real-time time-dependent approach, incorporating the polarizable continuum solvation model, is shown to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. © 2012 American Chemical Society

  20. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation.

    PubMed

    Wang, Cong; Jiang, Lan; Wang, Feng; Li, Xin; Yuan, Yanping; Xiao, Hai; Tsai, Hai-Lung; Lu, Yongfeng

    2012-07-11

    A real-time and real-space time-dependent density functional is applied to simulate the nonlinear electron-photon interactions during shaped femtosecond laser pulse train ablation of diamond. Effects of the key pulse train parameters such as the pulse separation, spatial/temporal pulse energy distribution and pulse number per train on the electron excitation and energy absorption are discussed. The calculations show that photon-electron interactions and transient localized electron dynamics can be controlled including photon absorption, electron excitation, electron density, and free electron distribution by the ultrafast laser pulse train.

  1. Bogoliubov theory of acoustic Hawking radiation in Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recati, A.; Physik-Department, Technische Universitaet Muenchen, D-85748 Garching; Pavloff, N.

    2009-10-15

    We apply the microscopic Bogoliubov theory of dilute Bose-Einstein condensates to analyze quantum and thermal fluctuations in a flowing atomic condensate in the presence of a sonic horizon. For the simplest case of a step-like horizon, closed-form analytical expressions are found for the spectral distribution of the analog Hawking radiation and for the density correlation function. The peculiar long-distance density correlations that appear as a consequence of the Hawking emission features turns out to be reinforced by a finite initial temperature of the condensate. The analytical results are in good quantitative agreement with first principle numerical calculations.

  2. Predictions of Crystal Structures from First Principles

    DTIC Science & Technology

    2007-06-01

    RDX crystal in hoped that the problem could be resolved by the molecular dynamics simulations . The fully ab initio development of density functional... Molecular Dynamics Simulations of RDX i.e., without any use of experimental results (except that Crystal the geometry of monomers was derived from X-ray...applied in molecular dynamics simulations of the RDX system, due to its size, is intractable by any high-level ab crystal. We performed isothermal

  3. First-principles study on structural, thermal, mechanical and dynamic stability of T'-MoS2.

    PubMed

    Liu, Y C; Wang, V; Xia, M G; Zhang, S L

    2017-03-08

    Using first-principles density functional theory calculations, we investigate the structure, stability, optical modes and electronic band gap of a distorted tetragonal MoS 2 monolayer (T'-MoS 2 ). Our simulated scanning tunnel microscopy (STM) images of T'-MoS 2 are dramatically similar to those STM images which were identified as K x (H 2 O) y MoS 2 from a previous experimental study. This similarity suggests that T'-MoS 2 might have already been experimentally observed, but due to being unexpected was misidentified. Furthermore, we verify the stability of T'-MoS 2 from the thermal, mechanical and dynamic aspects, by ab initio molecular dynamics simulation, elastic constants evaluation and phonon band structure calculation based on density functional perturbation theory, respectively. In addition, we calculate the eigenfrequencies and eigenvectors of the optical modes of T'-MoS 2 at [Formula: see text] point and distinguish their Raman and infrared activity by pointing out their irreducible representations using group theory. At the same time, we compare the Raman modes of T'-MoS 2 with those of H-MoS 2 and T-MoS 2 . Our results provide useful guidance for further experimental identification and characterization of T'-MoS 2 .

  4. Transition-metal alloying of γ'-Ni3Al : Effects on the ideal uniaxial compressive strength from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wen, Minru; Wang, Chong-Yu

    2018-01-01

    The addition of transition-metal (TM) elements into the γ' precipitate phase of a Ni-based single-crystal superalloy can significantly affect its mechanical properties, including the intrinsic mechanical property of compressive strength. Using first-principles density functional calculations, the effects of 3 d (Sc-Zn), 4 d (Y-Cd), and 5 d (Hf-Au) TM alloying elements on the ideal uniaxial compressive strength of γ'-Ni3Al were investigated. The stress-strain relationships of pure Ni3Al under [100], [110], and [111] compressive loads and the site occupancy behavior of TM elements in Ni3Al were previously studied using a total-energy method based on density functional theory. Our results showed that the capacity of TM elements for strengthening the ideal compressive strength was associated with the d -electron number. The alloying elements with half-filled d bands (i.e., Cr, Mo, W, Tc, and Re) manifested the greatest efficacy for improving the ideal strength of Ni3Al under a deformation along the weakest compressive direction. Furthermore, the charge redistribution of Ni3Al doped with 5 d elements were also analyzed to understand the strengthening mechanisms of TM elements in the γ'-Ni3Al phase.

  5. Cs/NF3 adsorption on [001]-oriented GaN nanowire surface: A first principle calculation

    NASA Astrophysics Data System (ADS)

    Diao, Yu; Liu, Lei; Xia, Sihao; Kong, Yike

    2017-11-01

    In this study, the adsorption mechanism of Cs/NF3 on the [001]-oriented GaN nanowire surface is investigated by using the density function theory based on first-principles. In the Cs/NF3 co-activation process, the system is inclined to form NF3-in structure. Through the calculation results of adsorption energy, NF3 molecule adsorption tends to take an orientation with F atoms on top and the most favorable adsorption site is BGa-N. The NF3 activation process can further cut down the work function of the Cs-covered nanowire surface only when Cs coverage is 0.75 ML and 1 ML, which can be explained by the double dipole moment theory. With increasing Cs coverage, the valence band and conduction band both shift to lower energy side, contributing to the appearance of a downward band bending region and promoting the escape of surface photoelectrons. After NF3 molecule adsorption, the peak of total density of states near Fermi level increase due to the orbital hybridization between NF3-2s, Cs-5s states and N-2p states, which strengthen the conductivity of the nanowire surface and leads to the metallic properties. All these calculations may direct the Cs/NF3 activation process of GaN nanowire optoelectronic devices.

  6. The half-metallicity of Co2FeGe full Heusler alloy in (001) thin film: First principles study

    NASA Astrophysics Data System (ADS)

    Hyun, Jung-Min; Kim, Miyoung

    2018-01-01

    The electronic and magnetic properties of the Co2FeGe full Heusler alloy in (001) thin film are investigated using the first-principles electronic structure calculations within the density functional theory. We employ various exchange correlation functionals including the local density approximation (LDA), the generalized gradient approximation (GGA), and the additional + U corrections for strong on-site Coulomb interaction of transition metal 3d states, aiming to examine the correlation effect on the electronic structures which determine the spin gap and thus the half-metallicity. Our results reveal that the Co2FeGe thin film is metallic in both LDA and GGA, while the + U correction opens up the spin gap for spin minority channel in GGA+ U but not in LDA+U in contrast to its bulk alloy which is predicted to be half-metallic in both LDA+ U and GGA+ U approaches with total spin magnetic moment of 6 μ B . It is found that the surface states developed around the Fermi level and the enhanced 3d e g - t 2 g band splitting for the spin minority channel due to the correlation effect play critical roles to determine the emergence of the half-metallicity.

  7. Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations.

    PubMed

    Wu, Guangfen; Li, Zi; Zhang, Xu; Lu, Gang

    2014-08-07

    Charge separation and exciton dynamics play a crucial role in determining the performance of excitonic photovoltaics. Using time-dependent density functional theory with a range-separated exchange-correlation functional as well as nonadiabatic ab initio molecular dynamics, we have studied the formation and dynamics of charge-transfer (CT) excitons at polymer/ZnO interface. The interfacial atomic structure, exciton density of states and conversions between exciton species are examined from first-principles. The exciton dynamics exhibits both adiabatic and nonadiabatic characters. While the adiabatic transitions are facilitated by C═C vibrations along the polymer (P3HT) backbone, the nonadiabatic transitions are realized by exciton hopping between the excited states. We find that the localized ZnO surface states lead to localized low-energy CT states and poor charge separation. In contrast, the surface states of crystalline C60 are indistinguishable from the bulk states, resulting in delocalized CT states and efficient charge separation in polymer/fullerene (P3HT/PCBM) heterojunctions. The hot CT states are found to cool down in an ultrafast time scale and may not play a major role in charge separation of P3HT/ZnO. Finally we suggest that the dimensions of nanostructured acceptors can be tuned to obtain both efficient charge separation and high open circuit voltages.

  8. Li intercalation in graphite: A van der Waals density-functional study

    NASA Astrophysics Data System (ADS)

    Hazrati, E.; de Wijs, G. A.; Brocks, G.

    2014-10-01

    Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of -0.2 to -0.3 eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC6 and Li1 /2C6 are stable, corresponding to two-dimensional √{3 }×√{3 } lattices of Li atoms intercalated between two graphene planes. Stage N >2 structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li3 /16C6 is relatively stable, corresponding to a √{7 }×√{7 } in-plane packing of Li atoms. First-principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.

  9. Electron Transfer Mechanism in Gold Surface Modified with Self-Assembly Monolayers from First Principles

    NASA Astrophysics Data System (ADS)

    Lima, Filipe C. D. A.; Iost, Rodrigo M.; Crespilho, Frank N.; Caldas, Marília J.; Calzolari, Arrigo; Petrilli, Helena M.

    2013-03-01

    We report the investigation of electron tunneling mechanism of peptide ferrocenyl-glycylcystamine self-assembled monolayers (SAMs) onto Au (111) electrode surfaces. Recent experimental investigations showed that electron transfer in peptides can occur across long distances by separating the donor from the acceptor. This mechanism can be further fostered by the presence of electron donor terminations of Fc terminal units on SAMs but the charge transfer mechanism is still not clear. We study the interaction of the peptide ferrocenyl-glycylcystamine on the Au (111) from first principles calculations to evaluate the electron transfer mechanism. For this purpose, we used the Kohn Sham (KS) scheme for the Density Functional Theory (DFT) as implemented in the Quantum-ESPRESSO suit of codes, using Vandebilt ultrasoft pseudopotentials and GGA-PBE exchange correlation functional to evaluate the ground-state atomic and electronic structure of the system. The analysis of KS orbital at the Fermi Energy showed high electronic density localized in Fc molecules and the observation of a minor contribution from the solvent and counter ion. Based on the results, we infer evidences of electron tunneling mechanism from the molecule to the Au(111). We acknowledge FAPESP for grant support. Also, LCCA/USP, RICE and CENAPAD for computational resources.

  10. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces.

    PubMed

    Kharche, Neerav; Muckerman, James T; Hybertsen, Mark S

    2014-10-24

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The  GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b1 energy level in water. The application to the specific cases of nonpolar (101¯0) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. These effects contribute up to 0.5 eV.

  11. Structural stability, elastic and thermodynamic properties of Au-Cu alloys from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kong, Ge-Xing; Ma, Xiao-Juan; Liu, Qi-Jun; Li, Yong; Liu, Zheng-Tang

    2018-03-01

    Using first-principles calculations method based on density functional theory (DFT) with the Perdew-Burke-Ernzerhof (PBE) implementation of the generalized gradient approximation (GGA), we investigate the structural, elastic and thermodynamic properties of gold-copper intermetallic compounds (Au-Cu ICs). The calculated lattice parameters are in excellent agreement with experimental data. The elastic constants show that all the investigated Au-Cu alloys are mechanically stable. Elastic properties, including the shear modulus, Young's modulus, Poisson's ratio and Pugh's indicator, of the intermetallic compounds are evaluated and discussed, with special attention to the remarkable anisotropy displayed by Au-Cu ICs. Thermodynamic and transport properties including the Debye temperature, thermal conductivity and melting point are predicted from the averaged sound velocity and elastic moduli, using semi-empirical formulas.

  12. Origin of band bending at domain boundaries of MoS2: First-principles study

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoaki; Saito, Riichiro

    2018-04-01

    Using first-principles calculations based on density functional theory, the energetics and electronic structure of domain boundaries of MoS2, in which the same polar edges face each other, are investigated. We find that the interface model with homoelemental bonds is not energetically preferred in this system. The domain boundaries have defect levels that have wide distributions inside the band gap of MoS2. The upshift (or downshift) of the MoS2 energy band occurs around the domain boundaries when the occupation number of electrons in the defect levels increases (or decreases). The charge transfer of electrons from the graphite substrate plays an important role in band bending, which is observed in the recent experiments by scanning tunneling microscopy/spectroscopy.

  13. First-principles calculations of CdS-based nanolayers and nanotubes

    NASA Astrophysics Data System (ADS)

    Bandura, A. V.; Kuruch, D. D.; Evarestov, R. A.

    2018-05-01

    The first-principles simulations using hybrid exchange-correlation density functional and localized atomic basis set were performed to investigate the properties of CdS nanolayers and nanotubes constructed from wurtzite and zinc blende phases. Different types of cylindrical and facetted nanotubes have been considered. The new classification of the facetted nanotubes is proposed. The stability of CdS nanotubes has been analyzed using formation and strain energies. Obtained results show that facetted tubes are favorable as compared to the most of cylindrical ones. Nevertheless, the cylindrical nanotubes generated from the layers with experimentally proved freestanding existence, also have a chance to be synthesized. Preliminary calculation of facetted nanotubes constructed from the zinc blende phase gives evidence for their possible using in the photocatalytic decomposition of water.

  14. Structure and properties of CaMnO3/SrMnO3/BaMnO3 superlattices from first principles

    NASA Astrophysics Data System (ADS)

    Li, Shen; Oh, Seongshik; Rabe, Karin

    2008-03-01

    Previous theoretical and experimental studies have shown that three-component, or ``tri-color'' superlattices can exhibit intrinsic electric polarization due to inversion-symmetry breaking in the layer sequence. In ferromagnetic inversion-symmetry-breaking superlattices, controlled symmetry lowering is similarly expected to lead to interesting new and tunable properties. Here, we present results of first-principles density-functional-theory calculations for short-period CaMnO3/SrMnO3/BaMnO3 superlattices, using VASP. The ground state structure, magnetic ordering, polarization and dielectric response will be presented. The role of epitaxial strain in the individual layers and the role of layer sequence will be explored. Connections to experimental studies and prospects for future work will be discussed.

  15. First principles study of electronic properties, interband transitions and electron energy loss of α-graphyne

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2016-04-01

    The electronic and optical properties of α-graphyne sheet are investigated by using density functional theory. The results confirm that α-graphyne sheet is a zero-gap semimetal. The optical properties of the α-graphyne sheet such as dielectric function, refraction index, electron energy loss function, reflectivity, absorption coefficient and extinction index are calculated for both parallel and perpendicular electric field polarizations. The optical spectra are strongly anisotropic along these two polarizations. For (E ∥ x), absorption edge is at 0 eV, while there is no absorption below 8 eV for (E ∥ z).

  16. Structural, electronic and magnetic properties of Pr-based filled skutterudites: A first principle study

    NASA Astrophysics Data System (ADS)

    Yadav, Priya; Nautiyal, Shashank; Verma, U. P.

    2018-04-01

    Ternary skutterudites materials exhibit good electronic properties due to the unpaired d- and f- electrons of the transition and rare-earth metals, respectively. In this communication, we have performed the structural optimization of Pr-based filled skutterudite (PrCo4P12) for the first time and obtained the electronic band structure, density of states and magnetic moments by using the full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT). Our obtained magnetic moment of PrCo4P12 is ˜ 1.8 µB in which main contribution is due to Pr atom. Behavior of this material is metallic and it is most stable in body centered cubic (BCC) structure.

  17. Element-resolved thermodynamics of magnetocaloric LaFe 13 – x Si x

    DOE PAGES

    Gruner, Markus E.; Keune, Werner; Cuenya, B. Roldan; ...

    2015-02-04

    By combination of two independent approaches, nuclear resonant inelastic x-ray scattering and first-principles calculations in the framework of density functional theory, we demonstrate significant changes in the element-resolved vibrational density of states across the first-order transition from the ferromagnetic low temperature to the paramagnetic high temperature phase of LaFe 13-xSi x. These changes originate from the itinerant electron metamagnetism associated with Fe and lead to a pronounced magneto-elastic softening despite the large volume decrease at the transition. As a result, the increase in lattice entropy associated with the Fe subsystem is significant and contributes cooperatively with the magnetic and electronicmore » entropy changes to the excellent magneto- and barocaloric properties.« less

  18. Maxima of |Ψ|2: a connection between quantum mechanics and Lewis structures.

    PubMed

    Lüchow, Arne

    2014-04-30

    The maxima of squared electronic wave functions |Ψ|2 are analyzed for a number of small molecules. They are in principle observables and show considerable chemical insight from first principles. The maxima contain substantial information about the relative electron positions in a molecule, such as the pairing of opposite spin electrons and the Pauli repulsion which are lost in the electron density. Single bond and double bond as well as polar bond pairs and lone pairs are obtained from the maximum analysis. In many cases, we find a correspondence to the electron arrangements in molecules as assumed by Lewis in 1916. Copyright © 2014 Wiley Periodicals, Inc.

  19. First-principles investigation on transport properties of NiO monowire-based molecular device

    NASA Astrophysics Data System (ADS)

    Chandiramouli, R.; Sriram, S.

    2014-08-01

    The electronic transport properties of novel NiO monowire connected to the gold electrodes are investigated using density functional theory combined with nonequilibrium Green's functions formalism. The densities of states of the monowire under various bias conditions are discussed. The transport properties are discussed in terms of the transmission spectrum and current-voltage characteristics of NiO monowire. The transmission pathways provide the insight to the transmission of electrons along the monowire. With different bias voltages, current in the order of few microampere flows across the monowire. The applied voltage controls the flow of current through the monowire, which can be used to control the current efficiently in the low order of magnitude in the molecular device.

  20. Exploring the effect of oxygen coverage on the electronic, magnetic and chemical properties of Ni(111) supported h-BN sheet: A density functional study

    NASA Astrophysics Data System (ADS)

    Wasey, A. H. M. Abdul; Das, G. P.; Majumder, C.

    2017-05-01

    Traditionally, h-BN is used as coating material to prevent corrosion on the metal surface. In sharp contrast to this, here we show catalytic behavior of h-BN monolayer deposited on Ni(111) surface, clearly demonstrating the influence of the support in modulation of h-BN electronic structure. Using first principles density functional theory we have studied the interaction of O2 molecules with the h-BN/Ni(111) surface. The activation of Osbnd O bond, which is the most important step for oxidative catalysis, showed dependence on the O2 coverage. Thus this study is extremely important to predict the optimum O2 pressure in reaction chamber for efficient catalysis.

  1. Origin of structural analogies and differences between the atomic structures of GeSe4 and GeS4 glasses: A first principles study.

    PubMed

    Bouzid, Assil; Le Roux, Sébastien; Ori, Guido; Boero, Mauro; Massobrio, Carlo

    2015-07-21

    First-principles molecular dynamics simulations based on density functional theory are employed for a comparative study of structural and bonding properties of two stoichiometrically identical chalcogenide glasses, GeSe4 and GeS4. Two periodic cells of 120 and 480 atoms are adopted. Both glasses feature a coexistence of Ge-centered tetrahedra and Se(S) homopolar connections. Results obtained for N = 480 indicate substantial differences at the level of the Se(S) environment, since Ge-Se-Se connections are more frequent than the corresponding Ge-S-S ones. The presence of a more prominent first sharp diffraction peak in the total neutron structure factor of glassy GeS4 is rationalized in terms of a higher number of large size rings, accounting for extended Ge-Se correlations. Both the electronic density of states and appropriate electronic localization tools provide evidence of a higher ionic character of Ge-S bonds when compared to Ge-Se bonds. An interesting byproduct of these investigations is the occurrence of discernible size effects that affect structural motifs involving next nearest neighbor distances, when 120 or 480 atoms are used.

  2. Screening based approach and dehydrogenation kinetics for MgH2: Guide to find suitable dopant using first-principles approach.

    PubMed

    Kumar, E Mathan; Rajkamal, A; Thapa, Ranjit

    2017-11-14

    First-principles based calculations are performed to investigate the dehydrogenation kinetics considering doping at various layers of MgH 2 (110) surface. Doping at first and second layer of MgH 2 (110) has a significant role in lowering the H 2 desorption (from surface) barrier energy, whereas the doping at third layer has no impact on the barrier energy. Molecular dynamics calculations are also performed to check the bonding strength, clusterization, and system stability. We study in details about the influence of doping on dehydrogenation, considering the screening factors such as formation enthalpy, bulk modulus, and gravimetric density. Screening based approach assist in finding Al and Sc as the best possible dopant in lowering of desorption temperature, while preserving similar gravimetric density and Bulk modulus as of pure MgH 2 system. The electron localization function plot and population analysis illustrate that the bond between Dopant-Hydrogen is mainly covalent, which weaken the Mg-Hydrogen bonds. Overall we observed that Al as dopant is suitable and surface doping can help in lowering the desorption temperature. So layer dependent doping studies can help to find the best possible reversible hydride based hydrogen storage materials.

  3. First-principles X-ray absorption dose calculation for time-dependent mass and optical density.

    PubMed

    Berejnov, Viatcheslav; Rubinstein, Boris; Melo, Lis G A; Hitchcock, Adam P

    2018-05-01

    A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.

  4. Thermodynamic and redox properties of graphene oxides for lithium-ion battery applications: a first principles density functional theory modeling approach.

    PubMed

    Kim, Sunghee; Kim, Ki Chul; Lee, Seung Woo; Jang, Seung Soon

    2016-07-27

    Understanding the thermodynamic stability and redox properties of oxygen functional groups on graphene is critical to systematically design stable graphene-based positive electrode materials with high potential for lithium-ion battery applications. In this work, we study the thermodynamic and redox properties of graphene functionalized with carbonyl and hydroxyl groups, and the evolution of these properties with the number, types and distribution of functional groups by employing the density functional theory method. It is found that the redox potential of the functionalized graphene is sensitive to the types, number, and distribution of oxygen functional groups. First, the carbonyl group induces higher redox potential than the hydroxyl group. Second, more carbonyl groups would result in higher redox potential. Lastly, the locally concentrated distribution of the carbonyl group is more beneficial to have higher redox potential compared to the uniformly dispersed distribution. In contrast, the distribution of the hydroxyl group does not affect the redox potential significantly. Thermodynamic investigation demonstrates that the incorporation of carbonyl groups at the edge of graphene is a promising strategy for designing thermodynamically stable positive electrode materials with high redox potentials.

  5. Effect of dispersion correction on the Au(1 1 1)-H2O interface: A first-principles study

    NASA Astrophysics Data System (ADS)

    Nadler, Roger; Sanz, Javier Fdez.

    2012-09-01

    A theoretical study of the H2O-Au(1 1 1) interface based on first principles density functional theory (DFT) calculations with and without inclusion of dispersion correction is reported. Three different computational approaches are considered. First, the standard generalized gradient approximation (GGA) functional PBE is employed. Second, an additional energy term is further included that adds a semi-empirically derived dispersion correction (PBE-D2), and, finally, a recently proposed functional that includes van der Waals (vdW) interactions directly in its functional form (optB86b-vdW) was used to represent the state-of-the art of DFT functionals. The monomeric water adsorption was first considered in order to explore the dependency of geometry on the details of the model slab used to represent it (size, thickness, coverage). When the dispersion corrections are included the Au-H2O interaction is stronger, as manifested by the smaller dAu-O and stronger adsorption energies. Additionally, the interfacial region between Au(1 1 1) slab surfaces and a liquid water layer was investigated with Born-Oppenheimer molecular dynamics (BOMD) using the same functionals. Two or three interfacial orientations can be determined, depending on the theoretical methodology applied. Closest to the surface, H2O is adsorbed O-down, whereas further away it is oriented with one OH bond pointing to the surface and the molecular plane parallel to the normal direction. For the optB86b-vdW functional a third orientation is found where one H atom points into the bulk water layer and the second OH bond is oriented parallel to the metal surface. As for the water density in the first adsorption layer we find a very small increase of roughly 8%. From the analysis of vibrational spectra a weakening of the H-bond network is observed upon the inclusion of the Au(1 1 1) slab, however, no disruption of H-bonds is observed. While the PBE and PBE-D2 spectra are very similar, the optB86b-vdW spectrum shows that the H-bonds are even more weakened.

  6. Lattice dynamics and elasticity for ε-plutonium [First-principles lattice dynamics for ε-plutonium

    DOE PAGES

    Söderlind, Per

    2017-04-25

    Here, lattice dynamics and elasticity for the high-temperature ε phase (body-centered cubic; bcc) of plutonium is predicted utilizing first-principles electronic structure coupled with a self-consistent phonon method that takes phonon-phonon interaction and strong anharmonicity into account. These predictions establish the first sensible lattice-dynamics and elasticity data on ε-Pu. The atomic forces required for the phonon scheme are highly accurate and derived from the total energies obtained from relativistic and parameter-free density-functional theory. The results appear reasonable but no data exist to compare with except those from dynamical mean-field theory that suggest ε-plutonium is mechanically unstable. Fundamental knowledge and understanding ofmore » the high-temperature bcc phase, that is generally present in all actinide metals before melting, is critically important for a proper interpretation of the phase diagram as well as practical modeling of high-temperature properties.« less

  7. First-principles study of transition-metal nitrides as diffusion barriers against Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Zhi-Gang; Yacout, Abdellatif M.; Kim, Yeon Soo

    2016-04-01

    Using density-functional theory based first-principles calculations we provided a comparative study of the diffusion barrier properties of TiN, ZrN, and HfN against Al for U-Mo dispersion fuel applications. We firstly examined the thermodynamic stability of these transition-metal nitrides with Al. The calculated heats of reaction show that both TiN and ZrN are thermodynamically unstable diffusion barrier materials, which might be decomposed by Al at relatively high temperatures. As a comparison, HfN is a stable diffusion barrier material for Al. To evaluate the kinetic stability of these nitride systems against Al diffusion, we investigated the diffusion mechanisms of Al in TiN,more » ZrN and HfN using atomic scale simulations. The effect of non-stoichiometry on the defect formation and Al migration was systematically studied. (C) 2015 ELSEVIER B.V. All rights reserved« less

  8. Calculation of phonon dispersion relation using new correlation functional

    NASA Astrophysics Data System (ADS)

    Jitropas, Ukrit; Hsu, Chung-Hao

    2017-06-01

    To extend the use of Local Density Approximation (LDA), a new analytical correlation functional is introduced. Correlation energy is an essential ingredient within density functional theory and used to determine ground state energy and other properties including phonon dispersion relation. Except for high and low density limit, the general expression of correlation energy is unknown. The approximation approach is therefore required. The accuracy of the modelling system depends on the quality of correlation energy approximation. Typical correlation functionals used in LDA such as Vosko-Wilk-Nusair (VWN) and Perdew-Wang (PW) were obtained from parameterizing the near-exact quantum Monte Carlo data of Ceperley and Alder. These functionals are presented in complex form and inconvenient to implement. Alternatively, the latest published formula of Chachiyo correlation functional provides a comparable result for those much more complicated functionals. In addition, it provides more predictive power based on the first principle approach, not fitting functionals. Nevertheless, the performance of Chachiyo formula for calculating phonon dispersion relation (a key to the thermal properties of materials) has not been tested yet. Here, the implementation of new correlation functional to calculate phonon dispersion relation is initiated. The accuracy and its validity will be explored.

  9. Optical absorption in disordered monolayer molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Ekuma, C. E.; Gunlycke, D.

    2018-05-01

    We explore the combined impact of sulfur vacancies and electronic interactions on the optical properties of monolayer MoS2. First, we present a generalized Anderson-Hubbard Hamiltonian that accounts for both randomly distributed sulfur vacancies and the presence of dielectric screening within the material. Second, we parametrize this energy-dependent Hamiltonian from first-principles calculations based on density functional theory and the Green's function and screened Coulomb (GW) method. Third, we apply a first-principles-based many-body typical medium method to determine the single-particle electronic structure. Fourth, we solve the Bethe-Salpeter equation to obtain the charge susceptibility χ with its imaginary part being related to the absorbance A . Our results show that an increased vacancy concentration leads to decreased absorption both in the band continuum and from exciton states within the band gap. We also observe increased absorption below the band-gap threshold and present an expression, which describes Lifshitz tails, in excellent qualitative agreement with our numerical calculations. This latter increased absorption in the 1.0 -2.5 eV range makes defect engineering of potential interest for solar cell applications.

  10. Fist Principles Approach to the Magneto Caloric Effect: Application to Ni2MnGa

    NASA Astrophysics Data System (ADS)

    Odbadrakh, Khorgolkhuu; Nicholson, Don; Rusanu, Aurelian; Eisenbach, Markus; Brown, Gregory; Evans, Boyd, III

    2011-03-01

    The magneto-caloric effect (MCE) has potential application in heating and cooling technologies. In this work, we present calculated magnetic structure of a candidate MCE material, Ni 2 MnGa. The magnetic configurations of a 144 atom supercell is first explored using first-principle, the results are then used to fit exchange parameters of a Heisenberg Hamiltonian. The Wang-Landau method is used to calculate the magnetic density of states of the Heisenberg Hamiltonian. Based on this classical estimate, the magnetic density of states is calculated using the Wang Landau method with energies obtained from the first principles method. The Currie temperature and other thermodynamic properties are calculated using the density of states. The relationships between the density of magnetic states and the field induced adiabatic temperature change and isothermal entropy change are discussed. This work was sponsored by the Laboratory Directed Research and Development Program (ORNL), by the Mathematical, Information, and Computational Sciences Division; Office of Advanced Scientific Computing Research (US DOE), and by the Materials Sciences and Engineering Division; Office of Basic Energy Sciences (US DOE).

  11. Thermoelectric properties of 2H-CuGaO2 for device applications: A first principle TB-mBJ potential study

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.; Praveen, C. S.

    2017-12-01

    Here we report the structural, electronic, optical, and thermoelectric properties of delafossite type 2H-CuGaO2 using first principles calculations. The present calculation predict an indirect band gap of 1.20 eV and a direct band gap of 3.48 eV. A detailed analysis of the electronic structure is provided based on atom and orbital projected density of states. Frequency dependent dielectric functions, refractive index, and absorption coefficient as a function of photon energy are discussed. The thermoelectric properties with power factor, and the figure of merit are reported as a function of chemical potential in the region ± 0.195 (μ -EF) eV at constant temperature of 300 and 800 K. The thermoelectric properties shows that 2H-CuGaO2 could be potential candidate for engineering devises operating at high temperature for the chemical potential in the range of ± 0.055 (μ -EF) eV and beyond this range the thermoelectric performance of 2H-CuGaO2 get reduced.

  12. Large isosymmetric reorientation of oxygen octahedra rotation axes in epitaxially strained perovskites.

    PubMed

    Rondinelli, James M; Coh, Sinisa

    2011-06-10

    Using first-principles density functional theory calculations, we discover an anomalously large biaxial strain-induced octahedral rotation axis reorientation in orthorhombic perovskites with tendency towards rhombohedral symmetry. The transition between crystallographically equivalent (isosymmetric) structures with different octahedral rotation magnitudes originates from strong strain-octahedral rotation coupling available to perovskites and the energetic hierarchy among competing octahedral tilt patterns. By elucidating these criteria, we suggest many functional perovskites would exhibit the transition in thin film form, thus offering a new landscape in which to tailor highly anisotropic electronic responses.

  13. First-principles Theory of Inelastic Transport and Local Heating in Atomic Gold Wires

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka

    2007-04-01

    We present theoretical calculations of the inelastic transport properties in atomic gold wires. Our method is based on a combination of density functional theory and non-equilibrium Green's functions. The vibrational spectra for extensive series of wire geometries have been calculated using SIESTA, and the corresponding effects in the conductance are analyzed. In particular, we focus on the heating of the active vibrational modes. By a detailed comparison with experiments we are able to estimate an order of magnitude for the external damping of the active vibrations.

  14. First principles calculation of elastic and magnetic properties of Cr-based full-Heusler alloys

    NASA Astrophysics Data System (ADS)

    Aly, Samy H.; Shabara, Reham M.

    2014-06-01

    We present an ab-initio study of the elastic and magnetic properties of Cr-based full-Heusler alloys within the first-principles density functional theory. The lattice constant, magnetic moment, bulk modulus and density of states are calculated using the full-potential nonorthogonal local-orbital minimum basis (FPLO) code in the Generalized Gradient Approximation (GGA) scheme. Only the two alloys Co2CrSi and Fe2CrSi are half-metallic with energy gaps of 0.88 and 0.55 eV in the spin-down channel respectively. We have predicted the metallicity state for Fe2CrSb, Ni2CrIn, Cu2CrIn, and Cu2CrSi alloys. Fe2CrSb shows a strong pressure dependent, e.g. exhibits metallicity at zero pressure and turns into a half-metal at P≥10 GPa. The total and partial magnetic moments of these alloys were studied under higher pressure, e.g. in Co2CrIn, the total magnetic moment is almost unchanged under higher pressure up to 500 GPa.

  15. First-Principles Study on the Structural and Magnetic Properties of Iron Hydride

    NASA Astrophysics Data System (ADS)

    Tsumuraya, Takao; Matsuura, Yasuyuki; Shishidou, Tatsuya; Oguchi, Tamio

    2012-06-01

    The magnetic and structural properties of iron hydride FeH with the double hexagonal close-packed (dhcp) and hexagonal close-packed (hcp) structures are investigated by first-principles density-functional theory calculations with a spin-polarized form of generalized gradient approximation. All the calculations are performed using all-electron full-potential linearized augmented plane wave method. Both dhcp and hcp FeH are ferromagnetic at ambient pressure. The ferromagnetic ordering of the dhcp structure collapses at a pressure of 48 GPa, while that of the hcp structure vanishes gradually from 48 GPa. The modification in the density of states (DOS) due to the applied pressure causes the collapse of the magnetization. The difference in magnetic moment reduction between dhcp and hcp FeH is attributed to their DOS around the Fermi level. The calculated magnetocrystalline anisotropy energies between in-plane and out-of-plane spin orientations are found to be 124 μeV/Fe for the dhcp structure, and 100 μeV/Fe for the hcp structure. The easy axis is in-plane direction for both structures.

  16. First-principles study on the electronic structure and elastic properties of Mo2NiB2 doped with V

    NASA Astrophysics Data System (ADS)

    Li, Jinming; Li, Xiaobo; Gao, Haiyun; Peng, Dian

    2018-04-01

    The content of this study is to analyze the electronic structure and elastic properties that the different structures of Mo2NiB2 and doping with V of the tetragonal M3B2 (Mo2Ni1‑xVxB2 and Mo2‑yNi1‑yV2yB2) (x = 0.25, 0.5, 0.75 and y = 0.125, 0.25, 0.375) by first-principles calculations based on density functional theory (DFT) combined with the projection-plus-wave method. But the calculated formation energy shows that V atoms prefer to substitute the Mo and Ni atoms of the tetragonal Mo2NiB2. Moreover, with the increase of V content, the formation enthalpy of tetragonal Mo2NiB2 is reduced, and the formation enthalpy of Mo1.625Ni0.625V0.75B2 is the least as ‑53.23 kJ/mol. The calculated elastic constant suffices the condition of mechanical stability, indicate that they are stable. The calculated elastic modulus illustrates that Mo2NiB2 having better mechanical properties when V elements are at Mo and Ni sites instead of Ni sites. The calculated and analyzed density of states of Mo1.625Ni0.625V0.75B2 has the smallest the density of states at the Fermi level indicating that it has the more stable structure. For the theoretical analysis of the first-principles calculations, the addition of 15 atom% of the V and V doping modes of Mo and Ni are preferentially replaced by V atoms of Mo2NiB2 ternary boride has the best performance.

  17. First-principles prediction of the softening of the silicon shock Hugoniot curve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X.; Militzer, B.; Collins, L. A.

    Here, whock compression of silicon (Si) under extremely high pressures (>100 Mbar) was investigated by using two first-principles methods of orbital-free molecular dynamics (OFMD) and path integral Monte Carlo (PIMC). While pressures from the two methods agree very well, PIMC predicts a second compression maximum because of 1s electron ionization that is absent in OFMD calculations since Thomas–Fermi-based theories lack inner shell structure. The Kohn–Sham density functional theory is used to calculate the equation of state (EOS) of warm dense silicon for low-pressure loadings (P < 100 Mbar). Combining these first-principles EOS results, the principal Hugoniot curve of silicon formore » pressures varying from 0.80 Mbar to above ~10 Gbar was derived. We find that silicon is ~20% or more softer than what was predicted by EOS models based on the chemical picture of matter. Existing experimental data (P ≈ 1–2 Mbar) seem to indicate this softening behavior of Si, which calls for future strong-shock experiments (P > 10 Mbar) to benchmark our results.« less

  18. First-principles calculations, experimental study, and thermodynamic modeling of the Al-Co-Cr system.

    PubMed

    Liu, Xuan L; Gheno, Thomas; Lindahl, Bonnie B; Lindwall, Greta; Gleeson, Brian; Liu, Zi-Kui

    2015-01-01

    The phase relations and thermodynamic properties of the condensed Al-Co-Cr ternary alloy system are investigated using first-principles calculations based on density functional theory (DFT) and phase-equilibria experiments that led to X-ray diffraction (XRD) and electron probe micro-analysis (EPMA) measurements. A thermodynamic description is developed by means of the calculations of phase diagrams (CALPHAD) method using experimental and computational data from the present work and the literature. Emphasis is placed on modeling the bcc-A2, B2, fcc-γ, and tetragonal-σ phases in the temperature range of 1173 to 1623 K. Liquid, bcc-A2 and fcc-γ phases are modeled using substitutional solution descriptions. First-principles special quasirandom structures (SQS) calculations predict a large bcc-A2 (disordered)/B2 (ordered) miscibility gap, in agreement with experiments. A partitioning model is then used for the A2/B2 phase to effectively describe the order-disorder transitions. The critically assessed thermodynamic description describes all phase equilibria data well. A2/B2 transitions are also shown to agree well with previous experimental findings.

  19. First-principles prediction of the softening of the silicon shock Hugoniot curve

    DOE PAGES

    Hu, S. X.; Militzer, B.; Collins, L. A.; ...

    2016-09-15

    Here, whock compression of silicon (Si) under extremely high pressures (>100 Mbar) was investigated by using two first-principles methods of orbital-free molecular dynamics (OFMD) and path integral Monte Carlo (PIMC). While pressures from the two methods agree very well, PIMC predicts a second compression maximum because of 1s electron ionization that is absent in OFMD calculations since Thomas–Fermi-based theories lack inner shell structure. The Kohn–Sham density functional theory is used to calculate the equation of state (EOS) of warm dense silicon for low-pressure loadings (P < 100 Mbar). Combining these first-principles EOS results, the principal Hugoniot curve of silicon formore » pressures varying from 0.80 Mbar to above ~10 Gbar was derived. We find that silicon is ~20% or more softer than what was predicted by EOS models based on the chemical picture of matter. Existing experimental data (P ≈ 1–2 Mbar) seem to indicate this softening behavior of Si, which calls for future strong-shock experiments (P > 10 Mbar) to benchmark our results.« less

  20. DNA Nucleotides Detection via capacitance properties of Graphene

    NASA Astrophysics Data System (ADS)

    Khadempar, Nahid; Berahman, Masoud; Yazdanpanah, Arash

    2016-05-01

    In the present paper a new method is suggested to detect the DNA nucleotides on a first-principles calculation of the electronic features of DNA bases which chemisorbed to a graphene sheet placed between two gold electrodes in a contact-channel-contact system. The capacitance properties of graphene in the channel are surveyed using non-equilibrium Green's function coupled with the Density Functional Theory. Thus, the capacitance properties of graphene are theoretically investigated in a biological environment, and, using a novel method, the effect of the chemisorbed DNA nucleotides on electrical charges on the surface of graphene is deciphered. Several parameters in this method are also extracted including Electrostatic energy, Induced density, induced electrostatic potential, Electron difference potential and Electron difference density. The qualitative and quantitative differences among these parameters can be used to identify DNA nucleotides. Some of the advantages of this approach include its ease and high accuracy. What distinguishes the current research is that it is the first experiment to investigate the capacitance properties of gaphene changes in the biological environment and the effect of chemisorbed DNA nucleotides on the surface of graphene on the charge.

  1. An efficient method for quantum transport simulations in the time domain

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yam, C.-Y.; Frauenheim, Th.; Chen, G. H.; Niehaus, T. A.

    2011-11-01

    An approximate method based on adiabatic time dependent density functional theory (TDDFT) is presented, that allows for the description of the electron dynamics in nanoscale junctions under arbitrary time dependent external potentials. The density matrix of the device region is propagated according to the Liouville-von Neumann equation. The semi-infinite leads give rise to dissipative terms in the equation of motion which are calculated from first principles in the wide band limit. In contrast to earlier ab initio implementations of this formalism, the Hamiltonian is here approximated in the spirit of the density functional based tight-binding (DFTB) method. Results are presented for two prototypical molecular devices and compared to full TDDFT calculations. The temporal profile of the current traces is qualitatively well captured by the DFTB scheme. Steady state currents show considerable variations, both in comparison of approximate and full TDDFT, but also among TDDFT calculations with different basis sets.

  2. Field effect transistors based on phosphorene nanoribbon with selective edge-adsorption: A first-principles study

    NASA Astrophysics Data System (ADS)

    Hu, Mengli; Yang, Zhixiong; Zhou, Wenzhe; Li, Aolin; Pan, Jiangling; Ouyang, Fangping

    2018-04-01

    By using density functional theory (DFT) and nonequilibrium Green's function (NEGF), field effect transistor (FET) based on zigzag shaped phosphorene nanoribbons (ZPNR) are investigated. The FETs are constructed with bare-edged ZPNRs as electrodes and H, Cl or OH adsorbed ZPNRs as channel. It is found FETs with the three kinds of channel show similar transport properties. The FET is p-type with a maximum current on/off ratio of 104 and a minimum off-current of 1 nA. The working mode of FETs is dependent on the parity of channel length. It can be either enhancement mode or depletion mode and the off-state current shows an even-odd oscillation. The current oscillations are interpreted with density of states (DOS) analysis and methods of evolution operator and tight-binding Hamiltonian. Operating mechanism of the designed FETs is also presented with projected local density of states and band diagrams.

  3. A high efficient nanostructured filter based on functionalized carbon nanotube to reduce the tobacco-specific nitrosamines, NNK

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi

    2018-03-01

    Filtration efficiency of Pd and Ni loaded single-walled carbon nanotubes via the applicability of the adsorption process for the removal NNK, the tobacco-specific nitrosamines, from tobacco smoke were investigated using first-principles calculations. The thermal and mechanical stability of designed nanostructured filter could allow them to compete with typical commercially used. It is expected that the removal efficiency of the proposed nanostructured filter could also provide a promising adsorbent candidate in removing the environmental pollutant. The suggested separation mechanism in this study was discussed with frontier molecular orbital theory, natural bond orbital (NBO) analyses and the density of states in the density functional theory framework. Finally, by the Bader theory of atoms in molecules (AIM), the topological properties of the electron density contributions for intermolecular and intramolecular interactions has been analyzed. Calculations show that the transition metal-loaded SWCNT exhibit strong affinity toward the NNK molecules.

  4. Optical conductivity of partially oxidized graphene from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasehnia, F., E-mail: f.nasehnia@gmail.com; Seifi, M., E-mail: Seifi@guilan.ac.ir

    2015-07-07

    We investigate the geometry, electronic structure, and optical properties of partially oxidized graphene using density functional theory. Our calculations show that oxygen atoms are chemisorbed on graphene plane and distort carbon atoms vertically, with almost no change in the in-plane structure. The ground state configurations for different oxygen coverages ranging from 2% to 50% (O/C ratio) are calculated and show the strong tendency of oxygen adatoms to aggregate and form discrete islands on graphene plane. It is found that the opened band gap due to oxygen functionalization depends on the oxygen density and the adsorption configuration. The gap is notmore » significant for oxygen densities lower than 8%. The optical conductivities are calculated in the infrared, visible, and ultraviolet regions and show different characteristic features depending on the degree of oxidation. These results imply that optical measurement techniques can be employed to monitor oxidation (or reduction) process as contact-free methods.« less

  5. A wave function for stock market returns

    NASA Astrophysics Data System (ADS)

    Ataullah, Ali; Davidson, Ian; Tippett, Mark

    2009-02-01

    The instantaneous return on the Financial Times-Stock Exchange (FTSE) All Share Index is viewed as a frictionless particle moving in a one-dimensional square well but where there is a non-trivial probability of the particle tunneling into the well’s retaining walls. Our analysis demonstrates how the complementarity principle from quantum mechanics applies to stock market prices and of how the wave function presented by it leads to a probability density which exhibits strong compatibility with returns earned on the FTSE All Share Index. In particular, our analysis shows that the probability density for stock market returns is highly leptokurtic with slight (though not significant) negative skewness. Moreover, the moments of the probability density determined under the complementarity principle employed here are all convergent - in contrast to many of the probability density functions on which the received theory of finance is based.

  6. Principles of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Landé, Alfred

    2013-10-01

    Preface; Introduction: 1. Observation and interpretation; 2. Difficulties of the classical theories; 3. The purpose of quantum theory; Part I. Elementary Theory of Observation (Principle of Complementarity): 4. Refraction in inhomogeneous media (force fields); 5. Scattering of charged rays; 6. Refraction and reflection at a plane; 7. Absolute values of momentum and wave length; 8. Double ray of matter diffracting light waves; 9. Double ray of matter diffracting photons; 10. Microscopic observation of ρ (x) and σ (p); 11. Complementarity; 12. Mathematical relation between ρ (x) and σ (p) for free particles; 13. General relation between ρ (q) and σ (p); 14. Crystals; 15. Transition density and transition probability; 16. Resultant values of physical functions; matrix elements; 17. Pulsating density; 18. General relation between ρ (t) and σ (є); 19. Transition density; matrix elements; Part II. The Principle of Uncertainty: 20. Optical observation of density in matter packets; 21. Distribution of momenta in matter packets; 22. Mathematical relation between ρ and σ; 23. Causality; 24. Uncertainty; 25. Uncertainty due to optical observation; 26. Dissipation of matter packets; rays in Wilson Chamber; 27. Density maximum in time; 28. Uncertainty of energy and time; 29. Compton effect; 30. Bothe-Geiger and Compton-Simon experiments; 31. Doppler effect; Raman effect; 32. Elementary bundles of rays; 33. Jeans' number of degrees of freedom; 34. Uncertainty of electromagnetic field components; Part III. The Principle of Interference and Schrödinger's equation: 35. Physical functions; 36. Interference of probabilities for p and q; 37. General interference of probabilities; 38. Differential equations for Ψp (q) and Xq (p); 39. Differential equation for фβ (q); 40. The general probability amplitude Φβ' (Q); 41. Point transformations; 42. General theorem of interference; 43. Conjugate variables; 44. Schrödinger's equation for conservative systems; 45. Schrödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.

  7. Absorption of CO2 on Carbon-based Sensors: First-Principle Analysis

    NASA Astrophysics Data System (ADS)

    Tit, Nacir; Elezzi, Mohammed; Abdullah, Hasan; Bahlouli, Hocine; Yamani, Zain

    We present first-principle investigation of the adsorption properties of CO and CO2 molecules on both graphene and carbon nano-tubes (CNTs) in presence of metal catalysis, mainly iron (Fe). The relaxations were carried out using the self-consistent-charge density-functional tight-binding (SCC-DFTB) code in neglect of heat effects. The results show the following: (1) Defected graphene is found to have high sensitivity and high selectivity towards chemisorption of CO molecules and weak physisorption with CO2 molecules. (2) In case of CNTs, the iron ``Fe'' catalyst plays an essential role in capturing CO2 molecules. The Fe ad-atoms on the surface of CNT introduce huge density of states at Fermi level, but the capture of CO2 molecules would reduce that density and consequently reduce conductivity and increase sensitivity. Concerning the selectivity, we have studied the sensitivity versus various gas molecules (such as: O2, N2, H2, H2O, and CO). Furthermore, to assess the effect of catalysis on sensitivity, we have studied the sensitivity of other metal catalysts (such as: Ni, Co, Ti, and Sc). We found that CNT-Fe is highly sensitive and selective towards detection of CO and CO2 molecules. CNT being conductive or semiconducting does not matter much on the adsorption properties.

  8. Coupling of ab initio density functional theory and molecular dynamics for the multiscale modeling of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ng, T. Y.; Yeak, S. H.; Liew, K. M.

    2008-02-01

    A multiscale technique is developed that couples empirical molecular dynamics (MD) and ab initio density functional theory (DFT). An overlap handshaking region between the empirical MD and ab initio DFT regions is formulated and the interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical bond order potential, the long-range Lennard-Jones potential as well as the quantum-mechanical DFT derived forces. A density of point algorithm is also developed to track all interatomic distances in the system, and to activate and establish the DFT and handshaking regions. Through parallel computing, this multiscale method is used here to study the dynamic behavior of single-walled carbon nanotubes (SWCNTs) under asymmetrical axial compression. The detection of sideways buckling due to the asymmetrical axial compression is reported and discussed. It is noted from this study on SWCNTs that the MD results may be stiffer compared to those with electron density considerations, i.e. first-principle ab initio methods.

  9. I-V characteristics of graphene nanoribbon/h-BN heterojunctions and resonant tunneling.

    PubMed

    Wakai, Taiga; Sakamoto, Shoichi; Tomiya, Mitsuyoshi

    2018-07-04

    We present the first principle calculations of the electrical properties of graphene sheet/h-BN heterojunction (GS/h-BN) and 11-armchair graphene nanoribbon/h-BN heterojunction (11-AGNR/h-BN), which are carried out using the density functional theory (DFT) method and the non-equilibrium Green's function (NEGF) technique. Since 11-AGNR belongs to the conductive (3n-1)-family of AGNR, both are metallic nanomaterials with two transverse arrays of h-BN, which is a wide-gap semi-conductor. The two h-BN arrays act as double barriers. The transmission functions (TF) and I-[Formula: see text] characteristics of GS/h-BN and 11-AGNR/h-BN are calculated by DFT and NEGF, and they show that quantum double barrier tunneling occurs. The TF becomes very spiky in both materials, and it leads to step-wise I-[Formula: see text] characteristics rather than negative resistance, which is the typical behavior of double barriers in semiconductors. The results of our first principle calculations are also compared with 1D Dirac equation model for the double barrier system. The model explains most of the peaks of the transmission functions nearby the Fermi energy quite well. They are due to quantum tunneling.

  10. Energy density functional on a microscopic basis

    NASA Astrophysics Data System (ADS)

    Baldo, M.; Robledo, L.; Schuck, P.; Viñas, X.

    2010-06-01

    In recent years impressive progress has been made in the development of highly accurate energy density functionals, which allow us to treat medium-heavy nuclei. In this approach one tries to describe not only the ground state but also the first relevant excited states. In general, higher accuracy requires a larger set of parameters, which must be carefully chosen to avoid redundancy. Following this line of development, it is unavoidable that the connection of the functional with the bare nucleon-nucleon interaction becomes more and more elusive. In principle, the construction of a density functional from a density matrix expansion based on the effective nucleon-nucleon interaction is possible, and indeed the approach has been followed by few authors. However, to what extent a density functional based on such a microscopic approach can reach the accuracy of the fully phenomenological ones remains an open question. A related question is to establish which part of a functional can be actually derived by a microscopic approach and which part, in contrast, must be left as purely phenomenological. In this paper we discuss the main problems that are encountered when the microscopic approach is followed. To this purpose we will use the method we have recently introduced to illustrate the different aspects of these problems. In particular we will discuss the possible connection of the density functional with the nuclear matter equation of state and the distinct features of finite-size effect typical of nuclei.

  11. Towards Rational Design of Functional Fluoride and Oxyfluoride Materials from First Principles

    NASA Astrophysics Data System (ADS)

    Charles, Nenian

    Complex transition metal compounds (TMCs) research has produced functional materials with a range of properties, including ferroelectricity, colossal magnetoresistance, nonlinear optical activity and high-temperature superconductivity. Conventional routes to tune properties in transition metal oxides, for example, have relied primarily on cation chemical substitution and interfacial effects in thin film heterostructures. In heteroanionic TMCs, exhibiting two chemically distinct anions coordinating the same or different cations, engineering of the anion sub-lattice for property control is a promising alternative approach. The presence of multiple anions provides additional design variables, such as anion order, that are absent in homoanionic counterparts. The more complex structural and chemical phase space of heteroanionic materials provides a unique opportunity to realize enhanced or unanticipated electronic, optical, and magnetic responses. Although there is growing interest in heteroanionic materials, and synthetic and characterization advances are occurring for these materials, the crystal-chemistry principles for realizing structural and property control are only slowing emerging. This dissertation employs anion engineering to investigate phenomena in transition metal fluorides and oxyfluorides compounds using first principles density functional theory calculations. Oxyfluorides are particularly intriguing owing their tendency to stabilize highly ordered anion sublattices as well as the potential to combine the advantageous properties of transition metal oxides and fluorides. This work 1) addresses the challenges of studying fluorides and oxyfluorides using first principles calculations; 2) evaluates the feasibility of using external stimuli, such as epitaxial strain and hydrostatic pressure, to control properties of fluorides and oxyfluorides; and 3) formulates a computational workflow based on multiple levels of theory and computation to elucidate structure-property relationships and anion-order descriptors. The insights gained in this work advance the understanding of oxide-fluoride anion engineered materials and we anticipate that it will motivate novel experimental efforts and materials by design in the future.

  12. Density-functional formulation of the generalized pseudopotential theory. III. Transition-metal interatomic potentials

    NASA Astrophysics Data System (ADS)

    Moriarty, John A.

    1988-08-01

    The first-principles, density-functional version of the generalized pseudopotential theory (GPT) developed in papers I and II of this series [Phys. Rev. B 16, 2537 (1977); 26, 1754 (1982)] for empty- and filled-d-band metals is here extended to pure transition metals with partially filled d bands. The present focus is on a rigorous, real-space expansion of the bulk total energy in terms of widely transferable, structure-independent interatomic potentials, including both central-force pair interactions and angular-force triplet and quadruplet interactions. To accomplish this expansion, a specialized set of starting equations is derived from the basic local-density formalism for a pure metal, including refined expansions for the exchange-correlation terms and a simplified yet accurate representation of the cohesive energy. The parent pseudo-Green's-function formalism of the GPT is then used to develop these equations in a plane-wave, localized-d-state basis. In this basis, the cohesive energy divides quite naturally into a large volume component and a smaller structural component. The volume component,which includes all one-ion intra-atomic energy contributions, already gives a good description of the cohesion in lowest order. The structural component is expanded in terms of weak interatomic matrix elements and gives rise to a multi-ion series which establishes the interatomic potentials. Special attention is focused on the dominant d-electron contributions to this series and complete formal results for the two-ion, three-ion, and four-ion d-state potentials (vd2, vd3, and vd4) are derived. In addition, a simplified model is used to demonstrate that while vd3 can be of comparable importance to vd2, vd4 is inherently small and the series is rapidly convergent beyond three-ion interactions. Analytic model forms are also derived for vd2 and vd3 in the case of canonical d bands. In this limit, vd2 is purely attractive and varies with interatomic distance as r-10, while vd3 is weak and attractive for almost empty or filled d bands and maximum in strength and repulsive for half-filled d bands. Full first-principles expressions are then developed for the total two-ion and three-ion potentials and implemented for all 20 3d and 4d transition metals. The first-principles potentials qualitatively display all of the trends predicted by the model results, but they also reflect additional effects, including long-range hybridization tails which must be suitably screened in real-space calculations. Finally, illustrative application of the first-principles potentials is made to the calculation of the [100] phonon spectrum for V and Cr, where the importance of three-ion angular forces is explicitly demonstrated.

  13. Atomic-scale structural and electronic properties of SrTiO3/GaAs interfaces: A combined STEM-EELS and first-principles study

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Bhatnagar, Kunal; Droopad, Ravi; Klie, Robert F.; Öǧüt, Serdar

    2017-07-01

    The electronic properties of epitaxial oxide thin films grown on compound semiconductors are largely determined by the interfacial atomic structure, as well as the thermodynamic conditions during synthesis. Ferroelectric polarization and Fermi-level pinning in SrTiO3 films have been attributed to the presence of oxygen vacancies at the oxide/semiconductor interface. Here, we present scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy analyses of GaAs films grown on SrTiO3 combined with first-principles calculations to determine the atomic and electronic structures of the SrTiO3/GaAs interfaces. An atomically abrupt SrO/As interface is observed and the interfacial SrO layer is found to be O-deficient. First-principles density functional theory (DFT) calculations show SrO/Ga and Sr/As interfaces are favorable under O-rich and O-poor conditions, respectively. The SrO/Ga interface is reconstructed via the formation of Ga-Ga dimers while the Sr/As interface is abrupt and consistent with the experiment. DFT calculations further reveal that intrinsic two-dimensional electron gas (2DEG) forms in both SrO/Ga and Sr/As interfaces, and the Fermi level is pinned to the localized 2DEG states. Interfacial O vacancies can enhance the 2DEG density while it is possible for Ga/As vacancies to unpin the Fermi level from the 2DEG states.

  14. Equation of state and shock compression of warm dense sodium—A first-principles study

    DOE PAGES

    Zhang, Shuai; Driver, Kevin P.; Soubiran, Francois; ...

    2017-02-21

    As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that aremore » consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less

  15. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less

  16. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry.

    PubMed

    Sundararaman, Ravishankar; Goddard, William A; Arias, Tomas A

    2017-03-21

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.

  17. Grand canonical electronic density-functional theory: Algorithms and applications to electrochemistry

    DOE PAGES

    Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.

    2017-03-16

    First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less

  18. Embedded-atom-method interatomic potentials from lattice inversion.

    PubMed

    Yuan, Xiao-Jian; Chen, Nan-Xian; Shen, Jiang; Hu, Wangyu

    2010-09-22

    The present work develops a physically reliable procedure for building the embedded-atom-method (EAM) interatomic potentials for the metals with fcc, bcc and hcp structures. This is mainly based on Chen-Möbius lattice inversion (Chen et al 1997 Phys. Rev. E 55 R5) and first-principles calculations. Following Baskes (Baskes et al 2007 Phys. Rev. B 75 094113), this new version of the EAM eliminates all of the prior arbitrary choices in the determination of the atomic electron density and pair potential functions. Parameterizing the universal form deduced from the calculations within the density-functional scheme for homogeneous electron gas as the embedding function, the new-type EAM potentials for Cu, Fe and Ti metals have successfully been constructed by considering interatomic interactions up to the fifth neighbor, the third neighbor and the seventh neighbor, respectively. The predictions of elastic constants, structural energy difference, vacancy formation energy and migration energy, activation energy of vacancy diffusion, latent heat of melting and relative volume change on melting all satisfactorily agree with the experimental results available or first-principles calculations. The predicted surface energies for low-index crystal faces and the melting point are in agreement with the experimental data to the same extent as those calculated by other EAM-type potentials such as the FBD-EAM, 2NN MEAM and MS-EAM. In addition, the order among the predicted low-index surface energies is also consistent with the experimental information.

  19. Multiscale study of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Byeongchan

    Extremely small structures with reduced dimensionality have emerged as a scientific motif for their interesting properties. In particular, metal nanoparticles have been identified as a fundamental material in many catalytic activities; as a consequence, a better understanding of structure-function relationship of nanoparticles has become crucial. The functional analysis of nanoparticles, reactivity for example, requires an accurate method at the electronic structure level, whereas the structural analysis to find energetically stable local minima is beyond the scope of quantum mechanical methods as the computational cost becomes prohibitingly high. The challenge is that the inherent length scale and accuracy associated with any single method hardly covers the broad scale range spanned by both structural and functional analyses. In order to address this, and effectively explore the energetics and reactivity of metal nanoparticles, a hierarchical multiscale modeling is developed, where methodologies of different length scales, i.e. first principles density functional theory, atomistic calculations, and continuum modeling, are utilized in a sequential fashion. This work has focused on identifying the essential information that bridges two different methods so that a successive use of different methods is seamless. The bond characteristics of low coordination systems have been obtained with first principles calculations, and incorporated into the atomistic simulation. This also rectifies the deficiency of conventional interatomic potentials fitted to bulk properties, and improves the accuracy of atomistic calculations for nanoparticles. For the systematic shape selection of nanoparticles, we have improved the Wulff-type construction using a semi-continuum approach, in which atomistic surface energetics and crystallinity of materials are added on to the continuum framework. The developed multiscale modeling scheme is applied to the rational design of platinum nanoparticles in the range of 2.4 nm to 3.1 nm: energetically favorable structures have been determined in terms of semi-continuum binding energy, and the reactivity of the selected nanoparticle has been investigated based on local density of states from first principles calculations. The calculation suggests that the reactivity landscape of particles is more complex than the simple reactivity of clean surfaces, and the reactivity towards a particular reactant can be predicted for a given structure.

  20. First-principles study of elastic and thermodynamic properties of orthorhombic OsB4 under high pressure

    NASA Astrophysics Data System (ADS)

    Yan, Hai-Yan; Zhang, Mei-Guang; Huang, Duo-Hui; Wei, Qun

    2013-04-01

    The first-principles study on the elastic properties, elastic anisotropy and thermodynamic properties of the orthorhombic OsB4 is reported using density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation. The calculated equilibrium parameters are in good agreement with the available theoretical data. A complete elastic tensor and crystal anisotropies of the ultra-incompressible OsB4 are determined in the pressure range of 0-50 GPa. By the elastic stability criteria, it is predicted that the orthorhombic OsB4 is stable below 50 GPa. By using the quasi-harmonic Debye model, the heat capacity, the coefficient of thermal expansion, and the Grüneisen parameter of OsB4 are also successfully obtained in the present work.

  1. Optoelectronic and magnetic properties of Mn-doped indium tin oxide: A first-principles study

    NASA Astrophysics Data System (ADS)

    Nath Tripathi, Madhvendra; Saeed Bahramy, Mohammad; Shida, Kazuhito; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2012-10-01

    The manganese doped indium tin oxide (ITO) has integrated magnetics, electronics, and optical properties for next generation multifunctional devices. Our first-principles density functional theory (DFT) calculations show that the manganese atom replaces b-site indium atom, located at the second coordination shell of the interstitial oxygen in ITO. It is also found that both anti-ferromagnetic and ferromagnetic behaviors are realizable. The calculated magnetic moment of 3.95μB/Mn as well as the high transmittance of ˜80% for a 150 nm thin film of Mn doped ITO is in good agreement with the experimental data. The inclusion of on-site Coulomb repulsion corrections via DFT + U methods turns out to improve the optical behavior of the system. The optical behaviors of this system reveal its suitability for the magneto-opto-electronic applications.

  2. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    DOE PAGES

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1 b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation andmore » the dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.« less

  3. Cation disorder in MgX2O4 (X = Al, Ga, In) spinels from first principles

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Sickafus, Kurt E.; Stanek, Christopher R.; Rudin, Sven P.; Uberuaga, Blas P.

    2012-07-01

    We have performed first-principles density functional theory calculations to investigate the possible physical origins of the discrepancies between the existing theoretical and experimental studies on cation distribution in MgX2O4 (X = Al, Ga, In) spinel oxides. We show that for MgGa2O4 and MgIn2O4, it is crucial to consider the effects of lattice vibrations to achieve agreement between theory and experiment. For MgAl2O4, we find that neglecting short-range order effects in thermodynamic modeling can lead to significant underestimation of the degree of inversion. Furthermore, we demonstrate that the common practice of representing disordered structures by randomly exchanging atoms within a small periodic supercell can incur large computational error due to either insufficient statistical sampling or finite supercell size effects.

  4. Insights into the activation mechanism of calcium ions on the sericite surface: A combined experimental and computational study

    NASA Astrophysics Data System (ADS)

    Hu, Yuehua; He, Jianyong; Zhang, Chenhu; Zhang, Chenyang; Sun, Wei; Zhao, Dongbo; Chen, Pan; Han, Haisheng; Gao, Zhiyong; Liu, Runqing; Wang, Li

    2018-01-01

    The adsorption behaviors and the activation mechanism of calcium ions (Ca2+) on sericite surface have been investigated by Zeta potential measurements, Fourier transform infrared spectroscopy (FT-IR), Micro-flotation tests and First principle calculations. Zeta potential tests results show that the sericite surface potential increases due to the adsorption of calcium ions on the surface. Micro-flotation tests demonstrate that sericite recovery remarkably rise by 10% due to the calcium ions activation on sericite surface. However, the characteristic adsorption bands of calcium oleate do not appear in the FT-IR spectrum, suggesting that oleate ions just physically adsorb on the sericite surface. The first principle calculations based on the density functional theory (DFT) further reveals the microscopic adsorption mechanism of calcium ions on the sericite surface before and after hydration.

  5. Monolayer Boron Nitride Substrate Interactions with Graphene Under In-Plane and Perpendicular Strains: A First-Principles Study

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2018-04-01

    Effects of strain on the electronic and optical properties of graphene on monolayer boron nitride (BN) substrate are investigated using first-principle calculations based on density functional theory. Strain-free graphene/BN has a small band gap of 97 meV at the K point. The magnitude of band gap increases with in-plane biaxial strain while it decreases with the perpendicular uniaxial strain. The ɛ2 (ω ) spectrum of graphene/BN bilayer for parallel polarization shows red and blue shifts by applying the in-plane tensile and compressive strains, respectively. Also the positions of peaks in the ɛ2 (ω ) spectrum are not significantly changed under perpendicular strain. The calculated results indicate that graphene on the BN substrate has great potential in microelectronic and optoelectronic applications.

  6. First-principles study of Ga-vacancy induced magnetism in β-Ga2O3.

    PubMed

    Yang, Ya; Zhang, Jihua; Hu, Shunbo; Wu, Yabei; Zhang, Jincang; Ren, Wei; Cao, Shixun

    2017-11-01

    First principles calculations based on density functional theory were performed to study the electronic structure and magnetic properties of β-Ga 2 O 3 in the presence of cation vacancies. We investigated two kinds of Ga vacancies at different symmetry sites and the consequent structural distortion and defect states. We found that both the six-fold coordinated octahedral site and the four-fold coordinated tetrahedral site vacancies can lead to a spin polarized ground state. Furthermore, the calculation identified a relationship between the spin polarization and the charge states of the vacancies, which might be explained by a molecular orbital model consisting of uncompensated O 2- 2p dangling bonds. The calculations for the two vacancy systems also indicated a potential long-range ferromagnetic order which is beneficial for spintronics application.

  7. First-Principle Electronic Properties of Dilute-P GaN(1-x)P(x) Alloy for Visible Light Emitters.

    PubMed

    Tan, Chee-Keong; Borovac, Damir; Sun, Wei; Tansu, Nelson

    2016-04-14

    A study on the electronic properties of the dilute-P GaN(1-x)P(x)alloy using First-Principle Density Functional Theory (DFT) calculations is presented. Our results indicate a band gap energy coverage from 3.645 eV to 2.697 eV, with P-content varying from 0% to 12.5% respectively. In addition, through line fitting of calculated and experimental data, a bowing parameter of 9.5 ± 0.5 eV was obtained. The effective masses for electrons and holes are analyzed, as well as the split-off energy parameters where findings indicate minimal interband Auger recombination. The alloy also possesses the direct energy band gap property, indicating its strong potential as a candidate for future photonic device applications.

  8. Structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 phases from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.

    2018-06-01

    The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.

  9. First Principles Modeling and Interpretation of Ionization-Triggered Charge Migration in Molecules

    NASA Astrophysics Data System (ADS)

    Bruner, Adam; Hernandez, Sam; Mauger, Francois; Abanador, Paul; Gaarde, Mette; Schafer, Ken; Lopata, Ken

    Modeling attosecond coherent charge migration in molecules is important for understanding initial steps of photochemistry and light harvesting processes. Ionization triggered hole migration can be difficult to characterize and interpret as the dynamics can be convoluted with excited states. Here, we introduce a real-time time-dependent density functional theory (RT-TDDFT) approach for modeling such dynamics from first principles. To isolate the specific hole dynamics from excited states, Fourier transform analysis and orbital occupations are used to provide a spatial hole representation in the frequency domain. These techniques are applied to hole transfer across a thiophene dimer as well as core-hole triggered valence motion in nitrosobenzene. This work was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC0012462.

  10. Scalable Methods for Electronic Excitations and Optical Responses of Nanostructures: Mathematics to Algorithms to Observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Emily A

    2013-02-02

    Kohn-Sham density functional theory (DFT) is a powerful, well-established tool for the study of condensed phase electronic structure. However, there are still a number of situations where its applicability is limited. The basic theme of our research is the development of first principles electronic structure approaches for condensed matter that goes beyond what can currently be done with standard implementations ofKohn-Sham DFT. Our efforts to this end have focused on two classes or' methods. The first addresses the well-lmown inability of DFT to handle strong, many-body electron correlation effects. Our approach is a DFT -based embedding theory, to treat localizedmore » features (e.g. impurity, adsorbate, vacancy, etc.) embedded in a periodic, metallic crystal. A description for the embedded region is provided by explicitly correlated, ab initio wave function methods. DFT, as a fo1n1ally ground state theory, does not give a good description of excited states; an additional feature of our approach is the ability to obtain excitations localized in this region. We apply our method to a first-principles study of the adsorption of a single magnetic Co ada tom on non-magnetic Cu( 111 ), a known Kondo system whose behavior is governed by strong electron correlation. The second class of methods that we are developing is an orbital-free density functional theory (OFDFT), which addresses the speed limitations ofKohn-Sham DFT. OFDFT is a powerful, O(N) scaling method for electronic structure calculations. Unlike Kohn-Sham DFT, OFDFT goes back to the original Hohenberg-Kohn idea of directly optimizing an energy functional which is an explicit functional of the density, without invoking an orbital description. This eliminates the need to manipulate orbitals, which leads to O(N{sup 3}) scaling in the Kahn-Sham approach. The speed of OFDFT allows direct electronic structure calculations on large systems on the order of thousands to tens of thousands of atoms, an expensive feat within Kohn-Sham. Due to our incomplete knowledge of the exact, universal energy density functional, this speedup comes at the cost of some accuracy with respect to Kohn-Sham methods. However, OFDFT has been shown to be remarkably accurate with respect to Kohn-Sham when used in the study of nearly-free-electron-like metals, e.g., AI, for which good density functionals have been derived. Examples of past applications of OFDFT include the prediction of properties of bulk crystals, surfaces, vacancies, vacancy clusters, nanoclusters, and dislocations, as well as OFDFT -based multiscale simulations of nanoindentation in AI and Al-Mg alloys.« less

  11. Ab Initio Study of Electronic Structure, Elastic and Transport Properties of Fluoroperovskite LiBeF3

    NASA Astrophysics Data System (ADS)

    Benmhidi, H.; Rached, H.; Rached, D.; Benkabou, M.

    2017-04-01

    The aim of this work is to investigate the electronic, mechanical, and transport properties of the fluoroperovskite compound LiBeF3 by first-principles calculations using the full-potential linear muffin-tin orbital method based on density functional theory within the local density approximation. The independent elastic constants and related mechanical properties including the bulk modulus ( B), shear modulus ( G), Young's modulus ( E), and Poisson's ratio ( ν) have been studied, yielding the elastic moduli, shear wave velocities, and Debye temperature. According to the electronic properties, this compound is an indirect-bandgap material, in good agreement with available theoretical data. The electron effective mass, hole effective mass, and energy bandgaps with their volume and pressure dependence are investigated for the first time.

  12. Vicinage effect in the energy loss of H2 dimers: Experiment and calculations based on time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Koval, N. E.; Borisov, A. G.; Rosa, L. F. S.; Stori, E. M.; Dias, J. F.; Grande, P. L.; Sánchez-Portal, D.; Muiño, R. Díez

    2017-06-01

    We present a combined theoretical and experimental study of the energy loss of H2+ molecular ions interacting with thin oxide and carbon films. As a result of quantum mechanical interference of the target electrons, the energy loss of a molecular projectile differs from the sum of the energy losses of individual atomic projectiles. This difference is known as the vicinage effect. Calculations based on the time-dependent density functional theory allow the first-principles description of the dynamics of target excitations produced by the correlated motion of the nucleons forming the molecule. We investigate in detail the dependence of the vicinage effect on the speed and charge state of the projectile and find an excellent agreement between calculated and measured data.

  13. First-principles calculations for elastic properties of OsB 2 under pressure

    NASA Astrophysics Data System (ADS)

    Yang, Jun-Wei; Chen, Xiang-Rong; Luo, Fen; Ji, Guang-Fu

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  14. Solid-state structures and properties of scandium hydride; hydrogen storage and switchable mirrors application

    NASA Astrophysics Data System (ADS)

    Khodja, Khadidja; Bouhadda, Youcef; Seddik, Larbi; Benyelloul, Kamel

    2016-05-01

    First-principles calculation has been performed on the rare earth hydride ScH2 for hydrogen storage and switchable mirror applications, using the pseudo-potentials and plane waves based on the density-functional theory (DFT). The electronic and structural properties are studied within both local-density and generalized gradient approximations for exchange energy. The formation energy and the optical properties have been investigated and discussed. Our calculated results are generally in good agreement with theoretical and experimental data. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  15. An ab initio study of the electronic structure of indium and gallium chalcogenide bilayers

    NASA Astrophysics Data System (ADS)

    Ayadi, T.; Debbichi, L.; Said, M.; Lebègue, S.

    2017-09-01

    Using first principle calculations, we have studied the structural and electronic properties of two dimensional bilayers of indium and gallium chalcogenides. With density functional theory corrected for van der Waals interactions, the different modes of stacking were investigated in a systematic way, and several of them were found to compete in energy. Then, their band structures were obtained with the GW approximation and found to correspond to indirect bandgap semiconductors with a small dependency on the mode of stacking. Finally, by analysing the electron density, it appeared that GaSe-InS is a promising system for electron-hole separation.

  16. The first principles study of elastic and thermodynamic properties of ZnSe

    NASA Astrophysics Data System (ADS)

    Khatta, Swati; Kaur, Veerpal; Tripathi, S. K.; Prakash, Satya

    2018-05-01

    The elastic and thermodynamic properties of ZnSe are investigated using thermo_pw package implemented in Quantum espresso code within the framework of density functional theory. The pseudopotential method within the local density approximation is used for the exchange-correlation potential. The physical parameters of ZnSe bulk modulus and shear modulus, anisotropy factor, Young's modulus, Poisson's ratio, Pugh's ratio and Frantsevich's ratio are calculated. The sound velocity and Debye temperature are obtained from elastic constant calculations. The Helmholtz free energy and internal energy of ZnSe are also calculated. The results are compared with available theoretical calculations and experimental data.

  17. Tin monochalcogenide heterostructures as mechanically rigid infrared band gap semiconductors

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Fathi, Mohammad; Azadani, Javad G.; Low, Tony

    2018-05-01

    Based on first-principles density functional calculations, we show that SnS and SnSe layers can form mechanically rigid heterostructures with the constituent puckered or buckled monolayers. Due to the strong interlayer coupling, the electronic wave functions of the conduction and valence band edges are delocalized across the heterostructure. The resultant band gaps of the heterostructures reside in the infrared region. With strain engineering, the heterostructure band gap undergoes a transition from indirect to direct in the puckered phase. Our results show that there is a direct correlation between the electronic wave function and the mechanical rigidity of the layered heterostructure.

  18. Predicting elastic properties of β-HMX from first-principles calculations.

    PubMed

    Peng, Qing; Rahul; Wang, Guangyu; Liu, Gui-Rong; Grimme, Stefan; De, Suvranu

    2015-05-07

    We investigate the performance of van der Waals (vdW) functions in predicting the elastic constants of β cyclotetramethylene tetranitramine (HMX) energetic molecular crystals using density functional theory (DFT) calculations. We confirm that the accuracy of the elastic constants is significantly improved using the vdW corrections with environment-dependent C6 together with PBE and revised PBE exchange-correlation functionals. The elastic constants obtained using PBE-D3(0) calculations yield the most accurate mechanical response of β-HMX when compared with experimental stress-strain data. Our results suggest that PBE-D3 calculations are reliable in predicting the elastic constants of this material.

  19. Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Militzer, Burkhard; Benedict, Lorin X.; Soubiran, François; Sterne, Philip A.; Driver, Kevin P.

    2018-03-01

    Carbon-hydrogen plasmas and hydrocarbon materials are of broad interest to laser shock experimentalists, high energy density physicists, and astrophysicists. Accurate equations of state (EOSs) of hydrocarbons are valuable for various studies from inertial confinement fusion to planetary science. By combining path integral Monte Carlo (PIMC) results at high temperatures and density functional theory molecular dynamics results at lower temperatures, we compute the EOSs for hydrocarbons from simulations performed at 1473 separate (ρ, T)-points distributed over a range of compositions. These methods accurately treat electronic excitation effects with neither adjustable parameter nor experimental input. PIMC is also an accurate simulation method that is capable of treating many-body interaction and nuclear quantum effects at finite temperatures. These methods therefore provide a benchmark-quality EOS that surpasses that of semi-empirical and Thomas-Fermi-based methods in the warm dense matter regime. By comparing our first-principles EOS to the LEOS 5112 model for CH, we validate the specific heat assumptions in this model but suggest that the Grüneisen parameter is too large at low temperatures. Based on our first-principles EOSs, we predict the principal Hugoniot curve of polystyrene to be 2%-5% softer at maximum shock compression than that predicted by orbital-free density functional theory and SESAME 7593. By investigating the atomic structure and chemical bonding of hydrocarbons, we show a drastic decrease in the lifetime of chemical bonds in the pressure interval from 0.4 to 4 megabar. We find the assumption of linear mixing to be valid for describing the EOS and the shock Hugoniot curve of hydrocarbons in the regime of partially ionized atomic liquids. We make predictions of the shock compression of glow-discharge polymers and investigate the effects of oxygen content and C:H ratio on its Hugoniot curve. Our full suite of first-principles simulation results may be used to benchmark future theoretical investigations pertaining to hydrocarbon EOSs and should be helpful in guiding the design of future experiments on hydrocarbons in the gigabar regime.

  20. Dynamic compression of water to 700 GPa: single- and double shock experiments on Sandia's Z machine, first principles simulations, and structure of water planets

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.

    2011-11-01

    Significant progress has over the last few years been made in high energy density physics (HEDP) by executing high-precision multi-Mbar experiments and performing first-principles simulations for elements ranging from carbon [1] to xenon [2]. The properties of water under HEDP conditions are of particular importance in planetary science due to the existence of ice-giants like Neptune and Uranus. Modeling the two planets, as well as water-rich exoplanets, requires knowing the equation of state (EOS), the pressure as a function of density and temperature, of water with high accuracy. Although extensive density functional theory (DFT) simulations have been performed for water under planetary conditions [3] experimental validation has been lacking. Accessing thermodynamic states along planetary isentropes in dynamic compression experiments is challenging because the principal Hugoniot follows a significantly different path in the phase diagram. In this talk, we present experimental data for dynamic compression of water up to 700 GPa, including in a regime of the phase-diagram intersected by the Neptune isentrope and water-rich models for the exoplanet GJ436b. The data was obtained on the Z-accelerator at Sandia National Laboratories by performing magnetically accelerated flyer plate impact experiments measuring both the shock and re-shock in the sample. The high accuracy makes it possible for the data to be used for detailed model validation: the results validate first principles based thermodynamics as a reliable foundation for planetary modeling and confirm the fine effect of including nuclear quantum effects on the shock pressure. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. [4pt] [1] M.D. Knudson, D.H. Dolan, and M.P. Desjarlais, SCIENCE 322, 1822 (2008).[0pt] [2] S. Root, et al., Phys. Rev. Lett. 105, 085501 (2010).[0pt] [3] M. French, et al., Phys. Rev. B 79, 054107 (2009).

  1. Second-principles method for materials simulations including electron and lattice degrees of freedom

    NASA Astrophysics Data System (ADS)

    García-Fernández, Pablo; Wojdeł, Jacek C.; Íñiguez, Jorge; Junquera, Javier

    2016-05-01

    We present a first-principles-based (second-principles) scheme that permits large-scale materials simulations including both atomic and electronic degrees of freedom on the same footing. The method is based on a predictive quantum-mechanical theory—e.g., density functional theory—and its accuracy can be systematically improved at a very modest computational cost. Our approach is based on dividing the electron density of the system into a reference part—typically corresponding to the system's neutral, geometry-dependent ground state—and a deformation part—defined as the difference between the actual and reference densities. We then take advantage of the fact that the bulk part of the system's energy depends on the reference density alone; this part can be efficiently and accurately described by a force field, thus avoiding explicit consideration of the electrons. Then, the effects associated to the difference density can be treated perturbatively with good precision by working in a suitably chosen Wannier function basis. Further, the electronic model can be restricted to the bands of interest. All these features combined yield a very flexible and computationally very efficient scheme. Here we present the basic formulation of this approach, as well as a practical strategy to compute model parameters for realistic materials. We illustrate the accuracy and scope of the proposed method with two case studies, namely, the relative stability of various spin arrangements in NiO (featuring complex magnetic interactions in a strongly-correlated oxide) and the formation of a two-dimensional electron gas at the interface between band insulators LaAlO3 and SrTiO3 (featuring subtle electron-lattice couplings and screening effects). We conclude by discussing ways to overcome the limitations of the present approach (most notably, the assumption of a fixed bonding topology), as well as its many envisioned possibilities and future extensions.

  2. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, L. A.; Boehly, T. R.; Ding, Y. H.

    Polystyrene (CH), commonly known as “plastic,” has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation–hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ= 0.1 to 100 g/cm 3 and T = 10 3 to 4 × 10 6K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have builtmore » several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state (FPEOS), the QMD-based thermal conductivity (Κ QMD) and ionization, and the first-principles opacity table (FPOT). This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles–based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation–hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive–ignition designs for the National Ignition Facility. Lastly, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.« less

  3. A review on ab initio studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications

    DOE PAGES

    Collins, L. A.; Boehly, T. R.; Ding, Y. H.; ...

    2018-03-23

    Polystyrene (CH), commonly known as “plastic,” has been one of the widely used ablator materials for capsule designs in inertial confinement fusion (ICF). Knowing its precise properties under high-energy-density conditions is crucial to understanding and designing ICF implosions through radiation–hydrodynamic simulations. For this purpose, systematic ab initio studies on the static, transport, and optical properties of CH, in a wide range of density and temperature conditions (ρ= 0.1 to 100 g/cm 3 and T = 10 3 to 4 × 10 6K), have been conducted using quantum molecular dynamics (QMD) simulations based on the density functional theory. We have builtmore » several wide-ranging, self-consistent material-properties tables for CH, such as the first-principles equation of state (FPEOS), the QMD-based thermal conductivity (Κ QMD) and ionization, and the first-principles opacity table (FPOT). This paper is devoted to providing a review on (1) what results were obtained from these systematic ab initio studies; (2) how these self-consistent results were compared with both traditional plasma-physics models and available experiments; and (3) how these first-principles–based properties of polystyrene affect the predictions of ICF target performance, through both 1-D and 2-D radiation–hydrodynamic simulations. In the warm dense regime, our ab initio results, which can significantly differ from predictions of traditional plasma-physics models, compared favorably with experiments. When incorporated into hydrocodes for ICF simulations, these first-principles material properties of CH have produced significant differences over traditional models in predicting 1-D/2-D target performance of ICF implosions on OMEGA and direct-drive–ignition designs for the National Ignition Facility. Lastly, we will discuss the implications of these studies on the current small-margin ICF target designs using a CH ablator.« less

  4. Negative differential resistance and switch behavior of T-BxNy (x, y = 5, 6, 11) molecular junctions

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Liang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Xin, Jian-Guo

    2017-05-01

    The electronic transport properties of T-BxNy (x, y = 5, 6, 11) molecular junction are investigated based on first-principle density functional theory and non-equilibrium Green's function method. Strong negative differential resistance (NDR) behavior is observed for T-B5N6 molecule under negative and positive bias voltages, with an obvious switch effect for T-B6N5. However, only small NDR is shown for the complex of the two molecules. The projected device density of states, the spatial distribution of molecular orbitals, and the effect of transmission spectra under various bias voltages on the electronic transport properties are analyzed. The obvious effect of bias voltage on the changes in the electronic distribution of frontier molecular orbitals is responsible for the NDR or switch behavior. Therefore, different functional molecular devices can be obtained with different structures of T-BxNy.

  5. A Density Functional Theory Study of a Calcium- Montmorillonite: A First Investigation for Medicine Application

    NASA Astrophysics Data System (ADS)

    Dewi Kencana Wungu, Triati; Fauzan, Muhammad Rifqi Al; Widayani; Suprijadi

    2016-08-01

    In this study, we performed structural geometry and electronic properties calculations of calcium - based clay mineral for medicine application using first principles calculation by means of Density Functional Theory. Here, a kind of clay mineral used was Ca- montmorillonite and it is applied as an absorber of dangerous metal contained in a human body, such as Pb, which causes osteoporosis. Osteoporosis is a disease associated with bone mass decreases. Since montmorillonite has ability to exchange its cation (Ca+2), therefore, it plays an important role in preventing or/and cure human bone from osteoporosis. In order to understand how Ca-montmorillonite can do detoxification in the human body, we firstly investigated the mechanism of Pb adsorption on the surface of Ca-montmorillonite in an atomic level point of view. We found that the repulsive interactions between H of OH groups with Ca and Pb yielding the rotation of the H of OH groups of montmorillonite. A relatively small movement of Ca was observed when Pb is adsorbed and the band gap of Ca- montmorillonite becomes 1.87 eV narrow.

  6. A simplified implementation of van der Waals density functionals for first-principles molecular dynamics applications

    NASA Astrophysics Data System (ADS)

    Wu, Jun; Gygi, François

    2012-06-01

    We present a simplified implementation of the non-local van der Waals correlation functional introduced by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and reformulated by Román-Pérez et al. [Phys. Rev. Lett. 103, 096102 (2009)]. The proposed numerical approach removes the logarithmic singularity of the kernel function. Complete expressions of the self-consistent correlation potential and of the stress tensor are given. Combined with various choices of exchange functionals, five versions of van der Waals density functionals are implemented. Applications to the computation of the interaction energy of the benzene-water complex and to the computation of the equilibrium cell parameters of the benzene crystal are presented. As an example of crystal structure calculation involving a mixture of hydrogen bonding and dispersion interactions, we compute the equilibrium structure of two polymorphs of aspirin (2-acetoxybenzoic acid, C9H8O4) in the P21/c monoclinic structure.

  7. Exactly Embedded Density Functional Theory: A New Paradigm for the First-principles Modeling of Reactions in Complex Systems

    DTIC Science & Technology

    2014-10-14

    applications. By developing both inversion-based and projection -based strategies to enable 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT...constraint that excluded essentially all condensed-phase and reactive chemical applications. By developing both inversion-based and projection -based

  8. Towards A Predictive First Principles Understanding Of Molecular Adsorption On Graphene

    DTIC Science & Technology

    2016-10-05

    used and developed state-of-the-art quantum mechanical methods to make accurate predictions about the interaction strength and adsorption structure...density functional theory, ab initio methods 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF ABSTRACT SAR 18.  NUMBER OF PAGES   11   19a.  NAME OF...important physical properties for a whole class of systems with weak non-covalent interactions, for example those involving the binding between water

  9. Magic Numbers in Small Iron Clusters: A First-Principles Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Eunja; Mohrland, Andrew B.; Weck, Philippe F.

    2014-10-03

    We perform ab initio spin-polarized density functional calculations of Fen aggregates with n ≤ 17 atoms to reveal the origin of the observed magic numbers, which indicate particularly high stability of clusters with 7, 13 and 15 atoms. Our results clarify the controversy regarding the ground state geometry of clusters such as Fe5and indicate that magnetism plays an important role in determining the stability and magic numbers in small iron clusters.

  10. First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications

    DOE PAGES

    Hu, S. X.; Collins, Lee A.; Goncharov, V. N.; ...

    2016-04-14

    Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations on the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm 3 and T = 15,625 to 500,000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which exhibits the correct behaviors of continuum lowering and pressure ionization. The thermal conductivities (κ QMD) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted withmore » a generalized Coulomb logarithm [(lnΛ) QMD] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Furthermore, hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted –20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less

  11. Understanding the electronic and phonon transport properties of a thermoelectric material BiCuSeO: a first-principles study.

    PubMed

    Fan, D D; Liu, H J; Cheng, L; Zhang, J; Jiang, P H; Wei, J; Liang, J H; Shi, J

    2017-05-24

    Using the first-principles pseudopotential method and Boltzmann transport theory, we give a comprehensive understanding of the electronic and phonon transport properties of the thermoelectric material BiCuSeO. By choosing an appropriate hybrid functional for the exchange-correlation energy, we find that the system is a semiconductor with a direct band gap of ∼0.8 eV, which is quite different from those obtained previously using standard functionals. Detailed analysis of a three-dimensional energy band structure indicates that there is a valley degeneracy of eight around the valence band maximum, which leads to a sharp density of states and is responsible for a large p-type Seebeck coefficient. Moreover, we find that the density of states effective mass is much larger and results in a very low hole mobility for BiCuSeO. On the other hand, we discover two flat phonon branches contributed by the Cu and Se atoms, which can effectively block heat transfer. Combined with large atomic displacement parameters of the Cu atom, we believe that the intrinsically low lattice thermal conductivity in BiCuSeO is mainly caused by the Cu atoms, instead of the prevailingly believed Bi atoms. The thermoelectric figure-of-merit is also predicted and compared with available experimental results.

  12. First-principles surface interaction studies of aluminum-copper and aluminum-copper-magnesium secondary phases in aluminum alloys

    NASA Astrophysics Data System (ADS)

    da Silva, Thiago H.; Nelson, Eric B.; Williamson, Izaak; Efaw, Corey M.; Sapper, Erik; Hurley, Michael F.; Li, Lan

    2018-05-01

    First-principles density functional theory-based calculations were performed to study θ-phase Al2Cu, S-phase Al2CuMg surface stability, as well as their interactions with water molecules and chloride (Cl-) ions. These secondary phases are commonly found in aluminum-based alloys and are initiation points for localized corrosion. Density functional theory (DFT)-based simulations provide insight into the origins of localized (pitting) corrosion processes of aluminum-based alloys. For both phases studied, Cl- ions cause atomic distortions on the surface layers. The nature of the distortions could be a factor to weaken the interlayer bonds in the Al2Cu and Al2CuMg secondary phases, facilitating the corrosion process. Electronic structure calculations revealed not only electron charge transfer from Cl- ions to alloy surface but also electron sharing, suggesting ionic and covalent bonding features, respectively. The S-phase Al2CuMg structure has a more active surface than the θ-phase Al2Cu. We also found a higher tendency of formation of new species, such as Al3+, Al(OH)2+, HCl, AlCl2+, Al(OH)Cl+, and Cl2 on the S-phase Al2CuMg surface. Surface chemical reactions and resultant species present contribute to establishment of local surface chemistry that influences the corrosion behavior of aluminum alloys.

  13. Structural, electronic, elastic, and thermal properties of CaNiH3 perovskite obtained from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Benlamari, S.; Bendjeddou, H.; Boulechfar, R.; Amara Korba, S.; Meradji, H.; Ahmed, R.; Ghemid, S.; Khenata, R.; Omran, S. Bin

    2018-03-01

    A theoretical study of the structural, elastic, electronic, mechanical, and thermal properties of the perovskite-type hydride CaNiH3 is presented. This study is carried out via first-principles full potential (FP) linearized augmented plane wave plus local orbital (LAPW+lo) method designed within the density functional theory (DFT). To treat the exchange–correlation energy/potential for the total energy calculations, the local density approximation (LDA) of Perdew–Wang (PW) and the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) are used. The three independent elastic constants (C 11, C 12, and C 44) are calculated from the direct computation of the stresses generated by small strains. Besides, we report the variation of the elastic constants as a function of pressure as well. From the calculated elastic constants, the mechanical character of CaNiH3 is predicted. Pertaining to the thermal properties, the Debye temperature is estimated from the average sound velocity. To further comprehend this compound, the quasi-harmonic Debye model is used to analyze the thermal properties. From the calculations, we find that the obtained results of the lattice constant (a 0), bulk modulus (B 0), and its pressure derivative ({B}0^{\\prime }) are in good agreement with the available theoretical as well as experimental results. Similarly, the obtained electronic band structure demonstrates the metallic character of this perovskite-type hydride.

  14. Tunneling of coupled methyl quantum rotors in 4-methylpyridine: Single rotor potential versus coupling interaction

    NASA Astrophysics Data System (ADS)

    Khazaei, Somayeh; Sebastiani, Daniel

    2017-11-01

    We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the calculated first-principles PES on the model, it is confirmed that the hindering potential in 4-methylpyridine consists of proportionally shallow single-rotor potential to coupling interaction.

  15. Tunneling of coupled methyl quantum rotors in 4-methylpyridine: Single rotor potential versus coupling interaction.

    PubMed

    Khazaei, Somayeh; Sebastiani, Daniel

    2017-11-21

    We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the calculated first-principles PES on the model, it is confirmed that the hindering potential in 4-methylpyridine consists of proportionally shallow single-rotor potential to coupling interaction.

  16. Large Deviations in Weakly Interacting Boundary Driven Lattice Gases

    NASA Astrophysics Data System (ADS)

    van Wijland, Frédéric; Rácz, Zoltán

    2005-01-01

    One-dimensional, boundary-driven lattice gases with local interactions are studied in the weakly interacting limit. The density profiles and the correlation functions are calculated to first order in the interaction strength for zero-range and short-range processes differing only in the specifics of the detailed-balance dynamics. Furthermore, the effective free-energy (large-deviation function) and the integrated current distribution are also found to this order. From the former, we find that the boundary drive generates long-range correlations only for the short-range dynamics while the latter provides support to an additivity principle recently proposed by Bodineau and Derrida.

  17. The switching behaviors induced by torsion angle in a diblock co-oligomer molecule with tailoring graphene nanoribbon electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Aiyun; Xia, Caijuan; Zhang, Boqun; Wang, Jun; Su, Yaoheng; Tu, Zheyan

    2018-02-01

    By applying first-principles method based on density functional theory combined with nonequilibrium Green’s function, we investigate the effect of torsion angle on the electronic transport properties in dipyrimidinyl-diphenyl co-oligomer molecular device with tailoring graphene nanoribbon electrodes. The results show that the torsion angle plays an important role on the electronic transport properties of the molecular device. When the torsion angle rotates from 0∘ to 90∘, the molecular devices exhibit very different current-voltage characteristics which can realize the on and off states of the molecular switch.

  18. Spin-polarized transport properties of a pyridinium-based molecular spintronics device

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Xu, B.; Qin, Z.

    2018-05-01

    By applying a first-principles approach based on non-equilibrium Green's functions combined with density functional theory, the transport properties of a pyridinium-based "radical-π-radical" molecular spintronics device are investigated. The obvious negative differential resistance (NDR) and spin current polarization (SCP) effect, and abnormal magnetoresistance (MR) are obtained. Orbital reconstruction is responsible for novel transport properties such as that the MR increases with bias and then decreases and that the NDR being present for both parallel and antiparallel magnetization configurations, which may have future applications in the field of molecular spintronics.

  19. Defects in ion-implanted hcp-titanium: A first-principles study of electronic structures

    NASA Astrophysics Data System (ADS)

    Raji, Abdulrafiu T.; Mazzarello, Riccardo; Scandolo, Sandro; Nsengiyumva, Schadrack; Härting, Margit; Britton, David T.

    2011-12-01

    The electronic structures of hexagonal closed-packed (h.c.p) titanium containing a vacancy and krypton impurity atoms at various insertion sites are calculated by first-principles methods in the framework of the density-functional theory (DFT). The density of states (DOS) for titanium containing a vacancy defect shows resonance-like features. Also, the bulk electron density decreases from ˜0.15/Å 3 to ˜0.05/Å 3 at the vacancy centre. Electronic structure calculations have been performed to investigate what underlies the krypton site preference in titanium. The DOS of the nearest-neighbour (NN) titanium atoms to the octahedral krypton appears to be less distorted (relative to pure titanium) when compared to the NN titanium atoms to the tetrahedral krypton. The electronic density deformation maps show that polarization of the titanium atoms is stronger when the krypton atom is located at the tetrahedral site. Since krypton is a closed-shell atom, thus precluding any bonding with the titanium atoms, we may conclude that the polarization of the electrons in the vicinity of the inserted krypton atoms and the distortion of the DOS of the NN titanium atoms to the krypton serve to indicate which defect site is preferred when a krypton atom is inserted into titanium. Based on these considerations, we conclude that the substitutional site is the most favourable one, and the octahedral is the preferred interstitial site, in agreement with recent DFT calculations of the energetics of krypton impurity sites.

  20. GPU-Accelerated Large-Scale Electronic Structure Theory on Titan with a First-Principles All-Electron Code

    NASA Astrophysics Data System (ADS)

    Huhn, William Paul; Lange, Björn; Yu, Victor; Blum, Volker; Lee, Seyong; Yoon, Mina

    Density-functional theory has been well established as the dominant quantum-mechanical computational method in the materials community. Large accurate simulations become very challenging on small to mid-scale computers and require high-performance compute platforms to succeed. GPU acceleration is one promising approach. In this talk, we present a first implementation of all-electron density-functional theory in the FHI-aims code for massively parallel GPU-based platforms. Special attention is paid to the update of the density and to the integration of the Hamiltonian and overlap matrices, realized in a domain decomposition scheme on non-uniform grids. The initial implementation scales well across nodes on ORNL's Titan Cray XK7 supercomputer (8 to 64 nodes, 16 MPI ranks/node) and shows an overall speed up in runtime due to utilization of the K20X Tesla GPUs on each Titan node of 1.4x, with the charge density update showing a speed up of 2x. Further acceleration opportunities will be discussed. Work supported by the LDRD Program of ORNL managed by UT-Battle, LLC, for the U.S. DOE and by the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

  1. Determination of structure and properties of molecular crystals from first principles.

    PubMed

    Szalewicz, Krzysztof

    2014-11-18

    CONSPECTUS: Until recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be extrapolated to such cases. As an alternative to applying SAPT(DFT) in crystal structure calculations, one can use supermolecular DFT interaction energies combined with scaled dispersion energies computed from simple atom-atom functions, that is, use the so-called DFT+D approach. Whereas the standard DFT methods fail for intermolecular interactions, DFT+D performs reasonably well since the dispersion correction is used not only to provide the missing dispersion contribution but also to fix other deficiencies of DFT. The latter cancellation of errors is unphysical and can be avoided by applying the so-called dispersionless density functional, dlDF. In this case, the dispersion energies are added without any scaling. The dlDF+D method is also one of the best performing DFT+D methods. The SAPT(DFT)-based approach has been applied so far only to crystals with rigid monomers. It can be extended to partly flexible monomers, that is, to monomers with only a few internal coordinates allowed to vary. However, the costs will increase relative to rigid monomer cases since the number of grid points increases exponentially with the number of dimensions. One way around this problem is to construct force fields with approximate couplings between inter- and intramonomer degrees of freedom. Another way is to calculate interaction energies (and possibly forces) "on the fly", i.e., in each step of lattice energy minimization procedure. Such an approach would be prohibitively expensive if it replaced analytic force fields at all stages of the crystal predictions procedure, but it can be used to optimize a few dozen candidate structures determined by other methods.

  2. The melting point of lithium: an orbital-free first-principles molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mohan; Hung, Linda; Huang, Chen

    2013-08-25

    The melting point of liquid lithium near zero pressure is studied with large-scale orbital-free first-principles molecular dynamics (OF-FPMD) in the isobaric-isothermal ensemble. Here, we adopt the Wang-Govind-Carter (WGC) functional as our kinetic energy density functional (KEDF) and construct a bulk-derived local pseudopotential (BLPS) for Li. Our simulations employ both the ‘heat-until-melts’ method and the coexistence method. We predict 465 K as an upper bound of the melting point of Li from the ‘heat-until-melts’ method, while we predict 434 K as the melting point of Li from the coexistence method. These values compare well with an experimental melting point of 453more » K at zero pressure. Furthermore, we calculate a few important properties of liquid Li including the diffusion coefficients, pair distribution functions, static structure factors, and compressibilities of Li at 470 K and 725 K in the canonical ensemble. This theoretically-obtained results show good agreement with known experimental results, suggesting that OF-FPMD using a non-local KEDF and a BLPS is capable of accurately describing liquid metals.« less

  3. First-principles study of the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube

    NASA Astrophysics Data System (ADS)

    Ma, Liang-Cai; Ma, Ling; Zhang, Jian-Min

    2017-07-01

    By using first-principles calculations based on density-functional theory, the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube are systematically investigated. The binding energies of the hybrid structures are remarkably higher than those of corresponding freestanding TM chains, indicating the TM chains are significantly stabilized after encapsulating into copper nanotube. The formed bonds between outer Cu and inner TM atoms show some degree of covalent bonding character. The magnetic ground states of Fe@CuNW and Co@CuNW hybrid structures are ferromagnetic, and both spin and orbital magnetic moments of inner TM atoms have been calculated. The magnetocrystalline anisotropy energies (MAE) of the hybrid structures are enhanced by nearly fourfold compared to those of corresponding freestanding TM chains, indicating that the hybrid structures can be used in ultrahigh density magnetic storage. Furthermore, the easy magnetization axis switches from that along the axis in freestanding Fe chain to that perpendicular to the axis in Fe@CuNT hybrid structure. The large spin polarization at the Fermi level also makes the hybrid systems interesting as good potential materials for spintronic devices.

  4. First-Principles Characterization of the Unknown Crystal Structure and Ionic Conductivity of Li7P2S8I as a Solid Electrolyte for High-Voltage Li Ion Batteries.

    PubMed

    Kang, Joonhee; Han, Byungchan

    2016-07-21

    Using first-principles density functional theory calculations and ab initio molecular dynamics (AIMD) simulations, we demonstrate the crystal structure of the Li7P2S8I (LPSI) and Li ionic conductivity at room temperature with its atomic-level mechanism. By successively applying three rigorous conceptual approaches, we identify that the LPSI has a similar symmetry class as Li10GeP2S12 (LGPS) material and estimate the Li ionic conductivity to be 0.3 mS cm(-1) with an activation energy of 0.20 eV, similar to the experimental value of 0.63 mS cm(-1). Iodine ions provide an additional path for Li ion diffusion, but a strong Li-I attractive interaction degrades the Li ionic transport. Calculated density of states (DOS) for LPSI indicate that electrochemical instability can be substantially improved by incorporating iodine at the Li metallic anode via forming a LiI compound. Our methods propose the computational design concept for a sulfide-based solid electrolyte with heteroatom doping for high-voltage Li ion batteries.

  5. A first-principle calculation of the XANES spectrum of Cu2+ in water

    NASA Astrophysics Data System (ADS)

    La Penna, G.; Minicozzi, V.; Morante, S.; Rossi, G. C.; Stellato, F.

    2015-09-01

    The progress in high performance computing we are witnessing today offers the possibility of accurate electron density calculations of systems in realistic physico-chemical conditions. In this paper, we present a strategy aimed at performing a first-principle computation of the low energy part of the X-ray Absorption Spectroscopy (XAS) spectrum based on the density functional theory calculation of the electronic potential. To test its effectiveness, we apply the method to the computation of the X-ray absorption near edge structure part of the XAS spectrum in the paradigmatic, but simple case of Cu2+ in water. In order to keep into account the effect of the metal site structure fluctuations in determining the experimental signal, the theoretical spectrum is evaluated as the average over the computed spectra of a statistically significant number of simulated metal site configurations. The comparison of experimental data with theoretical calculations suggests that Cu2+ lives preferentially in a square-pyramidal geometry. The remarkable success of this approach in the interpretation of XAS data makes us optimistic about the possibility of extending the computational strategy we have outlined to the more interesting case of molecules of biological relevance bound to transition metal ions.

  6. Effect of pressure on the Raman-active modes of zircon (ZrSiO4): a first-principles study

    NASA Astrophysics Data System (ADS)

    Sheremetyeva, Natalya; Cherniak, Daniele J.; Watson, E. Bruce; Meunier, Vincent

    2018-02-01

    Density-functional theory (DFT) was employed in a first-principles study of the effects of pressure on the Raman-active modes of zircon (ZrSiO4), using both the generalized gradient and local density approximations (GGA and LDA, respectively). Beginning with the equilibrium structure at zero pressure, we conducted a calibration of the effect of pressure in a manner procedurally similar to an experimental calibration. For pressures between 0 and 7 GPa, we find excellent qualitative agreement of frequency-pressure slopes partial ω /partial P calculated from GGA DFT with results of previous experimental studies. In addition, we were able to rationalize the ω vs. P behavior based on details of the vibrational modes and their atomic displacements. Most of the partial ω /partial P slopes are positive as expected, but the symmetry of the zircon lattice also results in two negative slopes for modes that involve slight shearing and rigid rotation of SiO4 tetrahedra. Overall, LDA yields absolute values of the frequencies of the Raman-active modes in good agreement with experimental values, while GGA reproduces the shift in frequency with pressure especially well.

  7. Role of zero-point effects in stabilizing the ground state structure of bulk Fe2P

    NASA Astrophysics Data System (ADS)

    Bhat, Soumya S.; Gupta, Kapil; Bhattacharjee, Satadeep; Lee, Seung-Cheol

    2018-05-01

    Structural stability of Fe2P is investigated in detail using first-principles calculations based on density functional theory. While the orthorhombic C23 phase is found to be energetically more stable, the experiments suggest it to be hexagonal C22 phase. In the present study, we show that in order to obtain the correct ground state structure of Fe2P from the first-principles based methods it is utmost necessary to consider the zero-point effects such as zero-point vibrations and spin fluctuations. This study demonstrates an exceptional case where a bulk material is stabilized by quantum effects, which are usually important in low-dimensional materials. Our results also indicate the possibility of magnetic field induced structural quantum phase transition in Fe2P, which should form the basis for further theoretical and experimental efforts.

  8. First principles study of gallium cleaning for hydrogen-contaminated α-Al2O3(0001) surfaces.

    PubMed

    Yang, Rui; Rendell, Alistair P

    2013-05-15

    The use of gallium for cleaning hydrogen-contaminated Al2O3 surfaces is explored by performing first principles density functional calculations of gallium adsorption on a hydrogen-contaminated Al-terminated α-Al2O3(0001) surface. Both physisorbed and chemisorbed H-contaminated α-Al2O3(0001) surfaces with one monolayer (ML) gallium coverage are investigated. The thermodynamics of gallium cleaning are considered for a variety of different asymptotic products, and are found to be favorable in all cases. Physisorbed H atoms have very weak interactions with the Al2O3 surface and can be removed easily by the Ga ML. Chemisorbed H atoms form stronger interactions with the surface Al atoms. Bonding energy analysis and departure simulations indicate, however, that chemisorbed H atoms can be effectively removed by the Ga ML. Copyright © 2013 Wiley Periodicals, Inc.

  9. Wobbled electronic properties of lithium clusters: Deterministic approach through first principles

    NASA Astrophysics Data System (ADS)

    Kushwaha, Anoop Kumar; Nayak, Saroj Kumar

    2018-03-01

    The innate tendency to form dendritic growth promoted through cluster formation leading to the failure of a Li-ion battery system have drawn significant attention of the researchers towards the effective destabilization of the cluster growth through selective implementation of electrolytic media such as acetonitrile (MeCN). In the present work, using first principles density functional theory and continuum dielectric model, we have investigated the origin of oscillatory nature of binding energy per atom of Lin (n ≤ 8) under the influence of MeCN. In the gas phase, we found that static mean polarizability is strongly correlated with binding energy and shows oscillatory nature with cluster size due to the open shell of Lin cluster. However, in acetonitrile medium, the binding energy has been correlated with electrostatic Lin -MeCN interaction and it has been found that both of them possess wobbled behavior characterized by the cluster size.

  10. Li-Decorated β12-Borophene as Potential Candidates for Hydrogen Storage: A First-Principle Study.

    PubMed

    Liu, Tingting; Chen, Yuhong; Wang, Haifeng; Zhang, Meiling; Yuan, Lihua; Zhang, Cairong

    2017-12-07

    The hydrogen storage properties of pristine β 12 -borophene and Li-decorated β 12 -borophene are systemically investigated by means of first-principles calculations based on density functional theory. The adsorption sites, adsorption energies, electronic structures, and hydrogen storage performance of pristine β 12 -borophene/H₂ and Li- β 12 -borophene/H₂ systems are discussed in detail. The results show that H₂ is dissociated into Two H atoms that are then chemisorbed on β 12 -borophene via strong covalent bonds. Then, we use Li atom to improve the hydrogen storage performance and modify the hydrogen storage capacity of β 12 -borophene. Our numerical calculation shows that Li- β 12 -borophene system can adsorb up to 7 H₂ molecules; while 2Li- β 12 -borophene system can adsorb up to 14 H₂ molecules and the hydrogen storage capacity up to 10.85 wt %.

  11. Jump rates for surface diffusion of large molecules from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen

    2015-04-21

    We apply a recently developed stochastic model for the surface diffusion of large molecules to calculate jump rates for 9,10-dithioanthracene on a Cu(111) surface. The necessary input parameters for the stochastic model are calculated from first principles using density functional theory (DFT). We find that the inclusion of van der Waals corrections to the DFT energies is critical to obtain good agreement with experimental results for the adsorption geometry and energy barrier for diffusion. The predictions for jump rates in our model are in excellent agreement with measured values and show a marked improvement over transition state theory (TST). Wemore » find that the jump rate prefactor is reduced by an order of magnitude from the TST estimate due to frictional damping resulting from energy exchange with surface phonons, as well as a rotational mode of the diffusing molecule.« less

  12. Theoretical prediction of the electronic transport properties of the Al-Cu alloys based on the first-principle calculation and Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Choi, Garam; Lee, Won Bo

    Metal alloys, especially Al-based, are commonly-used materials for various industrial applications. In this paper, the Al-Cu alloys with varying the Al-Cu ratio were investigated based on the first-principle calculation using density functional theory. And the electronic transport properties of the Al-Cu alloys were carried out using Boltzmann transport theory. From the results, the transport properties decrease with Cu-containing ratio at the temperature from moderate to high, but with non-linearity. It is inferred by various scattering effects from the calculation results with relaxation time approximation. For the Al-Cu alloy system, where it is hard to find the reliable experimental data for various alloys, it supports understanding and expectation for the thermal electrical properties from the theoretical prediction. Theoretical and computational soft matters laboratory.

  13. Tailoring graphene magnetism by zigzag triangular holes: A first-principles thermodynamics study

    DOE PAGES

    Khan, Muhammad Ejaz; Zhang, P.; Sun, Yi -Yang; ...

    2016-03-30

    In this study, we discuss the thermodynamic stability and magnetic property of zigzag triangular holes (ZTHs) in graphene based on the results of first-principles density functional theory calculations. We find that ZTHs with hydrogen-passivated edges in mixed sp 2/sp 3 configurations (z 211) could be readily available at experimental thermodynamic conditions, but ZTHs with 100% sp 2 hydrogen-passivation (z 1) could be limitedly available at high temperature and ultra-high vacuum conditions. Graphene magnetization near the ZTHs strongly depends on the type and the size of the triangles. While metallic z 1 ZTHs exhibit characteristic edge magnetism due to the same-sublatticemore » engineering, semiconducting z 211 ZTHs do show characteristic corner magnetism when the size is small < 2 nm. Our findings could be useful for experimentally tailoring metal-free carbon magnetism by simply fabricating triangular holes in graphene.« less

  14. High-pressure/high-temperature polymorphs of energetic materials by first-principles simulations

    NASA Astrophysics Data System (ADS)

    Le, Nam; Schweigert, Igor

    2017-06-01

    Energetic molecular crystals exhibit complex phase diagrams that include solid-solid phase transitions, melting, and decomposition. Sorescu and Rice have recently demonstrated that first-principles molecular dynamics (MD) simulations based on dispersion-corrected density functional theory (DFT) can capture the α to γ phase transition in hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on time scales of several picoseconds. Motivated by their work, we are using DFT-based MD to model the relative stability of solid phases in several molecular crystals. In this presentation, we report simulations of pentaerythritol tetranitrate (PETN) and 2,4,6-trinitrotoluene (TNT) under high pressures and temperatures and compare them with experimentally observed polymorphs. This work was supported by the U.S. Naval Research Laboratory via the National Research Council and by the Office of Naval Research through the U.S. Naval Research Laboratory.

  15. Role of Entropy and Structural Parameters in the Spin State Transition of LaCoO3

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan

    The spin state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge consistent Density Functional Theory + Dynamical Mean Field Theory (DFT+DMFT). We show, from first principles, that LaCoO3 cannot be described by a single, pure spin state at any temperature, but instead shows a gradual change in the population of higher spin multiples as temperature is increased. We explicitly elucidate the critical role of the lattice expansion and oxygen octahedral rotations in the spin state transition. We also show that the spin state transition and the metal-insulator transition in the compound occur at different temperatures. In addition, our results shed light on the importance of electronic entropy, which has so far been ignored in all first principles studies of this material.

  16. First-principles calculations of the thermodynamic properties of transuranium elements in a molten salt medium

    NASA Astrophysics Data System (ADS)

    Noh, Seunghyo; Kwak, Dohyun; Lee, Juseung; Kang, Joonhee; Han, Byungchan

    2014-03-01

    We utilized first-principles density-functional-theory (DFT) calculations to evaluate the thermodynamic feasibility of a pyroprocessing methodology for reducing the volume of high-level radioactive materials and recycling spent nuclear fuels. The thermodynamic properties of transuranium elements (Pu, Np and Cm) were obtained in electrochemical equilibrium with a LiCl-KCl molten salt as ionic phases and as adsorbates on a W(110) surface. To accomplish the goal, we rigorously calculated the double layer interface structures on an atomic resolution, on the thermodynamically most stable configurations on W(110) surfaces and the chemical activities of the transuranium elements for various coverages of those elements. Our results indicated that the electrodeposition process was very sensitive to the atomic level structures of Cl ions at the double-layer interface. Our studies are easily expandable to general electrochemical applications involving strong redox reactions of transition metals in non-aqueous solutions.

  17. First-Principles Estimation of Electronic Temperature from X-Ray Thomson Scattering Spectrum of Isochorically Heated Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Mo, Chongjie; Fu, Zhenguo; Kang, Wei; Zhang, Ping; He, X. T.

    2018-05-01

    Through the perturbation formula of time-dependent density functional theory broadly employed in the calculation of solids, we provide a first-principles calculation of x-ray Thomson scattering spectrum of isochorically heated aluminum foil, as considered in the experiments of Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015), 10.1103/PhysRevLett.115.115001], where ions were constrained near their lattice positions. From the calculated spectra, we find that the electronic temperature cannot exceed 2 eV, much smaller than the previous estimation of 6 eV via the detailed balance relation. Our results may well be an indication of unique electronic properties of warm dense matter, which can be further illustrated by future experiments. The lower electronic temperature predicted partially relieves the concern on the heating of x-ray free electron laser to the sample when used in structure measurement.

  18. First-principles-based kinetic Monte Carlo studies of diffusion of hydrogen in Ni–Al and Ni–Fe binary alloys

    DOE PAGES

    Tafen, De Nyago

    2015-02-14

    The diffusion of dilute hydrogen in fcc Ni–Al and Ni–Fe binary alloys was examined using kinetic Monte Carlo method with input kinetic parameters obtained from first-principles density functional theory. The simulation involves the implementation of computationally efficient energy barrier model that describes the configuration dependence of the hydrogen hopping. The predicted hydrogen diffusion coefficients in Ni and Ni 89.4Fe 10.6 are compared well with the available experimental data. In Ni–Al, the model predicts lower hydrogen diffusivity compared to that in Ni. Overall, diffusion prefactors and the effective activation energies of H in Ni–Fe and Ni–Al are concentration dependent of themore » alloying element. Furthermore, the changes in their values are the results of the short-range order (nearest-neighbor) effect on the interstitial diffusion of hydrogen in fcc Ni-based alloys.« less

  19. Cs-doped Mo as surface converter for H{sup −}/D{sup −} generation in negative ion sources: First steps and proof of principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiesko, L., E-mail: loic.schiesko@ipp.mpg.de; Hopf, C.; Höschen, T.

    2015-04-08

    In a proof-of-principle study, molybdenum samples were implanted with a very small dose of Cs in order to test the properties of the compound as a surface converter for negative hydrogen ion production. First results on the properties of Cs doped Mo compounds show a reduction of the work function and a stable H{sup −} yield up to four hours in low density hydrogen plasma. The implanted Cs atoms were stable in the Mo lattice over one year for samples stored in vacuum and not exposed to the plasma. The surface H{sup −} generation mechanisms were identified and a comparisonmore » of the negative ion yield with pure Mo showed that the Cs doped Mo sample’s yield was much larger.« less

  20. Tailoring graphene magnetism by zigzag triangular holes: A first-principles thermodynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Muhammad Ejaz; Zhang, P.; Kim, Yong-Hyun, E-mail: yong.hyun.kim@kaist.ac.kr

    We discuss the thermodynamic stability and magnetic property of zigzag triangular holes (ZTHs) in graphene based on the results of first-principles density functional theory calculations. We find that ZTHs with hydrogen-passivated edges in mixed sp{sup 2}/sp{sup 3} configurations (z{sub 211}) could be readily available at experimental thermodynamic conditions, but ZTHs with 100% sp{sup 2} hydrogen-passivation (z{sub 1}) could be limitedly available at high temperature and ultra-high vacuum conditions. Graphene magnetization near the ZTHs strongly depends on the type and the size of the triangles. While metallic z{sub 1} ZTHs exhibit characteristic edge magnetism due to the same-sublattice engineering, semiconducting z{submore » 211} ZTHs do show characteristic corner magnetism when the size is small <2 nm. Our findings could be useful for experimentally tailoring metal-free carbon magnetism by simply fabricating triangular holes in graphene.« less

  1. First-principles calculations and model analysis of plasmon excitations in graphene and graphene/hBN heterostructure

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Ren, Xinguo; He, Lixin

    2017-10-01

    Plasmon excitations in free-standing graphene and graphene/hexagonal boron nitride (hBN) heterostructure are studied using linear-response time-dependent density functional theory within the random phase approximation. Within a single theoretical framework, we examine both the plasmon dispersion behavior and lifetime (linewidth) of Dirac and π plasmons on an equal footing. Particular attention is paid to the influence of the hBN substrate and the anisotropic effect. Furthermore, a model-based analysis indicates that the correct dispersion behavior of π plasmons should be ωπ(q ) =√{Eg2+β ql} for small q 's, where Eg is the band gap at the M point in the Brillouin zone, and β is a fitting parameter. This model is radically different from previous proposals, but in good agreement with our calculated results from first principles.

  2. First-principles investigation of point defect and atomic diffusion in Al2Ca

    NASA Astrophysics Data System (ADS)

    Tian, Xiao; Wang, Jia-Ning; Wang, Ya-Ping; Shi, Xue-Feng; Tang, Bi-Yu

    2017-04-01

    Point defects and atomic diffusion in Al2Ca have been studied from first-principles calculations within density functional framework. After formation energy and relative stability of point defects are investigated, several predominant diffusion processes in Al2Ca are studied, including sublattice one-step mechanism, 3-jump vacancy cycles and antistructure sublattice mechanism. The associated energy profiles are calculated with climbing image nudged elastic band (CI-NEB) method, then the saddle points and activation barriers during atomic diffusion are further determined. The resulted activation barriers show that both Al and Ca can diffuse mainly mediated by neighbor vacancy on their own sublattice. 3-jump cycle mechanism mediated by VCa may make some contribution to the overall Al diffusion. And antistructure (AS) sublattice mechanism can also play an important role in Ca atomic diffusion owing to the moderate activation barrier.

  3. First-principles study of adsorption and diffusion of oxygen on surfaces of TiN, ZrN and HfN

    NASA Astrophysics Data System (ADS)

    Guo, Fangyu; Wang, Jianchuan; Du, Yong; Wang, Jiong; Shang, Shun-Li; Li, Songlin; Chen, Li

    2018-09-01

    Using first-principles calculations based on density functional theory, we systematically study the adsorption and diffusion behaviors of single oxygen (O) atom on the (0 0 1) surfaces of TiN, ZrN and HfN nitride coatings. The top of N site (top(N)) is the most energetic favorable site for O atom and followed by the hollow site for all the three nitrides. O atom tends to diffuse on the (0 0 1) surfaces of the nitrides from the top of transition metal top(TM) sites to a neighboring top(TM) sites by avoiding N sites. The adsorption of O on ZrN and HfN is more stable than that on TiN. Our findings could explain the experimental phenomenon that the oxide thickness of TiN is smaller than that of ZrN under the same oxidation conditions.

  4. First-Principles Prediction of Liquid/Liquid Interfacial Tension.

    PubMed

    Andersson, M P; Bennetzen, M V; Klamt, A; Stipp, S L S

    2014-08-12

    The interfacial tension between two liquids is the free energy per unit surface area required to create that interface. Interfacial tension is a determining factor for two-phase liquid behavior in a wide variety of systems ranging from water flooding in oil recovery processes and remediation of groundwater aquifers contaminated by chlorinated solvents to drug delivery and a host of industrial processes. Here, we present a model for predicting interfacial tension from first principles using density functional theory calculations. Our model requires no experimental input and is applicable to liquid/liquid systems of arbitrary compositions. The consistency of the predictions with experimental data is significant for binary, ternary, and multicomponent water/organic compound systems, which offers confidence in using the model to predict behavior where no data exists. The method is fast and can be used as a screening technique as well as to extend experimental data into conditions where measurements are technically too difficult, time consuming, or impossible.

  5. Electronic structure and equation of state of Sm2Co17 from first-principles DFT+ U

    NASA Astrophysics Data System (ADS)

    Huang, Patrick; Butch, Nicholas P.; Jeffries, Jason R.; McCall, Scott K.

    2013-03-01

    Rare-earth intermetallics have important applications as permanent magnet materials, and the rational optimization of their properties would benefit greatly from guidance from ab initio modeling. However, these systems are particularly challenging for current electronic structure methods. Here, we present an ab initio study of the prototype material Sm2Co17 and related compounds, using density functional theory with a Hubbard correction for the Sm 4 f-electrons (DFT+ U method) and ultrasoft pseudopotentials. The Hubbard U parameter is derived from first principles [Cococcioni and de Gironcoli, PRB 71, 035105 (2005)], not fit to experiment. Our calculations are in good agreement with recent photoemission measurements at ambient pressure and the equation of state up to 40 GPa, thus supporting the validity of our DFT+ U model. Prepared by LLNL under Contract DE-AC52-07NA27344.

  6. GPU Acceleration of the Locally Selfconsistent Multiple Scattering Code for First Principles Calculation of the Ground State and Statistical Physics of Materials

    NASA Astrophysics Data System (ADS)

    Eisenbach, Markus

    The Locally Self-consistent Multiple Scattering (LSMS) code solves the first principles Density Functional theory Kohn-Sham equation for a wide range of materials with a special focus on metals, alloys and metallic nano-structures. It has traditionally exhibited near perfect scalability on massively parallel high performance computer architectures. We present our efforts to exploit GPUs to accelerate the LSMS code to enable first principles calculations of O(100,000) atoms and statistical physics sampling of finite temperature properties. Using the Cray XK7 system Titan at the Oak Ridge Leadership Computing Facility we achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6 compared to the CPU only code. This work has been sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Material Sciences and Engineering Division and by the Office of Advanced Scientific Computing. This work used resources of the Oak Ridge Leadership Computing Facility, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  7. Temperature-dependent stability of stacking faults in Al, Cu and Ni: first-principles analysis.

    PubMed

    Bhogra, Meha; Ramamurty, U; Waghmare, Umesh V

    2014-09-24

    We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

  8. Enhanced radial growth of Mg doped GaN nanorods: A combined experimental and first-principles study

    NASA Astrophysics Data System (ADS)

    Nayak, Sanjay; Kumar, Rajendra; Pandey, Nidhi; Nagaraja, K. K.; Gupta, Mukul; Shivaprasad, S. M.

    2018-04-01

    We discuss the microstructural origin of enhanced radial growth in magnesium (Mg) doped single crystalline wurtzite gallium nitride (w-GaN) nanorods (NRs) grown by MBE, using electron microscopy and first-principles Density Functional Theory calculations. Experimentally, we observe that Mg incorporation increases the surface coverage of the grown samples as a consequence of an increase in the radial growth rate of the NRs. We also observe that the coalescence of NRs becomes prominent and the height at which coalescence between proximal rods occurs decreases with increase in Mg concentration. From first-principles calculations, we find that the surface free energy of the Mg doped surface reduces with increasing Mg concentration in the samples. The calculations further suggest a reduction in the adsorption energy and the diffusion barrier of Ga adatoms along [ 11 2 ¯ 0 ] on the side wall surface of the NRs as the underlying mechanism for the observed enhancement in the radial growth rate of GaN NRs. The physics and chemistry behind reduction of the adsorption energy of Ga ad-atoms on the doped surface are explained in the light of electronic structure of the relevant surfaces.

  9. First-principles molecular dynamics simulation of the Ca 2UO 2(CO 3) 3 complex in water

    DOE PAGES

    Priest, Chad; Tian, Ziqi; Jiang, De-en

    2016-01-22

    Recent experiments have shown that the neutral Ca 2UO 2(CO 3) 3 complex is the dominant species of uranium in many uranyl-containing streams. However, the structure and solvation of such a species in water has not been investigated from first principles. Herein we present a first principles molecular dynamics perspective of the Ca 2UO 2(CO 3) 3 complex in water based on density functional theory and Born–Oppenheimer approximation. We find that the Ca 2UO 2(CO 3) 3 complex is very stable in our simulation timeframe for three different concentrations considered and that the key distances from our simulation are inmore » good agreement with the experimental data from extended X-ray absorption fine structure (EXAFS) spectroscopy. More important, we find that the two Ca ions bind differently in the complex, as a result of the hydrogen-bonding network around the whole complex. Furthermore, this finding invites confirmation from time-resolved EXAFS and has implications in understanding the dissociative equilibrium of the Ca 2UO 2(CO 3) 3 complex in water.« less

  10. Role of entropy and structural parameters in the spin-state transition of LaCoO3

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Bismayan; Birol, Turan; Haule, Kristjan

    2017-11-01

    The spin-state transition in LaCoO3 has eluded description for decades despite concerted theoretical and experimental effort. In this study, we approach this problem using fully charge self-consistent density functional theory + embedded dynamical mean field theory (DFT+DMFT). We show from first principles that LaCoO3 cannot be described by a single, pure spin state at any temperature. Instead, we observe a gradual change in the population of higher-spin multiplets with increasing temperature, with the high-spin multiplets being excited at the onset of the spin-state transition followed by the intermediate-spin multiplets being excited at the metal-insulator-transition temperature. We explicitly elucidate the critical role of lattice expansion and oxygen octahedral rotations in the spin-state transition. We also reproduce, from first principles, that the spin-state transition and the metal-insulator transition in LaCoO3 occur at different temperature scales. In addition, our results shed light on the importance of electronic entropy in driving the spin-state transition, which has so far been ignored in all first-principles studies of this material.

  11. Gas adsorption in Mg-porphyrin-based porous organic frameworks: A computational simulation by first-principles derived force field.

    PubMed

    Pang, Yujia; Li, Wenliang; Zhang, Jingping

    2017-09-15

    A novel type of porous organic frameworks, based on Mg-porphyrin, with diamond-like topology, named POF-Mgs is computationally designed, and the gas uptakes of CO 2 , H 2 , N 2 , and H 2 O in POF-Mgs are investigated by Grand canonical Monte Carlo simulations based on first-principles derived force fields (FF). The FF, which describes the interactions between POF-Mgs and gases, are fitted by dispersion corrected double-hybrid density functional theory, B2PLYP-D3. The good agreement between the obtained FF and the first-principle energies data confirms the reliability of the FF. Furthermore our simulation shows the presence of a small amount of H 2 O (≤ 0.01 kPa) does not much affect the adsorption quantity of CO 2 , but the presence of higher partial pressure of H 2 O (≥ 0.1 kPa) results in the CO 2 adsorption decrease significantly. The good performance of POF-Mgs in the simulation inspires us to design novel porous materials experimentally for gas adsorption and purification. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Electronic and optical properties of Fe2SiO4 under pressure effect: ab initio study

    NASA Astrophysics Data System (ADS)

    Xiao, Lingping; Li, Xiaobin; Yang, Xue

    2018-05-01

    We report first-principles studies the structural, electronic, and optical properties of the Fe2SiO4 fayalite in orthorhombic structure, including pressure dependence of structural parameters, band structures, density of states, and optical constants up to 30 GPa. The calculated results indicate that the linear compressibility along b axis is significantly higher than a and c axes, which is in agreement with earlier work. Meanwhile, the pressure dependence of the electronic band structure, density of states and partial density of states of Fe2SiO4 fayalite up to 30 GPa were presented. Moreover, the evolution of the dielectric function, absorption coefficient (α(ω)), reflectivity (R(ω)), and the real part of the refractive index (n(ω)) at high pressure are also presented.

  13. Quantitative prediction of solute strengthening in aluminium alloys.

    PubMed

    Leyson, Gerard Paul M; Curtin, William A; Hector, Louis G; Woodward, Christopher F

    2010-09-01

    Despite significant advances in computational materials science, a quantitative, parameter-free prediction of the mechanical properties of alloys has been difficult to achieve from first principles. Here, we present a new analytic theory that, with input from first-principles calculations, is able to predict the strengthening of aluminium by substitutional solute atoms. Solute-dislocation interaction energies in and around the dislocation core are first calculated using density functional theory and a flexible-boundary-condition method. An analytic model for the strength, or stress to move a dislocation, owing to the random field of solutes, is then presented. The theory, which has no adjustable parameters and is extendable to other metallic alloys, predicts both the energy barriers to dislocation motion and the zero-temperature flow stress, allowing for predictions of finite-temperature flow stresses. Quantitative comparisons with experimental flow stresses at temperature T=78 K are made for Al-X alloys (X=Mg, Si, Cu, Cr) and good agreement is obtained.

  14. A first-principles study of He, Xe, Kr and O incorporation in thorium carbide

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2015-05-01

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. Understanding the incorporation of fission products and oxygen is very important to predict the behavior of nuclear fuels. A first approach to this goal is the study of the incorporation energies and stability of these elements in the material. By means of first-principles calculations within the framework of density functional theory, we calculate the incorporation energies of He, Xe, Kr and O atoms in Th and C vacancy sites, in tetrahedral interstitials and in Schottky defects along the 〈1 1 1〉 and 〈1 0 0〉 directions. We also analyze atomic displacements, volume modifications and Bader charges. This kind of results for ThC, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically. This should deal as a starting point towards the study of the complex behavior of fission products in irradiated ThC.

  15. Principle of maximum entropy for reliability analysis in the design of machine components

    NASA Astrophysics Data System (ADS)

    Zhang, Yimin

    2018-03-01

    We studied the reliability of machine components with parameters that follow an arbitrary statistical distribution using the principle of maximum entropy (PME). We used PME to select the statistical distribution that best fits the available information. We also established a probability density function (PDF) and a failure probability model for the parameters of mechanical components using the concept of entropy and the PME. We obtained the first four moments of the state function for reliability analysis and design. Furthermore, we attained an estimate of the PDF with the fewest human bias factors using the PME. This function was used to calculate the reliability of the machine components, including a connecting rod, a vehicle half-shaft, a front axle, a rear axle housing, and a leaf spring, which have parameters that typically follow a non-normal distribution. Simulations were conducted for comparison. This study provides a design methodology for the reliability of mechanical components for practical engineering projects.

  16. The helium effect at grain boundaries in Fe-Cr alloys: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zemła, M. R.; Wróbel, J. S.; Wejrzanowski, T.; Nguyen-Manh, D.; Kurzydłowski, K. J.

    2017-02-01

    Helium is produced in the structural materials in nuclear power plants by nuclear transmutation following neutron irradiation. Since the solubility of helium in all metals is extremely low, helium tends to be trapped at defects such as vacancies, dislocations and grain boundaries, which cause material embrittlement. Density functional theory (DFT) calculations were performed in order to investigate the helium effect at grain boundaries (GBs) in iron-chromium alloys. Both cohesive energy and magnetic properties at symmetric Σ3(1 1 1) and Σ5(2 1 0) tilt Fe GBs are studied in the presence of Cr and He atoms. It is found that the presence of Cr atoms increases cohesive energy, at different He concentrations, and strongly influences magnetic properties at the GBs. The effect of the segregation energy of helium atom as a function of the different positions of Cr atoms located inside/outside a GB has been considered. Results of the present first-principles study enable one to clarify the role of Cr in understanding the helium effect in Fe-Cr-based alloys.

  17. Experimental and Computational Interrogation of Fast SCR Mechanism and Active Sites on H-Form SSZ-13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sichi; Zheng, Yang; Gao, Feng

    Experiment and density functional theory (DFT) models are combined to develop a unified, quantitative model of the mechanism and kinetics of fast selective catalytic reduction (SCR) of NO/NO2 mixtures over H-SSZ-13 zeolite. Rates, rate orders, and apparent activation energies collected under differential conditions reveal two distinct kinetic regimes. First-principles thermodynamics simulations are used to determine the relative coverages of free Brønsted sites, chemisorbed NH4+ and physisorbed NH3 as a function of reaction conditions. First-principles metadynamics calculations show that all three sites can contribute to the rate-limiting N-N bond forming step in fast SCR. The results are used to parameterize amore » kinetic model that encompasses the full range of reaction conditions and recovers observed rate orders and apparent activation energies. Observed kinetic regimes are related to changes in most-abundant surface intermediates. Financial support was provided by the National Science Foundation GAOLI program under award number 1258690-CBET. We thank the Center for Research Computing at Notre« less

  18. First-principle calculations of structural, electronic, optical, elastic and thermal properties of MgXAs2 (X=Si, Ge) compounds

    NASA Astrophysics Data System (ADS)

    Cheddadi, S.; Boubendira, K.; Meradji, H.; Ghemid, S.; Hassan, F. El Haj; Lakel, S.; Khenata, R.

    2017-12-01

    First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite MgXAs2 (X=Si, Ge) have been performed within the density functional theory (DFT) using the full-potential linearized augmented plane wave (FP-LAPW) method. The obtained equilibrium structural parameters are in good agreement with the available experimental data and theoretical results. The calculated band structures reveal a direct energy band gap for the interested compounds. The predicted band gaps using the modified Becke-Johnson (mBJ) exchange approximation are in fairly good agreement with the experimental data. The optical constants such as the dielectric function, refractive index, and the extinction coefficient are calculated and analysed. The independent elastic parameters namely, C_{11}, C_{12}, C_{13}, C_{33}, C_{44} and C_{66 } are evaluated. The effects of temperature and pressure on some macroscopic properties of MgSiAs2 and MgGeAs2 are predicted using the quasiharmonic Debye model in which the lattice vibrations are taken into account.

  19. "First-principles" kinetic Monte Carlo simulations revisited: CO oxidation over RuO2 (110).

    PubMed

    Hess, Franziska; Farkas, Attila; Seitsonen, Ari P; Over, Herbert

    2012-03-15

    First principles-based kinetic Monte Carlo (kMC) simulations are performed for the CO oxidation on RuO(2) (110) under steady-state reaction conditions. The simulations include a set of elementary reaction steps with activation energies taken from three different ab initio density functional theory studies. Critical comparison of the simulation results reveals that already small variations in the activation energies lead to distinctly different reaction scenarios on the surface, even to the point where the dominating elementary reaction step is substituted by another one. For a critical assessment of the chosen energy parameters, it is not sufficient to compare kMC simulations only to experimental turnover frequency (TOF) as a function of the reactant feed ratio. More appropriate benchmarks for kMC simulations are the actual distribution of reactants on the catalyst's surface during steady-state reaction, as determined by in situ infrared spectroscopy and in situ scanning tunneling microscopy, and the temperature dependence of TOF in the from of Arrhenius plots. Copyright © 2012 Wiley Periodicals, Inc.

  20. Phonon-assisted optical absorption in BaSnO 3 from first principles

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu; Dreyer, Cyrus E.; Rabe, Karin M.

    2018-03-01

    The perovskite BaSnO3 provides a promising platform for the realization of an earth-abundant n -type transparent conductor. Its optical properties are dominated by a dispersive conduction band of Sn 5 s states and by a flatter valence band of O 2 p states, with an overall indirect gap of about 2.9 eV . Using first-principles methods, we study the optical properties of BaSnO3 and show that both electron-phonon interactions and exact exchange, included using a hybrid functional, are necessary to obtain a qualitatively correct description of optical absorption in this material. In particular, the electron-phonon interaction drives phonon-assisted optical absorption across the minimum indirect gap and therefore determines the absorption onset, and it also leads to the temperature dependence of the absorption spectrum. Electronic correlations beyond semilocal density functional theory are key to determine the dynamical stability of the cubic perovskite structure, as well as the correct energies of the conduction bands that dominate absorption. Our work demonstrates that phonon-mediated absorption processes should be included in the design of novel transparent conductor materials.

  1. Mechanical Modulation of Tunneling Current in Transition Metal Dichalcogenides Heterostructures: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Kuroda, Marcelo

    Recent experiments in MoS2 heterostructures reported that out-of-plane tunneling piezoresistivity (TPR) - mechanical modulation of the tunneling current - achieves sensitivities of one decade per Ådisplacement. Owing to their nanometer scale, a quantitative theoretical framework providing the TPR structure-property relationship is necessary to further improve sensitivities. To this end, first principles calculations within density functional theory are used to characterize the phenomenon in MoX2 (with X = S, Se). The TPR is quantified in relation to electrode composition and film thickness showing remarkable agreement with experiments. The origin of the TPR is attributed to the heterostructure compliance rather than band alignment changes with strain, and differs from mechanisms in other nanometer-thick bulk films. Large work function metals (Pt, Au) are singled out as best candidates for enhanced TPR gauges due to weak bonding and negligible thermionic emission; compliant bilayers show larger stress-sensitivity than monolayers. By accounting for the atomistic details and material composition of 2D material-based heterostructures, this work has the potential to advance sensor and nano-electro-mechanical system technologies.

  2. First-principles simulations of doping-dependent mesoscale screening of adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Mostofi, Arash; Corsetti, Fabiano; Wong, Dillon; Crommie, Michael; Lischner, Johannes

    Adsorbed atoms and molecules play an important role in controlling and tuning the functional properties of 2D materials. Understanding and predicting this phenomenon from theory is challenging because of the need to capture both the local chemistry of the adsorbate-substrate interaction and its complex interplay with the long-range screening response of the substrate. To address this challenge, we have developed a first-principles multi-scale approach that combines linear-scaling density-functional theory, continuum screening theory and large-scale tight-binding simulations. Focussing on the case of a calcium adatom on graphene, we draw comparison between the effect of (i) non-linearity, (ii) intraband and interband transitions, and (iii) the exchange-correlation potential, thus providing insight into the relative importance of these different factors on the screening response. We also determine the charge transfer from the adatom to the graphene substrate (the key parameter used in continuum screening models), showing it to be significantly larger than previous estimates. AM and FC acknowledge support of the EPSRC under Grant EP/J015059/1, and JL under Grant EP/N005244/1.

  3. Theoretical investigations on diamondoids (CnHm, n = 10-41): Nomenclature, structural stabilities, and gap distributions

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Ting; Zhao, Yu-Jun; Liao, Ji-Hai; Yang, Xiao-Bao

    2018-01-01

    Combining the congruence check and the first-principles calculations, we have systematically investigated the structural stabilities and gap distributions of possible diamondoids (CnHm) with the carbon numbers (n) from 10 to 41. A simple method for the nomenclature is proposed, which can be used to distinguish and screen the candidates with high efficiency. Different from previous theoretical studies, the possible diamondoids can be enumerated according to our nomenclature, without any pre-determination from experiments. The structural stabilities and electronic properties have been studied by density functional based tight binding and first-principles methods, where a nearly linear correlation is found between the energy gaps obtained by these two methods. According to the formation energy of structures, we have determined the stable configurations as a function of chemical potential. The maximum and minimum energy gaps are found to be dominated by the shape of diamondoids for clusters with a given number of carbon atoms, while the gap decreases in general as the size increases due to the quantum confinement.

  4. Pressure-dependent semiconductor to semimetal and Lifshitz transitions in 2H-MoTe2: Raman and first-principles studies

    NASA Astrophysics Data System (ADS)

    Bera, Achintya; Singh, Anjali; Muthu, D. V. S.; Waghmare, U. V.; Sood, A. K.

    2017-03-01

    High pressure Raman spectroscopy of bulk 2H-MoTe2 up to  ∼29 GPa is shown to reveal two phase transitions (at  ∼6 and 16.5 GPa), which are analyzed using first-principles density functional theoretical calculations. The transition at 6 GPa is marked by changes in the pressure coefficients of A 1g and E2g1 Raman mode frequencies as well as in their relative intensity. Our calculations show that this is an isostructural semiconductor to a semimetal transition. The transition at  ∼16.5 GPa is identified with the changes in linewidths of the Raman modes as well as in the pressure coefficients of their frequencies. Our theoretical analysis clearly shows that the structure remains the same up to 30 GPa. However, the topology of the Fermi-surface evolves as a function of pressure, and abrupt appearance of electron and hole pockets at P∼ 20 GPa marks a Lifshitz transition.

  5. Lattice constant in nonstoichiometric uranium dioxide from first principles

    NASA Astrophysics Data System (ADS)

    Bruneval, Fabien; Freyss, Michel; Crocombette, Jean-Paul

    2018-02-01

    Nonstoichiometric uranium dioxide experiences a shrinkage of its lattice constant with increasing oxygen content, in both the hypostoichiometric and the hyperstoichiometric regimes. Based on first-principles calculations within the density functional theory (DFT)+U approximation, we have developed a point defect model that accounts for the volume of relaxation of the most significant intrinsic defects of UO2. Our point defect model takes special care of the treatment of the charged defects in the equilibration of the model and in the determination of reliable defect volumes of formation. In the hypostoichiometric regime, the oxygen vacancies are dominant and explain the lattice constant variation with their surprisingly positive volume of relaxation. In the hyperstoichiometric regime, the uranium vacancies are predicted to be the dominating defect,in contradiction with experimental observations. However, disregarding uranium vacancies allows us to recover a good match for the lattice-constant variation as a function of stoichiometry. This can be considered a clue that the uranium vacancies are indeed absent in UO2 +x, possibly due to the very slow diffusion of uranium.

  6. Investigation of different physical aspects such as structural, mechanical, optical properties and Debye temperature of Fe2ScM (M=P and As) semiconductors: A DFT-based first principles study

    NASA Astrophysics Data System (ADS)

    Ali, Md. Lokman; Rahaman, Md. Zahidur

    2018-04-01

    By using first principles calculation dependent on the density functional theory (DFT), we have investigated the mechanical, structural properties and the Debye temperature of Fe2ScM (M=P and As) compounds under various pressures up to 60 GPa. The optical properties have been investigated under zero pressure. Our calculated optimized structural parameters of both the materials are in good agreement with other theoretical predictions. The calculated elastic constants show that Fe2ScM (M=P and As) compounds are mechanically stable under external pressure below 60 GPa. From the elastic constants, the shear modulus G, the bulk modulus B, Young’s modulus E, anisotropy factor A and Poisson’s ratio ν are calculated by using the Voigt-Reuss-Hill approximation. The Debye temperature and average sound velocities are also investigated from the obtained elastic constants. The detailed analysis of all optical functions reveals that both compounds are good dielectric material.

  7. Rectification of graphene self-switching diodes: First-principles study

    NASA Astrophysics Data System (ADS)

    Ghaziasadi, Hassan; Jamasb, Shahriar; Nayebi, Payman; Fouladian, Majid

    2018-05-01

    The first principles calculations based on self-consistent charge density functional tight-binding have performed to investigate the electrical properties and rectification behavior of the graphene self-switching diodes (GSSD). The devices contained two structures called CG-GSSD and DG-GSSD which have metallic or semiconductor gates depending on their side gates have a single or double hydrogen edge functionalized. We have relaxed the devices and calculated I-V curves, transmission spectrums and maximum rectification ratios. We found that the DG-MSM devices are more favorable and more stable. Also, the DG-MSM devices have better maximum rectification ratios and current. Moreover, by changing the side gates widths and behaviors from semiconductor to metal, the threshold voltages under forward bias changed from +1.2 V to +0.3 V. Also, the maximum currents are obtained from 1.12 μA to 10.50 μA. Finally, the MSM and SSS type of all devices have minimum and maximum values of voltage threshold and maximum rectification ratios, but the 769-DG devices don't obey this rule.

  8. First-principles method for electron-phonon coupling and electron mobility: Applications to two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Gunst, Tue; Markussen, Troels; Stokbro, Kurt; Brandbyge, Mads

    2016-01-01

    We present density functional theory calculations of the phonon-limited mobility in n -type monolayer graphene, silicene, and MoS2. The material properties, including the electron-phonon interaction, are calculated from first principles. We provide a detailed description of the normalized full-band relaxation time approximation for the linearized Boltzmann transport equation (BTE) that includes inelastic scattering processes. The bulk electron-phonon coupling is evaluated by a supercell method. The method employed is fully numerical and does therefore not require a semianalytic treatment of part of the problem and, importantly, it keeps the anisotropy information stored in the coupling as well as the band structure. In addition, we perform calculations of the low-field mobility and its dependence on carrier density and temperature to obtain a better understanding of transport in graphene, silicene, and monolayer MoS2. Unlike graphene, the carriers in silicene show strong interaction with the out-of-plane modes. We find that graphene has more than an order of magnitude higher mobility compared to silicene in the limit where the silicene out-of-plane interaction is reduced to zero (by substrate interaction, clamping, or similar). If the out-of-plane interaction is not actively reduced, the mobility of silicene will essentially be zero. For MoS2, we obtain several orders of magnitude lower mobilities compared to graphene in agreement with other recent theoretical results. The simulations illustrate the predictive capabilities of the newly implemented BTE solver applied in simulation tools based on first-principles and localized basis sets.

  9. Statistical analysis and modeling of intermittent transport events in the tokamak scrape-off layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Johan, E-mail: anderson.johan@gmail.com; Halpern, Federico D.; Ricci, Paolo

    The turbulence observed in the scrape-off-layer of a tokamak is often characterized by intermittent events of bursty nature, a feature which raises concerns about the prediction of heat loads on the physical boundaries of the device. It appears thus necessary to delve into the statistical properties of turbulent physical fields such as density, electrostatic potential, and temperature, focusing on the mathematical expression of tails of the probability distribution functions. The method followed here is to generate statistical information from time-traces of the plasma density stemming from Braginskii-type fluid simulations and check this against a first-principles theoretical model. The analysis ofmore » the numerical simulations indicates that the probability distribution function of the intermittent process contains strong exponential tails, as predicted by the analytical theory.« less

  10. Quantification of dislocation nucleation stress in TiN through high-resolution in situ indentation experiments and first principles calculations

    DOE PAGES

    Li, N.; Yadav, S. K.; Liu, X. -Y.; ...

    2015-11-05

    Using the in situ indentation of TiN in a high-resolution transmission electron microscope, the nucleation of full as well as partial dislocations has been observed from {001} and {111} surfaces, respectively. The critical elastic strains associated with the nucleation of the dislocations were analyzed from the recorded atomic displacements, and the nucleation stresses corresponding to the measured critical strains were computed using density functional theory. The resolved shear stress was estimated to be 13.8 GPa for the partial dislocation 1/6 <110> {111} and 6.7 GPa for the full dislocation ½ <110> {110}. Moreover, such an approach of quantifying nucleation stressesmore » for defects via in situ high-resolution experiment coupled with density functional theory calculation may be applied to other unit processes.« less

  11. Density functional theory study of 3R- and 2H-CuAlO2 under pressure

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Liu, Zheng-Tang; Feng, Li-Ping; Tian, Hao; Liu, Wen-Ting; Yan, Feng

    2010-10-01

    We present a first-principles density-functional theory based study of the impact of pressure on the structural and elastic properties of bulk 3R- and 2H-CuAlO2. The ground state properties of 3R- and 2H-CuAlO2 are obtained, which are in good agreement with previous experimental and theoretical data. The analysis of enthalpy variation with pressure indicates the phase transition pressure between 3R and 2H is 15.4 GPa. The independent elastic constants of 3R- and 2H-CuAlO2 are calculated. As the applied pressure increases, the calculations show the presences of mechanical instability at 26.2 and 27.8 GPa for 3R- and 2H-CuAlO2, which are possibly related with the phase transitions.

  12. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jianwei; Remsing, Richard C.; Zhang, Yubo

    2016-06-13

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and vanmore » der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.« less

  13. Analysis of the structural, electronic and optic properties of Ni doped MgSiP{sub 2} semiconductor chalcopyrite compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocak, Belgin, E-mail: koakbelgin@gmail.com; Ciftci, Yasemin Oztekin, E-mail: yasemin@gazi.edu.tr

    2016-03-25

    The structural, electronic band structure and optic properties of the Ni doped MgSiP{sub 2} chalcopyrite compound have been performed by using first-principles method in the density functional theory (DFT) as implemented in Vienna Ab-initio Simulation Package (VASP). The generalized gradient approximation (GGA) in the scheme of Perdew, Burke and Ernzerhof (PBE) is used for the exchange and correlation functional. The present lattice constant (a) follows generally the Vegard’s law. The electronic band structure, total and partial density of states (DOS and PDOS) are calculated. We present data for the frequency dependence of imaginary and real parts of dielectric functions ofmore » Ni doped MgSiP{sub 2}. For further investigation of the optical properties the reflectivity, refractive index, extinction coefficient and electron energy loss function are also predicted. Our obtained results indicate that the lattice constants, electronic band structure and optical properties of this compound are dependent on the substitution concentration of Ni.« less

  14. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional.

    PubMed

    Sun, Jianwei; Remsing, Richard C; Zhang, Yubo; Sun, Zhaoru; Ruzsinszky, Adrienn; Peng, Haowei; Yang, Zenghui; Paul, Arpita; Waghmare, Umesh; Wu, Xifan; Klein, Michael L; Perdew, John P

    2016-09-01

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and van der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.

  15. Structural and electronic stability of a volleyball-shaped B80 fullerene

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian

    2010-10-01

    We have studied the structural and electronic characteristics of a volleyball-shaped B80 cage using first-principles density-functional calculations. In contrast to the popularly ratified “magic” B80 buckyball with 20 hexagonal pyramids and 12 hollow pentagons, the volleyball-shaped B80 constitutes 12 pentagonal pyramids, 8 hexagonal pyramids, and 12 hollow hexagons. The B80 volleyball is markedly more stable than the previously assumed magic B80 buckyball, which is attributed to the improved aromaticity associated with the distinct configuration.

  16. DFT applied to the study of carbon-doped zinc-blende (cubic) GaN

    NASA Astrophysics Data System (ADS)

    Espitia R, M. J.; Ortega-López, C.; Rodríguez Martínez, J. A.

    2016-08-01

    Employing first principles within the framework of density functional theory, the structural properties, electronic structure, and magnetism of C-doped zincblende (cubic) GaN were investigated. The calculations were carried out using the pseudopotential method, employed exactly as implemented in Quantum ESPRESSO code. For GaC0.0625N0.9375 concentration, a metallic behavior was found. This metallic property comes from the hybridization and polarization of C-2p states and their neighboring N-2p and G-4p states.

  17. First-principles study of defects in TlBr

    NASA Astrophysics Data System (ADS)

    Du, Mao-Hua

    2010-03-01

    TlBr is a promising radiation detection material due to its high gamma-ray stopping efficiency, high resistivity (that reduces dark current and noise), large enough band gap of 2.68 eV (suitable for room temperature applications), and long electron carrier lifetime (for efficient collection of the radiation-generated carriers). The defect properties obtained from density functional calculations will be presented to discuss their roles in carrier trapping and recombination (which affects the carrier lifetime) and carrier compensation (which affects the resistivity).

  18. A theoretical study of the structure and stability of borohydride on 3d transition metals

    NASA Astrophysics Data System (ADS)

    Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Gyenge, Elod; Kasai, Hideaki

    2012-12-01

    The adsorption of borohydride on 3d transition metals (Cr, Mn, Fe, Co, Ni and Cu) was studied using first principles calculations within spin-polarized density functional theory. Magnetic effect on the stability of borohydride is noted. Molecular adsorption is favorable on Co, Ni and Cu, which is characterized by the strong s-dzz hybridization of the adsorbate-substrate states. Dissociated adsorption structure yielding one or two H adatom fragments on the surface is observed for Cr, Mn and Fe.

  19. Effect of sulfur doping on thermoelectric properties of Sodium Tantalate - A first principles study

    NASA Astrophysics Data System (ADS)

    Chowdary, Bharadwaj; Jayaraman, Kaushik; Molli, Muralikrishna

    2018-05-01

    In this work, we report the thermoelectric (TE) transport properties of perovskite-like Sodium Tantalate and studied the effect of Sulfur doping on TE properties of Sodium Tantalate. The band structures are calculated in the purview of density functional theory using the mBJ exchange correlation potential. The transport properties are evaluated using the Boltzmann transport theory in the constant relaxation time approximation. Our results suggest that Sulfur doped Sodium Tantalate is better n-type thermoelectric compared to Sodium Tantalate.

  20. Interfacially Optimized, High Energy Density Nanoparticle-Polymer Composites for Capacitive Energy Storage

    NASA Astrophysics Data System (ADS)

    Shipman, Joshua; Riggs, Brian; Luo, Sijun; Adireddy, Shiva; Chrisey, Douglas

    Energy storage is a green energy technology, however it must be cost effective and scalable to meet future energy demands. Polymer-nanoparticle composites are low cost and potentially offer high energy storage. This is based on the high breakdown strength of polymers and the high dielectric constant of ceramic nanoparticles, but the incoherent nature of the interface between the two components prevents the realization of their combined full potential. We have created inkjet printable nanoparticle-polymer composites that have mitigated many of these interface effects, guided by first principle modelling of the interface. We detail density functional theory modelling of the interface and how it has guided our use in in specific surface functionalizations and other inorganic layers. We have validated our approach by using finite element analysis of the interface. By choosing the correct surface functionalization we are able to create dipole traps which further increase the breakdown strength of our composites. Our nano-scale understanding has allowed us to create the highest energy density composites currently available (>40 J/cm3).

  1. Force Field Accelerated Density Functional Theory Molecular Dynamics for Simulation of Reactive Systems at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Lindsey, Rebecca; Goldman, Nir; Fried, Laurence

    2017-06-01

    Atomistic modeling of chemistry at extreme conditions remains a challenge, despite continuing advances in computing resources and simulation tools. While first principles methods provide a powerful predictive tool, the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Force Field Accelerated Density Functional Theory Molecular Dynamics for Simulation of Reactive Systems at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Lindsey, Rebecca; Goldman, Nir; Fried, Laurence

    Understanding chemistry at extreme conditions is crucial in fields including geochemistry, astrobiology, and alternative energy. First principles methods can provide valuable microscopic insights into such systems while circumventing the risks of physical experiments, however the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Insight from first principles into the stability and magnetism of alkali-metal superoxide nanoclusters

    NASA Astrophysics Data System (ADS)

    Arcelus, Oier; Suaud, Nicolas; Katcho, Nebil A.; Carrasco, Javier

    2017-05-01

    Alkali-metal superoxides are gaining increasing interest as 2p magnetic materials for information and energy storage. Despite significant research efforts on bulk materials, gaps in our knowledge of the electronic and magnetic properties at the nanoscale still remain. Here, we focused on the role that structural details play in determining stability, electronic structure, and magnetic couplings of (MO2)n (M = Li, Na, and K, with n = 2-8) clusters. Using first-principles density functional theory based on the Perdew-Burke-Ernzerhof and Heyd-Scuseria-Ernzerhof functionals, we examined the effect of atomic structure on the relative stability of different polymorphs within each investigated cluster size. We found that small clusters prefer to form planar-ring structures, whereas non-planar geometries become more stable when increasing the cluster size. However, the crossover point depends on the nature of the alkali metal. Our analysis revealed that electrostatic interactions govern the highly ionic M-O2 bonding and ultimately control the relative stability between 2-D and 3-D geometries. In addition, we analyzed the weak magnetic couplings between superoxide molecules in (NaO2)4 clusters comparing model Hamiltonian methods based on Wannier function projections onto πg states with wave function-based multi-reference calculations.

  4. Heavy-impurity resonance, hybridization, and phonon spectral functions in Fe 1-xM xSi, M=Ir,Os

    DOE PAGES

    Delaire, O.; Al-Qasir, Iyad I.; May, Andrew F.; ...

    2015-03-31

    The vibrational behavior of heavy substitutional impurities (M=Ir,Os) in Fe 1-xM xSi (x = 0, 0.02, 0.04, 0.1) was investigated with a combination of inelastic neutron scattering (INS), transport measurements, and first-principles simulations. In this paper, our INS measurements on single-crystals mapped the four-dimensional dynamical structure factor, S(Q;E), for several compositions and temperatures. Our results show that both Ir and Os impurities lead to the formation of a weakly dispersive resonance vibrational mode, in the energy range of the acoustic phonon dispersions of the FeSi host. We also show that Ir doping, which introduces free carriers and increases electron-phonon coupling,more » leads to softened interatomic force-constants compared to doping with Os, which is isoelectronic to Fe. We analyze the phonon S(Q,E) from INS through a Green's function model incorporating the phonon self-energy based on first-principles density functional theory (DFT) simulations. Calculations of the quasiparticle spectral functions in the doped system reveal the hybridization between the resonance and the acoustic phonon modes. Finally, our results demonstrate a strong interaction of the host acoustic dispersions with the resonance mode, likely leading to the large observed suppression in lattice thermal conductivity.« less

  5. SIEST-A-RT: a study of vacancy diffusion in crystalline silicon using a local-basis first-principle (SIESTA) activation technique (ART).

    NASA Astrophysics Data System (ADS)

    El Mellouhi, Fedwa; Mousseau, Normand; Ordejón, Pablo

    2003-03-01

    We report on a first-principle study of vacancy-induced self-diffusion in crystalline silicon. Our simulations are performed on supercells containing 63 and 215 atoms. We generate the diffusion paths using the activation-relaxation technique (ART) [1], which can sample efficiently the energy landscape of complex systems. The forces and energy are evaluated using SIESTA [2], a selfconsistent density functional method using standard norm-conserving pseudopotentials and a flexible numerical linear combination of atomic orbitals basis set. Combining these two methods allows us to identify diffusion paths that would not be reachable with this degree of accuracy, using other methods. After a full relaxation of the neutral vacancy, we proceed to search for local diffusion paths. We identify various mechanisms like the formation of the four fold coordinated defect, and the recombination of dangling bonds by WWW process. The diffusion of the vacancy proceeds by hops to first nearest neighbor with an energy barrier of 0.69 eV. This work is funded in part by NSERC and NATEQ. NM is a Cottrell Scholar of the Research Corporation. [1] G. T. Barkema and N. Mousseau, Event-based relaxation of continuous disordered systems, Phys. Rev. Lett. 77, 4358 (1996); N. Mousseau and G. T. Barkema, Traveling through potential energy landscapes of disordered materials: ART, Phys. Rev. E 57, 2419 (1998). [2] Density functional method for very large systems with LCAO basis sets D. Sánchez-Portal, P. Ordejón, E. Artacho and J. M. Soler, Int. J. Quant. Chem. 65, 453 (1997).

  6. First principle investigations of the physical properties of hydrogen-rich MgH2

    NASA Astrophysics Data System (ADS)

    Zarshenas, Mohammed; Ahmed, R.; Benali Kanoun, Mohammed; Haq, Bakhtiar ul; Radzi Mat Isa, Ahmad; Goumri-Said, Souraya

    2013-12-01

    Hydrogen being a cleaner energy carrier has increased the importance of hydrogen-containing light metal hydrides, in particular those with large gravimetric hydrogen density like magnesium hydride (MgH2). In this study, density functional and density functional perturbation theories are combined to investigate the structural, elastic, thermodynamic, electronic and optical properties of MgH2. Our structural parameters calculated with those proposed by Perdew, Burke and Ernzerof generalized gradient approximation (PBE-GGA) and Wu-Cohen GGA (WC-GGA) are in agreement with experimental measurements, however the underestimated band gap values calculated using PBE-GGA and WC-GGA were greatly improved with the GGA suggested by Engle and Vosko and the modified Becke-Johnson exchange correlation potential by Trans and Blaha. As for the thermodynamic properties the specific heat values at low temperatures were found to obey the T3 rule and at higher temperatures Dulong and Petit's law. Our analysis of the optical properties of MgH2 also points to its potential application in optoelectronics.

  7. Electronic structure and partial charge distribution of Doxorubicin in different molecular environments.

    PubMed

    Poudel, Lokendra; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Podgornik, Rudolf; Steinmetz, Nicole F; Ching, Wai-Yim

    2015-05-18

    The electronic structure and partial charge of doxorubicin (DOX) in three different molecular environments-isolated, solvated, and intercalated in a DNA complex-are studied by first-principles density functional methods. It is shown that the addition of solvating water molecules to DOX, together with the proximity to and interaction with DNA, has a significant impact on the electronic structure as well as on the partial charge distribution. Significant improvement in estimating the DOX-DNA interaction energy is achieved. The results are further elucidated by resolving the total density of states and surface charge density into different functional groups. It is concluded that the presence of the solvent and the details of the interaction geometry matter greatly in determining the stability of DOX complexation. Ab initio calculations on realistic models are an important step toward a more accurate description of the long-range interactions in biomolecular systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electronic transport properties of nano-scale Si films: an ab initio study

    NASA Astrophysics Data System (ADS)

    Maassen, Jesse; Ke, Youqi; Zahid, Ferdows; Guo, Hong

    2010-03-01

    Using a recently developed first principles transport package, we study the electronic transport properties of Si films contacted to heavily doped n-type Si leads. The quantum transport analysis is carried out using density functional theory (DFT) combined with nonequilibrium Green's functions (NEGF). This particular combination of NEGF-DFT allows the investigation of Si films with thicknesses in the range of a few nanometers and lengths up to tens of nanometers. We calculate the conductance, the momentum resolved transmission, the potential profile and the screening length as a function of length, thickness, orientation and surface structure. Moreover, we compare the properties of Si films with and without a top surface passivation by hydrogen.

  9. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  10. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sissay, Adonay; Abanador, Paul; Mauger, François

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less

  11. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Gao, R.; Ding, Y.; Collins, L. A.; Kress, J. D.

    2017-04-01

    Using density-functional theory-based molecular-dynamics simulations, we have investigated the equation of state for silicon in a wide range of plasma density and temperature conditions of ρ =0.001 -500 g /c m3 and T =2000 -108K . With these calculations, we have established a first-principles equation-of-state (FPEOS) table of silicon for high-energy-density (HED) plasma simulations. When compared with the widely used SESAME-EOS model (Table 3810), we find that the FPEOS-predicted Hugoniot is ˜20% softer; for off-Hugoniot plasma conditions, the pressure and internal energy in FPEOS are lower than those of SESAME EOS for temperatures above T ≈ 1-10 eV (depending on density), while the former becomes higher in the low-T regime. The pressure difference between FPEOS and SESAME 3810 can reach to ˜50%, especially in the warm-dense-matter regime. Implementing the FPEOS table of silicon into our hydrocodes, we have studied its effects on Si-target implosions. When compared with the one-dimensional radiation-hydrodynamics simulation using the SESAME 3810 EOS model, the FPEOS simulation showed that (1) the shock speed in silicon is ˜10% slower; (2) the peak density of an in-flight Si shell during implosion is ˜20% higher than the SESAME 3810 simulation; (3) the maximum density reached in the FPEOS simulation is ˜40% higher at the peak compression; and (4) the final areal density and neutron yield are, respectively, ˜30% and ˜70% higher predicted by FPEOS versus the traditional simulation using SESAME 3810. All of these features can be attributed to the larger compressibility of silicon predicted by FPEOS. These results indicate that an accurate EOS table, like the FPEOS presented here, could be essential for the precise design of targets for HED experiments.

  12. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations

    DOE PAGES

    Hu, S. X.; Gao, R.; Ding, Y.; ...

    2017-04-21

    Using density-functional theory–based molecular-dynamics simulations, we have investigated the equation of state for silicon in a wide range of plasma density and temperature conditions of ρ=0.001–500g/cm 3 and T=2000–10 8K. With these calculations, we have established a first-principles equation-of-state (FPEOS) table of silicon for high-energy-density (HED) plasma simulations. When compared with the widely used SESAME-EOS model (Table 3810), we find that the FPEOS-predicted Hugoniot is ~20% softer; for off-Hugoniot plasma conditions, the pressure and internal energy in FPEOS are lower than those of SESAME EOS for temperatures above T ≈ 1–10 eV (depending on density), while the former becomes highermore » in the low- T regime. The pressure difference between FPEOS and SESAME 3810 can reach to ~50%, especially in the warm-dense-matter regime. Implementing the FPEOS table of silicon into our hydrocodes, we have studied its effects on Si-target implosions. When compared with the one-dimensional radiation-hydrodynamics simulation using the SESAME 3810 EOS model, the FPEOS simulation showed that (1) the shock speed in silicon is ~10% slower; (2) the peak density of an in-flight Si shell during implosion is ~20% higher than the SESAME 3810 simulation; (3) the maximum density reached in the FPEOS simulation is ~40% higher at the peak compression; and (4) the final areal density and neutron yield are, respectively, ~30% and ~70% higher predicted by FPEOS versus the traditional simulation using SESAME 3810. All of these features can be attributed to the larger compressibility of silicon predicted by FPEOS. Furthermore, these results indicate that an accurate EOS table, like the FPEOS presented here, could be essential for the precise design of targets for HED experiments.« less

  13. First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X.; Gao, R.; Ding, Y.

    Using density-functional theory–based molecular-dynamics simulations, we have investigated the equation of state for silicon in a wide range of plasma density and temperature conditions of ρ=0.001–500g/cm 3 and T=2000–10 8K. With these calculations, we have established a first-principles equation-of-state (FPEOS) table of silicon for high-energy-density (HED) plasma simulations. When compared with the widely used SESAME-EOS model (Table 3810), we find that the FPEOS-predicted Hugoniot is ~20% softer; for off-Hugoniot plasma conditions, the pressure and internal energy in FPEOS are lower than those of SESAME EOS for temperatures above T ≈ 1–10 eV (depending on density), while the former becomes highermore » in the low- T regime. The pressure difference between FPEOS and SESAME 3810 can reach to ~50%, especially in the warm-dense-matter regime. Implementing the FPEOS table of silicon into our hydrocodes, we have studied its effects on Si-target implosions. When compared with the one-dimensional radiation-hydrodynamics simulation using the SESAME 3810 EOS model, the FPEOS simulation showed that (1) the shock speed in silicon is ~10% slower; (2) the peak density of an in-flight Si shell during implosion is ~20% higher than the SESAME 3810 simulation; (3) the maximum density reached in the FPEOS simulation is ~40% higher at the peak compression; and (4) the final areal density and neutron yield are, respectively, ~30% and ~70% higher predicted by FPEOS versus the traditional simulation using SESAME 3810. All of these features can be attributed to the larger compressibility of silicon predicted by FPEOS. Furthermore, these results indicate that an accurate EOS table, like the FPEOS presented here, could be essential for the precise design of targets for HED experiments.« less

  14. First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X., E-mail: shu@lle.rochester.edu; Goncharov, V. N.; McCrory, R. L.

    2016-04-15

    Using quantum molecular-dynamics (QMD) methods based on the density functional theory, we have performed first-principles investigations of the ionization and thermal conductivity of polystyrene (CH) over a wide range of plasma conditions (ρ = 0.5 to 100 g/cm{sup 3} and T = 15 625 to 500 000 K). The ionization data from orbital-free molecular-dynamics calculations have been fitted with a “Saha-type” model as a function of the CH plasma density and temperature, which gives an increasing ionization as the CH density increases even at low temperatures (T < 50 eV). The orbital-free molecular dynamics method is only used to gauge the average ionization behavior of CH under the average-atommore » model in conjunction with the pressure-matching mixing rule. The thermal conductivities (κ{sub QMD}) of CH, derived directly from the Kohn–Sham molecular-dynamics calculations, are then analytically fitted with a generalized Coulomb logarithm [(lnΛ){sub QMD}] over a wide range of plasma conditions. When compared with the traditional ionization and thermal conductivity models used in radiation–hydrodynamics codes for inertial confinement fusion simulations, the QMD results show a large difference in the low-temperature regime in which strong coupling and electron degeneracy play an essential role in determining plasma properties. Hydrodynamic simulations of cryogenic deuterium–tritium targets with CH ablators on OMEGA and the National Ignition Facility using the QMD-derived ionization and thermal conductivity of CH have predicted ∼20% variation in target performance in terms of hot-spot pressure and neutron yield (gain) with respect to traditional model simulations.« less

  15. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides.

    PubMed

    Nakayama, Masanobu; Kotobuki, Masashi; Munakata, Hirokazu; Nogami, Masayuki; Kanamura, Kiyoshi

    2012-07-28

    The research and development of rechargeable all-ceramic lithium batteries are vital to realize their considerable advantages over existing commercial lithium ion batteries in terms of size, energy density, and safety. A key part of such effort is the development of solid-state electrolyte materials with high Li(+) conductivity and good electrochemical stability; lithium-containing oxides with a garnet-type structure are known to satisfy the requirements to achieve both features. Using first-principles density functional theory (DFT), we investigated the electrochemical stability of garnet-type Li(x)La(3)M(2)O(12) (M = Ti, Zr, Nb, Ta, Sb, Bi; x = 5 or 7) materials against Li metal. We found that the electrochemical stability of such materials depends on their composition and structure. The electrochemical stability against Li metal was improved when a cation M was chosen with a low effective nuclear charge, that is, with a high screening constant for an unoccupied orbital. In fact, both our computational and experimental results show that Li(7)La(3)Zr(2)O(12) and Li(5)La(3)Ta(2)O(12) are inert to Li metal. In addition, the linkage of MO(6) octahedra in the crystal structure affects the electrochemical stability. For example, perovskite-type La(1/3)TaO(3) was found, both experimentally and computationally, to react with Li metal owing to the corner-sharing MO(6) octahedral network of La(1/3)TaO(3), even though it has the same constituent elements as garnet-type Li(5)La(3)Ta(2)O(12) (which is inert to Li metal and features isolated TaO(6) octahedra).

  16. Hybrid functional studies of stability and diffusion of hydrogen in Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Chang, K. J.

    2012-02-01

    Nitride semiconductors are known to suffer from low p-type doping efficiency due to the high activation energy of Mg acceptors and the compensation of hole carriers. To enhance hole carrier concentration, the hydrogen co-doping method is widely used, in which hydrogen is intentionally doped with Mg dopants and removed by subsequent thermal annealing. In this work, we perform first-principles density functional calculations to study the stability and diffusion of hydrogen in Mg-doped GaN. For the exchange-correlation potential, we employ both the generalized gradient approximation (GGA) proposed by Perdew, Burke, and Ernzerhof and the hybrid density functional of Heyd, Scuseria, and Ernzerhof. We examine the diffusion pathways and dissociation barriers of H from the Mg-H complex using the nudged elastic band and dimer methods. We compare the results of the GGA and hybrid density functional calculations for the stability of various H interstitial configurations and the migration barriers for H diffusion. Finally, using the calculated migration barriers as inputs, we perform kinetic Monte Carlo simulations for the dissociation of the Mg-H complex and find that the Mg acceptors are activated by thermal annealing up to 700-800 ^oC, in good agreement with experiments.

  17. Solvation of Na^+ in water from first-principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    White, J. A.; Schwegler, E.; Galli, G.; Gygi, F.

    2000-03-01

    We have carried out ab initio molecular dynamics (MD) simulations of the Na^+ ion in water with an MD cell containing a single alkali ion and 53 water molecules. The electron-electron and electron-ion interactions were modeled by density functional theory with a generalized gradient approximation for the exchange-correlation functional. The computed radial distribution functions, coordination numbers, and angular distributions are consistent with available experimental data. The first solvation shell contains 5.2±0.6 water molecules, with some waters occasionally exchanging with those of the second shell. The computed Na^+ hydration number is larger than that from calculations for water clusters surrounding an Na^+ ion, but is consistent with that derived from x-ray measurements. Our results also indicate that the first hydration shell is better defined for Na^+ than for K^+ [1], as indicated by the first minimum in the Na-O pair distribution function. [1] L.M. Ramaniah, M. Bernasconi, and M. Parrinello, J. Chem. Phys. 111, 1587 (1999). This work was performed for DOE under contract W-7405-ENG-48.

  18. First-principles data-driven discovery of transition metal oxides for artificial photosynthesis

    NASA Astrophysics Data System (ADS)

    Yan, Qimin

    We develop a first-principles data-driven approach for rapid identification of transition metal oxide (TMO) light absorbers and photocatalysts for artificial photosynthesis using the Materials Project. Initially focusing on Cr, V, and Mn-based ternary TMOs in the database, we design a broadly-applicable multiple-layer screening workflow automating density functional theory (DFT) and hybrid functional calculations of bulk and surface electronic and magnetic structures. We further assess the electrochemical stability of TMOs in aqueous environments from computed Pourbaix diagrams. Several promising earth-abundant low band-gap TMO compounds with desirable band edge energies and electrochemical stability are identified by our computational efforts and then synergistically evaluated using high-throughput synthesis and photoelectrochemical screening techniques by our experimental collaborators at Caltech. Our joint theory-experiment effort has successfully identified new earth-abundant copper and manganese vanadate complex oxides that meet highly demanding requirements for photoanodes, substantially expanding the known space of such materials. By integrating theory and experiment, we validate our approach and develop important new insights into structure-property relationships for TMOs for oxygen evolution photocatalysts, paving the way for use of first-principles data-driven techniques in future applications. This work is supported by the Materials Project Predictive Modeling Center and the Joint Center for Artificial Photosynthesis through the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. Computational resources also provided by the Department of Energy through the National Energy Supercomputing Center.

  19. Neutral and charged excitations in carbon fullerenes from first-principles many-body theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiago, Murilo L; Kent, Paul R; Hood, Randolph Q.

    2008-01-01

    We use first-principles many-body theories to investigate the low energy excitations of the carbon fullerenes C_20, C_24, C_50, C_60, C_70, and C_80. Properties are calculated via the GW-Bethe-Salpeter Equation (GW-BSE) and diffusion Quantum Monte Carlo (QMC) methods. At a lower level of theoretical complexity, we also calculate these properties using static and time-dependent density-functional theory. We critically compare these theories and assess their accuracy against available experimental data. The first ionization potentials are consistently well reproduced and are similar for all the fullerenes and methods studied. The electron affinities and first triplet excitation energies show substantial method and geometry dependence.more » Compared to available experiment, GW-BSE underestimates excitation energies by approximately 0.3 eV while QMC overestimates them by approximately 0.5 eV. We show the GW-BSE errors result primarily from a systematic overestimation of the electron affinities, while the QMC errors likely result from nodal error in both ground and excited state calculations.« less

  20. Twenty-five years of maximum-entropy principle

    NASA Astrophysics Data System (ADS)

    Kapur, J. N.

    1983-04-01

    The strengths and weaknesses of the maximum entropy principle (MEP) are examined and some challenging problems that remain outstanding at the end of the first quarter century of the principle are discussed. The original formalism of the MEP is presented and its relationship to statistical mechanics is set forth. The use of MEP for characterizing statistical distributions, in statistical inference, nonlinear spectral analysis, transportation models, population density models, models for brand-switching in marketing and vote-switching in elections is discussed. Its application to finance, insurance, image reconstruction, pattern recognition, operations research and engineering, biology and medicine, and nonparametric density estimation is considered.

  1. Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide

    DOE PAGES

    Bondi, Robert J.; Marinella, Matthew J.

    2015-02-28

    First-principles density-functional theory (DFT) calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (V O n; n=0,1+,2+) in both bulk, amorphous tantalum pentoxide (a-Ta 2O 5) and also at vacuum and metallic Ta interfaces. We calculate multivariate vacancy formation energies to evaluate stability as a function of oxidation state, distance from interface plane, and Fermi energy. V O n of all oxidation states preferentially segregate at both Ta and vacuum interfaces, where the metallic interface exhibits global formation energy minima. In a-Ta 2O 5, V O 0 are characterized by structural contractionmore » and electron density localization, while V O 2+ promote structural expansion and are depleted of electron density. In contrast, interfacial V O 0 and V O 2+ show nearly indistinguishable ionic and electronic signatures indicative of a reduced V O center. Interfacial V O 2+ extract electron density from metallic Ta indicating V O 2+ is spontaneously reduced at the expense of the metal. This oxidation/reduction behavior suggests careful selection and processing of both oxide layer and metal electrodes for engineering memristor device operation.« less

  2. Finite temperature grand canonical ensemble study of the minimum electrophilicity principle.

    PubMed

    Miranda-Quintana, Ramón Alain; Chattaraj, Pratim K; Ayers, Paul W

    2017-09-28

    We analyze the minimum electrophilicity principle of conceptual density functional theory using the framework of the finite temperature grand canonical ensemble. We provide support for this principle, both for the cases of systems evolving from a non-equilibrium to an equilibrium state and for the change from one equilibrium state to another. In doing so, we clearly delineate the cases where this principle can, or cannot, be used.

  3. First principle study of UHTC ternary diboride, Cr2AlB2

    NASA Astrophysics Data System (ADS)

    Rastogi, Anugya; Rajpoot, Priyanka; Verma, U. P.

    2018-04-01

    In this paper ab-initio study of the structural, electronic and optical properties of ternary metal boride Cr2AlB2 using full potential linear augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). The study of structural properties shows that Cr2AlB2 is metallic in nature and have orthorhombic crystal structure. The optical properties show that it possess anisotropic behavior, which have wide applications in electricity production through concentration of solar power (CSP) technology. To the best of our knowledge, theoretical study of the optical properties of Cr2AlB2 is reported for the first time.

  4. A new phase of ThC at high pressure predicted from a first-principles study

    NASA Astrophysics Data System (ADS)

    Guo, Yongliang; Qiu, Wujie; Ke, Xuezhi; Huai, Ping; Cheng, Cheng; Han, Han; Ren, Cuilan; Zhu, Zhiyuan

    2015-08-01

    The phase transition of thorium monocarbide (ThC) at high pressure has been studied by means of density functional theory. Through structure search, a new phase with space group P 4 / nmm has been predicted. The calculated phonons demonstrate that this new phase and the previous B2 phase are dynamically stable as the external pressure is greater than 60 GPa and 120 GPa, respectively. The transformation from B1 to P 4 / nmm is predicted to be a first-order transition, while that from P 4 / nmm to B2 is found to be a second-order transition.

  5. Structure, strain, and the ground state of the LaTiO3/LaAlO3 superlattice

    NASA Astrophysics Data System (ADS)

    Lee, Alex Taekyung; Han, Myung Joon

    2014-03-01

    The first-principles density functional theory calculations have been performed to understand LaTiO3/LaAlO3 superlattice. By taking into account of the structural distortions, U dependence, and the exchange correlation functional dependence, we show that the ferromagnetic spin and antiferro-orbital ordering is stabilized in the wide range of strains, which is notably different from the previous reports on the titanate systems. The ground-state spin and orbital configurations critically depend on the structural properties. Our results suggest a possible strain control of the magnetic property in transition-metal oxide heterostructures.

  6. Electronic and magnetic properties of magnetoelectric compound Ca2CoSi2O7: An ab initio study

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jayita

    2018-05-01

    The detailed first principle density functional theory calculations are carried out to investigate the electronic and magnetic properties of magnetoelectric compound Ca2CoSi2O7. The magnetic properties of this system are analyzed by calculating various hopping integrals as well as exchange interactions and deriving the relevant spin Hamiltonian. The dominant exchange path is visualized with Wannier functions plotting. Only intra planer nearest neighbor exchange interaction is strong in this system. The magnetocrystalline anisotropy is calculated for this system, and the results of the calculation reveal that the spin quantization axis lies in the ab plane.

  7. A potential half-Heusler thermoelectric material ScAuSn: A first principle study

    NASA Astrophysics Data System (ADS)

    Joshi, H.; Rai, D. P.; Thapa, R. K.

    2018-04-01

    Density Functional Theory along with semi classical Boltzmann transport theory have been applied to study the electronic and thermoelectric property of the Heusler alloy ScAuSn. It has been found that ScAuSn is an indirect band gap semiconductor with a gap of 0.344 eV. The thermoelectric properties such as electrical conductivity (σ), Seebeck coefficient (S), electronic thermal conductivity (κ) etc. are reported as a function of chemical potential in the region ± 2.0 eV, with respect to constant temperature. The calculated ZT value is almost equal to 1, thus making ScAuSn a potential thermoelectric candidate.

  8. First-principles investigation on switching properties of spiropyran and merocyanine grafted graphyne nanotube device

    NASA Astrophysics Data System (ADS)

    Bhuvaneswari, R.; Nagarajan, V.; Chandiramouli, R.

    2018-01-01

    The density functional theory (DFT) method with non-equilibrium Green's function (NEGF) method is used to study the electronic properties of the graphyne nanotube device. The graphyne nanotube is used as a base material to graft photochromic spiropyran and merocyanine molecules. The current voltage characteristics clearly give the insights on the switching properties of spiropyran and merocyanine grafted graphyne device. The findings show that spiropyran grafted graphyne device as ON state and merocyanine grafted graphyne device as an OFF state device. Moreover, upon shining light of proper wavelength, the spiropyran/merocyanine grafted graphyne nanotube device can be used as a switch.

  9. First principles study of structural, electronic and optical properties of perovskites CaZrO3 and CaHfO3 in cubic phase

    NASA Astrophysics Data System (ADS)

    Hoat, D. M.; Silva, J. F. Rivas; Blas, A. Méndez

    2018-07-01

    In this work, we present the first principles calculations for structural, electronic and optical properties of perovskites CaZrO3 and CaHfO3 using the full-potential linearized augmented plane wave method (FP-LAPW) within the framework of density functional theory (DFT) as implemented in WIEN2k package. The exchange-correlation potential is treated with local density approximation (LDA) and generalized gradient approximation (GGA-PBE and PBESol). Additionally, the Tran Blaha modified Becke-Johnson exchange potential (mBJ) also is employed for electronic and optical calculations due to that it gives very accurate band gap of solids. Our obtained structural parameters are in good agreement with experimental datas and other theoretical results. The energy band gap obtained with mBJ is 4.56 eV for CaZrO3 and 5.27 eV for CaHfO3. The hybridization of states of O atom with those of Zr and Hf atoms in CaZrO3 and CaHfO3, respectively, is observed. The spin-orbit coupling effect on electronic properties of considered compounds also is investigated. Finally, the linear optical properties of CaZrO3 and CaHfO3 are derived from their complex dielectric function calculated with mBJ potential for wide energy range up to 45 eV, and all of them analyzed in details.

  10. Direct modeling of the electrochemistry in the three-phase boundary of solid oxide fuel cell anodes by density functional theory: a critical overview.

    PubMed

    Shishkin, M; Ziegler, T

    2014-02-07

    The first principles modeling of electrochemical reactions has proven useful for the development of efficient, durable and low cost solid oxide full cells (SOFCs). In this account we focus on recent advances in modeling of structural, electronic and catalytic properties of the SOFC anodes based on density functional theory (DFT) first principle calculations. As a starting point, we highlight that the adequate analysis of cell electrochemistry generally requires modeling of chemical reactions at the metal/oxide interface rather than on individual metal or oxide surfaces. The atomic models of Ni/YSZ and Ni/CeO2 interfaces, required for DFT simulations of reactions on SOFC anodes are discussed next, together with the analysis of the electronic structure of these interfaces. Then we proceed to DFT-based findings on charge transfer mechanisms during redox reactions on these two anodes. We provide a comparison of the electronic properties of Ni/YSZ and Ni/CeO2 interfaces and present an interpretation of their different chemical performances. Subsequently we discuss the computed energy pathways of fuel oxidation mechanisms, obtained by various groups to date. We also discuss the results of DFT studies combined with microkinetic modeling as well as the results of kinetic Monte Carlo simulations. In conclusion we summarize the key findings of DFT modeling of metal/oxide interfaces to date and highlight possible directions in the future modeling of SOFC anodes.

  11. A far-wing line shape theory which satisfies the detailed balance principle

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.; Hartmann, J.-M.; Boulet, C.

    1995-01-01

    A far-wing theory in which the validity of the detailed balance principle is maintained in each step of the derivation is presented. The role of the total density matrix including the initial correlations is analyzed rigorously. By factoring out the rapidly varying terms in the complex-time development operator in the interaction representation, better approximate expressions can be obtained. As a result, the spectral density can be expressed in terms of the line-coupling functions in which two coupled lines are arranged symmetrically and whose frequency detunings are omega - 1/2(omega(sub ji) + omega (sub j'i'). Using the approximate values omega - omega(sub ji) results in expressions that do not satisfy the detailed balance principle. However, this principle remains satisfied for the symmetrized spectral density in which not only the coupled lines are arranged symmetrically, but also the initial and final states belonging to the same lines are arranged symmetrically as well.

  12. First principles predictions of electronic and elastic properties of BaPb2As2 in the ThCr2Si2-type structure

    NASA Astrophysics Data System (ADS)

    Bourourou, Y.; Amari, S.; Yahiaoui, I. E.; Bouhafs, B.

    2018-01-01

    A first-principles approach is used to predicts the electronic and elastic properties of BaPb2As2 superconductor compound, using full-potential linearized augmented plane wave plus local orbitals (FP-L/APW+lo) scheme within the local density approximation LDA. The calculated equilibrium structural parameter a agree well with the experiment while the c/a ratio is far away from the experimental result. The band structure, density of states, together with the charge density and chemical bonding are discussed. The calculated elastic constants for our compound indicate that it is mechanically stable at ambient pressure. Polycrystalline elastic moduli (Young's, Bulk, shear Modulus and the Poisson's ratio) were calculated according to the Voigte-Reusse-Hill (VRH) average.

  13. Large deviation principle at work: Computation of the statistical properties of the exact one-point aperture mass

    NASA Astrophysics Data System (ADS)

    Reimberg, Paulo; Bernardeau, Francis

    2018-01-01

    We present a formalism based on the large deviation principle (LDP) applied to cosmological density fields, and more specifically to the arbitrary functional of density profiles, and we apply it to the derivation of the cumulant generating function and one-point probability distribution function (PDF) of the aperture mass (Map ), a common observable for cosmic shear observations. We show that the LDP can indeed be used in practice for a much larger family of observables than previously envisioned, such as those built from continuous and nonlinear functionals of density profiles. Taking advantage of this formalism, we can extend previous results, which were based on crude definitions of the aperture mass, with top-hat windows and the use of the reduced shear approximation (replacing the reduced shear with the shear itself). We were precisely able to quantify how this latter approximation affects the Map statistical properties. In particular, we derive the corrective term for the skewness of the Map and reconstruct its one-point PDF.

  14. First-principles studies of electronic, transport and bulk properties of pyrite FeS2

    NASA Astrophysics Data System (ADS)

    Banjara, Dipendra; Mbolle, Augustine; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola

    We present results of ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of pyrite FeS2. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO) formalism, following the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method requires successive, self consistent calculations with increasing basis sets to reach the ground state of the system under study. We report the band structure, the band gap, total and partial densities of states, effective masses, and the bulk modulus. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.

  15. Evaluating and enhancing quantum capacitance in graphene-based electrodes from first principles

    NASA Astrophysics Data System (ADS)

    Ogitsu, Tadashi; Otani, Minoru; Lee, Jonathan; Bagge-Hansen, Michael; Biener, Juergen; Wood, Brandon

    2013-03-01

    Graphene derivatives are attractive as supercapacitor electrodes because they are lightweight, chemically inert, have high surface area and conductivity, and are stable in electrolyte solutions. Nevertheless, devising reliable strategies for improving energy density relies on an understanding of the specific factors that control electrode performance. We use density-functional theory calculations of pristine and defective graphene to extract quantum capacitance, as well as to identify specific limiting factors. The effect of structural point defects and strain-related morphological changes on the density of states is also evaluated. The results are combined with predicted and measured in situ X-ray absorption spectra in order to give insight into the structural and chemical features present in synthesized carbon aerogel samples. Performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  16. Engineering the work function of buckled boron α-sheet by lithium adsorption: a first-principles investigation.

    PubMed

    Zheng, Bing; Yu, Hai-tao; Xie, Ying; Lian, Yong-fu

    2014-11-26

    First-principles density functional theory calculations were performed to study the effect of Li adsorption on the structural and electronic properties, particularly the work function, of boron α-sheet. The calculated binding energies indicated that boron α-sheet could be well stabilized by the adsorption of Li atoms. Furthermore, the work functions of Li-adsorbed boron α-sheets were observed to decrease drastically with increasing Li coverage. The work functions are lower than that of Mg and even, for some of them, lower than that of Ca, indicating a considerable potential application of Li-adsorbed boron α-sheets as field-emission and electrode materials. Based on the calculated geometric and electronic structures, we discuss in details some possible aspects affecting the work function. The Li coverage dependence of the work functions of Li-adsorbed boron α-sheets was further confirmed by electrostatic potential analyses. The relationship between the work function variation and the Fermi and vacuum energy level shifts was also discussed, and we observed that the variation of the work function is primarily associated with the shift of the Fermi energy level. It is the surface dipole formed by the interaction between adatoms and substrate that should be responsible for the observed variation of the work function, whereas the increasing negative charge and rumpling for boron α-sheet only play minor roles. Additionally, the effect of Li adatoms on the work function of boron α-sheet was confirmed to be much stronger than that of graphene or a graphene double layer.

  17. Thermodynamic properties of OsB under high temperature and high pressure

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Hua; Li, Zuo; Cheng, Yan; Bi, Yan; Cai, Ling-Cang

    2011-09-01

    The energy-volume curves of OsB have been obtained using the first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT) within the generalized gradient approximation (GGA) and local density approximation (LDA). Using the quasi-harmonic Debye model we first analyze the specific heat, the coefficients of thermal expansion as well as the thermodynamic Grüneisen parameter of OsB in a wide temperature range at high pressure. At temperature 300 K, the coefficients of thermal expansion αV by LDA and GGA calculations are 1.67×10 -5 1/K and 2.01×10 -5 1/K, respectively. The specific heat of OsB at constant pressure (volume) is also calculated. Meanwhile, we find that the Debye temperature of OsB increases monotonically with increasing pressure. The present study leads to a better understanding of how the OsB materials respond to pressure and temperature.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkin, William M.; Balan, Adrian; Liang, Liangbo

    Here, we report how the presence of electron-beam-induced sulfur vacancies affects first-order Raman modes and correlate the effects with the evolution of the in situ transmission-electron microscopy (TEM) two-terminal conductivity of monolayer MoS 2 under electron irradiation. We observe a redshift in the E Raman peak and a less pronounced blueshift in the A' 1 peak with increasing electron dose. Using energy-dispersive X-ray spectroscopy (EDS), we show that irradiation causes partial removal of sulfur and correlate the dependence of the Raman peak shifts with S vacancy density (a few %), which is confirmed by first-principles density functional theory calculations. Inmore » situ device current measurements show exponential decrease in channel current upon irradiation. Our analysis demonstrates that the observed frequency shifts are intrinsic properties of the defective systems and that Raman spectroscopy can be used as a quantitative diagnostic tool to characterize MoS 2-based transport channels.« less

  19. High-pressure and high-temperature physical properties of LiF studied by density functional theory calculations and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Wei; Liu, Zi-Jiang; Quan, Wei-Long; Song, Ting; Khenata, Rabah; Bin-Omran, Saad

    2018-05-01

    Using the revised Perdew-Burke-Ernzerhof generalized gradient approximation based on first-principles plane-wave pseudopotential density functional theory, the high-pressure structural phase transition of LiF is explored. From the analysis of Gibbs free energies, we find that no phase transition occurs for LiF in the presented pressure range from 0 to 1000 GPa, and this result is consistent with the theoretical prediction obtained via ab initio calculations [N.A. Smirnov, Phys. Rev. B 83 (2011) 014109]. Using the classical molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction, the melting phase diagram of LiF is determined. The obtained normalized volumes under pressure are in good agreement with our density functional theory results and the available experimental data. Meanwhile, with the help of the quasi-harmonic Debye model in which the phononic effects are considered, the thermodynamic properties of interest, including the volume thermal expansion coefficient, isothermal bulk modulus and its first and second pressure derivatives, heat capacity at constant volume, entropy, Debye temperature, and Grüneisen parameter of LiF are predicted systematically. All the properties of LiF with the stable NaCl-type structure in the temperature range of 0-4900 K and the pressure up to 1000 GPa are summarized.

  20. Flexoelectricity in ATiO3 (A = Sr, Ba, Pb) perovskite oxide superlattices from density functional theory

    NASA Astrophysics Data System (ADS)

    Plymill, Austin; Xu, Haixuan

    2018-04-01

    Flexoelectric coefficients for several bulk and superlattice perovskite systems are determined using a direct approach from first principles density functional theory calculations. A strong enhancement in the longitudinal flexoelectric coefficient has been observed in the 1SrTiO3/1PbTiO3 superlattice with alternating single atomic layers of SrTiO3 and PbTiO3. It was found that atomistic displacement, charge response under strain, and interfaces affect the flexoelectric properties of perovskite superlattice systems. These factors can be used to tune this effect in dielectrics. It was further found that the calculated Born effective charge for an ion under the influence of strain can differ significantly from the bulk value. These insights can be used to help search for more effective flexoelectric materials to be implemented in electromechanical devices.

  1. Multicontrol Over Graphene–Molecule Hetereojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yun-Peng; Fry, James N.; Cheng, Hai-Ping

    The vertical configuration is a powerful tool recently developed experimentally to investigate field effects in quasi two-dimensional systems. Prototype graphene-based vertical tunneling transistors can achieve an extraordinary control over current density utilizing gate voltages. In this work, we study theoretically vertical tunneling junctions that consist of a monolayer of photoswitchable aryl azobenzene molecules sandwiched between two sheets of graphene. Azobenzene molecules transform between trans and cis conformations upon photoexcitation, thus adding a second knob that enhances the control over physical properties of the junction. Using first-principles methods within the density functional framework, we perform simulations with the inclusion of fieldmore » effects for both trans and cis configurations. Lastly, we find that the interference of interface states resulting from molecule–graphene interactions at the Fermi energy introduces a dual-peak pattern in the transmission functions and dominates the transport properties of gate junctions, shedding new light on interfacial processes.« less

  2. Density Functional Theory Study of Leaching Performance of Different Acids on Pyrochlore (100) Surface

    NASA Astrophysics Data System (ADS)

    Yang, Xiuli; Fang, Qing; Ouyang, Hui

    2018-04-01

    Pyrochlore leaching using hydrofluoric, sulfuric, and hydrochloric acids has been studied via experimental methods for years, but the interactions between niobium atoms on the pyrochlore surface and different acids have not been investigated. In this work, first-principles calculations based on density functional theory were used to elucidate the leaching performance of these three acids from the viewpoint of geometrical and electronic structures. The calculation results indicate that sulfate, chloride, and fluoride anions influence the geometric structure of pyrochlore (100) to different extents, decreasing in the order: sulfate, fluoride, chloride. Orbitals of O1 and O2 atoms of sulfate hybridized with those of surface niobium atom. Fluorine orbitals hybridized with those of surface niobium atoms. However, no obvious overlap exists between any orbitals of chlorine and surface niobium, revealing that chlorine does not interact chemically with surface niobium atoms.

  3. Optical properties of medium size noble and transition metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan C.; Pantelides, Sokrates T.

    2009-03-01

    Using first-principles methods within time dependent density functional theory and the local density approximation (TDLDA) the absorption spectra of medium size (˜20-80 atoms) silver, gold and copper nanoparticles have been calculated. The nanoparticles are fcc fragments with different aspect ratios. We find that in the case of Ag nanoparticles is well reproduced by classical electrodynamics theory based in Mie's formalism, using the dielectric function of bulk Ag and taking into account the nanoparticle shape. For the case of Cu and Au, there is a similarity in the overall features of the quantum mechanical and classical spectra, but no detailed agreement. We will discuss the role that the d-electrons among all the different elements and the surface states play in controlling the optical properties of the nanoparticles. This work was supported by GOALI NSF grant (DMR-0513048), DOE, the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and Alcoa Inc.

  4. ADSORPTION AND DISSOCIATION OF O2 ON Ti3Al (0001) STUDIED BY FIRST-PRINCIPLES

    NASA Astrophysics Data System (ADS)

    Wei, Li-Jing; Guo, Jian-Xin; Dai, Xiu-Hong; Wang, Ying-Long; Liu, Bao-Ting

    2015-05-01

    The adsorption and dissociation of oxygen molecule on Ti3Al (0001) surface have been investigated by density functional theory (DFT) with the generalized gradient approximation (GGA). All possible adsorption sites including nine vertical and fifteen parallel sites of O2 are considered on Ti3Al (0001) surface. It is found that all oxygen molecules dissociate except for three vertical adsorption sites after structure optimization. This indicates that oxygen molecules prefer to dissociate on the junction site between Ti and Al atoms. Oxygen atoms coming from dissociation of oxygen molecule tend to occupy the most stable adsorption sites of the Ti3Al (0001) surface. The distance of O-O is related to the surface dissociation distance of Ti3Al (0001) surface. The valence electron localization function (ELF) and projected density of states (DOS) show that the bonds of O-O are breakaway at parallel adsorption end structures.

  5. Oxygen adsorption and incorporation at irradiated GaN(0001) and GaN(0001¯) surfaces: First-principles density-functional calculations

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, T. H.; Doolittle, W. Alan

    2006-11-01

    Density functional theory calculations of oxygen adsorption and incorporation at the polar GaN(0001) and GaN(0001¯) surfaces have been carried out to explain the experimentally observed reduced oxygen concentration in GaN samples grown by molecular beam epitaxy in the presence of high energy (˜10keV) electron beam irradiation [Myers , J. Vac. Sci. Technol. B 18, 2295 (2000)]. Using a model in which the effect of the irradiation is to excite electrons from the valence to the conduction band, we find that both the energy cost of incorporating oxygen impurities in deeper layers and the oxygen adatom diffusion barriers are significantly reduced in the presence of the excitation. The latter effect leads to a higher probability for two O adatoms to recombine and desorb, and thus to a reduced oxygen concentration in the irradiated samples, consistent with experimental observations.

  6. Density Functional Theory Study of Leaching Performance of Different Acids on Pyrochlore (100) Surface

    NASA Astrophysics Data System (ADS)

    Yang, Xiuli; Fang, Qing; Ouyang, Hui

    2018-06-01

    Pyrochlore leaching using hydrofluoric, sulfuric, and hydrochloric acids has been studied via experimental methods for years, but the interactions between niobium atoms on the pyrochlore surface and different acids have not been investigated. In this work, first-principles calculations based on density functional theory were used to elucidate the leaching performance of these three acids from the viewpoint of geometrical and electronic structures. The calculation results indicate that sulfate, chloride, and fluoride anions influence the geometric structure of pyrochlore (100) to different extents, decreasing in the order: sulfate, fluoride, chloride. Orbitals of O1 and O2 atoms of sulfate hybridized with those of surface niobium atom. Fluorine orbitals hybridized with those of surface niobium atoms. However, no obvious overlap exists between any orbitals of chlorine and surface niobium, revealing that chlorine does not interact chemically with surface niobium atoms.

  7. Energy level alignment of self-assembled linear chains of benzenediamine on Au(111) from first principles

    NASA Astrophysics Data System (ADS)

    Li, Guo; Rangel, Tonatiuh; Liu, Zhen-Fei; Cooper, Valentino R.; Neaton, Jeffrey B.

    2016-03-01

    Using density functional theory (DFT) with a van der Waals density functional, we calculate the adsorption energetics and geometry of benzenediamine (BDA) molecules on Au(111) surfaces. Our results demonstrate that the reported self-assembled linear chain structure of BDA, stabilized via hydrogen bonds between amine groups, is energetically favored over previously studied monomeric phases. Moreover, using a model, which includes nonlocal polarization effects from the substrate and the neighboring molecules and incorporates many-body perturbation theory calculations within the GW approximation, we obtain approximate self-energy corrections to the DFT highest occupied molecular orbital (HOMO) energy associated with BDA adsorbate phases. We find that, independent of coverage, the HOMO energy of the linear chain phase is lower relative to the Fermi energy than that of the monomer phase, and in good agreement with values measured with ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy.

  8. Influences of S, Se, Te and Po substitutions on structural, electronic and optical properties of hexagonal CuAlO2 using GGA and B3LYP functionals.

    PubMed

    Liu, Qi-Jun; Jiao, Zhen; Liu, Fu-Sheng; Liu, Zheng-Tang

    2016-06-07

    The effects of X-doping (X = S, Se, Te and Po) on the structural, electronic and optical properties of hexagonal CuAlO2 were studied using first-principles density functional theory. The calculated results showed the obtained lattice constants to increase with increasing atomic number, and the X-doping to be energetically more favorable under Al-rich conditions. The calculated electronic properties showed decreased bandgaps with increasing atomic number, which was due to the better covalent hybridizations after sulfuration doping. The enhanced covalency was further confirmed by calculating the Mulliken atomic populations and bond populations. The density of states indicated the increase of the contribution to antibonding from the X-p states to be a benefit for p-type conductivity. Moreover, the X-doping induced a red shift of the absorption edge.

  9. Multicontrol Over Graphene–Molecule Hetereojunctions

    DOE PAGES

    Wang, Yun-Peng; Fry, James N.; Cheng, Hai-Ping

    2017-09-15

    The vertical configuration is a powerful tool recently developed experimentally to investigate field effects in quasi two-dimensional systems. Prototype graphene-based vertical tunneling transistors can achieve an extraordinary control over current density utilizing gate voltages. In this work, we study theoretically vertical tunneling junctions that consist of a monolayer of photoswitchable aryl azobenzene molecules sandwiched between two sheets of graphene. Azobenzene molecules transform between trans and cis conformations upon photoexcitation, thus adding a second knob that enhances the control over physical properties of the junction. Using first-principles methods within the density functional framework, we perform simulations with the inclusion of fieldmore » effects for both trans and cis configurations. Lastly, we find that the interference of interface states resulting from molecule–graphene interactions at the Fermi energy introduces a dual-peak pattern in the transmission functions and dominates the transport properties of gate junctions, shedding new light on interfacial processes.« less

  10. Pair potentials for warm dense matter and their application to x-ray Thomson scattering in aluminum and beryllium.

    PubMed

    Harbour, L; Dharma-Wardana, M W C; Klug, D D; Lewis, L J

    2016-11-01

    Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.

  11. Theoretical investigation of structural, mechanical and electronic properties of GaAs1-xNx alloys under ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Li, Jian; Han, Xiuxun; Dong, Chen; Fan, Changzeng

    2017-12-01

    Using first-principles total energy calculations, we have studied the structural, mechanical and electronic properties of GaAs1-xNx ternary semiconductor alloys with the zinc-blende crystal structure over the whole nitrogen concentration range (with x from 0 to 1) within density functional theory (DFT) framework. To obtain the ideal band gap, we employ the semi-empirical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U). The calculated results illustrate the varying lattice constants and band gap in GaAs1-xNx alloys as functions of the nitrogen concentration x. According to the pressure dependence of the lattice constants and volume, the higher N concentration alloy exhibits the better anti-compressibility. In addition, an increasing band gap is predicted under 20 GPa pressure for GaAs1-xNx alloys.

  12. Spectroscopic and first principles investigation on 4-[(4-pyridinylmethylene)amino]-benzoic acid bearing pyridyl and carboxyl anchoring groups

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Qiaoyi

    2018-03-01

    We report a combined experimental and computational investigation on the structure and photophysics of 4-[(4-pyridinylmethylene)amino]-benzoic acid, a functional molecule bearing two anchoring groups for attachment onto a TiO2 surface and perovskite surface, for potential solar cell application. This molecule possesses interesting adsorption properties in perovskite solar cell because the pyridyl group serves as the Lewis base and targets Lewis acidic sites in the perovskite surface, while the carboxyl group targets TiO2 surface, improving the coupling between the perovskite surface and the TiO2 surface. The electronic structures of the molecule and its photochemistry are revealed by the UV-vis absorption spectra and the fluorescence spectra under visible light irradiation, which are combined with density functional theory (DFT) and time-dependent density functional theory (TDDFT) analysis. Considering the bi-anchoring groups and the conjugated π system embedded in the molecule, we anticipate it can molecular engineer the TiO2/perovskite interface in perovskite solar cell.

  13. Charge Transport Properties of Durene Crystals from First-Principles.

    PubMed

    Motta, Carlo; Sanvito, Stefano

    2014-10-14

    We establish a rigorous computational scheme for constructing an effective Hamiltonian to be used for the determination of the charge carrier mobility of pure organic crystals at finite temperature, which accounts for van der Waals interactions, and it includes vibrational contributions from the entire phonon spectrum of the crystal. Such an approach is based on the ab initio framework provided by density functional theory and the construction of a tight-binding effective model via Wannier transformation. The final Hamiltonian includes coupling of the electrons to the crystals phonons, which are also calculated from density functional theory. We apply this methodology to the case of durene, a small π-conjugated molecule, which forms a high-mobility herringbone-stacked crystal. We show that accounting correctly for dispersive forces is fundamental for obtaining a high-quality phonon spectrum, in agreement with experiments. Then, the mobility as a function of temperature is calculated along different crystallographic directions and the phonons most responsible for the scattering are identified.

  14. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    PubMed

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Intrinsic point defects in β-In2S3 studied by means of hybrid density-functional theory

    NASA Astrophysics Data System (ADS)

    Ghorbani, Elaheh; Albe, Karsten

    2018-03-01

    We have employed first principles total energy calculations in the framework of density functional theory, with plane wave basis sets and screened exchange hybrid functionals to study the incorporation of intrinsic defects in bulk β-In2S3. The results are obtained for In-rich and S-rich experimental growth conditions. The charge transition level is discussed for all native defects, including VIn, VS, Ini, Si, SIn, and InS, and a comparison between the theoretically calculated charge transition levels and the available experimental findings is presented. The results imply that β-In2S3 shows n-type conductivity under both In-rich and S-rich growth conditions. The indium antiisite (InS), the indium interstitial (Ini), and the sulfur vacancy ( VS ' ) are found to be the leading sources of sample's n-type conductivity. When going from the In-rich to the S-rich condition, the conductivity of the material decreases; however, the type of conductivity remains unchanged.

  16. Quasi-2D Liquid State at Metal-Organic Interface and Adsorption State Manipulation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Masih

    The metal/organic interface between noble metal close-packed (111) surfaces and organic semiconducting molecules is studied using Scanning tunneling microscopy and Photoelectron Spectroscopy, supplemented by first principles density functional theory calculations and Markov Chain Monte Carlo simulations. Copper Phthalocyanine molecules were shown to have dual adsorption states: a liquid state where intermolecular interactions were shown to be repulsive in nature and largely due to entropic effects, and a disordered immobilized state triggered by annealing or applying a tip-sample bias larger than a certain temperature or voltage respectively where intermolecular forces were demonstrated to be attractive. A methodology for altering molecular orientation on the aforementioned surfaces is also proposed through introduction of a Fullerene C60 buffer layer. Density functional theory calculations demonstrate orientation-switching of Copper Phthalocyanine molecules based on the amount of charges transferred to/from the substrate to the C60-CuPc layers; suggesting existence of critical substrate work functions that cause reorientation.

  17. Efficient Adsorption Characteristics of Pristine and Silver-Doped Graphene Oxide Towards Contaminants: A Potential Membrane Material for Water Purification?

    PubMed

    Panigrahi, Puspamitra; Dhinakaran, Ashok Kumar; Sekar, Yuvaraj; Ahuja, Rajeev; Hussain, Tanveer

    2018-05-16

    In this work, we have investigated the potential of pristine and silver (Ag)-functionalized graphene oxide monolayers GO (GO-Ag) as efficient membranes for water filtration. Our first principles calculations based on density functional theory (DFT) reveal the hydrophilic nature of GO surfaces. The phonon frequency calculations within density functional perturbation theory (DFPT) confirmed the stability of GO sheets in aqueous media. Van der Waals-corrected binding energies of GO sheet towards heavy metals suggest that even pristine GO sheets are completely impermeable to various heavy metals like arsenic (As) and lead (Pb). However, compared to GO, the GO-Ag sheets have a much higher affinity towards the three amino acids histidine, phenyl-alanine and tyrosine, which are the main component of a bacteria cell wall. The GO-Ag sheet is found to be extremely efficient for bacteria inactivation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Applications of quantum entropy to statistics

    NASA Astrophysics Data System (ADS)

    Silver, R. N.; Martz, H. F.

    This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to hierarchical Bayes methods.

  19. Rare earth chalcogenide Ce3Te4 as high efficiency high temperature thermoelectric material

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochun; Yang, Ronggui; Zhang, Yong; Zhang, Peihong; Xue, Yu

    2011-05-01

    The electronic band structures of Ce3Te4 have been studied using the first-principles density-functional theory calculations. It is found that the density of states of Ce3Te4 has a very high delta-shaped peak appearing 0.21 eV above the Fermi level, which mainly comes from the f orbital electrons of the rare-earth element Ce. Using the simple theory proposed by Mahan and Sofo, [Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996)], we obtain an ideal value of zT=13.5 for Ce3Te4 at T=1200 K, suggesting that the rare-earth chalcogenide Ce3Te4 could be a promising high efficiency high temperature thermoelectric material.

  20. Lattice dynamics and thermal transport in multiferroic CuCrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Dipanshu; Niedziela, Jennifer L.; May, Andrew F.

    Inelastic neutron and x-ray scattering measurements of phonons and spin waves in CuCrO 2 were performed over a wide range of temperature, and complemented with first-principles simulations. The phonon dispersions and density of states are well reproduced by our density functional cal- culations, and reveal a strong anisotropy of Cu vibrations, with large amplitudes of low-frequency in-plane motions. In addition, we find that spin fluctuations persist above 300 K, far above the N eel temperature for long-range antiferromagnetic order, TN. Modeling of the thermal conductivity, based on our phonon measurements and simulations, reveals a significant anisotropy and indicates that themore » spin fluctuations above TN constitute a strong source of phonon scattering.« less

  1. Lattice dynamics and thermal transport in multiferroic CuCrO 2

    DOE PAGES

    Bansal, Dipanshu; Niedziela, Jennifer L.; May, Andrew F.; ...

    2017-02-09

    Inelastic neutron and x-ray scattering measurements of phonons and spin waves in CuCrO 2 were performed over a wide range of temperature, and complemented with first-principles simulations. The phonon dispersions and density of states are well reproduced by our density functional cal- culations, and reveal a strong anisotropy of Cu vibrations, with large amplitudes of low-frequency in-plane motions. In addition, we find that spin fluctuations persist above 300 K, far above the N eel temperature for long-range antiferromagnetic order, TN. Modeling of the thermal conductivity, based on our phonon measurements and simulations, reveals a significant anisotropy and indicates that themore » spin fluctuations above TN constitute a strong source of phonon scattering.« less

  2. AB INITIO Investigations of the Magnetism in Diluted Magnetic Semiconductor Fe-DOPED GaN

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Zhou, Jing; Xu, Wei; Dong, Peng

    2014-01-01

    In this paper, we present a first principle investigation on Fe-doped GaN with wurtzite and zinc-blend structure using full potential density functional calculations. Data point out that the magnetic behavior of Fe-doped GaN system is strongly dependent on Fe doping configurations. In agreement with the experimental reports, and independently by doping, antiferromagnetism occurs in the zinc-blend structure, while in the wurtzite structure ferromagnetism depends on the Fe doping configurations. Detailed analyses combined with density of state calculations support the assignment that the ferromagnetism is closely related to the impurity band at the origin of the hybridization of Fe 3d and N 2p states in the Fe-doped GaN of wurtzite phase.

  3. Negative differential resistance in electron tunneling in ultrathin films near the two-dimensional limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batabyal, R.; Abdul Wasey, A. H. M.; Mahato, J. C.

    We report on our observation of negative differential resistance (NDR) in electron tunneling conductance in atomic-scale ultrathin Ag films on Si(111) substrates. NDR was observed by scanning tunneling spectroscopy measurements. The tunneling conductance depends on the electronic local density of states (LDOS) of the sample. We show that the sample bias voltage, at which negative differential resistance and peak negative conductance occur, depends on the film thickness. This can be understood from the variation in the LDOS of the Ag films as a function of film thickness down to the two-dimensional limit of one atomic layer. First principles density functionalmore » theory calculations have been used to explain the results.« less

  4. Phonon and thermodynamical properties of CuSc: A DFT study

    NASA Astrophysics Data System (ADS)

    Jain, Ekta; Pagare, Gitanjali; Dubey, Shubha; Sanyal, S. P.

    2018-05-01

    A detailed systematic theoretical investigation of phonon and thermodynamical behavior of CuSc intermetallic compound has been carried out by uing first-principles density functional theory in B2-type (CsCl) crystal structure. Phonon dispersion curve and phonon density of states (PhDOS) are studied which confirm the stability of CuSc intermetallic compound in B2 phase. It is found that PhDOS at high frequencies mostly composed of Sc states. We have also presented some temperature dependent properties such as entropy, free energy, heat capacity, internal energy and thermal displacement, which are computed under PHONON code. The various features of these quantities are discussed in detail. From these results we demonstrate that the particular intermetallic have better ductility and larger thermal expansion.

  5. First-Principles calculations of Piezoelectricity and Polarization Rotation in Pb(Zr_0.5Ti_0.5)O_3

    NASA Astrophysics Data System (ADS)

    Wu, Zhigang; Krakauer, Henry

    2002-03-01

    Recent experimental and theoretical work [1-3] indicates that polarization rotation via a monoclinic phase at the morphotropic phase boundary in PZT [1-3] is responsible for its large piezoelectric response. We investigate this using the first-principles LAPW+LO method within the local density functional approximation. Calculated internal coordinates of monoclinic PZT(50/50) are in good agreement with PZT(52/48) experimental data [4]. Bulk spontaneous polarization and piezoelectric stress tensor elements of chemically ordered PbZr_1/2Ti_1/2O3 (PZT 50/50) are determined from relaxed ground-state Berry's phase calculations while constraining the symmetry to monoclinic Cm. Large piezoelectric response is found as the polarization rotates within the Cm mirror plane. These first-principles results show that polarization rotation can explain the large measured piezoelectric constants in ceramic PZT. * Supported by ONR. [1] H. Fu and Cohen, Nature 403, 281 (2000). [2] B. Noheda, D.E. Cox, G. Shirane, S-E. Park, L.E. Cross and Z. Zhong Phys. Rev. Lett. 86, 3891 (2001). [3] L. Bellaiche, A. Garcia and D. Vanderbilt, Phys. Rev. Lett. 84, 5427 (2000). [4] B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.-E. Park, D.E. Cox and G. Shirane, Phys. Rev. B 61, 8687 (2000).

  6. Progress towards an effective model for FeSe from high-accuracy first-principles quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Busemeyer, Brian; Wagner, Lucas K.

    While the origin of superconductivity in the iron-based materials is still controversial, the proximity of the superconductivity to magnetic order is suggestive that magnetism may be important. Our previous work has suggested that first-principles Diffusion Monte Carlo (FN-DMC) can capture magnetic properties of iron-based superconductors that density functional theory (DFT) misses, but which are consistent with experiment. We report on the progress of efforts to find simple effective models consistent with the FN-DMC description of the low-lying Hilbert space of the iron-based superconductor, FeSe. We utilize a procedure outlined by Changlani et al.[1], which both produces parameter values and indications of whether the model is a good description of the first-principles Hamiltonian. Using this procedure, we evaluate several models of the magnetic part of the Hilbert space found in the literature, as well as the Hubbard model, and a spin-fermion model. We discuss which interaction parameters are important for this material, and how the material-specific properties give rise to these interactions. U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program under Award No. FG02-12ER46875, as well as the NSF Graduate Research Fellowship Program.

  7. A first-principles study on adsorption behaviors of pristine and Li-decorated graphene sheets toward hydrazine molecules

    NASA Astrophysics Data System (ADS)

    Zeng, Huadong; Cheng, Xinlu; Wang, Wei

    2018-03-01

    The adsorption behaviors and properties of hydrazine (N2H4) molecules on pristine and Li-decorated graphene sheets were investigated by means of first-principles based on density functional theory. We systematically analyzed the optimal geometry, average binding energy, charge transfer, charge density difference and density of states of N2H4 molecules adsorbed on pristine and Li-decorated graphene sheets. It is found that the interaction between single N2H4 molecule and pristine graphene is weak physisorption with the low binding energy of -0.026 eV, suggesting that the pristine graphene sheet is insensitive to the presence of N2H4 molecule. However, it is markedly enhanced after lithium decoration with the high binding energy of -1.004 eV, verifying that the Li-decorated graphene sheet is significantly sensitive to detect N2H4 molecule. Meanwhile, the effects of the concentrations of N2H4 molecules on two different substrates were studied detailedly. For pristine graphene substrate, the average binding energy augments apparently with increasing the number of N2H4 molecules, which is mainly attributed to the van der Waals interactions and hydrogen bonds among N2H4 clusters. Li-decorated graphene sheet has still a strong affinity to N2H4 molecules despite the corresponding average binding energy emerges a contrary tendency. Overall, Li-decorated graphene sheet could be considered as a potential gas sensor in field of hydrazine molecules.

  8. Electronic and Magnetic Properties of Ni-Doped Zinc-Blende ZnO: A First-Principles Study.

    PubMed

    Xue, Suqin; Zhang, Fuchun; Zhang, Shuili; Wang, Xiaoyang; Shao, Tingting

    2018-04-26

    The electronic structure, band structure, density of state, and magnetic properties of Ni-doped zinc-blende (ZB) ZnO are studied by using the first-principles method based on the spin-polarized density-functional theory. The calculated results show that Ni atoms can induce a stable ferromagnetic (FM) ground state in Ni-doped ZB ZnO. The magnetic moments mainly originate from the unpaired Ni 3 d orbitals, and the O 2 p orbitals contribute a little to the magnetic moments. The magnetic moment of a supercell including a single Ni atom is 0.79 μ B . The electronic structure shows that Ni-doped ZB ZnO is a half-metallic FM material. The strong spin-orbit coupling appears near the Fermi level and shows obvious asymmetry for spin-up and spin-down density of state, which indicates a significant hybrid effects from the Ni 3 d and O 2 p states. However, the coupling of the anti-ferromagnetic (AFM) state show metallic characteristic, the spin-up and spin-down energy levels pass through the Fermi surface. The magnetic moment of a single Ni atom is 0.74 μ B . Moreover, the results show that the Ni 3 d and O 2 p states have a strong p - d hybridization effect near the Fermi level and obtain a high stability. The above theoretical results demonstrate that Ni-doped zinc blende ZnO can be considered as a potential half-metal FM material and dilute magnetic semiconductors.

  9. First-principle calculations of electronic structures and polar properties of (κ,ε)-Ga2O3

    NASA Astrophysics Data System (ADS)

    Kim, Juyeong; Tahara, Daisuke; Miura, Yoshino; Kim, Bog G.

    2018-06-01

    Physical properties of κ- and ε-Ga2O3 are investigated using density functional theory. We utilized the supercell method considering the partial occupancies in ε-Ga2O3. The polarization values of these materials were analyzed to overcome the inconsistency between experimental and theoretical studies. The polarization values of κ- and ε-Ga2O3 were ∼26.39 and 24.44 µC/cm2, respectively. The bandgap values of 4.62 and 4.27 eV were estimated with the hybrid functional method, which suggested an underestimation of the PBEsol functional values of 2.32 and 2.06 eV for κ- and ε-Ga2O3, respectively.

  10. Path Integral Monte Carlo Simulations of Warm Dense Matter and Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Militzer, Burkhard

    2018-01-13

    New path integral Monte Carlo simulation (PIMC) techniques will be developed and applied to derive the equation of state (EOS) for the regime of warm dense matter and dense plasmas where existing first-principles methods cannot be applied. While standard density functional theory has been used to accurately predict the structure of many solids and liquids up to temperatures on the order of 10,000 K, this method is not applicable at much higher temperature where electronic excitations become important because the number of partially occupied electronic orbitals reaches intractably large numbers and, more importantly, the use of zero-temperature exchange-correlation functionals introducesmore » an uncontrolled approximation. Here we focus on PIMC methods that become more and more efficient with increasing temperatures and still include all electronic correlation effects. In this approach, electronic excitations increase the efficiency rather than reduce it. While it has commonly been assumed such methods can only be applied to elements without core electrons like hydrogen and helium, we recently showed how to extend PIMC to heavier elements by performing the first PIMC simulations of carbon and water plasmas [Driver, Militzer, Phys. Rev. Lett. 108 (2012) 115502]. Here we propose to continue this important development to extend the reach of PIMC simulations to yet heavier elements and also lower temperatures. The goal is to provide a robust first-principles simulation method that can accurately and efficiently study materials with excited electrons at solid-state densities in order to access parts of the phase diagram such the regime of warm dense matter and plasmas where so far only more approximate, semi-analytical methods could be applied.« less

  11. First-principles simulation of the optical response of bulk and thin-film α-quartz irradiated with an ultrashort intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyung-Min; Min Kim, Chul; Moon Jeong, Tae, E-mail: jeongtm@gist.ac.kr

    A computational method based on a first-principles multiscale simulation has been used for calculating the optical response and the ablation threshold of an optical material irradiated with an ultrashort intense laser pulse. The method employs Maxwell's equations to describe laser pulse propagation and time-dependent density functional theory to describe the generation of conduction band electrons in an optical medium. Optical properties, such as reflectance and absorption, were investigated for laser intensities in the range 10{sup 10} W/cm{sup 2} to 2 × 10{sup 15} W/cm{sup 2} based on the theory of generation and spatial distribution of the conduction band electrons. The method was applied tomore » investigate the changes in the optical reflectance of α-quartz bulk, half-wavelength thin-film, and quarter-wavelength thin-film and to estimate their ablation thresholds. Despite the adiabatic local density approximation used in calculating the exchange–correlation potential, the reflectance and the ablation threshold obtained from our method agree well with the previous theoretical and experimental results. The method can be applied to estimate the ablation thresholds for optical materials, in general. The ablation threshold data can be used to design ultra-broadband high-damage-threshold coating structures.« less

  12. Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X=Mn,Fe,Co) from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

    2011-01-01

    The crystallographic, magnetic and electronic structures of the ferromagnetic shape memory alloys Ni2XGa (X=Mn, Fe, and Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The lattice parameters of both austenitic and martensitic phases in Ni2MnGa have been calculated. The formation energies of the cubic phase of Ni2XGa are estimated, and show a destabilization tendency if Mn atom is substituted by Fe or Co. From Ni2MnGa to Ni2CoGa, the down spin total density of states (DOS) at Fermi level is gradually increasing, whereas that of the up spin part remains almost unchanged. This is the main origin of the difference of the magnetic moment in these alloys. The partial DOS is dominated by the Ni and Mn 3d states in the bonding region below EF. There are two bond types existing in Ni2XGa: one is between neighboring Ni atoms in Ni2MnGa; the other is between Ni and X atoms in Ni2FeGa and Ni2CoGa alloys.

  13. First principles absorption spectra of Cu{sub n} (n = 2 - 20) clusters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baishya, K.; Idrobo, J. C.; Ogut, S.

    2011-06-17

    Optical absorption spectra for the computed ground state structures of copper clusters (Cu{sub n}, n = 2-20) are investigated from first principles using time-dependent density functional theory in the adiabatic local density approximation (TDLDA). The results are compared with available experimental data, existing calculations, and with results from our previous computations on silver and gold clusters. The main effects of d electrons on the absorption spectra, quenching the oscillator strengths, and getting directly involved in low-energy excitations increase in going from Ag{sub n} to Au{sub n} to Cu{sub n} due to the increase in the hybridization of the occupied, yetmore » shallow, d orbitals and the partially occupied s orbitals. We predict that while Cu nanoparticles of spherical or moderately ellipsoidal shape do not exhibit Mie (surface plasmon) resonances, unlike the case for Ag and Au, extremely prolate or oblate Cu nanoparticles with eccentricities near unity should give rise to Mie resonances in the lower end of the visible range and in the infrared. This tunable resonance predicted by the classical Mie-Gans theory is reproduced with remarkable accuracy by our TDLDA computations on hypothetical Cu clusters in the form of zigzag chains with as few as 6 to 20 atoms.« less

  14. Lithium doping and vacancy effects on the structural, electronic and magnetic properties of hexagonal boron nitride sheet: A first-principles calculation

    NASA Astrophysics Data System (ADS)

    Fartab, Dorsa S.; Kordbacheh, Amirhossein Ahmadkhan

    2018-06-01

    The first-principles calculations based on spin-polarized density functional theory is carried out to investigate the structural, electronic and magnetic properties of a hexagonal boron nitride sheet (h-BNS) doped by one or two lithium atom(s). Moreover, a vacancy in the neighborhood of one Li-substituted atom is introduced into the system. All optimized structures indicate significant local deformations with Li atom(s) protruded to the exterior of the sheet. The defects considered at N site are energetically more favorable than their counterpart structures at B site. The spin-polarized impurity states appear within the bandgap region of the pristine h-BNS, which lead to a spontaneous magnetization with the largest magnetic moments of about 2 μB in where a single or two B atom(s) are replaced by Li atom(s). Furthermore, the Li substitution for a single B atom increases the density of holes compared to that of electrons forming a p-type semiconductor. More interestingly, the structure in which two Li are substituted two neighboring B atoms appears to show desired half-metallic behavior that may be applicable in spintronic. The results provide a way to enhance the conductivity and magnetism of the pristine h-BNS for potential applications in BN-based nanoscale devices.

  15. Density-functional theory for internal magnetic fields

    NASA Astrophysics Data System (ADS)

    Tellgren, Erik I.

    2018-01-01

    A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.

  16. First principles simulation of amorphous InSb

    NASA Astrophysics Data System (ADS)

    Los, Jan H.; Kühne, Thomas D.; Gabardi, Silvia; Bernasconi, Marco

    2013-05-01

    Ab initio molecular dynamics simulations based on density functional theory have been performed to generate a model of amorphous InSb by quenching from the melt. The resulting network is mostly tetrahedral with a minor fraction (10%) of atoms in a fivefold coordination. The structural properties are in good agreement with available x-ray diffraction and extended x-ray-absorption fine structure data and confirm the proposed presence of a sizable fraction of homopolar In-In and Sb-Sb bonds whose concentration in our model amounts to about 20% of the total number of bonds.

  17. First-Principles Approach to Model Electrochemical Reactions: Understanding the Fundamental Mechanisms behind Mg Corrosion

    NASA Astrophysics Data System (ADS)

    Surendralal, Sudarsan; Todorova, Mira; Finnis, Michael W.; Neugebauer, Jörg

    2018-06-01

    Combining concepts of semiconductor physics and corrosion science, we develop a novel approach that allows us to perform ab initio calculations under controlled potentiostat conditions for electrochemical systems. The proposed approach can be straightforwardly applied in standard density functional theory codes. To demonstrate the performance and the opportunities opened by this approach, we study the chemical reactions that take place during initial corrosion at the water-Mg interface under anodic polarization. Based on this insight, we derive an atomistic model that explains the origin of the anodic hydrogen evolution.

  18. Anisotropic Constitutive Relationships in Energetic Materials: Nitromethane and Rdx

    NASA Astrophysics Data System (ADS)

    Oleynik, I. I.; Conroy, M.; White, C. T.

    2007-12-01

    The anisotropic constitutive relationships in solid nitromethane (NM) and α-RDX were studied using first-principles density functional theory (DFT). In addition to hydrostatic compressions, we performed uniaxial compressions in the [100], [010], [001], [110], [101], [011], and [111] directions up to the compression ratio V/V0 = 0.70. Equilibrium properties, including lattice parameters and elastic constants, as well as hydrostatic EOS, are in good agreement with available experimental data. The shear stresses of uniaxially compressed NM and α-RDX were used to predict the relative shock sensitivity between different crystallographic directions.

  19. Local electronic effects and irradiation resistance in high-entropy alloys

    DOE PAGES

    Egami, Takeshi; Stocks, George Malcolm; Nicholson, Don; ...

    2015-08-14

    High-entropy alloys are multicomponent solid solutions in which various elements with different chemistries and sizes occupy the same crystallographic lattice sites. Thus, none of the atoms perfectly fit the lattice site, giving rise to considerable local lattice distortions and atomic-level stresses. These characteristics can be beneficial for performance under both radiation and in a high-temperature environment, making them attractive candidates as nuclear materials. We discuss electronic origin of the atomic-level stresses based upon first-principles calculations using a density functional theory approach.

  20. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation

    NASA Astrophysics Data System (ADS)

    Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas

    2018-04-01

    The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.

  1. Transformation of the θ-phase in Mg-Li-Al alloys: a density functional theory study.

    PubMed

    Zhang, Caili; Han, Peide; Zhang, Zhuxia; Dong, Minghui; Zhang, Lili; Gu, Xiangyang; Yang, Yanqing; Xu, Bingshe

    2012-03-01

    In Mg-Li-Al alloys, θ-phase MgAlLi(2) is a strengthening and metastable phase which is liable to be transformed to the equilibrium phase AlLi on overaging. While the structural details of the θ-phase MgAlLi(2) and the microscopic transformation are still unknown. In this paper, the structure of MgAlLi(2) unit cell was determined through X-ray powder diffraction simulation. Microscopic transformation process of θ-phase MgAlLi(2) was discussed in detail using first principles method.

  2. Calibration and evaluation of a nuclear density and moisture measuring apparatus.

    DOT National Transportation Integrated Search

    1963-11-01

    The research objectives of this project were to investigate a new : method of in-place determination of soils densities and moisture levels : employing a nuclear physics principle of the gamma radiation function as : the measurement technique, with s...

  3. Investigating the Energetic Ordering of Stable and Metastable TiO 2 Polymorphs Using DFT+ U and Hybrid Functionals

    DOE PAGES

    Curnan, Matthew T.; Kitchin, John R.

    2015-08-12

    Prediction of transition metal oxide BO 2 (B = Ti, V, etc.) polymorph energetic properties is critical to tunable material design and identifying thermodynamically accessible structures. Determining procedures capable of synthesizing particular polymorphs minimally requires prior knowledge of their relative energetic favorability. Information concerning TiO 2 polymorph relative energetic favorability has been ascertained from experimental research. In this study, the consistency of first-principles predictions and experimental results involving the relative energetic ordering of stable (rutile), metastable (anatase and brookite), and unstable (columbite) TiO 2 polymorphs is assessed via density functional theory (DFT). Considering the issues involving electron–electron interaction and chargemore » delocalization in TiO 2 calculations, relative energetic ordering predictions are evaluated over trends varying Ti Hubbard U 3d or exact exchange fraction parameter values. Energetic trends formed from varying U 3d predict experimentally consistent energetic ordering over U 3d intervals when using GGA-based functionals, regardless of pseudopotential selection. Given pertinent linear response calculated Hubbard U values, these results enable TiO 2 polymorph energetic ordering prediction. Here, the hybrid functional calculations involving rutile–anatase relative energetics, though demonstrating experimentally consistent energetic ordering over exact exchange fraction ranges, are not accompanied by predicted fractions, for a first-principles methodology capable of calculating exact exchange fractions precisely predicting TiO 2 polymorph energetic ordering is not available.« less

  4. Spiers Memorial Lecture. Quantum chemistry: the first seventy years.

    PubMed

    McWeeny, Roy

    2007-01-01

    Present-day theoretical chemistry is rooted in Quantum Mechanics. The aim of the opening lecture is to trace the evolution of Quantum Chemistry from the Heitler-London paper of 1927 up to the end of the last century, emphasizing concepts rather than calculations. The importance of symmetry concepts became evident in the early years: one thinks of the necessary anti-symmetry of the wave function under electron permutations, the Pauli principle, the aufbau scheme, and the classification of spectroscopic states. But for chemists perhaps the key concept is embodied in the Hellmann-Feynman theorem, which provides a pictorial interpretation of chemical bonding in terms of classical electrostatic forces exerted on the nuclei by the electron distribution. Much of the lecture is concerned with various electron distribution functions--the electron density, the current density, the spin density, and other 'property densities'--and with their use in interpreting both molecular structure and molecular properties. Other topics touched upon include Response theory and propagators; Chemical groups in molecules and the group function approach; Atoms in molecules and Bader's theory; Electron correlation and the 'pair function'. Finally, some long-standing controversies, in particular the EPR paradox, are re-examined in the context of molecular dissociation. By admitting the concept of symmetry breaking, along with the use of the von Neumann-Dirac statistical ensemble, orthodox quantum mechanics can lead to a convincing picture of the dissociation mechanism.

  5. A first-principles model for orificed hollow cathode operation

    NASA Technical Reports Server (NTRS)

    Salhi, A.; Turchi, P. J.

    1992-01-01

    A theoretical model describing orificed hollow cathode discharge is presented. The approach adopted is based on a purely analytical formulation founded on first principles. The present model predicts the emission surface temperature and plasma properties such as electron temperature, number densities and plasma potential. In general, good agreements between theory and experiment are obtained. Comparison of the results with the available related experimental data shows a maximum difference of 10 percent in emission surface temperature, 20 percent in electron temperature and 35 percent in plasma potential. In case of the variation of the electron number density with the discharge current a maximum discrepancy of 36 percent is obtained. However, in the case of the variation with the cathode internal pressure, the predicted electron number density is higher than the experimental data by a maximum factor of 2.

  6. A first-principles study of carbon-related energy levels in GaN. I. Complexes formed by substitutional/interstitial carbons and gallium/nitrogen vacancies

    NASA Astrophysics Data System (ADS)

    Matsubara, Masahiko; Bellotti, Enrico

    2017-05-01

    Various forms of carbon based complexes in GaN are studied with first-principles calculations employing Heyd-Scuseria-Ernzerhof hybrid functionals within the framework of the density functional theory. We consider carbon complexes made of the combinations of single impurities, i.e., CN-CGa, CI-CN , and CI-CGa , where CN, CGa , and CI denote C substituting nitrogen, C substituting gallium, and interstitial C, respectively, and of neighboring gallium/nitrogen vacancies ( VGa / VN ), i.e., CN-VGa and CGa-VN . Formation energies are computed for all these configurations with different charge states after full geometry optimizations. From our calculated formation energies, thermodynamic transition levels are evaluated, which are related to the thermal activation energies observed in experimental techniques such as deep level transient spectroscopy. Furthermore, the lattice relaxation energies (Franck-Condon shift) are computed to obtain optical activation energies, which are observed in experimental techniques such as deep level optical spectroscopy. We compare our calculated values of activation energies with the energies of experimentally observed C-related trap levels and identify the physical origins of these traps, which were unknown before.

  7. Understanding the Origins of Large Negative Thermal Expansion in Ferroelectric Perovskites from First Principles

    NASA Astrophysics Data System (ADS)

    Ritz, Ethan; Benedek, Nicole

    Many of the functional properties of ABO3 perovskite oxides (for example, ferroelectricity) are strongly linked to particular phonon modes in the material. In addition, in many cases it is possible to formulate simple guidelines or `rules of thumb' that link crystal structure and chemistry to specific lattice dynamical characteristics. The thermal transport properties of perovskites are thus potentially highly tunable and dynamically controllable with external fields. We use first-principles density functional theory to reveal new details related to the origin of the large negative thermal expansion (NTE) observed for ferroelectric PbTiO3. Although the origin of NTE in this material is often ascribed to ferroelectricity (which arises from the freezing in of a soft, zone-center optical phonon), our results suggest that zone-boundary modes play a major role in driving NTE. In addition, hybridization between different electronic states has a significant effect on the lattice dynamics of PbTiO3 in general, and its NTE behavior in particular. Our work has implications for the understanding of, discovery and design of NTE in perovskites and other families of inorganic materials. This work was supported in part by a NASA Space Technology Research Fellowship.

  8. First-Principles Study on the Structural, Electronic, Magnetic and Thermodynamic Properties of Full Heusler Alloys Co2VZ (Z = Al, Ga)

    NASA Astrophysics Data System (ADS)

    Bentouaf, Ali; Hassan, Fouad H.; Reshak, Ali H.; Aïssa, Brahim

    2017-01-01

    We report on the investigation of the structural and physical properties of the Co2VZ (Z = Al, Ga) Heusler alloys, with L21 structure, through first-principles calculations involving the full potential linearized augmented plane-wave method within density functional theory. These physical properties mainly revolve around the electronic, magnetic and thermodynamic properties. By using the Perdew-Burke-Ernzerhof generalized gradient approximation, the calculated lattice constants and spin magnetic moments were found to be in good agreement with the experimental data. Furthermore, the thermal effects using the quasi-harmonic Debye model have been investigated in depth while taking into account the lattice vibrations, the temperature and the pressure effects on the structural parameters. The heat capacities, the thermal expansion coefficient and the Debye temperatures have also been determined from the non-equilibrium Gibbs functions. An application of the atom in molecule theory is presented and discussed in order to analyze the bonding nature of the Heusler alloys. The focus is on the mixing of the metallic and covalent behavior of Co2VZ (Z = Al, Ga) Heusler alloys.

  9. First principles calculation of finite temperature magnetism in Fe and Fe3C

    NASA Astrophysics Data System (ADS)

    Eisenbach, M.; Nicholson, D. M.; Rusanu, A.; Brown, G.

    2011-04-01

    Density functional calculations have proven to be a useful tool in the study of ground state properties of many materials. The investigation of finite temperature magnetism, on the other hand, has to rely usually on the usage of empirical models that allow the large number of evaluations of the systems Hamiltonian that are required to obtain the phase space sampling needed to obtain the free energy, specific heat, magnetization, susceptibility, and other quantities as function of temperature. We have demonstrated a solution to this problem that harnesses the computational power of today's large massively parallel computers by combining a classical Wang-Landau Monte-Carlo calculation [F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)] with our first principles multiple scattering electronic structure code [Y. Wang et al., Phys. Rev. Lett. 75, 2867 (1995)] that allows the energy calculation of constrained magnetic states [M. Eisenbach et al., Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (ACM, New York, 2009)]. We present our calculations of finite temperature properties of Fe and Fe3C using this approach and we find the Curie temperatures to be 980 and 425K, respectively.

  10. Inelastic transport theory from first principles: Methodology and application to nanoscale devices

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads; Jauho, Antti-Pekka

    2007-05-01

    We describe a first-principles method for calculating electronic structure, vibrational modes and frequencies, electron-phonon couplings, and inelastic electron transport properties of an atomic-scale device bridging two metallic contacts under nonequilibrium conditions. The method extends the density-functional codes SIESTA and TRANSIESTA that use atomic basis sets. The inelastic conductance characteristics are calculated using the nonequilibrium Green’s function formalism, and the electron-phonon interaction is addressed with perturbation theory up to the level of the self-consistent Born approximation. While these calculations often are computationally demanding, we show how they can be approximated by a simple and efficient lowest order expansion. Our method also addresses effects of energy dissipation and local heating of the junction via detailed calculations of the power flow. We demonstrate the developed procedures by considering inelastic transport through atomic gold wires of various lengths, thereby extending the results presented in Frederiksen [Phys. Rev. Lett. 93, 256601 (2004)]. To illustrate that the method applies more generally to molecular devices, we also calculate the inelastic current through different hydrocarbon molecules between gold electrodes. Both for the wires and the molecules our theory is in quantitative agreement with experiments, and characterizes the system-specific mode selectivity and local heating.

  11. Defects and Small Polarons on Oxide Surfaces

    NASA Astrophysics Data System (ADS)

    Janotti, Anderson

    The presence and behavior of defects on the surface of oxides are central in many research areas, including catalysis, photochemistry, solar cells, and surface science in general. Experimental characterization of individual defects and their activities are challenging and often requires special preparations of the surface. First-principles calculations based on density functional theory are a powerful tool to study surfaces and defects, often providing information on properties that are difficult to access experimentally. Here we discuss the behavior of defects on oxide surfaces from the perspective on first-principles calculations. We use the oxygen vacancy on TiO2 surface as example, a system that has been extensively reported in the literature. Using DFT with a hybrid function, we discuss surface states induced by the defect and localization of the excess charge in the form of small polarons. We then discuss the effects of hydrogen and compare the behavior of these defects on the surface with that in the bulk. We also compare our recent results with previous theoretical studies and experiments. Finally, we generalize the findings on TiO2 to the surfaces of other oxides. This work was supported by the NSF.

  12. Band Offsets at the Interface between Crystalline and Amorphous Silicon from First Principles

    NASA Astrophysics Data System (ADS)

    Jarolimek, K.; Hazrati, E.; de Groot, R. A.; de Wijs, G. A.

    2017-07-01

    The band offsets between crystalline and hydrogenated amorphous silicon (a -Si ∶H ) are key parameters governing the charge transport in modern silicon heterojunction solar cells. They are an important input for macroscopic simulators that are used to further optimize the solar cell. Past experimental studies, using x-ray photoelectron spectroscopy (XPS) and capacitance-voltage measurements, have yielded conflicting results on the band offset. Here, we present a computational study on the band offsets. It is based on atomistic models and density-functional theory (DFT). The amorphous part of the interface is obtained by relatively long DFT first-principles molecular-dynamics runs at an elevated temperature on 30 statistically independent samples. In order to obtain a realistic conduction-band position the electronic structure of the interface is calculated with a hybrid functional. We find a slight asymmetry in the band offsets, where the offset in the valence band (0.29 eV) is larger than in the conduction band (0.17 eV). Our results are in agreement with the latest XPS measurements that report a valence-band offset of 0.3 eV [M. Liebhaber et al., Appl. Phys. Lett. 106, 031601 (2015), 10.1063/1.4906195].

  13. First principles calculation of current-induced forces in atomic gold contacts

    NASA Astrophysics Data System (ADS)

    Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy; Mozos, Jose-Luis; Ordejon, Pablo

    2002-03-01

    We have recently developed an first principles method [1] for calculating the electronic structure, electronic transport, and forces acting on the atoms, for atomic scale systems connected to semi-infinite electrodes and with an applied voltage bias. Our method is based on the density functional theory (DFT) as implemented in the well tested SIESTA program [2]. We fully deal with the atomistic structure of the whole system, treating both the contact and the electrodes on the same footing. The effect of the finite bias (including selfconsistency and the solution of the electrostatic problem) is taken into account using nonequilibrium Green's functions. In this talk we show results for the forces acting on the contact atoms due to the nonequilibrium situation in the electronic subsystem, i.e. in the presence of an electronic current. We concentrate on one atom wide gold contacts/wires connected to bulk gold electrodes. References [1] Our implementation is called TranSIESTA and is described in M. Brandbyge, J. Taylor, K. Stokbro, J-L. Mozos, and P. Ordejon, cond-mat/0110650 [2] D. Sanchez-Portal, P. Ordejon, E. Artacho and J. Soler, Int. J. Quantum Chem. 65, 453 (1997).

  14. Direct observation of oxygen-vacancy-enhanced polarization in a SrTiO 3-buffered ferroelectric BaTiO 3 film on GaAs

    DOE PAGES

    Qiao, Q.; Zhang, Y.; Contreras-Guerrero, Rocio; ...

    2015-11-16

    The integration of functional oxide thin-films on compound semiconductors can lead to a class of reconfigurable spin-based optoelectronic devices if defect-free, fully reversible active layers are stabilized. However, previous first-principles calculations predicted that SrTiO 3 thin filmsgrown on Si exhibit pinned ferroelectric behavior that is not switchable, due to the presence of interfacial vacancies. Meanwhile, piezoresponse force microscopy measurements have demonstrated ferroelectricity in BaTiO 3 grown on semiconductor substrates. The presence of interfacial oxygen vacancies in such complex-oxide/semiconductor systems remains unexplored, and their effect on ferroelectricity is controversial. We also use a combination of aberration-corrected scanning transmission electron microscopy andmore » first-principles density functional theory modeling to examine the role of interfacial oxygen vacancies on the ferroelectricpolarization of a BaTiO 3 thin filmgrown on GaAs. Moreover, we demonstrate that interfacial oxygen vacancies enhance the polar discontinuity (and thus the single domain, out-of-plane polarization pinning in BaTiO 3), and propose that the presence of surface charge screening allows the formation of switchable domains.« less

  15. Submonolayer Ag films on Fe(100): A first-principles analysis of energetics controlling adlayer thermodynamics and kinetics

    DOE PAGES

    Li, Wei; Huang, Li; Evans, James W.; ...

    2016-04-11

    Epitaxial growth of Ag on Fe(100) and postdeposition relaxation have been studied in several experiments. We provide a first-principles density functional theory analysis of key adatom interaction energies and diffusion barriers controlling growth and relaxation kinetics for the submonolayer regime, as these have not been assessed previously. A cluster expansion approach is used to obtain an extensive set of conventional lateral interactions between adatoms on fourfold hollow adsorption sites. We find robust oscillatory decay of pair interactions with increasing separation, and of trio interactions with increasing perimeter length. First- and second-nearest-neighbor pair interactions, as well as compact linear and bentmore » trio interactions, dominate. The adatom terrace diffusion barrier is estimated to be E d ≈ 0.39 eV. We also provide a limited analysis of unconventional interactions for which one adatom is at the bridge-site transition state for hopping and one or more others are at fourfold hollow sites. Furthermore, energy barriers for diffusion along island edges can be determined with the aid of both conventional and unconventional interactions.« less

  16. A first-principles study of As doping at a disordered Si-SiO2 interface.

    PubMed

    Corsetti, Fabiano; Mostofi, Arash A

    2014-02-05

    Understanding the interaction between dopants and semiconductor-oxide interfaces is an increasingly important concern in the drive to further miniaturize modern transistors. To this end, using a combination of first-principles density-functional theory and a continuous random network Monte Carlo method, we investigate electrically active arsenic donors at the interface between silicon and its oxide. Using a realistic model of the disordered interface, we find that a small percentage (on the order of ∼10%) of the atomic sites in the first few monolayers on the silicon side of the interface are energetically favourable for segregation, and that this is controlled by the local bonding and local strain of the defect centre. We also find that there is a long-range quantum confinement effect due to the interface, which results in an energy barrier for dopant segregation, but that this barrier is small in comparison to the effect of the local environment. Finally, we consider the extent to which the energetics of segregation can be controlled by the application of strain to the interface.

  17. Cubic and orthorhombic structures of aluminum hydride Al H3 predicted by a first-principles study

    NASA Astrophysics Data System (ADS)

    Ke, Xuezhi; Kuwabara, Akihide; Tanaka, Isao

    2005-05-01

    The most stable structure of aluminum hydride AlH3 is believed to be a hexagonal symmetry. However, using the density functional theory, we have identified two more stable structures for the AlH3 with the cubic and orthorhombic symmetries. Based on the quasiharmonic approximation, the cubic and orthorhombic AlH3 are almost degenerate when the zero-point energies are included. The geometric and electronic structures, the phonon, and the thermodynamic properties for the hexagonal, cubic, and orthorhombic AlH3 have been studied by means of density functional theory and direct ab initio force constant approach. The calculated electronic structures, phonon density of states, and thermodynamic functions [including S(T) and H(T)-H(0) ] for the three hydrides are similar. The results show that these three hydrides have negative enthalpies of formation, but positive free energies of formation. This conclusion is the same as that made by Wolverton for the hexagonal AlH3 [Phys. Rev. B 69, 144109 (2004)]. The thermodynamic properties indicate that the orthorhombic and cubic AlH3 should be more difficult to dissociate than the hexagonal AlH3 .

  18. Here and now: the intersection of computational science, quantum-mechanical simulations, and materials science

    NASA Astrophysics Data System (ADS)

    Marzari, Nicola

    The last 30 years have seen the steady and exhilarating development of powerful quantum-simulation engines for extended systems, dedicated to the solution of the Kohn-Sham equations of density-functional theory, often augmented by density-functional perturbation theory, many-body perturbation theory, time-dependent density-functional theory, dynamical mean-field theory, and quantum Monte Carlo. Their implementation on massively parallel architectures, now leveraging also GPUs and accelerators, has started a massive effort in the prediction from first principles of many or of complex materials properties, leading the way to the exascale through the combination of HPC (high-performance computing) and HTC (high-throughput computing). Challenges and opportunities abound: complementing hardware and software investments and design; developing the materials' informatics infrastructure needed to encode knowledge into complex protocols and workflows of calculations; managing and curating data; resisting the complacency that we have already reached the predictive accuracy needed for materials design, or a robust level of verification of the different quantum engines. In this talk I will provide an overview of these challenges, with the ultimate prize being the computational understanding, prediction, and design of properties and performance for novel or complex materials and devices.

  19. Localized overlap algorithm for unexpanded dispersion energies

    NASA Astrophysics Data System (ADS)

    Rob, Fazle; Misquitta, Alston J.; Podeszwa, Rafał; Szalewicz, Krzysztof

    2014-03-01

    First-principles-based, linearly scaling algorithm has been developed for calculations of dispersion energies from frequency-dependent density susceptibility (FDDS) functions with account of charge-overlap effects. The transition densities in FDDSs are fitted by a set of auxiliary atom-centered functions. The terms in the dispersion energy expression involving products of such functions are computed using either the unexpanded (exact) formula or from inexpensive asymptotic expansions, depending on the location of these functions relative to the dimer configuration. This approach leads to significant savings of computational resources. In particular, for a dimer consisting of two elongated monomers with 81 atoms each in a head-to-head configuration, the most favorable case for our algorithm, a 43-fold speedup has been achieved while the approximate dispersion energy differs by less than 1% from that computed using the standard unexpanded approach. In contrast, the dispersion energy computed from the distributed asymptotic expansion differs by dozens of percent in the van der Waals minimum region. A further increase of the size of each monomer would result in only small increased costs since all the additional terms would be computed from the asymptotic expansion.

  20. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu

    2018-04-01

    Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.

Top