Littoral zone fish assemblages of northern Cayuga Lake.
McKenna, James E.
2001-01-01
Fish assemblages from northern Cayuga Lake were examined for patterns in temporal structure. Fish assemblages changed significantly between seasons. Bluegill (Lepomis macrochirus), bluntnose minnow (Pimephales notatus), and smallmouth bass (Micropterus dolomieu) formed the basis for most assemblages, but the spring assemblage was dominated by common carp (Cyprinus carpio). Correlations between community structure and abiotic factors were identified. Ten abiotic factors strongly influenced species assemblages, including phosphorus concentration, but could not fully explain differences between assemblages. Results indicate that the seasonal pattern of fish assemblage structure and abundance of fish that tend to feed in the water column were related to the annual cycle of productivity in the lake and behavioral adaptations of the fish.
Dembkowski, Daniel J.; Miranda, Leandro E.
2014-01-01
We examined the interaction between environmental variables measured at three different scales (i.e., landscape, lake, and in-lake) and fish assemblage descriptors across a range of over 50 floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas. Our goal was to identify important local- and landscape-level determinants of fish assemblage structure. Relationships between fish assemblage structure and variables measured at broader scales (i.e., landscape-level and lake-level) were hypothesized to be stronger than relationships with variables measured at finer scales (i.e., in-lake variables). Results suggest that fish assemblage structure in floodplain lakes was influenced by variables operating on three different scales. However, and contrary to expectations, canonical correlations between in-lake environmental characteristics and fish assemblage structure were generally stronger than correlations between landscape-level and lake-level variables and fish assemblage structure, suggesting a hierarchy of influence. From a resource management perspective, our study suggests that landscape-level and lake-level variables may be manipulated for conservation or restoration purposes, and in-lake variables and fish assemblage structure may be used to monitor the success of such efforts.
Fish assemblage structure in an Oklahoma Ozark stream before and after rainbow trout introduction
Walsh, M.G.; Winkelman, D.L.
2005-01-01
Rainbow trout Oncorhynchus mykiss have been widely stocked throughout the United States as a popular sport fish. Our study was initiated to evaluate potential effects of rainbow trout introduction on native fishes to inform future decisions about trout stocking in northeastern Oklahoma streams. We sampled fish assemblages in pools, glides, and riffles in Brush Creek, Delaware County, Oklahoma, from February 2000 to September 2002, and experimentally stocked rainbow trout into the stream from November 2000 to March 2001 and November 2001 to March 2002. We used a combination of multivariate analyses to evaluate seasonal and habitat effects on native fish assemblages and to compare assemblage structure between prestocking, the first year of stocking, and the second year of stocking. Mesohabitat type significantly affected assemblage structure among years, whereas we did not detect an effect of season. We did not detect differences in assemblage structure among years in glide or riffle habitats. Native fish assemblage structure in pool habitats before rainbow trout introduction differed from assemblage structure in both the first and second year of stocking. Declines in seven species, including two native game fish (smallmouth bass Micropterus dolomieu and bluegill Lepomis machrochirus), contributed to assemblage dissimilarity in pool habitats between prestocking conditions and the second year of stocking. Our results indicate that stocking rainbow trout may cause local disruption in assemblage structure in pool habitats. ?? 2004 by the American Fisheries Society.
Structure of Mesophotic Reef Fish Assemblages in the Northwestern Hawaiian Islands
Kosaki, Randall K.; Wagner, Daniel; Kane, Corinne
2016-01-01
Mesophotic coral ecosystems (MCEs) support diverse communities of marine organisms with changes in community structure occurring along a depth gradient. In recent years, MCEs have gained attention due to their depths that provide protection from natural and anthropogenic stressors and their relative stability over evolutionary time periods, yet ecological structures of fish assemblages in MCEs remain largely un-documented. Here, we investigated composition and trophic structure of reef fish assemblages in the Northwestern Hawaiian Islands (NWHI) along a depth gradient from 1 to 67 m. The structure of reef fish assemblages as a whole showed a clear gradient from shallow to mesophotic depths. Fish assemblages at mesophotic depths had higher total densities than those in shallower waters, and were characterized by relatively high densities of planktivores and invertivores and relatively low densities of herbivores. Fishes that typified assemblages at mesophotic depths included six species that are endemic to the Hawaiian Islands. The present study showed that mesophotic reefs in the NWHI support unique assemblages of fish that are characterized by high endemism and relatively high densities of planktivores. Our findings underscore the ecological importance of these undersurveyed ecosystems and warrant further studies of MCEs. PMID:27383614
Determinants of fish assemblage structure in Northwestern Great Plains streams
Mullen, J.A.; Bramblett, R.G.; Guy, C.S.; Zale, A.V.; Roberts, D.W.
2011-01-01
Prairie streams are known for their harsh and stochastic physical conditions, and the fish assemblages therein have been shown to be temporally variable. We assessed the spatial and temporal variation in fish assemblage structure in five intermittent, adventitious northwestern Great Plains streams representing a gradient of watershed areas. Fish assemblages and abiotic conditions varied more spatially than temporally. The most important variables explaining fish assemblage structure were longitudinal position and the proportion of fine substrates. The proportion of fine substrates increased proceeding upstream, approaching 100% in all five streams, and species richness declined upstream with increasing fine substrates. High levels of fine substrate in the upper reaches appeared to limit the distribution of obligate lithophilic fish species to reaches further downstream. Species richness and substrates were similar among all five streams at the lowermost and uppermost sites. However, in the middle reaches, species richness increased, the amount of fine substrate decreased, and connectivity increased as watershed area increased. Season and some dimensions of habitat (including thalweg depth, absolute distance to the main-stem river, and watershed size) were not essential in explaining the variation in fish assemblages. Fish species richness varied more temporally than overall fish assemblage structure did because common species were consistently abundant across seasons, whereas rare species were sometimes absent or perhaps not detected by sampling. The similarity in our results among five streams varying in watershed size and those from other studies supports the generalization that spatial variation exceeds temporal variation in the fish assemblages of prairie and warmwater streams. Furthermore, given longitudinal position, substrate, and stream size, general predictions regarding fish assemblage structure and function in prairie streams are possible. ?? American Fisheries Society 2011.
Historical changes in Nebraska's lotic fish assemblages: Implications of anthropogenic alterations
Smith, Christopher D.; Fischer, Jesse R.; Quist, Michael C.
2014-01-01
The plains of midwestern North America have undergone significant anthropogenic alterations following European settlement with consequent effects to lotic fish assemblage structure. We examined trends in fish assemblage structure and function in Nebraska's lotic systems using site-specific, presence-absence data from historical (1939–1940) and contemporary surveys (2003–2005; n = 183). Shifts in fish assemblage structure were characterized by declines of specialist species (e.g., western silvery minnow Hybognathus argyritis) and increases in nonnative, sport, and generalist species (e.g., common carp Cyprinus carpio). Our research illustrates differences between historical and contemporary surveys for both taxonomic and functional metrics. Changes in fish assemblage structure were correlated with a contemporary measure of anthropogenic alteration (Human Threat Index; HTI) and were most pronounced for large-scale threats (i.e., watershed HTI, overall HTI). The HTI is a composite index of cumulative anthropogenic alterations experienced by a stream system and was used to investigate broad-scale implications of anthropogenic activity on fish assemblage structure. Fish assemblages among sites were more similar in contemporary surveys than in historical surveys, such changes might indicate a homogenization of the fish assemblages. Losses of native species and increases in introduced species have occurred in Nebraska's lotic systems across a broad temporal span and shifts are likely related to high levels of human perturbation.
Reinhold, Ann Marie; Bramblett, Robert G.; Zale, Alexander V.; Poole, Geoffrey C.; Roberts, David W.
2017-01-01
The alteration of rivers by anthropogenic bank stabilization to prevent the erosion of economically valuable lands and structures has become commonplace. However, such alteration has ambiguous consequences for fish assemblages, especially in large rivers. Because most large, temperate rivers have impoundments, it can be difficult to separate the influences of bank stabilization structures from those of main-stem impoundments, especially because both stabilization structures and impoundments can cause side-channel loss. Few large rivers are free flowing and retain extensive side channels, but the Yellowstone River (our study area) is one such river. We hypothesized that in this river (1) bank stabilization has changed fish assemblage structure by altering habitats, (2) side-channel availability has influenced fish assemblage structure by providing habitat heterogeneity, and (3) the influences of bank stabilization and side channels on fish assemblages were spatially scale dependent. We developed a spatially explicit framework to test these hypotheses. Fish assemblage structure varied with the extent of bank stabilization and the availability of side channels; however, not all assemblage subsets were influenced. Nevertheless, bank stabilization and side channels had different and sometimes opposite influences on the fish assemblage. The effects of side channels on fish were more consistent and widespread than those of bank stabilization; the catches of more fishes were positively correlated with side-channel availability than with the extent of bank stabilization. The influences of bank stabilization and side channels on the relative abundances of fish also varied, depending on species and river bend geomorphology. The variation in river morphology probably contributed to the assemblage differences between stabilized and reference river bends; stabilized alluvial pools were deeper than reference alluvial pools, but the depths of stabilized and reference bluff pools did not differ. The strengths of the relationships among fish assemblages, bank stabilization, and side channels were spatially scale dependent; optimum spatial scales ranged from less than 200 m to 3,200 m up- and downstream, suggesting that bank stabilization and side channels influenced fish assemblages across multiple spatial scales.
Relationships between structural complexity, coral traits, and reef fish assemblages
NASA Astrophysics Data System (ADS)
Darling, Emily S.; Graham, Nicholas A. J.; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.; Pratchett, Morgan S.; Wilson, Shaun K.
2017-06-01
With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia's Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals—with different traits and life histories—continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.
Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.; Schainost, Steve
2014-01-01
Non-native trout are currently stocked to support recreational fisheries in headwater streams throughout Nebraska. The influence of non-native trout introductions on native fish populations and their role in structuring fish assemblages in these systems is unknown. The objectives of this study were to determine (i) if the size structure or relative abundance of native fish differs in the presence and absence of non-native trout, (ii) if native fish-assemblage structure differs in the presence and absence of non-native trout and (iii) if native fish-assemblage structure differs across a gradient in abundances of non-native trout. Longnose dace Rhinichthys cataractae were larger in the presence of brown trout Salmo trutta and smaller in the presence of rainbow trout Oncorhynchus mykiss compared to sites without trout. There was also a greater proportion of larger white suckers Catostomus commersonii in the presence of brown trout. Creek chub Semotilus atromaculatus and fathead minnow Pimephales promelas size structures were similar in the presence and absence of trout. Relative abundances of longnose dace, white sucker, creek chub and fathead minnow were similar in the presence and absence of trout, but there was greater distinction in native fish-assemblage structure between sites with trout compared to sites without trout as trout abundances increased. These results suggest increased risk to native fish assemblages in sites with high abundances of trout. However, more research is needed to determine the role of non-native trout in structuring native fish assemblages in streams, and the mechanisms through which introduced trout may influence native fish populations.
McManamay, Ryan A.; Frimpong, Emmanuel A.
2015-01-01
Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Frimpong, Emmanuel A.
Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable conditions.« less
Land use structures fish assemblages in reservoirs of the Tennessee River
Miranda, Leandro E.; Bies, J. M.; Hann, D. A.
2015-01-01
Inputs of nutrients, sediments and detritus from catchments can promote selected components of reservoir fish assemblages, while hindering others. However, investigations linking these catchment subsidies to fish assemblages have generally focussed on one or a handful of species. Considering this paucity of community-level awareness, we sought to explore the association between land use and fish assemblage composition in reservoirs. To this end, we compared fish assemblages in reservoirs of two sub-basins of the Tennessee River representing differing intensities of agricultural development, and hypothesised that fish assemblage structure indicated by species percentage composition would differ among reservoirs in the two sub-basins. Using multivariate statistical analysis, we documented inter-basin differences in land use, reservoir productivity and fish assemblages, but no differences in reservoir morphometry or water regime. Basins were separated along a gradient of forested and non-forested catchment land cover, which was directly related to total nitrogen, total phosphorous and chlorophyll-a concentrations. Considering the extensive body of knowledge linking land use to aquatic systems, it is reasonable to postulate a hierarchical model in which productivity has direct links to terrestrial inputs, and fish assemblages have direct links to both land use and productivity. We observed a shift from an invertivore-based fish assemblage in forested catchments to a detritivore-based fish assemblage in agricultural catchments that may be a widespread pattern among reservoirs and other aquatic ecosystems.
Parks, T. P.; Quist, Michael C.; Pierce, C.L.
2016-01-01
Nonwadeable rivers are unique ecosystems that support high levels of aquatic biodiversity, yet they have been greatly altered by human activities. Although riverine fish assemblages have been studied in the past, we still have an incomplete understanding of how fish assemblages respond to both natural and anthropogenic influences in large rivers. The purpose of this study was to evaluate associations between fish assemblage structure and reach-scale habitat, dam, and watershed land use characteristics. In the summers of 2011 and 2012, comprehensive fish and environmental data were collected from 33 reaches in the Iowa and Cedar rivers of eastern-central Iowa. Canonical correspondence analysis (CCA) was used to evaluate environmental relationships with species relative abundance, functional trait abundance (e.g. catch rate of tolerant species), and functional trait composition (e.g. percentage of tolerant species). On the basis of partial CCAs, reach-scale habitat, dam characteristics, and watershed land use features explained 25.0–81.1%, 6.2–25.1%, and 5.8–47.2% of fish assemblage variation, respectively. Although reach-scale, dam, and land use factors contributed to overall assemblage structure, the majority of fish assemblage variation was constrained by reach-scale habitat factors. Specifically, mean annual discharge was consistently selected in nine of the 11 CCA models and accounted for the majority of explained fish assemblage variance by reach-scale habitat. This study provides important insight on the influence of anthropogenic disturbances across multiple spatial scales on fish assemblages in large river systems.
NATURAL AND HUMAN FACTORS STRUCTURING FISH ASSEMBLAGES IN WEST VIRGINIA WADEABLE STREAMS
We surveyed fishes and environmental variables in 119 stream basins to identify natural and anthropogenic factors structuring fish assemblages. We collected fishes and physico-chemical variables using standardized EPA methods and compiled basin characteristics (e.g., land cover)...
Fish assemblage structure and habitat associations in a large western river system
Smith, C.D.; Quist, Michael C.; Hardy, R. S.
2016-01-01
Longitudinal gradients of fish assemblage and habitat structure were investigated in the Kootenai River of northern Idaho. A total of 43 500-m river reaches was sampled repeatedly with several techniques (boat-mounted electrofishing, hoop nets and benthic trawls) in the summers of 2012 and 2013. Differences in habitat and fish assemblage structure were apparent along the longitudinal gradient of the Kootenai River. Habitat characteristics (e.g. depth, substrate composition and water velocity) were related to fish assemblage structure in three different geomorphic river sections. Upper river sections were characterized by native salmonids (e.g. mountain whitefish Prosopium williamsoni), whereas native cyprinids (peamouth Mylocheilus caurinus, northern pikeminnow Ptychocheilus oregonensis) and non-native fishes (pumpkinseed Lepomis gibbosus, yellow perch Perca flavescens) were common in the downstream section. Overall, a general pattern of species addition from upstream to downstream sections was discovered and is likely related to increased habitat complexity and additions of non-native species in downstream sections. Assemblage structure of the upper sections were similar, but were both dissimilar to the lower section of the Kootenai River. Species-specific hurdle regressions indicated the relationships among habitat characteristics and the predicted probability of occurrence and relative abundance varied by species. Understanding fish assemblage structure in relation to habitat could improve conservation efforts of rare fishes and improve management of coldwater river systems.
NASA Astrophysics Data System (ADS)
Sangil, Carlos; Martín-García, Laura; Hernández, José Carlos; Concepción, Laura; Fernández, Raúl; Clemente, Sabrina
2013-08-01
The structure of demersal fish assemblages of commercial interest was studied at 51 sites on La Palma Island (Canary Islands, northeastern Atlantic). On this island, demersal fish populations are limited and independent from other islands. As deep water separates the islands and the shallow sublittoral platforms are not continuous, adult inter-island migrations are not possible except between the islands of Lanzarote and Fuerteventura. Otherwise, each island functions as a closed system, and the status of an island fish assemblage depends on local environmental conditions and activities performed in situ by the islanders. These circumstances provide a unique opportunity to test the intrainsular variability of fish assemblages. With this background, environmental parameters, fishing pressure and distance to the MPA were considered to identify the main factors explaining the spatial variation of fish assemblages off La Palma Island. Twenty-six fish species were recorded, but 60% of the total fish biomass was represented by only five species (Sparisoma cretense, Pomadasys incisus, Canthidermis sufflamen, Diplodus cervinus cervinus and Bodianus scrofa). However, the structure of assemblages was heterogeneous in response to different variables and showed substantial spatial variation. The assemblages were strongly modified by the presence of upright seaweed cover, fishing activities, and certain environmental variables. Differences were more pronounced in species that occupied the higher trophic levels. The most disturbed assemblages were those located in areas with lower upright seaweed cover and with higher fishing pressure, whereas the best-preserved assemblages corresponded to sites with controlled fishing activities, located within the MPA.
Kirsch, Joseph; Peterson, James T.
2014-01-01
There is considerable uncertainty about the relative roles of stream habitat and landscape characteristics in structuring stream-fish assemblages. We evaluated the relative importance of environmental characteristics on fish occupancy at the local and landscape scales within the upper Little Tennessee River basin of Georgia and North Carolina. Fishes were sampled using a quadrat sample design at 525 channel units within 48 study reaches during two consecutive years. We evaluated species–habitat relationships (local and landscape factors) by developing hierarchical, multispecies occupancy models. Modeling results suggested that fish occupancy within the Little Tennessee River basin was primarily influenced by stream topology and topography, urban land coverage, and channel unit types. Landscape scale factors (e.g., urban land coverage and elevation) largely controlled the fish assemblage structure at a stream-reach level, and local-scale factors (i.e., channel unit types) influenced fish distribution within stream reaches. Our study demonstrates the utility of a multi-scaled approach and the need to account for hierarchy and the interscale interactions of factors influencing assemblage structure prior to monitoring fish assemblages, developing biological management plans, or allocating management resources throughout a stream system.
Fish assemblage responses to forest cover
Chris L. Burcher; Matthew E. McTammany; E. Fred Benfield; Gene S. Helfman
2008-01-01
We investigated whether fish assemblage structure in southern Appalachian streams differed with historical and contemporary forest cover. We compared fish assemblages in 2nd?4th order streams draining watersheds that had increased forest cover between 1950 and 1993 (i.e., reforesting watersheds).
Watkins, Carson J.; Stevens, Bryan S.; Quist, Michael C.; Shepard, Bradley B.; Ireland, Susan C.
2015-01-01
The lower Kootenai River, Idaho, was sampled during the summers of 2012 and 2013 to evaluate its fish assemblage structure at seven sites within main- and side-channel habitats where large-scale habitat rehabilitation was undertaken. Understanding the current patterns of fish assemblage structure and their relationships with habitat is important for evaluating the effects of past and future rehabilitation projects on the river. Species-specific habitat associations were modeled, and the variables that best explained the occurrence and relative abundance of fish were identified in order to guide future habitat rehabilitation so that it benefits native species. The results indicated that the side-channel habitats supported higher species richness than the main-channel habitats and that nonnative fishes were closely associated with newly rehabilitated habitats. This research provides valuable insight on the current fish assemblages in the Kootenai River and the assemblage-level responses that may occur as a result of future rehabilitation activities.
Agudo-Adriani, Esteban A; Cappelletto, Jose; Cavada-Blanco, Francoise; Croquer, Aldo
2016-01-01
In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts.
Cappelletto, Jose; Cavada-Blanco, Francoise; Croquer, Aldo
2016-01-01
In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts. PMID:27069801
NASA Astrophysics Data System (ADS)
Lamy, T.; Galzin, R.; Kulbicki, M.; Lison de Loma, T.; Claudet, J.
2016-03-01
Coral reefs are increasingly being altered by a myriad of anthropogenic activities and natural disturbances. Long-term studies offer unique opportunities to understand how multiple and recurrent disturbances can influence coral reef resilience and long-term dynamics. While the long-term dynamics of coral assemblages have been extensively documented, the long-term dynamics of coral reef fish assemblages have received less attention. Here, we describe the changes in fish assemblages on Tiahura reef, Moorea, from 1979 to 2011. During this 33-yr period, Tiahura was exposed to multiple disturbances (crown-of-thorns seastar outbreaks and cyclones) that caused recurrent declines and recoveries of coral cover and changes in the dominant coral genera. These shifts in coral composition were associated with long-term cascading effects on fish assemblages. The composition and trophic structure of fish assemblages continuously shifted without returning to their initial composition, whereas fish species richness remained stable, albeit with a small increase over time. We detected nonlinear responses of fish density when corals were most degraded. When coral cover dropped below 10 % following a severe crown-of-thorns sea star outbreak, the density of most fish trophic groups sharply decreased. Our study shows that historical contingency may potentially be an important but largely underestimated factor explaining the contemporary structure of reef fish assemblages and suggests that temporal stability in their structure and function should not necessarily be the target of management strategies that aim at increasing or maintaining coral reef resilience.
Spatial and temporal patterns in fish assemblages of upper coastal plain streams, Mississippi, USA
Susan B. Adams; Melvin L. Warren; Wendell R. Haag
2004-01-01
We assessed spatial, seasonal, and annual variation in fish assemblages over 17 months in three small- to medium-sized, incised streams characteristic of northwestern Mississippi streams. We sampled 17 962 fish representing 52 species and compared assemblages within and among streams. Although annual and seasonal variability inassemblage structure was high, fish...
Groundwater declines are linked to changes in Great Plains stream fish assemblages
Prekins, Joshuah S.; Gido, Keith B.; Falke, Jeffrey A.; Fausch, Kurt D.; Crockett, Harry; Johnson, Eric R.; Sanderson, John
2017-01-01
Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950–2010) and prospective (2011–2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur.
Groundwater declines are linked to changes in Great Plains stream fish assemblages.
Perkin, Joshuah S; Gido, Keith B; Falke, Jeffrey A; Fausch, Kurt D; Crockett, Harry; Johnson, Eric R; Sanderson, John
2017-07-11
Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950-2010) and prospective (2011-2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur.
Groundwater declines are linked to changes in Great Plains stream fish assemblages
Perkin, Joshuah S.; Gido, Keith B.; Falke, Jeffrey A.; Fausch, Kurt D.; Crockett, Harry; Johnson, Eric R.; Sanderson, John
2017-01-01
Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950–2010) and prospective (2011–2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur. PMID:28652354
Habitat characteristics affecting fish assemblages on a Hawaiian coral reef
Friedlander, A.M.; Parrish, J.D.
1998-01-01
Habitat characteristics of a reef were examined as potential influences on fish assemblage structure, using underwater visual census to estimate numbers and biomass of all fishes visible on 42 benthic transects and making quantitative measurements of 13 variables of the corresponding physical habitat and sessile biota. Fish assemblages in the diverse set of benthic habitats were grouped by detrended correspondence analysis, and associated with six major habitat types. Statistical differences were shown between a number of these habitat types for various ensemble variables of the fish assemblages. Overall, both for complete assemblages and for component major trophic and mobility guilds, these variables tended to have higher values where reef substratum was more structurally or topographically complex, and closer to reef edges. When study sites were separately divided into five depth strata, the deeper strata tended to have statistically higher values of ensemble variables for the fish assemblages. Patterns with depth varied among the various trophic and mobility guilds. Multiple linear regression models indicated that for the complete assemblages and for most trophic and mobility guilds, a large part of the variability for most ensemble variables was explained by measures of holes in the substratum, with important contributions from measured substratum rugosity and depth. A strong linear relationship found by regression of mean fish length on mean volume of holes in the reef surface emphasized the importance of shelter for fish assemblages. Results of this study may have practical applications in designing reserve areas as well as theoretical value in helping to explain the organization of reef fish assemblages.
Piller, Kyle R; Geheber, Aaron D
2015-01-01
Anthropogenic perturbations impact aquatic systems causing wide-ranging responses, from assemblage restructuring to assemblage recovery. Previous studies indicate the duration and intensity of disturbances play a role in the dynamics of assemblage recovery. In August 2011, the Pearl River, United States, was subjected to a weak black liquor spill from a paper mill which resulted in substantial loss of fish in a large stretch of the main channel. We quantified resilience and recovery of fish assemblage structure in the impacted area following the event. We compared downstream (impacted) assemblages to upstream (unimpacted) assemblages to determine initial impacts on structure. Additionally, we incorporated historic fish collections (1988–2011) to examine impacts on assemblage structure across broad temporal scales. Based on NMDS, upstream and downstream sites generally showed similar assemblage structure across sample periods with the exception of the 2 months postdischarge, where upstream and downstream sites visually differed. Multivariate analysis of variance (PERMANOVA) indicated significant seasonal variation among samples, but found no significant interaction between impacted and unimpacted assemblages following the discharge event. However, multivariate dispersion (MVDISP) showed greater variance among assemblage structure following the discharge event. These results suggest that 2 months following the disturbance represent a time period of stochasticity in regard to assemblage structure dynamics, and this was followed by rapid recovery. We term this dynamic the “hangover effect” as it represents the time frame from the cessation of the perturbation to the assemblage's return to predisturbance conditions. The availability and proximity of tributaries and upstream refugia, which were not affected by the disturbance, as well as the rapid recovery of abiotic parameters likely played a substantial role in assemblage recovery. This study not only demonstrates rapid recovery in an aquatic system, but further demonstrates the value of continuous, long-term, data collections which enhance our understanding of assemblage dynamics. PMID:26120432
This manuscript reports on the spatial distribution of zooplankton and forage fish in western Lake Superior. Fish and zooplankton assemblages are shown to differ substantially in abundance and size structure both between the open lake and nearshore regions and between two differe...
NASA Astrophysics Data System (ADS)
Stagličić, N.; Matić-Skoko, S.; Pallaoro, A.; Grgičević, R.; Kraljević, M.; Tutman, P.; Dragičević, B.; Dulčić, J.
2011-09-01
Long-term interannual changes in abundance, biomass, diversity and structure of littoral fish assemblages were examined between 1993 and 2009 by experimental trammel net fishing up to six times per year, within the warm period - May to September, at multiple areas along the eastern Adriatic coast with the aim of testing for the consistency of patterns of change across a large spatial scale (˜600 km). The results revealed spatially consistent increasing trends of total fish abundance and biomass growing at an average rate of 15 and 14% per year, respectively. Of the diversity indices analysed, the same pattern of variability was observed for Shannon diversity, while Pielou evenness and average taxonomic distinctness measures Δ ∗ and Δ + showed spatial variability with no obvious temporal trends. Multivariate fish assemblage structure underwent a directional change displaying a similar pattern through time for all the areas. The structural change in fish assemblages generally involved most of the species present in trammel net catches. A large pool of fish species responsible for producing the temporal pattern of assemblage change was relatively different in each of the areas reflecting a large geographic range covered by the study. An analysis of 4 fish species ( Symphodus tinca, Pagellus erythrinus, Mullus surmuletus, Scorpaena porcus) common to each of the study areas as the ones driving the temporal change indicated that there were clear increasing trends of their mean catches across the years at all the study areas. A common pattern among time trajectories across the spatial scale studied implies that the factor affecting the littoral fish assemblages is not localised but regional in nature. As an underlying factor having the potential to induce such widespread and consistent improvements in littoral fish assemblages, a more restrictive artisanal fishery management that has progressively been put in place during the study period, is suggested and discussed.
Fish assemblages and habitat relationships in a small northern Great Plains stream
Barfoot, C.A.; White, R.G.
1999-01-01
We examined fish populations and environmental characteristics of pool and riffle habitats of Little Beaver Creek, Montana, a small northern Great Plains stream. We collected 4,980 fishes representing 20 species in eight families. The most abundant and species-rich family was Cyprinidae. Nearly 88% (4,369) of all fishes were collected in pools. Pools also supported greater numbers ofspecies (x = 6.3, SO = 2.6, n = 58) than did riffles ( x = 2.2, SO = 1.9, n = 47). Most species showed distinct patterns of relative abundance along the stream gradient. Community changes were primarily reflected by the downstream addition of species; species replacement was of less importance. A multivariate analysis of fish relative abundance identified two relatively well-defined pool fish assemblages: a downstream assemblage comprised largely of native fluvial cyprinids, and a more diverse midstream-upstream assemblage comprised of fishes from several families. No well-defined assemblages were identified in riffle habitats. Environmental measures of stream size, substrate characteristics, water clarity, and banks ide conditions appeared to be associated with differences in fish assemblage structure. However, correlations between habitat conditions and fish assemblages were weak, possibly because a complex of factors act conculTently to shape assemblages.
Influence of Fish Predation on Assemblage Structure of Macroinvertebrates in an Intermittent Stream
Lance R. Williams; Christopher M. Taylor; Melvin L. Warren
2003-01-01
Despite considerable investigation of stream systems, the influence of fish predation on macroinvertebrate assemblages is still poorly understood and remains a controversial subject. We conducted a field experiment in an intermittent reach of Alum Creek in the Ouachita Mountains, Arkansas, to examine the effects of predatory fish on macroinvertebrate assemblages. We...
Barko, V.A.; Palmer, M.W.; Herzog, D.P.; Ickes, B.S.
2004-01-01
We investigated variation of fish assemblages in response to environmental factors using Long Term Resource Monitoring Program data. Data were collected from 1993 to 2000 from five physical habitats in the unimpounded upper Mississippi River. We captured 89 species composing 18 families. Of these, 26% were fluvial specialists, 25% were fluvial dependent and 49% were generalists. The numerically dominant component of the adult fish assemblage (species accounting for >10% of total catch) accounted for 50% of the assemblage and was comprised of only three species: gizzard shad (Dorosoma cepedianum; 25%), common carp (Cyprinus carpio, 15%) and channel catfish (Ictalurus punctatus, 10%). The dominant component of the YOY fish assemblage was comprised of only two species, which accounted for 76% of the total catch: freshwater drum (Aplodinotus grunniens; 39%) and gizzard shad (37%). We used a cross-validation multivariate approach to explore how adult and young-of-the-year (YOY) assemblages varied with respect. to physical habitat and environmental gradients. Furthermore, we were interested how the fish assemblages changed over time. Partial canonical correspondence analyses (pCCA) demonstrated significant effects of physical habitats. Such effects differed between young-of-the-year and adult fishes. The four main environmental gradients influencing overall assemblage structure for both age groups were river elevation, water velocity, conductivity, and depth of gear deployment. Morisita's index revealed similar adult assemblage structure over time. However, the YOY assemblage present in 1995 was dissimilar from assemblages present during the other years. We speculate this is a lag effect from the backwater spawning episodes (floodpulse) that occurred with the 500-y flood in 1993. Shannon-Weiner diversity and Camargo's evenness indices were low, but stable across years for the adult assemblage, but varied across years for the YOY assemblage.
Mass coral bleaching causes biotic homogenization of reef fish assemblages.
Richardson, Laura E; Graham, Nicholas A J; Pratchett, Morgan S; Eurich, Jacob G; Hoey, Andrew S
2018-04-06
Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait-based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system-wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small-bodied, algal-farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances. © 2018 John Wiley & Sons Ltd.
Spatial and seasonal variations of fish assemblages in mangrove creek systems in Zanzibar (Tanzania)
NASA Astrophysics Data System (ADS)
Mwandya, Augustine W.; Gullström, Martin; Andersson, Mathias H.; Öhman, Marcus C.; Mgaya, Yunus D.; Bryceson, Ian
2010-11-01
Spatial and seasonal variations of fish assemblage composition were studied in three non-estuarine mangrove creeks of Zanzibar (Tanzania). Fish were collected monthly for one year at three sites (lower, intermediate and upper reaches) in each creek using a seine net (each haul covering 170 m 2). Density, species number and diversity of fish were all higher at sites with dense cover of macrophytes (seagrass and macroalgae) than over unvegetated sandy sites. In general, fish assemblages mainly comprised juveniles of a few abundant taxa, e.g. Mugil cephalus, Mugilidae spp. and Leiognathus equulus at sites with mud substratum and Gerres oyena, Lethrinus harak and Sillago sihama at sites dominated by macrophytes. Multivariate analyses revealed significant separations in fish assemblage composition within the two creeks where the bottom substratum differed among sites. Overall, season seemed to have little effect on density, species number, diversity index ( H') and assemblage structure of fish. Water condition variables were also relatively stable across the season, although a short-term fluctuation primarily induced by decreased salinity, occurred during the heavy rains in April and May. Fish assemblage structure was not significantly affected by any of the abiotic factors tested. However, significant regressions were found between the other fish variables and environmental variables, but since these associations were mostly species-specific and generally inconsistent, we suggest that the overall distribution patterns of fish were mainly an effect of particular substrate preferences of fish species rather than contemporary water conditions.
Cheek, Brandon D.; Grabowski, Timothy B.; Bean, Preston T.; Groeschel, Jillian R.; Magnelia, Stephan J.
2016-01-01
Habitat heterogeneity at multiple scales is a major factor affecting fish assemblage structure. However, assessments that examine these relationships at multiple scales concurrently are lacking. The lack of assessments at these scales is a critical gap in understanding as conservation and restoration efforts typically work at these levels.A combination of low-cost side-scan sonar surveys, aerial imagery using an unmanned aerial vehicle, and fish collections were used to evaluate the relationship between physicochemical and landscape variables at various spatial scales (e.g. micro-mesohabitat, mesohabitat, channel unit, stream reach) and stream–fish assemblage structure and habitat associations in the South Llano River, a spring-fed second-order stream on the Edwards Plateau in central Texas during 2012–2013.Low-cost side-scan sonar surveys have not typically been used to generate data for riverscape assessments of assemblage structure, thus the secondary objective was to assess the efficacy of this approach.The finest spatial scale (micro-mesohabitat) and the intermediate scale (channel unit) had the greatest explanatory power for variation in fish assemblage structure.Many of the fish endemic to the Edwards Plateau showed similar associations with physicochemical and landscape variables suggesting that conservation and restoration actions targeting a single endemic species may provide benefits to a large proportion of the endemic species in this system.Low-cost side-scan sonar proved to be a cost-effective means of acquiring information on the habitat availability of the entire river length and allowed the assessment of how a full suite of riverscape-level variables influenced local fish assemblage structure.
Miranda, L.E.; Lucas, G.M.
2004-01-01
The Mississippi Alluvial Valley between southern Illinois and southern Louisiana contains hundreds of floodplain lakes, most of which have been adversely affected by landscape modifications used to control flooding and support agriculture. We examined fish assemblages in lakes of this region to determine whether deterministic patterns developed in relation to prominent abiotic lake characteristics and to explore whether relevant abiotic factors could be linked to specific assemblage structuring mechanisms. The distributions of 14 taxa in 29 lakes were governed primarily by two gradients that contrasted assemblages in terms of lake area, lake elongation, and water clarity. The knowledge of whether a lake was clear or turbid, large or small, and long or short helped determine fish assemblage characteristics. Abiotic factors influenced fish assemblage structures, plausibly through limitations on foraging and physiological tolerances. Determinism in assemblage organization of floodplain lakes relative to recurrence in physicochemical features has been documented for unaltered rivers. Whereas the Mississippi Alluvial Valley has been subjected to vast anthropogenic disturbances and is not a fully functional floodplain river, fish assemblages in its floodplain lakes remain deterministic and organized by the underlying factors that also dictate assemblages in unaltered rivers. In advanced stages of lake aging, fish assemblages in these lakes are expected to largely include species that thrive in turbid, shallow systems with few predators and low oxygen concentrations. The observed patterns related to physical characteristics of these lakes suggest three general conservation foci, including (1) watershed management to control erosion, (2) removal of sediments or increases in water level to alleviate depth reductions and derived detriments to water physicochemistry, and (3) management of fish populations through stockings, removals, and harvest regulations.
Fish assemblages in a western Iowa stream modified by grade control structures
Litvan, M.E.; Pierce, C.L.; Stewart, T.W.; Larson, C.J.
2008-01-01
Over 400 riprap grade control structures (GCSs) have been built in streams of western Iowa to reduce erosion and protect bridges, roads, and farmland. In conjunction with a companion study evaluating fish passage over GCSs in Turkey Creek, we evaluated the differences in fish assemblage and habitat characteristics in reaches immediately downstream from GCSs (GCS sites) and reaches at least 1 km from any GCS (non-GCS sites). The GCS sites were characterized by greater proportions of pool habitat, maximum depths, fish biomass, and abundance of juvenile largemouth bass Micropterus salmoides than were non-GCS sites. Index of biotic integrity (IBI) scores were poor or fair (<43 on a 0-100 scale) and not significantly different between the GCS and non-GCS sites. Additionally, we investigated both the longitudinal changes in fish assemblages in this GCS-fragmented stream and the changes in fish assemblages after slope modifications of three GCSs to facilitate fish passage. Thirteen fish species were present throughout the study area, whereas another 15 species exhibited truncated distributions not extending to the most upstream sampling location. After modification of the GCSs, IBI scores increased at seven of nine sites (mean increase =4.6 points). Also, channel catfish Ictalurus punctatus were detected 7.3 km upstream at sites where, 2 years before GCS modification, they had been absent from collections. Given the number and distribution of GCSs in western Iowa streams, understanding the effects of these structures is vital to the conservation and management of fish assemblages in this and other regions where GCSs or similar structures are used. ?? Copyright by the American Fisheries Society 2008.
Biological assessment of environmental flows for Oklahoma
Fisher, William L.; Seilheimer, Titus S.; Taylor, Jason M.
2012-01-01
Large-scale patterns in fish assemblage structure and functional groups are influenced by alterations in streamflow regime. In this study, we defined an objective threshold for alteration for Oklahoma streams using a combination of the expected range of 27 flow indices and a discriminant analysis to predict flow regime group. We found that fish functional groups in reference flow conditions had species that were more intolerant to flow alterations and preferences for stream habitat and faster flowing water. In contrast, altered sites had more tolerant species that preferred lentic habitat and slower water velocity. Ordination graphs of the presence and functional groups of species revealed an underlying geographical pattern roughly conforming to ecoregions, although there was separation between reference and altered sites within the larger geographical framework. Additionally, we found that reservoir construction and operation significantly altered fish assemblages in two different systems, Bird Creek in central Oklahoma and the Kiamichi River in southeastern Oklahoma. The Bird Creek flow regime shifted from a historically intermittent stream to one with stable perennial flows, and changes in fish assemblage structure covaried with changes in all five components of the flow regime. In contrast, the Kiamichi River flow regime did not change significantly for most flow components despite shifts in fish assemblage structure; however, most of the species associated with shifts in assemblage structure in the Kiamichi River system were characteristic of lentic environments and were likely related more to proximity of reservoirs in the drainage system than changes in flow. The spatial patterns in fish assemblage response to flow alteration, combined with different temporal responses of hydrology and fish assemblage structure at sites downstream of reservoirs, indicate that interactions between flow regime and aquatic biota vary depending on ecological setting. This supports the notion that regional variation in natural flow regimes could affect the development of flow recommendations.
NASA Astrophysics Data System (ADS)
Rodriguez, J. M.; Gonzalez-Pola, C.; Lopez-Urrutia, A.; Nogueira, E.
2011-09-01
During summer, wind driven coastal upwelling dominates in the Central Cantabrian Sea (southern Bay of Biscay). Nevertheless, atmospheric forcing is highly variable and wind pulses may cause noticeable and fast hydrographic responses in the shelf region. In this paper, the composition and vertical distribution of the summer ichthyoplankton assemblage during the daytime at a fixed station, located on the Central Cantabrian Sea shelf, are documented. Also, the impact of a short-time scale hydrographic event on the abundance and structure of the larval fish assemblage is examined. Significant small-scale temporal hydrographic variability was observed. Currents showed changes in speed and direction and significant changes in thermocline depth were also observed. A total of 34 taxa of fish larvae were identified. Engraulis encrasicolus eggs and larvae of the shelf-dwelling species Trachurus trachurus, Capros aper and E. encrasicolus dominated the ichthyoplankton assemblage. The distribution of E. encrasicolus eggs and fish larvae was vertically structured. E. encrasicolus egg concentration increased exponentially towards the surface. Fish larvae showed a subsurface peak of concentration and their vertical distribution was not conditioned by thermocline depths. The short term hydrographic event did not affect the vertical distribution of fish larvae but it accounted for significant temporal changes in larval fish assemblage structure and abundance. Results suggest that temperature and light intensity are important factors in the vertical distribution of fish larvae. They also indicate that the temporal monitoring of the larval fish assemblage in this region requires multiple sampling sites.
NASA Astrophysics Data System (ADS)
Ahmadia, Gabby N.; Tornabene, Luke; Smith, David J.; Pezold, Frank L.
2018-03-01
Factors shaping coral-reef fish species assemblages can operate over a wide range of spatial scales (local versus regional) and across both proximate and evolutionary time. Niche theory and neutral theory provide frameworks for testing assumptions and generating insights about the importance of local versus regional processes. Niche theory postulates that species assemblages are an outcome of evolutionary processes at regional scales followed by local-scale interactions, whereas neutral theory presumes that species assemblages are formed by largely random processes drawing from regional species pools. Indo-Pacific cryptobenthic coral-reef fishes are highly evolved, ecologically diverse, temporally responsive, and situated on a natural longitudinal diversity gradient, making them an ideal group for testing predictions from niche and neutral theories and effects of regional and local processes on species assemblages. Using a combination of ecological metrics (fish density, diversity, assemblage composition) and evolutionary analyses (testing for phylogenetic niche conservatism), we demonstrate that the structure of cryptobenthic fish assemblages can be explained by a mixture of regional factors, such as the size of regional species pools and broad-scale barriers to gene flow/drivers of speciation, coupled with local-scale factors, such as the relative abundance of specific microhabitat types. Furthermore, species of cryptobenthic fishes have distinct microhabitat associations that drive significant differences in assemblage community structure between microhabitat types, and these distinct microhabitat associations are phylogenetically conserved over evolutionary timescales. The implied differential fitness of cryptobenthic fishes across varied microhabitats and the conserved nature of their ecology are consistent with predictions from niche theory. Neutral theory predictions may still hold true for early life-history stages, where stochastic factors may be more important in explaining recruitment. Overall, through integration of ecological and evolutionary techniques, and using multiple spatial scales, our study offers a unique perspective on factors determining coral-reef fish assemblages.
Hitt, Nathaniel P.; Chambers, Douglas B.
2014-01-01
Mountaintop mining (MTM) affects chemical, physical, and hydrological properties of receiving streams, but the long-term consequences for fish-assemblage structure and function are poorly understood. We sampled stream fish assemblages using electrofishing techniques in MTM exposure sites and reference sites within the Guyandotte River basin, USA, during 2010–2011. We calculated indices of taxonomic diversity (species richness, abundance, Shannon diversity) and functional diversity (functional richness, functional evenness, functional divergence) to compare exposure and reference assemblages between seasons (spring and autumn) and across years (1999–2011). We based temporal comparisons on 2 sites that were sampled during 1999–2001 by Stauffer and Ferreri (2002). Exposure assemblages had lower taxonomic and functional diversity than reference assemblages or simulated assemblages that accounted for random variation. Differences in taxonomic composition between reference and exposure assemblages were associated with conductivity and aqueous Se concentrations. Exposure assemblages had fewer species, lower abundances, and less biomass than reference assemblages across years and seasons. Green Sunfish (Lepomis cyanellus) and Creek Chub (Semotilus atromaculatus) became numerically dominant in exposure assemblages over time because of their persistence and losses of other taxa. In contrast, species richness increased over time in reference assemblages, a result that may indicate recovery from drought. Mean individual biomass increased as fish density decreased and most obligate invertivores were apparently extirpated at MTM exposure sites. Effects of MTM were not related to physical-habitat conditions but were associated with water-quality variables, which may limit quality and availability of benthic macroinvertebrate prey. Simulations revealed effects of MTM that could not be attributed to random variation in fish assemblage structure.
Gomes, L.C.; Bulla, C. K.; Agostinho, A. A.; Vasconcelos, L. P.; Miranda, Leandro E.
2012-01-01
The presence of aquatic macrophytes is a key factor in the selection of habitats by fish in floodplain lakes because these plants enhance the physical and biological complexities of aquatic habitats. The seasonal flood pulse may influence this interaction, but there is no information in the literature about the effects that flood events may have on macrophytes assemblages and its associated effects on fish assemblages. Thus, this article aimed to investigate whether species richness, evenness and similarities in fish assemblage composition differed between littoral areas vegetated with macrophytes and unvegetated areas, before and after a flood. We sampled three lakes in the floodplain of the upper Paraná River basin. Sampling was conducted before (December 2004 and January 2005) and after (early March, late March and May 2005) a flood event. Overall, species richness and evenness were higher in macrophytes-covered areas. Before the flood, the composition of fish assemblages was distinct when comparing vegetated and unvegetated areas. After the flood, the similarity in fish assemblage composition was higher, indicating a homogenization effect of floods for fish inhabiting littoral areas of floodplain lakes. After the flood, opportunistic species dominated the fish assemblages in aquatic macrophytes, apparently restructuring assemblages in the littoral, restarting a succession process. Thus, the observed homogenization effect of the flood could minimize biological interactions and could induce fish assemblages to begin a new process of structurization.
Habitat Specialization in Tropical Continental Shelf Demersal Fish Assemblages
Fitzpatrick, Ben M.; Harvey, Euan S.; Heyward, Andrew J.; Twiggs, Emily J.; Colquhoun, Jamie
2012-01-01
The implications of shallow water impacts such as fishing and climate change on fish assemblages are generally considered in isolation from the distribution and abundance of these fish assemblages in adjacent deeper waters. We investigate the abundance and length of demersal fish assemblages across a section of tropical continental shelf at Ningaloo Reef, Western Australia, to identify fish and fish habitat relationships across steep gradients in depth and in different benthic habitat types. The assemblage composition of demersal fish were assessed from baited remote underwater stereo-video samples (n = 304) collected from 16 depth and habitat combinations. Samples were collected across a depth range poorly represented in the literature from the fringing reef lagoon (1–10 m depth), down the fore reef slope to the reef base (10–30 m depth) then across the adjacent continental shelf (30–110 m depth). Multivariate analyses showed that there were distinctive fish assemblages and different sized fish were associated with each habitat/depth category. Species richness, MaxN and diversity declined with depth, while average length and trophic level increased. The assemblage structure, diversity, size and trophic structure of demersal fishes changes from shallow inshore habitats to deeper water habitats. More habitat specialists (unique species per habitat/depth category) were associated with the reef slope and reef base than other habitats, but offshore sponge-dominated habitats and inshore coral-dominated reef also supported unique species. This suggests that marine protected areas in shallow coral-dominated reef habitats may not adequately protect those species whose depth distribution extends beyond shallow habitats, or other significant elements of demersal fish biodiversity. The ontogenetic habitat partitioning which is characteristic of many species, suggests that to maintain entire species life histories it is necessary to protect corridors of connected habitats through which fish can migrate. PMID:22761852
We examined larval and juvenile fish assemblage structure in relation to microhabitat variables within the St. Louis River estuary, a drowned river mouth of Lake Superior. Fish were sampled in vegetated beds throughout the estuary, across a gradient of vegetation types and densit...
Effects of management legacies on stream fish and aquatic benthic macroinvertebrate assemblages
Quist, Michael C.; Schultz, Randall D.
2014-01-01
Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002–2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence–absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly the amount of overhanging vegetation and fine sediment. This research illustrates the importance of using multiple taxa for biological assessments and the need to consider management legacies when investigating responses to management and conservation actions.
Effects of Management Legacies on Stream Fish and Aquatic Benthic Macroinvertebrate Assemblages
NASA Astrophysics Data System (ADS)
Quist, Michael C.; Schultz, Randall D.
2014-09-01
Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002-2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence-absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly the amount of overhanging vegetation and fine sediment. This research illustrates the importance of using multiple taxa for biological assessments and the need to consider management legacies when investigating responses to management and conservation actions.
Effects of management legacies on stream fish and aquatic benthic macroinvertebrate assemblages.
Quist, Michael C; Schultz, Randall D
2014-09-01
Fish and benthic macroinvertebrate assemblages often provide insight on ecological conditions for guiding management actions. Unfortunately, land use and management legacies can constrain the structure of biotic communities such that they fail to reflect habitat quality. The purpose of this study was to describe patterns in fish and benthic macroinvertebrate assemblage structure, and evaluate relationships between biota and habitat characteristics in the Chariton River system of south-central Iowa, a system likely influenced by various potential management legacies (e.g., dams, chemical removal of fishes). We sampled fishes, benthic macroinvertebrates, and physical habitat from a total of 38 stream reaches in the Chariton River watershed during 2002-2005. Fish and benthic macroinvertebrate assemblages were dominated by generalist species tolerant of poor habitat quality; assemblages failed to show any apparent patterns with regard to stream size or longitudinal location within the watershed. Metrics used to summarize fish assemblages and populations [e.g., presence-absence, relative abundance, Index of Biotic Integrity for fish (IBIF)] were not related to habitat characteristics, except that catch rates of piscivores were positively related to the depth and the amount of large wood. In contrast, family richness of benthic macroinvertebrates, richness of Ephemeroptera, Trichoptera, and Plecoptera taxa, and IBI values for benthic macroinvertebrates (IBIBM) were positively correlated with the amount of overhanging vegetation and inversely related to the percentage of fine substrate. A long history of habitat alteration by row-crop agriculture and management legacies associated with reservoir construction has likely resulted in a fish assemblage dominated by tolerant species. Intolerant and sensitive fish species have not recolonized streams due to downstream movement barriers (i.e., dams). In contrast, aquatic insect assemblages reflected aquatic habitat, particularly the amount of overhanging vegetation and fine sediment. This research illustrates the importance of using multiple taxa for biological assessments and the need to consider management legacies when investigating responses to management and conservation actions.
NASA Astrophysics Data System (ADS)
Cuttitta, Angela; Quinci, Enza Maria; Patti, Bernardo; Bonomo, Sergio; Bonanno, Angelo; Musco, Marianna; Torri, Marco; Placenti, Francesco; Basilone, Gualtiero; Genovese, Simona; Armeri, Grazia Maria; Spanò, Antonina; Arculeo, Marco; Mazzola, Antonio; Mazzola, Salvatore
2016-09-01
Fish larvae data collected in year 2009 were used to examine the effects of particular environmental conditions on the structure of larval assemblages in two oligotrophic Mediterranean areas (the Southern Tyrrhenian Sea and the Strait of Sicily). For this purpose, relationships with environmental variables (temperature, salinity and fluorescence), zooplankton biomass, water circulation and bathymetry are discussed. Hydrodynamic conditions resulted very differently between two study areas. The Southern Tyrrhenian Sea was characterized by moderate shallow circulation compared to the Strait of Sicily. In this framework, distribution pattern of larval density in the Tyrrhenian Sea was mainly driven by bathymetry, due to spawning behavior of adult fish. There, results defined four assemblages: two coastal assemblages dominated by pelagic and demersal families and two oceanic assemblages dominated by mesopelagic species more abundant in western offshore and less abundant in eastern offshore. The assemblage variations in the western side was related to the presence of an anti-cyclonic gyre in the northern side of the Gulf of Palermo, while in the eastern side the effect of circulation was not very strong and the environmental conditions rather than the dispersal of species determined the larval fish communities structure. Otherwise in the Strait of Sicily the currents were the main factor governing the concentration and the assemblage structure. In fact, the distribution of larvae was largely consistent with the branch of the Atlantic Ionian Stream (AIS). Moreover, very complex oceanographic structures (two cyclonic circulations in the western part of the study area and one anti-cyclonic circulation in the eastern part) caused the formation of uncommon spatial distribution of larval fish assemblages, only partially linked to bathymetry of the study area. Typically coastal larvae (pelagic families: Engraulidae and Clupeidae) were mostly concentrated in the offshore areas and off Capo Passero, where the presence of a thermo-haline front maintained their position in an area with favourable conditions for larval fish feeding and growth.
Patterns in reef fish assemblages: Insights from the Chagos Archipelago.
Samoilys, Melita; Roche, Ronan; Koldewey, Heather; Turner, John
2018-01-01
Understanding the drivers of variability in the composition of fish assemblages across the Indo-Pacific region is crucial to support coral reef ecosystem resilience. Whilst numerous relationships and feedback mechanisms between the functional roles of coral reef fishes and reef benthic composition have been investigated, certain key groups, such as the herbivores, are widely suggested to maintain reefs in a coral-dominated state. Examining links between fishes and reef benthos is complicated by the interactions between natural processes, disturbance events and anthropogenic impacts, particularly fishing pressure. This study examined fish assemblages and associated benthic variables across five atolls within the Chagos Archipelago, where fishing pressure is largely absent, to better understand these relationships. We found high variability in fish assemblages among atolls and sites across the archipelago, especially for key groups such as a suite of grazer-detritivore surgeonfish, and the parrotfishes which varied in density over 40-fold between sites. Differences in fish assemblages were significantly associated with variable levels of both live and recently dead coral cover and rugosity. We suggest these results reflect differing coral recovery trajectories following coral bleaching events and a strong influence of 'bottom-up' control mechanisms on fish assemblages. Species level analyses revealed that Scarus niger, Acanthurus nigrofuscus and Chlorurus strongylocephalos were key species driving differences in fish assemblage structure. Clarifying the trophic roles of herbivorous and detritivorous reef fishes will require species-level studies, which also examine feeding behaviour, to fully understand their contribution in maintaining reef resilience to climate change and fishing impacts.
An assessment of fish assemblage structure in a large river
Kiraly, Ian A.; Coghlan, S.M.; Zydlewski, Joseph D.; Hayes, D.
2015-01-01
The Penobscot River drains the largest watershed in Maine and once provided spawning and rearing habitats to 11 species of diadromous fishes. The construction of dams blocked migrations of these fishes and likely changed the structure and function of fish assemblages throughout the river. The proposed removal of two main-stem dams, improved upstream fish passage at a third dam, and construction of a fish bypass on a dam obstructing a major tributary is anticipated to increase passage of and improve habitat connectivity for both diadromous and resident fishes. We captured 61 837 fish of 35 species in the Penobscot River and major tributaries, through 114 km of boat electrofishing. Patterns of fish assemblage structure did not change considerably during our sampling; relatively few species contributed to seasonal and annual variability within the main-stem river, including smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, and golden shiner Notemigonus crysoleucas. However, distinct fish assemblages were present among river sections bounded by dams. Many diadromous species were restricted to tidal waters downriver of the Veazie Dam; Fundulus species were also abundant within the tidal river section. Smallmouth bass and pumpkinseed were most prevalent within the Veazie Dam impoundment and the free-flowing river section immediately upriver, suggesting the importance of both types of habitat that supports multiple life stages of these species. Further upriver, brown bullhead Ameiurus nebulosus, yellow perch Perca flavescens, chain pickerel Esox niger, and cyprinid species were more prevalent than within any other river section. Our findings describe baseline spatial patterns of fish assemblages in the Penobscot River in relation to dams with which to compare assessments after dam removal occurs.
Waite, I.R.; Carpenter, K.D.
2000-01-01
As part of the U.S. Geological Survey's National Water-Quality Assessment Program, fish were collected from 24 selected stream sites in the Willamette Basin during 1993-1995 to determine the composition of the fish assemblages and their relation to the chemical and physical environment. Variance in fish relative abundance was greater among all sites than among spatially distinct reaches within a site (spatial variation) or among multiple sampled years at a site (temporal variation). Therefore, data from a single reach in an individual year was considered to be a reliable estimator of the fish assemblage structure at a site when the data were normalized by percent relative abundance. Multivariate classification and ordination were used to examine patterns in environmental variables and fish relative abundance over differing spatial scales (among versus within ecoregions). Across all ecoregions (all sites), fish assemblages were primarily structured along environmental gradients of water temperature and stream gradient (coldwater, high-gradient forested sites versus warmwater, low-gradient Willamette Valley sites); this pattern superseded patterns that were ecoregion specific. Water temperature, dissolved oxygen, and physical habitat (e.g., riparian canopy and percent riffles) were associated with patterns of fish assemblages across all ecoregions; however, pesticide and total phosphorus concentrations were more important than physical habitat within the Willamette Valley ecoregion. Consideration of stream site stratification (e.g., stream size, ecoregion, and stream gradient), identification of fish to species level (particularly the sculpin family), and detailed measurement of habitat, diurnal dissolved oxygen, and water temperature were critical in evaluating the composition of fish assemblages in relation to land use. In general, these low-gradient valley streams typical of other agricultural regions had poor riparian systems and showed increases in water temperature, nutrients, and fine grain sediments that were associated with degradation in the native fish assemblages. There was an association of high abundances of introduced species and high percent external abnormalities in medium-sized river sites of mixed land use and high abundances of tolerant species in small streams of predominantly agricultural land use.
Thiriet, Pierre D; Di Franco, Antonio; Cheminée, Adrien; Guidetti, Paolo; Bianchimani, Olivier; Basthard-Bogain, Solène; Cottalorda, Jean-Michel; Arceo, Hazel; Moranta, Joan; Lejeune, Pierre; Francour, Patrice; Mangialajo, Luisa
2016-01-01
In Mediterranean subtidal rocky reefs, Cystoseira spp. (Phaeophyceae) form dense canopies up to 1 m high. Such habitats, called 'Cystoseira forests', are regressing across the entire Mediterranean Sea due to multiple anthropogenic stressors, as are other large brown algae forests worldwide. Cystoseira forests are being replaced by structurally less complex habitats, but little information is available regarding the potential difference in the structure and composition of fish assemblages between these habitats. To fill this void, we compared necto-benthic (NB) and crypto-benthic (CB) fish assemblage structures between Cystoseira forests and two habitats usually replacing the forests (turf and barren), in two sampling regions (Corsica and Menorca). We sampled NB fish using Underwater Visual Census (UVC) and CB fish using Enclosed Anaesthetic Station Vacuuming (EASV), since UVC is known to underestimate the diversity and density of the 'hard to spot' CB fish. We found that both taxonomic diversity and total density of NB and CB fish were highest in Cystoseira forests and lowest in barrens, while turfs, that could be sampled only at Menorca, showed intermediate values. Conversely, total biomass of NB and CB fish did not differ between habitats because the larger average size of fish in barrens (and turfs) compensated for their lower densities. The NB families Labridae and Serranidae, and the CB families Blenniidae, Cliniidae, Gobiidae, Trypterigiidae and Scorpaenidae, were more abundant in forests. The NB taxa Diplodus spp. and Thalassoma pavo were more abundant in barrens. Our study highlights the importance of using EASV for sampling CB fish, and shows that Cystoseira forests support rich and diversified fish assemblages. This evidence suggests that the ongoing loss of Cystoseira forests may impair coastal fish assemblages and related goods and services to humans, and stresses the need to implement strategies for the successful conservation and/or recovery of marine forests.
Thiriet, Pierre D.; Cheminée, Adrien; Guidetti, Paolo; Bianchimani, Olivier; Basthard-Bogain, Solène; Cottalorda, Jean-Michel; Arceo, Hazel; Moranta, Joan; Lejeune, Pierre; Francour, Patrice; Mangialajo, Luisa
2016-01-01
In Mediterranean subtidal rocky reefs, Cystoseira spp. (Phaeophyceae) form dense canopies up to 1 m high. Such habitats, called ‘Cystoseira forests’, are regressing across the entire Mediterranean Sea due to multiple anthropogenic stressors, as are other large brown algae forests worldwide. Cystoseira forests are being replaced by structurally less complex habitats, but little information is available regarding the potential difference in the structure and composition of fish assemblages between these habitats. To fill this void, we compared necto-benthic (NB) and crypto-benthic (CB) fish assemblage structures between Cystoseira forests and two habitats usually replacing the forests (turf and barren), in two sampling regions (Corsica and Menorca). We sampled NB fish using Underwater Visual Census (UVC) and CB fish using Enclosed Anaesthetic Station Vacuuming (EASV), since UVC is known to underestimate the diversity and density of the ‘hard to spot’ CB fish. We found that both taxonomic diversity and total density of NB and CB fish were highest in Cystoseira forests and lowest in barrens, while turfs, that could be sampled only at Menorca, showed intermediate values. Conversely, total biomass of NB and CB fish did not differ between habitats because the larger average size of fish in barrens (and turfs) compensated for their lower densities. The NB families Labridae and Serranidae, and the CB families Blenniidae, Cliniidae, Gobiidae, Trypterigiidae and Scorpaenidae, were more abundant in forests. The NB taxa Diplodus spp. and Thalassoma pavo were more abundant in barrens. Our study highlights the importance of using EASV for sampling CB fish, and shows that Cystoseira forests support rich and diversified fish assemblages. This evidence suggests that the ongoing loss of Cystoseira forests may impair coastal fish assemblages and related goods and services to humans, and stresses the need to implement strategies for the successful conservation and/or recovery of marine forests. PMID:27760168
Kidé, Saïkou Oumar; Manté, Claude; Dubroca, Laurent; Demarcq, Hervé; Mérigot, Bastien
2015-01-01
Environmental changes and human activities can have strong impacts on biodiversity and ecosystem functioning. This study investigates how, from a quantitative point of view, simultaneously both environmental and anthropogenic factors affect species composition and abundance of exploited groundfish assemblages (i.e. target and non-target species) at large spatio-temporal scales. We aim to investigate (1) the spatial and annual stability of groundfish assemblages, (2) relationships between these assemblages and structuring factors in order to better explain the dynamic of the assemblages’ structure. The Mauritanian Exclusive Economic Zone (MEEZ) is of particular interest as it embeds a productive ecosystem due to upwelling, producing abundant and diverse resources which constitute an attractive socio-economic development. We applied the multi-variate and multi-table STATICO method on a data set consisting of 854 hauls collected during 14-years (1997–2010) from scientific trawl surveys (species abundance), logbooks of industrial fishery (fishing effort), sea surface temperature and chlorophyll a concentration as environmental variables. Our results showed that abiotic factors drove four main persistent fish assemblages. Overall, chlorophyll a concentration and sea surface temperature mainly influenced the structure of assemblages of coastal soft bottoms and those of the offshore near rocky bottoms where upwellings held. While highest levels of fishing effort were located in the northern permanent upwelling zone, effects of this variable on species composition and abundances of assemblages were relatively low, even if not negligible in some years and areas. The temporal trajectories between environmental and fishing conditions and assemblages did not match for all the entire time series analyzed in the MEEZ, but interestingly for some specific years and areas. The quantitative approach used in this work may provide to stakeholders, scientists and fishers a useful assessment for the spatio-temporal dynamics of exploited assemblages under stable or changing conditions in fishing and environment. PMID:26505198
Fish assemblages in borrow-pit lakes of the Lower Mississippi River
Miranda, Leandro E.; Killgore, K. J.; Hoover, J.J.
2013-01-01
Borrow-pit lakes encompass about a third of the lentic water habitats (by area) in the active floodplain of the Lower Mississippi River, yet little is known about their fish assemblages. We investigated whether fish assemblages supported by borrow-pit lakes resembled those in oxbow lakes to help place the ecological relevance of borrow-pit lakes in context with that of natural floodplain lakes. In all, we collected 75 fish species, including 65 species in eight borrow-pit lakes, 52 species in four riverside oxbow lakes, and 44 species in eight landside oxbow lakes. Significant differences in several species richness metrics were evident between borrow-pit lakes and landside oxbow lakes but not between borrow-pit lakes and riverside oxbow lakes. All three lake types differed in fish assemblage composition. Borrow-pit lakes and riverside oxbow lakes tended to include a greater representation of fish species that require access to diverse environments, including lentic, lotic, and palustrine habitats; fish assemblages in landside oxbow lakes included a higher representation of lacustrine species. None of the fish species collected in borrow-pit lakes was federally listed as threatened or endangered, but several were listed as species of special concern by state governments in the region, suggesting that borrow-pit lakes provide habitat for sensitive riverine and wetland fish species. Differences in fish assemblages among borrow-pit lakes were linked to engineered morphologic features, suggesting that diversity in engineering can contribute to diversity in fish assemblages; however, more research is needed to match engineering designs with fish assemblage structures that best meet conservation needs.
We examined larval and juvenile fish assemblage structure in relation to microhabitat variables within the St. Louis River estuary, a drowned river mouth of Lake Superior. Fish were sampled in vegetated beds throughout the estuary, across a gradient of vegetation types and densit...
Senecal, Anna C.; Walters, Annika W.; Hubert, Wayne A.
2016-01-01
Wyoming’s Powder River is considered an example of a pristine prairie river system. While the river hosts a largely native fish assemblage and remains unimpounded over its 1,146-km course to the Yellowstone River confluence, the hydrologic regime has been altered through water diversion for agriculture and natural gas extraction and there has been limited study of fish assemblage structure. We analyzed fish data collected from the mainstem Powder River in Wyoming between 1896 and 2008. Shifts in presence/absence and relative abundance of fish species, as well as fish assemblage composition, were assessed among historical and recent samples. The recent Powder River fish assemblage was characterized by increased relative abundances of sand shiner Notropis stramineus and plains killifish Fundulus zebrinus, and decreases in sturgeon chub Macrhybopsis gelida. Shifts in fish species relative abundance are linked to their reproductive ecology with species with adhesive eggs generally increasing in relative abundance while those with buoyant drifting eggs are decreasing. Assemblage shifts could be the result of landscape level changes, such as the loss of extreme high and low flow events and changing land use practices.
The relative importance of regional, watershed, and in-stream environmental factors on stream fish assemblage structure and function was investigated as part of a comparative watershed project in the western Lake Superior basin. We selected 48 second and third order watersheds fr...
NASA Astrophysics Data System (ADS)
Chea, R.; Lek, S.; Grenouillet, G.
2016-12-01
Although the Mekong River is one of the world's 35 biodiversity hotspots, the large-scale patterns of fish diversity and assemblage structure remain poorly addressed. The present study aimed to investigate the spatial variability of water quality in the Lower Mekong Basin and the fish distribution patterns in the Lower Mekong River (LMR) and to identify their environmental determinants. Daily fish catch data at 38 sites distributed along the LMR were related to 15 physicochemical and 19 climatic variables. As a result, four different clusters were defined according to the similarity in assemblage composition and 80 indicator species were identified. While fish species richness was highest in the Mekong delta and lowest in the upper part of the LMR, the diversity index was highest in the middle part of the LMR and lowest in the delta. We found that fish assemblages changed along the environmental gradients and that the main drivers affecting the fish assemblage structure were the seasonal variation of temperature, precipitation, dissolved oxygen, pH, and total phosphorus. Specifically, upstream assemblages were characterized by cyprinids and Pangasius catfish, well suited to low temperature, high dissolved oxygen and high pH. Fish assemblages in the delta were dominated by perch-like fish and clupeids, more tolerant to high temperatures, and high levels of nutrients (nitrates and total phosphorus) and salinity. Overall, the patterns were consistent between seasons. Our study contributes to establishing the first holistic fish community study in the LMR. Overall of the LMR water quality, we found that the water in the mainstream was less polluted than its tributaries; eutrophication and salinity could be key factors affecting water quality in LMR. Moreover, the seasonal variation of water quality seemed to be less marked than spatial variation occurring along the longitudinal gradient of Mekong River. Significant degradations were mainly associated with human disturbance and particularly apparent in sites distributed along the man-made canals in Vietnam delta where population growth and agricultural development are intensive.
NASA Astrophysics Data System (ADS)
Dolgov, Andrey V.
2009-04-01
The species composition and trophic structure of the Barents Sea fish assemblage is analysed based on data from research survey trawls and diet analyses of various species. Atlantic cod was the dominant fish species encountered, accounting for more than 55% by abundance or biomass. Only five fish species (long rough dab, thorny skate, Greenland halibut, deepwater redfish and saithe) were sufficiently abundant to be considered as possible food competitors with cod in the Barents Sea. However, possible trophic competition is not high, due to low spatial and temporal overlap between cod and these other species. Analyses of fish assemblages and trophic structures of the Barents Sea and other areas (North Sea, Western Greenland, Newfoundland-Labrador shelf) suggest that Barents Sea cod is the only cod stock for which the ability to recover may not be restricted by trophic relations among fishes, due to a lack of other abundant predatory species and low potential for competition caused by spatial-temporal changes.
Schultz, Arthur L.; Malcolm, Hamish A.; Bucher, Daniel J.; Linklater, Michelle; Smith, Stephen D. A.
2014-01-01
Where biological datasets are spatially limited, abiotic surrogates have been advocated to inform objective planning for Marine Protected Areas. However, this approach assumes close correlation between abiotic and biotic patterns. The Solitary Islands Marine Park, northern NSW, Australia, currently uses a habitat classification system (HCS) to assist with planning, but this is based only on data for reefs. We used Baited Remote Underwater Videos (BRUVs) to survey fish assemblages of unconsolidated substrata at different depths, distances from shore, and across an along-shore spatial scale of 10 s of km (2 transects) to examine how well the HCS works for this dominant habitat. We used multivariate regression modelling to examine the importance of these, and other environmental factors (backscatter intensity, fine-scale bathymetric variation and rugosity), in structuring fish assemblages. There were significant differences in fish assemblages across depths, distance from shore, and over the medium spatial scale of the study: together, these factors generated the optimum model in multivariate regression. However, marginal tests suggested that backscatter intensity, which itself is a surrogate for sediment type and hardness, might also influence fish assemblages and needs further investigation. Species richness was significantly different across all factors: however, total MaxN only differed significantly between locations. This study demonstrates that the pre-existing abiotic HCS only partially represents the range of fish assemblages of unconsolidated habitats in the region. PMID:24824998
Effects of floods on fish assemblages in an intermittent prairie stream
Franssen, N.R.; Gido, K.B.; Guy, C.S.; Tripe, J.A.; Shrank, S.J.; Strakosh, T.R.; Bertrand, K.N.; Franssen, C.M.; Pitts, K.L.; Paukert, C.P.
2006-01-01
1. Floods are major disturbances to stream ecosystems that can kill or displace organisms and modify habitats. Many studies have reported changes in fish assemblages after a single flood, but few studies have evaluated the importance of timing and intensity of floods on long-term fish assemblage dynamics. 2. We used a 10-year dataset to evaluate the effects of floods on fishes in Kings Creek, an intermittent prairie stream in north-eastern, Kansas, U.S.A. Samples were collected seasonally at two perennial headwater sites (1995-2005) and one perennial downstream flowing site (1997-2005) allowing us to evaluate the effects of floods at different locations within a watershed. In addition, four surveys during 2003 and 2004 sampled 3-5 km of stream between the long-term study sites to evaluate the use of intermittent reaches of this stream. 3. Because of higher discharge and bed scouring at the downstream site, we predicted that the fish assemblage would have lowered species richness and abundance following floods. In contrast, we expected increased species richness and abundance at headwater sites because floods increase stream connectivity and create the potential for colonisation from downstream reaches. 4. Akaike Information Criteria (AIC) was used to select among candidate regression models that predicted species richness and abundance based on Julian date, time since floods, season and physical habitat at each site. At the downstream site, AIC weightings suggested Julian date was the best predictor of fish assemblage structure, but no model explained >16% of the variation in species richness or community structure. Variation explained by Julian date was primarily attributed to a long-term pattern of declining abundance of common species. At the headwater sites, there was not a single candidate model selected to predict total species abundance and assemblage structure. AIC weightings suggested variation in assemblage structure was associated with either Julian date or local habitat characteristics. 5. Fishes rapidly colonised isolated or dry habitats following floods. This was evidenced by the occurrence of fishes in intermittent reaches and the positive association between maximum daily discharge and colonisation events at both headwater sites. 6. Our study suggests floods allow dispersal into intermittent habitats with little or no downstream displacement of fishes. Movement of fishes among habitats during flooding highlights the importance of maintaining connectivity of stream networks of low to medium order prairie streams. ?? 2006 The Authors.
Influence of landscape structure on reef fish assemblages
Grober-Dunsmore, R.; Frazer, T.K.; Beets, J.P.; Lindberg, W.J.; Zwick, P.; Funicelli, N.A.
2008-01-01
Management of tropical marine environments calls for interdisciplinary studies and innovative methodologies that consider processes occurring over broad spatial scales. We investigated relationships between landscape structure and reef fish assemblage structure in the US Virgin Islands. Measures of landscape structure were transformed into a reduced set of composite indices using principal component analyses (PCA) to synthesize data on the spatial patterning of the landscape structure of the study reefs. However, composite indices (e.g., habitat diversity) were not particularly informative for predicting reef fish assemblage structure. Rather, relationships were interpreted more easily when functional groups of fishes were related to individual habitat features. In particular, multiple reef fish parameters were strongly associated with reef context. Fishes responded to benthic habitat structure at multiple spatial scales, with various groups of fishes each correlated to a unique suite of variables. Accordingly, future experiments should be designed to test functional relationships based on the ecology of the organisms of interest. Our study demonstrates that landscape-scale habitat features influence reef fish communities, illustrating promise in applying a landscape ecology approach to better understand factors that structure coral reef ecosystems. Furthermore, our findings may prove useful in design of spatially-based conservation approaches such as marine protected areas (MPAs), because landscape-scale metrics may serve as proxies for areas with high species diversity and abundance within the coral reef landscape. ?? 2007 Springer Science+Business Media B.V.
Fish Assemblage Structure Under Variable Environmental Conditions in the Ouachita Mountains
Christopher M. Taylor; Lance R. Williams; Riccardo A. Fiorillo; R. Brent Thomas; Melvin L. Warren
2004-01-01
Abstract - Spatial and temporal variability of fish assemblages in Ouachita Mountain streams, Arkansas, were examined for association with stream size and flow variability. Fishes and habitat were sampled quarterly for four years at 12 sites (144 samples) in the Ouachita Mountains Ecosystem Management Research Project, Phase III watersheds. Detrended...
Patterns in reef fish assemblages: Insights from the Chagos Archipelago
Roche, Ronan; Koldewey, Heather; Turner, John
2018-01-01
Understanding the drivers of variability in the composition of fish assemblages across the Indo-Pacific region is crucial to support coral reef ecosystem resilience. Whilst numerous relationships and feedback mechanisms between the functional roles of coral reef fishes and reef benthic composition have been investigated, certain key groups, such as the herbivores, are widely suggested to maintain reefs in a coral-dominated state. Examining links between fishes and reef benthos is complicated by the interactions between natural processes, disturbance events and anthropogenic impacts, particularly fishing pressure. This study examined fish assemblages and associated benthic variables across five atolls within the Chagos Archipelago, where fishing pressure is largely absent, to better understand these relationships. We found high variability in fish assemblages among atolls and sites across the archipelago, especially for key groups such as a suite of grazer-detritivore surgeonfish, and the parrotfishes which varied in density over 40-fold between sites. Differences in fish assemblages were significantly associated with variable levels of both live and recently dead coral cover and rugosity. We suggest these results reflect differing coral recovery trajectories following coral bleaching events and a strong influence of ‘bottom-up’ control mechanisms on fish assemblages. Species level analyses revealed that Scarus niger, Acanthurus nigrofuscus and Chlorurus strongylocephalos were key species driving differences in fish assemblage structure. Clarifying the trophic roles of herbivorous and detritivorous reef fishes will require species-level studies, which also examine feeding behaviour, to fully understand their contribution in maintaining reef resilience to climate change and fishing impacts. PMID:29351566
FISH ASSEMBLAGES AS INDICATORS OF LAKE SUPERIOR COASTAL WETLAND CONDITION
Fish assemblages associated with coastal wetlands in Lake Superior are poorly described. Understanding the environmental factors structuring the biota in these habitats is essential to developing robust indicators of their condition. To identify key environmental influences struc...
Microhabitat influence on larval fish assemblages within ...
We examined larval and juvenile fish assemblage structure in relation to microhabitat variables within the St. Louis River estuary, a drowned river mouth of Lake Superior. Fish were sampled in vegetated beds throughout the estuary, across a gradient of vegetation types and densities (including disturbed, preserved and post-restoration sites). Canonical correspondence analysis, relating species abundances to environmental variables revealed that plant species richness, turbidity and aquatic plant cover were most influential in structuring assemblages. Results from this microhabitat analysis at this crucial life stage has potential to inform wetland restoration efforts within the St. Louis River and other Great Lake coastal wetlands. not applicable
NASA Astrophysics Data System (ADS)
Simier, M.; Blanc, L.; Aliaume, C.; Diouf, P. S.; Albaret, J. J.
2004-01-01
As a consequence of the Sahelian drought, the Sine Saloum, a large estuarine system located in Senegal (West Africa), has become an "inverse estuary" since the late sixties, i.e. salinity increases upstream and reaches 100 in some places. To study the fish assemblages of such a modified system, a survey was conducted in 1992, collecting fish every two months with a purse seine at eight sites spread over the three main branches of the estuary. A total of 73 species belonging to 35 families were identified. Eight species comprised 97% of the total numbers of fish. The predominant species was a small clupeid, Sardinella maderensis, representing more than half of the total biomass and nearly 70% of the total number of fish. The spatio-temporal structure of the fish assemblages was studied using the STATIS-CoA method, which combines the multitable approach with the correspondence analysis method. Whatever the season, a strong spatial organization of fish assemblages was observed, mainly related to depth and salinity. Three types of assemblages were identified. In shallow water areas, fish assemblages were dominated by Mugilidae, Gerreidae and Cichlidae and were stable with time. In open water areas, large fluctuations in the species composition were observed, due to the occasional presence of large schools of pelagic species: in the southern area, where salinity and water transparency were the lowest, the main species were Ilisha africana, Brachydeuterus auritus and Chloroscombrus chrysurus, associated with a few Sciaenidae and Tetraodontidae, while the poorest areas were characterized by only two dominant species, S. maderensis and Scomberomorus tritor.
Segvić Bubić, T; Grubišić, L; Tičina, V; Katavić, I
2011-01-01
The abundance and size structure of wild fishes aggregated around the sea-cages of two commercial Thunnus thynnus farms, including control locations, were assessed and compared over a 1 year period. The T. thynnus farms were located in the eastern Adriatic Sea, offshore of the islands of Ugljan and Brač. Fish assemblages were evaluated through visual census using scuba at 2 month intervals at two sites within each farm. The data suggest that wild fish assemblages at the study sites differed greatly; 20 species occurred at the Ugljan farm and 17 at the Brač farm, while only seven species were observed at the control locations. The abundance and diversity of wild fish assemblages were greater at the farms in comparison to control locations. The most abundant families were Sparidae and Belonidae (>80% of aggregated fishes). At both farms, the abundance and diversity of wild fishes were highest during summer, while diversity was lowest in winter and was mainly characterized by schools of bogue Boops boops and garfish Belone belone. Variability was also detected in spatial assemblages between farms; B. boops and B. belone were the most abundant species for the overall study at the Brač farm, while B. belone and saddled bream Oblada melanura were the most abundant at the Ugljan farm. The settlement also played a significant role in farm-associated fish assemblages, as both juveniles and advanced juveniles were common residents at farms. The majority of species which settled at the farms belonged to the sparids. Results indicate that aggregations of wild fishes at T. thynnus farms are persistent year-round, though the assemblage compositions and size structures of dominant species vary in respect to location and season. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Gary D. Grossman; Robert E. Ratajczak; Maurice Crawford; Mary C. Freeman
1998-01-01
We assessed the relative importance of environmental variation, interspecific competition for space, and predator abundance on assemblage structure and microhabitat use in a stream fish assemblage inhabiting Coweeta Creek, North Carolina, USA. Our study encompassed a l0-yr time span (1983-1992) and included some of the highest and lowest flows in the last 58 years. We...
Seagrass Parameter Affect the Fish Assemblages in Karimunjawa Archipelago
NASA Astrophysics Data System (ADS)
Sri Susilo, Endang; Nugroho Sugianto, Denny; Munasik; Nirwani; Adhi Suryono, Chrisna
2018-02-01
Seagrass beds promote high species diversity, abundance and biomass, and become important habitats for some economically important fishes. Plants of seagrasses result in structurally highly complex habitats and offering feeding grounds, shelter from predation as well as nursery areas for diverse fish assemblages. However, research on fish communities in Southeast Asian seagrass bed is rarely conducted. In the present study fish assemblages in seagrass beds with different parameters (cover, diversity and similarity indices, domination) was investigated in the Karimunjawa Islands, Indonesia. The purpose of this study were to assess whether fish assemblages differ concerning on the abundance and the species number. This study was conducted on the seagrass bed on Karimunjawa Islands in Java Sea, particularly in the water of Menjangan Besar and Menjangan Kecil Island. Line-quadrant transect was used to assess seagrass data, while the occurrence and individual number of fish harboured in the selected seagrass bed was counted by using underwater visual census in the stationary point count transects. Seagrass cover in Menjangan Kecil Island (41%) with various canopy included both upper and lower canopy was considerable higher than those in Menjangan Besar Island (5%). Fish diversity, species composition and abundance are considerably different between the two study sites. This study revealed that seagrass density or cover and canopy structure affected the fish abundance and species number harboured.
COMPARISON OF GEOGRAPHIC CLASSIFICATION SCHEMES FOR MID-ATLANTIC STREAM FISH ASSEMBLAGES
Understanding the influence of geographic factors in structuring fish assemblages is crucial to developing a comprehensive assessment of stream conditions. We compared the classification strengths (CS) of geographic groups (ecoregions and catchments), stream order, and groups bas...
Neves, Leonardo M; Teixeira-Neves, Tatiana P; Pereira-Filho, Guilherme H; Araújo, Francisco G
2016-01-01
The conservation and management of site-attached assemblages of coastal reefs are particularly challenging because of the tremendous environmental variation that exists at small spatial scales. In this sense, understanding the primary sources of variation in spatial patterns of the biota is fundamental for designing effective conservation policies. We investigated spatial variation in fish assemblages around the windward and leeward sides of coastal islands situated across a gradient of riverine influence (13 km in length). Specifically, relationships between rocky reef fish assemblages and benthic, topographic and physical predictors were assessed. We hypothesized that river induced disturbances may overcome local habitat features in modeling spatial patterns of fish distribution. Fish assemblages varied primarily due to the strong directional gradient of riverine influence (22.6% of the estimated components of variation), followed by topographic complexity (15%), wave exposure (9.9%), and benthic cover (8%). The trophic structure of fish assemblages changed from having a high abundance of invertebrate feeders in macroalgae-dominated reefs close to river mouths to a high proportion of herbivores, planktivores and invertebrate feeder species in reefs with large boulders covered by epilithic algal matrices, as the distance from rivers increased. This gradient led to an increase of 4.5-fold in fish richness and fish trophic group diversity, 11-fold in fish biomass and 10-fold in fish abundance. Our results have implications for the conservation and monitoring of assemblages patchily distributed at small spatial scales. The major role of distance from river influences on fish assemblages rather than benthic cover and topographic complexity suggest that managing land-based activities should be a conservation priority toward reef restoration.
Neves, Leonardo M.; Teixeira-Neves, Tatiana P.; Pereira-Filho, Guilherme H.; Araújo, Francisco G.
2016-01-01
The conservation and management of site-attached assemblages of coastal reefs are particularly challenging because of the tremendous environmental variation that exists at small spatial scales. In this sense, understanding the primary sources of variation in spatial patterns of the biota is fundamental for designing effective conservation policies. We investigated spatial variation in fish assemblages around the windward and leeward sides of coastal islands situated across a gradient of riverine influence (13 km in length). Specifically, relationships between rocky reef fish assemblages and benthic, topographic and physical predictors were assessed. We hypothesized that river induced disturbances may overcome local habitat features in modeling spatial patterns of fish distribution. Fish assemblages varied primarily due to the strong directional gradient of riverine influence (22.6% of the estimated components of variation), followed by topographic complexity (15%), wave exposure (9.9%), and benthic cover (8%). The trophic structure of fish assemblages changed from having a high abundance of invertebrate feeders in macroalgae-dominated reefs close to river mouths to a high proportion of herbivores, planktivores and invertebrate feeder species in reefs with large boulders covered by epilithic algal matrices, as the distance from rivers increased. This gradient led to an increase of 4.5-fold in fish richness and fish trophic group diversity, 11-fold in fish biomass and 10-fold in fish abundance. Our results have implications for the conservation and monitoring of assemblages patchily distributed at small spatial scales. The major role of distance from river influences on fish assemblages rather than benthic cover and topographic complexity suggest that managing land-based activities should be a conservation priority toward reef restoration. PMID:27907017
Fish assemblages in oxbow lakes relative to connectivity with the Mississippi River
Miranda, L.E.
2005-01-01
The alluvial valley of the lower Mississippi River contains hundreds of fluvial lakes that are periodically connected to the river during high water, although the frequency, duration, and timing of the connections vary. To help design plans to restore and preserve fish assemblages in these alluvial lakes, this investigation tested whether predictable patterns in lake fish assemblages were linked to the level of connectivity with the river. Results suggested that connectivity played an important role in structuring fish assemblages and that it was correlated with variables such as lake size, depth, distance from the river, and age, which exhibit a continuum of predictable features as the river migrates away from abandoned channels. Annual floods homogenize the floodplain and promote connectivity to various degrees, allowing for fish exchanges between river and floodplain that directly affect fish assemblages. The major physical changes linked to reduced connectivity are loss of depth and area, which in turn affect a multiplicity of abiotic and biotic features that indirectly affect community structure. In advanced stages of disconnection, fish assemblages in oxbow lakes are expected to include largely species that thrive in turbid, shallow systems with few predators and low oxygen content. When the river flowed without artificial restraint, oxbow lakes were created at the rate of 13-15 per century. At present, no or few oxbow lakes are being formed, and as existing lakes age, they are becoming shallower, smaller, and progressively more disconnected from the river. Given that modifications to the Mississippi River appear to be irreversible, conservation of this resource requires maintenance of existing lakes at a wide range of aging phases that provide diverse habitats and harbor distinct species assemblages.
Using Snorkeling to Quantify Fish Assemblage Structure in Arkansas Streams
David G. Lonzarich; Mary E. Lonzarich; Melvin L. Warren
2004-01-01
Abstract - As a technique for surveying fish populations in low diversity, clear streams of the Pacific Northwest, snorkeling is a commonly used alternative to electrofishing. While the method is becoming more widely used in the high diversity streams of eastern North America, its efficacy as a tool for surveying fish assemblages in these streams is...
González, M T; Oliva, M E
2009-04-01
Nested structure is a pattern originally described in island biogeography to characterize how a set of species is distributed among a set of islands. In parasite communities, nestedness has been intensively studied among individual fish from a locality. However, nested patterns among parasite assemblages from different host populations (localities) have scarcely been investigated. We recorded the occurrence of parasites in 9 fish species widely distributed along the southeastern Pacific coast to determine whether the ecto- and endoparasite assemblages of marine fishes show a nested structure associated with host distributional range. Nestedness was tested using Brualdi-Sanderson index of discrepancy (BR); and 5 null models incorporated in a 'Nestedness' programme (Ulrich, 2006). The ecto- and endoparasite richness do not show similar patterns of latitudinal gradients among fish hosts, with 33-66% of analysed ectoparasite assemblages, and 25-75% of endoparasite assemblages showing nested structures through the host distributional range. For ectoparasites, species richness gradients and nested structure (when present) might be associated with decreased host densities or could reflect negative environmental conditions in the distributional border of the host species, whereas for endoparasites might be caused by geographical breaks of prey or changes in prey availability (intermediate hosts). The sampled extension of the distributional range of the host species, as well as the lack of specificity of some parasites, could influence the detection of nestedness.
Esselman, P.C.; Freeman, Mary C.; Pringle, C.M.
2006-01-01
Linkages between geology and fish assemblages have been inferred in many regions throughout the world, but no studies have yet investigated whether fish assemblages differ across geologies in Mesoamerica. The goals of our study were to: 1) compare physicochemical conditions and fish-assemblage structure across 2 geologic types in headwaters of the Monkey River Basin, Belize, and 2) describe basin-scale patterns in fish community composition and structure for the benefit of conservation efforts. We censused headwater-pool fishes by direct observation, and assessed habitat size, structure, and water chemistry to compare habitat and fish richness, diversity, evenness, and density between streams in the variably metamorphosed sedimentary geologic type typical of 80% of Belize's Maya Mountains (the Santa Rosa Group), and an anomalous extrusive geologic formation in the same area (the Bladen Volcanic Member). We also collected species-presence data from 20 sites throughout the basin for analyses of compositional patterns from the headwaters to the top of the estuary. Thirty-nine fish species in 21 families were observed. Poeciliids were numerically dominant, making up 39% of individuals captured, followed by characins (25%), and cichlids (20%). Cichlidae was the most species-rich family (7 spp.), followed by Poeciliidae (6 spp.). Habitat size and water chemistry differed strongly between geologic types, but habitat diversity did not. Major fish-assemblage differences also were not obvious between geologies, despite a marked difference in the presence of the aquatic macrophyte, Marathrum oxycarpum (Podostemaceae), which covered 37% of the stream bottom in high-nutrient streams draining the Santa Rosa Group, and did not occur in the low-P streams draining the Bladen Volcanic Member. Correlation analyses suggested that distance from the sea and amount of cover within pools are important to fish-assemblage structure, but that differing abiotic factors may influence assemblage structure within each geologic type. The fauna showed weak compositional zonation into 3 groups (headwaters, coastal plain, and nearshore). Nearly 20% of the fish species collected have migratory life cycles (including Joturus pichardi, Agonostomus monticola, and Gobiomorus dormitor) that use freshwater and marine habitats. Some of these species probably rely on a natural flow regime and longitudinal connectivity for reproduction and dispersal of young, and natural flow regime and longitudinal connectivity are important factors for maintenance of functional linkages between the uplands and the coast in the ridge-to-reef corridor where the Monkey River is located. Therefore, we suggest that the viability of migratory fish populations may be a good biological indicator of upland-to-estuary connectivity important both to fishes and coastal ecosystem function. We recommend follow-up studies to substantiate the relative strengths of relationships between community structure and abiotic factors in contrasting geologies and to examine potential bottom-up responses of stream biota to the higher nutrient levels that were observed in stream waters draining the Santa Rosa Group geologic type.
Aquatic assemblages of the highly urbanized Santa Ana River Basin, California
Brown, Larry R.; Burton, Carmen; Belitz, Kenneth
2005-01-01
We assessed the structure of periphyton, benthic macroinvertebrate, and fish assemblages and their associations with environmental variables at 17 sites on streams of the highly urbanized Santa Ana River basin in Southern California. All assemblages exhibited strong differences between highly urbanized sites in the valley and the least-impacted sites at the transition between the valley and undeveloped mountains. Results within the urbanized area differed among taxa. Periphyton assemblages were dominated by diatoms (>75% of total taxa). Periphyton assemblages within the urbanized area were not associated with any of the measured environmental variables, suggesting that structure of urban periphyton assemblages might be highly dependent on colonization dynamics. The number of Ephemeroptera, Trichoptera, and Plecoptera (EPT) taxa included in macroinvertebrate assemblages ranged from 0 to 6 at urbanized sites. Benthic macroinvertebrate assemblages had significant correlations with several environmental variables within the urban area, suggesting that stream size and permanence were important determinants of distribution among the species able to survive conditions in urban streams. Only 4 of 16 fish species collected were native to the drainage. Fish assemblages of urbanized sites included two native species, arroyo chub Gila orcuttii and Santa Ana sucker Catostomus santaanae, at sites that were intermediate in coefficient of variation of bank-full width, depth, bed substrate, and water temperature. Alien species dominated urbanized sites with lesser or greater values for these variables. These results suggest that urban streams can be structured to enhance populations of native fishes. Continued study of urban streams in the Santa Ana River basin and elsewhere will contribute to the basic understanding of ecological principles and help preserve the maximum ecological value of streams in highly urbanized areas.
Depth as an organizer of fish assemblages in floodplain lakes
Miranda, L.E.
2011-01-01
Depth reduction is a natural process in floodplain lakes, but in many basins has been accelerated by anthropogenic disturbances. A diverse set of 42 floodplain lakes in the Yazoo River Basin (Mississippi, USA) was examined to test the hypothesis of whether depth reduction was a key determinant of water quality and fish assemblage structure. Single and multiple variable analyses were applied to 10 commonly monitored water variables and 54 fish species. Results showed strong associations between depth and water characteristics, and between depth and fish assemblages. Deep lakes provided less variable environments, clearer water, and a wider range of microhabitats than shallow lakes. The greater environmental stability was reflected by the dominant species in the assemblages, which included a broader representation of large-body species, species less tolerant of extreme water quality, and more predators. Stability in deep lakes was further reflected by reduced among-lake variability in taxa representation. Fish assemblages in shallow lakes were more variable than deep lakes, and commonly dominated by opportunistic species that have early maturity, extended breeding seasons, small adult size, and short lifespan. Depth is a causal factor that drives many physical and chemical variables that contribute to organizing fish assemblages in floodplain lakes. Thus, correlations between fish and water transparency, temperature, oxygen, trophic state, habitat structure, and other environmental descriptors may ultimately be totally or partly regulated by depth. In basins undergoing rapid anthropogenic modifications, local changes forced by depth reductions may be expected to eliminate species available from the regional pool and could have considerable ecological implications. ?? 2010 Springer Basel AG (outside the USA).
Röpke, Cristhiana P.; Amadio, Sidinéia; Zuanon, Jansen; Ferreira, Efrem J. G.; Deus, Cláudia Pereira de; Pires, Tiago H. S.; Winemiller, Kirk O.
2017-01-01
Combined effects of climate change and deforestation have altered precipitation patterns in the Amazon. This has led to changes in the frequency of extreme events of flood and drought in recent decades and in the magnitude of the annual flood pulse, a phenomenon that influences virtually all aspects of river-floodplain ecosystem dynamics. Analysis of long-term data revealed abrupt and synchronous changes in hydrology and fish assemblage structure of a floodplain lake near the confluence of Amazon and Negro rivers. After an intense drought in 2005, the assemblage assumed a different and fairly persistent taxonomic composition and functional structure. Declines in abundance after 2005 were more pronounced for species of all sizes having equilibrium life history strategy, large species with periodic life history strategy, and for all trophic levels except primary consumers. Our results suggest that the extreme drought triggered changes in the fish assemblage and subsequent anomalous hydrological conditions have hampered assemblage recovery. These findings stress the need to account for climatic-driven hydrological changes in conservation efforts addressing aquatic biodiversity and fishery resources in the central Amazon. PMID:28071701
Röpke, Cristhiana P; Amadio, Sidinéia; Zuanon, Jansen; Ferreira, Efrem J G; Deus, Cláudia Pereira de; Pires, Tiago H S; Winemiller, Kirk O
2017-01-10
Combined effects of climate change and deforestation have altered precipitation patterns in the Amazon. This has led to changes in the frequency of extreme events of flood and drought in recent decades and in the magnitude of the annual flood pulse, a phenomenon that influences virtually all aspects of river-floodplain ecosystem dynamics. Analysis of long-term data revealed abrupt and synchronous changes in hydrology and fish assemblage structure of a floodplain lake near the confluence of Amazon and Negro rivers. After an intense drought in 2005, the assemblage assumed a different and fairly persistent taxonomic composition and functional structure. Declines in abundance after 2005 were more pronounced for species of all sizes having equilibrium life history strategy, large species with periodic life history strategy, and for all trophic levels except primary consumers. Our results suggest that the extreme drought triggered changes in the fish assemblage and subsequent anomalous hydrological conditions have hampered assemblage recovery. These findings stress the need to account for climatic-driven hydrological changes in conservation efforts addressing aquatic biodiversity and fishery resources in the central Amazon.
Fish community structure in natural and engineered habitats in the Kansas River
White, K.; Gerken, J.; Paukert, Craig P.; Makinster, Andrew S.
2010-01-01
We investigated fish assemblage structure in engineered (rip-rap) and natural habitats (log jams and mud banks) in the Kansas River USA to determine if natural structures had higher abundance and diversity of fishes at a local spatial scale. A total of 439 randomly selected sites were boat electrofished from May to August 2005 and 2006. Mean species diversity and richness were significantly higher in rip-rap than log jams and mud banks. Mean relative abundance (CPUE; number of fish collected per hour electrofishing) of six of the 15 most common fishes (>1% of total catch) were most abundant in rip-rap, two were most abundant in log jams, and none in mud banks. Rip-rap had the highest relative abundance of fluvial specialist and macrohabitat generalists, whereas mean CPUE of fluvial dependents was highest in log jams. Although a discriminant function analysis indicated that nine size classes (eight species) discriminated among three habitat types, the high misclassification rate (38%) suggested a high degree of fish assemblage overlap among the habitats. Although previous work has suggested that engineered structures (rip-rap) and urbanization are linked to reduced biotic diversity or reduced growth of fish species, our results suggest that at a local scale rip-rap may not have the same negative impacts on fish assemblages.
Fish community structure in natural and engineered habitats in the Kansas river
White, K.; Gerken, J.; Paukert, C.; Makinster, A.
2010-01-01
We investigated fish assemblage structure in engineered (rip-rap) and natural habitats (log jams and mud banks) in the Kansas River USA to determine if natural structures had higher abundance and diversity of fishes at a local spatial scale. A total of 439 randomly selected sites were boat electrofished from May to August 2005 and 2006. Mean species diversity and richness were significantly higher in rip-rap than log jams and mud banks. Mean relative abundance (CPUE; number of fish collected per hour electrofishing) of six of the 15 most common fishes (>1% of total catch) were most abundant in rip-rap, two were most abundant in log jams, and none in mud banks. Rip-rap had the highest relative abundance of fluvial specialist and macrohabitat generalists, whereas mean CPUE of fluvial dependents was highest in log jams. Although a discriminant function analysis indicated that nine size classes (eight species) discriminated among three habitat types, the high misclassification rate (38%) suggested a high degree of fish assemblage overlap among the habitats. Although previous work has suggested that engineered structures (rip-rap) and urbanization are linked to reduced biotic diversity or reduced growth of fish species, our results suggest that at a local scale rip-rap may not have the same negative impacts on fish assemblages.
Effects of riparian forest removal on the trophic dynamics of a Neotropical stream fish assemblage.
Lobón-Cerviá, J; Mazzoni, R; Rezende, C F
2016-07-01
The effects of riparian forest removal on a neotropical stream fish assemblage were assessed in the Mata Atlântica. Fish assemblage structure and fish feeding patterns were quantified at three sites along a pristine-to-deforested gradient in a Serra do Mar stream: (1) a pristine site fully covered by canopy with no light penetration and transparent waters, (2) an intermediate site with partially removed forest and (3) a fully removed forest site with no canopy and full light penetration where siltation and turbid waters predominate. Fish assemblage structure, fish densities and their feeding patterns differed widely among sites. Whilst the same five fish species occurred at the three sites, forest removal favoured the occurrence of sediment-tolerant iliophagous benthic species at the deforested site. At the pristine site, invertebrate prey predominated in water column fish diet and feeding overlap among species was low. Severe shifts in the feeding patterns were noticed in both deforested sites. Invertebrates were replaced by detritus, organic matter and algae at both sites and feeding overlap increased markedly. The overwhelming feeding adaptability of these neotropical fishes appeared capable of buffering the deleterious effects of forest removal on stream quality in terms of increased light penetration, siltation and water turbidity. Forest cutting in this Mata Atlântica stream clearly caused strong functional changes associated with forest clearance through important modifications in the assemblage organization and trophic patterns of the main species, but did not eliminate species. © 2016 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Selleslagh, Jonathan; Amara, Rachid
2008-09-01
The fish assemblage structure was analyzed along an estuarine gradient of a small macrotidal estuary (the Canche, France). Fishes were collected every two months between May 2006 and July 2007 from 12 sampling stations using a 1.5-m beam trawl with a 5 mm mesh size in the cod end. To complement this information, sampling was also performed using 15-m fyke nets (8 mm mesh size in the cod end). For each sample, abiotic (temperature, salinity, pH, oxygen, turbidity, river flow, wind speed and depth) and biotic (macro crustacean species abundances) were recorded. Throughout the study, 28 fish species belonging to 20 families were collected. Fish catches were dominated by juveniles, especially Young-Of-the-Year (YOY) for the majority of the species. According to the Index of Relative Importance (IRI), common goby Pomatoschistus microps, flounder Platichtys flesus, sprat Sprattus sprattus, sea-bass Dicentrarchus labrax and plaice Pleuronectes platessa were the most abundant species, together accounting for 99.2% of the total IRI. Estuarine residents (ER = 66.2%) and marine juvenile migrants species (MJ = 31.4%) were the most important ecological guilds. The structure of the fish assemblage and its relationship to environmental variables was examined using multivariate techniques. Cluster and non-metric multidimensional scaling (nMDS) analysis defined six distinct groups in the Canche estuary, which are discriminated by specific species (SIMPER). Spatio-temporal variations in fish assemblage structure reflect the density peaks of the most abundant species. Spearman rank correlations and canonical correspondence analysis (CCA) showed that among the ten environmental variables examined, temperature, salinity and Crangon crangon (a potential predator for YOY fish or prey for older ones) are the three most important factors influencing fish species richness and abundances. Our observations reinforce the idea that certain fish species may have different life history styles in different geographic areas. The present study highlights the necessity of a better knowledge of the connectivity between estuaries and adjacent marine areas. The Canche constitutes an important ecosystem for fishes and as it is subject to little anthropogenic disturbance; its ichthyofauna can be viewed as a reference or normal assemblage for small temperate macrotidal estuaries.
NASA Astrophysics Data System (ADS)
Rodriguez, J. M.; Gonzalez-Nuevo, G.; Gonzalez-Pola, C.; Cabal, J.
2009-05-01
Ichthyoplankton and mesozooplankton were sampled and fluorescence and physical environmental variables were measured off the NW and N Iberian Peninsula coasts, during April 2005. A total of 51 species of fish larvae, belonging to 26 families, were recorded. Sardina pilchardus, with 43.8% and 58.7% of the total fish egg and larval catches, respectively, dominated the ichthyoplankton assemblage. The study area was divided by a cross-shelf frontal structure into two hydrographic regions that coincided with the Atlantic and Cantabrian geographic regions. Ichthyoplankton abundance was higher in the Cantabrian region while larval diversity was higher in the Atlantic region. This was the main alongshore variability in the structure of the larval fish assemblage. Nevertheless, the stronger variability, related with the presence of a shelf-slope front, was found in the central-eastern Cantabrian region where two major larval fish assemblages, an "outer" and a "coastal", were distinguished. The Atlantic region, where the shelf-slope front was not found, was inhabited by a single larval fish assemblage. Canonical correspondence analysis revealed that, off the NW and N Iberian Peninsula coasts, the horizontal distribution of larval fish species in early spring may be explained by a limited number of environmental variables. Of these, the most important were the physical variables depth and sea surface temperature.
Poe, T.P.; Hatcher, C.O.; Brown, C.L.; Schloesser, D.W.
1986-01-01
Species composition and richness of fish assemblages in altered and unaltered littoral habitats in Lake St. Clair, Michigan, differed between areas. A percid-cyprinid-cyprinodontid assemblage dominated in the unaltered area, Muscamoot Bay, which has a natural shoreline (with almost no alteration due to dredging or bulkheading), high water quality, and high species richness of aquatic macrophytes. A centrarchid assemblage dominated in the altered area, Belvidere Bay, which has a bulkheaded shoreline, many dredged areas, reduced water quality due to inputs of nutrients from a nearby river, and relatively low species richness of aquatic macrophytes. Habitat factors, species richness and abundance of aquatic macrophytes, had the most influence on fish community structure in both areas. The percid-cyprinid-cyprinodontid assemblage was significantly correlated with six species of macrophytes whereas the centrarchid assemblage was significantly correlated with only four. These patterns suggest that preference for diverse habitats was higher, and tolerance to habitat alteration lower, in percid-cyprinid-cyprinodontid assemblages than in centrarchid assemblages.
Downstream impacts of dams: shifts in benthic invertivorous fish assemblages
Granzotti, Rafaela Vendrametto; Miranda, Leandro E.; Agostinho, Angelo A.; Gomes, Luiz Carlos
2018-01-01
Impoundments alter connectivity, sediment transport and water discharge in rivers and floodplains, affecting recruitment, habitat and resource availability for fish including benthic invertivorous fish, which represent an important link between primary producers and higher trophic levels in tropical aquatic ecosystems. We investigated long-term changes to water regime, water quality, and invertivorous fish assemblages pre and post impoundment in three rivers downstream of Porto Primavera Reservoir in south Brazil: Paraná, Baía and Ivinhema rivers. Impacts were distinct in the Paraná River, which is fully obstructed by the dam, less evident in the Baía River which is partially obstructed by the dam, but absent in the unimpounded Ivinhema River. Changes in water regime were reflected mainly as changes in water-level fluctuation with little effect on timing. Water transparency increased in the Paraná River post impoundment but did not change in the Baía and Ivinhema rivers. Changes in fish assemblages included a decrease in benthic invertivorous fish in the Paraná River and a shift in invertivorous fish assemblage structure in the Baía and Paraná rivers but not in the unimpounded Ivinhema River. Changes in water regime and water transparency, caused by impoundment, directly or indirectly impacted invertivorous fish assemblages. Alterations of fish assemblages following environmental changes have consequences over the entire ecosystem, including a potential decrease in the diversity of mechanisms for energy flow. We suggest that keeping existing unimpounded tributaries free of dams, engineering artificial floods, and intensive management of fish habitat within the floodplain may preserve native fish assemblages and help maintain functionality and ecosystem services in highly impounded rivers.
Habitat association of larval fish assemblages in the northern Persian Gulf.
Rabbaniha, Mahnaz; Molinero, Juan Carlos; López-López, Lucia; Javidpour, Jamileh; Primo, Ana Ligia; Owfi, Feryadoon; Sommer, Ulrich
2015-08-15
We examined the habitat use of fish larvae in the northern Persian Gulf from July 2006 to June 2007. Correspondence Analysis showed significant differences between hydrological seasons in habitat use and structure of larval fish assemblages, while no differences were found regarding abundance among coralline and non-coralline habitats. The observed configuration resulted in part from seasonal reproductive patterns of dominant fish influencing the ratio pelagic:demersal spawned larvae. The ratio increased along with temperature and chlorophyll-a concentration, which likely fostered the reproduction of pelagic spawner fish. The close covariation with temperature throughout hydrographic seasons suggests a leading role of temperature in the seasonal structure of larvae assemblages. Our results provide new insights on fish larval ecology in a traditionally sub-sampled and highly exposed zone to anthropogenic pollution, the northern Persian Gulf, and highlight the potential role of Khark and Kharko Islands in conservation and fishery management in the area. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aquatic Invertebrate Assemblages in Shallow Prairie Lakes: Fish and Environmental Influences
Paukert, C.P.; Willis, D.W.
2003-01-01
We sampled zooplankton and benthic macroinvertebrate assemblages in 30 shallow natural lakes to determine the effects of the environment (i.e., habitat and fish abundance) on invertebrates. Zooplankters were identified to genus, and up to 120 individuals per genus were measured. Macroinvertebrates were identified to order, class, or family. Fish communities were also sampled. Relative abundances of zooplankton and macroinvertebrates were low at increased chlorophyll a concentrations, although mean zooplankton length increased with total phosphorus, possibly because of an increased proportion of microzooplankton (rotifers and copepod nauplii) at higher phosphorus levels. Canonical correspondence analysis revealed that zooplankton and macroinvertebrate abundance was influenced by submersed vegetation coverage, whereas zooplankton abundance and size structure were also related to productivity (i.e., chlorophyll a and total phosphorus). However, relative abundance of fish species or fish feeding guilds was not strongly correlated with zooplankton or macroinvertebrate abundance or zooplankton size structure. Physical habitat (e.g., vegetation coverage) may exert substantial influences on invertebrate assemblages in these lakes, possibly providing a refuge from fish predation.
Kiernan, Joseph D; Moyle, Peter B
2012-06-01
The fishes of Martis Creek, in the Sierra Nevada of California (USA), were sampled at four sites annually over 30 years, 1979-2008. This long-term data set was used to examine (1) the persistence and stability of the Martis Creek fish assemblage in the face of environmental stochasticity; (2) whether native and alien fishes responded differently to a natural hydrologic regime (e.g., timing and magnitude of high and low flows); and (3) the importance of various hydrologic and physical habitat variables in explaining the abundances of native and alien fish species through time. Our results showed that fish assemblages were persistent at all sample sites, but individual species exhibited marked interannual variability in density, biomass, and relative abundance. The density and biomass of native fishes generally declined over the period of study, whereas most alien species showed no significant long-term trends. Only alien rainbow trout increased in both density and biomass at all sites over time. Redundancy analysis identified three hydrologic variables (annual 7-day minimum discharge, maximum winter discharge, and number of distinct winter floods) and two habitat variables (percentage of pool habitat and percentage of gravel substrate) that each explained a significant portion of the annual variation in fish assemblage structure. For alien taxa, their proportional contribution to the total fish assemblage was inversely related to mean annual streamflow, one-day maximum discharge in both winter and spring, and the frequency of springtime floods. Results of this study highlight the need for continuous annual monitoring of streams with highly variable flow regimes to evaluate shifts in fish community structure. Apparent successes or failures in stream management may appear differently depending on the time series of available data.
NASA Astrophysics Data System (ADS)
Fukunaga, Atsuko; Kosaki, Randall K.; Wagner, Daniel
2017-09-01
Mesophotic coral ecosystems (MCEs) extend from 30 to 150 m in depth and support diverse communities of marine organisms. We investigated changes in the structure of mesophotic reef fish assemblages (27-100 m) in the Northwestern Hawaiian Islands (NWHI) along depth and geographical gradients using open- and closed-circuit trimix diving. There were clear changes in the assemblage structure from the southeastern to the northwestern end of the NWHI and from shallow to deep waters. Interactive effects of depth and location were also detected. MCEs in the NWHI can be treated as three regions: southeastern and mid regions primarily separated by the presence and absence, respectively, of the introduced species Lutjanus kasmira, and a northwestern region where fish assemblages are largely composed of endemic species. These spatial patterns may be explained, at least in part, by differences in temperature among the regions.
As part of a comparative watershed project investigating land cover/land use disturbance gradients for streams in the western Lake Suerior Basin, we wanted to determine the influence of hydrogeomorphic region, forest fragmentation, and watershed storage on fish assemblage structu...
Tropical insular fish assemblages are resilient to flood disturbance
Smith, William E.; Kwak, Thomas J.
2015-01-01
Periods of stable environmental conditions, favoring development of ecological communities regulated by density-dependent processes, are interrupted by random periods of disturbance that may restructure communities. Disturbance may affect populations via habitat alteration, mortality, or displacement. We quantified fish habitat conditions, density, and movement before and after a major flood disturbance in a Caribbean island tropical river using habitat surveys, fish sampling and population estimates, radio telemetry, and passively monitored PIT tags. Native stream fish populations showed evidence of acute mortality and downstream displacement of surviving fish. All fish species were reduced in number at most life stages after the disturbance, but populations responded with recruitment and migration into vacated upstream habitats. Changes in density were uneven among size classes for most species, indicating altered size structures. Rapid recovery processes at the population level appeared to dampen effects at the assemblage level, as fish assemblage parameters (species richness and diversity) were unchanged by the flooding. The native fish assemblage appeared resilient to flood disturbance, rapidly compensating for mortality and displacement with increased recruitment and recolonization of upstream habitats.
Riparian influences on stream fish assemblage structure in urbanizing streams
Roy, A.H.; Freeman, B.J.; Freeman, Mary C.
2007-01-01
We assessed the influence of land cover at multiple spatial extents on fish assemblage integrity, and the degree to which riparian forests can mitigate the negative effects of catchment urbanization on stream fish assemblages. Riparian cover (urban, forest, and agriculture) was determined within 30 m buffers at longitudinal distances of 200 m, 1 km, and the entire network upstream of 59 non-nested fish sampling locations. Catchment and riparian land cover within the upstream network were highly correlated, so we were unable to distinguish between those variables. Most fish assemblage variables were related to % forest and % urban land cover, with the strongest relations at the largest spatial extent of land cover (catchment), followed by riparian land cover in the 1-km and 200-m reach, respectively. For fish variables related to urban land cover in the catchment, we asked whether the influence of riparian land cover on fish assemblages was dependent on the amount of urban development in the catchment. Several fish assemblage metrics (endemic richness, endemic:cosmopolitan abundance, insectivorous cyprinid richness and abundance, and fluvial specialist richness) were all best predicted by single variable models with % urban land cover. However, endemic:cosmopolitan richness, cosmopolitan abundance, and lentic tolerant abundance were related to % forest cover in the 1-km stream reach, but only in streams that had <15% catchment urban land cover. In these cases, catchment urbanization overwhelmed the potential mitigating effects of riparian forests on stream fishes. Together, these results suggest that catchment land cover is an important driver of fish assemblages in urbanizing catchments, and riparian forests are important but not sufficient for protecting stream ecosystems from the impacts of high levels of urbanization.
Consistency of temporal and habitat-related differences among assemblages of fish in coastal lagoons
NASA Astrophysics Data System (ADS)
Gray, Charles A.; Rotherham, Douglas; Johnson, Daniel D.
2011-12-01
The consistency of habitat-related differences in coastal lagoon fish assemblages was assessed across different spatial and temporal scales. Multimesh gillnets were used to sample assemblages of fish on a monthly basis for 1-year in three habitats (shallow seagrass, shallow bare and deep substrata) at two locations (>1 km apart), in each of two coastal lagoons (approximately 500 km apart), in southeastern Australia. A total of 48 species was sampled with 34 species occurring in both lagoons and in all three habitats; species caught in only one lagoon or habitat occurred in low numbers. Ten species dominated assemblages and accounted for more than 83% of all individuals sampled. In both lagoons, assemblages in the deep habitat consistently differed to those in the shallow strata (regardless of habitat). Several species were caught more frequently or in larger numbers in the deep habitat. Assemblages in the two shallow habitats did not differ consistently and were dominated by the same species and sizes of fish, possibly due to habitat heterogeneity and the scale and method of sampling. Within each lagoon, very few between location differences in assemblages within each habitat were observed. Consistent differences in assemblages were detected between lagoons for the shallow bare and deep habitats, indicating there were some intrinsic differences in ichthyofauna between lagoons. Assemblages in spring differed to those in summer, which differed to those in winter for the shallow bare habitat in both lagoons, and the deep habitat in only one lagoon. Fish-habitat relationships are complex and differences in the fish fauna between habitats were often temporally inconsistent. This study highlights the need for greater testing of habitat relationships in space and time to assess the generality of observations and to identify the processes responsible for structuring assemblages.
NASA Astrophysics Data System (ADS)
Abesamis, Rene A.; Langlois, Tim; Birt, Matthew; Thillainath, Emma; Bucol, Abner A.; Arceo, Hazel O.; Russ, Garry R.
2018-03-01
Baseline ecological studies of mesophotic coral ecosystems are lacking in the equatorial Indo-West Pacific region where coral reefs are highly threatened by anthropogenic and climate-induced disturbances. Here, we used baited remote underwater video to describe benthic habitat and fish assemblage structure from 10 to 80 m depth at Apo Island, a well-managed marine protected area in the Philippines. We conducted surveys 2 yr after two storms (in 2011 and 2012) caused severe damage to shallow coral communities within the no-take marine reserve (NTMR) of Apo Island, which led to declines in fish populations that had built up over three decades. We found that hard coral cover was restricted to < 40 m deep in the storm-impacted NTMR and a nearby fished area not impacted by storms. Benthic cover at mesophotic depths (> 30 m) was dominated by sand/rubble and rock (dead coral) with low cover of soft corals, sponges and macroalgae. Storm damage appeared to have reached the deepest limit of the fringing reef (40 m) and reduced variability in benthic structure within the NTMR. Species richness and/or abundance of most trophic groups of fish declined with increasing depth regardless of storm damage. There were differences in taxonomic and trophic structure and degree of targeting by fisheries between shallow and mesophotic fish assemblages. Threatened shark species and a fish species previously unreported in the Philippines were recorded at mesophotic depths. Our findings provide a first glimpse of the benthic and fish assemblage structure of Philippine coral reef ecosystems across a wide depth gradient. This work also underscores how a combination of limited coral reef development at mesophotic depths close to shallow reefs and severe habitat loss caused by storms would result in minimal depth refuge for reef fish populations.
Differential Response of Fish Assemblages to Coral Reef-Based Seaweed Farming
Hehre, E. James; Meeuwig, J. J.
2015-01-01
As the global demand for seaweed-derived products drives the expansion of seaweed farming onto shallow coral ecosystems, the effects of farms on fish assemblages remain largely unexplored. Shallow coral reefs provide food and shelter for highly diverse fish assemblages but are increasingly modified by anthropogenic activities. We hypothesized that the introduction of seaweed farms into degraded shallow coral reefs had potential to generate ecological benefits for fish by adding structural complexity and a possible food source. We conducted 210 transects at 14 locations, with sampling stratified across seaweed farms and sites adjacent to and distant from farms. At a seascape scale, locations were classified by their level of exposure to human disturbance. We compared sites where (1) marine protected areas (MPAs) were established, (2) neither MPAs nor blast fishing was present (hence “unprotected”), and (3) blast fishing occurred. We observed 80,186 fish representing 148 species from 38 families. The negative effects of seaweed farms on fish assemblages appeared stronger in the absence of blast fishing and were strongest when MPAs were present, likely reflecting the positive influence of the MPAs on fish within them. Species differentiating fish assemblages with respect to seaweed farming and disturbance were typically small but also included two key target species. The propensity for seaweed farms to increase fish diversity, abundance, and biomass is limited and may reduce MPA benefits. We suggest that careful consideration be given to the placement of seaweed farms relative to MPAs. PMID:25822342
Differential response of fish assemblages to coral reef-based seaweed farming.
Hehre, E James; Meeuwig, J J
2015-01-01
As the global demand for seaweed-derived products drives the expansion of seaweed farming onto shallow coral ecosystems, the effects of farms on fish assemblages remain largely unexplored. Shallow coral reefs provide food and shelter for highly diverse fish assemblages but are increasingly modified by anthropogenic activities. We hypothesized that the introduction of seaweed farms into degraded shallow coral reefs had potential to generate ecological benefits for fish by adding structural complexity and a possible food source. We conducted 210 transects at 14 locations, with sampling stratified across seaweed farms and sites adjacent to and distant from farms. At a seascape scale, locations were classified by their level of exposure to human disturbance. We compared sites where (1) marine protected areas (MPAs) were established, (2) neither MPAs nor blast fishing was present (hence "unprotected"), and (3) blast fishing occurred. We observed 80,186 fish representing 148 species from 38 families. The negative effects of seaweed farms on fish assemblages appeared stronger in the absence of blast fishing and were strongest when MPAs were present, likely reflecting the positive influence of the MPAs on fish within them. Species differentiating fish assemblages with respect to seaweed farming and disturbance were typically small but also included two key target species. The propensity for seaweed farms to increase fish diversity, abundance, and biomass is limited and may reduce MPA benefits. We suggest that careful consideration be given to the placement of seaweed farms relative to MPAs.
NASA Astrophysics Data System (ADS)
Henriques, Sofia; Pais, Miguel Pessanha; Costa, Maria José; Cabral, Henrique Nogueira
2013-05-01
The present study analyzed the effects of seasonal variation on the stability of fish-based metrics and their capability to detect changes in fish assemblages, which is yet poorly understood despite the general idea that guilds are more resilient to natural variability than species abundances. Three zones subject to different levels of fishing pressure inside the Arrábida Marine Protected Area (MPA) were sampled seasonally. The results showed differences between warm (summer and autumn) and cold (winter and spring) seasons, with the autumn clearly standing out. In general, the values of the metrics density of juveniles, density of invertebrate feeders and density of omnivores increased in warm seasons, which can be attributed to differences in recruitment patterns, spawning migrations and feeding activity among seasons. The density of generalist/opportunistic individuals was sensitive to the effect of fishing, with higher values at zones with the lowest level of protection, while the density of individuals with high commercial value only responded to fishing in the autumn, due to a cumulative result of both juveniles and adults abundances during this season. Overall, this study showed that seasonal variability affects structural and functional features of the fish assemblage and that might influence the detection of changes as a result of anthropogenic pressures. The choice of a specific season, during warm sea conditions after the spawning period (July-October), seems to be more adequate to assess changes on rocky-reef fish assemblages.
Cheek, Brandon D.; Grabowski, Timothy B.; Bean, Preston T.; Groeschel, Jillian R.; Magnelia, Stephan J.
2016-01-01
Low-cost side-scan sonar proved to be a cost-effective means of acquiring information on the habitat availability of the entire river length and allowed the assessment of how a full suite of riverscape-level variables influenced local fish assemblage structure.
Historic changes in fish assemblage structure in midwestern nonwadeable rivers
Parks, Timothy P.; Quist, Michael C.; Pierce, Clay L.
2014-01-01
Historical change in fish assemblage structure was evaluated in the mainstems of the Des Moines, Iowa, Cedar, Wapsipinicon, and Maquoketa rivers, in Iowa. Fish occurrence data were compared in each river between historical and recent time periods to characterize temporal changes among 126 species distributions and assess spatiotemporal patterns in faunal similarity. A resampling procedure was used to estimate species occurrences in rivers during each assessment period and changes in species occurrence were summarized. Spatiotemporal shifts in species composition were analyzed at the river and river section scale using cluster analysis, pairwise Jaccard's dissimilarities, and analysis of multivariate beta dispersion. The majority of species exhibited either increases or declines in distribution in all rivers with the exception of several “unknown” or inconclusive trends exhibited by species in the Maquoketa River. Cluster analysis identified temporal patterns of similarity among fish assemblages in the Des Moines, Cedar, and Iowa rivers within the historical and recent assessment period indicating a significant change in species composition. Prominent declines of backwater species with phytophilic spawning strategies contributed to assemblage changes occurring across river systems.
Development of a multimetric index for fish assemblages in a cold tailwater in Tennessee
Ivasauskas, Tomas J.; Bettoli, Phillip William
2014-01-01
Tailwaters downstream of hypolimnetic-release hydropeaking dams exhibit a unique combination of stressors that affects the structure and function of resident fish assemblages. We developed a statistically and biologically defensible multimetric index of fish assemblages for the Caney Fork River below Center Hill Dam, Tennessee. Fish assemblages were sampled at five sites using boat-mounted and backpack electrofishing gear from fall 2009 through summer 2011. A multivariate statistical approach was used to select metrics that best reflected the downstream gradients in abiotic variables. Five metrics derived from boat electrofishing samples and four metrics derived from backpack electrofishing samples were selected for incorporation into the index based on their high correlation with environmental data. The nine metrics demonstrated predictable patterns of increase or decrease with increasing distance downstream of the dam. The multimetric index generally exhibited a pattern of increasing scores with increasing distance from the dam, indicating a downstream recovery gradient in fish assemblage composition. The index can be used to monitor anticipated changes in the fish communities of the Caney Fork River when repairs to Center Hill Dam are completed later this decade, resulting in altered dam operations.
Coastal urban lighting has ecological consequences for multiple trophic levels under the sea.
Bolton, D; Mayer-Pinto, M; Clark, G F; Dafforn, K A; Brassil, W A; Becker, A; Johnston, E L
2017-01-15
Urban land and seascapes are increasingly exposed to artificial lighting at night (ALAN), which is a significant source of light pollution. A broad range of ecological effects are associated with ALAN, but the changes to ecological processes remain largely unstudied. Predation is a key ecological process that structures assemblages and responds to natural cycles of light and dark. We investigated the effect of ALAN on fish predatory behaviour, and sessile invertebrate prey assemblages. Over 21days fish and sessile assemblages were exposed to 3 light treatments (Day, Night and ALAN). An array of LED spotlights was installed under a wharf to create the ALAN treatments. We used GoPro cameras to film during the day and ALAN treatments, and a Dual frequency IDentification SONar (DIDSON) to film during the night treatments. Fish were most abundant during unlit nights, but were also relatively sedentary. Predatory behaviour was greatest during the day and under ALAN than at night, suggesting that fish are using structures for non-feeding purposes (e.g. shelter) at night, but artificial light dramatically increases their predatory behaviour. Altered predator behaviour corresponded with structural changes to sessile prey assemblages among the experimental lighting treatments. We demonstrate the direct effects of artificial lighting on fish behaviour and the concomitant indirect effects on sessile assemblage structure. Current and future projected use of artificial lights has the potential to significantly affect predator-prey interactions in marine systems by altering habitat use for both predators and prey. However, developments in lighting technology are a promising avenue for mitigation. This is among the first empirical evidence from the marine system on how ALAN can directly alter predation, a fundamental ecosystem process, and have indirect trophic consequences. Copyright © 2016 Elsevier B.V. All rights reserved.
Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean
NASA Astrophysics Data System (ADS)
Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.
2017-05-01
Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8-24.4 °C) and dissolved oxygen (2.2-9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish biogeography.
Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean
Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.
2017-01-01
Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8–24.4 °C) and dissolved oxygen (2.2–9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish biogeography.
Barko, V.A.; Herzog, D.P.; O'Connell, M. T.
2006-01-01
We examined data collected on fish assemblage structure among three differing floodplain types (broad, moderate, and narrow) during the 1993 flood in the unimpounded reach of the upper Mississippi River. This 500 year flood event provided a unique opportunity to investigate fish-floodplain function because the main river channel is otherwise typically disjunct from approximately 82% of its floodplain by an extensive levee system. Fishes were sampled during three separate periods, and 42 species of adult and young-of-the-year (YOY) fishes were captured. Analysis of similarity (ANOSIM) revealed a significant and distinguishable difference between both adult and YOY assemblage structure among the three floodplain types. Analysis of variance revealed that Secchi transparency, turbidity, water velocity, and dissolved oxygen were significantly different among the floodplain types. However, only depth of gear deployment and Secchi transparency were significantly correlated with adult assemblage structure. None of these variables were significantly correlated with YOY assemblage structure. The numerically abundant families (adult and YOY catches combined) on the floodplain included Centrarchidae, Ictularidae, and Cyprinidae. Both native and non-native fishes were captured on the floodplain, and several of the numerically abundant species that were captured on the floodplain peaked in catch-per-unit-effort 1-3 years after the 1993 flood event. This suggests that some species may have used flooded terrestrial habitat for spawning, feeding, or both. The findings from our study provide much needed insight into fish-floodplain function in a temperate, channelized river system and suggest that lateral connectivity of the main river channel to less degraded reaches of its floodplain should become a management priority not only to maintain faunal biodiversity but also potentially reduce the impacts of non-native species in large river systems.
Evidence for habitat-driven segregation of an estuarine fish assemblage.
Loureiro, S N; Reis-Filho, J A; Giarrizzo, T
2016-07-01
This study examined the spatio-temporal variability in fish assemblage structure and composition following monthly sampling (August 2006 to July 2007). Three estuarine zones (upper, middle and lower) of the unvegetated intertidal and subtidal channel habitats located in the Marapanim Estuary were investigated. In each of these zones, salinity, organic matter and sediment types were measured to assess any correlation between habitat types and the fish fauna. A total of 41 496 fishes, belonging to 76 species and 29 families, was recorded. Recurring changes in both species composition and trophic structure were attributed to seasonal variations, while habitat type played a more permanent role in modifying the structure of fish assemblages. Zooplanktivores (e.g. Lycengraulis grossidens) and herbivores (e.g. Cetengraulis edentulus) used the intertidal habitat almost exclusively and were associated with salinity and substratum composition (gravel, silt and mud). In contrast, benthophages (e.g. Cathorops spixii) and benthophage-ichthyophages (e.g. Cynoscion leiarchus) were primarily associated with the subtidal habitat throughout the estuary and were highly related to the presence of sandy substrata. This study highlighted the intricate roles that local factors (such as habitat connectivity) may have on the distribution of fishes at the assemblage level. As such, incorporating habitat sharing or segregation between species should be viewed as essential for any comparisons of estuaries over large geographic scales, and in particular for conservation planning and management measures. © 2016 The Fisheries Society of the British Isles.
Ichthyoplankton assemblages of coastal west-central Lake Erie and associated habitat characteristics
McKenna, J.E.; Hunter, R. Douglas; Fabrizio, M.C.; Savino, J.F.; Todd, T.N.; Bur, M.
2008-01-01
Early life stage survival often determines fish cohort strength and that survival is affected by habitat conditions. The structure and dynamics of ichthyoplankton assemblages can tell us much about biodiversity and fish population dynamics, but are poorly understood in nearshore areas of the Great Lakes, where most spawning and nursery habitats exist. Ichthyoplankton samples were collected with a neuston net in waters 2-13 m deep weekly or biweekly from mid-April through August, during 3 years (2000-2002) as part of a study of fish assemblages in west-central Lake Erie. A suite of abiotic variables was simultaneously measured to characterize habitat. Cluster and ordination analyses revealed several distinct ichthyoplankton assemblages that changed seasonally. A lake whitefish (Coregonus clupeaformis) dominated assemblage appeared first in April. In May, assemblages were dominated by several percid species. Summer assemblages were overwhelmingly dominated by emerald shiner (Notropis atherinoides), with large gizzard shad (Dorosoma cepedianum) and alewife (Alosa pseudoharengus) components. This seasonal trend in species assemblages was also associated with increasing temperature and water clarity. Water depth and drift processes may also play a role in structuring these assemblages. The most common and widely distributed assemblages were not associated with substratum type, which we characterized as either hard or soft. The timing of hatch and larval growth separated the major groups in time and may have adaptive significance for the members of each major assemblage. The quality and locations (with reference to lake circulation) of spawning and nursery grounds may determine larval success and affect year class strength.
Biological structure and dynamics of fish assemblages in tributaries of eastern Lake Ontario
McKenna, James E.; Munawar, M.
2003-01-01
Interest in effective management of Great Lakes natural resources and restoration of native populations has stimulated interest in the conditions and ecological role of tributaries in the Great Lakes ecosystem. Rivers of Lake Ontario's eastern basin provide an excellent opportunity to examine important tributaries and their relationship to Lake Ontario. This paper reports on the results of an investigation of fish assemblage structure in lower reaches of the Salmon and Oswego Rivers and at their interfaces with Lake Ontario. These two systems represent conditions near the end points on a continuum from highly disturbed to pristine. They are also of great interest to resource managers for their important fisheries and other economic values. The objective was to identify distinct fish assemblages within these systems and relate their characteristics to biotic and abiotic conditions in an attempt to determine factors responsible for structuring and maintaining those species assemblages. This information is intended to provide baseline information for monitoring the status of these rivers and coastal systems and to aid in the development of models of ecological health.
NASA Astrophysics Data System (ADS)
Castellanos-Galindo, G. A.; Krumme, U.
2014-08-01
Intertidal fish assemblages are thought to respond to tidal and diel rhythms although the assumption that these patterns are stable over long time scales (>1 year) is largely untested. Testing the validity of this assumption is necessary to assess whether short-term temporal patterns, once established, can be extrapolated over time and give a better understanding of the temporal dynamics of fish assemblages in coastal habitats. Here, we compare the fish assemblage structure from two intertidal mangrove creeks in North Brazil (Bragança Peninsula, Caeté estuary) sampled with the same sampling methodology (block nets), effort (two lunar cycles) and design (accounting for the combination of tidal and diel cycle) in the rainy seasons of 1999 and 2012 to evaluate the persistence, stability and recurrence of short-term patterns in the fish community organization. The interaction of tidal and diel cycles (inundations at spring tide-night, spring tide-day, neap tide-night, neap tide-day), found to be stable after 13 years, resulted in recurrent and stable intertidal mangrove fish assemblage compositions. The intertidal mangrove creek fish assemblage consisted of a persistent number of dominant species (seven). However, there were notable changes in fish catch mass, abundance and species dominance between 1999 and 2012. The most severe drought in North Brazil in 30 years, linked to lower precipitation and river runoff in the rainy season of 2012, may have resulted in (1) lower abundance of small juveniles of several dominant species in this assemblage (especially Ariidae - Cathorops agassizii and Sciades herzbergii) and (2) increased dominance of large-sized specimens of the tetraodontid Colomesus psittacus. Our findings highlight: (1) the overriding importance and stability of the interactive pulse of the tidal and diel cycles in determining short-term temporal patterns in intertidal mangrove fish assemblages in neotropical macrotidal estuaries despite the occurrence of extreme events (i.e. major decrease in rainfall) and (2) the large-scale influence that these extreme events can exert on recruitment processes in tropical estuarine fish assemblages.
Counihan, Timothy D.; Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.
2018-01-01
Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers.
Waite, Ian R.; Casper, Andrew F.; Ward, David L.; Sauer, Jennifer S.; Irwin, Elise R.; Chapman, Colin G.; Ickes, Brian S.; Paukert, Craig P.; Kosovich, John J.; Bayer, Jennifer M.
2018-01-01
Understanding trends in the diverse resources provided by large rivers will help balance tradeoffs among stakeholders and inform strategies to mitigate the effects of landscape scale stressors such as climate change and invasive species. Absent a cohesive coordinated effort to assess trends in important large river resources, a logical starting point is to assess our ability to draw inferences from existing efforts. In this paper, we use a common analytical framework to analyze data from five disparate fish monitoring programs to better understand the nature of spatial and temporal trends in large river fish assemblages. We evaluated data from programs that monitor fishes in the Colorado, Columbia, Illinois, Mississippi, and Tallapoosa rivers using non-metric dimensional scaling ordinations and associated tests to evaluate trends in fish assemblage structure and native fish biodiversity. Our results indicate that fish assemblages exhibited significant spatial and temporal trends in all five of the rivers. We also document native species diversity trends that were variable within and between rivers and generally more evident in rivers with higher species richness and programs of longer duration. We discuss shared and basin-specific landscape level stressors. Having a basic understanding of the nature and extent of trends in fish assemblages is a necessary first step towards understanding factors affecting biodiversity and fisheries in large rivers. PMID:29364953
Water quality and fish dynamics in forested wetlands associated with an oxbow lake
Andrews, Caroline S.; Miranda, Leandro E.; Kroger, Robert
2015-01-01
Forested wetlands represent some of the most distinct environments in the Lower Mississippi Alluvial Valley. Depending on season, water in forested wetlands can be warm, stagnant, and oxygen-depleted, yet may support high fish diversity. Fish assemblages in forested wetlands are not well studied because of difficulties in sampling heavily structured environments. During the April–July period, we surveyed and compared the water quality and assemblages of small fish in a margin wetland (forested fringe along a lake shore), contiguous wetland (forested wetland adjacent to a lake), and the open water of an oxbow lake. Dissolved-oxygen levels measured hourly 0.5 m below the surface were higher in the open water than in either of the forested wetlands. Despite reduced water quality, fish-species richness and catch rates estimated with light traps were greater in the forested wetlands than in the open water. The forested wetlands supported large numbers of fish and unique fish assemblages that included some rare species, likely because of their structural complexity. Programs developed to refine agricultural practices, preserve riparian zones, and restore lakes should include guidance to protect and reestablish forested wetlands.
Large-Scale Assessment of Mediterranean Marine Protected Areas Effects on Fish Assemblages
Guidetti, Paolo; Baiata, Pasquale; Ballesteros, Enric; Di Franco, Antonio; Hereu, Bernat; Macpherson, Enrique; Micheli, Fiorenza; Pais, Antonio; Panzalis, Pieraugusto; Rosenberg, Andrew A.; Zabala, Mikel; Sala, Enric
2014-01-01
Marine protected areas (MPAs) were acknowledged globally as effective tools to mitigate the threats to oceans caused by fishing. Several studies assessed the effectiveness of individual MPAs in protecting fish assemblages, but regional assessments of multiple MPAs are scarce. Moreover, empirical evidence on the role of MPAs in contrasting the propagation of non-indigenous-species (NIS) and thermophilic species (ThS) is missing. We simultaneously investigated here the role of MPAs in reversing the effects of overfishing and in limiting the spread of NIS and ThS. The Mediterranean Sea was selected as study area as it is a region where 1) MPAs are numerous, 2) fishing has affected species and ecosystems, and 3) the arrival of NIS and the northward expansion of ThS took place. Fish surveys were done in well-enforced no-take MPAs (HP), partially-protected MPAs (IP) and fished areas (F) at 30 locations across the Mediterranean. Significantly higher fish biomass was found in HP compared to IP MPAs and F. Along a recovery trajectory from F to HP MPAs, IP were similar to F, showing that just well enforced MPAs triggers an effective recovery. Within HP MPAs, trophic structure of fish assemblages resembled a top-heavy biomass pyramid. Although the functional structure of fish assemblages was consistent among HP MPAs, species driving the recovery in HP MPAs differed among locations: this suggests that the recovery trajectories in HP MPAs are likely to be functionally similar (i.e., represented by predictable changes in trophic groups, especially fish predators), but the specific composition of the resulting assemblages may depend on local conditions. Our study did not show any effect of MPAs on NIS and ThS. These results may help provide more robust expectations, at proper regional scale, about the effects of new MPAs that may be established in the Mediterranean Sea and other ecoregions worldwide. PMID:24740479
Large-scale assessment of Mediterranean marine protected areas effects on fish assemblages.
Guidetti, Paolo; Baiata, Pasquale; Ballesteros, Enric; Di Franco, Antonio; Hereu, Bernat; Macpherson, Enrique; Micheli, Fiorenza; Pais, Antonio; Panzalis, Pieraugusto; Rosenberg, Andrew A; Zabala, Mikel; Sala, Enric
2014-01-01
Marine protected areas (MPAs) were acknowledged globally as effective tools to mitigate the threats to oceans caused by fishing. Several studies assessed the effectiveness of individual MPAs in protecting fish assemblages, but regional assessments of multiple MPAs are scarce. Moreover, empirical evidence on the role of MPAs in contrasting the propagation of non-indigenous-species (NIS) and thermophilic species (ThS) is missing. We simultaneously investigated here the role of MPAs in reversing the effects of overfishing and in limiting the spread of NIS and ThS. The Mediterranean Sea was selected as study area as it is a region where 1) MPAs are numerous, 2) fishing has affected species and ecosystems, and 3) the arrival of NIS and the northward expansion of ThS took place. Fish surveys were done in well-enforced no-take MPAs (HP), partially-protected MPAs (IP) and fished areas (F) at 30 locations across the Mediterranean. Significantly higher fish biomass was found in HP compared to IP MPAs and F. Along a recovery trajectory from F to HP MPAs, IP were similar to F, showing that just well enforced MPAs triggers an effective recovery. Within HP MPAs, trophic structure of fish assemblages resembled a top-heavy biomass pyramid. Although the functional structure of fish assemblages was consistent among HP MPAs, species driving the recovery in HP MPAs differed among locations: this suggests that the recovery trajectories in HP MPAs are likely to be functionally similar (i.e., represented by predictable changes in trophic groups, especially fish predators), but the specific composition of the resulting assemblages may depend on local conditions. Our study did not show any effect of MPAs on NIS and ThS. These results may help provide more robust expectations, at proper regional scale, about the effects of new MPAs that may be established in the Mediterranean Sea and other ecoregions worldwide.
McGarvey, Daniel J.; Falke, Jeffrey A.; Li, Hiram W.; Li, Judith; Hauer, F. Richard; Lamberti, G.A.
2017-01-01
Methods to sample fishes in stream ecosystems and to analyze the raw data, focusing primarily on assemblage-level (all fish species combined) analyses, are presented in this chapter. We begin with guidance on sample site selection, permitting for fish collection, and information-gathering steps to be completed prior to conducting fieldwork. Basic sampling methods (visual surveying, electrofishing, and seining) are presented with specific instructions for estimating population sizes via visual, capture-recapture, and depletion surveys, in addition to new guidance on environmental DNA (eDNA) methods. Steps to process fish specimens in the field including the use of anesthesia and preservation of whole specimens or tissue samples (for genetic or stable isotope analysis) are also presented. Data analysis methods include characterization of size-structure within populations, estimation of species richness and diversity, and application of fish functional traits. We conclude with three advanced topics in assemblage-level analysis: multidimensional scaling (MDS), ecological networks, and loop analysis.
Late summer zoogeography of the northern Bering and Chukchi seas
NASA Astrophysics Data System (ADS)
Sigler, Michael F.; Mueter, Franz J.; Bluhm, Bodil A.; Busby, Morgan S.; Cokelet, Edward D.; Danielson, Seth L.; Robertis, Alex De; Eisner, Lisa B.; Farley, Edward V.; Iken, Katrin; Kuletz, Kathy J.; Lauth, Robert R.; Logerwell, Elizabeth A.; Pinchuk, Alexei I.
2017-01-01
Ocean currents, water masses, and seasonal sea ice formation contribute to determining relationships among the biota of the Bering and Chukchi seas. The Bering Sea communicates with the Chukchi Sea via northward advection of water, nutrients, organic matter, and plankton through Bering Strait. We used data from concurrent surveys of zooplankton, pelagic fishes and jellyfish, epibenthic fishes and invertebrates, and seabirds to identify faunal distribution patterns and environmental factors that are related to these faunal distributions within the US portions of the Chukchi Sea shelf and Bering Sea shelf north of Nunivak Island. Regional differences in late summer (August-September) distributions of biota largely reflected the underlying hydrography. Depth, temperature, salinity, stratification, and chlorophyll a, but less so sediment-related or nutrient-related factors, were related to the distributions of the assemblages (zooplankton: depth, salinity, stratification; pelagic fishes and jellyfish: depth, stratification, chlorophyll a; epibenthic fishes and invertebrates: depth, temperature, salinity; seabirds: temperature, salinity, stratification). These six environmental factors that most influenced distributions of zooplankton, pelagic fishes/jellyfish, epibenthic fishes and invertebrate, and seabird assemblages likely can be simplified to three factors reflecting bottom depth, water mass, and their stratification and productivity (which are tightly linked in the study region). The assemblages were principally structured from nearshore to offshore and from south to north. The nearshore to offshore contrast usually was stronger in the south, where the enormous discharge of the Yukon River is more apparent and extends farther offshore, influencing zooplankton, pelagic fish/jellyfish, and seabird assemblages. Some assemblages overlapped spatially (e.g., seabird and zooplankton), indicating shared influential environmental factors or trophic linkages among assemblages. The gradients in assemblage composition were gradual for epibenthic taxa, abrupt for zooplankton taxa, and intermediate for pelagic fish/jellyfish and seabird taxa, implying that zooplankton assemblage structure is most strongly tied to water mass, epibenthic least, with the other two taxa intermediates. Three communities (i.e., cross-assemblage groupings) emerged based on maps of ordination axes and core use areas by taxa; one associated with Alaska Coastal Water (warmer, fresher, nutrient depauperate), second associated with Chirikov Basin and the southern Chukchi Sea (colder, saltier, nutrient rich), and third associated with the northern Chukchi shelf (colder and saltier but not as nutrient rich). Gradients in species composition occurred both within and between these communities. The Chirikov Basin/southern Chukchi Sea community was characterized by distinct zooplankton and seabird taxa, but was not strongly associated with distinct pelagic or epibenthic fish and invertebrate taxa. Although comprehensive data were only available for a single year and annual variation may affect the generality of our results, our comprehensive ecosystem survey approach yielded new insights into the ecological relationships (specifically, gradients in assemblage composition and identification of communities) of this Arctic region.
Mesopredator trophodynamics on thermally stressed coral reefs
NASA Astrophysics Data System (ADS)
Hempson, Tessa N.; Graham, Nicholas A. J.; MacNeil, M. Aaron; Hoey, Andrew S.; Almany, Glenn R.
2018-03-01
Ecosystems are becoming vastly modified through disturbance. In coral reef ecosystems, the differential susceptibility of coral taxa to climate-driven bleaching is predicted to shift coral assemblages towards reefs with an increased relative abundance of taxa with high thermal tolerance. Many thermally tolerant coral species are characterised by low structural complexity, with reduced habitat niche space for the small-bodied coral reef fishes on which piscivorous mesopredators feed. This study used a patch reef array to investigate the potential impacts of climate-driven shifts in coral assemblages on the trophodynamics of reef mesopredators and their prey communities. The `tolerant' reef treatment consisted only of coral taxa of low susceptibility to bleaching, while `vulnerable' reefs included species of moderate to high thermal vulnerability. `Vulnerable' reefs had higher structural complexity, and the fish assemblages that established on these reefs over 18 months had higher species diversity, abundance and biomass than those on `tolerant' reefs. Fish assemblages on `tolerant' reefs were also more strongly influenced by the introduction of a mesopredator ( Cephalopholis boenak). Mesopredators on `tolerant' reefs had lower lipid content in their muscle tissue by the end of the 6-week experiment. Such sublethal energetic costs can compromise growth, fecundity, and survivorship, resulting in unexpected population declines in long-lived mesopredators. This study provides valuable insight into the altered trophodynamics of future coral reef ecosystems, highlighting the potentially increased vulnerability of reef fish assemblages to predation as reef structure declines, and the cost of changing prey availability on mesopredator condition.
Longitudinal differences in habitat complexity and fish assemblage structure of a great plains river
Eitzmann, J.L.; Paukert, C.P.
2010-01-01
We investigated the spatial variation in the Kansas River (USA) fish assemblage to determine how fish community structure changes with habitat complexity in a large river. Fishes were collected at ten sites throughout the Kansas River for assessing assemblage structure in summer 2007. Aerial imagery indicated riparian land use within 200 m from the river edge was dominated by agriculture in the upper river reaches (>35) and tended to increase in urban land use in the lower reaches (>58). Instream habitat complexity (number of braided channels, islands) also decreased with increased urban area (<25). Canonical correspondence analysis indicated that species that prefer high-velocity flows and sandy substrate (e.g., blue sucker Cycleptus elongatus and shovelnose sturgeon Scaphirhynchus platorynchus) were associated with the upper river reaches. Abundance of omnivorous and planktivorous fish species were also higher in the lower river. The presence of fluvial dependent and fluvial specialist species was associated with sites with higher water flows, more sand bars, and log jams. Our results suggest that conserving intolerant, native species in the Kansas River may require maintaining suitable habitat for these species and restoration of impacted areas of the river.
Chabanet, Pascale; Guillemot, Nicolas; Kulbicki, Michel; Vigliola, Laurent; Sarramegna, Sébastien
2010-01-01
From 2008 onwards, the coral reefs of Koné (New Caledonia) will be subjected to a major anthropogenic perturbation linked to development of a nickel mine. Dredging and sediment runoff may directly damage the reef environment whereas job creation should generate a large demographic increase and thus a rise in fishing activities. This study analyzed reef fish assemblages between 2002 and 2007 with a focus on spatio-temporal variability. Our results indicate strong spatial structure of fish assemblages through time. Total species richness, density and biomass were highly variable between years but temporal variations were consistent among biotopes. A remarkable spatio-temporal stability was observed for trophic (mean 4.6% piscivores, 53.1% carnivores, 30.8% herbivores and 11.4% planktivores) and home range structures of species abundance contributions. These results are discussed and compared with others sites of the South Pacific. For monitoring perspectives, some indicators related to expected disturbances are proposed. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Smith, Joshua G.; Lindholm, James
2016-08-01
The geographic distributions of many coastal marine fish assemblages are strongly driven by habitat features, particularly among demersal fishes that live along the seafloor. Ecologists have long recognized the importance of characterizing fish habitat associations, especially where spatial management is under consideration. However, little is known about fish distributions and habitat suitability in unique demersal habitats such as submarine canyons. The active continental margin of the California coast is cut by eight submarine canyons, several of which extend from the shore to the deep abyssal plain. We sampled the demersal fish assemblages in two of those canyons: (1) the Scripps submarine canyon in the San-Diego-Scripps State Marine Conservation Area (SMCA) and (2) the La Jolla canyon in the Matlahuayl State Marine Reserve (SMR) to gain insight into both the distributions and habitat associations of demersal fishes in canyons. A remotely operated vehicle was used to conduct 21 vertically oriented transects along the canyon walls in depths ranging from 20 to 300 m. Species composition was assessed in three depth-stratified zones (100 m per zone) along the canyon walls. Species richness, abundance, and attributes of the surrounding canyon habitat structure (slope and benthic terrain ruggedness) were quantified. Three distinct assemblage groupings were identified, which comprised 35 species of demersal fishes from 17 families. Among all factors analyzed in this study, depth, slope, and ruggedness were strong explanatory variables of patterns of species richness and abundance; however, the relationship between depth and assemblage structure was non-linear. The greatest number of species was observed in the mid depth-stratified zone. These trends suggest that variation in canyon dynamics across depth strata may facilitate distinct assemblage groupings of demersal fishes, which can in turn be used to better manage these unique habitats.
Intra-reach headwater fish assemblage structure
McKenna, James E.
2017-01-01
Large-scale conservation efforts can take advantage of modern large databases and regional modeling and assessment methods. However, these broad-scale efforts often assume uniform average habitat conditions and/or species assemblages within stream reaches.
González-Sansón, Gaspar; Aguilar, Consuelo; Hernández, Ivet; Cabrera, Yureidy; Suarez-Montes, Noelis; Bretos, Fernando; Guggenheim, David
2009-09-01
The main goal of the study was to obtain field data to build a baseline of fish assemblage composition that can be used comparatively for future analyses of the impact of human actions in the region. A basic network of 68 sampling stations was defined for the entire region (4,050 km2). Fish assemblage species and size composition was estimated using visual census methods at three different spatial scales: a) entire region, b) inside the main reef area and c) along a human impact coastal gradient. Multivariate numerical analyses revealed habitat type as the main factor inducing spatial variability of fish community composition, while the level of human impact appears to play the main role in fish assemblage composition changes along the coast. A trend of decreasing fish size toward the east supports the theory of more severe human impact due to overfishing and higher urban pollution in that direction. This is the first detailed study along the northwest coast of Cuba that focuses on fish community structure and the natural and human-induced variations at different spatial scales for the entire NW shelf. This research also provides input for a more comprehensive understanding of coastal marine fish communities' status in the Gulf of Mexico basin.
Protocol for Monitoring Fish Assemblages in Pacific Northwest National Parks
Brenkman, Samuel J.; Connolly, Patrick J.
2008-01-01
Rivers and streams that drain from Olympic, Mount Rainier, and North Cascades National Parks are among the most protected corridors in the lower 48 States, and represent some of the largest tracts of contiguous, undisturbed habitat throughout the range of several key fish species of the Pacific Northwest. These watersheds are of high regional importance as freshwater habitat sanctuaries for native fish, where habitat conditions are characterized as having little to no disturbance from development, channelization, impervious surfaces, roads, diversions, or hydroelectric projects. Fishery resources are of high ecological and cultural importance in Pacific Northwest National Parks, and significantly contribute to economically important recreational, commercial, and tribal fisheries. This protocol describes procedures to monitor trends in fish assemblages, fish abundance, and water temperature in eight rivers and five wadeable streams in Olympic National Park during summer months, and is based on 4 years of field testing. Fish assemblages link freshwater, marine, and terrestrial ecosystems. They also serve as focal resources of national parks and are excellent indicators of ecological conditions of rivers and streams. Despite the vital importance of native anadromous and resident fish populations, there is no existing monitoring program for fish assemblages in the North Coast and Cascades Network. Specific monitoring objectives of this protocol are to determine seasonal and annual trends in: (1) fish species composition, (2) timing of migration of adult fish, (3) relative abundance, (4) age and size structure, (5) extent of non-native and hatchery fish, and (6) water temperature. To detect seasonal and annual trends in fish assemblages in reference sites, we rely on repeated and consistent annual sampling at each monitoring site. The general rationale for the repeated sampling of reference sites is to ensure that we account for the high interannual variability in fish movements and abundances in rivers. One underlying assumption is that the monitoring program is designed in perpetuity, and consequently our capability to detect trends substantially increases with time. The protocol describes sampling designs, methods, training procedures, safety considerations, data management, data analysis, and reporting. The allocation of sampling effort represents a balance between ecological considerations, a sound monitoring approach, and practical limitations caused by logistical constraints and a limited annual budget of $55,000. The widespread declines of native fish species in western North America highlights the importance and urgency of understanding trends in fish assemblages from undisturbed habitats. Seasonal and annual trends in fish assemblages will provide insights at the individual, population, and assemblage level. This protocol will allow managers to detect increases and decreases in abundance of priority management species, and occurrence of non-native, hatchery, and federally listed fish. The detection of trends in fish assemblages will allow for specific management actions that may include: implementation of more appropriate fishing regulations, evaluation of existing hatchery releases, control of non-native fish species, and prioritization of habitat restoration projects. Dissemination and communication of scientific findings on North Coast and Cascades Network fish assemblages will be a core product of this protocol, which will have much relevance to decision makers, park visitors, researchers, and educators.
Demersal and larval fish assemblages in the Chukchi Sea
NASA Astrophysics Data System (ADS)
Norcross, Brenda L.; Holladay, Brenda A.; Busby, Morgan S.; Mier, Kathryn L.
2010-01-01
A multidisciplinary research cruise was conducted in the Chukchi Sea in summer 2004 during which we investigated assemblages of small demersal fishes and ichthyoplankton and the water masses associated with these assemblages. This study establishes a baseline of 30 demersal fish and 25 ichthyoplankton taxa in US and Russian waters of the Chukchi Sea. Presence/absence of small demersal fish clustered into four assemblages: Coastal Fishes, Western Chukchi Fishes, South Central Chukchi Fishes, and North Central Chukchi Fishes. Habitats occupied by small demersal fishes were characterized by sediment type, bottom salinity, and bottom temperature. Abundance of ichthyoplankton grouped into three assemblages with geographical extent similar to that of the bottom assemblages, except that there was a single assemblage for Central Chukchi Fishes. Water-column temperature and salinity characterized ichthyoplankton habitats. Three water masses, Alaska Coastal Water, Bering Sea Water, and Winter Water, were identified from both bottom and depth-averaged water-column temperature and salinity. A fourth water mass, Resident Chukchi Water, was identified only in the bottom water. The water mass and habitat characteristics with which demersal and larval fish assemblages were associated create a baseline to measure anticipated effects of climate change that are expected to be most severe at high latitudes. Monitoring fish assemblages could be a tool for assessing the effects of climate change. Climate-induced changes in distributions of species would result in a restructuring of fish assemblages in the Chukchi Sea.
Community structure of soft sediment pool fishes in Moreton Bay, Australia.
Chargulaf, C A; Townsend, K A; Tibbetts, I R
2011-02-01
A survey of soft sediment tide pools was conducted to assess the occupation and assemblage of fishes on three different intertidal shores in Moreton Bay, Australia, between January and December 2009. Tide-pool volume ranged from 0· 30 to 29· 75 l and varied significantly between months and sites. A total of 1364 individuals representing 15 species and nine families of fishes were observed. At Dunwich, fish assemblages were dominated by the sand goby Favonigobius lentiginosus (89%) and whiting, Sillago spp. (10%). At Manly, the gobies Favonigobius exquisitus (37%), Pseudogobius sp. (31%) and the blenny Omobranchus punctatus (19%) dominated the shores while at Godwin Beach, F. lentiginosus (15%), F. exquisitus (45%) and Sillago spp. (25%) were the most abundant species. The mean ±s.e. density of fishes ranged from 0· 29 ± 0· 13 to 5· 04 ± 1· 74 fishes l(-1) and abundance of fish correlated with pool volume. Juveniles (75%) dominated assemblages suggesting that soft sediment pools may act as nurseries. The persistent and recurrent fish assemblages found in soft sediment tide pools in Moreton Bay suggest that these shores are behaving more like a tropical than a temperate climate shore, as there was no significant difference of fish abundances between seasons. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Mosepele, K.; Mosepele, B.; Bokhutlo, T.; Amutenya, K.
The species assemblage and community structure of four lagoons was assessed through time series data collected between 2001 and 2005 in the Okavango Delta. The main aim of this study was to evaluate the importance of lagoons as fish habitats in the Delta. Therefore, this study assessed the importance of these habitats through determining fish species diversity, composition, relative abundance, and community structure between the lagoons. Forty six species belonging to 11 families and five orders were collected over the study period. Main results showed that Cichlidae was the most important family and had the highest species richness in the lagoons. Significant differences ( p < 0.05) were observed in species richness, faunal composition, and diversity among some of the lagoons. Moreover, there were also variations in species composition, and also significant differences in mean length and weight of some selected fish species in the four lagoons. This study showed that lagoons are important repositories of food fish to local communities. Moreover, a management of the fish stocks based on restricting fishing in some lagoons as protected areas is not feasible because of these significant differences in species assemblages between lagoons. Furthermore, lagoons are subject to multiple where most of the lodges are constructed, which makes subsequently makes them vulnerable to pollution. Therefore, the integrity of lagoon habitats needs to be maintained so that their ecosystem functioning (i.e. fish repositories) is maintained.
Influence of habitat structure on fish assemblage of an artificial reef in southern Brazil.
Hackradt, Carlos Werner; Félix-Hackradt, Fabiana Cézar; García-Charton, José Antonio
2011-12-01
Habitat complexity strongly influences reef fish community composition. An understanding of the underlying reasons for this relationship is important for evaluating the suitability of artificial reef (AR) habitats as a marine resource management tool. We studied the influence of AR habitat structure on fish assemblage composition off the southern coast of Brazil. We found that reef blocks with greater area and number of holes possessed the greatest fish species richness and abundance. Reef blocks with greater complexity had higher abundance of almost 30% of fish species present. Natural reef (NR) and AR were different in their fish species composition, trophic structure and categories of water column occupancy by fish (spatial categories). Although NR was more diverse and harboured more trophic levels, AR presented the higher abundances and the presence of distinct fish species that underlined their importance at a regional scale. The greater availability of sheltering habitat where hard substrate is scarce, together with their frequent use by economically important species, make AR a useful tool for coastal management when certain ecological conditions are met. Copyright © 2011 Elsevier Ltd. All rights reserved.
Diversity and composition of estuarine and lagoonal fish assemblages of Socotra Island, Yemen.
Lavergne, E; Zajonz, U; Krupp, F; Naseeb, F; Aideed, M S
2016-05-01
Estuarine and lagoonal surveys of Socotra Island and selected sites on the Hadhramout coast of Yemen were conducted with the objective of documenting and analysing fish diversity and assemblage structure. A total of 74 species in 35 families were recorded, among which 65 species in 32 families were from Socotra and 20 species in 17 families were from mainland Yemen. Twenty-one species represent new faunal records for Socotra. Including historic records re-examined in this study, the total fish species richness of estuaries and lagoons of Socotra Island reaches 76, which is relatively high compared to species inventories of well-researched coastal estuaries in southern Africa. Five species dominate the occurrence and abundance frequencies: Terapon jarbua, Hyporhamphus sindensis, Aphanius dispar, Ambassis gymnocephala and Chelon macrolepis. Rarefaction and extrapolation analyses suggest that the actual number of fish species inhabiting some of those estuaries might be higher than the one observed. Thus, additional sampling at specific sites should be conducted to record other less conspicuous species. Ordination and multivariate analyses identified four main distinct assemblage clusters. Two groups are geographically well structured and represent northern Socotra and mainland Yemen, respectively. The other two assemblage groups tend to be determined to a greater extent by the synchrony between physical (e.g. estuary opening periods) and biological (e.g. spawning and recruitment periods) variables than by geographical location. Finally, the single intertidal lagoon of Socotra represents by itself a specific fish assemblage. The high proportion of economically important fish species (38) recorded underscores the paramount importance of these coastal water bodies as nursery sites, and for sustaining vital provisioning ecosystem services. © 2016 The Fisheries Society of the British Isles.
Effectiveness of fishing gears to assess fish assemblage size structure in small lake ecosystems
T. A. Clement; K. Pangle; D. G. Uzarski; B. A. Murry
2014-01-01
Measurement of fish body-size distributions is increasingly used as a management tool to assess fishery status. However, the effects of gear selection on observed fish size structure has not received sufficient attention. Four different gear types (experimental gill nets, fine mesh bag seine, and two different sized mesh trap nets), which are commonly employed in the...
NASA Astrophysics Data System (ADS)
Ben Lamine, Emna; Di Franco, Antonio; Romdhane, Mohamed Salah; Francour, Patrice
2018-01-01
Resource monitoring is a key issue in ecosystem management especially for marine protected areas (MPAs), where information on the composition and structure of fish assemblages is crucial to design a sound management plan. Data on fish assemblage are usually collected using Underwater Visual Censuses (UVC). However, fish assemblages monitoring in MPAs usually calls for considerable resources in terms of costs, time and technical/scientific skills. Financial resources and trained scientific divers may, however, not be available in certain geographical areas, that are thus understudied. Therefore, involving citizen volunteer divers in fish assemblage monitoring and adopting easy-to-use underwater visual census methods could be an effective way to collect crucial data. Citizen science can be used only if it can provide information that is consistent with that collected using standard scientific monitoring. Here, we aim to: 1) compare the consistency of results from a Standard scientific UVC (S-UVC) and an Easy-to-use UVC (E-UVC) method in assessing fish assemblage spatial variability, and 2) test the consistency of data collected by Scientific Divers (SD) and Scientifically-Trained Volunteer divers (STV), using E-UVC. We used, in two consecutive years, three Tunisian future Marine Protected Areas (MPAs) and adjacent areas as case studies. E-UVC and S-UVC data were consistent in highlighting the same spatial patterns for the three MPAs (between MPAs and, inside and outside each one). No significant difference was recorded between data collected by SD or STV. Our results suggest that E-UVC can provide information representing simplified proxies for describing fish assemblages and can therefore be a valuable tool for fish monitoring by citizen divers in understudied areas. This evidence could foster citizen science as an effective tool to raise environmental awareness and involve stakeholders in resource management.
Temporal and cross-shelf distribution of ichthyoplankton in the central Cantabrian Sea
NASA Astrophysics Data System (ADS)
Rodriguez, J. M.
2008-09-01
Environmental variables have been measured and sampling for ichthyoplankton has been conducted monthly, since April 2001, at three stations, located at the inner (1), middle (2) and outer (3) shelf of the central Cantabrian Sea. This paper presents the results of the study of the ichthyoplankton collected from July 2001 to June 2004. Fish larvae from 99 species, belonging to 37 families, were identified. Families with higher number of species were Gadidae, Sparidae and Labridae. The larval fish assemblage was dominated by pelagic fish species, with Sardina pilchardus, as the most abundant. There was a pronounced spring peak in larval abundance, dominated by S. pilchardus. A smaller peak, dominated by S. pilchardus and Micromesistius poutassou, was recorded in late winter at Stns 2 and 3. This pattern was evident for the three-year study. Results also indicate that this study was limited to the coastal larval fish assemblage inhabiting the central Cantabrian Sea shelf. This assemblage was temporally structured into other three assemblages: winter, late winter-spring and summer-autumn. Temperature was apparently a key factor in larval fish assemblage succession. In a scenario of global warming, this study constitutes a basis to evaluating the ongoing changes in the pelagic coastal ecosystem of the central Cantabrian Sea.
Thiriet, Pierre; Di Franco, Antonio; Francour, Patrice
2017-01-01
Monitoring fish assemblages is needed to assess whether Marine Protected Areas (MPAs) are meeting their conservation and fisheries management goals, as it allows one to track the progress of recovery of exploited species and associated communities. Underwater Visual Census techniques (UVC) are used to monitor fish assemblages in MPAs. UVCs should be adapted to fish abundance, body-size and behaviour, which can strongly affect fish detectability. In Mediterranean subtidal habitats, however, UVC strip transects of one surface area (25x5 m2) are commonly used to survey the whole fish assemblage, from large shy fish to small crypto-benthic fish. Most high trophic level predators (HTLPs) are large shy fish which rarely swim close to divers and, consequently, their abundance may be under-estimated with commonly used transects. Here, we propose an improvement to traditional transect surveys to better account for differences in behaviour among and within species. First, we compared the effectiveness of combining two transect surface areas (large: 35x20 m2; medium: 25x5 m2) in quantifying large, shy fish within and outside Mediterranean MPAs. We identified species-specific body-size thresholds defining a smaller and a larger size class better sampled by medium and large transects respectively. Combining large and medium transects provided more accurate biomass and species richness estimates for large, shy species than using medium transects alone. We thus combined the new approach with two other transect surface areas commonly used to survey crypto-benthic (10x1 m2) and necto-benthic (25x5 m2) species in order to assess how effectively MPAs protection the whole fish assemblage. We verified that MPAs offer significant protection for HTLPs, their response in terms of biomass and density increase in MPAs was always higher in magnitude than other functional groups. Inside MPAs, the contribution of HTLP reached >25% of total fish biomass, against < 2% outside MPAs. Surveys with multiple transect surface areas allow for a more realistic assessment of the structure of the whole fish assemblage and better assessment of potential recovery of HTLPs within reserves of HTLP. PMID:28594836
Prato, Giulia; Thiriet, Pierre; Di Franco, Antonio; Francour, Patrice
2017-01-01
Monitoring fish assemblages is needed to assess whether Marine Protected Areas (MPAs) are meeting their conservation and fisheries management goals, as it allows one to track the progress of recovery of exploited species and associated communities. Underwater Visual Census techniques (UVC) are used to monitor fish assemblages in MPAs. UVCs should be adapted to fish abundance, body-size and behaviour, which can strongly affect fish detectability. In Mediterranean subtidal habitats, however, UVC strip transects of one surface area (25x5 m2) are commonly used to survey the whole fish assemblage, from large shy fish to small crypto-benthic fish. Most high trophic level predators (HTLPs) are large shy fish which rarely swim close to divers and, consequently, their abundance may be under-estimated with commonly used transects. Here, we propose an improvement to traditional transect surveys to better account for differences in behaviour among and within species. First, we compared the effectiveness of combining two transect surface areas (large: 35x20 m2; medium: 25x5 m2) in quantifying large, shy fish within and outside Mediterranean MPAs. We identified species-specific body-size thresholds defining a smaller and a larger size class better sampled by medium and large transects respectively. Combining large and medium transects provided more accurate biomass and species richness estimates for large, shy species than using medium transects alone. We thus combined the new approach with two other transect surface areas commonly used to survey crypto-benthic (10x1 m2) and necto-benthic (25x5 m2) species in order to assess how effectively MPAs protection the whole fish assemblage. We verified that MPAs offer significant protection for HTLPs, their response in terms of biomass and density increase in MPAs was always higher in magnitude than other functional groups. Inside MPAs, the contribution of HTLP reached >25% of total fish biomass, against < 2% outside MPAs. Surveys with multiple transect surface areas allow for a more realistic assessment of the structure of the whole fish assemblage and better assessment of potential recovery of HTLPs within reserves of HTLP.
Weaver, D.; Kwak, Thomas J.
2013-01-01
Fisheries managers are faced with the challenge of balancing the management of recreational fisheries with that of conserving native species and preserving ecological integrity. The negative effects that nonnative trout species exert on native trout are well documented and include alteration of competitive interactions, habitat use, and production. However, the effects that nonnative trout may exert on nongame fish assemblages are poorly understood. Our objectives were to quantify the effects of trout stocking on native nongame fish assemblages intensively on one newly stocked river, the North Toe River, North Carolina, and extensively on other southern Appalachian Mountain streams that are annually stocked with trout. In the intensive study, we adopted a before-after, control-impact (BACI) experimental design to detect short-term effects on the nongame fish assemblage and found no significant differences in fish density, species richness, species diversity, or fish microhabitat use associated with trout stocking. We observed differences in fish microhabitat use between years, however, which suggests there is a response to environmental changes, such as the flow regime, which influence available habitat. In the extensive study, we sampled paired stocked and unstocked stream reaches to detect long-term effects from trout stocking; however, we detected no differences in nongame fish density, species richness, species diversity, or population size structure between paired sites. Our results revealed high inherent system variation caused by natural and anthropogenic factors that appear to overwhelm any acute or chronic effect of stocked trout. Furthermore, hatchery-reared trout may be poor competitors in a natural setting and exert a minimal or undetectable impact on native fish assemblages in these streams. These findings provide quantitative results necessary to assist agencies in strategic planning and decision making associated with trout fisheries, stream management, and conservation of native fishes.
What percentage of the West's 209,381 kilometers of streams and rivers contain fish? What proportion contains only native fish? Do aliens dominate the fish fauna of streams in any region or state? What are the ranges and relative densities of the most common fish, native and al...
NASA Astrophysics Data System (ADS)
Thorman, Staffan; Wiederholm, Anne-Marie
1984-09-01
A nearshore fish assemblage inhabiting a shallow bay in the southern Bothnian Sea, Sweden, with demanding environmental conditions (c. 5‰; >15°C during 4 months 1980 and 1 month 1981) was studied during a two-year period, in 1980 and 1981. Seasonal distribution patterns, dietary relationships, and growth rates were studied in Pungitius pungitius (L.), Pomatoschistus minutus (Pallas.), Gasterosteus aculeatus (L.), Phoxinus phoxinus (L.), Pomatoschistus microps (Krøyer) and Gobius niger L. The structure of the juvenile populations changed both over seasons and years but the adult populations remained constant. Lower water temperature, fewer individuals, lower and delayed fish growth, and lower interspecific food overlaps were found in 1981 compared to 1980. Few significant correlations were found in both years between the following community parameters: diversity, niche width, food overlap, and the proportion of each species in the fish assemblage. According to these results it is suggested that food competition and resource partitioning were of minor importance for the structuring of the fish community in the present area. Rather, the extreme salinity and the fluctuations in temperature regulated the fish populations. One may conclude that the populations of juveniles were more influenced by short-term changes in the environment than those of the adults.
NASA Astrophysics Data System (ADS)
Chen, Yunlong; Shan, Xiujuan; Jin, Xianshi; Johannessen, Arne; Yang, Tao; Dai, Fangqun
2017-07-01
The central and southern Yellow Sea is an important overwintering ground for many fish species in the Bohai Sea and Yellow Sea. For better understanding the status of the fish community after years of heavy exploitation, variations in fish community structure and diversity were analyzed using data from bottom trawls during 2003-2015. Five fish assemblage indices all showed fluctuations without clear trends from 2003 to 2015, yet there were strong positive and significant correlations (P < 0.05) among them. The top-five dominant species accounted for a high weight percentage (49.7%-82.1%) in the annual fish catch. Multivariate analysis showed that two year groups could be pooled for the fish community: Group I consisted of the years 2006, 2007, 2008 and 2015, while Group II consisted of the years 2003, 2004, 2005, 2009, 2010 and 2014; the groups aggregated with 63.71% similarity, indicating a high level of similarity among all years. The multivariate dispersion values were 1.455 and 0.818 for Groups I and II, respectively, indicating greater variances in fish assemblage structure in Group I than that in Group II. Similarity of percentage analysis demonstrated that the average similarities for Group I and Group II were 71.58% and 67.51%, respectively. Size-spectra analysis revealed no consistent trend in the intercept and slope (P > 0.05); there were also no significant differences between the slope of the size-spectra and fishing effort. The catch per unit effort and mean individual weight analyses of the whole fish assemblage both showed a significantly decreasing trend over time. Overall, the results showed that the fish community structure in the central and southern Yellow Sea was relatively stable from 2003 to 2015 and the study could be used as a reference for supporting ecosystem-based fishery management.
Phylogenetic community structure: temporal variation in fish assemblage
Santorelli, Sergio; Magnusson, William; Ferreira, Efrem; Caramaschi, Erica; Zuanon, Jansen; Amadio, Sidnéia
2014-01-01
Hypotheses about phylogenetic relationships among species allow inferences about the mechanisms that affect species coexistence. Nevertheless, most studies assume that phylogenetic patterns identified are stable over time. We used data on monthly samples of fish from a single lake over 10 years to show that the structure in phylogenetic assemblages varies over time and conclusions depend heavily on the time scale investigated. The data set was organized in guild structures and temporal scales (grouped at three temporal scales). Phylogenetic distance was measured as the mean pairwise distances (MPD) and as mean nearest-neighbor distance (MNTD). Both distances were based on counts of nodes. We compared the observed values of MPD and MNTD with values that were generated randomly using null model independent swap. A serial runs test was used to assess the temporal independence of indices over time. The phylogenetic pattern in the whole assemblage and the functional groups varied widely over time. Conclusions about phylogenetic clustering or dispersion depended on the temporal scales. Conclusions about the frequency with which biotic processes and environmental filters affect the local assembly do not depend only on taxonomic grouping and spatial scales. While these analyzes allow the assertion that all proposed patterns apply to the fish assemblages in the floodplain, the assessment of the relative importance of these processes, and how they vary depending on the temporal scale and functional group studied, cannot be determined with the effort commonly used. It appears that, at least in the system that we studied, the assemblages are forming and breaking continuously, resulting in various phylogeny-related structures that makes summarizing difficult. PMID:25360256
Are the Most Plastic Species the Most Abundant Ones? An Assessment Using a Fish Assemblage
Vidal, Nicolás; Zaldúa, Natalia; D'Anatro, Alejandro; Naya, Daniel E.
2014-01-01
Few studies have evaluated phenotypic plasticity at the community level, considering, for example, plastic responses in an entire species assemblage. In addition, none of these studies have addressed the relationship between phenotypic plasticity and community structure. Within this context, here we assessed the magnitude of seasonal changes in digestive traits (seasonal flexibility), and of changes during short-term fasting (flexibility during fasting), occurring in an entire fish assemblage, comprising ten species, four trophic levels, and a 37-fold range in body mass. In addition, we analyzed the relationship between estimates of digestive flexibility and three basic assemblage structure attributes, i.e., species trophic position, body size, and relative abundance. We found that: (1) Seasonal digestive flexibility was not related with species trophic position or with body size; (2) Digestive flexibility during fasting tended to be inversely correlated with body size, as expected from scaling relationships; (3) Digestive flexibility, both seasonal and during fasting, was positively correlated with species relative abundance. In conclusion, the present study identified two trends in digestive flexibility in relation to assemblage structure, which represents an encouraging departure point in the search of general patterns in phenotypic plasticity at the local community scale. PMID:24651865
Urbanization effects on fishes and habitat quality in a southern Piedmont river basin
Walters, D.M.; Freeman, Mary C.; Leigh, D.S.; Freeman, B.J.; Pringle, C.P.; Brown, Larry R.; Gray, Robert H.; Hughes, Robert H.; Meador, Michael
2005-01-01
We quantified the relationships among urban land cover, fishes, and habitat quality to determine how fish assemblages respond to urbanization and if a habitat index can be used as an indirect measure of urban effects on stream ecosystems. We sampled 30 wadeable streams along an urban gradient (5?37% urban land cover) in the Etowah River basin, Georgia. Fish assemblages, sampled by electrofishing standardized stream reaches, were assessed using species richness, density, and species composition metrics. Habitat quality was scored using the Rapid Habitat Assessment Protocol (RHAP) of the U.S. Environmental Protection Agency. Urban land cover (including total, high-, and low-density urban) was estimated for the drainage basin above each reach. A previous study of these sites indicated that stream slope and basin area were strongly related to local variation in assemblage structure. We used multiple linear regression (MLR) analysis to account for this variation and isolate the urban effect on fishes. The MLR models indicated that urbanization lowered species richness and density and led to predictable changes in species composition. Darters and sculpin, cyprinids, and endemics declined along the urban gradient whereas centrarchids persisted and became the dominant group. The RHAP was not a suitable indicator of urban effects because RHAP-urban relationships were confounded by an overriding influence of stream slope on RHAP scores, and urban-related changes in fish assemblage structure preceded gross changes in stream habitat quality. Regression analysis indicated that urban effects on fishes accrue rapidly (<10 years) and are detectable at low levels (~5?10% urbanization). We predict that the decline of endemics and other species will continue and centrarchid-dominated streams will become more common as development proceeds within the Etowah basin.
NASA Astrophysics Data System (ADS)
Aceves-Medina, Gerardo; Saldierna-Martínez, Ricardo; Hinojosa-Medina, Alejandro; Jiménez-Rosenberg, Sylvia P. A.; Hernández-Rivas, Martín E.; Morales-Ávila, Raúl
2008-03-01
The effect of environmental variables on the vertical structure of larval fish assemblages in a tropical coastal lagoon was analyzed. Ichthyoplankton samples were collected from the near-bottom and surface strata near the mouth of a subtropical lagoon during contrasting seasonal conditions of temperature, photoperiod, light intensity, and tidal heights. During summer, larval fish assemblages had high species richness ( R) and were dominated by tropical species. During winter, assemblages had lower R values and were dominated by subtropical and temperate species. Vertical distribution patterns of the taxa were determined by the interaction of environmental variables and behavior of each species to maintain their position in a stratum in the water column, or to achieve vertical migrations induced by environmental stimuli that, in this case, were thermal gradient, column water stratification, and intensity of light. Depth position and vertical migration of fish larvae, coupled with the flood and ebb tide conditions, played an important role in their retention and displacement toward the lagoon. Fish larvae with distribution restricted to the inner part of the inlet, such as Achirus mazatlanus, Etropus sp., and several gobies, were more abundant in the near-bottom stratum during the ebb tide, allowing them to avoid exportation, whereas those that could spawn outside, but depended on the inlet as a nursery area, were more abundant near the surface during flood tide, such as Abudefduf troschelii and Stegastes rectifraenum.
Gao, Qin-Feng; Cheung, Kwok-Leung; Cheung, Siu-Gin; Shin, Paul K S
2005-01-01
To study the correlation between nutrient enrichment derived from fish farming activities and changes in macrobenthic assemblages, a one-year field study was conducted in Kau Sai Bay marine fish culture zone of Hong Kong. Bimonthly sediment samples were collected at six stations: two at the fish cages, two near the boundary of the fish culture area, and two reference sites further away from the culture area. Sediment physico-chemical characteristics in terms of silt/clay fraction, moisture content, total organic carbon (TOC), total Kjeldahl nitrogen (TKN) and total phosphorus (TP) were analyzed. The macrobenthos (>0.5 mm) present in the sediment were sorted, identified and enumerated. On average, TOC, TKN and TP levels at the fish cage stations were 82.8%, 128.5% and 1315.7% higher than those at the reference stations, respectively. As a result, the N:P molar ratio was greatly reduced from 8.75 at the reference stations to 1.83 at the fish cage stations. Univariate and multivariate analyses revealed that diversity of macrofauna was significantly reduced and community structure differed at the fish cage stations relative to the reference sites. The intermediary stations near the fish culture area showed a transitional state of disturbance. Faunal diversity was negatively correlated with nutrient level, reflecting the adverse impacts of nutrient enrichment derived from fish farming activities on the benthic assemblages. Whilst in subtropical Asia-Pacific trash fish is the major feed for fish culture resulting in a higher nutrient loading and nutrient ratio accumulated in the sediment beneath the fish rafts, the effects of nutrient enrichment on macrobenthic assemblages are comparable to that in temperate waters owing to relatively high sediment metabolism rate and smaller fish culture scale in Hong Kong.
Predicting assemblages and species richness of endemic fish in the upper Yangtze River.
He, Yongfeng; Wang, Jianwei; Lek-Ang, Sithan; Lek, Sovan
2010-09-01
The present work describes the ability of two modeling methods, Classification and Regression Tree (CART) and Random Forest (RF), to predict endemic fish assemblages and species richness in the upper Yangtze River, and then to identify the determinant environmental factors contributing to the models. The models included 24 predictor variables and 2 response variables (fish assemblage and species richness) for a total of 46 site units. The predictive quality of the modeling approaches was judged with a leave-one-out validation procedure. There was an average success of 60.9% and 71.7% to assign each site unit to the correct assemblage of fish, and 73% and 84% to explain the variance in species richness, by using CART and RF models, respectively. RF proved to be better than CART in terms of accuracy and efficiency in ecological applications. In any case, the mixed models including both land cover and river characteristic variables were more powerful than either individual one in explaining the endemic fish distribution pattern in the upper Yangtze River. For instance, altitude, slope, length, discharge, runoff, farmland and alpine and sub-alpine meadow played important roles in driving the observed endemic fish assemblage structure, while farmland, slope grassland, discharge, runoff, altitude and drainage area in explaining the observed patterns of endemic species richness. Therefore, the various effects of human activity on natural aquatic ecosystems, in particular, the flow modification of the river and the land use changes may have a considerable effect on the endemic fish distribution patterns on a regional scale. Copyright 2010 Elsevier B.V. All rights reserved.
Cavin, Lionel; Boudad, Larbi; Tong, Haiyan; Läng, Emilie; Tabouelle, Jérôme; Vullo, Romain
2015-01-01
The mid-Cretaceous vertebrate assemblage from south-eastern Morocco is one of the most diversified continental vertebrate assemblages of this time worldwide. The bony fish component (coelacanths, lungfishes and ray-finned fishes) is represented by relatively complete specimens and, mostly, by fragmentary elements scattered along 250 kilometres of outcrops. Here we revisit the bony fish assemblage by studying both isolated remains collected during several fieldtrips and more complete material kept in public collections. The assemblage comprises several lungfish taxa, with the first mention of the occurrence of Arganodus tiguidiensis, and possibly two mawsoniid coelacanths. A large bichir cf. Bawitius, is recorded and corresponds to cranial elements initially referred to ‘Stromerichthys’ from coeval deposits in Egypt. The ginglymodians were diversified with a large ‘Lepidotes’ plus two obaichthyids and a gar. We confirm here that this gar belongs to a genus distinctive from Recent gars, contrary to what was suggested recently. Teleosteans comprise a poorly known ichthyodectiform, a notopterid, a probable osteoglossomorph and a large tselfatiiform, whose cranial anatomy is detailed. The body size and trophic level for each taxon are estimated on the basis of comparison with extant closely related taxa. We plotted the average body size versus average trophic level for the Kem Kem assemblage, together with extant marine and freshwater assemblages. The Kem Kem assemblage is characterized by taxa of proportionally large body size, and by a higher average trophic level than the trophic level of the extant compared freshwater ecosystems, but lower than for the extant marine ecosystems. These results should be regarded with caution because they rest on a reconstructed assemblage known mostly by fragmentary remains. They reinforce, however, the ecological oddities already noticed for this mid-Cretaceous vertebrate ecosystem in North Africa. PMID:26018561
Cavin, Lionel; Boudad, Larbi; Tong, Haiyan; Läng, Emilie; Tabouelle, Jérôme; Vullo, Romain
2015-01-01
The mid-Cretaceous vertebrate assemblage from south-eastern Morocco is one of the most diversified continental vertebrate assemblages of this time worldwide. The bony fish component (coelacanths, lungfishes and ray-finned fishes) is represented by relatively complete specimens and, mostly, by fragmentary elements scattered along 250 kilometres of outcrops. Here we revisit the bony fish assemblage by studying both isolated remains collected during several fieldtrips and more complete material kept in public collections. The assemblage comprises several lungfish taxa, with the first mention of the occurrence of Arganodus tiguidiensis, and possibly two mawsoniid coelacanths. A large bichir cf. Bawitius, is recorded and corresponds to cranial elements initially referred to 'Stromerichthys' from coeval deposits in Egypt. The ginglymodians were diversified with a large 'Lepidotes' plus two obaichthyids and a gar. We confirm here that this gar belongs to a genus distinctive from Recent gars, contrary to what was suggested recently. Teleosteans comprise a poorly known ichthyodectiform, a notopterid, a probable osteoglossomorph and a large tselfatiiform, whose cranial anatomy is detailed. The body size and trophic level for each taxon are estimated on the basis of comparison with extant closely related taxa. We plotted the average body size versus average trophic level for the Kem Kem assemblage, together with extant marine and freshwater assemblages. The Kem Kem assemblage is characterized by taxa of proportionally large body size, and by a higher average trophic level than the trophic level of the extant compared freshwater ecosystems, but lower than for the extant marine ecosystems. These results should be regarded with caution because they rest on a reconstructed assemblage known mostly by fragmentary remains. They reinforce, however, the ecological oddities already noticed for this mid-Cretaceous vertebrate ecosystem in North Africa.
Investigating hydrologic alteration as a mechanism of fish assemblage shifts in urbanizing streams
Roy, A.H.; Freeman, Mary C.; Freeman, B.J.; Wenger, S.J.; Ensign, W.E.; Meyer, J.L.
2005-01-01
Stream biota in urban and suburban settings are thought to be impaired by altered hydrology; however, it is unknown what aspects of the hydrograph alter fish assemblage structure and which fishes are most vulnerable to hydrologic alterations in small streams. We quantified hydrologic variables and fish assemblages in 30 small streams and their subcatchments (area 8–20 km2) in the Etowah River Catchment (Georgia, USA). We stratified streams and their subcatchments into 3 landcover categories based on imperviousness (<10%, 10–20%, >20% of subcatchment), and then estimated the degree of hydrologic alteration based on synoptic measurements of baseflow yield. We derived hydrologic variables from stage gauges at each study site for 1 y (January 2003–2004). Increased imperviousness was positively correlated with the frequency of storm events and rates of the rising and falling limb of the hydrograph (i.e., storm “flashiness”) during most seasons. Increased duration of low flows associated with imperviousness only occurred during the autumn low-flow period, and this measure corresponded with increased richness of lentic tolerant species. Altered storm flows in summer and autumn were related to decreased richness of endemic, cosmopolitan, and sensitive fish species, and decreased abundance of lentic tolerant species. Species predicted to be sensitive to urbanization, based on specific life-history or habitat requirements, also were related to stormflow variables and % fine bed sediment in riffles. Overall, hydrologic variables explained 22 to 66% of the variation in fish assemblage richness and abundance. Linkages between hydrologic alteration and fish assemblages were potentially complicated by contrasting effects of elevated flows on sediment delivery and scour, and mediating effects of high stream gradient on sediment delivery from elevated flows. However, stormwater management practices promoting natural hydrologic regimes are likely to reduce the impacts of catchment imperviousness on stream fish assemblages.
Convergence of temperate and tropical stream fish assemblages
The hypothesis of convergence takes the deterministic view that community (or assemblage) structure can be predicted from the environment, and that the environment is expected to drive evolution in a predictable direction. Here we present results of a comparative study of freshwa...
Casey, Jordan M; Baird, Andrew H; Brandl, Simon J; Hoogenboom, Mia O; Rizzari, Justin R; Frisch, Ashley J; Mirbach, Christopher E; Connolly, Sean R
2017-01-01
Removal of predators is often hypothesized to alter community structure through trophic cascades. However, despite recent advances in our understanding of trophic cascades, evidence is often circumstantial on coral reefs because fishing pressure frequently co-varies with other anthropogenic effects, such as fishing for herbivorous fishes and changes in water quality due to pollution. Australia's outer Great Barrier Reef (GBR) has experienced fishing-induced declines of apex predators and mesopredators, but pollution and targeting of herbivorous fishes are minimal. Here, we quantify fish and benthic assemblages across a fishing-induced predator density gradient on the outer GBR, including apex predators and mesopredators to herbivores and benthic assemblages, to test for evidence of trophic cascades and alternative hypotheses to trophic cascade theory. Using structural equation models, we found no cascading effects from apex predators to lower trophic levels: a loss of apex predators did not lead to higher levels of mesopredators, and this did not suppress mobile herbivores and drive algal proliferation. Likewise, we found no effects of mesopredators on lower trophic levels: a decline of mesopredators was not associated with higher abundances of algae-farming damselfishes and algae-dominated reefs. These findings indicate that top-down forces on coral reefs are weak, at least on the outer GBR. We conclude that predator-mediated trophic cascades are probably the exception rather than the rule in complex ecosystems such as the outer GBR.
Wakefield, Corey B.; Lewis, Paul D.; Coutts, Teresa B.; Fairclough, David V.; Langlois, Timothy J.
2013-01-01
Marine embayments and estuaries play an important role in the ecology and life history of many fish species. Cockburn Sound is one of a relative paucity of marine embayments on the west coast of Australia. Its sheltered waters and close proximity to a capital city have resulted in anthropogenic intrusion and extensive seascape modification. This study aimed to compare the sampling efficiencies of baited videos and fish traps in determining the relative abundance and diversity of temperate demersal fish species associated with naturally occurring (seagrass, limestone outcrops and soft sediment) and modified (rockwall and dredge channel) habitats in Cockburn Sound. Baited videos sampled a greater range of species in higher total and mean abundances than fish traps. This larger amount of data collected by baited videos allowed for greater discrimination of fish assemblages between habitats. The markedly higher diversity and abundances of fish associated with seagrass and limestone outcrops, and the fact that these habitats are very limited within Cockburn Sound, suggests they play an important role in the fish ecology of this embayment. Fish assemblages associated with modified habitats comprised a subset of species in lower abundances when compared to natural habitats with similar physical characteristics. This suggests modified habitats may not have provided the necessary resource requirements (e.g. shelter and/or diet) for some species, resulting in alterations to the natural trophic structure and interspecific interactions. Baited videos provided a more efficient and non-extractive method for comparing fish assemblages and habitat associations of smaller bodied species and juveniles in a turbid environment. PMID:23555847
Wakefield, Corey B; Lewis, Paul D; Coutts, Teresa B; Fairclough, David V; Langlois, Timothy J
2013-01-01
Marine embayments and estuaries play an important role in the ecology and life history of many fish species. Cockburn Sound is one of a relative paucity of marine embayments on the west coast of Australia. Its sheltered waters and close proximity to a capital city have resulted in anthropogenic intrusion and extensive seascape modification. This study aimed to compare the sampling efficiencies of baited videos and fish traps in determining the relative abundance and diversity of temperate demersal fish species associated with naturally occurring (seagrass, limestone outcrops and soft sediment) and modified (rockwall and dredge channel) habitats in Cockburn Sound. Baited videos sampled a greater range of species in higher total and mean abundances than fish traps. This larger amount of data collected by baited videos allowed for greater discrimination of fish assemblages between habitats. The markedly higher diversity and abundances of fish associated with seagrass and limestone outcrops, and the fact that these habitats are very limited within Cockburn Sound, suggests they play an important role in the fish ecology of this embayment. Fish assemblages associated with modified habitats comprised a subset of species in lower abundances when compared to natural habitats with similar physical characteristics. This suggests modified habitats may not have provided the necessary resource requirements (e.g. shelter and/or diet) for some species, resulting in alterations to the natural trophic structure and interspecific interactions. Baited videos provided a more efficient and non-extractive method for comparing fish assemblages and habitat associations of smaller bodied species and juveniles in a turbid environment.
NASA Astrophysics Data System (ADS)
Zarrad, Rafik; Alemany, Francisco; Rodriguez, José-María; Jarboui, Othman; Lopez-Jurado, José-Luis; Balbin, Rosa
2013-02-01
The structure of the summer larval fish assemblage off the eastern coast of Tunisia and its relation to environmental conditions was studied, from ichthyoplankton samples taken during a survey conducted between 23rd June and 9th July 2008. A total of 68 larval fish taxa were identified, 52 to species level. The taxonomic composition and abundance of the larval fish assemblage showed high spatial heterogeneity. Mesoscale hydrographic features, such as eddies, seem to play an important role in the spatial distribution of fish larvae in the area, enhancing concentration and retention. The larval fish assemblage was dominated by the small pelagic species Sardinella aurita (26.6% of the total larval fish abundance), followed by Engraulis encrasicolus (22.6%), Spicara spp. (8.6%) and Mullus barbatus (6.8%). Shannon-Weaver index (H') ranged between 0 and 2.62. The highest values were found offshore, at 95 miles east of Sousse, over depths around 250 m. The diversity was higher in this region as a result of transport by currents and retention by eddies. It has also been shown that the eastern coast of Tunisia is a spawning ground for the tuna species Auxis rochei, Thunnus thynnus and Thunnus alalunga. Larvae of mesopelagic fishes represented 5.46% of the total abundance, with Cyclothone braueri, Ceratoscopelus maderensis and Lampanyctus crocodilus being the most important species. Canonical correspondence analysis (CCA) indicated that depth was the most important environmental factor in explaining species distribution.
Stewart, Jana S.; Lizhu Wang,; Infante, Dana M.; Lyons, John D.; Arthur Cooper,
2011-01-01
Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries.
Wang, L.; Infante, D.; Lyons, J.; Stewart, J.; Cooper, A.
2011-01-01
Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries. ?? 2010 John Wiley & Sons, Ltd.
Isolating causal pathways between flow and fish in the regulated river hierarchy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.
Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less
Isolating causal pathways between flow and fish in the regulated river hierarchy
McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.; ...
2015-07-07
Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less
Ondracková, M; Simková, A; Gelnar, M; Jurajda, P
2004-12-01
Infection parameters of Posthodiplostomum cuticola, a digenean parasite with a complex life-cycle, were investigated in fish (the second intermediate host) from 6 floodplain water bodies over 2 years. A broad range of factors related to abiotic characteristics of localities, density of the first intermediate (planorbid snails) and definitive (wading birds) hosts and fish community structure were tested for their effects on P. cuticola infection in juvenile and adult fish. Characters of the littoral zone and flood duration were found to be important factors for the presence of the first intermediate and definitive hosts. Visitation time of definitive bird hosts was also related to adult fish host density. Localities with P. cuticola infected fish were visited by a higher number of bird species. Infection of P. cuticola in fish and similarities in infection among fish host assemblages were correlated with fish host density and fish species composition. Parasite infection in both adult and juvenile fishes was associated with the slope of the bank and the bottom type, in particular in juvenile fish assemblages with snail host density. We conclude that habitat characteristics, snail host density and fish community structure contribute significantly to P. cuticola infection in fish hosts.
Oliveira, João M.; Segurado, Pedro; Santos, José M.; Teixeira, Amílcar; Ferreira, Maria T.; Cortes, Rui V.
2012-01-01
Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness) from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1) pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2) at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in ‘natural’ streams, as well as to improve biomonitoring and restoration of fluvial ecosystems. PMID:23029242
NASA Astrophysics Data System (ADS)
Quattrini, A.; Chaytor, J. D.; Demopoulos, A. W.
2016-02-01
Caribbean fish communities in shallow waters have been well studied along the Greater and Lesser Antilles for decades; however, the mesophotic (>50 m) and deep (>200 m) assemblages remain poorly known due to the technical challenges associated with surveying greater depths. Numerous seafloor features (e.g., seamounts, island ridges, banks) punctuate the insular margins and increase habitat heterogeneity, which may lead to enhanced diversity of the deeper demersal fish community in the region. Recent (2013-2015) expeditions in the area using the E/Vs Nautilus and Okeanos Explorer and ROVs Hercules and Deep Discoverer surveyed fish communities during 18 dives across different seafloor features at depths ranging from 64 to 2944 m. These surveys enabled us to investigate whether demersal fish assemblages differed among these seafloor features and/or in response to other (e.g., dissolved oxygen, microhabitat) abiotic factors. A totla of 3,532 fishes representing at least 140 species in 53 families were documented. Assemblage differences were primarily influenced by depth, but differences in microhabitat (i.e., soft substrate, profile, slope) further influenced assemblage structure. Several range and depth extensions were documented. The morid Lepidion sp., previously known only from the eastern and the western North Atlantic, was documented on Norôit Seamount. A new species of labrid, Polylepion sp. A, known only from Curacao, was documented on Conrad Seamount. Many mesophotic reef species were observed deeper than previously known, including the butterflyfishes Chaetodon sedentarius and Prognathodes aculeatus. This study further supports the importance of environmental conditions, particularly depth and microhabitat, influencing local-scale distribution of demersal fishes, while demonstrating how little is still known about the biogeography of numerous deep-sea and mesophotic species.
The role of depth in regulating water quality and fish assemblages in oxbow lakes
Goetz, Daniel B.; Miranda, Leandro E.; Kroger, Robert; Andrews, Caroline S.
2015-01-01
We evaluated water quality and fish assemblages in deep (> 3.0 m; N = 7) and shallow (< 1.5 m; N = 6) floodplain lakes in the intensively cultivated Yazoo River Basin (Mississippi, USA) using indirect gradient multivariate procedures. Shallow lakes displayed wide diel oxygen fluctuations, some reaching hypoxic/anoxic conditions for extended periods of time, high suspended solids, and extreme water temperatures. Conversely, deeper lakes were represented by higher visibility, stable oxygen levels, and cooler water temperatures. Fish assemblages in shallow lakes were dominated by tolerant, small-bodied fishes and those able to breathe atmospheric oxygen. Deeper lakes had a greater representation of predators and other large-bodied fishes. Our evaluation suggests fish assemblages are reflective of oxbow lakes water quality, which is shaped by depth. Understanding the interactions between depth, water quality, and fish assemblages may facilitate development of effective management plans for improving conditions necessary to sustain diverse fish assemblages in agriculturally dominated basins.
Marine fish community structure and habitat associations on the Canadian Beaufort shelf and slope
NASA Astrophysics Data System (ADS)
Majewski, Andrew R.; Atchison, Sheila; MacPhee, Shannon; Eert, Jane; Niemi, Andrea; Michel, Christine; Reist, James D.
2017-03-01
Marine fishes in the Canadian Beaufort Sea have complex interactions with habitats and prey, and occupy a pivotal position in the food web by transferring energy between lower- and upper-trophic levels, and also within and among habitats (e.g., benthic-pelagic coupling). The distributions, habitat associations, and community structure of most Beaufort Sea marine fishes, however, are unknown thus precluding effective regulatory management of emerging offshore industries in the region (e.g., hydrocarbon development, shipping, and fisheries). Between 2012 and 2014, Fisheries and Oceans Canada conducted the first baseline survey of offshore marine fishes, their habitats, and ecological relationships in the Canadian Beaufort Sea. Benthic trawling was conducted at 45 stations spanning 18-1001 m depths across shelf and slope habitats. Physical oceanographic variables (depth, salinity, temperature, oxygen), biological variables (benthic chlorophyll and integrated water-column chlorophyll) and sediment composition (grain size) were assessed as potential explanatory variables for fish community structure using a non-parametric statistical approach. Selected stations were re-sampled in 2013 and 2014 for a preliminary assessment of inter-annual variability in the fish community. Four distinct fish assemblages were delineated on the Canadian Beaufort Shelf and slope: 1) Nearshore-shelf: <50 m depth, 2) Offshore-shelf: >50 and ≤200 m depths, 3) Upper-slope: ≥200 and ≤500 m depths, and 4) Lower-slope: ≥500 m depths. Depth was the environmental variable that best explained fish community structure, and each species assemblage was spatially associated with distinct aspects of the vertical water mass profile. Significant differences in the fish community from east to west were not detected, and the species composition of the assemblages on the Canadian Beaufort Shelf have not changed substantially over the past decade. This community analysis provides a framework for testing hypotheses regarding the trophic dynamics and ecosystem roles of Beaufort Sea marine fishes, including biological linkages (i.e., fish movements and trophic interactions) among offshore habitats. Understanding regional-scale habitat associations will also provide context to identify potentially unique and/or sensitive habitats and fish community characteristics, thus aiding identification of ecologically and biologically significant areas, and to inform conservation efforts.
D'Ambrosio, Jessica L; Williams, Lance R; Witter, Jonathan D; Ward, Andy
2009-01-01
In this paper, we evaluate relationships between in-stream habitat, water chemistry, spatial distribution within a predominantly agricultural Midwestern watershed and geomorphic features and fish assemblage attributes and abundances. Our specific objectives were to: (1) identify and quantify key environmental variables at reach and system wide (watershed) scales; and (2) evaluate the relative influence of those environmental factors in structuring and explaining fish assemblage attributes at reach scales to help prioritize stream monitoring efforts and better incorporate all factors that influence aquatic biology in watershed management programs. The original combined data set consisted of 31 variables measured at 32 sites, which was reduced to 9 variables through correlation and linear regression analysis: stream order, percent wooded riparian zone, drainage area, in-stream cover quality, substrate quality, gradient, cross-sectional area, width of the flood prone area, and average substrate size. Canonical correspondence analysis (CCA) and variance partitioning were used to relate environmental variables to fish species abundance and assemblage attributes. Fish assemblages and abundances were explained best by stream size, gradient, substrate size and quality, and percent wooded riparian zone. Further data are needed to investigate why water chemistry variables had insignificant relationships with IBI scores. Results suggest that more quantifiable variables and consideration of spatial location of a stream reach within a watershed system should be standard data incorporated into stream monitoring programs to identify impairments that, while biologically limiting, are not fully captured or elucidated using current bioassessment methods.
Fowler, Ashley M.; Booth, David J.
2013-01-01
Development of infrastructure around cities is rapidly increasing the amount of artificial substrate (termed artificial reef, ‘AR’) in coastal marine habitats. However, effects of ARs on marine communities remain unknown, because it is unclear whether ARs can maintain similar communities to natural reefs. We investigated whether well-established (> 30 years old) breakwaters could consistently approximate fish assemblages on interspersed rocky reefs in a temperate estuary over 6 consecutive seasons using regular visual surveys between June 2009 (winter) and November 2010 (spring). We examined whether assemblage differences between reef types were driven by differences in juvenile recruitment, or were related to differences in older life-stages. Assemblages on both reef types were dominated by juveniles (61% of individuals) and sub-adults (34% of individuals). Seasonal fluctuations in assemblage parameters (species richness, diversity, sub-adult abundance) were similar between reef types, and levels of species diversity and assemblage composition were generally comparable. However, abundance and species richness were consistently higher (1.9-7.6 and 1.3-2.6 times, respectively) on breakwaters. These assemblage differences could not be explained by differences in juvenile recruitment, with seasonal patterns of recruitment and juvenile species found to be similar between reef types. In contrast, abundances of sub-adults were consistently higher (1.1-12 times) at breakwaters, and assemblage differences appeared to be driven by this life-stage. Our results indicate that breakwaters in temperate estuaries are capable of supporting abundant and diverse fish assemblages with similar recruitment process to natural reefs. However, breakwaters may not approximate all aspects of natural assemblage structure, with differences maintained by a single-life stage in some cases. PMID:24086634
Thomas, J.T.; Culler, M.E.; Dermisis, D.C.; Pierce, Clay; Papanicolaou, A.N.; Stewart, T.W.; Larson, C.J.
2011-01-01
Land use changes and channelization of streams in the deep loess region of western Iowa have led to stream channel incision, altered flow regimes, increased sediment inputs, decreased habitat diversity and reduced lateral connectivity of streams and floodplains. Grade control structures (GCSs) are built in streams to prevent further erosion, protect infrastructure and reduce sediment loads. However, GCS can have a detrimental impact on fisheries and biological communities. We review three complementary biological and hydraulic studies on the effects of GCS in these streams. GCS with steep (≥1:4 rise : run) downstream slopes severely limited fish passage, but GCS with gentle slopes (≤1:15) allowed greater passage. Fish assemblages were dominated by species tolerant of degradation, and Index of Biotic Integrity (IBI) scores were indicative of fair or poor biotic integrity. More than 50% of fish species had truncated distributions. After modification of GCS to reduce slopes and permit increased passage, IBI scores increased and several species were detected further upstream than before modification. Total macroinvertebrate density, biomass and taxonomic diversity and abundance of ecologically sensitive taxa were greater at GCS than in reaches immediately upstream, downstream or ≥1 km from GCS. A hydraulic study confirmed results from fish passage studies; minimum depths and maximum current velocities at GCS with gentle slopes (≤1:15) were more likely to meet minimum criteria for catfish passage than GCS with steeper slopes. Multidisciplinary approaches such as ours will increase understanding of GCS-associated factors influencing fish passage, biological assemblage structure and other ecological relationships in streams.
Le Pichon, Céline; Tales, Évelyne; Belliard, Jérôme; Torgersen, Christian E.
2017-01-01
Spatially intensive sampling by electrofishing is proposed as a method for quantifying spatial variation in fish assemblages at multiple scales along extensive stream sections in headwater catchments. We used this method to sample fish species at 10-m2 points spaced every 20 m throughout 5 km of a headwater stream in France. The spatially intensive sampling design provided information at a spatial resolution and extent that enabled exploration of spatial heterogeneity in fish assemblage structure and aquatic habitat at multiple scales with empirical variograms and wavelet analysis. These analyses were effective for detecting scales of periodicity, trends, and discontinuities in the distribution of species in relation to tributary junctions and obstacles to fish movement. This approach to sampling riverine fishes may be useful in fisheries research and management for evaluating stream fish responses to natural and altered habitats and for identifying sites for potential restoration.
Araújo, F G; Santos, A B I; Albieri, R J
2013-11-01
Damming rivers disrupts the water flow and changes the ichthyofauna organisation. We investigated an impoundment with permanent connection and homogeneous environmental conditions between the zones above and below the dam. Temperature was comparatively higher during wet season irrespective of zone, and both zones had higher dissolved oxygen, conductivity and transparency in the dry season. A total of 1687 individuals comprising 27 species were collected in the downriver zone, while the reservoir had 879 individuals and 23 species. Each zone had different fish assemblage composition and structure, but assemblages were not explained by the examined environmental variables (r2 = 0.08; p = 0.307). Migratory species such as Pimelodus maculatus, Pimelodus fur, Leporinus copelandii and Prochilodus lineatus were the most affected, and probably are prevented to perform upriver migrations. On the other hand, lentic adapted species such as G. brasiliensis, Hoplias malabaricus and Hoplosternum littorale successfully colonised the reservoir. Therefore we conclude that the presence of the lateral hydrological connectivity alone does not guarantee the ecological connectivity since fish assemblage similarity differed between the two zones. Fish passage facilities should be monitored and managed to evaluate and improve their functionality.
Seasonal changes in fish assemblage structure at a shallow seamount in the Gulf of California.
Jorgensen, Salvador J; Klimley, A Peter; Muhlia-Melo, Arturo; Morgan, Steven G
2016-01-01
Seamounts have generally been identified as locations that can promote elevated productivity, biomass and predator biodiversity. These properties attract seamount-associated fisheries where elevated harvests can be obtained relative to surrounding areas. There exists large variation in the geological and oceanographic environment among the thousands of locations that fall within the broad definition of seamount. Global seamount surveys have revealed that not all seamounts are hotspots of biodiversity, and there remains a strong need to understand the mechanisms that underlie variation in species richness observed. We examined the process of fish species assembly at El Bajo Espiritu Santo (EBES) seamount in the Gulf of California over a five-year study period. To effectively quantify the relative abundance of fast-moving and schooling fishes in a 'blue water' habitat, we developed a simplified underwater visual census (UVC) methodology and analysis framework suitable for this setting and applicable to future studies in similar environments. We found correlations between seasonally changing community structure and variability in oceanographic conditions. Individual species responses to thermal habitat at EBES revealed three distinct assemblages, a 'fall assemblage' tracking warmer overall temperature, a 'spring assemblage' correlated with cooler temperature, and a 'year-round assemblage' with no significant response to temperature. Species richness was greatest in spring, when cool and warm water masses stratified the water column and a greater number of species from all three assemblages co-occurred. We discuss our findings in the context of potential mechanisms that could account for predator biodiversity at shallow seamounts.
Effects of land use intensification on fish assemblages in Mediterranean climate streams.
Matono, P; Sousa, D; Ilhéu, M
2013-11-01
Southern Portugal is experiencing a rapid change in land use due to the spread of intensive farming systems, namely olive production systems, which can cause strong negative environmental impacts and affect the ecological integrity of aquatic ecosystems. This study aimed to identify the main environmental disturbances related with olive grove intensification on Mediterranean-climate streams in southern Portugal, and to evaluate their effects on fish assemblage structure and integrity. Twenty-six stream sites within the direct influence of traditional, intensive, and hyper-intensive olive groves were sampled. Human-induced disturbances were analyzed along the olive grove intensity gradient. The integrity of fish assemblages was evaluated by comparison with an independent set of least disturbed reference sites, considering metrics and guilds, based on multivariate analyses. Along the gradient of olive grove intensification, the study observed overall increases in human disturbance variables and physicochemical parameters, especially organic/nutrient enrichment, sediment load, and riparian degradation. Animal load measured the impact of livestock production. This variable showed an opposite pattern, since traditional olive groves are often combined with high livestock production and are used as grazing pasture by the cattle, unlike more intensive olive groves. Stream sites influenced by olive groves were dominated by non-native and tolerant fish species, while reference sites presented higher fish richness, density and were mainly occupied by native and intolerant species. Fish assemblage structure in olive grove sites was significantly different from the reference set, although significant differences between olive grove types were not observed. Bray-Curtis similarities between olive grove sites and references showed a decreasing trend in fish assemblage integrity along the olive grove intensification gradient. Olive production, even in traditional groves, led to multiple in-stream disturbances, whose cumulative effects promoted the loss of biota integrity. The impacts of low intensity traditional olive groves on aquatic ecosystems can be much greater when they are coupled with livestock production. This paper recommends best practices to reduce negative impacts of olive production on streams, contributing to guide policy decision-makers in agricultural and water management.
Land use, spatial scale, and stream systems: Lessons from an agricultural region
Vondracek, B.; Blann, K.L.; Cox, C.B.; Nerbonne, J.F.; Mumford, K.G.; Nerbonne, B.A.; Sovell, L.A.; Zimmerman, J.K.H.
2005-01-01
We synthesized nine studies that examined the influence of land use at different spatial scales in structuring biotic assemblages and stream channel characteristics in southeastern Minnesota streams. Recent studies have disagreed about the relative importance of catchment versus local characteristics in explaining variation in fish assemblages. Our synthesis indicates that both riparian- and catchment-scale land use explained significant variation in water quality, channel morphology, and fish distribution and density. Fish and macroinvertebrate assemblages can be positively affected by increasing the extent of perennial riparian and upland vegetation. Our synthesis is robust; more than 425 stream reaches were examined in an area that includes a portion of three ecoregions. Fishes ranged from coldwater to warmwater adapted. We suggest that efforts to rehabilitate stream system form and function over the long term should focus on increasing perennial vegetation in both riparian areas and uplands and on managing vegetation in large, contiguous blocks. ?? 2005 Springer Science+Business Media, Inc.
Bait Effects in Sampling Coral Reef Fish Assemblages with Stereo-BRUVs
Dorman, Stacey R.; Harvey, Euan S.; Newman, Stephen J.
2012-01-01
Baited underwater video techniques are increasingly being utilised for assessing and monitoring demersal fishes because they are: 1) non extractive, 2) can be used to sample across multiple habitats and depths, 3) are cost effective, 4) sample a broader range of species than many other techniques, 5) and with greater statistical power. However, an examination of the literature demonstrates that a range of different bait types are being used. The use of different types of bait can create an additional source of variability in sampling programs. Coral reef fish assemblages at the Houtman Abrolhos Islands, Western Australia, were sampled using baited remote underwater stereo-video systems. One-hour stereo-video recordings were collected for four different bait treatments (pilchards, cat food, falafel mix and no bait (control)) from sites inside and outside a targeted fishery closure (TFC). In total, 5209 individuals from 132 fish species belonging to 41 families were recorded. There were significant differences in the fish assemblage structure and composition between baited and non-baited treatments (P<0.001), while no difference was observed with species richness. Samples baited with cat food and pilchards contained similar ingredients and were found to record similar components of the fish assemblage. There were no significant differences in the fish assemblages in areas open or closed to fishing, regardless of the bait used. Investigation of five targeted species indicated that the response to different types of bait was species-specific. For example, the relative abundance of Pagrus auratus was found to increase in areas protected from fishing, but only in samples baited with pilchards and cat food. The results indicate that the use of bait in conjunction with stereo-BRUVs is advantageous. On balance, the use of pilchards as a standardised bait for stereo-BRUVs deployments is justified for use along the mid-west coast of Western Australia. PMID:22848522
Bait effects in sampling coral reef fish assemblages with stereo-BRUVs.
Dorman, Stacey R; Harvey, Euan S; Newman, Stephen J
2012-01-01
Baited underwater video techniques are increasingly being utilised for assessing and monitoring demersal fishes because they are: 1) non extractive, 2) can be used to sample across multiple habitats and depths, 3) are cost effective, 4) sample a broader range of species than many other techniques, 5) and with greater statistical power. However, an examination of the literature demonstrates that a range of different bait types are being used. The use of different types of bait can create an additional source of variability in sampling programs. Coral reef fish assemblages at the Houtman Abrolhos Islands, Western Australia, were sampled using baited remote underwater stereo-video systems. One-hour stereo-video recordings were collected for four different bait treatments (pilchards, cat food, falafel mix and no bait (control)) from sites inside and outside a targeted fishery closure (TFC). In total, 5209 individuals from 132 fish species belonging to 41 families were recorded. There were significant differences in the fish assemblage structure and composition between baited and non-baited treatments (P<0.001), while no difference was observed with species richness. Samples baited with cat food and pilchards contained similar ingredients and were found to record similar components of the fish assemblage. There were no significant differences in the fish assemblages in areas open or closed to fishing, regardless of the bait used. Investigation of five targeted species indicated that the response to different types of bait was species-specific. For example, the relative abundance of Pagrus auratus was found to increase in areas protected from fishing, but only in samples baited with pilchards and cat food. The results indicate that the use of bait in conjunction with stereo-BRUVs is advantageous. On balance, the use of pilchards as a standardised bait for stereo-BRUVs deployments is justified for use along the mid-west coast of Western Australia.
Spatiotemporal patterns of the fish assemblages downstream of the Gezhouba Dam on the Yangtze River.
Tao, Jiangping; Gong, Yutian; Tan, Xichang; Yang, Zhi; Chang, Jianbo
2012-07-01
An explicit demonstration of the changes in fish assemblages is required to reveal the influence of damming on fish species. However, information from which to draw general conclusions regarding changes in fish assemblages is insufficient because of the limitations of available approaches. We used a combination of acoustic surveys, gillnet sampling, and geostatistical simulations to document the spatiotemporal variations in the fish assemblages downstream of the Gezhouba Dam, before and after the third impoundment of Three Gorges Reservoir (TGR). To conduct a hydroacoustic identification of individual species, we matched the size distributions of the fishes captured by gillnet with those of the acoustic surveys. An optimum threshold of target strength of -50 dB re 1 m(2) was defined, and acoustic surveys were purposefully extended to the selected fish assemblages (i.e., endemic Coreius species) that was acquired by the size and species selectivity of the gillnet sampling. The relative proportion of fish species in acoustic surveys was allocated based on the composition (%) of the harvest in the gillnet surveys. Geostatistical simulations were likewise used to generate spatial patterns of fish distribution, and to determine the absolute abundance of the selected fish assemblages. We observed both the species composition and the spatial distribution of the selected fish assemblages changed significantly after implementation of new flow regulation in the TGR, wherein an immediate sharp population decline in the Coreius occurred. Our results strongly suggested that the new flow regulation in the TGR impoundment adversely affected downstream fish species, particularly the endemic Coreius species. To determine the factors responsible for the decline, we associated the variation in the fish assemblage patterns with changes in the environment and determined that substrate erosion resulting from trapping practices in the TGR likely played a key role.
The Role of Regional Factors in Structuring Ouachita Mountain Stream Assemblages
Lance R. Williams; Christopher M. Taylor; Melvin L. Warren; J. Alan Clingenpeel
2004-01-01
Abstract - We used Basin Area Stream Survey data from the USDA Forest Service, Ouachita National Forest to evaluate the relationship between regional fish and macroinvertebrate assemblages and environmental variability (both natural and anthropogenic). Data were collected for three years (1990-1992) from six hydrologically variable stream systems in...
Schinegger, Rafaela; Pucher, Matthias; Aschauer, Christiane; Schmutz, Stefan
2018-03-01
This work addresses multiple human stressors and their impacts on fish assemblages of the Drava and Mura rivers in southern Austria. The impacts of single and multiple human stressors on riverine fish assemblages in these basins were disentangled, based on an extensive dataset. Stressor configuration, i.e. various metrics of multiple stressors belonging to stressor groups hydrology, morphology, connectivity and water quality were investigated for the first time at river basin scale in Austria. As biological response variables, the Fish Index Austria (FIA) and its related single as well as the WFD biological- and total state were investigated. Stressor-response analysis shows divergent results, but a general trend of decreasing ecological integrity with increasing number of stressors and maximum stressor is observed. Fish metrics based on age structure, fish region index and biological status responded best to single stressors and/or their combinations. The knowledge gained in this work provides a basis for advanced investigations in Alpine river basins and beyond, supports WFD implementation and helps prioritizing further actions towards multi-stressor restoration- and management. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
How could discharge management affect Florida spring fish assemblage structure?
Work, Kirsten; Codner, Keneil; Gibbs, Melissa
2017-08-01
Freshwater bodies are increasingly affected by reductions in water quantity and quality and by invasions of exotic species. To protect water quantity and maintain the ecological integrity of many water bodies in central Florida, a program of adopting Minimum Flows and Levels (MFLs) has begun for both lentic and lotic waters. The purpose of this study was to determine whether there were relationships between discharge and stage, water quality, and biological parameters for Volusia Blue Spring, a first magnitude spring (discharge > 380,000 m 3 day -1 or 100 mgd) for which an MFL program was adopted in 2006. Over the course of fourteen years, we assessed fish density and diversity weekly, monthly, or seasonally with seine and snorkel counts. We evaluated annual changes in the assemblages for relationships with water quantity and quality. Low discharge and dissolved oxygen combined with high stage and conductivity produced a fish population with a lower density and diversity in 2014 than in previous years. Densities of fish taxonomic/functional groups also were low in 2014 and measures of water quantity were significant predictors of fish assemblage structure. As a result of the strong relationships between variation in discharge and an array of chemical and biological characteristics of the spring, we conclude that maintaining the historical discharge rate is important for preserving the ecological integrity of Volusia Blue Spring. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Álvarez, Itziar; Catalán, Ignacio A.; Jordi, Antoni; Palmer, Miquel; Sabatés, Ana; Basterretxea, Gotzon
2012-01-01
The influence of coastal environmental conditions from winter-spring to summer on fish larvae assemblages in a temperate area has suggested a seasonal shift in ecosystem-level variation through which trophic pathways shift from the pelagic to the benthic system. This variation may be related to marked effects in the reproductive strategies in the fishes inhabiting the area and indirectly affect ichthyoplankton assemblages. Larval fish assemblages were sampled fortnightly at three stations located in coastal waters off southern Mallorca (Western Mediterranean) from March to August 2007, covering the main spawning period for the resident coastal fish in this region. The larval fish assemblage showed clear seasonality with higher specific abundance but lower diversity in the spring. Two main assemblages were identified: a spring assemblage, occurring at surface seawater temperatures <20 °C and dominated by species with relatively larger home ranges, such as Boops boops, Sardina pilchardus, Trachurus trachurus, and Spicara smaris, and a summer assemblage characterised by the presence of the benthopelagic Coris julis, Serranus hepatus, Serranus cabrilla and Mullus spp., among others. The shift between these ichthyoplankton communities occurred in early June, coinciding with the onset of summer hydrographical conditions and the local benthic productivity peak.
Parasite biodiversity and its determinants in coastal marine teleost fishes of Brazil.
Luque, J L; Mouillot, D; Poulin, R
2004-06-01
Recent studies of the forces behind the diversification of parasite assemblages have shed light on many aspects of parasite biodiversity. By using only parasite species richness as their measure of diversity, however, previous investigations have ignored the relatedness among parasite species and the taxonomic structure of the assemblages, which contain much information about their evolutionary origins. Here, we performed a comparative analysis across 50 species of fish from the coast of Brazil; we evaluated the effects of several host traits (body size, social behaviour, feeding habits, preference for benthic vs. pelagic habitats, depth range, and ability to enter brackish waters) on the diversity of their assemblages of metazoan parasites. As measures of diversity, we used parasite species richness, as well as the average taxonomic distinctness of the assemblage and its variance; the latter measures are based on the average taxonomic distance between any two parasite species in an assemblage. Unlike parasite species richness, taxonomic distinctness was unaffected by the number of host individuals examined per species. Fish body length proved to be the main predictor of parasite species richness, even when controlling for the confounding influences of host phylogeny and sampling effort, although it did not correlate with measures of parasite taxonomic distinctness. Predatory fish also had higher parasite species richness than planktivores, but this trend could not be confirmed using phylogenetically independent contrasts between host taxa. The main host feature associated with the taxonomic diversity of parasites was schooling behaviour, with schooling fish having more taxonomically diverse parasite assemblages than those of their non-schooling relatives. When focusing on endoparasite species only, both predatory feeding habits and a broad depth range were associated with the taxonomic distinctness of parasites. Our results suggest that certain host traits (i.e. body size) determine how many parasite species a host can accumulate over evolutionary time, whereas different host features influence the processes causing the taxonomic diversification of parasite assemblages.
SIMULATING FISH ASSEMBLAGE DYNAMICS IN RIVER NETWORKS
My recently retired colleague, Joan Baker, and I have developed a prototype computer simulation model for studying the effects of human and non-human alterations of habitats and species availability on fish assemblage populations. The fish assemblage model, written in R, is a sp...
Warming shelf seas drive the subtropicalization of European pelagic fish communities.
Montero-Serra, Ignasi; Edwards, Martin; Genner, Martin J
2015-01-01
Pelagic fishes are among the most ecologically and economically important fish species in European seas. In principle, these pelagic fishes have potential to demonstrate rapid abundance and distribution shifts in response to climatic variability due to their high adult motility, planktonic larval stages, and low dependence on benthic habitat for food or shelter during their life histories. Here, we provide evidence of substantial climate-driven changes to the structure of pelagic fish communities in European shelf seas. We investigated the patterns of species-level change using catch records from 57,870 fisheries-independent survey trawls from across European continental shelf region between 1965 and 2012. We analysed changes in the distribution and rate of occurrence of the six most common species, and observed a strong subtropicalization of the North Sea and Baltic Sea assemblages. These areas have shifted away from cold-water assemblages typically characterized by Atlantic herring and European sprat from the 1960s to 1980s, to warmer-water assemblages including Atlantic mackerel, Atlantic horse mackerel, European pilchard and European anchovy from the 1990s onwards. We next investigated if warming sea temperatures have forced these changes using temporally comprehensive data from the North Sea region. Our models indicated the primary driver of change in these species has been sea surface temperatures in all cases. Together, these analyses highlight how individual species responses have combined to result in a dramatic subtropicalization of the pelagic fish assemblage of the European continental shelf. © 2014 John Wiley & Sons Ltd.
Macroecological analysis of the fish fauna inhabiting Cymodocea nodosa seagrass meadows.
Espino, F; Brito, A; Haroun, R; Tuya, F
2015-10-01
In this study, patterns in the taxonomic richness and composition of the fish fauna inhabiting Cymodocea nodosa seagrass meadows were described across their entire distribution range in the Mediterranean Sea and adjacent Atlantic Ocean. Specifically, the study tested whether there are differences in the composition of fish assemblages between those ecoregions encompassed by the distribution range of C. nodosa, and whether these differences in composition are connected with differences in bioclimatic affinities of the fish faunas. A literature review resulted in a total of 19 studies, containing 22 fish assemblages at 18 locations. The ichthyofauna associated with C. nodosa seagrass meadows comprises 59 families and 188 species. The western Mediterranean (WM) Sea has the highest species richness (87 species). Fish assemblages from the Macaronesia-Canary Islands, the Sahelian Upwelling, South European Atlantic Shelf and the WM differ, in terms of assemblage composition, relative to other ecoregions. In contrast, the composition of the fish fauna from the central and eastern Mediterranean overlaps. There is a significant serial correlation in fish assemblage composition between adjacent ecoregions along the distribution range of C. nodosa. Dissimilarities in assemblage composition are connected with the geographical separation between locations, and the mean minimum annual seawater temperature is the environmental factor that explains most variation in fish assemblage composition. © 2015 The Fisheries Society of the British Isles.
Spatial extent and dynamics of dam impacts on tropical island freshwater fish assemblages
Cooney, Patrick B.; Kwak, Thomas J.
2013-01-01
Habitat connectivity is vital to the persistence of migratory fishes. Native tropical island stream fish assemblages composed of diadromous species require intact corridors between ocean and riverine habitats. High dams block fish migration, but low-head artificial barriers are more widespread and are rarely assessed for impacts. Among all 46 drainages in Puerto Rico, we identified and surveyed 335 artificial barriers that hinder fish migration to 74.5% of the upstream habitat. We also surveyed occupancy of native diadromous fishes (Anguillidae, Eleotridae, Gobiidae, and Mugilidae) in 118 river reaches. Occupancy models demonstrated that barriers 2 meters (m) high restricted nongoby fish migration and extirpated those fish upstream of 4-m barriers. Gobies are adapted to climbing and are restricted by 12-m barriers and extirpated upstream of 32-m barriers. Our findings quantitatively illustrate the extensive impact of low-head structures on island stream fauna and provide guidance for natural resource management, habitat restoration, and water development strategies.
Surface water connectivity drives richness and composition of Arctic lake fish assemblages
Laske, Sarah M.; Haynes, Trevor B.; Rosenberger, Amanda E.; Koch, Joshua C.; Wipfli, Mark S.; Whitman, Matthew; Zimmerman, Christian E.
2016-01-01
This work provides useful baseline information on the processes that drive the relations between patch connectivity and fish species richness and assemblage composition. The environmental processes that organise fish assemblages in Arctic lakes are likely to change in a warming climate.
Fish assemblage refers to the variety and abundance of fish species in a given waterbody. Fish are sensitive indicators of physical and chemical habitat degradation, environmental contamination, migration barriers, and overall ecosystem productivity.
NASA Astrophysics Data System (ADS)
Sutton, T. T.; Porteiro, F. M.; Heino, M.; Byrkjedal, I.; Langhelle, G.; Anderson, C. I. H.; Horne, J.; Søiland, H.; Falkenhaug, T.; Godø, O. R.; Bergstad, O. A.
2008-01-01
The assemblage structure and vertical distribution of deep-pelagic fishes relative to a mid-ocean ridge system are described from an acoustic and discrete-depth trawling survey conducted as part of the international Census of Marine Life field project MAR-ECO < http://www.mar-eco.no>. The 36-station, zig-zag survey along the northern Mid-Atlantic Ridge (MAR; Iceland to the Azores) covered the full depth range (0 to >3000 m), from the surface to near the bottom, using a combination of gear types to gain a more comprehensive understanding of the pelagic fauna. Abundance per volume of deep-pelagic fishes was highest in the epipelagic zone and within the benthic boundary layer (BBL; 0-200 m above the seafloor). Minimum fish abundance occurred at depths below 2300 m but above the BBL. Biomass per volume of deep-pelagic fishes over the MAR reached a maximum within the BBL, revealing a previously unknown topographic association of a bathypelagic fish assemblage with a mid-ocean ridge system. With the exception of the BBL, biomass per volume reached a water column maximum in the bathypelagic zone between 1500 and 2300 m. This stands in stark contrast to the general "open-ocean" paradigm that biomass decreases exponentially from the surface downwards. As much of the summit of the MAR extends into this depth layer, a likely explanation for this mid-water maximum is ridge association. Multivariate statistical analyses suggest that the dominant component of deep-pelagic fish biomass over the northern MAR was a wide-ranging bathypelagic assemblage that was remarkably consistent along the length of the ridge from Iceland to the Azores. Integrating these results with those of previous studies in oceanic ecosystems, there appears to be adequate evidence to conclude that special hydrodynamic and biotic features of mid-ocean ridge systems cause changes in the ecological structure of deep-pelagic fish assemblages relative to those at the same depths over abyssal plains. Lacking terrigenous input of allochthonous organic carbon, increased demersal fish diversity and biomass over the MAR relative to the abyssal plains may be maintained by increased bathypelagic food resources. The aggregation of bathypelagic fishes with MAR topographic features was primarily a large adult phenomenon. Considering the immense areal extent of mid-ocean ridge systems globally, this strategy may have significant trophic transfer and reproductive benefits for deep-pelagic fish populations.
Fish assemblages in Tanzanian mangrove creek systems influenced by solar salt farm constructions
NASA Astrophysics Data System (ADS)
Mwandya, Augustine W.; Gullström, Martin; Öhman, Marcus C.; Andersson, Mathias H.; Mgaya, Yunus D.
2009-04-01
Deforestation of mangrove forests is common occurrence worldwide. We examined fish assemblage composition in three mangrove creek systems in Tanzania (East Africa), including two creeks where the upper parts were partly clear-cut of mangrove forest due to the construction of solar salt farms, and one creek with undisturbed mangrove forest. Fish were caught monthly for one year using a seine net (each haul covering 170 m 2) within three locations in each creek, i.e. at the upper, intermediate and lower reaches. Density, biomass and species number of fish were lower in the upper deforested sites compared to the mangrove-fringed sites at the intermediate and lower parts in the two creeks affected by deforestation, whereas there were no differences among the three sites in the undisturbed mangrove creek system. In addition, multivariate analyses showed that the structure of fish assemblages varied between forested and clear-cut sites within the two disturbed creeks, but not within the undisturbed creek. Across the season, we found no significant differences except for a tendency of a minor increase in fish densities during the rainy season. At least 75% of the fishes were juveniles and of commercial interest for coastal fisheries and/or aquaculture. Mugil cephalus, Gerres oyena and Chanos chanos were the most abundant species in the forested sites. The dominant species in the clear-cut areas were M. cephalus and Elops machnata, which were both found in relatively low abundances compared to the undisturbed areas. The conversion of mangrove forests into solar salt farms not only altered fish assemblage composition, but also water and sediment conditions. In comparison with undisturbed areas, the clear-cut sites showed higher salinity, water temperature as well as organic matter and chlorophyll a in the sediments. Our results suggest that mangrove habitat loss and changes in environmental conditions caused by salt farm developments will decrease fish densities, biomass and species numbers as well as alter the overall fish assemblage composition in the salt farm area but not downstream in the creek.
Mont'Alverne, R; Pereyra, P E R; Garcia, A M
2016-07-01
Stable isotopes were used to evaluate the hypothesis that fish assemblages occurring in shallow and deep areas of a large coastal lagoon are structured in partially segregated trophic modules with consumers showing contrasting reliance on benthic or pelagic food sources. The results revealed that fishes in deep areas were mainly dependent on particulate organic matter in the sediment (SOM), whereas emergent macrophytes were as important as SOM to fish consumers in shallow areas. Conceptual trophic diagrams depicting relationships among basal food sources and consumers in different regions of the lagoon highlighted the greater use of multiple basal food sources by more feeding mode functional guilds in shallow water compared with the use of predominantly benthic resources (SOM) in deep areas. The findings appear to corroborate the initial hypothesis and offer complementary perspectives in understanding the role of spatial ecology in structuring coastal ecosystem function and productivity. © 2016 The Fisheries Society of the British Isles.
Shift in a Large River Fish Assemblage: Body-Size and Trophic Structure Dynamics
Broadway, Kyle J.; Pyron, Mark; Gammon, James R.; Murry, Brent A.
2015-01-01
As the intensity and speed of environmental change increase at both local and global scales it is imperative that we gain a better understanding of the ecological implications of community shifts. While there has been substantial progress toward understanding the drivers and subsequent responses of community change (e.g. lake trophic state), the ecological impacts of food web changes are far less understood. We analyzed Wabash River fish assemblage data collected from 1974-2008, to evaluate temporal variation in body-size structure and functional group composition. Two parameters derived from annual community size-spectra were our major response variables: (1) the regression slope is an index of ecological efficiency and predator-prey biomass ratios, and (2) spectral elevation (regression midpoint height) is a proxy for food web capacity. We detected a large assemblage shift, over at least a seven year period, defined by dramatic changes in abundance (measured as catch-per-unit-effort) of the dominant functional feeding groups among two time periods; from an assemblage dominated by planktivore-omnivores to benthic invertivores. There was a concurrent increase in ecological efficiency (slopes increased over time) following the shift associated with an increase in large-bodied low trophic level fish. Food web capacity remained relatively stable with no clear temporal trends. Thus, increased ecological efficiency occurred simultaneous to a compensatory response that shifted biomass among functional feeding groups. PMID:25902144
Introduction to historical changes in large river fish assemblages of the Americas
This book’s objective is to document historical changes in the fish assemblages of large American rivers, and to determine patterns in and rationale for those changes. In this chapter, we review pertinent literature on large rivers and fish assemblages worldwide and briefly intr...
Community structure and biogeography of shore fishes in the Gulf of Aqaba, Red Sea
NASA Astrophysics Data System (ADS)
Khalaf, Maroof A.; Kochzius, Marc
2002-02-01
Shore fish community structure off the Jordanian Red Sea coast was determined on fringing coral reefs and in a seagrass-dominated bay at 6 m and 12 m depths. A total of 198 fish species belonging to 121 genera and 43 families was recorded. Labridae and Pomacentridae dominated the ichthyofauna in terms of species richness and Pomacentridae were most abundant. Neither diversity nor species richness was correlated to depth. The abundance of fishes was higher at the deep reef slope, due to schooling planktivorous fishes. At 12 m depth abundance of fishes at the seagrass-dominated site was higher than on the coral reefs. Multivariate analysis demonstrated a strong influence on the fish assemblages by depth and benthic habitat. Fish species richness was positively correlated with hard substrate cover and habitat diversity. Abundance of corallivores was positively linked with live hard coral cover. The assemblages of fishes were different on the shallow reef slope, deep reef slope and seagrass meadows. An analysis of the fish fauna showed that the Gulf of Aqaba harbours a higher species richness than previously reported. The comparison with fish communities on other reefs around the Arabian Peninsula and Indian Ocean supported the recognition of an Arabian subprovince within the Indian Ocean. The affinity of the Arabian Gulf ichthyofauna to the Red Sea is not clear.
Temporal turnover and the maintenance of diversity in ecological assemblages
Magurran, Anne E.; Henderson, Peter A.
2010-01-01
Temporal variation in species abundances occurs in all ecological communities. Here, we explore the role that this temporal turnover plays in maintaining assemblage diversity. We investigate a three-decade time series of estuarine fishes and show that the abundances of the individual species fluctuate asynchronously around their mean levels. We then use a time-series modelling approach to examine the consequences of different patterns of turnover, by asking how the correlation between the abundance of a species in a given year and its abundance in the previous year influences the structure of the overall assemblage. Classical diversity measures that ignore species identities reveal that the observed assemblage structure will persist under all but the most extreme conditions. However, metrics that track species identities indicate a narrower set of turnover scenarios under which the predicted assemblage resembles the natural one. Our study suggests that species diversity metrics are insensitive to change and that measures that track species ranks may provide better early warning that an assemblage is being perturbed. It also highlights the need to incorporate temporal turnover in investigations of assemblage structure and function. PMID:20980310
Biomonitors of stream quality on agricultural areas: fish versus invertebrates
Berkman, Hilary E.; Rabeni, Charles F.; Boyle, Terence P.
1986-01-01
Although the utility of using either fish or benthic invertebrates as biomonitors of stream quality has been clearly shown, there is little comparative information on the usefulness of the groups in any particular situation. We compared fish to invertebrate assemblages in their ability to reflect habitat quality of sediment-impacted streams in agricultural regions of northeast Missouri, USA. Habitat quality was measured by a combination of substrate composition, riparian type, buffer strip width, and land use. Invertebrates were more sensitive to habitat differences when structural measurements, species diversity and ordination, were used. Incorporating ecological measurements, by using the Index of Biological Integrity, increased the information obtained from the fish assemblage. The differential response of the two groups was attributed to the more direct impact of sediments on invertebrate life requisites; the impact of sedimentation on fish is considered more indirect and complex, affecting feeding and reproductive mechanisms.
Tewson, L H; Cowx, I G; Nunn, A D
2016-04-01
This study investigated diel variations in zooplankton composition and abundance, and the species composition, density, size structure, feeding activity, diet composition and prey selection of larval and 0+ year juvenile fishes in the littoral of a man-made floodplain waterbody over five 24 h periods within a 57 day period. There was a significant difference in the species composition of diurnal and nocturnal catches, with most species consistently peaking in abundance either during daylight or at night, reflecting their main activity period. There were no consistent diel patterns in assemblage structure or the abundance of some species, however, most likely, respectively, due to the phenology of fish hatching and ontogenetic shifts in diel behaviour or habitat use. There were few clear diel patterns in the diet composition or prey selection of larval and 0+ year juvenile roach Rutilus rutilus and perch Perca fluviatilis, with most taxa consistently selected or avoided irrespective of the time of day or night, and no obvious shift between planktonic and benthic food sources, but dietary overlap suggested that interspecific interactions were probably strongest at night. It is essential that sampling programmes account for the diel ecology of the target species, as diurnal surveys alone could produce inaccurate assessments of resource use. The relative lack of consistent diel patterns in this study suggests that multiple 24 h surveys are required in late spring and early summer to provide accurate assessments of 0+ year fish assemblage structure and foraging ecology. © 2016 The Fisheries Society of the British Isles.
Robinson, Kelly F.; Jennings, Cecil A.
2014-01-01
The dominant fish species within impounded coastal wetlands in the southeastern US may be different from the species that dominate natural marshes. We tested the hypothesis that resident fish assemblages inhabiting impounded coastal wetlands in South Carolina would differ from resident assemblages in natural marshes of the southeastern United States. We used rarefied species richness, Shannon's H' diversity,J' evenness, Morisita's index of similarity, and the percent similarity index to compare resident fish assemblages from two impoundments to 12 open-marsh resident fish assemblages from previously published studies in North and South Carolina. We used rotenone to sample fish assemblages in impoundments. The assemblages in natural marsh habitat had been sampled with rotenone and seines. We classified comparisons yielding a similarity index ≥0.50 as moderately similar and those with an index ≥0.75 as very similar. Fifty-three percent of the among-impoundment comparisons (Morisita's index) were at least moderately similar, whereas 7% of impoundment—natural marsh comparisons were moderately similar. A difference in tidal influence was the only parameter in the best-fitting model describing the observed Morisita's indices. The index of similarity decreased by 63% when tidal influence differed between compared assemblages. Species richness and diversity were greater in impoundments than natural marshes, but evenness was similar between habitat types. Our results support the hypothesis that resident fish assemblages in impounded wetlands and natural marshes are different, and suggest that a degree of tidal influence is the most important factor behind the difference.
Growns, Ivor; Astles, Karen; Gehrke, Peter
2006-03-01
We studied the multiscale (sites, river reaches and rivers) and short-term temporal (monthly) variability in a freshwater fish assemblage. We found that small-scale spatial variation and short-term temporal variability significantly influenced fish community structure in the Macquarie and Namoi Rivers. However, larger scale spatial differences between rivers were the largest source of variation in the data. The interaction between temporal change and spatial variation in fish community structure, whilst statistically significant, was smaller than the variation between rivers. This suggests that although the fish communities within each river changed between sampling occasions, the underlying differences between rivers were maintained. In contrast, the strongest interaction between temporal and spatial effects occurred at the smallest spatial scale, at the level of individual sites. This means whilst the composition of the fish assemblage at a given site may fluctuate, the magnitude of these changes is unlikely to affect larger scale differences between reaches within rivers or between rivers. These results suggest that sampling at any time within a single season will be sufficient to show spatial differences that occur over large spatial scales, such as comparisons between rivers or between biogeographical regions.
Maret, T.R.; Robinson, C.T.; Minshall, G.W.
1997-01-01
Fish assemblages and environmental variables were evaluated from 37 least-disturbed, 1st- through 6th-order streams and springs in the upper Snake River basin, western USA. Data were collected as part of the efforts by the U.S. Geological Survey National Water Quality Assessment Program and the Idaho State University Stream Ecology Center to characterize aquatic biota and associated habitats in least-disturbed coldwater streams. Geographically, the basin comprises four ecoregions. Environmental variables constituting various spatial scales, from watershed characteristics to in stream habitat measures, were used to examine distribution patterns in fish assemblages. Nineteen fish species in the families Salmonidae, Cottidae, Cyprinidae, and Catostemidae were collected. Multivariate analyses showed high overlap in stream fish assemblages among the ecoregions. Major environmental factors determining species distributions in the basin were stream gradient, watershed size, conductivity, and percentage of the watershed covered by forest. Lowland streams (below 1,600 m in elevation), located mostly in the Snake River Basin/High Desert ecoregion, displayed different fish assemblages than upland streams (above 2,000 m elevation) in the Northern Rockies, Middle Rockies, and Northern Basin and Range ecoregions. For example, cotrids were not found in streams above 2,000 m in elevation. In addition, distinct fish assemblages were found in tributaries upstream and downstream from the large waterfall, Shoshone Falls, on the Snake River. Fish metrics explaining most of the variation among sites included the total number of species, number of native species, number of salmonid species, percent introduced species, percent cottids, and percent salmonids. Springs also exhibited different habitat conditions and fish assemblages than streams. The data suggest that the evolutionary consequences of geographic features and fish species introductions transcend the importance of ecoregion boundaries on fish distributions in the upper Snake River basin.
A PROCESS FOR DEVELOPING AND EVALUATING INDICIES OF FISH ASSEMBLAGE INTEGRITY
We describe a general process for developing an index of fish assemblage integrity, using the Willamette Valley of Oregon, U.S.A., as an example. Such an index is useful for assessing the effects of humans on entire fish assemblages, and the general process can be applied to any ...
Mejia, F.; Saiki, M.K.; Takekawa, John Y.
2008-01-01
This study was conducted to characterize fishery resources inhabiting salt-evaporation ponds and sloughs in South San Francisco Bay, and to identify key environmental variables that influence distribution of fishes. The ponds, which were originally constructed and operated for commercial production of salt, have undergone preliminary modifications (installation of culverts, gates, and other water-control structures) in preparation for full restoration to mostly tidal wetlands over the next 2 decades. We sampled fish from two salt-pond complexes (Alviso complex and Eden Landing complex), each consisting of several pond systems and their associated sloughs. Cluster analysis of species of fish indicated that at least two species assemblages were present, one characteristic of ponds and the other characteristic of sloughs and slough-like ponds. The slough-like ponds exhibited water-quality conditions (especially salinity) that resembled conditions found in the sloughs. Pond fishes were represented by 12 species, whereas slough fishes were represented by 22 species. Except for bay pipefish (Syngnathus leptorhynchus), which was unique to ponds, all species present in ponds also were in sloughs and slough-like ponds. These results indicated that species of fish in ponds originated from the sloughs. According to canonical-discriminant analysis, four environmental variables were useful for discriminating between the two species assemblages. Most discriminatory power was contributed by the index of habitat connectivity, a measure of minimum distance that a fish must travel to reach a particular pond from the nearest slough. Apparently, as fish from sloughs enter and move through interconnected salt ponds, environmental stress factors increase in severity until only the more tolerant species remain. The most likely source of stress is salinity, because this variable was second in importance to the index of habitat connectivity in discriminating between the two species assemblages. Water temperature and concentration of dissolved oxygen also seemingly influenced spatial distribution of fishes, although they were less important than salinity.
Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean
NASA Astrophysics Data System (ADS)
Olivar, M. P.; Bernal, A.; Molí, B.; Peña, M.; Balbín, R.; Castellón, A.; Miquel, J.; Massutí, E.
2012-04-01
The mesopelagic fish community of the western Mediterranean was studied during two cruises carried out in December 2009 and July 2010 in the shelf and slope zones around the Balearic Islands. Much of what was previously known about this deep water group of fishes in the Mediterranean Sea came from studies performed using planktonic and small midwater nets. This study was the first attempt to use large pelagic trawls and small nets combined with information about the main sound scattering layers to analyse mesopelagic fish composition, diversity and species assemblages. This community is characterised by a relatively low diversity compared to other oceanic regions of the world, with Myctophiformes and Stomiiformes being the main contributors. Bathymetry and the level of the water column were the most important factors structuring the investigated fish assemblages, and similar vertical patterns were observed for the different species collected during the two study periods. A shelf assemblage composed of a few species of myctophids, with Notoscopelus elongatus being the main contributor, was distinguished. The slope assemblage included both Myctophiformes and Stomiiformes that showed differences in their day-night main location along the water column. In terms of species behaviour, two important groups were detected. The first was non-migrant or weakly migrant species, with the paradigmatic example being the gonostomatid Cyclothone braueri, which occurred at a depth of 400-600 m; this species is partly responsible for the permanent acoustic (38 kHz) response at this depth. The second group, near-surface migrants at night, was represented by most of the juvenile and adult myctophids, exemplified by Ceratoscopelus maderensis, with the exception of just a few of the largest size classes of some species, such as Lampanyctus crocodilus and N. elongatus that remain near the bottom.
Fish trophic level and the similarity of non-specific larval parasite assemblages.
Timi, J T; Rossin, M A; Alarcos, A J; Braicovich, P E; Cantatore, D M P; Lanfranchi, A L
2011-03-01
Whereas the effect of parasites on food webs is increasingly recognised and has been extensively measured and modelled, the effect of food webs on the structure of parasite assemblages has not been quantified in a similar way. Here, we apply the concept of decay in community similarity with increasing distance, previously used for parasites in geographical, phylogenetic and ontogenetic contexts, to differences in the trophic level (TL) based on diet composition of fishes. It is proposed as an accurate quantitative method to measure rates of assemblage change as a function of host feeding habits and is applied, to our knowledge for the first time, across host species in marine waters. We focused on a suite of 15 species of trophically-transmitted and non-specific larval helminths across 16 fish species (1783 specimens, six orders, 14 families) with different sizes and TLs, gathered from the same ecosystem. Not all host species harboured the same number and types of parasites, reflecting the differences in their ecological characteristics. Using differences in TL and body length as measurements of size and trophic distances, we found that similarity at both infracommunity and component community levels showed a very clear decay pattern, based on parasite abundance and relative abundance, with increasing distance in TL, but was not related to changes in fish size, with TL thus emerging as the main explanatory factor for similarity of parasite assemblages. Furthermore, the relationships between host TL and assemblage similarity allowed identification of fishes for which the TL was under- or over-estimated and prediction of the TL of host species based on parasite data alone. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Ghazilou, Amir; Shokri, Mohammad Reza; Gladstone, William
2016-04-30
Seasonal dynamics of coral reef fish assemblages were assessed along a gradient of potential anthropogenic disturbance in the Northern Persian Gulf. Overall, the attributes of coral reef fish assemblages showed seasonality at two different levels: seasonal changes irrespective of the magnitude of disturbance level (e.g. species richness), and seasonal changes in response to disturbance level (e.g. total abundance and assemblage composition). The examined parameters mostly belonged to the second group, but the interpretation of the relationship between patterns of seasonal changes and the disturbance level was not straightforward. The abundance of carnivorous fishes did not vary among seasons. SIMPER identified the family Nemipteridae as the major contributor to the observed spatiotemporal variations in the composition of coral reef fish assemblages in the study area. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Akin, S.; Winemiller, K. O.; Gelwick, F. P.
2003-05-01
Fish and macrocrustacean assemblage structure was analyzed along an estuarine gradient at Mad Island Marsh (MIM), Matagorda Bay, TX, during March 1998-August 1999. Eight estuarine-dependent fish species accounted for 94% of the individual fishes collected, and three species accounted for 96% of macrocrustacean abundance. Consistent with evidence from other Gulf of Mexico estuarine studies, species richness and abundance were highest during late spring and summer, and lowest during winter and early spring. Sites near the bay supported the most individuals and species. Associations between fish abundance and environmental variables were examined with canonical correspondence analysis. The dominant gradient was associated with water depth and distance from the bay. The secondary gradient reflected seasonal variation and was associated with temperature, salinity, dissolved oxygen, and vegetation cover. At the scales examined, estuarine biota responded to seasonal variation more than spatial variation. Estuarine-dependent species dominated the fauna and were common throughout the open waters of the shallow lake during winter-early spring when water temperature and salinity were low and dissolved oxygen high. During summer-early fall, sub-optimal environmental conditions (high temperature, low DO) in upper reaches accounted for strong spatial variation in assemblage composition. Small estuarine-resident fishes and the blue crab ( Callinectes sapidus) were common in warm, shallow, vegetated inland sites during summer-fall. Estuarine-dependent species were common at deeper, more saline locations near the bay during this period. During summer, freshwater species, such as gizzard shad ( Dorosoma cepedianum) and gars ( Lepisosteus spp.), were positively associated with water depth and proximity to the bay. The distribution and abundance of fishes in MIM appear to result from the combined effects of endogenous, seasonal patterns of reproduction and migration operating on large spatial scales, and species-specific response to local environmental variation.
Kennen, Jonathan G.; Riskin, Melissa L.
2010-01-01
Changes in water demand associated with population growth and changes in land-use practices in the Pinelands region of southern New Jersey will have a direct effect on stream hydrology. The most pronounced and measurable hydrologic effect is likely to be flow reductions associated with increasing water extraction. Because water-supply needs will continue to grow along with population in the Pinelands area, the goal of maintaining a sustainable balance between the availability of water to protect existing aquatic assemblages while conserving the surficial aquifer for long-term support of human water use needs to be addressed. Although many aquatic fauna have shown resilience and resistance to short-term changes in flows associated with water withdrawals, sustained effects associated with ongoing water-development processes are not well understood. In this study, the U.S. Geological Survey sampled forty-three 100-meter-long stream reaches during high- and low-flow periods across a designed hydrologic gradient ranging from small- (4.1 square kilometers (1.6 square miles)) to medium- (66.3 square kilometers (25.6 square miles)) sized Pinelands stream basins. This design, which uses basin size as a surrogate for water availability, provided an opportunity to evaluate the possible effects of potential variation in stream hydrology on fish and aquatic-invertebrate assemblage response in New Jersey Pinelands streams where future water extraction is expected based on known build-out scenarios. Multiple-regression models derived from extracted non-metric multidimensional scaling axis scores of fish and aquatic invertebrates indicate that some variability in aquatic-assemblage composition across the hydrologic gradient is associated with anthropogenic disturbance, such as urbanization, changes in stream chemistry, and concomitant changes in high-flow runoff patterns. To account for such underlying effects in the study models, any flow parameter or assemblage attribute that was found to be significantly correlated (|rho| = 0.5000) to known anthropogenic drivers (for example, the amount of urbanization in the basin) was eliminated from analysis. A reduced set of low- and annual-flow hydrologic variables, found to be unrelated to anthropogenic influences, was used to develop assemblage-response models. Many linear (monotonic) and curvilinear bivariate flow-ecology response models were developed for fish and invertebrate assemblages. For example, the duration and magnitude of low-flow events were significant predictors of invertebrate-assemblage complexity (for example, invertebrate-species richness, Plecoptera richness, and Ephemeroptera abundance); however, response models between flow attributes and fish-assemblage structure were, in all cases, more poorly fit. Annual flow variability also was important, especially variability across mean minimum monthly flows and annual mean streamflow. In general, all response models followed upward or downward trends that would be expected given hydrologic changes in Pinelands streams. This study demonstrates that the structural and functional response of aquatic assemblages of the Pinelands ecosystem resulting from changes in water-use practices associated with population growth and increased water extraction may be predictable.
NASA Astrophysics Data System (ADS)
Guan, Lu; Dower, John F.; McKinnell, Skip M.; Pepin, Pierre; Pakhomov, Evgeny A.; Hunt, Brian P. V.
2015-11-01
The concentration and composition of the larval fish assemblage in the Strait of Georgia (British Columbia, Canada) has changed between the early 1980s (1980 and 1981) and the late 2000s (2007, 2009 and 2010). During both periods, the spring larval fish assemblages were dominated by pelagic species: Clupea pallasi (Pacific herring), Merluccius productus (Pacific hake), Leuroglossus schmidti (northern smoothtongue) and Theragra chalcogramma (walleye Pollock). The average concentration of Merluccius productus, Theragra chalcogramma, Leuroglossus schmidti, and Sebastes spp. declined between the early 1980s and the late 2000s; in contrast, the absolute concentration and proportion of Pleuronectidae and several demersal fish taxa increased in the spring larval assemblage. Examination of the associations between larval fish assemblages and environmental fluctuations suggests that large-scale climate processes are potential contributors to variations in overall larval concentrations of the dominant taxa and assemblage composition in the Strait of Georgia.
Climate change effects on North American inland fish populations and assemblages
Lynch, Abigail J.; Myers, Bonnie; Chu, Cindy; Eby, Lisa A.; Falke, Jeffrey A.; Kovach, Ryan P.; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Lyons, John; Paukert, Craig P.; Whitney, James E.
2016-01-01
Climate is a critical driver of many fish populations, assemblages, and aquatic communities. However, direct observational studies of climate change impacts on North American inland fishes are rare. In this synthesis, we (1) summarize climate trends that may influence North American inland fish populations and assemblages, (2) compile 31 peer-reviewed studies of documented climate change effects on North American inland fish populations and assemblages, and (3) highlight four case studies representing a variety of observed responses ranging from warmwater systems in the southwestern and southeastern United States to coldwater systems along the Pacific Coast and Canadian Shield. We conclude by identifying key data gaps and research needs to inform adaptive, ecosystem-based approaches to managing North American inland fishes and fisheries in a changing climate.
Grossman, G.D.; Ratajczak, R.E.; Crawford, M. M.; Freeman, Mary C.
1998-01-01
We assessed the relative importance of environmental variation, interspecific competition for space, and predator abundance on assemblage structure and microhabitat use in a stream fish assemblage inhabiting Coweeta Creek, North Carolina, USA. Our study encompassed a ten year time span (1983-1992) and included some of the highest and lowest flows in the last 58 years. We collected 16 seasonal samples which included data on: 1) habitat availability (total and microhabitat) and microhabitat diversity, 2) assemblage structure (i.e., the number and abundances of species comprising a subset of the community), and 3) microhabitat use and overlap. We classified habitat availability data on the basis of year, season, and hydrologic period. Hydrologic period (i.e., pre-drought [PR], drought [D], and post-drought [PO]) represented the temporal location of a sample with respect to a four-year drought that occurred during the study. Hydrologic period explained a greater amount of variance in habitat availability data than either season or year. Total habitat availability was significantly greater during PO than in PR or D, although microhabitat diversity did not differ among either seasons or hydrologic periods. There were significantly fewer high-flow events (i.e., > 2.1 m3/s) during D than in either PR or PO periods. We observed a total of 16 species during our investigation, and the total number of species was significantly higher in D than in PR samples. Correlation analyses between the number of species present (total and abundant species) and environmental data yielded limited results, although the total number of species was inversely correlated with total habitat availability. A cluster analysis grouped assemblage structure samples by hydrologic period rather than season or year, supporting the contention that variation in annual flow had a strong impact on this assemblage. The drought had little effect on the numerical abundance of benthic species in this assemblage; however, a majority of water-column species increased in abundance. The increased abundances or water-column species may have been related to the decrease in high flow events observed during the D. Such high flow events are known to cause mortality in stream fishes. Microhabitat use data showed that species belonged to one of three microhabitat guilds: benthic, lower water-column, and mid-water-column. In general, species within the same guild did not exhibit statistically distinguishable patterns of microhabitat use, and most significant differences occurred between members of different guilds. However, lower water-column guild species frequently were not separable from all members of either benthic or mid-water-column guilds. Variations in the abundance of potential competitors or predators did not produce strong shifts in microhabitat use by assemblage members. Predators were present in the site in only 9 of 16 seasonal samples and never were abundant (maximum number observed per day was 2). In conclusion, our results demonstrate that variability in both mean and peak flows had a much stronger effect on the structure and use of spatial resources within this assemblage than either interspecific competition for space or predation. Consequently, we suspect that the patterns in both assemblage structure and resource use displayed by fishes in Coweeta Creek arose from the interaction between environmental variation and species-specific evolutionary constraints on behavior, morphology and physiology.
Meador, M.R.; Coles, J.F.; Zappia, H.
2005-01-01
We examined fish assemblage responses to urban intensify gradients in two contrasting metropolitan areas: Birmingham, Alabama (BIR) and Boston, Massachusetts (BOS). Urbanization was quantified by using an urban intensity index (UII) that included multiple stream buffers and basin land uses, human population density, and road density variables. We evaluated fish assemblage responses by using species richness metrics and detrended correspondence analyses (DCA). Fish species richness metrics included total fish species richness, and percentages of endemic species richness, alien species, and fluvial specialist species. Fish species richness decreased significantly with increasing urbanization in BIR (r = -0.82, P = 0.001) and BOS (r = -0.48, P = 0.008). Percentages of endemic species richness decreased significantly with increasing urbanization only in BIR (r = - 0.71, P = 0.001), whereas percentages of fluvial specialist species decreased significantly with increasing urbanization only in BOS (r = -0.56, P = 0.002). Our DCA results for BIR indicate that highly urbanized fish assemblages are composed primarily of largescale stoneroller Campostoma oligolepis, largemouth bass Micropterus salmoides, and creek chub Semotilus atromaculatus, whereas the highly urbanized fish assemblages in BOS are dominated by yellow perch Perca flavescens, bluegill Lefomis macrochirus, yellow bullhead Ameiurus natalis, largemouth bass, pumpkinseed L. gibbosus, brown bullhead A. nebulosus, and redfin pickerel Esox americanus. Differences in fish assemblage responses to urbanization between the two areas appear to be related to differences in nutrient enrichment, habitat alterations, and invasive species. Because species richness can increase or decrease with increasing urbanization, a general response model is not applicable. Instead, response models based on species' life histories, behavior, and autecologies offer greater potential for understanding fish assemblage responses to urbanization. ?? 2005 by the American Fisheries Society.
Brasher, Anne M.D.; Konrad, Chris P.; May, Jason T.; Edmiston, C. Scott; Close, Rebecca N.
2010-01-01
Hydrographic characteristics of streamflow, such as high-flow pulses, base flow (background discharge between floods), extreme low flows, and floods, significantly influence aquatic organisms. Streamflow can be described in terms of magnitude, timing, duration, frequency, and variation (hydrologic regime). These characteristics have broad effects on ecosystem productivity, habitat structure, and ultimately on resident fish, invertebrate, and algae communities. Increasing human use of limited water resources has modified hydrologic regimes worldwide. Identifying the most ecologically significant hydrographic characteristics would facilitate the development of water-management strategies.Benthic invertebrates include insects, mollusks (snails and clams), worms, and crustaceans (shrimp) that live on the streambed. Invertebrates play an important role in the food web, consuming other invertebrates and algae and being consumed by fish and birds. Hydrologic alteration associated with land and water use can change the natural hydrologic regime and may affect benthic invertebrate assemblage composition and structure through changes in density of invertebrates or taxa richness (number of different species).This study examined associations between the hydrologic regime and characteristics of benthic invertebrate assemblages across the western United States and developed tools to identify streamflow characteristics that are likely to affect benthic invertebrate assemblages.
Jaureguizar, A J; Solari, A; Cortés, F; Milessi, A C; Militelli, M I; Camiolo, M D; Luz Clara, M; García, M
2016-07-01
The fish diversity and the main environmental factors affecting the spatial distribution of species, life history stages and community structure in the Río de la Plata (RdP) and adjacent waters are reviewed and analysed, with emphasis on the functional guild classification. The functional guild classification indicated that most species in the RdP were marine stragglers, zoobenthivores and oviparous species, although the biomass was dominated by estuarine species. Salinity had a stronger influence than temperature on the spatial pattern for all life stages, shallower and fresher waters are the preferred habitats of neonates and juveniles. During the breeding season (spring-summer), adults showed an intrusion into the inner part of RdP or to its adjacent nearshore waters from the offshore waters for spawning or mating, respectively. Variations in river discharge and wind patterns greatly affected the spatial extent of estuarine water, which ultimately influenced the domain of the main life-history stages (juveniles or adults) for both marine and estuarine fishes, as well as species and fish assemblage composition. The strong environmental gradient restricts some species and life-history stages to a particular section and defines three main fish assemblage areas. The composition of the fish assemblage is indicative of the recruitment of freshwater and marine species to the estuary in opposite ways, determined by the vertical stratification. Seasonal changes in the species composition were related to migration as a result of salinity and temperature variations and reproductive migrations to spawning and mating areas. This overview reveals that the RdP is under environmental variations that are likely to produce modifications to fish distribution and abundance that affect its fisheries. This context plus fish stock declines and changes in exploitation patterns could amplify the magnitude of the variations in the fisheries resources availability and affect the sustainability of fishing communities. © 2016 The Fisheries Society of the British Isles.
Barko, V.A.; Herzog, D.P.
2003-01-01
We analyzed fish abundance and environmental data collected over nine years from six side channels of the unimpounded upper Mississippi River between river km 46.7 and 128.7. A partial canonical correspondence analysis revealed differences in fish assemblages and environmental factors correlated with the six side channels. Fishes correlated with open side channels represented large river species tolerant of current and/or turbidity. Fishes correlated with closed side channels represented assemblages preferring either moderate to low turbidity/current or pools.
Multi-scale sampling to evaluate assemblage dynamics in an oceanic marine reserve.
Thompson, Andrew R; Watson, William; McClatchie, Sam; Weber, Edward D
2012-01-01
To resolve the capacity of Marine Protected Areas (MPA) to enhance fish productivity it is first necessary to understand how environmental conditions affect the distribution and abundance of fishes independent of potential reserve effects. Baseline fish production was examined from 2002-2004 through ichthyoplankton sampling in a large (10,878 km(2)) Southern Californian oceanic marine reserve, the Cowcod Conservation Area (CCA) that was established in 2001, and the Southern California Bight as a whole (238,000 km(2) CalCOFI sampling domain). The CCA assemblage changed through time as the importance of oceanic-pelagic species decreased between 2002 (La Niña) and 2003 (El Niño) and then increased in 2004 (El Niño), while oceanic species and rockfishes displayed the opposite pattern. By contrast, the CalCOFI assemblage was relatively stable through time. Depth, temperature, and zooplankton explained more of the variability in assemblage structure at the CalCOFI scale than they did at the CCA scale. CalCOFI sampling revealed that oceanic species impinged upon the CCA between 2002 and 2003 in association with warmer offshore waters, thus explaining the increased influence of these species in the CCA during the El Nino years. Multi-scale, spatially explicit sampling and analysis was necessary to interpret assemblage dynamics in the CCA and likely will be needed to evaluate other focal oceanic marine reserves throughout the world.
Multi-Scale Sampling to Evaluate Assemblage Dynamics in an Oceanic Marine Reserve
Thompson, Andrew R.; Watson, William; McClatchie, Sam; Weber, Edward D.
2012-01-01
To resolve the capacity of Marine Protected Areas (MPA) to enhance fish productivity it is first necessary to understand how environmental conditions affect the distribution and abundance of fishes independent of potential reserve effects. Baseline fish production was examined from 2002–2004 through ichthyoplankton sampling in a large (10,878 km2) Southern Californian oceanic marine reserve, the Cowcod Conservation Area (CCA) that was established in 2001, and the Southern California Bight as a whole (238,000 km2 CalCOFI sampling domain). The CCA assemblage changed through time as the importance of oceanic-pelagic species decreased between 2002 (La Niña) and 2003 (El Niño) and then increased in 2004 (El Niño), while oceanic species and rockfishes displayed the opposite pattern. By contrast, the CalCOFI assemblage was relatively stable through time. Depth, temperature, and zooplankton explained more of the variability in assemblage structure at the CalCOFI scale than they did at the CCA scale. CalCOFI sampling revealed that oceanic species impinged upon the CCA between 2002 and 2003 in association with warmer offshore waters, thus explaining the increased influence of these species in the CCA during the El Nino years. Multi-scale, spatially explicit sampling and analysis was necessary to interpret assemblage dynamics in the CCA and likely will be needed to evaluate other focal oceanic marine reserves throughout the world. PMID:22448236
Bonnie J.E. Myers; C. Andrew Dolloff; Jackson R. Webster; Keith H. Nislow; Brandon Fair; Andrew L. Rypel
2017-01-01
Production of biomass is central to the ecology and sustainability of fish assemblages. The goal of this study was to empirically estimate and compare fish assemblage production, production-to-biomass (P/B) ratios and species composition for 25Â second- to third-order streams spanning the Appalachian Mountains (from Vermont to North Carolina) that vary in their...
Analysis of Trends in Fish Assemblages in Narragansett Bay, RI/MA
Estuarine fish are highly valued resources that are affected by several factors, including climate, landscape, pollution, and fishing pressure. Here, we examine patterns of variability in estuarine fish assemblages in Narragansett Bay, an estuary located in Rhode Island and Mass...
Benthic assemblages of mega epifauna on the Oregon continental margin
NASA Astrophysics Data System (ADS)
Hemery, Lenaïg G.; Henkel, Sarah K.; Cochrane, Guy R.
2018-05-01
Environmental assessment studies are usually required by a country's administration before issuing permits for any industrial activities. One of the goals of such environmental assessment studies is to highlight species assemblages and habitat composition that could make the targeted area unique. A section of the Oregon continental slope that had not been previously explored was targeted for the deployment of floating wind turbines. We carried out an underwater video survey, using a towed camera sled, to describe its benthic assemblages. Organisms were identified to the lowest taxonomic level possible and assemblages described related to the nature of the seafloor and the depth. We highlighted six invertebrate assemblages and three fish assemblages. For the invertebrates within flat soft sediments areas we defined three different assemblages based on primarily depth: a broad mid-depth (98-315 m) assemblage dominated by red octopus, sea pens and pink shrimps; a narrower mid-depth (250-270 m) assemblage dominated by box crabs and various other invertebrates; and a deeper (310-600 m) assemblage dominated by sea urchins, sea anemones, various snails and zoroasterid sea stars. The invertebrates on mixed sediments also were divided into three different assemblages: a shallow ( 100 m deep) assemblage dominated by plumose sea anemones, broad mid-depth (170-370 m) assemblage dominated by sea cucumbers and various other invertebrates; and, again, a narrower mid-depth (230-270 m) assemblage, dominated by crinoids and encrusting invertebrates. For the fish, we identified a rockfish assemblage on coarse mixed sediments at 170-370 m and another fish assemblage on smaller mixed sediments within that depth range (250-370 m) dominated by thornyheads, poachers and flatfishes; and we identified a wide depth-range (98-600 m) fish assemblage on flat soft sediments dominated by flatfishes, eelpouts and thornyheads. Three of these assemblages (the two broad fish assemblages and the deep flat soft sediments invertebrate assemblage) seem to represent deeper examples of assemblages already known on the Oregon continental shelf, especially on soft sediments, while the assemblages in the pockmarks habitat (the narrower depth ranges) might be unique to the area. This diversity of assemblages in a relatively small section of the Oregon continental upper slope and shelf shows the importance of environmental assessment studies in helping limit future impacts of industrial activities on benthic communities.
Kennen, J.G.; Chang, M.; Tracy, B.H.
2005-01-01
We evaluated a comprehensive set of natural and land-use attributes that represent the major facets of urban development at fish monitoring sites in the rapidly growing Raleigh-Durham, North Carolina metropolitan area. We used principal component and correlation analysis to obtain a nonredundant subset of variables that extracted most variation in the complete set. With this subset of variables, we assessed the effect of urban growth on fish assemblage structure. We evaluated variation in fish assemblage structure with nonmetric multidimensional scaling (NMDS). We used correlation analysis to identify the most important environmental and landscape variables associated with significant NMDS axes. The second NMDS axis is related to many indices of land-use/land-cover change and habitat. Significant correlations with proportion of largest forest patch to total patch size (r = -0.460, P < 0.01), diversity of patch types (r = 0.554, P < 0.001), and population density (r = 0.385, P < 0.05) helped identify NMDS axis 2 as a disturbance gradient. Positive and negative correlations between the abundance of redbreast sunfish Lepomis auritus and bluehead chub Nocomis leptocephalus, respectively, and NMDS axis 2 also were evident. The North Carolina index of biotic integrity and many of its component metrics were highly correlated with urbanization. These results indicate that aquatic ecosystem integrity would be optimized by a comprehensive integrated management strategy that includes the preservation of landscape function by maximizing the conservation of contiguous tracts of forested lands and vegetative cover in watersheds. ?? 2005 by the American Fisheries Society.
NASA Astrophysics Data System (ADS)
Akin, S.; Buhan, E.; Winemiller, K. O.; Yilmaz, H.
2005-09-01
Spatial and temporal variation in fish assemblage structure of Koycegiz Lagoon-Estuarine System (KLES), located on the northwestern Turkish coast of Mediterranean, was investigated along an estuarine gradient where salinity ranged from 5 in upper reaches to 40 in lower reaches during October 1993-September 1994. Throughout the study, 42 species, consisting of marine (25), marine-estuarine-dependent (12), freshwater (3), catadromous (1), and estuarine resident (1) forms, were collected in trammel nets. Although species richness of marine species was greater than that of other groups, numerical contribution by marine species to the total catch was only 16%. Tilapia spp., the most abundant species mostly during summer and early spring at upper reaches, contributed 17% of the total samples. Among the seven species of Mugilidae, which contributed 42% of the total catch, Mugil cephalus, Liza aurata, and Liza salines contributed 10, 13, and 10% of the total catch, respectively. Consistent with findings from other studies, species richness and abundance were highest during late spring and summer and the lowest during winter and early spring. Samples from sites at or near the sea had more marine species. Samples from upper reaches had more freshwater and marine-estuarine-dependent species. Canonical correspondence analysis (CCA) indicated that salinity and turbidity were the most important environmental parameters affecting fishes. Sites near the sea were associated with high salinity and low turbidity, and sites in upper reaches had low salinity and high turbidity. Thus, the pattern observed in fish assemblage structure appears to be strongly influenced by species' responses to dominant salinity and turbidity gradients.
Environmental conditions of a large river in southeastern Brazil were assessed by evaluating fish assemblage structure (index of biotic integrity, IBI), landscape use (forest, pasture, urban area, and tributary water) and riparian condition. A survey of the 338 km-long middle rea...
Demersal fish assemblages off southern New Zealand in relation to depth and temperature
NASA Astrophysics Data System (ADS)
Jacob, W.; McClatchie, S.; Probert, P. K.; Hurst, R. J.
1998-12-01
We examined the relationship between demersal fish assemblage and depth, temperature, latitude and longitude off southern New Zealand (46-54°S and 165-180°E) in water depths of 80-787 m. Catch weight data were analysed by two-way indicator analysis (TWIA), groupaverage agglomerative clustering (UPGMA) and Detrended Correspondence Analysis (DCA). The spatial pattern of demersal fish off southern New Zealand conforms to the concept of species groups or fish assemblages related to environmental gradients. Shallow-water assemblages were dominated by species from the families Gempylidae, Squalidae, Triakidae and Moridae, mainly represented by Thyrsites atun, Squalus acanthias, Galeorhinus australis, and Pseudophycis bachus. Deep water assemblages were dominated by Chimaeridae, Argentinidae, Merlucciidae and Macrouridae, mainly represented by Hydrolagus novaezelandiae, Argentina elongata, Macruronus novaezelandiae, and Lepidorhynchus denticulatus. Total catch weight was often dominated by Merlucciidae, Macrouridae and Gempylidae. Fish assemblages were related to discrete ranges of depth (< and >300 m) and temperature (< and >9.5°C), but the range of sediment types was too narrow to show any correlation.
Role of riparian shade on the fish assemblage of a reservoir littoral
Raines, C. D.; Miranda, Leandro E.
2016-01-01
Research into the effects of shade on reservoir fish assemblages is lacking, with most investigations focused on streams. Unlike many streams, the canopy in a reservoir shades only a narrow fringe of water adjacent to the shoreline, and may not have the influential effect on the aquatic environment reported in streams. We compared fish assemblages between shaded and unshaded sites in a shallow reservoir. Overall species richness (gamma diversity) was higher in shaded sites, and fish assemblage composition differed between shaded and unshaded sites. Average light intensity was 66 % lower in shaded sites, and differences in average temperature and dissolved oxygen were small. Unlike streams where shade can have large effects on water physicochemistry, in reservoirs shade-related differences in fish assemblages seemed to be linked principally to differences in light intensity. Diversity in light intensity in shaded and unshaded sites in reservoirs can create various mosaics of light-based habitats that enable diversity of species assemblages. Managing to promote the habitat diversity provided by shade may require coping with the artificial nature of reservoir riparian zones and water level fluctuations.
Hashim, Rohasliney; Jackson, Donald C
2009-01-01
A three-year study (July 2000 – June 2003) of fish assemblages was conducted in four tributaries of the Big Black River: Big Bywy, Little Bywy, Middle Bywy and McCurtain creeks that cross the Natchez Trace Parkway, Choctaw County, Mississippi, USA. Little Bywy and Middle Bywy creeks were within watersheds influenced by the lignite mining. Big Bywy and Middle Bywy creeks were historically impacted by channelisation. McCurtain Creek was chosen as a reference (control) stream. Fish were collected using a portable backpack electrofishing unit (Smith-Root Inc., Washington, USA). Insectivorous fish dominated all of the streams. There were no pronounced differences in relative abundances of fishes among the streams (P > 0.05) but fish assemblages fluctuated seasonally. Although there were some differences among streams with regard to individual species, channelisation and lignite mining had no discernable adverse effects on functional components of fish assemblages suggesting that fishes in these systems are euryceous fluvial generalist species adapted to the variable environments of small stream ecosystems. PMID:24575177
Miyazono, S.; Aycock, J.N.; Miranda, L.E.; Tietjen, T.E.
2010-01-01
We evaluated the influences of habitat connectivity and local environmental factors on the distribution and abundance patterns of fish functional groups in 17 floodplain lakes in the Yazoo River Basin, USA. The results of univariate and multivariate analyses showed that species-environmental relationships varied with the functional groups. Species richness and assemblage structure of periodic strategists showed strong and positive correlations with habitat connectivity. Densities of most equilibrium and opportunistic strategists decreased with habitat connectivity. Densities of certain equilibrium and opportunistic strategists increased with turbidity. Forested wetlands around the lakes were positively related to the densities of periodic and equilibrium strategists. These results suggest that decreases in habitat connectivity, forested wetland buffers and water quality resulting from environmental manipulations may cause local extinction of certain fish taxa and accelerate the dominance of tolerant fishes in floodplain lakes. ?? 2010 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Thorman, Staffan
1986-03-01
The relationship between the composition of the fish assemblages and the abiotic environment in seven shallow areas within the same geographical range in the southern Bothnian Sea were studied in May, July, September and November 1982. Eighteen species were found in the areas and the major species were Pungitius pungitius (L.), Pomatoschistus minutus (Pallas), Gasterosteus aculeatus (L.), Phoxinus phoxinus (L.), Pomatoschistus microps (Krøyer) and Gobius niger L. The main purpose of the study was to examine the possible effects of exposure, organic contents in sediments and habitat heterogeneity on species richness and abundance of the assemblages. There was a negative correlation between the organic contents of the sediment and exposure. There were no significant correlations between exposure, organic contents, size of the areas and species numbers but habitat heterogeneity was positively correlated with species number. There were no correlations between fish abundance and heterogeneity of the areas. Negative correlations occurred between the exposure of the areas and fish abundance. The amounts of the pooled benthic fauna were negatively correlated to the exposure. The species/area hypothesis finds no support in the results, because there was no correlation between habitat heterogeneity of an area and its size. The effective fetch combined with the heterogeneity measurement of the areas seemed to be useful indicators of the species composition and fish abundance. Habitat heterogeneity and exposure were the most important structuring factors of these shallow water fish assemblages during the ice-free period and within the local geographical range. The assemblages consist of a mixture of species with marine or limnic origin and they have probably not evolved in the Bothnian Sea or together. They are most likely regulated by their physiological plasticity and not by interactions with other species.
The Influence of Coral Reef Benthic Condition on Associated Fish Assemblages
Chong-Seng, Karen M.; Mannering, Thomas D.; Pratchett, Morgan S.; Bellwood, David R.; Graham, Nicholas A. J.
2012-01-01
Accumulative disturbances can erode a coral reef’s resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae. PMID:22870294
The influence of coral reef benthic condition on associated fish assemblages.
Chong-Seng, Karen M; Mannering, Thomas D; Pratchett, Morgan S; Bellwood, David R; Graham, Nicholas A J
2012-01-01
Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.
Life history theory predicts fish assemblage response to hydrologic regimes.
Mims, Meryl C; Olden, Julian D
2012-01-01
The hydrologic regime is regarded as the primary driver of freshwater ecosystems, structuring the physical habitat template, providing connectivity, framing biotic interactions, and ultimately selecting for specific life histories of aquatic organisms. In the present study, we tested ecological theory predicting directional relationships between major dimensions of the flow regime and life history composition of fish assemblages in perennial free-flowing rivers throughout the continental United States. Using long-term discharge records and fish trait and survey data for 109 stream locations, we found that 11 out of 18 relationships (61%) tested between the three life history strategies (opportunistic, periodic, and equilibrium) and six hydrologic metrics (two each describing flow variability, predictability, and seasonality) were statistically significant (P < or = 0.05) according to quantile regression. Our results largely support a priori hypotheses of relationships between specific flow indices and relative prevalence of fish life history strategies, with 82% of all significant relationships observed supporting predictions from life history theory. Specifically, we found that (1) opportunistic strategists were positively related to measures of flow variability and negatively related to predictability and seasonality, (2) periodic strategists were positively related to high flow seasonality and negatively related to variability, and (3) the equilibrium strategists were negatively related to flow variability and positively related to predictability. Our study provides important empirical evidence illustrating the value of using life history theory to understand both the patterns and processes by which fish assemblage structure is shaped by adaptation to natural regimes of variability, predictability, and seasonality of critical flow events over broad biogeographic scales.
Zuellig, Robert E.; Crockett, Harry J.
2013-01-01
The U.S. Geological Survey, in cooperation with Colorado Parks and Wildlife, assessed the potential use of combining recently (2007 to 2010) and formerly (1992 to 1996) collected data to compare plains fish assemblages sampled from random and fixed sites located in the South Platte and Arkansas River Basins in Colorado. The first step was to determine if fish assemblages collected between 1992 and 1996 were comparable to samples collected at the same sites between 2007 and 2010. If samples from the two time periods were comparable, then it was considered reasonable that the combined time-period data could be used to make comparisons between random and fixed sites. In contrast, if differences were found between the two time periods, then it was considered unreasonable to use these data to make comparisons between random and fixed sites. One-hundred samples collected during the 1990s and 2000s from 50 sites dispersed among 19 streams in both basins were compiled from a database maintained by Colorado Parks and Wildlife. Nonparametric multivariate two-way analysis of similarities was used to test for fish-assemblage differences between time periods while accounting for stream-to-stream differences. Results indicated relatively weak but significant time-period differences in fish assemblages. Weak time-period differences in this case possibly were related to changes in fish assemblages associated with environmental factors; however, it is difficult to separate other possible explanations such as limited replication of paired time-period samples in many of the streams or perhaps differences in sampling efficiency and effort between the time periods. Regardless, using the 1990s data to fill data gaps to compare random and fixed-site fish-assemblage data is ill advised based on the significant separation in fish assemblages between time periods and the inability to determine conclusive explanations for these results. These findings indicated that additional sampling will be necessary before unbiased comparisons can be made between fish assemblages collected from random and fixed sites in the South Platte and Arkansas River Basins.
NASA Astrophysics Data System (ADS)
Wetz, J. J.; Ajemian, M. J.; Streich, M.; Stunz, G. W.
2016-02-01
Artificial habitat in the northwestern Gulf of Mexico is predominantly comprised of both active and reefed oil and gas platforms. In the last few decades, Texas alone has converted over 140 decommissioned oil and gas platforms into permitted artificial reefs. Despite the predominance of this habitat type, the associated fish communities remain poorly studied and few comparisons with natural habitat have been done. Using remotely operated vehicles in 2012 and 2013, we documented fish assemblages surrounding 15 artificial structures and several natural banks located on the Texas shelf. Artificial sites were variable in depth (30-84 m), number of structures, and vertical relief. Both structure type and relief influenced species richness and community structure at these sites. However, bottom depth was most influential with a shift in community composition and high diversity observed at approximately 60 m depth. In this same region, drowned coralgal reefs (the South Texas Banks) provide natural hard substrate with relief up to 20 m. Comparisons between these natural habitats and artificial reefs with similar depths and relief clearly demonstrate fish community differences, perhaps indicating differences in habitat function. To attain species-specific management goals, reefing programs should carefully consider the ambient environmental conditions (i.e., depth) and proximity of natural habitats, as these will most certainly affect the fish assemblage and characteristics of exploited fisheries species.
Functional Redundancy Patterns Reveal Non-Random Assembly Rules in a Species-Rich Marine Assemblage
Guillemot, Nicolas; Kulbicki, Michel; Chabanet, Pascale; Vigliola, Laurent
2011-01-01
The relationship between species and the functional diversity of assemblages is fundamental in ecology because it contains key information on functional redundancy, and functionally redundant ecosystems are thought to be more resilient, resistant and stable. However, this relationship is poorly understood and undocumented for species-rich coastal marine ecosystems. Here, we used underwater visual censuses to examine the patterns of functional redundancy for one of the most diverse vertebrate assemblages, the coral reef fishes of New Caledonia, South Pacific. First, we found that the relationship between functional and species diversity displayed a non-asymptotic power-shaped curve, implying that rare functions and species mainly occur in highly diverse assemblages. Second, we showed that the distribution of species amongst possible functions was significantly different from a random distribution up to a threshold of ∼90 species/transect. Redundancy patterns for each function further revealed that some functions displayed fast rates of increase in redundancy at low species diversity, whereas others were only becoming redundant past a certain threshold. This suggested non-random assembly rules and the existence of some primordial functions that would need to be fulfilled in priority so that coral reef fish assemblages can gain a basic ecological structure. Last, we found little effect of habitat on the shape of the functional-species diversity relationship and on the redundancy of functions, although habitat is known to largely determine assemblage characteristics such as species composition, biomass, and abundance. Our study shows that low functional redundancy is characteristic of this highly diverse fish assemblage, and, therefore, that even species-rich ecosystems such as coral reefs may be vulnerable to the removal of a few keystone species. PMID:22039543
Fish utilisation of wetland nurseries with complex hydrological connectivity.
Davis, Ben; Johnston, Ross; Baker, Ronald; Sheaves, Marcus
2012-01-01
The physical and faunal characteristics of coastal wetlands are driven by dynamics of hydrological connectivity to adjacent habitats. Wetlands on estuary floodplains are particularly dynamic, driven by a complex interplay of tidal marine connections and seasonal freshwater flooding, often with unknown consequences for fish using these habitats. To understand the patterns and subsequent processes driving fish assemblage structure in such wetlands, we examined the nature and diversity of temporal utilisation patterns at a species or genus level over three annual cycles in a tropical Australian estuarine wetland system. Four general patterns of utilisation were apparent based on CPUE and size-structure dynamics: (i) classic nursery utlisation (use by recently settled recruits for their first year) (ii) interrupted peristence (iii) delayed recruitment (iv) facultative wetland residence. Despite the small self-recruiting 'facultative wetland resident' group, wetland occupancy seems largely driven by connectivity to the subtidal estuary channel. Variable connection regimes (i.e. frequency and timing of connections) within and between different wetland units (e.g. individual pools, lagoons, swamps) will therefore interact with the diversity of species recruitment schedules to generate variable wetland assemblages in time and space. In addition, the assemblage structure is heavily modified by freshwater flow, through simultaneously curtailing persistence of the 'interrupted persistence' group, establishing connectivity for freshwater spawned members of both the 'facultative wetland resident' and 'delayed recruitment group', and apparently mediating use of intermediate nursery habitats for marine-spawned members of the 'delayed recruitment' group. The diversity of utilisation pattern and the complexity of associated drivers means assemblage compositions, and therefore ecosystem functioning, is likely to vary among years depending on variations in hydrological connectivity. Consequently, there is a need to incorporate this diversity into understandings of habitat function, conservation and management.
Fish Utilisation of Wetland Nurseries with Complex Hydrological Connectivity
Davis, Ben; Johnston, Ross; Baker, Ronald; Sheaves, Marcus
2012-01-01
The physical and faunal characteristics of coastal wetlands are driven by dynamics of hydrological connectivity to adjacent habitats. Wetlands on estuary floodplains are particularly dynamic, driven by a complex interplay of tidal marine connections and seasonal freshwater flooding, often with unknown consequences for fish using these habitats. To understand the patterns and subsequent processes driving fish assemblage structure in such wetlands, we examined the nature and diversity of temporal utilisation patterns at a species or genus level over three annual cycles in a tropical Australian estuarine wetland system. Four general patterns of utilisation were apparent based on CPUE and size-structure dynamics: (i) classic nursery utlisation (use by recently settled recruits for their first year) (ii) interrupted peristence (iii) delayed recruitment (iv) facultative wetland residence. Despite the small self-recruiting ‘facultative wetland resident’ group, wetland occupancy seems largely driven by connectivity to the subtidal estuary channel. Variable connection regimes (i.e. frequency and timing of connections) within and between different wetland units (e.g. individual pools, lagoons, swamps) will therefore interact with the diversity of species recruitment schedules to generate variable wetland assemblages in time and space. In addition, the assemblage structure is heavily modified by freshwater flow, through simultaneously curtailing persistence of the ’interrupted persistence’ group, establishing connectivity for freshwater spawned members of both the ‘facultative wetland resident’ and ‘delayed recruitment group’, and apparently mediating use of intermediate nursery habitats for marine-spawned members of the ‘delayed recruitment’ group. The diversity of utilisation pattern and the complexity of associated drivers means assemblage compositions, and therefore ecosystem functioning, is likely to vary among years depending on variations in hydrological connectivity. Consequently, there is a need to incorporate this diversity into understandings of habitat function, conservation and management. PMID:23152857
ELECTROFISHING IN BOATABLE RIVERS: DOES SAMPLING DESIGN AFFECT BIOASSESSMENT METRICS?
The accurate bioassessment of boatable rivers using fish assemblage data requires that a representative sample of the assemblage be collected. Data were collected using an electrofishing design that permitted comparisons of the effects of designs and distances on fish assemblage ...
NASA Astrophysics Data System (ADS)
Sloterdijk, Hans; Brehmer, Patrice; Sadio, Oumar; Müller, Hanno; Döring, Julian; Ekau, Werner
2017-10-01
Mangrove ecosystems have long been considered essential habitats and are commonly viewed and referred to as "nursery areas". They are highly sensitive to climate change, and environmental transformations in these ecosystems are expected. The Sine Saloum estuary is a case of a system affected by global climate change where reduced precipitation and temperature increase have resulted in an inversion of the salinity gradient. Within the estuary, the composition and structure of the larval fish community related to environmental parameters were investigated using neuston and ring trawl nets. Larval fishes were sampled at 16 stations distributed along a salinity and distance-to-the-sea gradient during four field campaigns (November 2013, February, June, and August 2014) covering an annual cycle. This is the first study documenting the spatial and temporal assemblages of fish larvae in an inverse estuary. The total of 41 taxa representing 24 families and 34 genus identified in this study was lower than that of other tropical estuaries. Clupeidae spp. was the dominant taxon, accounting for 28.9% of the total number of fish larvae caught, followed by Gerreidae spp. (21.1%), Hyporamphus picarti (18.8%), Diplodus bellottii (8.9%), Hypleurochilus langi (4.8%), Mugilidae spp. (4.4%), and Gobiidae sp.1 (3.5%). A total of 20 taxa were recorded within the upper estuary region, whereas 29 and 37 taxa were observed in the middle and lower reaches, respectively. While larval fish were captured at all sites and during all seasons, abundances and richness decreased with increasing salinity. Larval fish assemblages also showed a clear vertical structure corresponding to three distinct water strata. Salinity, water temperature, and dissolved oxygen were the variables that best explained the spatial and temporal differences in larval fish assemblages. It is difficult to forecast the future situation for this system but so far, compared to other mangrove estuarine systems, we have observed the loss of freshwater species in favour of species of marine origin. The information provided in the present study is a contribution to the knowledge of tropical biodiversity and modifications of the ichthyoplankton communities in the context of climate change and future green fund action.
NASA Astrophysics Data System (ADS)
Scrimgeour, Garry J.; Hvenegaard, Paul J.; Tchir, John
2008-12-01
We evaluated the cumulative effects of land use disturbance resulting from forest harvesting, and exploration and extraction of oil and gas resources on the occurrence and structure of stream fish assemblages in the Kakwa and Simonette watersheds in Alberta, Canada. Logistic regression models showed that the occurrence of numerically dominant species in both watersheds was related to two metrics defining industrial activity (i.e., percent disturbance and road density), in addition to stream wetted width, elevation, reach slope, and percent fines. Occurrences of bull trout, slimy sculpin, and white sucker were negatively related to percent disturbance and that of Arctic grayling, and mountain whitefish were positively related to percent disturbance and road density. Assessments of individual sites showed that 76% of the 74 and 46 test sites in the Kakwa and Simonette watersheds were possibly impaired or impaired. Impaired sites in the Kakwa Watershed supported lower densities of bull trout, mountain whitefish, and rainbow trout, but higher densities of Arctic grayling compared to appropriate reference sites. Impaired sites in the Simonette Watershed supported lower densities of bull trout, but higher densities of lake chub compared to reference sites. Our data suggest that current levels of land use disturbance alters the occurrence and structure of stream fish assemblages.
NASA Astrophysics Data System (ADS)
McClatchie, Sam; Thompson, Andrew R.; Alin, Simone R.; Siedlecki, Samantha; Watson, William; Bograd, Steven J.
2016-08-01
The California Undercurrent transports Pacific Equatorial Water (PEW) into the Southern California Bight from the eastern tropical Pacific Ocean. PEW is characterized by higher temperatures and salinities, with lower pH, representing a source of potentially corrosive (aragonite,Ω<1) water to the region. We use ichthyoplankton assemblages near the cores of the California Current and the California Undercurrent to determine whether PEW influenced fish diversity. We use hydrographic data to characterize the interannual and seasonal variability of estimated pH and aragonite saturation with depth. Although there is substantial variability in PEW presence as measured by spice on the 26.25-26.75 isopycnal layer, as well as in pH and aragonite saturation, we found fish diversity to be stable over the decades 1985-1996 and 1999-2011. We detected significant difference in species structure during the 1998 La Niña period, due to reduced species evenness. Species richness due to rare species was higher during the 1997/1998 El Niño compared to the La Niña but the effect on species structure was undetectable. Lack of difference in the species abundance structure in the decade before and after the 1997/1999 ENSO event showed that the assemblage reverted to its former structure following the ENSO perturbation, indicating resilience. While the interdecadal species structure remained stable, the long tail of the distributions shows that species richness increased between the decades consistent with intrusion of warm water with more diverse assemblages into the southern California region.
Development of a fish assemblage tolerance index for the National Rivers and Streams Assessment
Whittier et al (Trans. Amer. Fish. Soc. 136:254-271) developed an assemblage tolerance index (ATI) for stream fishes in the western US based on quantitative tolerance values developed for individual fish and amphibian species. The ATI is conceptually similar to the Hilsenhoff Bi...
Estuarine fish are a highly valued resources that are affected by several factors, including climate, trophic interactions, pollution, and fishing pressure. Here, we examine the spatial and temporal patterns in estuarine fish assemblage in Narragansett Bay, an estuary located in...
NASA Astrophysics Data System (ADS)
Moreno-Valcárcel, Raquel; Oliva-Paterna, Francisco J.; Arribas, Carmen; Fernández-Delgado, Carlos
2013-03-01
The Guadalquivir estuary is the largest estuarine area on the southern Atlantic coast of Europe; its anthropogenic tidally-restricted marshes are partly within the boundary of the Doñana National Park, southern Spain. Our two-year study describes the spatial and temporal patterns of the fish assemblages in the Doñana marshlands in terms of species richness, abundance and biomass. The main families were Mugilidae and Cyprinidae, which accounted for 40.9% of the total species richness. Unlike the fish assemblages found in other European estuaries, Doñana was dominated in both biomass and abundance by freshwater species, mainly invasive exotic species. The spatial analysis of the assemblage showed four significant fish groups corresponding to different habitats established a priori and related to the salinity gradient. Assemblages did not show a seasonal pattern and the temporal fish groups observed were mainly related to the hydrological cycle and the extreme drought that occurred during the study period.
Patterns in larval fish assemblages under the influence of the Brazil current
NASA Astrophysics Data System (ADS)
Katsuragawa, M.; Dias, J. F.; Harari, J.; Namiki, C.; Zani-Teixeira, M. L.
2014-10-01
The present work investigates the composition of larval fish assemblages in the area under the influence of the Brazil Current (BC) off the Southeastern Brazilian Bight. Ichthyoplankton was sampled during two oceanographic cruises (November-December/1997 - spring; May/2001 - autumn) with bongo nets oblique tows. Seasonal variation and a coastal-ocean pattern in the distribution of larval fish was observed and was influenced by the dynamics of the water masses, Coastal Water (CW), Tropical Water (TW) and South Atlantic Central Water (SACW), the last two of which were transported by the BC. During spring, the shelf assemblage was dominated by larvae of small pelagic fishes, such as Sardinella brasiliensis, Engraulis anchoita and Trachurus lathami, and was associated with the enrichment of shallow water by the SACW upwelling. In autumn, the abundance of coastal species larvae was reduced, and the shelf assemblage was dominated by Bregmaceros cantori. A transitional assemblage occurred during the spring, and comprised mesopelagic and coastal species. In both seasons, the oceanic assemblage was dominated by the mesopelagic families, Myctophidae, Sternopthychidae and Phosichthyidae. The oceanographic conditions also demonstrated clear differences between the northern and southern subareas, particularly in the shelf zone. This was especially the case during autumn when a latitudinal gradient in larval fish assemblages became more pronounced.
NASA Astrophysics Data System (ADS)
Zhao, C. S.; Yang, S. T.; Liu, C. M.; Dou, T. W.; Yang, Z. L.; Yang, Z. Y.; Liu, X. L.; Xiang, H.; Nie, S. Y.; Zhang, J. L.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.
2015-04-01
Aquatic ecological rehabilitation is increasingly attracting considerable public and research attention. An effective method that requires less data and expertise would help in the assessment of rehabilitation potential and in the monitoring of rehabilitation activities as complicated theories and excessive data requirements on assemblage information make many current assessment models expensive and limit their wide use. This paper presents an assessment model for restoration potential which successfully links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. In this model three newly developed sub-models, integrated habitat index (IHSI), integrated ecological niche breadth (INB) and integrated ecological niche overlap (INO), are established to study spatial heterogeneity of the restoration potential of fish assemblages based on gradient methods of habitat suitability index and ecological niche models. To reduce uncertainties in the model, as many fish species as possible, including important native fish, were selected as dominant species with monitoring occurring over several seasons to comprehensively select key habitat factors. Furthermore, a detrended correspondence analysis (DCA) was employed prior to a canonical correspondence analysis (CCA) of the data to avoid the "arc effect" in the selection of key habitat factors. Application of the model to data collected at Jinan City, China proved effective reveals that three lower potential regions that should be targeted in future aquatic ecosystem rehabilitation programs. They were well validated by the distribution of two habitat parameters: river width and transparency. River width positively influenced and transparency negatively influenced fish assemblages. The model can be applied for monitoring the effects of fish assemblage restoration. This has large ramifications for the restoration of aquatic ecosystems and spatial heterogeneity of fish assemblages all over the world.
Dispersal capacity predicts both population genetic structure and species richness in reef fishes.
Riginos, Cynthia; Buckley, Yvonne M; Blomberg, Simon P; Treml, Eric A
2014-07-01
Dispersal is a fundamental species characteristic that should directly affect both rates of gene flow among spatially distributed populations and opportunities for speciation. Yet no single trait associated with dispersal has been demonstrated to affect both micro- and macroevolutionary patterns of diversity across a diverse biological assemblage. Here, we examine patterns of genetic differentiation and species richness in reef fishes, an assemblage of over 7,000 species comprising approximately one-third of the extant bony fishes and over one-tenth of living vertebrates. In reef fishes, dispersal occurs primarily during a planktonic larval stage. There are two major reproductive and parental investment syndromes among reef fishes, and the differences between them have implications for dispersal: (1) benthic guarding fishes lay negatively buoyant eggs, typically guarded by the male parent, and from these eggs hatch large, strongly swimming larvae; in contrast, (2) pelagic spawning fishes release small floating eggs directly into the water column, which drift unprotected before small weakly swimming larvae hatch. Using phylogenetic comparative methods, we show that benthic guarders have significantly greater population structure than pelagic spawners and additionally that taxonomic families of benthic guarders are more species rich than families of pelagic spawners. Our findings provide a compelling case for the continuity between micro- and macroevolutionary processes of biological diversification and underscore the importance of dispersal-related traits in influencing the mode and tempo of evolution.
Benthic assemblages of mega epifauna on the Oregon continental margin
Hemery, Lenaïg G.; Henkel, Sarah K.; Cochrane, Guy R.
2018-01-01
Environmental assessment studies are usually required by a country's administration before issuing permits for any industrial activities. One of the goals of such environmental assessment studies is to highlight species assemblages and habitat composition that could make the targeted area unique. A section of the Oregon continental slope that had not been previously explored was targeted for the deployment of floating wind turbines. We carried out an underwater video survey, using a towed camera sled, to describe its benthic assemblages. Organisms were identified to the lowest taxonomic level possible and assemblages described related to the nature of the seafloor and the depth. We highlighted six invertebrate assemblages and three fish assemblages. For the invertebrates within flat soft sediments areas we defined three different assemblages based on primarily depth: a broad mid-depth (98–315 m) assemblage dominated by red octopus, sea pens and pink shrimps; a narrower mid-depth (250–270 m) assemblage dominated by box crabs and various other invertebrates; and a deeper (310–600 m) assemblage dominated by sea urchins, sea anemones, various snails and zoroasterid sea stars. The invertebrates on mixed sediments also were divided into three different assemblages: a shallow (~100 m deep) assemblage dominated by plumose sea anemones, broad mid-depth (170–370 m) assemblage dominated by sea cucumbers and various other invertebrates; and, again, a narrower mid-depth (230–270 m) assemblage, dominated by crinoids and encrusting invertebrates. For the fish, we identified a rockfish assemblage on coarse mixed sediments at 170–370 m and another fish assemblage on smaller mixed sediments within that depth range (250–370 m) dominated by thornyheads, poachers and flatfishes; and we identified a wide depth-range (98–600 m) fish assemblage on flat soft sediments dominated by flatfishes, eelpouts and thornyheads. Three of these assemblages (the two broad fish assemblages and the deep flat soft sediments invertebrate assemblage) seem to represent deeper examples of assemblages already known on the Oregon continental shelf, especially on soft sediments, while the assemblages in the pockmarks habitat (the narrower depth ranges) might be unique to the area. This diversity of assemblages in a relatively small section of the Oregon continental upper slope and shelf shows the importance of environmental assessment studies in helping limit future impacts of industrial activities on benthic communities.
Tropical fishes dominate temperate reef fish communities within western Japan.
Nakamura, Yohei; Feary, David A; Kanda, Masaru; Yamaoka, Kosaku
2013-01-01
Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008-2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic impacts to the local tourism industry and bring qualitative changes to both local and regional fisheries resources.
Tropical Fishes Dominate Temperate Reef Fish Communities within Western Japan
Nakamura, Yohei; Feary, David A.; Kanda, Masaru; Yamaoka, Kosaku
2013-01-01
Climate change is resulting in rapid poleward shifts in the geographical distribution of tropical and subtropical fish species. We can expect that such range shifts are likely to be limited by species-specific resource requirements, with temperate rocky reefs potentially lacking a range of settlement substrates or specific dietary components important in structuring the settlement and success of tropical and subtropical fish species. We examined the importance of resource use in structuring the distribution patterns of range shifting tropical and subtropical fishes, comparing this with resident temperate fish species within western Japan (Tosa Bay); the abundance, diversity, size class, functional structure and latitudinal range of reef fishes utilizing both coral reef and adjacent rocky reef habitat were quantified over a 2 year period (2008–2010). This region has undergone rapid poleward expansion of reef-building corals in response to increasing coastal water temperatures, and forms one of the global hotspots for rapid coastal changes. Despite the temperate latitude surveyed (33°N, 133°E) the fish assemblage was both numerically, and in terms of richness, dominated by tropical fishes. Such tropical faunal dominance was apparent within both coral, and rocky reef habitats. The size structure of the assemblage suggested that a relatively large number of tropical species are overwintering within both coral and rocky habitats, with a subset of these species being potentially reproductively active. The relatively high abundance and richness of tropical species with obligate associations with live coral resources (i.e., obligate corallivores) shows that this region holds the most well developed temperate-located tropical fish fauna globally. We argue that future tropicalisation of the fish fauna in western Japan, associated with increasing coral habitat development and reported increasing shifts in coastal water temperatures, may have considerable positive economic impacts to the local tourism industry and bring qualitative changes to both local and regional fisheries resources. PMID:24312528
Patterns of the parasite communities in a fish assemblage of a river in the Brazilian Amazon region.
Baia, Raimundo Rosemiro Jesus; Florentino, Alexandro Cezar; Silva, Luís Maurício Abdon; Tavares-Dias, Marcos
2018-06-26
This paper characterizes the pattern of ectoparasite and endoparasite communities in an assemblage of 35 sympatric fish from different trophic levels in a tributary from the Amazon River system, northern Brazil. In detritivorous, carnivorous, omnivorous and piscivorous hosts, the species richness consisted of 82 ectoparasites and endoparasites, but protozoan ectoparasites such as Ichthyophthirius multifiliis, Piscinoodinium pillulare and Tripartiella sp. were dominant species predominated, such that they were present in 80% of the hosts. The taxon richness was in the following order: Monogenea > Nematoda > Digenea > Crustacea > Protozoa > Acanthocephala = Cestoda > Hirudinea. Among the hosts, the highest number of parasitic associations occurred in Satanoperca jurupari, Aequidens tetramerus, Hoplerythrinus unitaeniatus, Hoplosternum littorale, Cichlasoma amazonarum, Chaetobranchus flavescens, Squaliforma emarginata, Chaetobranchopsis orbicularis and Hoplias malabaricus. A weak positive correlation between ectoparasite abundance and length of the hosts was observed. Ectoparasite communities of detritivorous, carnivorous and omnivorous hosts were similar, but these differed from the communities of piscivorous hosts. Larval endoparasite species with low host specificity were the main determinants of the parasite infracommunity structure of the fish assemblage. Fish assemblage had few species of helminth that were specialist endoparasites, while many were parasites at the larval stage, infecting intermediate and paratenic hosts. Finally, carnivorous and omnivorous hosts harbored endoparasite communities that were more heterogeneous than those of detritivorous and piscivorous hosts. This result lends supports to the notion that the feeding habits of the host species are a significant factor in determining the endoparasites fauna.
Simulating fish assemblages in riverine networks
We describe a modeling approach for simulating assemblages of fish in riverine landscapes. The approach allows a user to determine the grain and extent of river networks within which fish populations reproduce, move, and survive in response to both environmental drivers and assem...
EXAMINING ASSOCIATIONS BETWEEN FISH ASSEMBLAGES AND PHYSICAL HABITAT
Assessing lotic fish-habitat interactions from regional survey data requires that we consider a comprehensive representation, at the appropriate scale, of the likely controls on fish assemblages. At the scale of stream and river reaches, the important dimensions of physical habi...
Effect of Phase Shift from Corals to Zoantharia on Reef Fish Assemblages
Cruz, Igor C. S.; Loiola, Miguel; Albuquerque, Tiago; Reis, Rodrigo; de Anchieta C. C. Nunes, José; Reimer, James D.; Mizuyama, Masaru; Kikuchi, Ruy K. P.; Creed, Joel C.
2015-01-01
Consequences of reef phase shifts on fish communities remain poorly understood. Studies on the causes, effects and consequences of phase shifts on reef fish communities have only been considered for coral-to-macroalgae shifts. Therefore, there is a large information gap regarding the consequences of novel phase shifts and how these kinds of phase shifts impact on fish assemblages. This study aimed to compare the fish assemblages on reefs under normal conditions (relatively high cover of corals) to those which have shifted to a dominance of the zoantharian Palythoa cf. variabilis on coral reefs in Todos os Santos Bay (TSB), Brazilian eastern coast. We examined eight reefs, where we estimated cover of corals and P. cf. variabilis and coral reef fish richness, abundance and body size. Fish richness differed significantly between normal reefs (48 species) and phase-shift reefs (38 species), a 20% reduction in species. However there was no difference in fish abundance between normal and phase shift reefs. One fish species, Chaetodon striatus, was significantly less abundant on normal reefs. The differences in fish assemblages between different reef phases was due to differences in trophic groups of fish; on normal reefs carnivorous fishes were more abundant, while on phase shift reefs mobile invertivores dominated. PMID:25629532
NASA Astrophysics Data System (ADS)
Milbrandt, Eric C.; Bartleson, Richard D.; Coen, Loren D.; Rybak, Olexandr; Thompson, Mark A.; DeAngelo, Jacquelyn A.; Stevens, Philip W.
2012-06-01
Blind Pass is an inlet that separates Sanibel and Captiva Islands in southwest Florida but has historically closed and opened by both anthropogenic and natural processes. In July 2010, a dredging project to open the small inlet between the two barrier islands was completed. The objective of this study was to use and supplement ongoing estuary-monitoring programs to examine the responses of water quality, seagrass habitat metrics, and fish assemblages both in the immediate vicinity of the inlet and at broader scales (up to 40 km2). As far as we are aware, there are no previous studies with this intensity of sampling, both before and after an inlet opening. Significant increases in salinity and turbidity were observed inside Blind Pass, with significant decreases in CDOM and chlorophyll a, however, the effects were not far-reaching and limited to less than 1.7 km from the inlet within Pine Island Sound. Seagrass habitat metrics were expected to respond rapidly after the inlet was opened given the reduced light attenuation. However, there were no changes in shoot densities, species composition, and epiphytic algae within the approximately one-year duration of the study. The reopening of the pass did not substantially change fish assemblage structure, except for those from deeper habitats. Although immediate increases in the abundances of estuarine-dependent species were predicted in shallow habitats post opening, this did not occur. In conclusion, the effects of reopening a relatively small ocean inlet on water quality were apparent in the immediate vicinity of the inlet (within 1.7 km), but far-reaching effects on water quality, seagrass metrics, and fish assemblages were not immediately apparent in this well-flushed estuary. If subtle changes in tidal exchange and circulation affect productivity of seagrasses or its fish assemblages at broad scales, it may take several years to reach a steady state.
Barko, V.A.; Herzog, D.P.; Hrabik, R.A.; Scheibe, J.S.
2004-01-01
Large rivers worldwide have been altered by the construction and maintenance of navigation channels, which include extensive bank revetments, wing dikes, and levees. Using 7 years of Long-Term Resource Monitoring Program (LTRMP) data collected from the unimpounded upper Mississippi River, we investigated assemblages in two main-channel-border physical habitats-those with wing dikes and those without wing dikes. Fishes were captured using daytime electrofishing, mini-fyke netting, large hoop netting, and small hoop netting. Our objectives were to (1) assess associations among fish species richness, physical measurements, and main-channel-border physical habitats using stepwise multiple regression and indicator variables; (2) identify abundant adult and young-of-year (age-0) families in both physical habitats to further investigate assemblage composition; and (3) calculate standardized species richness estimates within each physical habitat for adult and age-0 fishes to provide additional information on community structure. We found species richness was greater at wing dikes for both adult and age-0 fishes when compared with main channel borders. Stepwise multiple regression revealed significant relationships between adult species richness and passive gear deployment (e.g,, hoop nets and mini-fyke nets), physical habitat type, and river elevation, as well as interactions between physical habitat and passive gears, and physical habitat and transparency (i.e., Secchi depth). This model explained 56% of the variance in adult species richness. Approximately 15% of the variation in age-0 species richness was explained by the sample period, sample date, transparency, physical habitat, and depth of gear deployment. Long-term impacts of river modifications on fishes have not been well documented in many large river systems and warrant further study. The findings from this study provide baseline ecological information on fish assemblages using main channel borders in the unimpounded upper Mississippi River, information that will aid managers making channel maintenance decisions in large river systems.
DEVELOPMENT OF STANDARDIZED LARGE RIVER BIOASSESSMENT PROTOCOLS (LR-BP) FOR FISH ASSEMBLAGES
We conducted research comparing several methods currently in use for the bioassessment and monitoring of fish and benthic macroinvertebrate assemblages for large rivers. Fish data demonstrate that electrofishing 1000 m of shoreline is sufficient for bioassessments on boatable ri...
Simulating fish assemblages in riverine networks - September 2013
We describe a modeling approach for simulating assemblages of fish in riverine landscapes. The approach allows a user to determine the grain and extent of river networks within which fish populations reproduce, move, and survive in response to both environmental drivers and assem...
Ajemian, Matthew J.; Wetz, Jennifer J.; Shipley-Lozano, Brooke; Shively, J. Dale; Stunz, Gregory W.
2015-01-01
Artificial structures are the dominant complex marine habitat type along the northwestern Gulf of Mexico (GOM) shelf. These habitats can consist of a variety of materials, but in this region are primarily comprised of active and reefed oil and gas platforms. Despite being established for several decades, the fish communities inhabiting these structures remain poorly investigated. Between 2012 and 2013 we assessed fish communities at 15 sites using remotely operated vehicles (ROVs). Fish assemblages were quantified from standing platforms and an array of artificial reef types (Liberty Ships and partially removed or toppled platforms) distributed over the Texas continental shelf. The depth gradient covered by the surveys (30–84 m) and variability in structure density and relief also permitted analyses of the effects of these characteristics on fish richness, diversity, and assemblage composition. ROVs captured a variety of species inhabiting these reefs from large transient piscivores to small herbivorous reef fishes. While structure type and relief were shown to influence species richness and community structure, major trends in species composition were largely explained by the bottom depth where these structures occurred. We observed a shift in fish communities and relatively high diversity at approximately 60 m bottom depth, confirming trends observed in previous studies of standing platforms. This depth was also correlated with some of the largest Red Snapper captured on supplementary vertical longline surveys. Our work indicates that managers of artificial reefing programs (e.g., Rigs-to-Reefs) in the GOM should carefully consider the ambient environmental conditions when designing reef sites. For the Texas continental shelf, reefing materials at a 50–60 m bottom depth can serve a dual purpose of enhancing diving experiences and providing the best potential habitat for relatively large Red Snapper. PMID:25954943
Seasonal variation of assemblage and feeding guild structure of fish species in a boreal tidal basin
NASA Astrophysics Data System (ADS)
Kellnreitner, Florian; Pockberger, Moritz; Asmus, Harald
2012-08-01
Species composition, abundance, feeding relationships and guild structure of the fish assemblage in the Sylt-Rømø bight, a tidal basin in the northern Wadden Sea, were investigated to show seasonal differences and the importance of functional groups in this area. The tidal flats and in shallow subtidal areas were sampled using a beach seine and a bottom trawl net was used for deeper subtidal areas and tidal gullies. Species richness of fish was highest in summer where 26 species were caught, while the lowest richness was recorded in winter (17 species). Clear differences in species richness and abundance were found between shallow areas and deeper parts of the bight. Clupea harengus and Ammodytes tobianus were the most abundant species in deeper areas, while Pomatoschistus microps and Pomatoschistus minutus dominated shallower waters. Gut contents of 27 fish species were identified and the guild structure analyzed by UPGMA clustering of niche overlaps. Calanoid copepods (19.9%), Crangon crangon (18.2%) and mysid shrimps (8.4%) were the most abundant prey items of all fish species combined. Seven feeding guilds were present in the fall and winter, and eight and six in spring and summer, respectively. Fish feeding on calanoid copepods and C. crangon were present year round, whereas the occurrence of other guilds varied between seasons. Species composition of prey changed through seasons and, for some fish species, even the feeding mode itself varied with season. Most noticeable, 11 fish species changed guilds between seasons. We found a convergence in summer towards abundant prey items, whereas in winter diet overlap was lower. This is the first investigation of guild structure of almost all fish species present in a Wadden Sea area, and shows that consideration of seasonal differences is essential when determining feeding relationships of fish in temperate areas.
Trophic Structure and Mercury Biomagnification in Tropical Fish Assemblages, Iténez River, Bolivia
Pouilly, Marc; Rejas, Danny; Pérez, Tamara; Duprey, Jean-Louis; Molina, Carlos I.; Hubas, Cédric; Guimarães, Jean-Remy D.
2013-01-01
We examined mercury concentrations in three fish assemblages to estimate biomagnification rates in the Iténez main river, affected by anthropogenic activities, and two unperturbed rivers from the Iténez basin, Bolivian Amazon. Rivers presented low to moderate water mercury concentrations (from 1.25 ng L−1 to 2.96 ng L−1) and natural differences in terms of sediment load. Mercury biomagnification rates were confronted to trophic structure depicted by carbon and nitrogen stable isotopes composition (δ15N; δ13C) of primary trophic sources, invertebrates and fishes. Results showed a slight fish contamination in the Iténez River compared to the unperturbed rivers, with higher mercury concentrations in piscivore species (0.15 µg g−1 vs. 0.11 µg g−1 in the unperturbed rivers) and a higher biomagnification rate. Trophic structure analysis showed that the higher biomagnification rate in the Iténez River could not be attributed to a longer food chain. Nevertheless, it revealed for the Iténez River a higher contribution of periphyton to the diet of the primary consumers fish species; and more negative δ13C values for primary trophic sources, invertebrates and fishes that could indicate a higher contribution of methanotrophic bacteria. These two factors may enhance methylation and methyl mercury transfer in the food web and thus, alternatively or complementarily to the impact of the anthropogenic activities, may explain mercury differences observed in fishes from the Iténez River in comparison to the two other rivers. PMID:23741452
Cruz, Bruna B.; Miranda, Leandro E.; Cetra, Mauricio
2013-01-01
We hypothesised and tested a hierarchical organisation model where riparian landcover would influence bank composition and light availability, which in turn would influence instream environments and control fish assemblages. The study was conducted during the dry season in 11 headwater tributaries of the Sorocaba River in the upper Paraná River Basin, south-eastern Brazil. We focused on seven environmental factors each represented by one or multiple environmental variables and seven fish functional traits each represented by two or more classes. Multivariate direct gradient analyses suggested that riparian zone landcover can be considered a higher level causal factor in a network of relations that control instream characteristics and fish assemblages. Our results provide a framework for a hierarchical conceptual model that identifies singular and collective influences of variables from different scales on each other and ultimately on different aspects related to stream fish functional composition. This conceptual model is focused on the relationships between riparian landcover and instream variables as causal factors on the organisation of stream fish assemblages. Our results can also be viewed as a model for headwater stream management in that landcover can be manipulated to influence factors such as bank composition, substrates and water quality, whereas fish assemblage composition can be used as indicators to monitor the success of such efforts.
Coastal Fish Assemblages Reflect Geological and Oceanographic Gradients Within An Australian Zootone
Harvey, Euan S.; Cappo, Mike; Kendrick, Gary A.; McLean, Dianne L.
2013-01-01
Distributions of mobile animals have been shown to be heavily influenced by habitat and climate. We address the historical and contemporary context of fish habitats within a major zootone: the Recherche Archipelago, southern western Australia. Baited remote underwater video systems were set in nine habitat types within three regions to determine the species diversity and relative abundance of bony fishes, sharks and rays. Constrained ordinations and multivariate prediction and regression trees were used to examine the effects of gradients in longitude, depth, distance from islands and coast, and epibenthic habitat on fish assemblage composition. A total of 90 species from 43 families were recorded from a wide range of functional groups. Ordination accounted for 19% of the variation in the assemblage composition when constrained by spatial and epibenthic covariates, and identified redundancy in the use of distance from the nearest emergent island as a predictor. A spatial hierarchy of fourteen fish assemblages was identified using multivariate prediction and regression trees, with the primary split between assemblages on macroalgal reefs, and those on bare or sandy habitats supporting seagrass beds. The characterisation of indicator species for assemblages within the hierarchy revealed important faunal break in fish assemblages at 122.30 East at Cape Le Grand and subtle niche partitioning amongst species within the labrids and monacanthids. For example, some species of monacanthids were habitat specialists and predominantly found on seagrass (Acanthaluteres vittiger, Scobinichthys granulatus), reef (Meuschenia galii, Meuschenia hippocrepis) or sand habitats (Nelusetta ayraudi). Predatory fish that consume molluscs, crustaceans and cephalopods were dominant with evidence of habitat generalisation in reef species to cope with local disturbances by wave action. Niche separation within major genera, and a sub-regional faunal break, indicate future zootone mapping should recognise both cross-shelf and longshore environmental gradients. PMID:24278353
Natural flow regimes, nonnative fishes, and native fish persistence in arid-land river systems.
Propst, David L; Gido, Keith B; Stefferud, Jerome A
2008-07-01
Escalating demands for water have led to substantial modifications of river systems in arid regions, which coupled with the widespread invasion of nonnative organisms, have increased the vulnerability of native aquatic species to extirpation. Whereas a number of studies have evaluated the role of modified flow regimes and nonnative species on native aquatic assemblages, few have been conducted where the compounding effects of modified flow regimes and established nonnatives do not confound interpretations, particularly at spatial and temporal scales that are relevant to conservation of species at a range-wide level. By evaluating a 19-year data set across six sites in the relatively unaltered upper Gila River basin, New Mexico, USA, we tested how natural flow regimes and presence of nonnative species affected long-term stability of native fish assemblages. Overall, we found that native fish density was greatest during a wet period at the beginning of our study and declined during a dry period near the end of the study. Nonnative fishes, particularly predators, generally responded in opposite directions to these climatic cycles. Our data suggested that chronic presence of nonnative fishes, coupled with naturally low flows reduced abundance of individual species and compromised persistence of native fish assemblages. We also found that a natural flow regime alone was unlikely to ensure persistence of native fish assemblages. Rather, active management that maintains natural flow regimes while concurrently suppressing or excluding nonnative fishes from remaining native fish strongholds is critical to conservation of native fish assemblages in a system, such as the upper Gila River drainage, with comparatively little anthropogenic modification.
Coexistence of low coral cover and high fish biomass at Farquhar Atoll, Seychelles.
Friedlander, Alan M; Obura, David; Aumeeruddy, Riaz; Ballesteros, Enric; Church, Julie; Cebrian, Emma; Sala, Enric
2014-01-01
We report a reef ecosystem where corals may have lost their role as major reef engineering species but fish biomass and assemblage structure is comparable to unfished reefs elsewhere around the world. This scenario is based on an extensive assessment of the coral reefs of Farquhar Atoll, the most southern of the Seychelles Islands. Coral cover and overall benthic community condition at Farquhar was poor, likely due to a combination of limited habitat, localized upwelling, past coral bleaching, and cyclones. Farquhar Atoll harbors a relatively intact reef fish assemblage with very large biomass (3.2 t ha(-1)) reflecting natural ecological processes that are not influenced by fishing or other local anthropogenic factors. The most striking feature of the reef fish assemblage is the dominance by large groupers, snappers, and jacks with large (>1 m) potato cod (Epinephelus tukula) and marbled grouper (E. polyphekadion), commonly observed at many locations. Napoleon wrasse (Cheilinus undulatus) and bumphead parrotfish (Bolbometopon muricatum) are listed as endangered and vulnerable, respectively, but were frequently encountered at Farquhar. The high abundance and large sizes of parrotfishes at Farquhar also appears to regulate macroalgal abundance and enhance the dominance of crustose corallines, which are a necessary condition for maintenance of healthy reef communities. Overall fish biomass and biomass of large predators at Farquhar are substantially higher than other areas within the Seychelles, and are some of the highest recorded in the Indian Ocean. Remote islands like Farquhar Atoll with low human populations and limited fishing pressure offer ideal opportunities for understanding whether reefs can be resilient from global threats if local threats are minimized.
PREDICTION OF FUNDAMENTAL ASSEMBLAGES OF MID-ATLANTIC HIGHLAND STREAM FISHES
A statistical software tool, the Stream Fish Assemblage Predictor (SFAP), based on stream sampling data collected by the EPA in the mid-Atlantic Highlands, was developed to predict potential stream fish communities using characteristics of the stream and its watershed.
Step o...
Development of an Index of Ecological Condition based on Great River Fish Assemblages
As part of the Environmental Monitoring and Assessment Program for Great River Ecosystems we developed a fish-assemblage based multimetric index (Great River Fish Index,GRFIn) as an indicator of ecological conditions in the Lower Missouri, impounded Upper Mississippi,.unimpoun...
DIEL OXYGEN-INDUCED MOVEMENT OF FISH ASSEMBLAGES IN A GREAT LAKES COASTAL WETLAND
To determine the importance of dissolved oxygen conditions in influencing daily ovement patterns of fishes in Great Lakes coastal wetlands, we sampled migrating fish assemblages from habitats with varying diurnal dissolved oxygen patterns in a Lake Superior coastal wetland during...
Kennen, Jonathan G.; Ayers, Mark A.
2002-01-01
Community data from 36 watersheds were used to evaluate the response of fish, invertebrate, and algal assemblages in New Jersey streams to environmental characteristics along a gradient of urban land use that ranged from 3 to 96 percent. Aquatic assemblages were sampled at 36 sites during 1996-98, and more than 400 environmental attributes at multiple spatial scales were summarized. Data matrices were reduced to 43, 170, and 103 species of fish, invertebrates, and algae, respectively, by means of a predetermined joint frequency and relative abundance approach. White sucker (Catostomus commersoni) and Tessellated darter (Etheostoma olmstedi) were the most abundant fishes, accounting for more than 20 and 17 percent, respectively, of the mean abundance. Net-spinning caddisflies (Hydropsychidae) were the most commonly occurring benthic invertebrates and were found at all but one of the 36 sampling sites. Blue-green (for example, Calothrix sp. and Oscillatoria sp.) and green (for example, Protoderma viride) algae were the most widely distrib-uted algae; however, more than 81 percent of the algal taxa collected were diatoms. Principal-component and correlation analyses were used to reduce the dimensionality of the environmental data. Multiple linear regression analysis of extracted ordination axes then was used to develop models that expressed effects of increasing urban land use on the structure of aquatic assemblages. Significant environmental variables identified by using multiple linear regression analysis then were included in a direct gradient analysis. Partial canonical correspondence analysis of relativized abundance data was used to restrict further the effects of residual natural variability, and to identify relations among the environmental variables and the structure of fish, invertebrate, and algal assemblages along an urban land-use gradient. Results of this approach, combined with the results of the multiple linear regression analyses, were used to identify human population density (311-37,594 persons/km2), amount and type of impervious surface cover (0.12-1,350 km2), nutrient concentrations (for example, 0.01-0.29 mg/L of phosphorus), hydrologic instability (for example, 100-8,955 ft3/s for 2-year peak flow), the amount of forest and wetlands in a basin (0.01-6.25 km2), and substrate quality (0-87 percent cobble substrate) as variables that are highly correlated with aquatic-assemblage structure. Species distributions in ordination space clearly indicate that tolerant species are more abundant in the streams impaired by urbanization and sensitive taxa are more closely associated with the least impaired basins. The distinct differences in aquatic assemblages along the urban land-use gradient demonstrate the deleterious effects of urbanization on assemblage structure and indicate that conserving landscape attributes that mitigate anthropogenic influences (for example, stormwater-management practices emphasizing infiltration and preservation of existing forests, wetlands, and riparian corridors) will help to maintain the relative abundance of sensitive taxa. Complementary multiple linear regression models indicate that aquatic community indices were correlated with many of the anthropogenic factors that were found to be significant along the urban land-use gradient. These indices appear to be effective in differentiating the moderately and severely impaired streams from the minimally impaired streams. Evaluation of disturbance thresholds for aquatic assemblages indicates that moderate to severe impairment is detectable in New Jersey streams when impervious surface cover in the drainage basin reaches approximately 18 percent.
Coupling suitable prey field to in situ fish larval condition and abundance in a subtropical estuary
NASA Astrophysics Data System (ADS)
Machado, Irene; Calliari, Danilo; Denicola, Ana; Rodríguez-Graña, Laura
2017-03-01
Survival of fish larvae is influenced by the suitability of the prey field and its variability in time and space. Relationships among food quality, quantity and recruitment have been explored in temperate ecosystems where spawning and secondary production are strongly seasonal, but for subtropical estuaries the mechanisms responsible for larval survival remain poorly identified. This study evaluated the nutritional condition (feeding incidence and AARS activity) and abundance of a multi-specific assemblage of fish larvae from a subtropical estuary in South America (Solís Grande, Uruguay) during the fish reproductive season; and related both variables to prey abundance, composition, size and fatty acids content. The larval assemblage was composed of 13 species belonging to different functional groups and composition varied seasonally. Contrary to expectations larval condition did not match an increase in prey quality. Food availability was high throughout the study period, although significant changes existed in the size and taxonomic structure of the prey assemblage. The temporal succession of complementary factors - temperature, prey composition, abundance and quality - promoted a wide window of opportunity for larvae, where quality seemed to have compensated quantity. Such combination of factors could allow an extended larval survival along the spawning season. These findings underline the importance of a better understanding of subtropical estuaries as nursery areas.
Comparative use of side and main channels by small-bodied fish in a large, unimpounded river
Reinhold, Ann Marie; Bramblett, Robert G.; Zale, Alexander V.; Roberts, David W.; Poole, Geoffrey C.
2016-01-01
Ecological theory and field studies suggest that lateral floodplain connectivity and habitat heterogeneity provided by side channels impart favourable habitat conditions for lotic fishes, especially fluvial fishes dependent on large patches of shallow, slow velocity habitats for some portion of their life cycle. However, anthropogenic modification of large, temperate floodplain rivers has led to extensive channel simplification and side-channel loss. Highly modified rivers consist of simplified channels in contracted, less dynamic floodplains.Most research examining the seasonal importance of side channels for fish assemblages in large rivers has been carried out in heavily modified rivers, where side-channel extents are substantially reduced from pre-settlement times, and has often overlooked small-bodied fishes. Inferences about the ecological importance of side channels for small-bodied fishes in large rivers can be ascertained only from investigations of large rivers with largely intact floodplains. The Yellowstone River, our study area, is a rare example of one such river.We targeted small-bodied fishes and compared their habitat use in side and main channels in two geomorphically distinct types of river bends during early and late snowmelt runoff, and autumn base flow. Species compositions of side and main channels differed throughout hydroperiods concurrent with the seasonal redistribution of the availability of shallow, slow current-velocity habitats. More species of fish used side channels than main channels during runoff. Additionally, catch rates of small fishes were generally greater in side channels than in main channels and quantitative assemblage compositions differed between channel types during runoff, but not during base flow. Presence of and access to diverse habitats facilitated the development and persistence of diverse fish assemblages in our study area.Physical dissimilarities between side and main channels may have differentially structured the side- and main-channel fish assemblages during runoff. Patches of shallow, slow current-velocity (SSCV) habitats in side channels were larger and had slightly slower water velocities than SSCV habitat patches in main channels during runoff, but not during base flow.Our findings establish a baseline importance of side channels to riverine fishes in a large, temperate river without heavy anthropogenic modification. Establishing this baseline contributes to basic fluvial ecology and provides empirical justification for restoration efforts that reconnect large rivers with their floodplains.
An index of biological integrity for northern Mid-Atlantic Slope drainages
Daniels, R.A.; Riva-Murray, K.; Halliwell, D.B.; Vana-Miller, D. L.; Bilger, Michael D.
2002-01-01
An index of biological integrity (IBI) was developed for streams in the Hudson, Delaware, and Susquehanna River drainages in the northeastern United States based on fish assemblage data from the Mohawk River drainage of New York. The original IBI, developed for streams in the U.S. Midwest, was modified to reflect the assemblage composition and structure present in Mid-Atlantic Slope drainages. We replaced several of the Midwestern IBI metrics and criteria scores because fishes common to the Midwest are absent from or poorly represented in the Northeast and because stream fish assemblages in the Northeast are less rich than those in the Midwest. For all replacement metrics we followed the ecology-based rationale used in the development of each of the metrics of the Midwestern IBI so that the basic theoretical underpinnings of the IBI remained unchanged. The validity of this modified IBI is demonstrated by examining the quality of streams in the Hudson, Delaware, and lower Susquehanna River basins. The relationships between the IBI and other indicators of environmental quality are examined using data on assemblages of fish and benthic macroinvertebrates and on chemical and physical stream characteristics obtained during 1993-2000 by the U.S. Geological Survey's National Water Quality Assessment Program in these three river basins. A principal components analysis (PCA) of chemical and physical variables from 27 sites resulted in an environmental quality gradient as the primary PCA axis (eigenvalue, 0.41 ). Principal components analysis site scores were significantly correlated with such benthic macroinvertebrate metrics as the percentage of Ephemeroptera, Plecoptera, and Trichoptera taxa (Spearman R = -0.66, P < 0.001). Index of biological integrity scores for sites in these three river basins were significantly correlated with this environmental quality gradient (Spearman R = -0.78, P = 0.0001). The northern Mid-Atlantic Slope IBI appears to be sensitive to environmental degradation in all three of the river basins addressed in this study. Adjustment of metric scoring criteria may be warranted, depending on composition of fish species in streams in the study area and on the relative effort used in the collection of fish assemblage data.
Humphries, Austin T.; LaPeyre, Megan K.; Kimball, Matthew E.; Rozas, Lawrence P.
2011-01-01
Structurally complex habitats are often associated with more diverse and abundant species assemblages in both aquatic and terrestrial ecosystems. Biogenic reefs formed by the eastern oyster (Crassostrea virginica) are complex in nature and are recognized for their potential habitat value in estuarine systems along the US Atlantic and Gulf of Mexico coasts. Few studies, however, have examined the response of nekton to structural complexity within oyster reefs. We used a quantitative sampling technique to examine how the presence and complexity of experimental oyster reefs influence the abundance, biomass, and distribution of nekton by sampling reefs 4 months and 16 months post-construction. Experimental oyster reefs were colonized immediately by resident fishes and decapod crustaceans, and reefs supported a distinct nekton assemblage compared to mud-bottom habitat. Neither increased reef complexity, nor age of the experimental reef resulted in further changes in nekton assemblages or increases in nekton abundance or diversity. The presence of oyster reefs per se was the most important factor determining nekton usage.
Wave energy and swimming performance shape coral reef fish assemblages
Fulton, C.J; Bellwood, D.R; Wainwright, P.C
2005-01-01
Physical factors often have an overriding influence on the distribution patterns of organisms, and can ultimately shape the long-term structure of communities. Although distribution patterns in sessile marine organisms have frequently been attributed to functional characteristics interacting with wave-induced water motion, similar evidence for mobile organisms is lacking. Links between fin morphology and swimming performance were examined in three diverse coral reef fish families from two major evolutionary lineages. Among-habitat variation in morphology and performance was directly compared with quantitative values of wave-induced water motion from seven coral reef habitats of different depth and wave exposure on the Great Barrier Reef. Fin morphology was strongly correlated with both field and experimental swimming speeds in all three families. The range of observed swimming speeds coincided closely with the magnitude of water velocities commonly found on coral reefs. Distribution patterns in all three families displayed highly congruent relationships between fin morphology and wave-induced water motion. Our findings indicate a general functional relationship between fin morphology and swimming performance in labriform-swimming fishes, and provide quantitative evidence that wave energy may directly influence the assemblage structure of coral reef fishes through interactions with morphology and swimming performance. PMID:15888415
NASA Astrophysics Data System (ADS)
Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I. M.; Barcala, E.; Hegazi, M. I.; Quispe, J.
2007-10-01
To detect changes in ecosystems due to human impact, experimental designs must include replicates at the appropriate scale to avoid pseudoreplication. Although coastal lagoons, with their highly variable environmental factors and biological assemblages, are relatively well-studied systems, very little is known about their natural scales of variation. In this study, we investigate the spatio-temporal scales of variability in the Mar Menor coastal lagoon (SE Spain) using structured hierarchical sampling designs, mixed and permutational multi-variate analyses of variance, and ordination multi-variate analyses applied to hydrographical parameters, nutrients, chlorophyll a and ichthyoplankton in the water column, and to macrophyte and fish benthic assemblages. Lagoon processes in the Mar Menor show heterogeneous patterns at different temporal and spatial scales. The water column characteristics (including nutrient concentration) showed small-scale spatio-temporal variability, from 10 0 to 10 1 km and from fortnightly to seasonally. Biological features (chlorophyll a concentration and ichthyoplankton assemblage descriptors) showed monthly changes and spatial patterns at the scale of 10 0 (chlorophyll a) - 10 1 km (ichthyoplankton). Benthic assemblages (macrophytes and fishes) showed significant differences between types of substrates in the same locality and between localities, according to horizontal gradients related with confinement in the lagoon, at the scale of 10 0-10 1 km. The vertical zonation of macrophyte assemblages (at scales of 10 1-10 2 cm) overlaps changes in substrata and horizontal gradients. Seasonal patterns in vegetation biomass were not significant, but the significant interaction between Locality and Season indicated that the seasons of maximum and minimum biomass depend on local environmental conditions. Benthic fish assemblages showed no significant patterns at the monthly scale but did show seasonal patterns.
Connecting ground water influxes with fish species diversity in an urbanized watershed
Steffy, L.Y.; McGinty, A.L.; Welty, C.; Kilham, S.S.
2004-01-01
Valley Creek watershed is a small stream system that feeds the Schuylkill River near Philadelphia, Pennsylvania. The watershed is highly urbanized, including over 17 percent impervious surface cover (ISC) by area. Imperviousness in a watershed has been linked to fish community structure and integrity. Generally, above 10 to 12 percent ISC there is marked decline in fish assemblages with fish being absent above 25 percent ISC. This study quantifies the importance of ground water in maintaining fish species diversity in subbasins with over 30 percent ISC. Valley Creek contains an atypical fish assemblage in that the majority of the fish are warm-water species, and the stream supports naturally reproducing brown trout, which were introduced and stocked from the early 1900s to 1985. Fish communities were quantified at 13 stations throughout the watershed, and Simpson's species diversity index was calculated. One hundred and nine springs were located, and their flow rates measured. A cross covariance analysis between Simpson's species diversity index and spring flow rates upstream of fish stations was performed to quantify the spatial correlation between these two variables. The correlation was found to be highest at lag distances up to about 400 m and drop off significantly beyond lag distances of about 800 m.
ELECTROFISHING DISTANCE NEEDED TO ESTIMATE FISH SPECIES RICHNESS IN RAFTABLE WESTERN USA RIVERS
A critical issue in river monitoring is the minimum amount of sampling distance required to adequately represent the fish assemblage of a reach. Determining adequate sampling distance is important because it affects estimates of fish assemblage integrity and diversity at local a...
Development of an Index of Ecological Condition Based on Great River Fish Assemblages, Presentation
As part of the Environmental Monitoring and Assessment Program for Great River Ecosystems we developed a fish-assemblage based multimetric index (Great River Fish Index,GRFIn) as an indicator of ecological conditions in the Lower Missouri, impounded Upper Mississippi,.unimpounded...
Freshwater Fish Assemblage Patterns in Rhode Island Streams and Rivers
Patterns in fish assemblages in streams and rivers can inform watershed and water management, yet these patterns are not well characterized for the U.S. state of Rhode Island. Here we relate freshwater fish data collected by the Rhode Island Department of Environmental Managemen...
Freshwater Fish Assemblage Patterns in Rhode Island Streams and Rivers (ESA)
Patterns in fish assemblages in streams and rivers can inform watershed and water management, yet these patterns are not well characterized for the U.S. state of Rhode Island. Here we relate freshwater fish data collected by the Rhode Island Department of Environmental Managemen...
Long-term changes in the fish assemblage of a neotropical hydroelectric reservoir.
Orsi, M L; Britton, J R
2014-06-01
The changes in the fish assemblage of the Capivara Reservoir, Brazil, were assessed over a 20 year period. Of 50 native fishes present in the initial samples, 27 were no longer present in the final samples, but there had been an addition of 11 invasive fishes, suggesting the occurrence of substantial shifts in fish diversity and abundance. © 2014 The Fisheries Society of the British Isles.
Long-term functional changes in an estuarine fish assemblage.
Baptista, J; Martinho, F; Nyitrai, D; Pardal, M A; Dolbeth, M
2015-08-15
The functional diversity of the fish assemblages of the Mondego estuary was studied for a discontinuous 30-year period (1988-2012). During this time, hydrological changes occurred due to man-induced alterations and weather extremes. These changes led to alterations in the structure and function of the fish community. Species richness and functional richness decreased over time and the fish community started to explore new micro-habitats and food resources. Before severe hydrological changes, the community was dominated by pelagic, detritivorous and species with wider salinity ranges. After, the community became dominated by demersal, benthic, piscivorous and marine species. During a drought, omnivorous became increasingly important, reflecting greater possibilities of using available feeding resources. We have also found an increase in sub-tropical species throughout the years, which might be related to gradual temperature increases at a global scale. This study also confirmed estuaries as extremely important for restocking several commercial species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aguado-Giménez, Felipe; Eguía-Martínez, Sergio; Cerezo-Valverde, Jesús; García-García, Benjamín
2018-06-14
Ichthyophagous birds aggregate at cage fish farms attracted by caged and associated wild fish. Spatio-temporal variability of such birds was studied for a year through seasonal visual counts at eight farms in the western Mediterranean. Correlation with farm and location descriptors was assessed. Considerable spatio-temporal variability in fish-eating bird density and assemblage structure was observed among farms and seasons. Bird density increased from autumn to winter, with the great cormorant being the most abundant species, also accounting largely for differences among farms. Grey heron and little egret were also numerous at certain farms during the coldest seasons. Cattle egret was only observed at one farm. No shags were observed during winter. During spring and summer, bird density decreased markedly and only shags and little egrets were observed at only a few farms. Season and distance from farms to bird breeding/wintering grounds helped to explain some of the spatio-temporal variability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Otero, Olga; Pinton, Aurélie; Cappetta, Henri; Adnet, Sylvain; Valentin, Xavier; Salem, Mustapha; Jaeger, Jean-Jacques
2015-01-01
In the early nineteen sixties, Arambourg and Magnier found some freshwater fish (i.e., Polypterus sp., Siluriformes indet. and Lates sp.) mixed with marine members in an Eocene vertebrate assemblage at Gebel Coquin, in the southern Libyan Desert. This locality, aged ca 37–39Ma and now known under the name of Dur At-Talah, has been recently excavated. A new fish assemblage, mostly composed of teeth, was collected by the Mission Paléontologique Franco-Libyenne. In this paper, we describe freshwater fish members including a dipnoan (Protopterus sp.), and several actinopterygians: bichir (Polypterus sp.), aba fish (Gymnarchus sp.), several catfishes (Chrysichthys sp. and a mochokid indet.), several characiforms (including the tiger fish Hydrocynus sp., and one or two alestin-like fish), and perciforms (including the snake-head fish Parachanna sp. and at least one cichlid). Together with the fossiliferous outcrops at Birket Qarun in Egypt, the Libyan site at Dur At-Talah reduces a 10-Ma chronological gap in the fossil record of African freshwater fish. Their fish assemblages overlap in their composition and thus constitute a rather homogenous, original and significant amount of new elements regarding the Paleogene African ichthyofauna. This supports the establishment of the modern African freshwater fish fauna during this time period because these sites mostly contain the earliest members known in modern genera. PMID:26674637
Otero, Olga; Pinton, Aurélie; Cappetta, Henri; Adnet, Sylvain; Valentin, Xavier; Salem, Mustapha; Jaeger, Jean-Jacques
2015-01-01
In the early nineteen sixties, Arambourg and Magnier found some freshwater fish (i.e., Polypterus sp., Siluriformes indet. and Lates sp.) mixed with marine members in an Eocene vertebrate assemblage at Gebel Coquin, in the southern Libyan Desert. This locality, aged ca 37-39Ma and now known under the name of Dur At-Talah, has been recently excavated. A new fish assemblage, mostly composed of teeth, was collected by the Mission Paléontologique Franco-Libyenne. In this paper, we describe freshwater fish members including a dipnoan (Protopterus sp.), and several actinopterygians: bichir (Polypterus sp.), aba fish (Gymnarchus sp.), several catfishes (Chrysichthys sp. and a mochokid indet.), several characiforms (including the tiger fish Hydrocynus sp., and one or two alestin-like fish), and perciforms (including the snake-head fish Parachanna sp. and at least one cichlid). Together with the fossiliferous outcrops at Birket Qarun in Egypt, the Libyan site at Dur At-Talah reduces a 10-Ma chronological gap in the fossil record of African freshwater fish. Their fish assemblages overlap in their composition and thus constitute a rather homogenous, original and significant amount of new elements regarding the Paleogene African ichthyofauna. This supports the establishment of the modern African freshwater fish fauna during this time period because these sites mostly contain the earliest members known in modern genera.
Water Quality and Fish Assemblages in the Northern Gulf of Mexico.
This presentation summarizes water quality and fish assemblages determined as part of EPA's National Coastal Assessment Program during 2000-2004. Fishes were collected by a 4.9m and 6.1m trawls from 128 coastal waterbodies ranging from Rio Grande, Texas to Suwannee Sound, Florid...
Simulating Fish Assemblages in Riverine Networks: Response to Habitat in the Willamette Watershed
We describe a modeling approach for simulating assemblages of fish in riverine landscapes. The approach allows a user to determine the scale and extent of river networks within which fish populations reproduce, move, and survive in response to both environmental drivers and assem...
Seasonal dynamics of the juvenile fish community structure in the Maowei Sea mangroves
Zou, Qi; Chang, Tao; Zhang, Dong; Huang, Liang-Liang
2018-01-01
More than 50% of Chinese mangroves were lost between 1950 and 2000 to habitat destruction, prompting an urge for conservation. To assess the importance of the protected Maowei Gulf mangrove estuary for fish population assemblage in the Beibu Gulf (China), we studied species composition and abundance of juvenile fish (including larvae) from July 2012 to June 2013. A total of 11 691 specimens were collected, which belonged to 24 species and 15 families. Six perciform species constituted 93% of the total sample. Pseudogobius javanicus (53.29%) was the dominant species from August to November, Omobranchus elegans (28.49%) from April to July, non-identified species in December and January, and Liza carinata in February and March. A number of commercially important fish species were also identified. Abundance was the highest in summer/early autumn (max 162.4 in Sep), and lowest in winter/early spring (Mar = 4.5). Diversity (H’) and richness (Dma) indices (both max. in May: 1.67 and 1.95 respectively) were generally positively correlated with tide and temperature, and negatively with salinity. Seasonal variations play a more important role in the fish assemblage structure than tidal rhythm, with differences particularly pronounced between colder and warmer months. Despite the prominent seasonal differences in abiotic factors, this study indicates that Maowei mangroves provide habitat and food for juvenile fish throughout the year and thus are indispensable for the fish diversity in the Beibu Gulf. PMID:29438434
Gradients in Catostomid assemblages along a reservoir cascade
Miranda, Leandro E.; Keretz, Kevin R.; Gilliland, Chelsea R.
2017-01-01
Serial impoundment of major rivers leads to alterations of natural flow dynamics and disrupts longitudinal connectivity. Catostomid fishes (suckers, family Catostomidae) are typically found in riverine or backwater habitats yet are able to persist in impounded river systems. To the detriment of conservation, there is limited information about distribution of catostomid fishes in impounded rivers. We examined the longitudinal distribution of catostomid fishes over 23 reservoirs of the Tennessee River reservoir cascade, encompassing approximately 1600 km. Our goal was to develop a basin-scale perspective to guide conservation efforts. Catostomid species composition and assemblage structure changed longitudinally along the reservoir cascade. Catostomid species biodiversity was greatest in reservoirs lower in the cascade. Assemblage composition shifted from dominance by spotted sucker Minytrema melanops and buffalos Ictiobus spp. in the lower reservoirs to carpsuckers Carpiodes spp. midway through the cascade and redhorses Moxostoma spp. in the upper reservoirs. Most species did not extend the length of the cascade, and some species were rare, found in low numbers and in few reservoirs. The observed gradients in catostomid assemblages suggest the need for basin-scale conservation measures focusing on three broad areas: (1) conservation and management of the up-lake riverine reaches of the lower reservoirs, (2) maintenance of the access to quality habitat in tributaries to the upper reservoirs and (3) reintroductions into currently unoccupied habitat within species' historic distributions
Benthopelagic megafauna assemblages of the Rio Grande Rise (SW Atlantic)
NASA Astrophysics Data System (ADS)
Perez, Jose Angel Alvarez; Kitazato, Hiroshi; Sumida, Paulo Yukio Gomes; Sant'Ana, Rodrigo; Mastella, Angélica Maffini
2018-04-01
The Rio Grande Rise (RGR) is a large and geomorphologically complex structure of the deep SW Atlantic Ocean. In 2013, the 600-1200 m deep plateau of the most prominent topographic component of the RGR (named Alpha) was explored during two dives of the manned submersible Shinkai 6500 (30°22‧15‧‧S - 36°02‧02‧‧W and 31°05‧58‧‧S - 34°02‧40‧‧W). Video profiles recorded during these dives were analyzed for description of benthopelagic megafauna (fish and crustaceans) assemblages, and quantitative assessment of structuring factors (depth, topography and habitat types). Fishes represented over 92% (462) of all benthopelagic megafauna, divided into 11 orders and 17 families. Over half of fish records were Macrouridae, Synaphobranchidae and Chaunacidae. Megafauna abundance varied at different spatial scales, being higher in shallower habitats ( 600 m) dominated by branched suspension feeders (mostly sponges and cnidarians). Beta-diversity and community structure were related to habitat diversity. Because the RGR is vast and may comprise numerous distinctive habitats associated with depth, topography and water mass dynamics, fauna diversity may be high and patchy.
Miller, Matthew P.; Brasher, Anne M.D.; Keenen, Jonathan G.
2013-01-01
Biotic assemblages in aquatic ecosystems are excellent integrators and indicators of changing environmental conditions within a watershed. Therefore, temporal changes in abiotic environmental variables often can be inferred from temporal changes in biotic assemblages. Algae, macroinvertebrate, and fish assemblage data were collected from 91 sampling sites in 4 geographic regions (northeastern/north-central, southeastern, south-central, and western), collectively encompassing the continental United States, from 1993 to 2009 as part of the U.S. Geological Survey National Water-Quality Assessment Program. This report uses a multivariate approach to synthesize temporal trends in biotic assemblages and correlations with relevant abiotic parameters as a function of biotic assemblage, geographic region, and land use. Of the three groups of biota, algal assemblages had temporal trends at the greatest percentage of sites. Of the regions, a greater percentage of sites in the northeastern/north-central and western regions had temporal trends in biotic assemblages. In terms of land use, a greater percentage of watersheds draining agricultural, urban, and undeveloped areas had significant temporal changes in biota, as compared to watersheds with mixed use. Correlations between biotic assemblages and abiotic variables indicate that, in general, macroinvertebrate assemblages correlated with water quality and fish assemblages correlated with physical habitat. Taken together, results indicate that there are regional differences in how individual biotic assemblages (algae, macroinvertebrates, and fish) respond to different abiotic drivers of change.
Chase, Daniel A; Flynn, Erin E; Todgham, Anne E
2016-01-01
Abstract Reintroduction of endangered fishes to historic habitat has been used as a recovery tool; however, these fish may face competition from other fishes that established in their native habitat since extirpation. This study investigated the physiological response of tidewater goby, Eucyclogobius newberryi, an endangered California fish, when competing for food with threespine stickleback, Gasterosteus aculeatus, a native species, and rainwater killifish, Lucania parva, a non-native species. Survival, growth and physiological indicators of stress (i.e. cortisol, glucose and lactate concentrations) were assessed for juvenile fish held for 28 days in two food-limited conditions. When fed a 75% ration, survival of E. newberryi was significantly lower when held with G. aculeatus. In all fish assemblages, weight and relative condition decreased then stabilized over the 28 day experiment, while length remained unchanged. Whole-body cortisol in E. newberryi was not affected by fish assemblage; however, glucose and lactate concentrations were significantly higher with conspecifics than with other fish assemblages. When fed a 50% ration, survival of E. newberryi decreased during the second half of the experiment, while weight and relative condition decreased and length remained unchanged in all three fish assemblages. Cortisol concentrations were significantly higher for all fish assemblages compared with concentrations at the start of the experiment, whereas glucose and lactate concentrations were depressed relative to concentrations at the start of the experiment, with the magnitude of decrease dependent on the species assemblage. Our findings indicate that E. newberryi exhibited reduced growth and an elevated generalized stress response during low food availability. In response to reduced food availability, competition with G. aculeatus had the greatest physiological effect on E. newberryi, with minimal effects from the non-native L. parva. This study presents the first reported cortisol, glucose and lactate concentrations in response to chronic stress for E. newberryi. PMID:27293761
NASA Astrophysics Data System (ADS)
Yoon, Ju-Duk; Kim, Jeong-Hui; Park, Sang-Hyeon; Kim, Eve; Jang, Min-Ho
2017-03-01
The construction of an estuary barrage, an instream structure in the lower reaches of a river, causes significant physical changes in water flow patterns and river morphology, and results in altered environmental conditions. Here, we examined the impact of the Geum River estuary barrage, completed in 1990, on fish assemblages by using a literature search and fresh surveys of fishways in the barrage. We found that fish assemblages upstream and downstream of the barrage were altered following its completion. After construction, more species were found in the freshwater area, with a particularly great increase in freshwater species. Conversely, estuarine and marine species were only consistently caught in the downstream salt-water area, although the number of species increased. In total, 15,829 fish from 47 species and 20 families were identified at the three types (pool and weir, rubble type, and boat passage) of fishways in the barrage. The dominant species were Chelon haematocheilus, an estuarine species, Coilia nasus, a diadromous species, and Erythroculter erythropterus, a freshwater species. The mean total length of fish (101.9 ± 76.0 mm) in the boat passage fishway was approximately 100 mm lesser than those in the pool and weir (207.2 ± 112.8 mm) and rubble type (205.8 ± 112.7 mm) fishways. The boat passage fishway was the most efficient for fish movements. The current fishway system is not sufficient for fish migration, and thus additional ways are required to improve the system such as the boat passage. Few estuarine or diadromous species were found in both freshwater and salt-water areas, but freshwater fishes that accidently moved to salt-water area actively used fishways. Therefore, fishway management in the Geum River estuary barrage has to focus on freshwater fish; however, this may need to change to a focus on migratory fishes depending on ecological life cycles of migratory fish.
Does mobility explain variation in colonisation and population recovery among stream fishes?
Angermeier, Paul L.; Albanese, Brett; Peterson, James T.
2009-01-01
1. Colonisation and population recovery are crucial to species persistence in environmentally variable ecosystems, but are poorly understood processes. After documenting movement rates for several species of stream fish, we predicted that this variable would influence colonisation rates more strongly than local abundance, per cent occupancy, body size and taxonomic family. We also predicted that populations of species with higher movement rates would recover more rapidly than species with lower movement rates and that assemblage structure would change accordingly. 2. To test these predictions, we removed fishes from a headwater and a mainstem creek in southwest Virginia and monitored colonisation over a 2-year period. Using an information–theoretic approach, we evaluated the relative plausibility of 15 alternative models containing different combinations of our predictor variables. Our best-supported model contained movement rate and abundance and was 41 times more likely to account for observed patterns in colonisation rates than the next-best model. Movement rate and abundance were both positively related to colonisation rates and explained 88% of the variation in colonisation rates among species. 3. Population recovery, measured as the per cent of initial abundance restored, was also positively associated with movement rate. One species recovered within 3 months, most recovered within 2 years, but two species still had not recovered after 2 years. Despite high variation in recovery, the removal had only a slight impact on assemblage structure because species that were abundant in pre-removal samples were also abundant in post-removal samples. 4. The significance of interspecific variation in colonisation and recovery rates has been underappreciated because of the widely documented recovery of stream fish assemblages following fish kills and small-scale experimental defaunations. Our results indicate that recovery of the overall assemblage does not imply recovery of each component species. Populations of species that are rare and less mobile will recover more slowly and will be more vulnerable to extinction in systems where chemical spills, hydrological alteration, extreme droughts and other impacts are frequent.
Kennen, Jonathan G.; Sullivan, Daniel J.; May, Jason T.; Bell, Amanda H.; Beaulieu, Karen M.; Rice, Donald E.
2012-01-01
Many management agencies seek to evaluate temporal changes in aquatic assemblages at monitoring sites, but few have sites with ecological time series that are long enough for this purpose. Trends in aquatic-invertebrate and fish assemblage composition were assessed at 27 long-term monitoring sites in the north-central and northeastern United States. Temporal changes were identified using serial trend analysis. Sites with significant serial trends were further evaluated by relating explanatory environmental variables (e.g., streamflow, habitat, and water chemistry) to changes in assemblage composition. Significant trends were found at 19 of 27 study sites; however, differences in the sensitivity of the aquatic fauna to environmental stressors were identified. For example, significant trends in fish assemblages were found at more sites (15 of 27) than for aquatic-invertebrate assemblages (10 of 27 sites). In addition, trends in the invertebrate assemblage were most often explained by changes in streamflow processes (e.g., duration and magnitude of low- and high-flows, streamflow variability, and annual rates of change), whereas trends in the fish assemblage were more related to changes in water chemistry. Results illustrate the value of long-term monitoring for the purpose of assessing temporal trends in aquatic assemblages. The ability to detect trends in assemblage composition and to attribute these changes to environmental factors is necessary to understand mechanistic pathways and to further our understanding of how incremental anthropogenic alterations modify aquatic assemblages over time. Finally, this study's approach to trends analysis can be used to better inform the design of monitoring programs as well as support the ongoing management needs of stakeholders, water-resource agencies, and policy makers.
NASA Astrophysics Data System (ADS)
Malek, Anna J.; Collie, Jeremy S.; Gartland, James
2014-06-01
The abundance, biomass, diversity, and species composition of the demersal fish and invertebrate community in Rhode Island Sound and Block Island Sound, an area identified for offshore renewable energy development, were evaluated for spatial and seasonal structure. We conducted 58 otter trawls and 51 beam trawls in the spring, summer and fall of 2009-2012, and incorporated additional data from 88 otter trawls conducted by the Northeast Area Monitoring and Assessment Program. We used regionally-grouped abundance, biomass, diversity, and size spectra to assess spatial patterns in the aggregate fish community, and hierarchical cluster analysis to evaluate trends in species assemblages. Our analyses revealed coherent gradients in fish community biomass, diversity and species composition extending from inshore to offshore waters, as well as patterns related to the differing bathymetry of Rhode Island and Block Island Sounds. The fish communities around Block Island and Cox's Ledge are particularly diverse, suggesting that the proximity of hard bottom habitat may be important in structuring fish communities in this area. Species assemblages in Rhode Island and Block Island Sounds are characterized by a combination of piscivores (silver hake, summer flounder, spiny dogfish), benthivores (American lobster, black sea bass, Leucoraja spp. skates, scup) and planktivores (sea scallop), and exhibit geographic patterns that are persistent from year to year, yet variable by season. Such distributions reflect the cross-shelf migration of fish and invertebrate species in the spring and fall, highlighting the importance of considering seasonal fish behavior when planning construction schedules for offshore development projects. The fine spatial scale (10 s of kms) of this research makes it especially valuable for local marine spatial planning efforts by identifying local-scale patterns in fish community structure that will enable future assessment of the ecological impacts of offshore development. As such, this knowledge of the spatial and temporal structure of the demersal fish community in Rhode Island and Block Island Sounds will help to guide the placement of offshore structures so as to preserve the ecological and economic value of the area.
NASA Astrophysics Data System (ADS)
Chícharo, M. Alexandra; Chícharo, Luis; Morais, Pedro
2006-10-01
The objective of this study was to evaluate how inter-annual changes in the volume of freshwater input and water parameters (salinity, temperature, major dissolved nutrients, seston and chlorophyll a) affect fish assemblages in the Guadiana estuary (South Portugal). During the sampling period (two distinct hydrological years), 56 fish species were identified. Anchovies ( Engraulis encrasicolus) and barbells ( Barbus species) dominated the abundances in the high inflow year (2001), but Pomatoschistus species were the most important taxa in the low inflow year (2002). Barbells and Portuguese toadfish ( Halobatrachus didactylus) dominated the biomass in both years under different inflow conditions, but a reduction in barbells' biomass occurred during the low inflow year. Multivariate analysis indicated a persistent spatial structuring of the estuarine community for both years and in different seasonal periods. Changes in salinity and seston, which were mainly due to changes in freshwater input, had an important influence on the structure of the fish assemblages. In 2002, the increased salinity in the upper estuary allowed colonization by marine species of an area that usually contains freshwater, decreasing even more the habitat for indigenous freshwater species in the downstream area of the Guadiana River. There was also a decrease in the abundances of planktivorous and omnivorous fishes and an increase in carnivorous fishes during the low inflow year. As fishes in these systems are important regulators of processes in the trophic web, changes in the dominant feeding groups can have consequences on water quality, particularly in relation to the occurrence of plankton blooms.
Sinkhole-like structures as bioproductivity hotspots in the Abrolhos Bank
NASA Astrophysics Data System (ADS)
Cavalcanti, Giselle S.; Gregoracci, Gustavo B.; Longo, Leila de L.; Bastos, Alex C.; Ferreira, Camilo M.; Francini-Filho, Ronaldo B.; Paranhos, Rodolfo; Ghisolfi, Renato D.; Krüger, Ricardo; Güth, Arthur Z.; Sumida, Paulo Y. G.; Bruce, Thiago; Maia-Neto, Oswaldo; de O. Santos, Eidy; Iida, Tetsuya; Moura, Rodrigo L.; Amado-Filho, Gilberto M.; Thompson, Fabiano L.
2013-11-01
We performed a biological survey in the novel system of sinkhole-like structures ("buracas") of the Abrolhos Bank, Brazil. We found dissimilar benthic assemblages and higher nutrient concentration, microbial abundance (and activity) and fish abundance inside the buracas than in the surrounding rhodolith beds. Our results support the view that these cup-shaped structures trap and accumulate organic matter, functioning as productivity hotspots in the mid and outer shelf of the central portion of the Abrolhos Bank shelf, where they aggregate biomass of commercially important fishes. This distinctive system is being increasingly pressured by commercial fisheries and needs urgent management measures such as fishing effort control and representation in the network of Marine Protected Areas (MPAS).
Seasonal changes in the assembly mechanisms structuring tropical fish communities.
Fitzgerald, Daniel B; Winemiller, Kirk O; Sabaj Pérez, Mark H; Sousa, Leandro M
2017-01-01
Despite growing interest in trait-based approaches to community assembly, little attention has been given to seasonal variation in trait distribution patterns. Mobile animals can rapidly mediate influences of environmental factors and species interactions through dispersal, suggesting that the relative importance of different assembly mechanisms can vary over short time scales. This study analyzes seasonal changes in functional trait distributions of tropical fishes in the Xingu River, a major tributary of the Amazon with large predictable temporal variation in hydrologic conditions and species density. Comparison of observed functional diversity revealed that species within wet-season assemblages were more functionally similar than those in dry-season assemblages. Further, species within wet-season assemblages were more similar than random expectations based on null model predictions. Higher functional richness within dry season communities is consistent with increased niche complementarity during the period when fish densities are highest and biotic interactions should be stronger; however, null model tests suggest that stochastic factors or a combination of assembly mechanisms influence dry-season assemblages. These results demonstrate that the relative influence of community assembly mechanisms can vary seasonally in response to changing abiotic conditions, and suggest that studies attempting to infer a single dominant mechanism from functional patterns may overlook important aspects of the assembly process. During the prolonged flood pulse of the wet season, expanded habitat and lower densities of aquatic organisms likely reduce the influence of competition and predation. This temporal shift in the influence of different assembly mechanisms, rather than any single mechanism, may play a large role in maintaining the structure and diversity of tropical rivers and perhaps other dynamic and biodiverse systems. © 2016 by the Ecological Society of America.
Kalogianni, Eleni; Vourka, Aikaterini; Karaouzas, Ioannis; Vardakas, Leonidas; Laschou, Sofia; Skoulikidis, Nikolaos Th
2017-12-15
Water stress is a key stressor in Mediterranean intermittent rivers exacerbating the negative effects of other stressors, such as pollutants, with multiple effects on different river biota. The current study aimed to determine the response of macroinvertebrate and fish assemblages to instream habitat and water chemistry, at the microhabitat scale and at different levels of water stress and pollution, in an intermittent Mediterranean river. Sampling was conducted at high and low summer discharge, at two consecutive years, and included four reaches that were targeted for their different levels of water stress and pollution. Overall, the macroinvertebrate fauna of Evrotas River indicated high resilience to intermittency, however, variation in community structure and composition occurred under acute water stress, due to habitat alteration and change in water physico-chemistry, i.e. water temperature increase. The combined effects of pollution and high water stress had, however, pronounced effects on species richness, abundance and community structure in the pollution impacted reach, where pollution sensitive taxa were almost extirpated. Fish response to drought, in reaches free of pollution, consisted of an increase in the abundance of the two small limnophilic species, coupled with their shift to faster flowing riffle habitats, and a reduction in the abundance of the larger, rheophilic species. In the pollution impacted reach, however, the combination of pollution and high water stress led to hypoxic conditions assumed to be the leading cause of the almost complete elimination of the fish assemblage. In contrast, the perennial Evrotas reaches with relatively stable physicochemical conditions, though affected hydrologically by drought, appear to function as refugia for fish during high water stress. When comparing the response of the two biotic groups to combined acute water stress and pollution, it is evident that macroinvertebrates were negatively impacted, but fish were virtually eliminated under the two combined stressors. Copyright © 2017. Published by Elsevier B.V.
High Levels of Sediment Contamination Have Little Influence on Estuarine Beach Fish Communities
McKinley, Andrew C.; Dafforn, Katherine A.; Taylor, Matthew D.; Johnston, Emma L.
2011-01-01
While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination. PMID:22039470
Cilleros, Kévin; Valentini, Alice; Allard, Luc; Dejean, Tony; Etienne, Roselyne; Grenouillet, Gaël; Iribar, Amaia; Taberlet, Pierre; Vigouroux, Régis; Brosse, Sébastien
2018-05-16
Determining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods. Developing an efficient and non-destructive method to assess biodiversity in tropical freshwaters is highly important. In this study, we tested the efficiency of environmental DNA (eDNA) metabarcoding to assess the fish diversity of 39 Guianese sites. We compared the diversity and composition of assemblages obtained using traditional and metabarcoding methods. More than 7,000 individual fish belonging to 203 Guianese fish species were collected by traditional sampling methods, and ~17 million reads were produced by metabarcoding, among which ~8 million reads were assigned to 148 fish taxonomic units, including 132 fish species. The two methods detected a similar number of species at each site, but the species identities partially matched. The assemblage compositions from the different drainage basins were better discriminated using metabarcoding, revealing that while traditional methods provide a more complete but spatially limited inventory of fish assemblages, metabarcoding provides a more partial but spatially extensive inventory. eDNA metabarcoding can therefore be used for rapid and large-scale biodiversity assessments, while at a local scale, the two approaches are complementary and enable an understanding of realistic fish biodiversity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Hansen, Gretchen J. A.; Bethke, Bethany J.; Cross, Timothy K.
2017-01-01
Eutrophication and climate warming are profoundly affecting fish in many freshwater lakes. Understanding the specific effects of these stressors is critical for development of effective adaptation and remediation strategies for conserving fish populations in a changing environment. Ecological niche models that incorporated the individual effects of nutrient concentration and climate were developed for 25 species of fish sampled in standard gillnet surveys from 1,577 Minnesota lakes. Lake phosphorus concentrations and climates were hindcasted to a pre-disturbance period of 1896–1925 using existing land use models and historical temperature data. Then historical fish assemblages were reconstructed using the ecological niche models. Substantial changes were noted when reconstructed fish assemblages were compared to those from the contemporary period (1981–2010). Disentangling the sometimes opposing, sometimes compounding, effects of eutrophication and climate warming was critical for understanding changes in fish assemblages. Reconstructed abundances of eutrophication-tolerant, warmwater taxa increased in prairie lakes that experienced significant eutrophication and climate warming. Eutrophication-intolerant, warmwater taxa abundance increased in forest lakes where primarily climate warming was the stressor. Coolwater fish declined in abundance in both ecoregions. Large changes in modeled abundance occurred when the effects of both climate and eutrophication operated in the same direction for some species. Conversely, the effects of climate warming and eutrophication operated in opposing directions for other species and dampened net changes in abundance. Quantifying the specific effects of climate and eutrophication will allow water resource managers to better understand how lakes have changed and provide expectations for sustainable fish assemblages in the future. PMID:28777816
Assessing Fish and Motile Fauna around Offshore Windfarms Using Stereo Baited Video
Griffin, Ross A.; Robinson, Gary J.; West, Ashley; Gloyne-Phillips, Ian T.; Unsworth, Richard K. F.
2016-01-01
There remains limited knowledge of how offshore windfarm developments influence fish assemblages, particularly at a local scale around the turbine structures. Considering the existing levels of anthropogenic pressures on coastal fish populations it is becoming increasingly important for developers and environmental regulators to gain a more comprehensive understanding of the factors influencing fish assemblages. Improving our ability to assess such fish populations in close proximity to structures will assist in increasing this knowledge. In the present study we provide the first trial use of Baited Remote Underwater Stereo-Video systems (stereo BRUVs) for the quantification of motile fauna in close proximity to offshore wind turbines. The study was conducted in the Irish Sea and finds the technique to be a viable means of assessing the motile fauna of such environments. The present study found a mixture of species including bottom dwellers, motile crustaceans and large predatory fish. The majority of taxa observed were found to be immature individuals with few adult individuals recorded. The most abundant species were the angular crab (Goneplax rhomboides) and the small-spotted catshark (Scyliorhinus canicula). Of note in this study was the generally low abundance and diversity of taxa recorded across all samples, we hypothesise that this reflects the generally poor state of the local fauna of the Irish Sea. The faunal assemblages sampled in close proximity to turbines were observed to alter with increasing distance from the structure, species more characteristic of hard bottom environments were in abundance at the turbines (e.g. Homarus gammarus, Cancer pagarus, Scyliorhinus spp.) and those further away more characteristic of soft bottoms (e.g. Norwegian Lobster). This study highlights the need for the environmental impacts of offshore renewables on motile fauna to be assessed using targeted and appropriate tools. Stereo BRUVs provide one of those tools, but like the majority of methods for sampling marine biota, they have limitations. We conclude our paper by providing a discussion of the benefits and limitations of using this BRUV technique for assessing fauna within areas close to offshore windfarms. PMID:26934587
Teichert, Nils; Lepage, Mario; Sagouis, Alban; Borja, Angel; Chust, Guillem; Ferreira, Maria Teresa; Pasquaud, Stéphanie; Schinegger, Rafaela; Segurado, Pedro; Argillier, Christine
2017-12-14
The impact of species loss on ecosystems functioning depends on the amount of trait similarity between species, i.e. functional redundancy, but it is also influenced by the order in which species are lost. Here we investigated redundancy and sensitivity patterns across fish assemblages in lakes, rivers and estuaries. Several scenarios of species extinction were simulated to determine whether the loss of vulnerable species (with high propensity of extinction when facing threats) causes a greater functional alteration than random extinction. Our results indicate that the functional redundancy tended to increase with species richness in lakes and rivers, but not in estuaries. We demonstrated that i) in the three systems, some combinations of functional traits are supported by non-redundant species, ii) rare species in rivers and estuaries support singular functions not shared by dominant species, iii) the loss of vulnerable species can induce greater functional alteration in rivers than in lakes and estuaries. Overall, the functional structure of fish assemblages in rivers is weakly buffered against species extinction because vulnerable species support singular functions. More specifically, a hotspot of functional sensitivity was highlighted in the Iberian Peninsula, which emphasizes the usefulness of quantitative criteria to determine conservation priorities.
Johnson, Timothy B.; Hoff, Michael H.; Trebitz, Anett S.; Bronte, Charles R.; Corry, Timothy D.; Kitchell, James F.; Lozano, Stephen J.; Mason, Doran M.; Scharold, Jill V.; Schram, Stephen T.; Schreiner, Donald R.
2004-01-01
We assessed abundance, size, and species composition of forage fish and zooplankton communities of western Lake Superior during August 1996 and July 1997. Data were analyzed for three ecoregions (Duluth-Superior, Apostle Islands, and the open lake) differing in bathymetry and limnological and biological patterns. Zooplankton abundance was three times higher in the Duluth-Superior and Apostle Islands regions than in the open lake due to the large numbers of rotifers. Copepods were far more abundant than Cladocera in all ecoregions. Mean zooplankton size was larger in the open lake due to dominance by large calanoid copepods although size of individual taxa was similar among ecoregions. Forage fish abundance and biomass was highest in the Apostle Islands region and lowest in the open lake ecoregion. Lake herring (Coregonus artedi), rainbow smelt (Osmerus mordax) and deepwater ciscoes (Coregonus spp.) comprised over 90% of the abundance and biomass of fishes caught in midwater trawls and recorded with hydroacoustics. Growth and condition of fish was good, suggesting they were not resource limited. Fish and zooplankton assemblages differed among the three ecoregions of western Lake Superior, due to a combination of physical and limnological factors related to bathymetry and landscape position.
Impacts of exotic mangroves and mangrove control on tide pool fish assemblages
Richard A. MacKenzie; Cailtin L. Kryss
2013-01-01
Fish were sampled from tide pools in Hawaii to determine how exotic mangroves Rhizophora mangle and the use of herbicides to chemically eradicate them are impacting tide pool fish assemblages. Ecological parameters were compared among mangrove-invaded, native vegetated, and non-vegetated tide pools before and after mangroves had been chemically...
Ramírez-Herrejón, Juan P; Mercado-Silva, Norman; Balart, Eduardo F; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier
2015-09-01
Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.
NASA Astrophysics Data System (ADS)
Ramírez-Herrejón, Juan P.; Mercado-Silva, Norman; Balart, Eduardo F.; Moncayo-Estrada, Rodrigo; Mar-Silva, Valentín; Caraveo-Patiño, Javier
2015-09-01
Non-native species are often major drivers of the deterioration of natural ecosystems. The common carp Cyprinus carpio are known to cause major changes in lentic systems, but may not be solely responsible for large scale changes in these ecosystems. We used data from extensive collection efforts to gain insight into the importance of carp as drivers of ecosystem change in Lake Patzcuaro, Mexico. We compared the structure (fish density, biomass, diversity, and evenness) of fish assemblages from six Lake Patzcuaro sites with different habitat characteristics. Intersite comparisons were carried out for both wet and dry seasons. We explored the relationships between non-carp species and carp; and studied multivariate interactions between fish abundance and habitat characteristics. From a biomass perspective, carp was dominant in only four of six sites. In terms of density, carp was not a dominant species in all sites. Further, carp density and biomass were not negatively related to native species density and biomass, even when carp density and biomass were positively correlated to water turbidity levels. Carp dominated fish assemblages in the shallowest sites with the highest water turbidity, plant detritus at the bottom, and floating macrophytes covering the lake surface. These results suggest that the effect of carp on fish assemblages may be highly dependent on habitat characteristics in Lake Patzcuaro. Watershed degradation, pollution, water level loss, and other sources of anthropogenic influence may be more important drivers of Lake Patzcuaro degradation than the abundance of carp.
NASA Astrophysics Data System (ADS)
Priest, Mark A.; Halford, Andrew R.; Clements, Kendall D.; Douglas, Emily; Abellana, Sheena L.; McIlwain, Jennifer L.
2016-12-01
Processes acting during the early stages of coral reef fish life cycles have a disproportionate influence on their adult abundance and community structure. Higher growth rates, for example, confer a major fitness advantage in larval and juvenile fishes, with larger fish undergoing significantly less mortality. The role of dietary resources in the size-structuring process has not been well validated, especially at the early post-settlement phase, where competition and predation are seen as preeminent drivers of juvenile fish assemblage structure. Here, we report on a size differential of 10-20% between recently settled Siganus spinus rabbitfish recruits from different bays around the Pacific island of Guam. This difference was maintained across multiple recruitment events within and between years. After confirming the validity of our observations through otolith increment analysis, subsequent investigation into the drivers of this variation revealed significant differences in the structure of algal assemblages between bays, congruent with the observed differences in size of the recently settled fish. Gut analyses showed a greater presence of algal types with higher levels of nitrogen and phosphorus in the stomachs of fish from Tanguisson, the bay with the largest observed recruits. To ensure this mechanism was one of causation and not correlation, we conducted a fully factorial experiment in which S. spinus recruits sampled from different bays were reared on all combinations of algal diets representative of the different bays. Recruits on the `Tanguisson' diet grew faster than recruits on other diets, regardless of their origin. We propose that the greater availability of high-quality dietary resources at this location is likely conferring benefits that impact on the population-level dynamics of this species. The spatial and temporal extent of this process clearly implicates food as a limiting resource, capable of mediating fish population dynamics at multiple spatial scales and ontogenetic phases.
NASA Astrophysics Data System (ADS)
McMonagle, H.; Koslow, J. A.; Watson, W.
2016-02-01
Climate has been shown to play a major role in the dynamics of fisheries and marine ecosystems. Previous studies of relationships between physical oceanography and fish population dynamics have focused primarily on commercially important species. However, as we move towards more comprehensive, ecosystem-based management of fisheries, it is important to understand how entire assemblages of fish, including ecologically important but noncommercial taxa, are influenced by climate. We used the ichthyoplankton time series maintained by the California Cooperative Oceanic Fisheries Investigations (CalCOFI) to examine changes in over 200 fish taxa from 1969 to 2011 in the Southern California Current region. We used several indices of species richness and evenness, as well as graphical approaches, to examine potential changes in the diversity of regional fish assemblages in relation to interannual and decadal-scale climate variability. These include El Niño-La Niña events, changes in deepwater oxygen concentration and long-term ocean warming. Richness was positively correlated with deepwater oxygen concentration, consistent with the strong correlation between midwater fish abundance and oxygen. Diversity (a measurement of both richness and evenness) was positively correlated with sea surface temperature. Diversity decreased as the abundance of a diverse midwater fish assemblage declined, and it increased as a dominant assemblage of common, coldwater fish declined. This latter pattern may be due to the strong dominance of species with cold water affinities when conditions were favorable, which reduced evenness in the community. Trends in deoxygenation and warming are predicted to continue due to climate change. A better understanding of the relationships between the diversity of fish communities and climate could lead to improved indicators of ecosystem status and the ability to predict trends in fish communities related to climate change.
Coexistence of Low Coral Cover and High Fish Biomass at Farquhar Atoll, Seychelles
Friedlander, Alan M.; Obura, David; Aumeeruddy, Riaz; Ballesteros, Enric; Church, Julie; Cebrian, Emma; Sala, Enric
2014-01-01
We report a reef ecosystem where corals may have lost their role as major reef engineering species but fish biomass and assemblage structure is comparable to unfished reefs elsewhere around the world. This scenario is based on an extensive assessment of the coral reefs of Farquhar Atoll, the most southern of the Seychelles Islands. Coral cover and overall benthic community condition at Farquhar was poor, likely due to a combination of limited habitat, localized upwelling, past coral bleaching, and cyclones. Farquhar Atoll harbors a relatively intact reef fish assemblage with very large biomass (3.2 t ha−1) reflecting natural ecological processes that are not influenced by fishing or other local anthropogenic factors. The most striking feature of the reef fish assemblage is the dominance by large groupers, snappers, and jacks with large (>1 m) potato cod (Epinephelus tukula) and marbled grouper (E. polyphekadion), commonly observed at many locations. Napoleon wrasse (Cheilinus undulatus) and bumphead parrotfish (Bolbometopon muricatum) are listed as endangered and vulnerable, respectively, but were frequently encountered at Farquhar. The high abundance and large sizes of parrotfishes at Farquhar also appears to regulate macroalgal abundance and enhance the dominance of crustose corallines, which are a necessary condition for maintenance of healthy reef communities. Overall fish biomass and biomass of large predators at Farquhar are substantially higher than other areas within the Seychelles, and are some of the highest recorded in the Indian Ocean. Remote islands like Farquhar Atoll with low human populations and limited fishing pressure offer ideal opportunities for understanding whether reefs can be resilient from global threats if local threats are minimized. PMID:24489903
Joseph W. Love; Taylor M. Christopher; Melvin L. Jr. Warren
2008-01-01
We sampled fishes and aquatic insects monthly ( Jun.âSept. 2002) from intermittent tributaries of the Alum Fork of the Saline River (Arkansas, U.S.A.) to quantify the response of fish and aquatic insect assemblage properties to seasonal desiccation and habitat fragmentation. We collected a total of 4219 individuals, representing 18 species of fishes and 27 families of...
NASA Astrophysics Data System (ADS)
Li, Zengguang; Ye, Zhenjiang; Wan, Rong
2015-12-01
Surveys were conducted in five voyages in Haizhou Bay and its adjacent coastal area from March to December 2011 during full moon spring tides. The ichthyoplankton assemblages and the environmental factors that affect their spatial and seasonal patterns were determined. Totally 35 and 12 fish egg and larvae taxa were identified, respectively. Over the past several decades, the egg and larval species composition has significantly changed in Haizhou Bay and its adjacent waters, most likely corresponding with the alteration of fishery resources, which are strongly affected by anthropogenic activities and climate change. The Bray-Curtis dissimilarity index identified four assemblages: near-shore bay assemblage, middle bay assemblage and two closely related assemblages (near-shore/middle bay assemblage and middle/edge of bay assemblage). The primary species of each assemblage principally reflected the spawning strategies of adult fish. The near-shore bay assemblage generally occurred in near-shore bay, with depths measuring <20 m, and the middle bay assemblage generally occurred in the middle of bay, with depths measuring 20 to 40 m. Spatial and seasonal variations in ichthyoplankton in each assemblage were determined by interactions between biological behavioral traits and oceanographic features, particularly the variation of local conditions within the constraint of a general reproductive strategy. The results of Spearman's rank correlation analysis indicated that both fish egg and larval abundance were positively correlated with depth, which is critical to the oceanographic features in Haizhou Bay.
Pattern of distribution and diversity of demersal assemblages in the central Mediterranean Sea
NASA Astrophysics Data System (ADS)
Colloca, F.; Cardinale, M.; Belluscio, A.; Ardizzone, G.
2003-03-01
A highly diversified mix of fish species, cephalopods and crustaceans, together with several macro-epibenthic organisms, compose trawl catches in the Mediterranean Sea. Management of Mediterranean trawling needs a multispecies approach that considers the community and not the single species as the basic unit of the analysis. While many studies have correlated several environmental factors to the spatial organizations of demersal organisms, few have focused on the role of macro-epibenthic communities in structuring demersal assemblages. In this paper, the following hypotheses were tested: (1) there are discrete demersal assemblages in the central Mediterranean Sea; (2) the distribution and diversity of demersal communities does not change on small temporal scales (1 year); (3) the demersal assemblages were segregated across both different epibenthic assemblages and depth gradients. Shallow stations were separated into coastal and middle-deep shelf assemblages while stations on the slope formed three main assemblages: slope edge, upper slope and middle slope assemblages. The demersal community did not show a substantial change at the small temporal scale. Sandy, sand-muddy and detritic epibenthic communities characterized coastal shelf assemblages, while epibenthic assemblage on muddy bottoms were dominant in the deeper areas of the shelf. A well-defined difference in macro-epibenthic faunal associations among stations on the slope (depth >200 m) was not found. Depth appeared to affect diversity of the main taxa of demersal organisms in different ways. Teleostean diversity did not show any trend with depth, the number of cephalopod species increased on the shelf and decreased on the slope while crustacean and elasmobranch species richness increased significantly from the shelf to the middle slope. The strong correlation shown in this study between epifaunal benthic communities and demersal fish assemblages requires the formulation of an ecosystem-based management for the Mediterranean Sea trawl fisheries. The existence of such biological diversity certainly contributes to the Mediterranean ecosystem health and its conservation should become one of the main objective of demersal resources management in the future.
Marramà, Giuseppe; Carnevale, Giorgio; Engelbrecht, Andrea; Claeson, Kerin M.; Zorzin, Roberto; Fornasiero, Mariagabriella; Kriwet, Jürgen
2018-01-01
Here, we review and discuss the records and taxonomy of the Ypresian (Eocene) chondrichthyans from the famous Bolca Konservat-Lagerstätte in northeastern Italy. Despite the outstanding diversity and the numerous studies focusing on the actinopterygian faunas from Pesciara and Monte Postale, the current knowledge about the systematics, taxonomy and phylogenetic relationships of the cartilaginous fishes from these Eocene sites remains elusive and largely inadequate. The celebrated Eocene Bolca Lagerstätte has yielded several exquisitely preserved articulated remains of chondrichthyan fishes in which delicate structures and soft tissues are preserved, as well as isolated teeth. The cartilaginous fish assemblage of Bolca comprises at least 17 species-level taxa belonging to 10 families in 6 orders, including selachians (Carcharhiniformes, Lamniformes), batoids (Torpediniformes, Myliobatiformes, Rajiformes) and holocephalans (Chimaeriformes). The occurrence of holocephalans represented by an isolated fin-spine of the chimeroid Ischyodus in the Bolca assemblage is reported here for the first time and represents the first record of chimeroids in the Eocene of Italy and also southern Europe. The Bolca chondrichthyan assemblage is remarkably different from those of other contemporaneous Boreal or Tethyan deposits, suggesting that its taxonomic composition is largely influenced by the palaeoenvironmental context. However, this synoptic review also highlights the importance of detailed revisions of all chondrichthyan remains from the Bolca Konservat-Lagerstätten.
Marramà, Giuseppe; Carnevale, Giorgio; Engelbrecht, Andrea; Claeson, Kerin M; Zorzin, Roberto; Fornasiero, Mariagabriella; Kriwet, Jürgen
2018-01-01
Here, we review and discuss the records and taxonomy of the Ypresian (Eocene) chondrichthyans from the famous Bolca Konservat-Lagerstätte in northeastern Italy. Despite the outstanding diversity and the numerous studies focusing on the actinopterygian faunas from Pesciara and Monte Postale, the current knowledge about the systematics, taxonomy and phylogenetic relationships of the cartilaginous fishes from these Eocene sites remains elusive and largely inadequate. The celebrated Eocene Bolca Lagerstätte has yielded several exquisitely preserved articulated remains of chondrichthyan fishes in which delicate structures and soft tissues are preserved, as well as isolated teeth. The cartilaginous fish assemblage of Bolca comprises at least 17 species-level taxa belonging to 10 families in 6 orders, including selachians (Carcharhiniformes, Lamniformes), batoids (Torpediniformes, Myliobatiformes, Rajiformes) and holocephalans (Chimaeriformes). The occurrence of holocephalans represented by an isolated fin-spine of the chimeroid Ischyodus in the Bolca assemblage is reported here for the first time and represents the first record of chimeroids in the Eocene of Italy and also southern Europe. The Bolca chondrichthyan assemblage is remarkably different from those of other contemporaneous Boreal or Tethyan deposits, suggesting that its taxonomic composition is largely influenced by the palaeoenvironmental context. However, this synoptic review also highlights the importance of detailed revisions of all chondrichthyan remains from the Bolca Konservat-Lagerstätten.
Rare species contribute disproportionately to the functional structure of species assemblages.
Leitão, Rafael P; Zuanon, Jansen; Villéger, Sébastien; Williams, Stephen E; Baraloto, Christopher; Fortunel, Claire; Mendonça, Fernando P; Mouillot, David
2016-04-13
There is broad consensus that the diversity of functional traits within species assemblages drives several ecological processes. It is also widely recognized that rare species are the first to become extinct following human-induced disturbances. Surprisingly, however, the functional importance of rare species is still poorly understood, particularly in tropical species-rich assemblages where the majority of species are rare, and the rate of species extinction can be high. Here, we investigated the consequences of local and regional extinctions on the functional structure of species assemblages. We used three extensive datasets (stream fish from the Brazilian Amazon, rainforest trees from French Guiana, and birds from the Australian Wet Tropics) and built an integrative measure of species rarity versus commonness, combining local abundance, geographical range, and habitat breadth. Using different scenarios of species loss, we found a disproportionate impact of rare species extinction for the three groups, with significant reductions in levels of functional richness, specialization, and originality of assemblages, which may severely undermine the integrity of ecological processes. The whole breadth of functional abilities within species assemblages, which is disproportionately supported by rare species, is certainly critical in maintaining ecosystems particularly under the ongoing rapid environmental transitions. © 2016 The Author(s).
Rare species contribute disproportionately to the functional structure of species assemblages
Zuanon, Jansen; Williams, Stephen E.; Baraloto, Christopher; Mendonça, Fernando P.
2016-01-01
There is broad consensus that the diversity of functional traits within species assemblages drives several ecological processes. It is also widely recognized that rare species are the first to become extinct following human-induced disturbances. Surprisingly, however, the functional importance of rare species is still poorly understood, particularly in tropical species-rich assemblages where the majority of species are rare, and the rate of species extinction can be high. Here, we investigated the consequences of local and regional extinctions on the functional structure of species assemblages. We used three extensive datasets (stream fish from the Brazilian Amazon, rainforest trees from French Guiana, and birds from the Australian Wet Tropics) and built an integrative measure of species rarity versus commonness, combining local abundance, geographical range, and habitat breadth. Using different scenarios of species loss, we found a disproportionate impact of rare species extinction for the three groups, with significant reductions in levels of functional richness, specialization, and originality of assemblages, which may severely undermine the integrity of ecological processes. The whole breadth of functional abilities within species assemblages, which is disproportionately supported by rare species, is certainly critical in maintaining ecosystems particularly under the ongoing rapid environmental transitions. PMID:27053754
Ponti, Massimo; Fava, Federica; Perlini, Rossella Angela; Giovanardi, Otello; Abbiati, Marco
2015-03-01
The use of artificial reefs is on the rise worldwide. While their fish aggregating effects are well known, the epibenthic assemblages have been poorly investigated. Two types of artificial reefs (pyramids of concrete slabs and bundles of concrete tubes) have been deployed out of the Po River Delta in 2006 and 2010. The epibenthic assemblages were investigated in 2009 and 2012. Benthic assemblages on both structure typologies were dominated by species tolerating high sedimentation rates. Dissimilarities were found among assemblages with different ages, and, in less extend, between reef typologies. Colonisation by Mytilus galloprovincialis and other major space occupiers did not follow a clear succession pattern and was not affected by reef typology. Species colonisation was likely driven by variability in environmental conditions and recruitment processes rather than by reef typology. This study suggests that environmental features of the deployment sites should be carefully considered in planning and designing artificial reefs, especially in eutrophic and turbid coastal waters, exposed to high river loads. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vendel, A L; Bessa, F; Alves, V E N; Amorim, A L A; Patrício, J; Palma, A R T
2017-04-15
Our aim was to quantify microplastic ingestion by fish assemblages in two tropical Brazilian estuaries and to evaluate whether biological and ecological factors influence the ingestion of microplastics by fish species. Of 2233 fish from both estuaries (from 69 species) examined in this study, 9% of the individuals (24 species) had microplastics in their gut contents. Microplastic ingestion occurred irrespective of fish size and functional group. The diet of fish species was analyzed based on prey items identified in the fish's full stomach contents and five feeding guilds were defined. Microplastics were common throughout all feeding guilds. Low (average ingestion values 1.06±0.30 items/total fish) but widespread occurrence among estuaries also indicates proliferation of microplastic pollution. Our findings highlight the need to focus on assemblage level studies to understand the real magnitude of the problem and emphasize the urgency of mitigation measures directed at microplastic pollution in estuarine ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Real Bounty: Marine Biodiversity in the Pitcairn Islands
Friedlander, Alan M.; Caselle, Jennifer E.; Ballesteros, Enric; Brown, Eric K.; Turchik, Alan; Sala, Enric
2014-01-01
In 2012 we conducted an integrated ecological assessment of the marine environment of the Pitcairn Islands, which are four of the most remote islands in the world. The islands and atolls (Ducie, Henderson, Oeno, and Pitcairn) are situated in the central South Pacific, halfway between New Zealand and South America. We surveyed algae, corals, mobile invertebrates, and fishes at 97 sites between 5 and 30 m depth, and found 51 new records for algae, 23 for corals, and 15 for fishes. The structure of the ecological communities was correlated with age, isolation, and geomorphology of the four islands. Coral and algal assemblages were significantly different among islands with Ducie having the highest coral cover (56%) and Pitcairn dominated by erect macroalgae (42%). Fish biomass was dominated by top predators at Ducie (62% of total fish biomass) and at Henderson (35%). Herbivorous fishes dominated at Pitcairn, while Oeno showed a balanced fish trophic structure. We found high levels of regional endemism in the fish assemblages across the islands (45%), with the highest level observed at Ducie (56% by number). We conducted the first surveys of the deep habitats around the Pitcairn Islands using drop-cameras at 21 sites from depths of 78 to 1,585 m. We observed 57 fish species from the drop-cams, including rare species such as the false catshark (Pseudotriakis microdon) and several new undescribed species. In addition, we made observations of typically shallow reef sharks and other reef fishes at depths down to 300 m. Our findings highlight the uniqueness and high biodiversity value of the Pitcairn Islands as one of the least impacted in the Pacific, and suggest the need for immediate protection. PMID:24963808
NASA Astrophysics Data System (ADS)
Sheaves, Marcus
2016-03-01
Predicting patterns of abundance and composition of biotic assemblages is essential to our understanding of key ecological processes, and our ability to monitor, evaluate and manage assemblages and ecosystems. Fish assemblages often vary from estuary to estuary in apparently unpredictable ways, making it challenging to develop a general understanding of the processes that determine assemblage composition. This makes it problematic to transfer understanding from one estuary situation to another and therefore difficult to assemble effective management plans or to assess the impacts of natural and anthropogenic disturbance. Although system-to-system variability is a common property of ecological systems, rather than being random it is the product of complex interactions of multiple causes and effects at a variety of spatial and temporal scales. I investigate the drivers of differences in estuary fish assemblages, to develop a simple model explaining the diversity and complexity of observed estuary-to-estuary differences, and explore its implications for management and conservation. The model attributes apparently unpredictable differences in fish assemblage composition from estuary to estuary to the interaction of species-specific, life history-specific and scale-specific processes. In explaining innate faunal differences among estuaries without the need to invoke complex ecological or anthropogenic drivers, the model provides a baseline against which the effects of additional natural and anthropogenic factors can be evaluated.
Species composition and assemblages of ichthyoplankton during summer in the East China Sea
NASA Astrophysics Data System (ADS)
Lin, Han-Yang; Chiu, Mei-Yun; Shih, Yu-Ming; Chen, I.-Shiung; Lee, Ming-An; Shao, Kwang-Tsao
2016-09-01
The East China Sea (ECS) is one of the most important fish spawning and nursery grounds in the north Pacific. Even though summer is an important spawning season for many fishes in the region, large-scale molecular identification studies on ichthyoplankton during this season are few. In this study, we sampled 8,933 fish eggs and 12,161 fish larvae from 25 stations during the summer of 2009. Using DNA barcoding, a number of the fish eggs and larvae were identified and classified into 45 and 124 taxa, respectively. Principal component analysis (PCA) categorized the inshore stations of the Changjiang Diluted Water area as having the hydrographic features of low sea surface temperature (SST), salinity (SSS) and high chlorophyll a (SSC) contents, whereas the continental shelf and offshore stations under the influence of the Kuroshio Current displayed the opposite results. Ichthyoplankton was more abundant at the inshore stations than the offshore stations, but species diversity was lower at the former locations. Species compositions of both fish eggs and fish larvae at the 25 stations were categorized into three different assemblages based on a non-metric multidimensional scaling analysis. Combining the assemblage patterns of ichthyoplankton with the results of the PCA and satellite images of SST and SSC showed that the assemblage patterns of fish eggs were correlated with water mass, while those of the fish larvae were not.
Vales, Damián Gustavo; García, Néstor Aníbal; Crespo, Enrique Alberto; Timi, Juan Tomás
2011-02-01
Parasite communities of Raneya brasiliensis are described and its parasites used as biological tags to discriminate its populations. Fish were caught in two zones of the Argentine Sea: one sample from San Jorge Gulf (Patagonian Region) and three samples from off the coast of Buenos Aires (Bonaerense Region). A total of 183 fish were examined for parasites and 11 species were found. Host body size and its ecology are pointed out as drivers of the paucity of taxa found. Multivariate similarity analyses allowed the identification of three stocks: one in the San Jorge Gulf, and two other in the Bonaerense Region. The parasite species that contributed most to the separation of the samples were generally those identified as biological markers in previous studies in the area. Patterns of distance decay in similarity among communities in R. brasiliensis were found; with dissimilarity values between distant localities being higher than between close ones. Whereas the composition and structure of parasite assemblages in Bonaerense waters reflect those of other fish species in this region, being mainly determined by the composition of the compound community, no repeatable patterns were found in the composition of parasites assemblages when R. brasiliensis was compared with other hosts species in Patagonia.
NASA Astrophysics Data System (ADS)
Rao, S. T.; Krishnaswamy, J.; Bhalla, R. S.
2017-12-01
Alteration of natural flow regimes is considered as a major threat to freshwater fish assemblages as it disturbs the water quality and micro-habitat features of rivers. Small hydro-power (SHP), which is being promoted as a clean and green substitute for large hydro-power generation, alters the natural flow regime of head-water streams by flow diversion and regulation. The effects of altered flow regime on tropical stream fish assemblages, driven by seasonality induced perturbations to water quality and microhabitat parameters are largely understudied. My study examined the potential consequences of flow alteration by SHPs on fish assemblages in two tributaries of the west-flowing Yettinahole River which flows through the reserved forests of Sakleshpur in the Western Ghats of Karnataka. The flow in one of the tributaries followed natural flow regime while the other comprised three regimes: a near-natural flow regime above the dam, rapidly varying discharge below the dam and a dewatered regime caused by flow diversion. The study found that the altered flow regime differed from natural flow regime in terms of water quality, microhabitat heterogeneity and fish assemblage response, each indicative of the type of flow alteration. Fish assemblage in the natural flow regime was characterized by a higher catch per site, a strong association of endemic and trophic specialist species. The flow regime above the dam was found to mimic some components of the natural flow regime, both ecological and environmental. Non endemic, generalist and pool tolerant species were associated with the dewatered regime. There was a lack of strong species-regime association and an overall low catch per site for the flow regulated regime below the dam. This study highlights the consequences of altered flows on the composition of freshwater fish assemblages and portrays the potential of freshwater fish as indicators of the degree and extent of flow alteration. The study recommends the need for maintaining continuous flow data records to model ecological data with hydrological measurements. In the light of rapid SHP development, the study also suggests environmental / cumulative impact assessments of SHPs on the river basin.
NASA Astrophysics Data System (ADS)
Handley, Sean J.; Willis, Trevor J.; Cole, Russell G.; Bradley, Anna; Cairney, Daniel J.; Brown, Stephen N.; Carter, Megan E.
2014-02-01
Trawling and dredge fisheries remove vulnerable fauna, homogenise sediments and assemblages, and break down biogenic habitats, but the full extent of these effects can be difficult to quantify in the absence of adequate control sites. Our study utilised rare control sites containing biogenic habitat, the Separation Point exclusion zone, formally protected for 28 years, as the basis for assessing the degree of change experienced by adjacent areas subject to benthic fishing. Sidescan sonar surveys verified that intensive trawling and dredging occurred in areas adjacent to, but not inside, the exclusion area. We compared sediment composition, biogenic cover, macrofaunal assemblages, biomass, and productivity of the benthos, inside and outside the exclusion zone. Disturbed sites were dominated by fine mud, with little or no shell-gravel, reduced number of species, and loss of large bodied animals, with concomitant reductions in biomass and productivity. At protected sites, large, rarer molluscs were more abundant and contributed the most to size-based estimates of productivity and biomass. Functional changes in fished assemblages were consistent with previously reported relative increases in scavengers, predators and deposit feeders at the expense of filter feeders and a grazer. We propose that the colonisation of biogenic species in protected sites was contingent on the presence of shell-gravel atop these soft sediments. The process of sediment homogenisation by bottom fishing and elimination of shell-gravels from surficial sediments appeared to have occurred over decades - a ‘shifting baseline’. Therefore, benchmarking historical sediment structure at control site like the Separation Point exclusion zone is necessary to determine the full extent of physical habitat change wrought by contact gears on sheltered soft sediment habitats to better underpin appropriate conservation, restoration or fisheries management goals.
Torgersen, Christian E.; Hockman-Wert, David P.; Bateman, Douglas S.; Leer, David W.; Gresswell, Robert E.
2007-01-01
The goal of this project was to examine longitudinal patterns in fish assemblages, aquatic habitat, and water temperature in the Lower Crooked River during summer conditions. Specific objectives were to (1) characterize the spatial distribution of native and non-native fishes, (2) describe variation in channel morphology, substrate composition, and water temperature, and (3) evaluate the associations between fishes, aquatic habitat, and water temperature.
Carvajal-Quintero, Juan D; Escobar, Federico; Alvarado, Fredy; Villa-Navarro, Francisco A; Jaramillo-Villa, Úrsula; Maldonado-Ocampo, Javier A
2015-01-01
Studies on elevation diversity gradients have covered a large number of taxa and regions throughout the world; however, studies of freshwater fish are scarce and restricted to examining their changes along a specific gradient. These studies have reported a monotonic decrease in species richness with increasing elevation, but ignore the high taxonomic differentiation of each headwater assemblage that may generate high β-diversity among them. Here, we analyzed how fish assemblages vary with elevation among regional elevation bands, and how these changes are related to four environmental clines and to changes in the distribution, habitat use, and the morphology of fish species. Using a standardized field sampling technique, we assessed three different diversity and two structural assemblage measures across six regional elevation bands located in the northern Andes (Colombia). Each species was assigned to a functional group based on its body shape, habitat use, morphological, and/or behavioral adaptations. Additionally, at each sampling site, we measured four environmental variables. Our analyses showed: (1) After a monotonic decrease in species richness, we detected an increase in richness in the upper part of the gradient; (2) diversity patterns vary depending on the diversity measure used; (3) diversity patterns can be attributed to changes in species distribution and in the richness and proportions of functional groups along the regional elevation gradient; and (4) diversity patterns and changes in functional groups are highly correlated with variations in environmental variables, which also vary with elevation. These results suggest a novel pattern of variation in species richness with elevation: Species richness increases at the headwaters of the northern Andes owing to the cumulative number of endemic species there. This highlights the need for large-scale studies and has important implications for the aquatic conservation of the region. PMID:26257874
NASA Astrophysics Data System (ADS)
Snickars, Martin; Sandström, Alfred; Lappalainen, Antti; Mattila, Johanna; Rosqvist, Kajsa; Urho, Lauri
2009-01-01
The assemblages of young-of-the-year fish were studied in coastal lagoons in an archipelago with post-glacial land-uplift, which affects environmental gradients at local and regional scale, i.e. lagoon habitat isolation and archipelago position, respectively. The categorisation of 40 undisturbed lagoons into nine habitat types based on habitat isolation and archipelago position was supported by clear relationships with spring temperature and total fish abundance. Rutilus rutilus, breams ( Abramis/Blicca sp.) and Perca fluviatilis were the most abundant and frequently occurring species. The fish assemblage differed among the nine habitat types. Rutilus rutilus, P. fluviatilis and breams were discriminating species in the majority of habitat types with low physical harshness, whereas Alburnus alburnus and Gasterosteus aculeatus increased their contributions in habitat types with high physical harshness. Rutilus rutilus and breams were thus common in lagoons with high habitat isolation situated in the inner archipelago. These lagoons were characterised by warm water and high vegetation coverage. Gasterosteus aculeatus was restricted to lagoons with low habitat isolation and exposure and low vegetation coverage, situated in the outer archipelago. Perca fluviatilis had the widest distribution of all species. The coverage of two macrophytes, Potamogeton perfoliatus and Zannichellia palustris, and salinity matched best the distance among habitat types. These habitat characteristics, as well as the fish abundances and assemblages differed most across the habitat types in the outer and mid archipelago zones and in the lowest habitat isolation. These patterns suggest that the structuring effect of habitat isolation increases along the archipelago gradient as differences between local and regional conditions increase. In the inner archipelago, overall low physical harshness induces homogeneous conditions and the habitat isolation is less important here than in the other zones. We suggest that this difference in the relative importance of the two gradients depending on the level of respective gradient ultimately forms these heterogeneous coastal habitats in a successional landscape. Rutilus rutilus and P. fluviatilis were responsible for large parts of the assemblage patterns. Although sympatric due to similar habitat requirements, differences in dispersal capability, competitive ability and predation vulnerability may add explanation to detected differences in distribution and abundance in these two species in an open system. Our results also stress the structuring role of vegetation in terms of total coverage and species composition, as these two aspects of macrophyte diversity may act as complementary habitat modifiers across gradients of physical harshness.
Larval fish assemblages across an upwelling front: Indication for active and passive retention
NASA Astrophysics Data System (ADS)
Tiedemann, Maik; Brehmer, Patrice
2017-03-01
In upwelling areas, enrichment, concentration and retention are physical processes that have major consequences for larval fish survival. While these processes generally increase larval survival, strong upwelling can also increase mortality due to an offshore transport of larvae towards unfavorable habitats. In 2013 a survey was conducted along the Senegalese coast to investigate the upwelling effect with regard to larval fish assemblages and possible larval fish retention. According to water column characteristics two distinct habitats during an upwelling event were discriminated, i.e. the inshore upwelled water and the transition area over the deepest part of the Senegalese shelf. Along the two areas 42,162 fish larvae were collected representing 133 species within 40 families. Highest larval fish abundances were observed in the inshore area and decreasing abundances towards the transition, indicating that certain fish species make use of the retentive function of the inner shelf area as spawning grounds. Two larval fish assemblages overlap both habitats, which are sharply delimited by a strong upwelling front. One assemblage inhabited the inshore/upwelling area characterized by majorly neritic and pelagic species (Sparidae spp., Sardinella aurita), that seem to take the advantage of a passive retention on the shelf. The second assemblage consisted of a mix of pelagic and mesopelagic species (Engraulis encrasicolus, Carangidae spp. and Myctophidae spp.). Some species of the second assemblage, e.g. horse mackerels (Trachurus trachurus and Trachurus trecae), large finned-lantern fish (Hygophum macrochir) and foureyed sole (Microchirus ocellatus), revealed larval peak occurrences at intermediate and deep water layers, where the near-ground upwelling layer is able to transport larvae back to the shelf. This indicates active larval retention for species that are dominant in the transition area. Diel vertical migration patterns of S. aurita, E. encrasicolus and M. ocellatus revealed that a larval fish species may adapt its behavior to the local environment and do not necessarily follow a diurnal cycle. Field observations are essential to be integrated in larval drift models, since the vertical and horizontal larval distribution will have major consequences for survival. Comprehending larval survival mechanisms is necessary for the ultimate goal to understand and predict recruitment.
Tidal management sffects sub-adult fish assemblages in impounded South Carolina Marshes
Carswell, Ben L.; Peterson, James T.; Jennings, Cecil A.
2015-01-01
In coastal South Carolina, most impounded marshes are managed for waterfowl; fewer are managed for fishes. Tidal control is central to each strategy but raises concerns that nursery function could be impaired. This research examined the assemblage composition of fishes during early-life stages. We sampled two impoundments of each management type monthly in 2008 and 2009. We used light traps to collect 61,527 sub-adult fish representing 21 species and 16 families and push nets to collect 12,670 sub-adult fish representing 13 species and 11 families. The effective number of species detected at larval stage in “fish” impoundments (summer mean = 2.52 ± 0.20, winter mean = 2.02 ± 0.66) was greater than in “waterfowl” impoundments (summer mean = 1.27 ± 0.14, winter mean = 1.06 ± 0.09); CI = 90 %. Species richness did not differ between management types, but hierarchical linear models predicted differences in assemblage composition. These findings underscore the importance of frequent water exchange for maintaining diverse assemblages of early-life-stage fishes in marsh impoundments.
Habitat selection by breeding waterbirds at ponds with size-structured fish populations
NASA Astrophysics Data System (ADS)
Kloskowski, Janusz; Nieoczym, Marek; Polak, Marcin; Pitucha, Piotr
2010-07-01
Fish may significantly affect habitat use by birds, either as their prey or as competitors. Fish communities are often distinctly size-structured, but the consequences for waterbird assemblages remain poorly understood. We examined the effects of size structure of common carp ( Cyprinus carpio) cohorts together with other biotic and abiotic pond characteristics on the distribution of breeding waterbirds in a seminatural system of monocultured ponds, where three fish age classes were separately stocked. Fish age corresponded to a distinct fish size gradient. Fish age and total biomass, macroinvertebrate and amphibian abundance, and emergent vegetation best explained the differences in bird density between ponds. Abundance of animal prey other than fish (aquatic macroinvertebrates and larval amphibians) decreased with increasing carp age in the ponds. Densities of ducks and smaller grebes were strongly negatively associated with fish age/size gradient. The largest of the grebes, the piscivorous great crested grebe ( Podiceps cristatus), was the only species that preferred ponds with medium-sized fish and was positively associated with total fish biomass. Habitat selection by bitterns and most rallids was instead strongly influenced by the relative amount of emergent vegetation cover in the ponds. Our results show that fish size structure may be an important cue for breeding habitat choice and a factor affording an opportunity for niche diversification in avian communities.
Gillette, D.P.; Tiemann, J.S.; Edds, D.R.; Wildhaber, M.L.
2006-01-01
The hypothesis that temperate stream fishes alter habitat use in response to changing water temperature and stream discharge was evaluated over a 1 year period in the Neosho River, Kansas, U.S.A. at two spatial scales. Winter patterns differed from those of all other seasons, with shallower water used less frequently, and low-flow habitat more frequently, than at other times. Non-random habitat use was more frequent at the point scale (4.5 m2) than at the larger reach scale (20-40 m), although patterns at both scales were similar. Relative to available habitats, assemblages used shallower, swifter-flowing water as temperature increased, and shallower, slower-flowing water as river discharge increased. River discharge had a stronger effect on assemblage habitat use than water temperature. Proportion of juveniles in the assemblage did not have a significant effect. This study suggests that many riverine fishes shift habitats in response to changing environmental conditions, and supports, at the assemblage level, the paradigm of lotic fishes switching from shallower, high-velocity habitats in summer to deeper, low-velocity habitats in winter, and of using shallower, low-velocity habitats during periods of high discharge. Results also indicate that different species within temperate river fish assemblages show similar habitat use patterns at multiple scales in response to environmental gradients, but that non-random use of available habitats is more frequent at small scales. ?? 2006 The Fisheries Society of the British Isles.
Brown, L.R.; Michniuk, D.
2007-01-01
We analyzed monthly boat electrofishing data to characterize the littoral fish assemblages of five regions of the Sacramento-San Joaquin Delta (northern, southern, eastern, western, and central), California, during two sampling periods, 1980-1983 (1980s) and 2001-2003 (2000s), to provide information pertinent to the restoration of fish populations in this highly altered estuary. During the 1980s, almost 11,000 fish were captured, including 13 native species and 24 alien species. During the 2000s, just over 39,000 fish were captured, including 15 native species and 24 alien species. Catch per unit effort (CPUE) of total fish, alien fish, and centrarchid fish were greater in the 2000s compared with the 1980s, largely because of increased centrarchid fish CPUE. These differences in CPUE were associated with the spread of submerged aquatic vegetation (SAV), particularly an alien aquatic macrophyte Egeria densa. Native fish CPUE declined from the 1980s to the 2000s, but there was no single factor that could explain the decline. Native fish were most abundant in the northern region during both sampling periods. Nonmetric multidimensional scaling indicated similar patterns of fish assemblage composition during the two sampling periods, with the northern and western regions characterized by the presence of native species. The separation of the northern and western regions from the other regions was most distinct in the 2000s. Our results suggest that native fish restoration efforts will be most successful in the northern portion of the Delta. Management decisions on the Delta should include consideration of possible effects on SAV in littoral habitats and the associated fish assemblages and ecological processes. ?? 2007 Estuarine Research Federation.
Annual and Spatial Variation of the Kelp Forest Fish Assemblage at San Nicolas Island, California
Cowen, R.J.; Bodkin, James L.
1993-01-01
The kelp forest fishes of San Nicolas Island, California were studied from 1981-1986 to examine the causes of among-site and among-year variation in the fish assemblages. Fish counts and seven physical and biological variables were recorded at six sites around the island every spring and fall. Over the study period, a total of 45 fish species from 18 families were recorded, though members of nive families dominated at all sites. Among-site variation was considereable with two sites on the south side of the island having two to four times as many non-schooling fishes as the other four sites. Three variables, based on stepwise multiple regression techniques, were important predictors of site-specific fish abundance: 1) vertical relief; 2) sand cover and 3) understory algal cover. The total number of fishes varied interannually by a factor of three. Due to recruitment occuring each spring, there was a strong seasonal component to the variation in fish abundance. The extent of seasonal and interannual variaton of fish abundance is an indication of the variable nature of recruitment to this area. Over the 6 yr period, there were three distinct groupings of fish assemblages correspondong to pre- (Fall 1981 - Fall 1982), during spring (Spring 1983 - Spring 1984) and post El Nino (Fall 1984 - Fall 1986) sampling dates. During El Nino sampling period, there was considerable recruitment of southern affinity fish species, increasing both the abundance and diversity of the fish assemblages. Large-scale oceanographic processes, coupled with site-specific features of the reef habitat, produce a moderately diverse, though relatively abundant fish fauna at San Nicolas Island.
Human disturbance alters key attributes of aquatic ecosystems such as water quality, habitat structure, hydrological regime, energy flow, and biological interactions. In great rivers, this is particularly evident because they are disproportionately degraded by habitat alteration...
Roelke, D.L.; Errera, R.M.; Riesling, R.; Brooks, B.W.; Grover, J.P.; Schwierzke, L.; Urena-Boeck, F.; Baker, J.; Pinckney, J.L.
2007-01-01
Large fish kills associated with toxic populations of the haptophyte Prymnesium parvum occur worldwide. In the past 5 yr, incidences of P. parvum blooms in inland water bodies of Texas (USA) have increased dramatically, where cell densities in excess of 1 ?? 107 cells l-1 are typically observed. We conducted field experiments (Lake Possum Kingdom) during the fall and early spring of 28 d duration using 24 enclosures of 1.57 m 3 each. The experiments investigated the effect of nutrient enrichment, immigration of P. parvum and addition of barley straw extract on phytoplankton biomass and assemblage structure, P. parvum population density, zooplankton biomass and assemblage structure, bacteria, and toxicity. Nutrient enrichment stimulated P. parvum population growth beyond bloom proportions (>1 ?? 107 cells l-1). However, P. parvum did not dominate the assemblage under these conditions, as it does during natural blooms. Instead, euglenophytes and chlorophytes dominated. Toxicity, estimated using fish (Pimephales promelas) and cladoceran (Daphnia magna) bioassays and which is linked to P. parvum's allelopathic and mixotrophic effectiveness, was greatly reduced (eliminated in many cases) under conditions of nutrient enrichment. The suppression of toxicity by nutrient addition suggested that targeted and time-limited nutrient manipulations might be used to mitigate the effects of P. parvum blooms. Immigration of P. parvum into natural assemblages and addition of barley straw extract had no significant effect on plankton dynamics. ?? Inter-Research 2007.
Gadomski, Dena M.; Venditti, David A.; Robinson, T. Craig; Beeman, John W.; Maule, Alec G.
2004-01-01
We surveyed fish assemblages in littoral areas of Chief Joseph Reservoir of the upper Columbia River to aid in understanding this ecosystem. Fish distributions and abundances were examined during April-July 1999 in relation to environmental conditions in the reservoir. We also compared the fish assemblages in Chief Joseph reservoir in 1999 to a past study conducted during 1974-1975, and to assemblages in other areas of the Columbia River. During 67 hr of electrofishing and 78 beach seine hauls in Chief Joseph Reservoir, 7460 fishes representing 8 families were collected. The majority of the catch was native – northern pikeminnow; redside shiners; longnose, bridgelip, and largescale suckers; and sculpins. The most abundant introduced species was walleye, and one species, rainbow trout, was mostly of net-pen origin. Larger sizes of suckers and northern pikeminnow were most abundant in the upper reservoir, likely due to upstream spawning migrations. The lower reservoir contained greater abundances of smaller fishes, and this area had lower flows, smaller substrates, and more complex shorelines that offered these fishes refugia. Only adult suckers displayed significant differences in abundances related to substrate. The relative abundances of species appeared to have changed since the 1970s, when the dominant fishes were northern pikeminnow, peamouth, largescale suckers, and walleye. Fish assemblage differences between Chief Joseph Reservoir and lower Columbia River reservoirs were also evident due to the morphology of the reservoir, its more northerly location, and the lack of fish passage facilities at Chief Joseph Dam. Our study is one of the few descriptions of fishes in the upper Columbia Rivers.
Richard A. MacKenzie; Nicole Cormier
2012-01-01
Structurally complex mangrove roots are thought to provide foraging habitat, predation refugia, and typhoon protection for resident fish, shrimp, and crabs. The spatially compact nature of Micronesian mangroves results in model ecosystems to test these ideas. Tidal creek nekton assemblages were compared among mangrove forests impacted by Typhoon Sudal and differing in...
NASA Astrophysics Data System (ADS)
Madin, John; Chong, V. C.; Basri, Badrulnizam
2009-06-01
A study was conducted at a fish culture farm in the Jaha River estuary, Malaysia, to examine the structure and development of macrofouling assemblages on floating net-cages. The study was conducted during the dry (August-October 2001) and wet (December-February 2002) seasons. Biofouling on 1.6 cm mesh net panels (size 0.2 m × 2 m) suspended inside (P, T) and outside (O) experimental net-cages was monitored every week until net openings were completely occluded by macrofouling organisms (8 wk and 12 wk for dry and wet seasons respectively). Seven species (6 phyla) of sessile organisms and 23 species (3 phyla) of non-sessile associates were recorded. Macro-colonization of net panels began with the hydroid Plumularia sp. irrespective of season and treatment (P, T, and O), while other species only appeared after 1 or 2 weeks of immersion. Inside net-cages where water flow was slow (mean < 6 cm s -1 at 0.50-0.75 m depth); macroalgae ( Polysiphonia sp.), anthozoans (unidentified anemone), barnacles ( Balanus amphitrite), amphipods ( Gammaropsis sp. & Photis sp.), and tanaids ( Leptognathia sp.) were dominant on the net panels during the dry season. In the wet season, hydroid ( Plumularia sp.), mussel ( Xenostrobus mangle), and nematode abundance were however significant. With stronger water flow (mean ≈ 20 cm s -1) as occurring outside the net-cages, macrofouling assemblages for both seasons comprised mainly Plumularia sp. and Gammaropsis sp. The macrofouling assemblage showed a clear succession of species that occupied different layers of the net panels. The study shows that while organic enrichment and retarded water flow together enhance the development of macrofouling assemblages, salinity, depth, substrate (net) area and species competition specifically influence community structure, colonization, and depth distribution of the macrofouling organisms.
Local Stressors, Resilience, and Shifting Baselines on Coral Reefs.
McLean, Matthew; Cuetos-Bueno, Javier; Nedlic, Osamu; Luckymiss, Marston; Houk, Peter
2016-01-01
Understanding how and why coral reefs have changed over the last twenty to thirty years is crucial for sustaining coral-reef resilience. We used a historical baseline from Kosrae, a typical small island in Micronesia, to examine changes in fish and coral assemblages since 1986. We found that natural gradients in the spatial distribution of fish and coral assemblages have become amplified, as island geography is now a stronger determinant of species abundance patterns, and habitat forming Acropora corals and large-bodied fishes that were once common on the leeward side of the island have become scarce. A proxy for fishing access best predicted the relative change in fish assemblage condition over time, and in turn, declining fish condition was the only factor correlated with declining coral condition, suggesting overfishing may have reduced ecosystem resilience. Additionally, a proxy for watershed pollution predicted modern coral assemblage condition, suggesting pollution is also reducing resilience in densely populated areas. Altogether, it appears that unsustainable fishing reduced ecosystem resilience, as fish composition has shifted to smaller species in lower trophic levels, driven by losses of large predators and herbivores. While prior literature and anecdotal reports indicate that major disturbance events have been rare in Kosrae, small localized disturbances coupled with reduced resilience may have slowly degraded reef condition through time. Improving coral-reef resilience in the face of climate change will therefore require improved understanding and management of growing artisanal fishing pressure and watershed pollution.
DETECTION OF TEMPORAL TRENDS IN OHIO RIVER FISH ASSEMBLAGES BASED ON LOCKCHAMBER SURVEYS
The Ohio River Valley Water Sanitation Commission (ORSANCO), along with cooperating state and federal agencies, sampled fish assemblages from the lockchambers of Ohio River navigational dams from 1957 to 2001. To date, 377 lockchamber rotenone events have been conducted, resulti...
Historical changes in large river fish assemblages of the Americas: A synthesis
The objective of this synthesis is to summarize patterns in historical changes in the fish assemblages of selected large American rivers, to document causes for those changes, and to suggest rehabilitation measures. Although not a statistically representative sample of large riv...
We conducted research comparing several methods currently in use for the bioassessment and monitoring of fish and benthic macroinvertebrate assemblages of large rivers. Fish data demonstrate that electrofishing 1000 m of shoreline is sufficient for bioassessments on boatable riv...
Geographic, Anthropogenic and Habitat Influences on Great Lakes Coastal Wetland Fish Assemblages
We analyzed data from coastal wetlands across all five Laurentian Great Lakes to identify patterns in fish assemblages and relationships to local habitat, watershed condition, and regional setting. NMDS ordination of electrofishing catch-per-effort data revealed an overriding ge...
An important issue surrounding assessment of riverine fish assemblages is the minimum amount of sampling distance needed to adequately determine biotic condition. Determining adequate sampling distance is important because sampling distance affects estimates of fish assemblage c...
Concurrent assessment of fish and habitat in warmwater streams in Wyoming
Quist, M.C.; Hubert, W.A.; Rahel, F.J.
2006-01-01
Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.
Hasegawa, K; Mori, T; Yamazaki, C
2017-01-01
The spatial scale and density-dependent effects of non-native brown trout Salmo trutta on species richness of fish assemblages were examined at 48 study sites in Mamachi Stream, a tributary of Chitose River, Hokkaido, Japan. The density of age ≥1 year S. trutta was high in the upstream side of the main stem of Mamachi Stream. Fish species richness increased with increasing area of study sites (habitat size), but the increasing magnitude of the species richness with area decreased with increasing age of ≥1 year S. trutta density. The relationships between age ≥1 year S. trutta, however, and presence-absence of each species seemed to be different among species. Species richness was also determined by location and physical environmental variables, i.e. it was high on the downstream side and in structurally complex environments. © 2016 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Rao, S. T.
2016-12-01
Alteration of natural flow regime is considered as one of the major threats to tropical stream fish assemblages as it alters the physio-chemical and micro-habitat features of the river. Flow alteration induced by Small hydro-power (SHP) plants disrupts the flow regime by flow diversion and regulation. The effects of flow alteration on tropical stream fish assemblages, especially in the Western Ghats of India is largely understudied. Such a knowledge is imperative to set limits on flow alteration as SHPs in the Western Ghats are being planned at an unprecedented rate with exemption from environment impact assessments and backing in the form of government subsidies and carbon credits. This study aimed to understand the response of fish assemblages to SHP induced flow alteration in a regulated and unregulated tributary of the Yettinahole River in the Western Ghats of Karnataka. The study intended to quantify the natural and altered flow regime using automated periodic depth measurements, its effect on micro-habitats and environmental variables and finally, understand how fish assemblages respond to such changes. The response of fish assemblage was measured in terms of catch-per-site, species-regime associations and ecological distance between the regimes. The study used a space for time substitution approach and found that the altered flow regime dampened the diurnal and seasonal patterns of natural flow regime. The altered flow regime influenced variations in water quality, micro-habitat heterogeneity and fish assemblage response, each characteristic of the type of flow alteration. The natural flow regime was found to have a higher catch-per-site and strong associations with endemic and niche-specific taxa. Compositional dissimilarities, in terms of ecological distance were observed between the altered and the natural flow regime. Dewatered or flow diverted regime contained species with lentic affinities while an overall low catch-per-site and weak species-regime association was found in the flow regulated regime. The study highlights the importance of natural flow regime in maintaining native biodiversity and suggests the need for cumulative impact assessments for setting limits on flow alteration.
Structure of Caribbean coral reef communities across a large gradient of fish biomass.
Newman, Marah J H; Paredes, Gustavo A; Sala, Enric; Jackson, Jeremy B C
2006-11-01
The collapse of Caribbean coral reefs has been attributed in part to historic overfishing, but whether fish assemblages can recover and how such recovery might affect the benthic reef community has not been tested across appropriate scales. We surveyed the biomass of reef communities across a range in fish abundance from 14 to 593 g m(-2), a gradient exceeding that of any previously reported for coral reefs. Increased fish biomass was correlated with an increased proportion of apex predators, which were abundant only inside large marine reserves. Increased herbivorous fish biomass was correlated with a decrease in fleshy algal biomass but corals have not yet recovered.
BIOACCUMULATION AND AQUATIC SYSTEM SIMULATOR (BASS) USER'S MANUAL BETA TEST VERSION 2.1
BASS (Bioaccumulation and Aquatic System Simulator) is a Fortran 95 simulation program that predicts the population and bioaccumulation dynamics of age-structured fish assemblages that are exposed to hydrophobic organic pollutants and class B and borderline metals that complex wi...
NASA Astrophysics Data System (ADS)
Harris, S. A.; Cyrus, D. P.; Beckley, L. E.
2001-08-01
The structure of the larval fish assemblages along an ocean-estuarine gradient in the St Lucia region on the northern KwaZulu-Natal coast of South Africa was examined using a combination of univariate, distributional and multivariate techniques. The data was comprised of a full annual set of ichthyoplankton samples taken from three types of environment: nearshore coastal waters, surf zone and within the St Lucia Estuary itself. The mean monthly densities of each species in each environment were used in the species matrix, and the mean monthly values of salinity, temperature and turbidity were used in the physical variables matrix. The mean species diversity and eveness index was significantly higher in the nearshore waters than the surf zone and estuary. The patterns of relative species abundances in each environment (K-dominance curves) showed that the estuarine environment was dominated by a few species in large numbers, the surf zone was intermediate, and the nearshore coast was the most diverse. Classification and multidimensional scaling (MDS) ordination analyses of larval fish densities grouped together into three main clusters based on the three different environments. The species similarity matrix (inverse analysis) clustered into four groups at the 10% similarity level. The MDS analysis of the same matrix showed that the groups separated out more or less according to the type of environment they occur in, and hence the level of estuarine dependence of the various species. Species belonging to each assemblage showed similarities with regards to their reproduction modes and/or preference to a particular physical condition. Some species were restricted to one environment, whilst others were common to two or all three environments. The occurrence of partially estuarine-dependent species in all three environments suggests that ocean-estuarine coupling is an important process for the recruitment success of these species. The ' best fitting ' physical variable which explained the larval fish community patterns was turbidity on its own, with the relationship of larval densities to the physical variables being species-specific. The present study indicates that a number of factors must play a role in determining the structure and composition of larval fish assemblages occurring in different types of environments along an ocean-estuarine gradient. It is suggested that these distinct assemblages might be considered indicators for the different environments which they inhabit.
Harborne, A R
2013-09-01
Reef flats, typically a low-relief carbonate and sand habitat in shallow water leeward of the reef crest, are one of the most extensive zones on Pacific coral reefs. This shallow zone often supports an abundant and diverse fish assemblage that is exposed to more significant variations in physical factors, such as water depth and movement, temperature and ultraviolet (UV) radiation levels, than most other reef fishes. This review examines the characteristics of reef flat fish assemblages, and then investigates what is known about how they respond to their biophysical environment. Because of the challenges of living in shallow, wave-exposed water, reef flats typically support a distinct fish assemblage compared to other reef habitats. This assemblage clearly changes across tidal cycles as some larger species migrate to deeper water at low tide and other species modify their behaviour, but quantitative data are generally lacking. At least some reef flat fish species are well-adapted to high temperatures, low oxygen concentrations and high levels of UV radiation. These behavioural and physiological adaptations suggest that there may be differences in the demographic processes between reef flat assemblages and those in deeper water. Indeed, there is some evidence that reef flats may act as nurseries for some species, but more research is required. Further studies are also required to predict the effects of climate change, which is likely to have multifaceted impacts on reef flats by increasing temperature, water motion and sediment load. Sea-level rise may also affect reef flat fish assemblages and food webs by increasing the amount of time that larger species are able to forage in this zone. The lack of data on reef flats is surprising given their size and relative ease of access, and a better understanding of their functional role within tropical marine seascapes is urgently required. © 2013 The Fisheries Society of the British Isles.
Geographic variation in patterns of nestedness among local stream fish assemblages in Virginia
Cook, R.R.; Angermeier, P.L.; Finn, D.S.; Poff, N.L.; Krueger, K.L.
2004-01-01
Nestedness of faunal assemblages is a multiscale phenomenon, potentially influenced by a variety of factors. Prior small-scale studies have found freshwater fish species assemblages to be nested along stream courses as a result of either selective colonization or extinction. However, within-stream gradients in temperature and other factors are correlated with the distributions of many fish species and may also contribute to nestedness. At a regional level, strongly nested patterns would require a consistent set of structuring mechanisms across streams, and correlation among species' tolerances of the environmental factors that influence distribution. Thus, nestedness should be negatively associated with the spatial extent of the region analyzed and positively associated with elevational gradients (a correlate of temperature and other environmental factors). We examined these relationships for the freshwater fishes of Virginia. Regions were defined within a spatial hierarchy and included whole river drainages, portions of drainages within physiographic provinces, and smaller subdrainages. In most cases, nestedness was significantly stronger in regions of smaller spatial extent and in regions characterized by greater topographic relief. Analysis of hydrologic variability and patterns of faunal turnover provided no evidence that interannual colonization/extinction dynamics contributed to elevational differences in nestedness. These results suggest that, at regional scales, nestedness is influenced by interactions between biotic and abiotic factors, and that the strongest nestedness is likely to occur where a small number of organizational processes predominate, i.e., over small spatial extents and regions exhibiting strong environmental gradients. ?? Springer-Verlag 2004.
Genetic diversity and species diversity of stream fishes covary across a land-use gradient.
Blum, Michael J; Bagley, Mark J; Walters, David M; Jackson, Suzanne A; Daniel, F Bernard; Chaloud, Deborah J; Cade, Brian S
2012-01-01
Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems.
Genetic diversity and species diversity of stream fishes covary across a land-use gradient
Blum, M.J.; Bagley, M.J.; Walters, D.M.; Jackson, S.A.; Daniel, F.B.; Chaloud, D.J.; Cade, B.S.
2012-01-01
Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems. ?? 2011 Springer-Verlag.
SENSITIVITY OF INDICES OF BIOTIC INTEGRITY TO SIMULATED FISH ASSEMBLAGE CHANGES
Multi-metric indices of biotic integrity (IBI) are commonly used to assess condition of stream fish assemblages, but their ability to monitor trends within streams over time is largely unknown. We assessed the trend detection ability of two IBI formulations (one with traditional ...
EFFECT OF URBANIZATION ON FISH ASSEMBLAGES AND HABITAT QUALITY IN A PIEDMONT RIVER BASIN
We quantified the relationships among urbanization, fishes, and habitat quality to determine how assemblags respond to urbanization and if a habitat quality assessment reflects urban effects on stream ecosystems. We sampled 30 wadeable streams along an urban gradient in the Etow...
Carlisle, D.M.; Hawkins, C.P.; Meador, M.R.; Potapova, M.; Falcone, J.
2008-01-01
We developed empirical models for fish, macroinvertebrate, and diatom assemblages to assess the biological condition of 268 streams sampled from 1993 to 2002 in 7 major river basins in the Appalachian region of the USA. These models estimate the expected taxonomic composition at each site based on observed variation in taxonomic composition at reference sites. The index, O/E, is the ratio of the number of predicted taxa that were observed (O) to that expected (E) to occur at a site and is a measure of taxonomic completeness. We compared how O/E for each assemblage varied among major landuse settings and whether impaired assemblages were associated with particular physicochemical conditions. We also examined concordance among assemblages in their response to stress. Biological, chemical, and physical data were collected following consistent protocols. We used land-cover criteria, published data, and topographic maps to classify sites by major landuse setting. Fish, macroinvertebrate, and diatom assemblages had been sampled at 73, 108, and 52, respectively, of the least disturbed sites used to establish reference conditions. The models accounted for a substantial portion of the natural variation in taxonomic composition across sites that was associated with biogeographic, climatic, and basin-scale factors and generally were unbiased across the range of environmental gradients observed in the region. Assessments at nonreference sites showed that impairment of fish and macroinvertebrate assemblages was most strongly associated with agriculture and urban land uses, whereas impairment of diatom assemblages was most strongly associated with mining in the basin. Concordance in assessments among assemblages was not strong. Assessments based on 2 assemblages differed in 28 to 57% of cases, and assessments were never concordant for cases where all 3 assemblages were sampled. Furthermore, only 1/2 of these cases would have been assessed as ecologically impaired had only 1 assemblage been sampled. Differences between observed and predicted frequencies of occurrence for individual taxa were generally consistent with known tolerances to environmental stressors and might aid in identifying causes of biological impairment. ?? 2008 by The North American Benthological Society.
Muñoz, G; Cortés, Y
2009-09-01
The different species of a fish assemblage can, to some extent, be similar in terms of their parasite communities, which can be associated with certain ecological host traits. This study compared the parasite community descriptors between temporal and resident fish species composing an intertidal assemblage from central Chile. Host specificity and similarity indices of parasite communities among the fish species were also considered. A total of 1097 fish representing 14 species were collected during spring and summer of 2 consecutive years. A total spectrum of 40 parasite species was found, of which copepods and trematodes were the commonest. Congeneric fish species had the highest similarities in their parasite communities. Based on a cluster analysis, using only some fish species, no group was distinguished using abundance or prevalence of parasites, because 50% of parasite species had high host specificity and only few of them were shared among fish species. Adult parasites showed high host specificity and were found mainly in resident intertidal fish, whereas the temporal fish had parasites with different degrees of specificity. Consequently, resident intertidal fish were characterized by their own parasite species, meaning that their transmissions might be restricted to the intertidal zone.
Simplification of Caribbean reef-fish assemblages over decades of coral reef degradation.
Alvarez-Filip, Lorenzo; Paddack, Michelle J; Collen, Ben; Robertson, D Ross; Côté, Isabelle M
2015-01-01
Caribbean coral reefs are becoming structurally simpler, largely due to human impacts. The consequences of this trend for reef-associated communities are currently unclear, but expected to be profound. Here, we assess whether changes in fish assemblages have been non-random over several decades of declining reef structure. More specifically, we predicted that species that depend exclusively on coral reef habitat (i.e., habitat specialists) should be at a disadvantage compared to those that use a broader array of habitats (i.e., habitat generalists). Analysing 3727 abundance trends of 161 Caribbean reef-fishes, surveyed between 1980 and 2006, we found that the trends of habitat-generalists and habitat-specialists differed markedly. The abundance of specialists started to decline in the mid-1980s, reaching a low of ~60% of the 1980 baseline by the mid-1990s. Both the average and the variation in abundance of specialists have increased since the early 2000s, although the average is still well below the baseline level of 1980. This modest recovery occurred despite no clear evidence of a regional recovery in coral reef habitat quality in the Caribbean during the 2000s. In contrast, the abundance of generalist fishes remained relatively stable over the same three decades. Few specialist species are fished, thus their population declines are most likely linked to habitat degradation. These results mirror the observed trends of replacement of specialists by generalists, observed in terrestrial taxa across the globe. A significant challenge that arises from our findings is now to investigate if, and how, such community-level changes in fish populations affect ecosystem function.
Ansah, Yaw Boamah; Frimpong, Emmanuel A; Amisah, Stephen
2012-07-01
Biological assessment of aquatic ecosystems is widely employed as an alternative or complement to chemical and toxicity testing due to numerous advantages of using biota to determine ecosystem condition. These advantages, especially to developing countries, include the relatively low cost and technical requirements. This study was conducted to determine the biological impacts of aquaculture operations on effluent-receiving streams in the Ashanti Region of Ghana. We collected water, fish and benthic macroinvertebrate samples from 12 aquaculture effluent-receiving streams upstream and downstream of fish farms and 12 reference streams between May and August of 2009, and then calculated structural and functional metrics for biotic assemblages. Fish species with non-guarding mode of reproduction were more abundant in reference streams than downstream (P = 0.0214) and upstream (P = 0.0251), and sand-detritus spawning fish were less predominant in reference stream than upstream (P = 0.0222) and marginally less in downstream locations (P = 0.0539). A possible subsidy-stress response of macroinvertebrate family richness and abundance was also observed, with nutrient (nitrogen) augmentation from aquaculture and other farming activities likely. Generally, there were no, or only marginal differences among locations downstream and upstream of fish farms and in reference streams in terms of several other biotic metrics considered. Therefore, the scale of impact in the future will depend not only on the management of nutrient augmentation from pond effluents, but also on the consideration of nutrient discharges from other industries like fruit and vegetable farming within the study area.
Palic, D.; Helland, L.; Pedersen, B.R.; Pribil, J.R.; Grajeda, R.M.; Loan-Wilsey, Anna; Pierce, C.L.
2007-01-01
We characterized the fish assemblages in second to fifth order streams of the upper Little Sioux River basin in northwest Iowa, USA and compared our results with historical surveys. The fish assemblage consisted of over twenty species, was dominated numerically by creek chub, sand shiner, central stoneroller and other cyprinids, and was dominated in biomass by common carp. Most of the species and the great majority of all individuals present were at least moderately tolerant to environmental degradation, and biotic integrity at most sites was characterized as fair. Biotic integrity declined with increasing stream size, and degraded habitat in larger streams is a possible cause. No significant changes in species richness or the relative distribution of species' tolerance appear to have occurred since the 1930s.
Brown, Larry R.
1998-01-01
Twenty sites in the lower San Joaquin River drainage, California, were sampled from 1993 to 1995 to characterize fish assemblages and their associations with measures of water quality and habitat quality. In addition, four fish community metrics were assessed, including percentages of native fish, omnivorous fish, fish intolerant of environmental degradation, and fish with external anomalies. Of the 31 taxa of fish captured during the study, only 10 taxa were native to the drainage. Multivariate analyses of percentage data identified four site groups characterized by characterized by different groups of species. The distributions of fish species were related to specific conductance, gradient, and mean depth; however, specific conductance acted as a surrogate variable for a large group of correlated variables. Two of the fish community metrics--percentage of introduced fish and percentage of intolerant fish--appeared to be responsive to environmental quality but the responses of the other two metrics--percentage of omnivorous fish and percentage of fish with anomalies--were less direct. The conclusion of the study is that fish assemblages are responsive to environmental conditions, including conditions associated with human-caused disturbances, particularly agriculture and water development. The results suggest that changes in water management and water quality could result in changes in species distributions. Balancing the costs and benefits of such changes poses a considerable challenge to resource managers. different groups of species.
NASA Astrophysics Data System (ADS)
Braga-Henriques, A.; Porteiro, F. M.; Ribeiro, P. A.; de Matos, V.; Sampaio, Í.; Ocaña, O.; Santos, R. S.
2013-06-01
Cold-water corals are widely considered as important structural components of benthic habitats, potentially enhancing local abundance in a variety of fish and invertebrate species. Yet, current knowledge of the taxonomic diversity and distribution patterns of these vulnerable, slow-growing organisms is scarce and fragmented, limiting the effectiveness of spatial management and conservation measures. We have conducted an exhaustive compilation of records of alcyonaceans, antipatharians, scleractinians and stylasterids available through present day to assess the diversity, distribution and spatial structure of coral assemblages in the Azores exclusive economic zone (EEZ). The resulting database comprises 2501 entries concerning historical oceanographic expeditions and other published sources, as well as unpublished data from bottom longline by-catch. Our taxonomic inventory appears to be fairly complete for the explored habitats, accounting for 164 species (79 alcyonaceans, 58 scleractinians, 18 antipatharians and 9 stylasterids), nine of which were documented for the first time. The Azores EEZ harbours a mixed coral fauna with several zoogeographic origins, showing the closest affinity with the Lusitanian-Mediterranean region. Very few apparent endemics were found (14%), and only in part supported by consistent sampling. Coral diversity is particularly high between 300 and 900 m depths, in areas recognized as traditional fishing grounds or exploitable fish habitat within the 100-mile limit of the EEZ. The composition of coral assemblages shows significant geographical structure among longitudinal sections of the study area at comparable depths (100-1500 m). There is no evidence of a possible role of the Mid-Atlantic Ridge or latitudinal effects underlying this pattern, which suggests that it may instead reflect assemblage variability among features. Stronger changes in species composition were found along the bathymetric gradient. Notwithstanding the mix of partially overlapping steno- and eurybathic species that characterize the vertical distribution of corals, there is a distinct transition from shallow (100-600 m) to intermediate (600-1000 m) depths. The analysis presented here constitutes a valuable contribution for efficient conservation policies of coral-associated vulnerable marine ecosystems and their sustainable use as fishing areas.
NASA Astrophysics Data System (ADS)
Braga-Henriques, A.; Porteiro, F. M.; Ribeiro, P. A.; de Matos, V.; Sampaio, Í.; Ocaña, O.; Santos, R. S.
2013-01-01
Cold-water corals are widely considered as important structural components of benthic habitats, potentially enhancing local abundance in a variety of fish and invertebrate species. Yet, current knowledge of the taxonomic diversity and distribution patterns of these vulnerable, slow-growing organisms is scarce and fragmented, limiting the effectiveness of spatial management and conservation measures. We have conducted an exhaustive compilation of records of alcyonaceans, antipatharians, scleractinians and stylasterids available until the present day to assess the diversity, distribution, and spatial structure of coral assemblages in the Azores Exclusive Economic Zone (EEZ). The resulting database comprises 2501 entries concerning historical oceanographic expeditions and other published sources, as well as recent data from longline bycatch. Our taxonomic inventory appears to be fairly complete for the explored habitats, accounting for 164 species (79 alcyonaceans, 58 scleractinians, 18 antipatharians and 9 stylasterids), nine of which were new records. The Azores EEZ harbours a mixed coral fauna with several zoogeographic origins, showing the closest affinity with the Lusitanian-Mediterranean region. Very few apparent endemics were found (14%), and only in part supported by consistent sampling. Coral diversity is particularly high between 300 and 900 m depths, in areas recognized as traditional fishing grounds or exploitable fish habitat within the 100-mile limit of the EEZ. The composition of coral assemblages shows significant geographical structure among longitudinal sections of the study area at comparable depths (100-1500 m). There is no evidence of a possible role of the Mid-Atlantic Ridge or latitudinal effects underlying this pattern, which suggests that it may instead reflect assemblage variability among features. Stronger changes in species composition were found along the bathymetric gradient. Notwithstanding the mix of partially overlapping steno- and eurybathic species that characterize the vertical distribution of corals, there is a distinct transition from shallow (100-600 m) to intermediate (600-1000 m) depths.The analysis here presented constitutes a~valuable contribution for efficient conservation policies of coral-associated vulnerable marine ecosystems and their sustainable use as fishing areas.
Evidence for fish dispersal from spatial analysis of stream network topology
Hitt, N.P.; Angermeier, P.L.
2008-01-01
Developing spatially explicit conservation strategies for stream fishes requires an understanding of the spatial structure of dispersal within stream networks. We explored spatial patterns of stream fish dispersal by evaluating how the size and proximity of connected streams (i.e., stream network topology) explained variation in fish assemblage structure and how this relationship varied with local stream size. We used data from the US Environmental Protection Agency's Environmental Monitoring and Assessment Program in wadeable streams of the Mid-Atlantic Highlands region (n = 308 sites). We quantified stream network topology with a continuous analysis based on the rate of downstream flow accumulation from sites and with a discrete analysis based on the presence of mainstem river confluences (i.e., basin area >250 km2) within 20 fluvial km (fkm) from sites. Continuous variation in stream network topology was related to local species richness within a distance of ???10 fkm, suggesting an influence of fish dispersal within this spatial grain. This effect was explained largely by catostomid species, cyprinid species, and riverine species, but was not explained by zoogeographic regions, ecoregions, sampling period, or spatial autocorrelation. Sites near mainstem river confluences supported greater species richness and abundance of catostomid, cyprinid, and ictalurid fishes than did sites >20 fkm from such confluences. Assemblages at sites on the smallest streams were not related to stream network topology, consistent with the hypothesis that local stream size regulates the influence of regional dispersal. These results demonstrate that the size and proximity of connected streams influence the spatial distribution of fish and suggest that these influences can be incorporated into the designs of stream bioassessments and reserves to enhance management efficacy. ?? 2008 by The North American Benthological Society.
Local v. microhabitat influences on the fish fauna of tidal pools in north-east Brazil.
Godinho, W O; Lotufo, T M C
2010-02-01
This study explored the influence of microhabitat characteristics, such as sandy, rocky and algal bottom, holes, area and depth, on tide-pool fish descriptors (evenness, total number of fish, diversity and species richness). Even when the rockpool microhabitats differed amongst beaches, the tidal fish assemblages were closely grouped by site rather than by characteristics of the tide pools. Fish assemblages were mostly represented by juvenile fishes from 29 species, of which 14 were observed in only one of the three sites. This indicates that sites, rather than microhabitat association, might play a major role for the rockpool ichthyofauna in north-east Brazil.
NASA Astrophysics Data System (ADS)
Li, Yalei; Liu, Qigen; Chen, Liping; Zhao, Liangjie; Wu, Hao; Chen, Liqiao; Hu, Zhongjun
2018-03-01
Two fishing methods including gillnetting and trawling to estimate attributes of fish assemblage were compared in Dianshan Lake from August 2009 to July 2010. Species composition differed significantly between the gears, with four significant contributors in gillnet catches and one in trawl catches. Trawling collected more proportions of benthic species by number and biomass than gillnetting. Size distribution was significantly influenced by fishing technique; gillnetting captured relatively less small-sized fishes and trawling captured less large-sized individuals. Trawling produced species richness closer to the one expected than gillnetting. On the whole, trawl catch was a quadratic polynomial function of gillnet catch and a significantly negative correlation was found between them, both of which varied as different polynomial functions of temperature. However, trawl and gillnet catches were significantly correlated only in one of five month groups. It is concluded that single-gear-based surveys can be misleading in assessments of attributes of fish assemblages, bottom trawling is a more effective gear for assessing fish diversity than benthic gillnetting, and using gillnet catches as an indicator of fish density depends on fishing season in the lake.
Fish assemblages in the Oregon-Washington coast range consist primarily of coldwater taxa of salmonids, cottids, dace, and Pacific giant salamander. This region has a dynamic natural disturbance regime, where mass failures, debris torrents, fire, and tree-fall are driven by clim...
Fish assemblages at 16 sites in the upper French Broad River basin, North Carolina were related to environmental variables using detrended correspondence analysis (DCA) and linear regression. This study was conducted at the landscape scale because regional variables are controlle...
NASA Astrophysics Data System (ADS)
Wang, Lizhu; Robertson, Dale M.; Garrison, Paul J.
2007-02-01
We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated ( P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera-Plecoptera-Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables.
Wang, L.; Robertson, Dale M.; Garrison, P.J.
2007-01-01
We sampled 240 wadeable streams across Wisconsin for different forms of phosphorus and nitrogen, and assemblages of macroinvertebrates and fish to (1) examine how macroinvertebrate and fish measures correlated with the nutrients; (2) quantify relationships between key biological measures and nutrient forms to identify potential threshold levels of nutrients to support nutrient criteria development; and (3) evaluate the importance of nutrients in influencing biological assemblages relative to other physicochemical factors at different spatial scales. Twenty-three of the 35 fish and 18 of the 26 macroinvertebrate measures significantly correlated (P < 0.05) with at least one nutrient measure. Percentages of carnivorous, intolerant, and omnivorous fishes, index of biotic integrity, and salmonid abundance were fish measures correlated with the most nutrient measures and had the highest correlation coefficients. Percentages of Ephemeroptera-Plecoptera-Trichoptera individuals and taxa, Hilsenhoff biotic index, and mean tolerance value were macroinvertebrate measures that most strongly correlated with the most nutrient measures. Selected biological measures showed clear trends toward degradation as concentrations of phosphorus and nitrogen increased, and some measures showed clear thresholds where biological measures changed drastically with small changes in nutrient concentrations. Our selected environmental factors explained 54% of the variation in the fish assemblages. Of this explained variance, 46% was attributed to catchment and instream habitat, 15% to nutrients, 3% to other water quality measures, and 36% to the interactions among all the environmental variables. Selected environmental factors explained 53% of the variation in macroinvertebrate assemblages. Of this explained variance, 42% was attributed to catchment and instream habitat, 22% to nutrients, 5% to other water quality measures, and 32% to the interactions among all the environmental variables. ?? 2006 Springer Science+Business Media, Inc.
Ivasauskas, Tomas J.; Xiong, Wilson N.; Engman, Augustin C.; Fischer, Jesse R.; Kwak, Thomas J.; Rundle, Kirk R.
2017-01-01
Urban fisheries provide unique angling opportunities for people from traditionally underrepresented demographics. Lake Raleigh is a 38-ha impoundment located on the North Carolina State University campus in Raleigh. Like many urban fisheries, little is known about angler use and satisfaction or how angling catch rate is related to fish availability in Lake Raleigh. We characterized the recreational fishery and fish assemblage with concurrent creel and boat electrofishing surveys over the course of one year. In total, 245 anglers were interviewed on 68 survey days. On average, anglers spent 1.7 h fishing per trip and caught 0.385 fish h –1. A large proportion of anglers (43.9%) targeted multiple species, whereas 36.5% targeted largemouth bass (Micropterus salmoides), 10.0% targeted panfish (i.e., sunfishes [Lepomis spp.] and crappies [Pomoxis spp.]), and 9.6% targeted catfish (Ameiurus spp. and Ictalurus spp.). Most anglers (69.4%) were satisfied with their experience, and overall satisfaction was unrelated to catch rate. Pulsed-DC boat electrofishing was conducted on 25 dates, and 617 fish were sampled. Angler catch rate was unrelated to electrofishing catch rate, implying that anglers' catch rate was independent of fish density or availability. Our results demonstrate that even minimally managed urban fisheries can provide high angler satisfaction, with limited dedication of management resources. Relationships Among Catch, Angler Satisfaction, and Fish Assemblage Characteristics of an Urban Small Impoundment Fishery (PDF Download Available). Available from: https://www.researchgate.net/publication/316636550_Relationships_Among_Catch_Angler_Satisfaction_and_Fish_Assemblage_Characteristics_of_an_Urban_Small_Impoundment_Fishery [accessed Aug 11, 2017].
Davis, W.N.; Bramblett, R.G.; Zale, A.V.
2010-01-01
1. Extraction of coalbed natural gas (CBNG) often results in disposal of large quantities of CBNG product water, which may affect aquatic ecosystems. We evaluated the effects of CBNG development on fish assemblages in tributary streams of the Powder and Tongue rivers. We used treatment and control, impact versus reference sites comparisons, surveys of CBNG product-water streams and in situ fish survival approaches to determine if CBNG development affected fish assemblages.2. Several of our results suggested that CBNG development did not affect fish assemblages. Species richness and index of biotic integrity (IBI) scores were similar in streams with and streams without CBNG development, and overall biotic integrity was not related to the number or density of CBNG wells. Fish occurred in one stream that was composed largely or entirely of CBNG product water. Sentinel fish survived in cages at treatment sites where no or few fish were captured, suggesting that factors such as lack of stream connectivity rather than water quality limited fish abundance at these sites. Fish species richness did not differ significantly from 1994 to 2006 in comparisons of CBNG-developed and undeveloped streams. Biotic integrity declined from 1994 to 2006; however, declines occurred at both impact and reference sites, possibly because of long-term drought.3. Some evidence suggested that CBNG development negatively affected fish assemblages, or may do so over time. Specific conductivity was on average higher in treatment streams and was negatively related to biotic integrity. Four IBI species richness metrics were negatively correlated with the number or density of CBNG wells in the catchment above sampling sites. Bicarbonate, one of the primary ions in product water, was significantly higher in developed streams and may have limited abundance of longnose dace (Rhinichthys cataractae). Total dissolved solids, alkalinity, magnesium and sulphate were significantly higher in developed streams.4. Biological monitoring conducted before the development of CBNG, and continuing through the life of development and reclamation, together with data on the quantity, quality and fate of CBNG product water will allow robust assessment of potential effects of future CBNG development worldwide. ?? 2010 Blackwell Publishing Ltd.
Taylor, R.C.; Trexler, J.C.; Loftus, W.F.
2001-01-01
We documented patterns of age-structured biotic interactions in four mesocosm experiments with an assemblage of three species of co-occurring fishes from the Florida Everglades, the eastern mosquitofish (Gambusia holbrooki), sailfin molly (Poecilia latipinna), and bluefin killifish (Lucania goodei). These species were chosen based on their high abundance and overlapping diets. Juvenile mosquitofish and sailfin mollies, at a range of densities matching field estimates, were maintained in the presence of adult mosquitofish, sailfin mollies, and bluefin killifish to test for effects of competition and predation on juvenile survival and growth. The mesocosms held 1,200 1 of water and all conditions were set to simulate those in Shark River Slough, Everglades National Park (ENP), USA. We placed floating mats of periphyton and bladderwort in each tank in standard volumes that matched field values to provide cover and to introduce invertebrate prey. Of 15 possible intra- and interspecific age-structured interactions, we found 7 to be present at the densities of these fish found in Shark River Slough marshes. Predation by adult mosquitofish on juvenile fish, including conspecifics, was the strongest effect observed. We also observed growth limitation in mosquitofish and sailfin molly juveniles from intra- and interspecific competition. When maintained at high densities, juvenile mosquitofish changed their diets to include more cladocerans and fewer chironomid larvae relative to low densities. We estimated size-specific gape limitation by adult mosquitofish when consuming juvenile mosquitofish and sailfin mollies. At high field densities, intraspecific competition might prolong the time period when juveniles are vulnerable to predation by adult mosquitofish. These results suggest that path analysis, or other techniques used to document food-web interactions, must include age-specific roles of these fishes.
Carballo, M C; Cremonte, F; Navone, G T; Timi, J T
2012-01-01
The aims of this study were to determine the existence of migratory movements and to identify ecological stocks of the silverside Odontesthes smitti along its distribution in the Southern Atlantic Ocean, using metazoan parasites as biological tags. Samples were obtained from San José Gulf (SJ) (42° 25' S; 64° 07' W) and Nuevo Gulf (NG) (42° 47' S; 65° 02' W) in north Patagonia during winter and summer and in waters off Mar del Plata (MDP) (38° 03' S; 57° 32' W), Bonaerense region, during winter. Fifteen parasite species were collected. Multivariate statistical procedures on parasite community data showed strong effect of host size on the structure of parasite assemblages. Taking into account the variations among samples due to host size, the differential structure of parasite communities between SJ and NG suggests that fish inhabiting these localities could belong to different ecological stocks. Fish from MDP and SJ caught in summer showed similar composition in their parasite assemblages, which is congruent with a migratory cycle that implies that fish caught in MDP during winter inhabit SJ during summer. Further evidence of the Patagonian origin of MDP O. smitti is the presence of the digenean Proctotrema bartolii in fish from both regions. Proctotrema bartolii is acquired by O. smitti only in the Magellanic province, where its intermediate host, Darina solenoides, is distributed. The analyses suggest that O. smitti inhabiting north Patagonian gulfs could belong to different ecological stocks and that O. smitti caught in MDP could have come from SJ. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Abiotic and biotic controls of cryptobenthic fish assemblages across a Caribbean seascape
Harborne, A.R.; Jelks, H.L.; Smith-Vaniz, W.F.; Rocha, L.A.
2012-01-01
The majority of fish studies on coral reefs consider only non-cryptic species and, despite their functional importance, data on cryptic species are scarce. This study investigates inter-habitat variation in Caribbean cryptobenthic fishes by re-analysing a comprehensive data set from 58 rotenone stations around Buck Island, U.S. Virgin Islands. Boosted regression trees were used to associate the density and diversity of non-piscivorous cryptobenthic fishes, both in the entire data set and on reef habitats alone, with 14 abiotic and biotic variables. The study also models the habitat requirements of the three commonest species. Dead coral cover was the first or second most important variable in six of the eight models constructed. For example, within the entire data set, the number of species and total fish density increased approximately linearly with increasing dead coral cover. Dead coral was also important in multivariate analyses that discriminated 10 assemblages within the entire data set. On reef habitats, the number of species and total fish density increased dramatically when dead coral exceeded ~55 %. Live coral cover was typically less important for explaining variance in fish assemblages than dead coral, but live corals were important for maintaining high fish diversity. Coral species favoured by cryptobenthic species may be particularly susceptible to mortality, but dead coral may also provide abundant food and shelter for many fishes. Piscivore density was a key variable in the final models, but typically increased with increasing cryptobenthic fish diversity and abundance, suggesting both groups of fishes are responding to the same habitat variables. The density of territorial damselfishes reduced the number of cryptobenthic fish species on reef habitats. Finally, habitats delineated by standard remote sensing techniques supported distinct cryptobenthic fish assemblages, suggesting that such maps can be used as surrogates of general patterns of cryptic fish biodiversity in conservation planning.
Shaping up: a geometric morphometric approach to assemblage ecomorphology.
Bower, L M; Piller, K R
2015-09-01
This study adopts an ecomorphological approach to test the utility of body shape as a predictor of niche relationships among a stream fish assemblage of the Tickfaw River (Lake Pontchartrain Basin) in southeastern Louisiana, U.S.A. To examine the potential influence of evolutionary constraints, analyses were performed with and without the influence of phylogeny. Fish assemblages were sampled throughout the year, and ecological data (habitat and tropic guild) and body shape (geometric morphometric) data were collected for each fish specimen. Multivariate analyses were performed to examine relationships and differences between body shape and ecological data. Results indicate that a relationship exists between body shape and trophic guild as well as flow regime, but no significant correlation between body shape and substratum was found. Body shape was a reliable indicator of position within assemblage niche space. © 2015 The Fisheries Society of the British Isles.
Hermoso, Virgilio; Clavero, Miguel; Blanco-Garrido, Francisco; Prenda, José
2011-01-01
Mediterranean endemic freshwater fish are among the most threatened biota in the world. Distinguishing the role of different extinction drivers and their potential interactions is crucial for achieving conservation goals. While some authors argue that invasive species are a main driver of native species declines, others see their proliferation as a co-occurring process to biodiversity loss driven by habitat degradation. It is difficult to discern between the two potential causes given that few invaded ecosystems are free from habitat degradation, and that both factors may interact in different ways. Here we analyze the relative importance of habitat degradation and invasive species in the decline of native fish assemblages in the Guadiana River basin (southwestern Iberian Peninsula) using an information theoretic approach to evaluate interaction pathways between invasive species and habitat degradation (structural equation modeling, SEM). We also tested the possible changes in the functional relationships between invasive and native species, measured as the per capita effect of invasive species, using ANCOVA. We found that the abundance of invasive species was the best single predictor of natives' decline and had the highest Akaike weight among the set of predictor variables examined. Habitat degradation neither played an active role nor influenced the per capita effect of invasive species on natives. Our analyses indicated that downstream reaches and areas close to reservoirs had the most invaded fish assemblages, independently of their habitat degradation status. The proliferation of invasive species poses a strong threat to the persistence of native assemblages in highly fluctuating environments. Therefore, conservation efforts to reduce native freshwater fish diversity loss in Mediterranean rivers should focus on mitigating the effect of invasive species and preventing future invasions.
Pearson, Daniel K.; Braun, Christopher L.; Moring, J. Bruce
2016-01-21
This report documents differences in the mapped spatial extents and physical characteristics of in-channel fish habitat evaluated at the mesohabitat scale during winter 2011–12 (moderate streamflow) and summer 2012 (low streamflow) at 15 sites on the Middle Rio Grande in New Mexico starting about 3 kilometers downstream from Cochiti Dam and ending about 40 kilometers upstream from Elephant Butte Reservoir. The results of mesohabitat mapping, physical characterization, and fish assemblage surveys are summarized from the data that were collected. The report also presents general comparisons of physical mesohabitat data, such as wetted area and substrate type, and biological mesohabitat data, which included fish assemblage composition, species richness, Rio Grande silvery minnow relative abundance, and Rio Grande silvery minnow catch per unit effort.
Agricultural land use is a primary driver of environmental impacts on streams. However, the causal processes that shape these impacts operate through multiple pathways and at several spatial scales. This complexity undermines the development of more effective management approache...
CHANGES IN FISH ASSEMBLAGE STRUCTURE IN THE MAINSTEM WILLAMETTE RIVER, OREGON
The Willamette River has a mean annual discharge of 680 m3s-1. In the 1940s it was polluted by organic wastes, resulting in low dissolved oxygen concentrations and floating and benthic sludge deposits that hindered salmon migration and navigation. Following basin-wide secondary...
Hess, Sybille; Wenger, Amelia S.; Ainsworth, Tracy D.; Rummer, Jodie L.
2015-01-01
Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L−1 of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from ‘healthy’ to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health. PMID:26094624
Hess, Sybille; Wenger, Amelia S; Ainsworth, Tracy D; Rummer, Jodie L
2015-06-22
Worldwide, increasing coastal development has played a major role in shaping coral reef species assemblages, but the mechanisms underpinning distribution patterns remain poorly understood. Recent research demonstrated delayed development in larval fishes exposed to suspended sediment, highlighting the need to further understand the interaction between suspended sediment as a stressor and energetically costly activities such as growth and development that are essential to support biological fitness. We examined the gill morphology and the gill microbiome in clownfish larvae (Amphiprion percula) exposed to suspended sediment concentrations (using Australian bentonite) commonly found on the inshore Great Barrier Reef. The gills of larvae exposed to 45 mg L(-1) of suspended sediment had excessive mucous discharge and growth of protective cell layers, resulting in a 56% thicker gill epithelium compared to fish from the control group. Further, we found a shift from 'healthy' to pathogenic bacterial communities on the gills, which could increase the disease susceptibility of larvae. The impact of suspended sediments on larval gills may represent an underlying mechanism behind the distribution patterns of fish assemblages. Our findings underscore the necessity for future coastal development to consider adverse effects of suspended sediments on fish recruitment, and consequently fish populations and ecosystem health.
Fish assemblages at 16 sites in the upper French Broad river basin in North Carolina were related to environmental characteristics at the landscape scale, the scale at which management activities and decisions are most likely to occur. Indirect gradient analysis and subsequent re...
Thomson, Russell J; Hill, Nicole A; Leaper, Rebecca; Ellis, Nick; Pitcher, C Roland; Barrett, Neville S; Edgar, Graham J
2014-03-01
To support coastal planning through improved understanding of patterns of biotic and abiotic surrogacy at broad scales, we used gradient forest modeling (GFM) to analyze and predict spatial patterns of compositional turnover of demersal fishes, macroinvertebrates, and macroalgae on shallow, temperate Australian reefs. Predictive models were first developed using environmental surrogates with estimates of prediction uncertainty, and then the efficacy of the three assemblages as biosurrogates for each other was assessed. Data from underwater visual surveys of subtidal rocky reefs were collected from the southeastern coastline of continental Australia (including South Australia and Victoria) and the northern coastline of Tasmania. These data were combined with 0.01 degree-resolution gridded environmental variables to develop statistical models of compositional turnover (beta diversity) using GFM. GFM extends the machine learning, ensemble tree-based method of random forests (RF), to allow the simultaneous modeling of multiple taxa. The models were used to generate predictions of compositional turnover for each of the three assemblages within unsurveyed areas across the 6600 km of coastline in the region of interest. The most important predictor for all three assemblages was variability in sea surface temperature (measured as standard deviation from measures taken interannually). Spatial predictions of compositional turnover within unsurveyed areas across the region of interest were remarkably congruent across the three taxa. However, the greatest uncertainty in these predictions varied in location among the different assemblages. Pairwise congruency comparisons of observed and predicted turnover among the three assemblages showed that invertebrate and macroalgal biodiversity were most similar, followed by fishes and macroalgae, and lastly fishes and invertebrate biodiversity, suggesting that of the three assemblages, macroalgae would make the best biosurrogate for both invertebrate and fish compositional turnover.
Resetarits, William J; Pintar, Matthew R
2016-12-01
Predators play an extremely important role in natural communities. In freshwater systems, fish can dominate sorting both at the colonization and post-colonization stage. Specifically, for many colonizing species, fish can have non-lethal, direct effects that exceed the lethal direct effects of predation. Functionally diverse fish species with a range of predatory capabilities have previously been observed to elicit functionally equivalent responses on oviposition in tree frogs. We tested this hypothesis of functional equivalence of non-lethal effects for four predatory fish species, using naturally colonizing populations of aquatic beetles. Among taxa other than mosquitoes, and with the exception of the chemically camouflaged pirate perch, Aphredoderus sayanus, we provide the first evidence of variation in colonization or oviposition responses to different fish species. Focusing on total abundance, Fundulus chrysotus, a gape-limited, surface-feeding fish, elicited unique responses among colonizing Hydrophilidae, with the exception of the smallest and most abundant taxa, Paracymus, while Dytiscidae responded similarly to all avoided fish. Neither family responded to A. sayanus. Analysis of species richness and multivariate characterization of the beetle assemblages for the four fish species and controls revealed additional variation among the three avoided species and confirmed that chemical camouflage in A. sayanus results in assemblages essentially identical to fishless controls. The origin of this variation in beetle responses to different fish is unknown, but may involve variation in cue sensitivity, different behavioral algorithms, or differential responses to species-specific fish cues. The identity of fish species occupying aquatic habitats is crucial to understanding community structure, as varying strengths of lethal and non-lethal effects, as well as their interaction, create complex landscapes of predator effects and challenge the notion of functional equivalence. © 2016 by the Ecological Society of America.
Fish assemblages in the Upper Esopus Creek, NY: Current status, variability, and controlling factors
Baldigo, Barry P.; George, Scott D.; Keller, Walter T
2015-01-01
The Upper Esopus Creek receives water diversions from a neighboring basin through the Shandaken Tunnel (the portal) from the Schoharie Reservoir. Although the portal is closed during floods, mean flows and turbidity of portal waters are generally greater than in Esopus Creek above their confluence. These conditions could potentially affect local fish assemblages, yet such effects have not been assessed in this highly regulated stream. We studied water quality, hydrology, temperature, and fish assemblages at 18 sites in the Upper Esopus Creek during 2009–2011 to characterize the effects of the portal input on resident-fish assemblages and to document the status of the fishery resource. In general, fish-community richness increased by 2–3 species at mainstem sites near the portal, and median density and biomass of fish communities at sites downstream of the portal were significantly lower than they were at sites upstream of the portal. Median densities of Salmo trutta (Brown Trout) and all trout species were significantly lower than at mainstem sites downstream from the portal—25.1 fish/0.1 ha and 148.9 fish/0.1 ha, respectively—than at mainstem sites upstream from the portal—68.8 fish/0.1 ha and 357.7 fish/0.1 ha, respectively—yet median biomass for Brown Trout and all trout did not differ between sites from both reaches. The median density of young-of-year Brown Trout at downstream sites (9.3 fish/0.1 ha) was significantly lower than at upstream sites (33.9 fish/0.1 ha). Waters from the portal appeared to adversely affect the density and biomass of young-of-year Brown Trout, but lower temperatures and increased flows also improved habitat quality for mature trout at downstream sites during summer. These findings, and those from companion studies, indicate that moderately turbid waters from the portal had few if any adverse impacts on trout populations and overall fish communities in the Upper Esopus Creek during this study.
Pierce, Clay; Nicholas L. Ahrens,; Anna K. Loan-Wilsey,; Gregory A. Simmons,; Gregory T. Gelwicks,
2013-01-01
Fish assemblages in rivers of the Midwestern United States are an important component of the region's natural resources and biodiversity. We characterized the physical environment and presence of dams in a series of reaches in three eastern Iowa rivers tributary to the Mississippi River and related these characteristics to the fish assemblages present. Some physical characteristics were similar among the 12 study reaches, whereas others differed substantially. We found a total of 68 species across the 12 study reaches; 56 in the Turkey River, 51 in the Maquoketa River and 50 in the Wapsipinicon River. Seventeen species could be described as ‘downstream-distributed’; 15 being found only in the lowest reach of one or more rivers and the other two being found only in the lowest reaches or two or more contiguous reaches including the lowest reach. Two species could be described as ‘upstream-distributed’, being found only in an uppermost reach. Non-metric multidimensional scaling ordination illustrated similarities among reaches, and five physical variables were significantly correlated with assemblage similarities. Catchment area and number of dams between reaches and the Mississippi River were strongly correlated with assemblage similarities, but the directions of their effects were opposite. Catchment area and number of dams were confounded. The collective evidence to date suggests that the pervasiveness of dams on rivers significantly alters fish assemblages, making underlying patterns of species change and relationships with naturally varying and human-influenced physical characteristics along a river's course difficult to discern.
Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia.
Jaramillo-Villa, U; Maldonado-Ocampo, J A; Escobar, F
2010-06-01
This study documents differences in fish assemblages for 32 freshwater streams located between 258 and 2242 m a.s.l. on the eastern slopes of the central range of the Colombian Andes. A total of 2049 fishes belonging to 62 species, 34 genera and 16 families were collected. Species richness declined rapidly with altitude; nearly 90% of the species were recorded between 250 and 1250 m a.s.l. Three of the four physico-chemical variables, of the water, temperature, dissolved oxygen and pH, explained 53.5% of the variation in species richness along the altitudinal gradient, with temperature the most important (37.6%). An analysis of species composition showed that the distinctiveness of the fish fauna increased with elevation, with the greatest turnover observed between 1000 and 1750 m a.s.l. On this altitudinal gradient, turnover was dominated by the loss of species rather than gain, and dominance by just a few species was greater at higher elevations. Turnover was also observed along the altitudinal gradient in the structure of the three functional groups (torrential, pool and pelagic species). The study focused on understanding the pattern of diversity of fish communities inhabiting the Andes in Colombia. Anthropogenic effects on the altitudinal distribution of fish species in the region, however, are largely unknown and would require further investigations.
NASA Astrophysics Data System (ADS)
Netburn, Amanda N.; Koslow, J. Anthony
2018-04-01
With strong horizontal gradients in physical properties, oceanic frontal regions can lead to disproportionately high biological productivity. We examined cross-frontal changes in mesopelagic fish assemblages at three separate frontal systems in the southern California Current Ecosystem (CCE) as part of the CCE Long Term Ecological Research program: the A-Front sampled in October 2008, the C-Front in June/July 2011, and the E-Front in July/August 2012. We analyzed the differential effects of front-associated regions on density and species composition of adult migratory and non-migratory fishes and larvae, and the larval to adult ratio (as a possible index of a population growth potential) for migratory and non-migratory species. The fronts did not have a strong effect on densities of any subset of the mesopelagic fish assemblage. The species composition of the vertical migratory fishes (and their larvae) was typically altered across fronts, with different assemblages present on either side of each front. The migratory assemblages at the fronts themselves were indistinguishable from those at the more productive side of the frontal system. In contrast, the assemblage composition of the non-migratory fishes was indistinguishable between regions across all three of the fronts. The differences between the Northern and Southern assemblages at the A-Front were primarily based on biogeographic provinces, while the assemblages at the E-Front were largely distinguishable by their oceanic or coastal-upwelling zone associations. These results generally confirm those of previous studies on frontal systems in the California Current Ecosystem and elsewhere. The ratio of larvae to adults, a potential index of population growth potential, was altered across two of the fronts for migratory species, elevated on the colder side of the A-Front and the warmer side of the E-Front. This finding suggests that fronts may be regions of enhanced reproduction. The larvae to adult ratio was indistinguishable for non-migratory species at all three frontal systems. The non-migratory component of the community was little influenced by the presence of a front, apparently because the regions of strongest horizontal spatial gradients were too shallow to be experienced directly. We speculate that there was no change in larval community composition and population growth index at the most dynamic frontal system (C-Front) compared to the other fronts surveyed because the frontal feature was short-lived relative to the time scale for population growth of the fish. However, the difference in results of the C-Front may also be due to a change in methodology used in this study. If mesoscale features such as fronts increase in frequency off the California coast in the future as predicted, they have the potential to alter population growth potential and restructure mesopelagic fish assemblages, which are dominated by migratory species.
Experimental evaluation of diversity-productivity relationships in a coral reef fish assemblage.
Messmer, Vanessa; Blowes, Shane A; Jones, Geoffrey P; Munday, Philip L
2014-09-01
The global decline in biodiversity is causing increasing concern about the effects of biodiversity loss on ecosystem services such as productivity. Biodiversity has been hypothesised to be important in maintaining productivity of biological assemblages because niche complementarity and facilitation among the constituent species can result in more efficient use of resources. However, these conclusions are primarily based on studies with plant communities, and the relationship between diversity and productivity at higher trophic levels is largely unknown, especially in the marine environment. Here, we used a manipulative field experiment to test the effects of species richness and species identity on biomass accumulation in coral reef fish assemblages at Lizard Island. Small patch reefs were stocked with a total of 30 juveniles belonging to three planktivorous damselfish (genus Pomacentrus) according to three different levels of fish species richness (one, two and three species) and seven different combinations of fish species. Species richness had no effect on the relative growth in this assemblage after 18 days, but relative growth differed among individual fish species and the different combinations of species. Patterns of increase in biomass were best explained by species-specific differences and variable effects of intra- and interspecific competition on growth. These results suggest that niche complementarity and facilitation are not the most influential drivers of total productivity within this guild of planktivorous fishes. Total productivity may be resilient to declining reef fish biodiversity, but this will depend on which species are lost and on the life-history traits of remaining species.
Schloesser, J.T.; Paukert, Craig P.; Doyle, W.J.; Hill, T.; Steffensen, K.D.; Travnichek, Vincent H.
2012-01-01
Large rivers throughout the world have been modified by using dike structures to divert water flows to deepwater habitats to maintain navigation channels. These modifications have been implicated in the decline in habitat diversity and native fishes. However, dike structures have been modified in the Missouri River USA to increase habitat diversity to aid in the recovery of native fishes. We compared species occupancy and fish community composition at natural sandbars and at notched and un-notched rock dikes along the lower Missouri River to determine if notching dikes increases species diversity or occupancy of native fishes. Fish were collected using gill nets, trammel nets, otter trawls, and mini fyke nets throughout the lower 1212 river km of the Missouri River USA from 2003 to 2006. Few differences in species richness and diversity were evident among engineered dike structures and natural sandbars. Notching a dike structure had no effect on proportional abundance of fluvial dependents, fluvial specialists, and macrohabitat generalists. Occupancy at notched dikes increased for two species but did not differ for 17 other species (81%). Our results suggest that dike structures may provide suitable habitats for fluvial species compared with channel sand bars, but dike notching did not increase abundance or occupancy of most Missouri River fishes. Published in 2011 by John Wiley & Sons, Ltd.
Kelaher, Brendan P.; Coleman, Melinda A.; Broad, Allison; Rees, Matthew J.; Jordan, Alan; Davis, Andrew R.
2014-01-01
Networks of no-take marine reserves and partially-protected areas (with limited fishing) are being increasingly promoted as a means of conserving biodiversity. We examined changes in fish assemblages across a network of marine reserves and two different types of partially-protected areas within a marine park over the first 5 years of its establishment. We used Baited Remote Underwater Video (BRUV) to quantify fish communities on rocky reefs at 20–40 m depth between 2008–2011. Each year, we sampled 12 sites in 6 no-take marine reserves and 12 sites in two types of partially-protected areas with contrasting levels of protection (n = 4 BRUV stations per site). Fish abundances were 38% greater across the network of marine reserves compared to the partially-protected areas, although not all individual reserves performed equally. Compliance actions were positively associated with marine reserve responses, while reserve size had no apparent relationship with reserve performance after 5 years. The richness and abundance of fishes did not consistently differ between the two types of partially-protected areas. There was, therefore, no evidence that the more regulated partially-protected areas had additional conservation benefits for reef fish assemblages. Overall, our results demonstrate conservation benefits to fish assemblages from a newly established network of temperate marine reserves. They also show that ecological monitoring can contribute to adaptive management of newly established marine reserve networks, but the extent of this contribution is limited by the rate of change in marine communities in response to protection. PMID:24454934
Fish Assemblage Response to a Small Dam Removal in the Eightmile River System, Connecticut, USA
NASA Astrophysics Data System (ADS)
Poulos, Helen M.; Miller, Kate E.; Kraczkowski, Michelle L.; Welchel, Adam W.; Heineman, Ross; Chernoff, Barry
2014-11-01
We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.
Fish assemblage response to a small dam removal in the Eightmile River system, Connecticut, USA.
Poulos, Helen M; Miller, Kate E; Kraczkowski, Michelle L; Welchel, Adam W; Heineman, Ross; Chernoff, Barry
2014-11-01
We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.
Use of tolerance values to diagnose water-quality stressors to aquatic biota in New England streams
Meador, M.R.; Carlisle, D.M.; Coles, J.F.
2008-01-01
Identification of stressors related to biological impairment is critical to biological assessments. We applied nationally derived tolerance indicator values for four water-quality variables to fish and benthic macroinvertebrate assemblages at 29 sites along an urban gradient in New England. Tolerance indicator values (TIVs), as biologically based predictors of water-quality variables, were determined for dissolved oxygen, nitrite plus nitrate (nitrate), total phosphorus, and water temperature for each site based on observed biological assemblages (TIVO), and for expected assemblages (TIVE). The quotient method, based on a ratio of the TIVs for observed and expected assemblages (tolerance units), was used to diagnose potential water-quality stressors. In addition, the ratio of measured water-quality values to water-quality criteria (water-quality units) was calculated for each water-quality variable to assess measured water-quality stressors. Results from a RIVPACS predictive model for benthic macroinvertebrates and Bray-Curtis dissimilarity for fish were used to classify sites into categories of good or impaired ecological condition. Significant differences were detected between good and impaired sites for all biological tolerance units (fish and benthic macroinvertebrate assemblages averaged) except for nitrate (P = 0.480), and for all water-quality units except for nitrate (P = 0.183). Diagnosis of water-quality stressors at selected sites was, in general, consistent with State-reported causes of impairment. Tolerance units for benthic macroinvertebrate and fish assemblages were significantly correlated for water temperature (P = 0.001, r = 0.63), dissolved oxygen (P = 0.001, r = 0.61), and total phosphorus (P = 0.001, r = 0.61), but not for nitrate (P = 0.059, r = -0.35). Differences between the two assemblages in site-specific diagnosis of water-quality stressors may be the result of differences in nitrate tolerance.
Characterizing lentic freshwater fish assemblages using multiple sampling methods
Fischer, Jesse R.; Quist, Michael C.
2014-01-01
Characterizing fish assemblages in lentic ecosystems is difficult, and multiple sampling methods are almost always necessary to gain reliable estimates of indices such as species richness. However, most research focused on lentic fish sampling methodology has targeted recreationally important species, and little to no information is available regarding the influence of multiple methods and timing (i.e., temporal variation) on characterizing entire fish assemblages. Therefore, six lakes and impoundments (48–1,557 ha surface area) were sampled seasonally with seven gear types to evaluate the combined influence of sampling methods and timing on the number of species and individuals sampled. Probabilities of detection for species indicated strong selectivities and seasonal trends that provide guidance on optimal seasons to use gears when targeting multiple species. The evaluation of species richness and number of individuals sampled using multiple gear combinations demonstrated that appreciable benefits over relatively few gears (e.g., to four) used in optimal seasons were not present. Specifically, over 90 % of the species encountered with all gear types and season combinations (N = 19) from six lakes and reservoirs were sampled with nighttime boat electrofishing in the fall and benthic trawling, modified-fyke, and mini-fyke netting during the summer. Our results indicated that the characterization of lentic fish assemblages was highly influenced by the selection of sampling gears and seasons, but did not appear to be influenced by waterbody type (i.e., natural lake, impoundment). The standardization of data collected with multiple methods and seasons to account for bias is imperative to monitoring of lentic ecosystems and will provide researchers with increased reliability in their interpretations and decisions made using information on lentic fish assemblages.
Baldigo, Barry P.; Delucia, Mari-Beth; Keller, Walter D.; Schuler, George E.; Apse, Colin D.; Moberg, Tara
2015-01-01
The Neversink River and the Beaver Kill in southeastern New York are major tributaries to the Delaware River, the longest undammed river east of the Mississippi. While the Beaver Kill is free flowing for its entire length, the Neversink River is subdivided by the Neversink Reservoir, which likely affects the diversity of local fish assemblages and health of aquatic ecosystems. The reservoir is an important part of the New York City waster-supply system that provides drinking water to more than 9 million people. Fish population and community data from recent quantitative surveys at comparable sites in both basins were assessed to characterize the differences between free-flowing and impounded rivers and the extent of reservoir effects to improve our capacity to define ecosystems responses that two modified flow-release programs (implemented in 2007 and 2011) should produce in the Neversink River. In general, the continuum of changes in fish assemblages which normally occur between headwaters and mouth was relatively uninterrupted in the Beaver Kill, but disrupted by the mid-basin impoundment in the Neversink River. Fish assemblages were also adversely affected at several acidified sites in the upper Neversink River, but not at most sites assessed herein. The reservoir clearly excluded diadromous species from the upper sub-basin, but it also substantially reduced community richness, diversity, and biomass at several mid-basin sites immediately downstream from the impoundment. There results will aid future attempts to determine if fish assemblages respond to more natural, yet highly regulated, flow regimes in the Neversink River. More important, knowledge gained from this study can help optimize use of valuable water resources while promoting species of special concern, such as American eel (Anguilla rostrata) and conserving biodiversity in Catskill Mountain streams.
At broad scales, the kinds and intensity of human disturbance to streams vary with natural gradients (e.g., elevation). While fish assemblages vary with both human and natural gradients, ecological condition assessments need to partition out the natural gradients to evaluate hum...
Maret, Terry R.
1997-01-01
limited designation for the middle reach of the Snake River between Milner Dam and King Hill and provide a framework for developing indices of biotic integrity by using fish assemblages to evaluate water quality of streams in the upper Snake River Basin.
NASA Astrophysics Data System (ADS)
Smale, Dan A.; Barnes, David K. A.; Barnes, Richard S. K.; Smith, David J.; Suggett, David J.
2012-04-01
Tropical nearshore ecosystems represent global hotspots of marine biodiversity and endemism but are often poorly understood and impacted by human activities. The Seychelles Archipelago (Western Indian Ocean) sustains a wealth of marine life, much of which is threatened by rapid development associated with tourism and climate change. Six marine parks exist within the Archipelago, but their biodiversity value and ecological health are poorly known, especially with regards to non-fish and coral species. Here we investigate spatial patterns of littoral biodiversity on 6 islands, 5 of which were granitic and within marine parks, including the first surveys of Curieuse and Ile Cocos. Our surveys formed a nested sampling design, to facilitate an examination of variability in species richness, faunal abundance, taxonomic distinctness and assemblage composition at multiple spatial scales, from islands (> 100 s km) to quadrats (metres). We identified (mostly to species) and enumerated two target taxa, brachyuran decapod crustaceans and gastropod molluscs, and recorded over 8300 individuals belonging to over 150 species. Crabs and gastropods exhibited different patterns of spatial variability, as crab assemblages were generally more distinct between islands, while gastropod assemblages were markedly variable at the smallest spatial scales of 'patch' and 'quadrat'. Intertidal biodiversity was greatest on Curieuse Island and least at Desroches, the latter was being the only coral atoll we surveyed and thereby differing in its geological and ecological context. We discuss likely drivers of these biodiversity patterns and highlight urgently-needed research directions. Our assessment of the status of poorly-known invertebrate assemblages across the Seychelles will complement more extensive surveys of coral and fish assemblages and, in doing so, provide a useful baseline for monitoring the effects of key stressors in the region, such as coastal development and climate change.
NASA Astrophysics Data System (ADS)
Siziba, Nqobizitha; Chimbari, Moses J.; Masundire, Hillary; Mosepele, Ketlhatlogile; Ramberg, Lars
2013-12-01
Water extraction from floodplain river systems may alter patterns of inundation of adjacent wetlands and lead to loss of aquatic biodiversity. Water reaching the Okavango Delta (Delta), Botswana, may decrease due to excessive water extraction and climate change. However, due to poor understanding of the link between inundation of wetlands and biological responses, it is difficult to assess the impacts of these future water developments on aquatic biota. Large floods from 2009 to 2011 inundated both rarely and frequently flooded wetlands in the Delta, creating an opportunity to examine the ecological significance of flooding of wetlands with widely differing hydrological characteristics. We studied the assemblages of small fishes and microcrustaceans, together with their trophic relationships, in temporary wetlands of the lower Delta. Densities of microcrustaceans in temporary wetlands were generally lower than previously recorded in these habitats. Microcrustacean density varied with wetland types and hydrological phase of inundation. High densities of microcrustaceans were recorded in the 2009 to 2010 flooding season after inundation of rarely flooded sites. Large numbers of small fishes were observed during this study. Community structure of small fishes differed significantly across the studied wetlands, with poeciliids predominant in frequently flooded wetlands and juvenile cichlids most abundant in rarely flooded wetlands (analysis of similarity, P < 0.05). Small fishes of <20 mm fed largely on microcrustaceans and may have led to low microcrustacean densities within the wetlands. This result matched our prediction that rarely flooded wetlands would be more productive; hence, they supported greater populations of microcrustaceans and cichlids, which are aggressive feeders. However, the predominance of microcrustaceans in the guts of small fishes (<20 mm) suggests that predation by fishes may also be an important regulatory mechanism of microcrustacean assemblages during large floods when inundated terrestrial patches of wetlands are highly accessible by fish. We predict that a decline in the amount of water reaching the Delta will negatively affect fish recruitment, particularly the cichlids that heavily exploited the rarely flooded wetlands. Cichlids are an important human food source, and their decline in fish catches will negatively affect livelihoods. Hence, priority in the management of the Delta's ecological functioning should be centred on minimising natural water-flow modifications because any changes may be detrimental to fish-recruitment processes of the system.
Siziba, Nqobizitha; Chimbari, Moses J; Masundire, Hillary; Mosepele, Ketlhatlogile; Ramberg, Lars
2013-12-01
Water extraction from floodplain river systems may alter patterns of inundation of adjacent wetlands and lead to loss of aquatic biodiversity. Water reaching the Okavango Delta (Delta), Botswana, may decrease due to excessive water extraction and climate change. However, due to poor understanding of the link between inundation of wetlands and biological responses, it is difficult to assess the impacts of these future water developments on aquatic biota. Large floods from 2009 to 2011 inundated both rarely and frequently flooded wetlands in the Delta, creating an opportunity to examine the ecological significance of flooding of wetlands with widely differing hydrological characteristics. We studied the assemblages of small fishes and microcrustaceans, together with their trophic relationships, in temporary wetlands of the lower Delta. Densities of microcrustaceans in temporary wetlands were generally lower than previously recorded in these habitats. Microcrustacean density varied with wetland types and hydrological phase of inundation. High densities of microcrustaceans were recorded in the 2009 to 2010 flooding season after inundation of rarely flooded sites. Large numbers of small fishes were observed during this study. Community structure of small fishes differed significantly across the studied wetlands, with poeciliids predominant in frequently flooded wetlands and juvenile cichlids most abundant in rarely flooded wetlands (analysis of similarity, P < 0.05). Small fishes of <20 mm fed largely on microcrustaceans and may have led to low microcrustacean densities within the wetlands. This result matched our prediction that rarely flooded wetlands would be more productive; hence, they supported greater populations of microcrustaceans and cichlids, which are aggressive feeders. However, the predominance of microcrustaceans in the guts of small fishes (<20 mm) suggests that predation by fishes may also be an important regulatory mechanism of microcrustacean assemblages during large floods when inundated terrestrial patches of wetlands are highly accessible by fish. We predict that a decline in the amount of water reaching the Delta will negatively affect fish recruitment, particularly the cichlids that heavily exploited the rarely flooded wetlands. Cichlids are an important human food source, and their decline in fish catches will negatively affect livelihoods. Hence, priority in the management of the Delta's ecological functioning should be centred on minimising natural water-flow modifications because any changes may be detrimental to fish-recruitment processes of the system.
Long-term monitoring of coral reef fish assemblages in the Western central pacific.
Heenan, Adel; Williams, Ivor D; Acoba, Tomoko; DesRochers, Annette; Kosaki, Randall K; Kanemura, Troy; Nadon, Marc O; Brainard, Russell E
2017-12-05
Throughout the tropics, coral reef ecosystems, which are critically important to people, have been greatly altered by humans. Differentiating human impacts from natural drivers of ecosystem state is essential to effective management. Here we present a dataset from a large-scale monitoring program that surveys coral reef fish assemblages and habitats encompassing the bulk of the US-affiliated tropical Pacific, and spanning wide gradients in both natural drivers and human impact. Currently, this includes >5,500 surveys from 39 islands and atolls in Hawaii (including the main and Northwestern Hawaiian Islands) and affiliated geo-political regions of American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the Pacific Remote Islands Areas. The dataset spans 2010-2017, during which time, each region was visited at least every three years, and ~500-1,000 surveys performed annually. This standardised dataset is a powerful resource that can be used to understand how human, environmental and oceanographic conditions influence coral reef fish community structure and function, providing a basis for research to support effective management outcomes.
Long-term monitoring of coral reef fish assemblages in the Western central pacific
Heenan, Adel; Williams, Ivor D.; Acoba, Tomoko; DesRochers, Annette; Kosaki, Randall K.; Kanemura, Troy; Nadon, Marc O.; Brainard, Russell E.
2017-01-01
Throughout the tropics, coral reef ecosystems, which are critically important to people, have been greatly altered by humans. Differentiating human impacts from natural drivers of ecosystem state is essential to effective management. Here we present a dataset from a large-scale monitoring program that surveys coral reef fish assemblages and habitats encompassing the bulk of the US-affiliated tropical Pacific, and spanning wide gradients in both natural drivers and human impact. Currently, this includes >5,500 surveys from 39 islands and atolls in Hawaii (including the main and Northwestern Hawaiian Islands) and affiliated geo-political regions of American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the Pacific Remote Islands Areas. The dataset spans 2010–2017, during which time, each region was visited at least every three years, and ~500–1,000 surveys performed annually. This standardised dataset is a powerful resource that can be used to understand how human, environmental and oceanographic conditions influence coral reef fish community structure and function, providing a basis for research to support effective management outcomes. PMID:29206219
Development of a multimetric index for assessing the biological condition of the Ohio River
Emery, E.B.; Simon, T.P.; McCormick, F.H.; Angermeier, P.L.; Deshon, J.E.; Yoder, C.O.; Sanders, R.E.; Pearson, W.D.; Hickman, G.D.; Reash, R.J.; Thomas, J.A.
2003-01-01
The use of fish communities to assess environmental quality is common for streams, but a standard methodology for large rivers is as yet largely undeveloped. We developed an index to assess the condition of fish assemblages along 1,580 km of the Ohio River. Representative samples of fish assemblages were collected from 709 Ohio River reaches, including 318 "least-impacted" sites, from 1991 to 2001 by means of standardized nighttime boat-electrofishing techniques. We evaluated 55 candidate metrics based on attributes of fish assemblage structure and function to derive a multimetric index of river health. We examined the spatial (by river kilometer) and temporal variability of these metrics and assessed their responsiveness to anthropogenic disturbances, namely, effluents, turbidity, and highly embedded substrates. The resulting Ohio River Fish Index (ORFIn) comprises 13 metrics selected because they responded predictably to measures of human disturbance or reflected desirable features of the Ohio River. We retained two metrics (the number of intolerant species and the number of sucker species [family Catostomidae]) from Karr's original index of biotic integrity. Six metrics were modified from indices developed for the upper Ohio River (the number of native species; number of great-river species; number of centrarchid species; the number of deformities, eroded fins and barbels, lesions, and tumors; percent individuals as simple lithophils; and percent individuals as tolerant species). We also incorporated three trophic metrics (the percent of individuals as detritivores, invertivores, and piscivores), one metric based on catch per unit effort, and one metric based on the percent of individuals as nonindigenous fish species. The ORFIn declined significantly where anthropogenic effects on substrate and water quality were prevalent and was significantly lower in the first 500 m below point source discharges than at least-impacted sites nearby. Although additional research on the temporal stability of the metrics and index will likely enhance the reliability of the ORFIn, its incorporation into Ohio River assessments still represents an improvement over current physicochemical protocols.
Johannesen, Edda; Høines, Åge S.; Dolgov, Andrey V.; Fossheim, Maria
2012-01-01
Direct and indirect effects of global warming are expected to be pronounced and fast in the Arctic, impacting terrestrial, freshwater and marine ecosystems. The Barents Sea is a high latitude shelf Sea and a boundary area between arctic and boreal faunas. These faunas are likely to respond differently to changes in climate. In addition, the Barents Sea is highly impacted by fisheries and other human activities. This strong human presence places great demands on scientific investigation and advisory capacity. In order to identify basic community structures against which future climate related or other human induced changes could be evaluated, we analyzed species composition and diversity of demersal fish in the Barents Sea. We found six main assemblages that were separated along depth and temperature gradients. There are indications that climate driven changes have already taken place, since boreal species were found in large parts of the Barents Sea shelf, including also the northern Arctic area. When modelling diversity as a function of depth and temperature, we found that two of the assemblages in the eastern Barents Sea showed lower diversity than expected from their depth and temperature. This is probably caused by low habitat complexity and the distance to the pool of boreal species in the western Barents Sea. In contrast coastal assemblages in south western Barents Sea and along Novaya Zemlya archipelago in the Eastern Barents Sea can be described as diversity “hotspots”; the South-western area had high density of species, abundance and biomass, and here some species have their northern distribution limit, whereas the Novaya Zemlya area has unique fauna of Arctic, coastal demersal fish. (see Information S1 for abstract in Russian). PMID:22545093
Niche partitioning in the cestode communities of two elasmobranchs
M. M. Friggens; J. H. Brown
2005-01-01
Several randomization methods have been used to investigate the influence of competitive interactions in shaping parasite community structure. Marine fish parasite communities have often been regarded as unstructured assemblages with little or no resource limitation and, therefore, not prone to competitive influences. In this study, null models were used to assess the...
Large-Scale Effects of Timber Harvesting on Stream Systems in the Ouachita Mountains, Arkansas, USA
NASA Astrophysics Data System (ADS)
Williams, Lance R.; Taylor, Christopher M.; Warren, Melvin L., Jr.; Clingenpeel, J. Alan
2002-01-01
Using Basin Area Stream Survey (BASS) data from the United States Forest Service, we evaluated how timber harvesting influenced patterns of variation in physical stream features and regional fish and macroinvertebrate assemblages. Data were collected for three years (1990-1992) from six hydrologically variable streams in the Ouachita Mountains, Arkansas, USA that were paired by management regime within three drainage basins. Specifically, we used multivariate techniques to partition variability in assemblage structure (taxonomic and trophic) that could be explained by timber harvesting, drainage basin differences, year-to-year variability, and their shared variance components. Most of the variation in fish assemblages was explained by drainage basin differences, and both basin and year-of-sampling influenced macroinvertebrate assemblages. All three factors modeled, including interactions between drainage basins and timber harvesting, influenced variability in physical stream features. Interactions between timber harvesting and drainage basins indicated that differences in physical stream features were important in determining the effects of logging within a basin. The lack of a logging effect on the biota contradicts predictions for these small, hydrologically variable streams. We believe this pattern is related to the large scale of this study and the high levels of natural variability in the streams. Alternatively, there may be time-specific effects we were unable to detect with our sampling design and analyses.
Schork, G; Zaniboni-Filho, E
2017-11-01
The objective of this study was to evaluate the structure of the fish assemblage in the ten years following the closing of the lake of the Itá Hydroelectric Power Plant. Seasonal collections were conducted from 2001 to 2010. During this period, 44,834 fish were captured, totaling 3,818.01 kg, among 8 orders, 24 families and 84 species. In general, profound changes were not observed in the fish assemblage in the ten years after the formation of the Itá lake. Few species changed in dominance over time, while many were rare in the environment. The ichthyofauna in the reservoir was dominated by small and medium size opportunist species that conduct short or no migratory movements. Among the most abundant, six species were responsible for more than 50% of the numeric representation: Steindachnerina brevipinna, Astyanax fasciatus, Apareiodon affinis, Hypostomus isbrueckeri, Iheringichthys labrosus and Loricariichthys anus. The increase in the representation of the later species stood out. The biomass was dominated by Steindachneridion scriptum, Prochilodus lineatus, I. laborsus, Schizodon nasutus, Hoplias malabaricus, Acestrorhynchus pantaneiro, Hoplias lacerdae, H. isbrueckeri and L. anus. Despite the presence of large migrators in the region of the reservoir, their vulnerability was revealed by the low numeric abundance and accidental capture. The k-dominance curve of numerical abundance and biomass indicates a moderately disturbed community, in which the representation of small species was also important to the amounts of biomass.
Filipe, Ana F.; Araújo, Miguel B.; Doadrio, Ignacio; Angermeier, Paul L.; Collares-Pereira, Maria J.
2009-01-01
Main conclusions The results support the hypothesis that historical factors exert greater constraints on native freshwater fish assemblages in the Iberian Peninsula than do current environmental factors. After examining patterns of assemblage variation across space, as evidenced by the biogeographical provinces, we discuss the likely dispersal and speciation events that underlie these patterns.
Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984-2012
NASA Astrophysics Data System (ADS)
Baldigo, B. P.; Roy, K. M.; Driscoll, C. T.
2016-12-01
Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984-87, 1994-2005, and 2008-12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.
Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas
Soler, German A.; Edgar, Graham J.; Thomson, Russell J.; Kininmonth, Stuart; Campbell, Stuart J.; Dawson, Terence P.; Barrett, Neville S.; Bernard, Anthony T. F.; Galván, David E.; Willis, Trevor J.; Alexander, Timothy J.; Stuart-Smith, Rick D.
2015-01-01
Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing. PMID:26461104
Longo, G. O.; Morais, R. A.; Martins, C. D. L.; Mendes, T. C.; Aued, A. W.; Cândido, D. V.; de Oliveira, J. C.; Nunes, L. T.; Fontoura, L.; Sissini, M. N.; Teschima, M. M.; Silva, M. B.; Ramlov, F.; Gouvea, L. P.; Ferreira, C. E. L.; Segal, B.; Horta, P. A.; Floeter, S. R.
2015-01-01
The Southwestern Atlantic harbors unique and relatively understudied reef systems, including the only atoll in South Atlantic: Rocas atoll. Located 230 km off the NE Brazilian coast, Rocas is formed by coralline red algae and vermetid mollusks, and is potentially one of the most “pristine” areas in Southwestern Atlantic. We provide the first comprehensive and integrative description of the fish and benthic communities inhabiting different shallow reef habitats of Rocas. We studied two contrasting tide pool habitats: open pools, which communicate with the open ocean even during low tides, thus more exposed to wave action; and closed pools, which remain isolated during low tide and are comparatively less exposed. Reef fish assemblages, benthic cover, algal turfs and fish feeding pressure on the benthos remarkably varied between open and closed pools. The planktivore Thalassoma noronhanum was the most abundant fish species in both habitats. In terms of biomass, the lemon shark Negaprion brevirostris and the omnivore Melichtys niger were dominant in open pools, while herbivorous fishes (mainly Acanthurus spp.) prevailed in closed pools. Overall benthic cover was dominated by algal turfs, composed of articulated calcareous algae in open pools and non-calcified algae in closed pools. Feeding pressure was dominated by acanthurids and was 10-fold lower in open pools than in closed pools. Besides different wave exposure conditions, such pattern could also be related to the presence of sharks in open pools, prompting herbivorous fish to feed more in closed pools. This might indirectly affect the structure of reef fish assemblages and benthic communities. The macroalgae Digenea simplex, which is uncommon in closed pools and abundant in the reef flat, was highly preferred in herbivory assays, indicating that herbivory by fishes might be shaping this distribution pattern. The variations in benthic and reef fish communities, and feeding pressure on the benthos between open and closed pools suggest that the dynamics in open pools is mostly driven by physical factors and the tolerance of organisms to harsh conditions, while in closed pools direct and indirect effects of species interactions also play an important role. Understanding the mechanisms shaping biological communities and how they scale-up to ecosystem functioning is particularly important on isolated near-pristine systems where natural processes can still be studied under limited human impact. PMID:26061735
Longo, G O; Morais, R A; Martins, C D L; Mendes, T C; Aued, A W; Cândido, D V; de Oliveira, J C; Nunes, L T; Fontoura, L; Sissini, M N; Teschima, M M; Silva, M B; Ramlov, F; Gouvea, L P; Ferreira, C E L; Segal, B; Horta, P A; Floeter, S R
2015-01-01
The Southwestern Atlantic harbors unique and relatively understudied reef systems, including the only atoll in South Atlantic: Rocas atoll. Located 230 km off the NE Brazilian coast, Rocas is formed by coralline red algae and vermetid mollusks, and is potentially one of the most "pristine" areas in Southwestern Atlantic. We provide the first comprehensive and integrative description of the fish and benthic communities inhabiting different shallow reef habitats of Rocas. We studied two contrasting tide pool habitats: open pools, which communicate with the open ocean even during low tides, thus more exposed to wave action; and closed pools, which remain isolated during low tide and are comparatively less exposed. Reef fish assemblages, benthic cover, algal turfs and fish feeding pressure on the benthos remarkably varied between open and closed pools. The planktivore Thalassoma noronhanum was the most abundant fish species in both habitats. In terms of biomass, the lemon shark Negaprion brevirostris and the omnivore Melichtys niger were dominant in open pools, while herbivorous fishes (mainly Acanthurus spp.) prevailed in closed pools. Overall benthic cover was dominated by algal turfs, composed of articulated calcareous algae in open pools and non-calcified algae in closed pools. Feeding pressure was dominated by acanthurids and was 10-fold lower in open pools than in closed pools. Besides different wave exposure conditions, such pattern could also be related to the presence of sharks in open pools, prompting herbivorous fish to feed more in closed pools. This might indirectly affect the structure of reef fish assemblages and benthic communities. The macroalgae Digenea simplex, which is uncommon in closed pools and abundant in the reef flat, was highly preferred in herbivory assays, indicating that herbivory by fishes might be shaping this distribution pattern. The variations in benthic and reef fish communities, and feeding pressure on the benthos between open and closed pools suggest that the dynamics in open pools is mostly driven by physical factors and the tolerance of organisms to harsh conditions, while in closed pools direct and indirect effects of species interactions also play an important role. Understanding the mechanisms shaping biological communities and how they scale-up to ecosystem functioning is particularly important on isolated near-pristine systems where natural processes can still be studied under limited human impact.
A MULTI-ASSEMBLAGE INDEX OF STREAM INTEGRITY: WHAT ARE THE FISH, BUGS, AND ALGAE TELLING US?
Three different taxonomic assemblages have been proposed for use in the biological monitoring and assessment of water quality and stream biological integrity: fishm macroinvertebrates, and periphyton. All three assemblages can be eficiently collected with established methods, ar...
Lanham, Brendan S; Vergés, Adriana; Hedge, Luke H; Johnston, Emma L; Poore, Alistair G B
2018-04-01
Coastal urbanization has led to large-scale transformation of estuaries, with artificial structures now commonplace. Boat moorings are known to reduce seagrass cover, but little is known about their effect on fish communities. We used underwater video to quantify abundance, diversity, composition and feeding behaviour of fish assemblages on two scales: with increasing distance from moorings on fine scales, and among locations where moorings were present or absent. Fish were less abundant in close proximity to boat moorings, and the species composition varied on fine scales, leading to lower predation pressure near moorings. There was no relationship at the location with seagrass. On larger scales, we detected no differences in abundance or community composition among locations where moorings were present or absent. These findings show a clear impact of moorings on fish and highlight the importance of fine-scale assessments over location-scale comparisons in the detection of the effects of artificial structures. Copyright © 2018 Elsevier Ltd. All rights reserved.
Demersal fish assemblages of the northeastern Chukchi Sea, Alaska
Barber, W.E.; Smith, R.L.; Vallarino, M.; Meyer, R.M.
1997-01-01
We documented the distribution and abundance of demersal fishes in the northeastern Chukchi Sea, Alaska, in 1990 and 1991, and described 1990 demersal fish assemblages and their relationship to general oceanographic features in the area. We collected samples using an otter trawl at 48 stations in 1990 and 16 in 1991, and we identified a total of 66 species in 14 families. Gadids made up 83% and 69% of the abundance in 1990 and 1991, respectively. Cottids, pleuronectids, and zoarcids together made up 15% of the species in 1990, 28% in 1991. The number of species, species diversity (H), and evenness (V') generally were greater inshore than offshore and greater in the south than in the north. There were significant differences in ranks of species, species diversity, and evenness at 3 of 8 stations sampled beth years. From data collected in 1990, 3 nearshore and 3 offshore station groupings were defined. The northern offshore assemblages had the fewest species, lowest diversity and evenness, and least abundance, whereas two southern assemblages had the most species, highest diversity and evenness, and greatest abundance. We determined that bottom salinity and percent gravel were probably the primary factors influencing assemblage arrangement.
NASA Astrophysics Data System (ADS)
Cook, April B.; Sutton, Tracey T.; Galbraith, John K.; Vecchione, Michael
2013-12-01
Only a miniscule fraction of the world’s largest volume of living space, the ocean’s midwater biome, has ever been sampled. As part of the International Census of Marine Life field project on Mid-Atlantic Ridge ecosystems (MAR-ECO), a discrete-depth trawling survey was conducted in 2009 aboard the NOAA FSV Henry B. Bigelow to examine the pelagic faunal assemblage structure and distribution over the Charlie-Gibbs Fracture Zone (CGFZ) of the northern Mid-Atlantic Ridge. Day/night sampling at closely spaced stations allowed the first characterization of diel vertical migration of pelagic nekton over the MAR-ECO study area. Discrete-depth sampling from 0-3000 m was conducted using a Norwegian “Krill” trawl with five codends that were opened and closed via a pre-programmed timer. Seventy-five species of fish were collected, with a maximum diversity and biomass observed between depths of 700-1900 m. A gradient in sea-surface temperature and underlying watermasses, from northwest to southeast, was mirrored by a similar gradient in ichthyofaunal diversity. Using multivariate analyses, eight deep-pelagic fish assemblages were identified, with depth as the primary discriminatory variable. Strong diel vertical migration (DVM) of the mesopelagic fauna was a prevalent feature of the study area, though the numerically dominant fish, Cyclothone microdon (Gonostomatidae), exhibited a broad (0-3000 m) vertical distribution and did not appear to migrate on a diel basis. Three patterns of vertical distribution were observed in the study area: (a) DVM of mesopelagic, and possibly bathypelagic, taxa; (b) broad vertical distribution spanning meso- and bathypelagic depths; and (c) discrete vertical distribution within a limited depth range. Overall species composition and rank order of abundance of fish species agreed with two previous expeditions to the CGFZ (1982-1983 and 2004), suggesting some long-term consistency in the ichthyofaunal composition of the study area, at least in the summer. Frequent captures of putative bathypelagic fishes, shrimps, and cephalopods in the epipelagic zone (0-200 m) were confirmed. The results of this expedition reveal distributional patterns unlike those previously reported for open-ocean ecosystems, with the implication of increased transfer efficiency of surface production to great depths in the mid-North Atlantic.
Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.
2014-01-01
Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.
NASA Astrophysics Data System (ADS)
Parker, Melanie L.; Fraser, William R.; Ashford, Julian; Patarnello, Tomaso; Zane, Lorenzo; Torres, Joseph J.
2015-12-01
Micronektonic fishes and invertebrates were sampled with 32 midwater trawls at nine sites along the Western Antarctic Peninsula (WAP) in the austral fall (March-April) of 2010. Study sites were located within four hypothesized hydrographic regions: near Joinville Island in Region I, at Croker Passage, near Anvers Island, and near Renaud Island in Region II, within Marguerite Bay and the Marguerite Trough in Region III, and near Charcot Island in Region IV. A total of 62 taxa representing 12 taxonomic groups of pelagic invertebrates and 9 families of fish were captured, but assemblages were dominated by only a few species. The most numerically abundant taxa were the euphausiids, Thysanoessa macrura, Euphausia superba, and E. crystallorophias, combining to contribute nearly 79% of the total catch. Biomass dominants included E. superba, which contributed more than 44% of the total catch, the notothenioid Pleuragramma antarctica, and the salp, Salpa thompsoni. A comparison of total catches among sites revealed that the largest volumetric abundances and biomasses were captured at the Marguerite Bay site. Cluster analysis of abundance data identified distinct multispecies assemblages at Joinville Island in Region I, Croker Passage in Region II, Marguerite Bay in Region III, and Charcot Island in Region IV. A fifth distinct assemblage included samples from sites near Anvers and Renaud Island in Region II, and from the Marguerite Trough in Region III. Assemblages at Joinville Island and Croker Passage were both dominated by E. superba and S. thompsoni, but hydrographic conditions at Joinville Island favored a neritic assemblage, underscored by substantial numbers of P. antarctica. The assemblage at Croker Passage was more oceanic in nature with major inputs from the myctophid, Electrona antarctica and the hyperiid amphipod, Themisto gaudichaudii. Marguerite Bay and Charcot Island were well-mixed assemblages with strong representation by both neritic and oceanic fauna. The mid-peninsula assemblage was oceanic in character, being overwhelmingly dominated by Thysanoessa macrura and T. gaudichaudii. Pleuragramma antarctica were captured at five sites: Joinville Island, Croker Passage, Marguerite Bay, and the two sites near Charcot Island. They were completely absent at the two sites near Anvers Island, at Renaud Island, and in the Marguerite Trough. One fish was captured in Croker Passage. The majority of fish captured in Marguerite Bay were larger than 150 mm standard length (SL), with very few fish of smaller size present. If resident populations of Pleuragramma reproduce and recruit locally rather than being sustained by larval advection, those populations will be highly susceptible to local disappearance. This may be the causative factor behind the absence of Pleuragramma from the mid-peninsula region. Continued warming and subsequent sea ice reductions may not only cause Pleuragramma population collapses in the Marguerite Bay and Charcot Island regions, but may also change the character of the faunal assemblages along the WAP to those of an oceanic system.
David George Lonzarich; Melvin L. Warren; Mary Ruth Elger Lonzrich
1998-01-01
The authors removed fish from pools in two Arkansas streams to determine recolonization rates and the effects of isolation (i.e., riffle length, riffle depth, distance to large source pools, and location), pool area, and assemblage size on recovery. To determine pool-specific recovery rates, the authors repeatedly snorkeled 12 pools over a 40-day recovery period....
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Sharon H.; Hamilton, Christine D.; Spencer, Gregory C.
Wave energy converters (WECs) and tidal energy converters (TECs) are only beginning to be deployed along the U.S. West Coast and in Hawai‘i, and a better understanding of their ecological effects on fish, particularly on special-status fish (e.g., threatened and endangered) is needed to facilitate project design and environmental permitting. The structures of WECs and TECs placed on to the seabed, such as anchors and foundations, may function as artificial reefs that attract reef-associated fishes, while the midwater and surface structures, such as mooring lines, buoys, and wave or tidal power devices, may function as fish aggregating devices (FADs), formingmore » the nuclei for groups of fishes. Little is known about the potential for WECs and TECs to function as artificial reefs and FADs in coastal waters of the U.S. West Coast and Hawai‘i. We evaluated these potential ecological interactions by reviewing relevant information about fish associations with surrogate structures, such as artificial reefs, natural reefs, kelps, floating debris, oil and gas platforms, marine debris, anchored FADs deployed to enhance fishing opportunities, net-cages used for mariculture, and piers and docks. Based on our review, we postulate that the structures of WECs and TECs placed on or near the seabed in coastal waters of the U.S. West Coast and Hawai‘i likely will function as small-scale artificial reefs and attract potentially high densities of reef-associated fishes (including special-status rockfish species [Sebastes spp.] along the mainland), and that the midwater and surface structures of WECs placed in the tropical waters of Hawai‘i likely will function as de facto FADs with species assemblages varying by distance from shore and deployment depth. Along the U.S. West Coast, frequent associations with midwater and surface structures may be less likely: juvenile, semipelagic, kelp-associated rockfishes may occur at midwater and surface structures of WECs in coastal waters of southern California to Washington, and occasional, seasonal, or transitory associations of coastal pelagic fishes such as jack mackerel (Trachurus symmetricus) may also occur at WECs in these waters. Importantly, our review indicated that negative effects of WEC structures on special-status fish species, such as increased predation of juvenile salmonids or rockfishes, are not likely. In addition, WECs installed in coastal California, especially in southern California waters, have the potential to attract high densities of reef-associated fishes and may even contribute to rockfish productivity, if fish respond to the WECs similarly to oil and gas platforms, which have some of the highest secondary production per unit area of seafloor of any marine habitat studied globally (Claisse et al. 2014). We encountered some information gaps, owing to the paucity or lack, in key locations, of comparable surrogate structures in which fish assemblages and ecological interactions were studied. TECs are most likely to be used in the Puget Sound area, but suitable surrogates are lacking there. However, in similarly cold-temperate waters of Europe and Maine, benthopelagic fish occurred around tidal turbines during lower tidal velocities, and this type of interaction may be expected by similar species at TECs in Puget Sound. To address information gaps in the near term, such as whether WECs would function as FADs in temperate waters, studies of navigation buoys using hydroacoustics are recommended.« less
Influence of moon phase on fish assemblages in estuarine mangrove tidal creeks.
Ramos, J A A; Barletta, M; Dantas, D V; Lima, A R A; Costa, M F
2011-01-01
Significant differences in the composition of fish assemblages during different moon phases were detected in mangrove tidal creeks of the Goiana Estuary. The numbers of Zabaleta anchovy Anchovia clupeoides, Tarpon snook Centropomus pectinatus and Guavina Guavina guavina as well as at least 15 other species showed significant changes according to moon phase and were higher in terms of individuals (32%) and mass (34%) during the new moon. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Sheppard, Jill N.; James, Nicola C.; Whitfield, Alan K.; Cowley, Paul D.
2011-11-01
Habitat variability is one of the factors influencing species richness within estuarine systems, and a loss of habitat can result in a restructuring of the estuarine ichthyofaunal assemblage, particularly if these conditions persist over long time periods. The potential effects of the loss of extensive submerged macrophyte beds ( Ruppia cirrhosa and Potamogeton pectinatus) on an estuarine fish assemblage were investigated through an analysis of a long-term seine net catch dataset from the temporarily open/closed East Kleinemonde Estuary, South Africa. Catch data for a 12-year period, encompassing six years of macrophyte presence and six years of macrophyte senescence, indicated that the loss of this habitat did not influence species richness but changes in the relative abundance of certain species were evident. A shift in dominance from vegetation-associated species to those associated with sandy environments ( e.g. members of the family Mugilidae) was observed. However, species wholly dependent on macrophytes such as the critically endangered estuarine pipefish Syngnathus watermeyeri were only recorded during years when macrophyte beds were present, while vegetation-associated species such as the sparid Rhabdosargus holubi persisted at lower levels of relative abundance. The reduced abundance of all vegetation-associated fish species during years of macrophyte senescence was probably reflective of declining food resources resulting from the loss of macrophyte beds and/or increased vulnerability to predation. Submerged beds of aquatic plants are therefore important habitats within temporarily open/closed estuaries, South Africa's dominant estuary type.
The effects of exposure in sandy beach surf zones on larval fishes.
Pattrick, P; Strydom, N A
2014-05-01
The influence of wind and wave exposure on larval fish assemblages within a large bay system was investigated. Larval fishes were sampled from two areas with vastly different exposure to waves and wind, namely the windward and leeward sectors of Algoa Bay. In total, 5702 larval fishes were collected using a modified larval seine. Of these, 4391 were collected in the leeward and 1311 in the windward sector of the bay, representing a total of 23 families and 57 species. Dominant fish families included Clinidae, Engraulidae, Kyphosidae, Mugilidae, Soleidae and Sparidae, similar to the situation elsewhere, highlighting continuity in the composition of larval fish assemblages and the utilization of surf zones by a specific group of larval fishes. Nineteen estuary-associated marine species occurred within the surf zones of Algoa Bay and dominated catches (86·7%) in terms of abundance. Postflexion larvae comprised > 80% of the catch, indicating the importance of the seemingly inhospitable surf zone environment for the early life stages of many fish species. The greatest species diversity was observed within the windward sector of the bay. Distance-based linear modelling identified wave period as the environmental variable explaining the largest proportion of the significant variation in the larval fish assemblage. The physical disturbance generated by breaking waves could create a suitable environment for fish larvae, sheltered from predators and with an abundance of food resources. © 2014 The Fisheries Society of the British Isles.
Changes in fish assemblage structure in the main-stem Willamette River, Oregon
The Willamette River if Oregon’s largest river, with a basin area of 29,800 km² and a mean annual discharge of 680 m³/3. Beginning in the 1890s, the channel was greatly simplified for navigation. By the 1940s, it was polluted by organic wastes, which resulted in low dissolved o...
New Early Jurassic Tetrapod Assemblages Constrain Triassic-Jurassic Tetrapod Extinction Event
NASA Astrophysics Data System (ADS)
Olsen, P. E.; Shubin, N. H.; Anders, M. H.
1987-08-01
The discovery of the first definitively correlated earliest Jurassic (200 million years before present) tetrapod assemblage (Fundy basin, Newark Supergroup, Nova Scotia) allows reevaluation of the duration of the Triassic-Jurassic tetrapod extinction event. Present are tritheledont and mammal-like reptiles, prosauropod, theropod, and ornithischian dinosaurs, protosuchian and sphenosuchian crocodylomorphs, sphenodontids, and hybodont, semionotid, and palaeonisciform fishes. All of the families are known from Late Triassic and Jurassic strata from elsewhere; however, pollen and spore, radiometric, and geochemical correlation indicate an early Hettangian age for these assemblages. Because all ``typical Triassic'' forms are absent from these assemblages, most Triassic-Jurassic tetrapod extinctions occurred before this time and without the introduction of new families. As was previously suggested by studies of marine invertebrates, this pattern is consistent with a global extinction event at the Triassic-Jurassic boundary. The Manicouagan impact structure of Quebec provides dates broadly compatible with the Triassic-Jurassic boundary and, following the impact theory of mass extinctions, may be implicated in the cause.
Living on the edge: Vulnerability of coral-dependent fishes in the Gulf.
Buchanan, Jack R; Krupp, Friedhelm; Burt, John A; Feary, David A; Ralph, Gina M; Carpenter, Kent E
2016-04-30
In the Gulf, multiple human impacts and recurrent bleaching events have resulted in serious declines of coral assemblages, particularly in near-shore areas. However, the degree to which the extinction risk of coral-dependent fishes is impacted by these coral declines has been uncertain. Using primary literature and expert knowledge, coral-dependent fishes of the Gulf were identified and species-specific data on the regional distribution, population status, life history characteristics, and major threats were compiled to determine their likelihood of extinction under the IUCN Red List of Threatened Species' Categories and Criteria. Due to the limited area and degraded and fragmented nature of coral assemblages in the Gulf, all coral-dependent fishes (where data was sufficient to assess) were listed at elevated risk of extinction. Cross-boundary collaboration among Gulf States is necessary for effective management and protection of coral assemblages and their associated communities within this globally important region. Copyright © 2015 Elsevier Ltd. All rights reserved.
BIRD SPECIES ASSEMBLAGES AS INDICATORS OF BIOLOGICAL INTEGRITY IN GREAT BASIN RANGELAND
The study evaluates the potential for bird species assemblages to serve as indicators of biological integrity of rangelands in the Great Basin in much the same way that fish and invertebrate assemblages have been used as indicators in aquatic environments. Our approach was to ide...
Interactive effects of live coral and structural complexity on the recruitment of reef fishes
NASA Astrophysics Data System (ADS)
Coker, D. J.; Graham, N. A. J.; Pratchett, M. S.
2012-12-01
Corals reefs are subjected to multiple disturbances that modify levels of coral cover and structural complexity of the reef matrix, and in turn influence the structure of associated fish communities. With disturbances predicted to increase, insight into how changes in substrate condition will influence the recruitment of many fishes is essential for understanding the recovery of reef fish populations following biological and physical disturbances. While studies have revealed that both live coral cover and structural complexity are important for many fishes, there is a lack of understanding regarding how a combination of these changes will impact the recruitment of fishes. This study used experimentally constructed patch reefs consisting of six different habitat treatments; three levels of live coral cover (high, medium, low) crossed with two levels of structural complexity (high, low), to test the independent and combined effects of live coral cover and structural complexity on the recruitment and recovery of fish communities. The abundance and species diversity of fishes varied significantly among the six habitat treatments, but differences were not clearly associated with either coral cover or structural complexity and varied through time. More striking, however, was a significant difference in the composition of fish assemblages among treatments, due mostly to disproportionate abundance of coral-dwelling fishes on high coral cover, high complexity reefs. Overall, it appears that coral cover had a more important influence than structural complexity, at least for the contrasting levels of structural complexity achieved on experimental patch reefs. Furthermore, we found that live coral cover is important for the recruitment of some non-coral-dependent fishes. This study confirms that live coral cover is critical for the maintenance of high biodiversity on tropical coral reefs, and that sustained and ongoing declines in coral cover will adversely affect recruitment for many different species of reef fishes.
Effectiveness of terrestrial protected areas for conservation of lake fish communities.
Chu, Cindy; Ellis, Lucy; de Kerckhove, Derrick T
2018-06-01
Freshwater protected areas are rare even though freshwater ecosystems are among the most imperiled in the world. Conservation actions within terrestrial protected areas (TPAs) such as development or resource extraction regulations may spill over to benefit freshwater ecosystems within their boundaries. Using data from 175 lakes across Ontario, Canada, we compared common indicators of fish-assemblage status (i.e., species richness, Shannon diversity index, catch per unit effort, and normalized-length size spectrum slopes) to evaluate whether TPAs benefit lake fish assemblages. Nearest neighbor cluster analysis was used to generate pairs of lakes: inside versus outside, inside versus bordering, and bordering versus outside TPAs based on lake characteristics. The diversity and abundance indicators did not differ significantly across comparisons, but normalized-length size spectrum slopes (NLSS) were significantly steeper in lakes outside parks. The latter indicated assemblage differences (greater abundances of small-bodied species) and less-efficient energy transfer through the trophic levels of assemblages outside parks. Although not significantly different, pollution- and turbidity-tolerant species were more abundant outside parks, whereas 3 of the 4 pollution-intolerant species were more abundant within parks. Twenty-one percent of the difference in slopes was related to higher total dissolved solids concentrations and angling pressure. Our results support the hypothesis that TPAs benefit lake fish assemblages and suggest that NLSS slopes are informative indicators for aquatic protected area evaluations because they represent compositional and functional aspects of communities. © 2017 Society for Conservation Biology.
Oliveira, R R de S; Macieira, R M; Giarrizzo, T
2016-07-01
The aim of this study of tidepool fishes was analyse variation in their use of intertidal habitats (rocky shore, mangrove and salt marsh). Specimens were collected during wet and dry periods from 18 tidepools in the three habitats. A total of 7690 specimens, belonging to 19 families and 30 species, was captured. The fish assemblage in rocky shore pools was clearly distinct from that of vegetated habitats (mangrove and salt marshes). The rocky shore fauna was dominated by permanent resident species, whereas pools in mangrove and salt marsh habitats were inhabited primarily by opportunistic and transient species. Habitat segregation by ontogenetic stage (e.g. smaller individuals in mangroves, intermediate size classes in salt marsh and sub-adults/adults on rocky shores) indicates age-related migration in response to the physical structure of these habitats and to the natural history of each fish species. These findings are important for the development of effective conservation and management plans for intertidal fishes. © 2016 The Fisheries Society of the British Isles.
Anderson, Elizabeth P.; Freeman, Mary C.; Pringle, C.M.
2006-01-01
Small dams for hydropower have caused widespread alteration of Central American rivers, yet much of recent development has gone undocumented by scientists and conservationists. We examined the ecological effects of a small hydropower plant (Dona Julia Hydroelectric Center) on two low-order streams (the Puerto Viejo River and Quebradon stream) draining a mountainous area of Costa Rica. Operation of the Dona Julia plant has dewatered these streams, reducing discharge to ~ 10% of average annual flow. This study compared fish assemblage composition and aquatic habitat upstream and downstream of diversion dams on two streams and along a ~ 4 km dewatered reach of the Puerto Viejo River in an attempt to evaluate current instream flow recommendations for regulated Costa Rican streams. Our results indicated that fish assemblages directly upstream and downstream of the dam on the third order Puerto Viejo River were dissimilar, suggesting that the small dam (< 15 in high) hindered movement of fishes. Along the ~ 4 km dewatered reach of the Puerto Viejo River, species count increased with downstream distance from the dam. However, estimated species richness and overall fish abundance were not significantly correlated with downstream distance from the dam. Our results suggested that effects of stream dewatering may be most pronounced for a subset of species with more complex reproductive requirements, classified as equilibrium-type species based on their life-history. In the absence of changes to current operations, we expect that fish assemblages in the Puerto Viejo River will be increasingly dominated by opportunistic-type, colonizing fish species. Operations of many other small hydropower plants in Costa Rica and other parts of Central America mirror those of Doha Julia; the methods and results of this study may be applicable to some of those projects.
Manikandan, B; Ravindran, J; Shrinivaasu, S; Marimuthu, N; Paramasivam, K
2014-10-01
Coral reef fishes are exploited without the knowledge of their sustainability and their possible effect in altering the community structure of a coral reef ecosystem. Alteration of the community structure could cause a decline in the health of coral reefs and its services. We documented the coral community structure, status of live corals and reef fish assemblages in Palk Bay at the reef fishing hotspots and its nearby reef area with minimum fishing pressure and compared it with a control reef area where reef fishing was banned for more than two decades. The comparison was based on the percent cover of different forms of live corals, their diversity and the density and diversity of reef fishes. The reef fish stock in the reef fishing hotspots and its neighbouring reef was lower by 61 and 38%, respectively compared to the control reef. The herbivore fish Scarus ghobban and Siganus javus were exploited at a rate of 250 and 105 kg month(-1) fishermen(-1), respectively, relatively high comparing the small reef area. Live and dead corals colonized by turf algae were predominant in both the reef fishing hotspots and its nearby coral ecosystems. The percent cover of healthy live corals and live corals colonized by turf algae was <10 and >80%, respectively, in the intensively fished coral ecosystems. The corals were less diverse and the massive Porites and Favia colonies were abundant in the intensive reef fishing sites. Results of this study suggest that the impact of reef fish exploitation was not solely restricted to the intensively fished reefs, but also to the nearby reefs which play a critical role in the resilience of degraded reef ecosystems.
Baldigo, Barry P.; George, Scott D.; Phillips, Patrick J.; Hemming, Joceyln D. C.; Denslow, Nancy D.; Kroll, Kevin J.
2015-01-01
Direct linkages between endocrine-disrupting compounds (EDCs) from municipal and industrial wastewaters and impacts on wild fish assemblages are rare. The levels of plasma vitellogenin (Vtg) and Vtg messenger ribonucleic acid (mRNA) in male fathead minnows (Pimephales promelas) exposed to wastewater effluents and dilutions of 17α-ethinylestradiol (EE2), estrogen activity, and fish assemblages in 10 receiving streams were assessed to improve understanding of important interrelations. Results from 4-d laboratory assays indicate that EE2, plasma Vtg concentration, and Vtg gene expression in fathead minnows, and 17β-estradiol equivalents (E2Eq values) were highly related to each other (R2 = 0.98–1.00). Concentrations of E2Eq in most effluents did not exceed 2.0 ng/L, which was possibly a short-term exposure threshold for Vtg gene expression in male fathead minnows. Plasma Vtg in fathead minnows only increased significantly (up to 1136 μg/mL) in 2 wastewater effluents. Fish assemblages were generally unaffected at 8 of 10 study sites, yet the density and biomass of 79% to 89% of species populations were reduced (63–68% were reduced significantly) in the downstream reach of 1 receiving stream. These results, and moderate to high E2Eq concentrations (up to 16.1 ng/L) observed in effluents during a companion study, suggest that estrogenic wastewaters can potentially affect individual fish, their populations, and entire fish communities in comparable systems across New York, USA.
Environmental stressors afflicting tailwater stream reaches across the United States
Miranda, Leandro E.; Krogman, R. M.
2014-01-01
The tailwater is the reach of a stream immediately below an impoundment that is hydrologically, physicochemically and biologically altered by the presence and operation of a dam. The overall goal of this study was to gain a nationwide awareness of the issues afflicting tailwater reaches in the United States. Specific objectives included the following: (i) estimate the percentage of reservoirs that support tailwater reaches with environmental conditions suitable for fish assemblages throughout the year, (ii) identify and quantify major sources of environmental stress in those tailwaters that do support fish assemblages and (iii) identify environmental features of tailwater reaches that determine prevalence of key fish taxa. Data were collected through an online survey of fishery managers. Relative to objective 1, 42% of the 1306 reservoirs included in this study had tailwater reaches with sufficient flow to support a fish assemblage throughout the year. The surface area of the reservoir and catchment most strongly delineated reservoirs maintaining tailwater reaches with or without sufficient flow to support a fish assemblage throughout the year. Relative to objective 2, major sources of environmental stress generally reflected flow variables, followed by water quality variables. Relative to objective 3, zoogeography was the primary factor discriminating fish taxa in tailwaters, followed by a wide range of flow and water quality variables. Results for objectives 1–3 varied greatly among nine geographic regions distributed throughout the continental United States. Our results provide a large-scale view of the effects of reservoirs on tailwater reaches and may help guide research and management needs.
Teichert, Nils; Lepage, Mario; Lobry, Jérémy
2018-10-15
Assessing ecological health of aquatic ecosystems is crucial in the current context of biodiversity loss to guide and prioritize management actions. Although several fish-based indices were developed to assess the ecological status of estuarine ecosystems, they do not provide guidance on the causal responses of communities to disturbances. The functional trait-based approach provides an understanding of how human disturbance affects the composition of biological and ecological traits in assemblages, as well as their consequences for ecosystem functioning. Here, we evaluate the responses of fish assemblages to human disturbance in 30 French estuaries using several taxonomic and functional indices (e.g. diversity, evenness or redundancy). We tested whether these indices can provide additional information on the human impacts and health of assemblages that are not reflected by the ecological indicator (fish-based index ELFI). Results indicated that high values of local human disturbances were associated to a decrease in fish abundance, decrease in species richness and reduced functional redundancy, whereas taxonomic and functional evenness increased. In contrast, the functional richness remained stable suggesting that the functional traits of species removed by stressors were maintained by more tolerant species. Indeed, we found that the local disturbances mainly resulted in a decrease in the proportions of small benthic species feeding on macro-invertebrates, which were dominant in the studied estuaries. Some functional alterations were detected by the fish-based index, but the decline of functional redundancy was not reflected, highlighting a serious concern for management. Indeed, the abrupt collapse of functional redundancy in response to local disturbances can decrease the ability of assemblages to maintain certain species traits in the face of future environmental disturbance, including climate change. From a management perspective, the application of such functional redundancy measure in monitoring programs can help stakeholders identify sensitive areas where conservation efforts need to be planned. Copyright © 2018 Elsevier B.V. All rights reserved.
Small, G.E.; Pringle, C.M.; Pyron, M.; Duff, J.H.
2011-01-01
Nutrient recycling by animals is a potentially important biogeochemical process in both terrestrial and aquatic ecosystems. Stoichiometric traits of individual species may result in some taxa playing disproportionately important roles in the recycling of nutrients relative to their biomass, acting as keystone nutrient recyclers. We examined factors controlling the relative contribution of 12 Neotropical fish species to nutrient recycling in four streams spanning a range of phosphorus (P) levels. In high-P conditions (135 ??g/L soluble reactive phosphorus, SRP), most species fed on P-enriched diets and P excretion rates were high across species. In low-P conditions (3 ??g/L SRP), aquatic food resources were depleted in P, and species with higher body P content showed low rates of P recycling. However, fishes that were subsidized by terrestrial inputs were decoupled from aquatic P availability and therefore excreted P at disproportionately high rates. One of these species, Astyanax aeneus (Characidae), represented 12% of the total population and 18% of the total biomass of the fish assemblage in our focal low-P study stream but had P excretion rates >10-fold higher than other abundant fishes. As a result, we estimated that P excretion by A. aeneus accounted for 90% of the P recycled by this fish assemblage and also supplied ???90% of the stream P demand in this P-limited ecosystem. Nitrogen excretion rates showed little variation among species, and the contribution of a given species to ecosystem N recycling was largely dependent upon the total biomass of that species. Because of the high variability in P excretion rates among fish species, ecosystem-level P recycling could be particularly sensitive to changes in fish community structure in P-limited systems. ?? 2011 by the Ecological Society of America.
Quattrini, Andrea; Nizinski, Martha S.; Chaytor, Jason; Demopoulos, Amanda W.J.; Roark, E. Brendan; France, Scott; Moore, Jon A.; Heyl, Taylor P.; Auster, Peter J.; Ruppel, Carolyn D.; Elliott, Kelley P.; Kennedy, Brian R.C.; Lobecker, Elizabeth A.; Skarke, Adam; Shank, Timothy M.
2015-01-01
The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichosand the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed the NEUS region to be both geologically dynamic and biologically diverse, further research into the abiotic conditions and the biotic interactions that influence species abundance and distribution is needed.
Quattrini, Andrea M; Nizinski, Martha S; Chaytor, Jason D; Demopoulos, Amanda W J; Roark, E Brendan; France, Scott C; Moore, Jon A; Heyl, Taylor; Auster, Peter J; Kinlan, Brian; Ruppel, Carolyn; Elliott, Kelley P; Kennedy, Brian R C; Lobecker, Elizabeth; Skarke, Adam; Shank, Timothy M
2015-01-01
The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed the NEUS region to be both geologically dynamic and biologically diverse, further research into the abiotic conditions and the biotic interactions that influence species abundance and distribution is needed.
Lallement, Mailén; Macchi, Patricio J; Vigliano, Pablo; Juarez, Santiago; Rechencq, Magalí; Baker, Matthew; Bouwes, Nicolaas; Crowl, Todd
2016-01-15
Events such as volcanic eruptions may act as disturbance agents modifying the landscape spatial diversity and increasing environmental instability. On June 4, 2011 the Puyehue-Cordon Caulle volcanic complex located on Chile (2236 m.a.s.l., 40° 02' 24" S- 70° 14' 26" W) experience a rift zone eruption ejecting during the first day 950 million metric tons into the atmosphere. Due to the westerly winds predominance, ash fell differentially upon 24 million ha of Patagonia Argentinean, been thicker deposits accumulated towards the West. In order to analyze changes on stream fish assemblages we studied seven streams 8, 19 and 30 months after the eruption along the ash deposition gradient, and compare those data to pre eruption ones. Habitat features and structure of the benthic macroinvertebrate food base of fish was studied. After the eruption, substantial environmental changes were observed in association with the large amount of ash fallout. In western sites, habitat loss due to ash accumulation, changes in the riparian zone and morphology of the main channels were observed. Turbidity was the water quality variable which reflected the most changes throughout time, with NTU values decreasing sharply from West to East sites. In west sites, increased Chironomid densities were recorded 8 months after the initial eruption as well as low EPT index values. These relationships were reversed in the less affected streams farther away from the volcano. Fish assemblages were greatly influenced both by habitat and macroinvertebrate changes. The eruption brought about an initial sharp decline in fish densities and the almost total loss of young of the year in the most western streams affecting recruitment. This effect diminished rapidly with distance from the emission center. Thirty months after the eruption, environmental changes are still occurring as a consequence of basin wide ash remobilization and transport.
Quattrini, Andrea M.; Nizinski, Martha S.; Chaytor, Jason D.; Demopoulos, Amanda W. J.; Roark, E. Brendan; France, Scott C.; Moore, Jon A.; Heyl, Taylor; Auster, Peter J.; Kinlan, Brian; Ruppel, Carolyn; Elliott, Kelley P.; Kennedy, Brian R.C.; Lobecker, Elizabeth; Skarke, Adam; Shank, Timothy M.
2015-01-01
The continental margin off the northeastern United States (NEUS) contains numerous, topographically complex features that increase habitat heterogeneity across the region. However, the majority of these rugged features have never been surveyed, particularly using direct observations. During summer 2013, 31 Remotely-Operated Vehicle (ROV) dives were conducted from 494 to 3271 m depth across a variety of seafloor features to document communities and to infer geological processes that produced such features. The ROV surveyed six broad-scale habitat features, consisting of shelf-breaching canyons, slope-sourced canyons, inter-canyon areas, open-slope/landslide-scar areas, hydrocarbon seeps, and Mytilus Seamount. Four previously unknown chemosynthetic communities dominated by Bathymodiolus mussels were documented. Seafloor methane hydrate was observed at two seep sites. Multivariate analyses indicated that depth and broad-scale habitat significantly influenced megafaunal coral (58 taxa), demersal fish (69 taxa), and decapod crustacean (34 taxa) assemblages. Species richness of fishes and crustaceans significantly declined with depth, while there was no relationship between coral richness and depth. Turnover in assemblage structure occurred on the middle to lower slope at the approximate boundaries of water masses found previously in the region. Coral species richness was also an important variable explaining variation in fish and crustacean assemblages. Coral diversity may serve as an indicator of habitat suitability and variation in available niche diversity for these taxonomic groups. Our surveys added 24 putative coral species and three fishes to the known regional fauna, including the black coral Telopathes magna, the octocoral Metallogorgia melanotrichos and the fishes Gaidropsarus argentatus, Guttigadus latifrons, and Lepidion guentheri. Marine litter was observed on 81% of the dives, with at least 12 coral colonies entangled in debris. While initial exploration revealed the NEUS region to be both geologically dynamic and biologically diverse, further research into the abiotic conditions and the biotic interactions that influence species abundance and distribution is needed. PMID:26509818
Kristensen, Esben Astrup; Baattrup-Pedersen, Annette; Andersen, Hans Estrup
2012-03-01
Increasing human impact on stream ecosystems has resulted in a growing need for tools helping managers to develop conservations strategies, and environmental monitoring is crucial for this development. This paper describes the development of models predicting the presence of fish assemblages in lowland streams using solely cost-effective GIS-derived land use variables. Three hundred thirty-five stream sites were separated into two groups based on size. Within each group, fish abundance data and cluster analysis were used to determine the composition of fish assemblages. The occurrence of assemblages was predicted using a dataset containing land use variables at three spatial scales (50 m riparian corridor, 500 m riparian corridor and the entire catchment) supplemented by a dataset on in-stream variables. The overall classification success varied between 66.1-81.1% and was only marginally better when using in-stream variables than when applying only GIS variables. Also, the prediction power of a model combining GIS and in-stream variables was only slightly better than prediction based solely on GIS variables. The possibility of obtaining precise predictions without using costly in-stream variables offers great potential in the design of monitoring programmes as the distribution of monitoring sites along a gradient in ecological quality can be done at a low cost.
Mili, Sami; Ennouri, Rym; Dhib, Amel; Laouar, Houcine; Missaoui, Hechmi; Aleya, Lotfi
2016-06-01
To monitor and assess the state of Tunisian freshwater fisheries, two surveys were undertaken at Ghezala and Lahjar reservoirs. Samples were taken in April and May 2013, a period when the fish catchability is high. The selected reservoirs have different surface areas and bathymetries. Using multi-mesh gill nets (EN 14575 amended) designed for sampling fish in lakes, standard fishing methods were applied to estimate species composition, abundance, biomass, and size distribution. Four species were caught in the two reservoirs: barbel, mullet, pike-perch, and roach. Fish abundance showed significant change according to sampling sites, depth strata, and the different mesh sizes used. From the reservoir to the tributary, it was concluded that fish biomass distribution was governed by depth and was most abundant in the upper water layers. Species size distribution differed significantly between the two reservoirs, exceeding the length at first maturity. Species composition and abundance were greater in Lahjar reservoir than in Ghezala. Both reservoirs require support actions to improve fish productivity.
Constructed Pools-and-Riffles: Application and Assessment in Illinois.
NASA Astrophysics Data System (ADS)
Day, D. M.; Dodd, H. R.; Carney, D. A.; Holtrop, A. M.; Whiles, M. R.; White, B.; Roseboom, D.; Kinney, W.; Keefer, L. L.; Beardsley, J.
2005-05-01
The diversity of Illinois' streams provides a broad range of conditions, and thus a variety of restoration techniques may be required to adequately compensate for watershed alterations. Resource management agencies and research institutions in the state have collaborated on a variety of applied research initiatives to assess the efficacy of various stream protection and restoration techniques. Constructed pool-and-riffle structures have received significant attention because they tend to address watershed processes (i.e., channel evolution model) and may benefit biotic communities and processes along with physical habitat. Constructed pools-and-riffles have been applied primarily to address geomorphic instability, yet understanding biological responses can provide further rationale for their use and design specifications. In three stream systems around the state, fish were collected pre- and post- installation of structures, using primarily electrofishing techniques (e.g., electric seine & backpack). In general, within the first five years after installation, changes in fish communities have included a shift from high-abundance, small cyprinid-dominated assemblages to low-density Centrarchidae and Catostomidae assemblages. Changes in macro invertebrates at selected sites included increases in filter feeders and sensitive taxa such as the Ephemeroptera, Plecoptera, and Trichoptera (EPT). Ongoing assessments will be critical for understanding long-term influences on stream ecosystem structure and function.
Francini-Filho, Ronaldo B; Coni, Ericka O C; Meirelles, Pedro M; Amado-Filho, Gilberto M; Thompson, Fabiano L; Pereira-Filho, Guilherme H; Bastos, Alex C; Abrantes, Douglas P; Ferreira, Camilo M; Gibran, Fernando Z; Güth, Arthur Z; Sumida, Paulo Y G; Oliveira, Nara L; Kaufman, Les; Minte-Vera, Carolina V; Moura, Rodrigo L
2013-01-01
The Abrolhos Bank (eastern Brazil) encompasses the largest and richest coral reefs of the South Atlantic. Coral reef benthic assemblages of the region were monitored from 2003 to 2008. Two habitats (pinnacles' tops and walls) were sampled per site with 3-10 sites sampled within different reef areas. Different methodologies were applied in two distinct sampling periods: 2003-2005 and 2006-2008. Spatial coverage and taxonomic resolution were lower in the former than in the latter period. Benthic assemblages differed markedly in the smallest spatial scale, with greater differences recorded between habitats. Management regimes and biomass of fish functional groups (roving and territorial herbivores) had minor influences on benthic assemblages. These results suggest that local environmental factors such as light, depth and substrate inclination exert a stronger influence on the structure of benthic assemblages than protection from fishing. Reef walls of unprotected coastal reefs showed highest coral cover values, with a major contribution of Montastraea cavernosa (a sediment resistant species that may benefit from low light levels). An overall negative relationship between fleshy macroalgae and slow-growing reef-building organisms (i.e. scleractinians and crustose calcareous algae) was recorded, suggesting competition between these organisms. The opposite trend (i.e. positive relationships) was recorded for turf algae and the two reef-building organisms, suggesting beneficial interactions and/or co-occurrence mediated by unexplored factors. Turf algae cover increased across the region between 2006 and 2008, while scleractinian cover showed no change. The need of a continued and standardized monitoring program, aimed at understanding drivers of change in community patterns, as well as to subsidize sound adaptive conservation and management measures, is highlighted.
Francini-Filho, Ronaldo B.; Coni, Ericka O. C.; Meirelles, Pedro M.; Amado-Filho, Gilberto M.; Thompson, Fabiano L.; Pereira-Filho, Guilherme H.; Bastos, Alex C.; Abrantes, Douglas P.; Ferreira, Camilo M.; Gibran, Fernando Z.; Güth, Arthur Z.; Sumida, Paulo Y. G.; Oliveira, Nara L.; Kaufman, Les; Minte-Vera, Carolina V.; Moura, Rodrigo L.
2013-01-01
The Abrolhos Bank (eastern Brazil) encompasses the largest and richest coral reefs of the South Atlantic. Coral reef benthic assemblages of the region were monitored from 2003 to 2008. Two habitats (pinnacles' tops and walls) were sampled per site with 3–10 sites sampled within different reef areas. Different methodologies were applied in two distinct sampling periods: 2003–2005 and 2006–2008. Spatial coverage and taxonomic resolution were lower in the former than in the latter period. Benthic assemblages differed markedly in the smallest spatial scale, with greater differences recorded between habitats. Management regimes and biomass of fish functional groups (roving and territorial herbivores) had minor influences on benthic assemblages. These results suggest that local environmental factors such as light, depth and substrate inclination exert a stronger influence on the structure of benthic assemblages than protection from fishing. Reef walls of unprotected coastal reefs showed highest coral cover values, with a major contribution of Montastraea cavernosa (a sediment resistant species that may benefit from low light levels). An overall negative relationship between fleshy macroalgae and slow-growing reef-building organisms (i.e. scleractinians and crustose calcareous algae) was recorded, suggesting competition between these organisms. The opposite trend (i.e. positive relationships) was recorded for turf algae and the two reef-building organisms, suggesting beneficial interactions and/or co-occurrence mediated by unexplored factors. Turf algae cover increased across the region between 2006 and 2008, while scleractinian cover showed no change. The need of a continued and standardized monitoring program, aimed at understanding drivers of change in community patterns, as well as to subsidize sound adaptive conservation and management measures, is highlighted. PMID:23365655
Figueiredo, G G A A; Pessanha, A L M
2016-07-01
A comparison of three tidal creeks assessed the effects of the hydrological regime on trophic organization in juvenile fish assemblages of 21 species in a tropical estuary in north-eastern Brazil. There were seven trophic guilds represented spatially. Zooplanktivore and zoobenthivore guilds dominated the lower estuary, whereas omnivores and detritivores dominated the upper estuary. In the rainy season, the zooplanktivore and omnivore guilds were more common throughout the estuary, but in the dry season, zoobenthivores and piscivores occurred throughout. The trophic organization results show that (1) there was a higher complexity in tidal creeks in the upper estuary compared with the first tidal creek in the lower region and (2) trophic linkages increased in the upper estuary, principally the number of omnivore and detritivore species. Spatial variation in trophic structure was primarily associated with differences in the location of the tidal creeks along the estuary, and this variability was partly attributed to fish species richness; the number of species increased towards the upper estuary, and additional species occupied different trophic levels or used additional resources. © 2015 The Fisheries Society of the British Isles.
Miles, N G; West, R J
2011-03-01
Warm-water riverine fish assemblages were investigated downstream of an impoundment before and after thermal stratification and the associated cold-water pollution was prevented using an aeration system. Temperatures below the dam significantly increased after installation of the aeration system and this correlated with an increased abundance and greater number of species downstream. Overall, aeration appeared to be beneficial for both the lake (upstream) and the downstream riverine environments. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Ushiama, Shinjiro; Smith, James A; Suthers, Iain M; Lowry, Michael; Johnston, Emma L
2016-10-01
Artificial reefs provide shelter and can be an important source of food for fish depending on the epibenthic community on the structure. The growth and diversity of this community is influenced by the substratum material and the surface orientation of the reef. Settlement plates of four materials (Perspex, sandstone, wood and steel) were deployed in three orientations (upwards, downwards and vertical) at a depth of 33 m on a designed artificial reef (DAR) off the coast of Sydney, Australia. After three months, the steel surfaces had lower invertebrate species richness, total abundance and diversity compared to other surfaces. Steel was not an ideal material for the initial recruitment and growth of epibenthic invertebrates. A longer duration would be required to develop a mature epibenthic community. Surface orientation had species-specific impacts. Surface material and orientation are important factors for developing epibenthic assemblages, and are thus likely to affect the broader artificial reef assemblage, including fish.
Ríos-Pulgarín, M I; Barletta, M; Mancera-Rodríguez, N J
2016-07-01
The seasonal and interannual changes of the fish assemblage in the main channel and littoral zone of the Guarinó River, a torrential system located in the Colombian Andean foothills, were examined in relation to the physical and chemical environmental changes associated with the hydrological cycle and the El Niño-La Niña-Southern Oscillation (ENSO) between 2007 and 2010. Four samplings per year (in dry season and high water) were performed. Environmental variables (temperature, pH, conductivity, turbidity, oxygen, total nitrogen, orthophosphate, depth and flow rate) were contrasted with ANOVAs and a discriminant analysis to establish temporal patterns. Biological descriptors (richness, density and biomass) were contrasted with ANCOVAs. The temporal patterns of the taxonomic and functional composition and the density of the fish assemblages were examined with respect to environmental variables through canonical discriminant analysis per habitat. Interannual differences were significant with regard to density and richness for the main channel habitat; while in the littoral zone, the differences were significant between both the year and seasons. Discriminant analysis showed variations in species composition and relative abundance between the main channel and the littoral zone under contrasting hydrological conditions of El Niño-La Niña. High flows from 2008 to 2009 (La Niña) favoured resident species (e.g. Creagrutus magdalenae) and small benthic Siluriformes (e.g. Chaetostoma spp.), but was limited to migratory species (e.g. Prochilodus magdalenae). From 2009 to 2010 (El Niño), the most common species were reduced and rare species increased. River flow, temperature and oxygen were the variables that had the largest influences on the seasonal and interannual differences in the fish assemblage structure of the Guarinó River. The results suggested that the presence and abundance of species and functional groups in different habitats were regulated by stochastic conditions, such as droughts, floods and drag events associated with the Southern Oscillation phenomenon (ENSO), acting as a hydrological disturbance on the habitats and generating different responses according to the adaptive characteristics of the species. © 2015 The Fisheries Society of the British Isles.
Stable pelagic vertebrate community structure through extreme Paleogene greenhouse conditions
NASA Astrophysics Data System (ADS)
Sibert, E. C.; Friedman, M.; Hull, P. M.; Hunt, G.; Norris, R. D.
2016-02-01
The species composition (structure) and energy transfer (function) of an ecosystem is reflected by the presence and type of consumers that it supports. Here we use ichthyoliths, microfossil fish teeth and shark denticles, to assess the ecological variability of the pelagic fish community structure and composition from the Late Cretaceous to the middle Eocene from a drill core in the South Pacific gyre (DSDP Site 596). We find that the overall vertebrate community structure, as measured by the relative abundance of sharks to ray-finned fishes, has a punctuated change at the Cretaceous/Paleogene mass extinction. The vertebrate community structure remained stable throughout the Paleogene despite a five-fold increase in overall abundance of ichthyoliths during the extreme greenhouse of the Early Eocene. Further, we use a novel system to quantify the morphological variation in fish teeth. We find that the morphospace occupied by the tooth assemblage is conserved throughout the interval, with a slight expansion following the Cretaceous-Paleogene mass extinction, and the evolution of a distinct morphotype-group around the Paleocene-Eocene boundary. While there are elevated rates of morphotype origination and extinction following the Cretaceous-Paleogene mass extinction, the extreme greenhouse warming of the Early Eocene and associated increase in fish production produce near-zero origination and extinction rates. The relative stability in composition of the pelagic vertebrate community during intervals of extreme climate change and across large ranges of total fish accumulation, suggests that pelagic ecosystem structure is robust to climate events, and that the overall structure of the pelagic fish community may be decoupled from both climate and ecosystem function.
Li, Junyi; Zhang, Hui; Lin, Danqing; Wu, Jinming; Wang, Chengyou; Xie, Xuan; Wei, Qiwei
2016-01-01
Now more and more ecologists concern about the impacts of dam construction on fish. However, studies of fishes downstream Gezhouba Dam were rarely reported except Chinese sturgeon ( Acipenser sinensis Gray). In this study, catch investigations and five hydroacoustic detections were completed from 2015 to 2016 to understand the distribution, size, and categories of fishes and their relationship with the environmental factors below Gezhouba Dam in protected reach in the Yangtze River main stream. Results showed significant differences in fish distribution and TS (target strength) between wet and flood seasons. Mean TS in five hydroacoustic detections were -59.98 dB, -54.70 dB, -56.16 dB, -57.90 dB, and -59.17 dB, respectively, and dominant fish species are Coreius guichenoti (Bleeker), Siniperca chuatsi (Basilewsky), and Pelteobagrus vachelli (Richardson). In the longitudinal direction, fish preferred to stay in some specific sections like reaches 2, 4, 7, 8, 11, and 16. Since hydrology factors change greatly in different seasons, environmental characteristics vary along the reaches, and human activities play an important role in the fish behavior, it is concluded that great cross-season changes in hydrology lead to the differences in TS and fish assemblages and that geography characteristics, especially channel geography, together with human activities influence fish longitudinal distribution. This finding provides basic knowledge of spatiotemporal distribution and assemblages of fishes in the extended reaches downstream Gezhouba Dam. In addition, it offers implications for river management. It could also serve as reference of future research on fish habitat.
Li, Junyi; Zhang, Hui; Lin, Danqing; Wu, Jinming; Wang, Chengyou; Xie, Xuan
2016-01-01
Now more and more ecologists concern about the impacts of dam construction on fish. However, studies of fishes downstream Gezhouba Dam were rarely reported except Chinese sturgeon (Acipenser sinensis Gray). In this study, catch investigations and five hydroacoustic detections were completed from 2015 to 2016 to understand the distribution, size, and categories of fishes and their relationship with the environmental factors below Gezhouba Dam in protected reach in the Yangtze River main stream. Results showed significant differences in fish distribution and TS (target strength) between wet and flood seasons. Mean TS in five hydroacoustic detections were −59.98 dB, −54.70 dB, −56.16 dB, −57.90 dB, and −59.17 dB, respectively, and dominant fish species are Coreius guichenoti (Bleeker), Siniperca chuatsi (Basilewsky), and Pelteobagrus vachelli (Richardson). In the longitudinal direction, fish preferred to stay in some specific sections like reaches 2, 4, 7, 8, 11, and 16. Since hydrology factors change greatly in different seasons, environmental characteristics vary along the reaches, and human activities play an important role in the fish behavior, it is concluded that great cross-season changes in hydrology lead to the differences in TS and fish assemblages and that geography characteristics, especially channel geography, together with human activities influence fish longitudinal distribution. This finding provides basic knowledge of spatiotemporal distribution and assemblages of fishes in the extended reaches downstream Gezhouba Dam. In addition, it offers implications for river management. It could also serve as reference of future research on fish habitat. PMID:27843943
Currie, David R.; McClatchie, Sam; Middleton, John F.; Nayar, Sasi
2012-01-01
We sampled the demersal fish community of the Bonney Canyon, South Australia at depths (100–1,500 m) and locations that are poorly known. Seventy-eight species of demersal fish were obtained from 12 depth-stratified trawls along, and to either side, of the central canyon axis. Distributional patterns in species richness and biomass were highly correlated. Three fish assemblage groupings, characterised by small suites of species with narrow depth distributions, were identified on the shelf, upper slope and mid slope. The assemblage groupings were largely explained by depth (ρw = 0.78). Compared to the depth gradient, canyon-related effects are weak or occur at spatial or temporal scales not sampled in this study. A conceptual physical model displayed features consistent with the depth zonational patterns in fish, and also indicated that canyon upwelling can occur. The depth zonation of the fish assemblage was associated with the depth distribution of water masses in the area. Notably, the mid-slope community (1,000 m) coincided with a layer of Antarctic Intermediate Water, the upper slope community (500 m) resided within the core of the Flinders Current, and the shelf community was located in a well-mixed layer of surface water (<450 m depth). PMID:22253907
The community structure of over-wintering larval and small juvenile fish in a large estuary
NASA Astrophysics Data System (ADS)
Munk, Peter; Cardinale, Massimiliano; Casini, Michele; Rudolphi, Ann-Christin
2014-02-01
The Skagerrak and Kattegat are estuarine straits of high hydrographical and ecological diversity, situated between the saline waters of the North Sea and the brackish waters of the Baltic Sea. These sustain important nursery grounds of many fish species, of which several overwinter during the larval and early juvenile stages. In order to give more insight into the communities of the overwintering ichthyoplankton in estuarine areas, we examine an annual series of observations from a standard survey carried out 1992-2010. Species differences and annual variability in distributions and abundances are described, and linkages between ichthyoplankton abundances and corresponding hydrographical information are analysed by GAM methods. Communities were dominated by herring, gobies, butterfish, sprat, pipefishes, lemon sole and European eel (i.e. glass eel), and all the sampled species showed large annual fluctuations in abundances. The species showed quite specific patterns of distribution although species assemblages with common distributional characteristics were identified. Within these assemblages, the ichthyoplankton abundances showed linkage to environmental characteristics described by bottom-depth and surface temperature and salinity. Hence the study points to a significant structuring of overwintering ichthyoplankton communities in large estuaries, based on the species habitat choice and its response to physical gradients.
Winemiller, K.O.; Lopez-Fernandez, H.; Taphorn, D.C.; Nico, L.G.; Duque, A.B.
2008-01-01
Aim: The aim of this study was to determine whether the Casiquiare River functions as a free dispersal corridor or as a partial barrier (i.e. filter) for the interchange of fish species of the Orinoco and Negro/Amazon basins using species assemblage patterns according to geographical location and environmental features. Location: The Casiquiare, Upper Orinoco and Upper Negro rivers in southern Venezuela, South America. Methods: Our study was based on an analysis of species presence/absence data and environmental information (11 habitat characteristics) collected by the authors and colleagues between the years 1984 and 1999. The data set consisted of 269 sampled sites and 452 fish species (> 50,000 specimens). A wide range of habitat types was included in the samples, and the collection sites were located at various points along the entire length of the Casiquiare main channel, at multiple sites on its tributary streams, as well as at various nearby sites outside the Casiquiare drainage, within the Upper Orinoco and Upper Rio Negro river systems. Most specimens and field data used in this analysis are archived in the Museo de Ciencias Naturales in Guanare, Venezuela. We performed canonical correspondence analysis (CCA) based on species presence/absence using two versions of the data set: one that eliminated sites having < 5 species and species occurring at < 5 sites; and another that eliminated sites having < 10 species and species occurring at < 10 sites. Cluster analysis was performed on sites based on species assemblage similarity, and a separate analysis was performed on species based on CCA loadings. Results: The CCA results for the two versions of the data set were qualitatively the same. The dominant environmental axis contrasted assemblages and sites associated with blackwater vs. clearwater conditions. Longitudinal position on the Casiquiare River was correlated (r2 = 0.33) with CCA axis-1 scores, reflecting clearwater conditions nearer to its origin (bifurcation of the Orinoco) and blackwater conditions nearer to its mouth (junction with the Rio Negro). The second CCA axis was most strongly associated with habitat size and structural complexity. Species associations derived from the unweighted pair-group average clustering method and pair-wise squared Euclidean distances calculated from species loadings on CCA axes 1 and 2 showed seven ecological groupings. Cluster analysis of species assemblages according to watershed revealed a stronger influence of local environmental conditions than of geographical proximity. Main conclusions: Fish assemblage composition is more consistently associated with local environmental conditions than with geographical position within the river drainages. Nonetheless, the results support the hypothesis that the mainstem Casiquiare represents a hydrochemical gradient between clearwaters at its origin and blackwaters at its mouth, and as such appears to function as a semi-permeable barrier (environmental filter) to dispersal and faunal exchanges between the partially vicariant fish faunas of the Upper Orinoco and Upper Negro rivers. ?? 2008 The Authors.
Autumn larval fish assemblages in the northwest African Atlantic coastal zone
NASA Astrophysics Data System (ADS)
Abdelouahab, Hinde; Berraho, Amina; Baibai, Tarik; Agouzouk, Aziz; Makaoui, Ahmed; Errhif, Ahmed
2017-05-01
A study on the assemblage composition and vertical distribution of larval fish was conducted in the southern area of the Moroccan Atlantic coast in Autumn 2011. A total of 1 680 fish larvae taxa were identified from 21 families. The majority of the larvae were present in the upper layers. Clupeids were the most abundant larvae taxa followed by Myctophidae, Gadidae and Sparidae, hence the larval fish assemblages (LFA) were variable in diff erent depth layers. Total fish larvae showed a preference for surface layers, and were mainly found above 75 m depth, with some exceptions. The maximum concentration of fish larvae was concentrated up to 25 m essentially above the thermocline, where chlorophyll a and mesozooplankton were abundant. Spatially, neritic families were located near the coast and at some off shore stations especially in the northern part, while oceanic families were more distributed towards off shore along the study area. Cluster analysis showed a segregation of two groups of larvae. However, a clear separation between neritic families and oceanic families was not found. Multivariate analysis highlighted the relationship between the distribution of larvae of diff erent families and environmental parameters. Temperature and salinity seem to have been the factors that acted on associations of fish larvae. Day/night vertical distributions suggest there was not a very significant vertical migration, probably due to adequate light levels for feeding.
Body size–trophic position relationships among fishes of the lower Mekong basin
Montaña, Carmen G.; Winemiller, Kirk O.
2017-01-01
Body size is frequently claimed to be a major determinant of animal trophic interactions, yet few studies have explored relationships between body size and trophic interactions in rivers, especially within the tropics. We examined relationships between body size and trophic position (TP) within fish assemblages in four lowland rivers of the Lower Mekong Basin in Cambodia. Stable isotope analysis (based on δ15N) was used to estimate TP of common fish species in each river, and species were classified according to occupation of benthic versus pelagic habitats and major feeding guilds. Regression analysis yielded strong correlations between body size and TP among fishes from the Sesan and Sreprok rivers, but not those from the Mekong and Sekong rivers. The Mekong fish assemblage had higher average TP compared with those of other rivers. The relationship between body size and TP was positive and significantly correlated for piscivores and omnivores, but not for detritivores and insectivores. The body size–TP relationship did not differ between pelagic and benthic fishes. Body size significantly predicted TP within the orders Siluriformes and Perciformes, but not for Cypriniformes, the most species-rich and ecologically diverse order in the Lower Mekong River. We conclude that for species-rich, tropical fish assemblages with many detritivores and invertivores, body size would not be an appropriate surrogate for TP in food web models and other ecological applications. PMID:28280563
Body size-trophic position relationships among fishes of the lower Mekong basin.
Ou, Chouly; Montaña, Carmen G; Winemiller, Kirk O
2017-01-01
Body size is frequently claimed to be a major determinant of animal trophic interactions, yet few studies have explored relationships between body size and trophic interactions in rivers, especially within the tropics. We examined relationships between body size and trophic position (TP) within fish assemblages in four lowland rivers of the Lower Mekong Basin in Cambodia. Stable isotope analysis (based on δ 15 N) was used to estimate TP of common fish species in each river, and species were classified according to occupation of benthic versus pelagic habitats and major feeding guilds. Regression analysis yielded strong correlations between body size and TP among fishes from the Sesan and Sreprok rivers, but not those from the Mekong and Sekong rivers. The Mekong fish assemblage had higher average TP compared with those of other rivers. The relationship between body size and TP was positive and significantly correlated for piscivores and omnivores, but not for detritivores and insectivores. The body size-TP relationship did not differ between pelagic and benthic fishes. Body size significantly predicted TP within the orders Siluriformes and Perciformes, but not for Cypriniformes, the most species-rich and ecologically diverse order in the Lower Mekong River. We conclude that for species-rich, tropical fish assemblages with many detritivores and invertivores, body size would not be an appropriate surrogate for TP in food web models and other ecological applications.
Size, time, and asynchrony matter: the species-area relationship for parasites of freshwater fishes.
Zelmer, Derek A
2014-10-01
The tendency to attribute species-area relationships to "island biogeography" effectively bypasses the examination of specific mechanisms that act to structure parasite communities. Positive covariation between fish size and infrapopulation richness should not be examined within the typical extinction-based paradigm, but rather should be addressed from the standpoint of differences in colonization potential among individual hosts. Although most mechanisms producing the aforementioned pattern constitute some variation of passive sampling, the deterministic aspects of the accumulation of parasite individuals by fish hosts makes untenable the suggestion that infracommunities of freshwater fishes are stochastic assemblages. At the component community level, application of extinction-dependent mechanisms might be appropriate, given sufficient time for colonization, but these structuring forces likely act indirectly through their effects on the host community to increase the probability of parasite persistence. At all levels, the passive sampling hypothesis is a relevant null model. The tendency for mechanisms that produce species-area relationships to produce nested subset patterns means that for most systems, the passive sampling hypothesis can be addressed through the application of appropriate null models of nested subset structure.
Gil Fernández, C; Paulo, D; Serrão, E A; Engelen, A H
2016-03-01
Marine protected areas (MPAs) are a relatively recent fisheries management and conservation tool for conservation of marine ecosystems and serve as experimental grounds to assess trophic cascade effects in areas were fishing is restricted to some extent. A series of descriptive field studies were performed to assess fish and benthic communities between two areas within a newly established MPA in SW Portugal. We characterized benthic macroalgal composition and determined the size, density and biomass of the main benthic predatory and herbivorous fish species as well as the main benthic herbivorous invertebrates to assess indications of top-down control on the phytobenthic assemblages. Fish species were identical inside and outside the MPA, in both cases Sarpa salpa was the most abundant fish herbivore and Diplodus spp. accounted for the great majority of the benthic predators. However, size and biomass of D. spp. were higher inside than outside the MPA. The main herbivorous invertebrate was the sea urchin Paracentrotus lividus, which was smaller and predominantly showing a crevice-dwelling behaviour in the MPA. In addition, P. lividus size frequency distribution showed a unimodal pattern outside and a bimodal pattern inside the MPA. We found significant differences in the algal assemblages between inside and outside the MPA, with higher abundance of turf and foliose algae inside, and articulated calcareous and corticated macrophytes outside the MPA, but no differences in the invasive Asparagopsis spp. The obtained results show differences in predatory fish and benthic community structure, but not in species richness, inside and outside the MPA. We hypothesize these differences lead to variation in species interactions: directly through predation and indirectly via affecting sea urchins behavioural patterns, predators might drive changes in macroalgal assemblages via trophic cascade in the study area. However due to non-biological differences between the two areas it is difficult to suggest that the MPA causes increased biological parameters of targeted species and to assess predatory control and trophic cascade effects in areas where fishing pressure is reduced. It is therefor advisable to design MPAs so that their impacts can be scientifically evaluated in a proper fashion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spatial patterns of lacustrine fish assemblages in a catchment of the Mississippi Alluvial Valley
Andrews, Caroline S.; Miranda, Leandro E.; Goetz, Daniel B.; Kroger, Robert
2014-01-01
Off-channel floodplain lakes are among the first landscape elements to vanish as a consequence of agricultural development. These habitats tend to accumulate sediments at fast rates and are converted to agricultural land as soon as suitable drainage can be attained. Considering that off-channel lakes with limited connectivity contribute greatly to the heterogeneity of fish assemblages, such losses pose great concerns to conservation of biodiversity.
Effects of loss of lateral hydrological connectivity on fish functional diversity.
Liu, Xueqin; Wang, Hongzhu
2018-05-26
Loss of lateral hydrological connectivity (LHC) is a major cause of biodiversity decline in river floodplains, yet little is known about its effects on aquatic functional diversity in these ecosystems. We quantified functional alpha and beta diversity of fish assemblages in Yangtze River floodplain lakes, and explored their responses to loss of LHC using generalized linear mixed models. Functional richness was much lower in river disconnected lakes where functional evenness and divergence were higher. LHC was the most important factor shaping fish diversity patterns in this region. The predicted reduction due to loss of LHC was higher in functional richness (0.47-0.82) than in taxonomic richness (0.32) of all species assemblages in contrast to non-migratory species assemblages. It seemed that functional strategies were highly unevenly distributed between migratory and non-migratory fishes in the floodplain. Taxonomic beta diversity was much higher than functional beta diversity. The former was contributed mainly by spatial turnover component (73.6-83.8%) suggesting that dissimilarity among fish assemblages was largely induced by species replacement, while the latter was induced by nestedness-resultant component (70.7-86.0%) indicating a stronger role of function loss without replacement. Both taxonomic and functional beta diversity were higher in disconnected lakes, where they were significantly correlated with fishing activity and water quality. Our study determined for the first time the effects of loss of LHC on fish functional diversity in large river floodplains. We highlight the serious decline of fish functional richness in a large floodplain, and functional diversity remained highly vulnerable to loss of LHC even in such a species rich ecosystem. Our results provide important implications regarding biodiversity conservation and LHC restoration in large river floodplains. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Response of fish assemblages to declining acidic deposition in Adirondack Mountain lakes, 1984–2012
Baldigo, Barry P.; Roy, Karen; Driscoll, Charles T.
2016-01-01
Adverse effects of acidic deposition on the chemistry and fish communities were evident in Adirondack Mountain lakes during the 1980s and 1990s. Fish assemblages and water chemistry in 43 Adirondack Long-Term Monitoring (ALTM) lakes were sampled by the Adirondack Lakes Survey Corporation and the New York State Department of Environmental Conservation during three periods (1984–87, 1994–2005, and 2008–12) to document regional impacts and potential biological recovery associated with the 1990 amendments to the 1963 Clean Air Act (CAA). We assessed standardized data from 43 lakes sampled during the three periods to quantify the response of fish-community richness, total fish abundance, and brook trout (Salvelinus fontinalis) abundance to declining acidity that resulted from changes in U.S. air-quality management between 1984 and 2012. During the 28-year period, mean acid neutralizing capacity (ANC) increased significantly from 3 to 30 μeq/L and mean inorganic monomeric Al concentrations decreased significantly from 2.22 to 0.66 μmol/L, yet mean species richness, all species or total catch per net night (CPNN), and brook trout CPNN did not change significantly in the 43 lakes. Regression analyses indicate that fishery metrics were not directly related to the degree of chemical recovery and that brook trout CPNN may actually have declined with increasing ANC. While the richness of fish communities increased with increasing ANC as anticipated in several Adirondack lakes, observed improvements in water quality associated with the CAA have generally failed to produce detectable shifts in fish assemblages within a large number of ALTM lakes. Additional time may simply be needed for biological recovery to progress, or else more proactive efforts may be necessary to restore natural fish assemblages in Adirondack lakes in which water chemistry is steadily recovering from acidification.
NASA Astrophysics Data System (ADS)
Chaytor, J. D.; Quattrini, A.; Demopoulos, A. W.
2015-12-01
Caribbean fish communities in shallow waters have been well studied along the Greater and Lesser Antilles for decades; however, the deep (>200 m) assemblages remain poorly known due to the technical challenges associated with focused surveys at these greater depths. The numerous geological features (e.g., seamounts, island ridges, banks) that punctuate the insular margins increase habitat heterogeneity, which may lead to enhanced diversity of the deep demersal fish community in the region. Recent (2013-2014) expeditions in the area using the E/V Nautilus and the ROV Hercules surveyed fish communities during 17 dives across different seafloor features at depths ranging from 64 to 2944 m. These surveys enabled us to investigate whether demersal fish assemblages differed among these seafloor features and/or in response to other environmental factors. Preliminary analyses suggested that assemblage differences are influenced by depth, dissolved oxygen, and differences in benthic microhabitat (i.e., soft substrate, rock outcrop, slope angle). Notably, both abundance and diversity of fishes was low at depths >700 m on seamounts in the Anegada Passage. This pattern is likely due to limited food supply in the region. ROV surveys further elucidated the biogeography of numerous species, as several range and depth extensions were documented. For instance, the morid Lepidion sp., previously known only from the eastern Atlantic and the western North Atlantic, was documented on Norrôit Seamount. A new species, Polylepion sp. A, known only from Curacao, was documented on Conrad Seamount. Also, many common, mesophotic reef species were observed deeper than previously known, including the butterflyfishes Chaetodon sedentarius and Prognathodes aculeatus. This study further supports the importance of environmental conditions influencing local-scale distribution of deep-sea fishes, while demonstrating how little is still known about the biogeography of numerous deep-sea and mesophotic fish species.
Improving non-native fish larvae detection based on temporal habitat use.
As part of the development of an early detection monitoring strategy for non-native fishes, larval fish surveys have been conducted since 2012 in the St. Louis River estuary. Survey data demonstrates considerable variability in fish abundance and species assemblages across habit...
Stoll, Stefan; Kail, Jochem; Lorenz, Armin W.; Sundermann, Andrea; Haase, Peter
2014-01-01
It is commonly assumed that the colonization of restored river reaches by fish depends on the regional species pools; however, quantifications of the relationship between the composition of the regional species pool and restoration outcome are lacking. We analyzed data from 18 German river restoration projects and adjacent river reaches constituting the regional species pools of the restored reaches. We found that the ability of statistical models to describe the fish assemblages established in the restored reaches was greater when these models were based on ‘biotic’ variables relating to the regional species pool and the ecological traits of species rather than on ‘abiotic’ variables relating to the hydromorphological habitat structure of the restored habitats and descriptors of the restoration projects. For species presence in restored reaches, ‘biotic’ variables explained 34% of variability, with the occurrence rate of a species in the regional species pool being the most important variable, while ’abiotic’ variables explained only the negligible amount of 2% of variability. For fish density in restored reaches, about twice the amount of variability was explained by ‘biotic’ (38%) compared to ‘abiotic’ (21%) variables, with species density in the regional species pool being most important. These results indicate that the colonization of restored river reaches by fish is largely determined by the assemblages in the surrounding species pool. Knowledge of species presence and abundance in the regional species pool can be used to estimate the likelihood of fish species becoming established in restored reaches. PMID:24404187
Friedlander, Alan M.; Zgliczynski, Brian J.; Ballesteros, Enric; Aburto-Oropeza, Octavio; Bolaños, Allan; Sala, Enric
2012-01-01
Fishes at Isla del Coco National Park, Costa Rica, were surveyed as part of a larger scientific expedition to the area in September 2009. The average total biomass of nearshore fishes was 7.8 tonnes per ha, among the largest observed in the tropics, with apex predators such as sharks, jacks, and groupers accounting for nearly 40% of the total biomass. The abundance of reef and pelagic sharks, particularly large aggregations of threatened species such as the scalloped hammerhead shark (up to 42 hammerheads ha-1) and large schools of jacks and snappers show the capacity for high biomass in unfished ecosystems in the Eastern Tropical Pacific. However, the abundance of hammerhead and reef whitetip sharks appears to have been declining since the late 1990s, and likely causes may include increasing fishing pressure on sharks in the region and illegal fishing inside the Park. One Galapagos shark tagged on September 20, 2009 in the Isla del Coco National Park moved 255km southeast towards Malpelo Island in Colombia, when it stopped transmitting. These results contribute to the evidence that sharks conduct large-scale movements between marine protected areas (Isla del Coco, Malpelo, Galápagos) in the Eastern tropical Pacific and emphasize the need for regional-scale management. More than half of the species and 90% of the individuals observed were endemic to the tropical eastern Pacific. These high biomass and endemicity values highlight the uniqueness of the fish assemblage at Isla del Coco and its importance as a global biodiversity hotspot.
Chen, Hungyen; Chen, Ching-Yi; Shao, Kwang-Tsao
2018-05-08
Long-term time series datasets with consistent sampling methods are rather rare, especially the ones of non-target coastal fishes. Here we described a long-term time series dataset of fish collected by trammel net fish sampling and observed by an underwater diving visual census near the thermal discharges at two nuclear power plants on the northern coast of Taiwan. Both experimental and control stations of these two investigations were monitored four times per year in the surrounding seas at both plants from 2000 to 2017. The underwater visual census mainly monitored reef fish assemblages and trammel net samples monitored pelagic or demersal fishes above the muddy/sandy bottom. In total, 508 samples containing 203,863 individuals from 347 taxa were recorded in both investigations at both plants. These data can be used by ecologists and fishery biologists interested in the elucidation of the temporal patterns of species abundance and composition.
Food habits of fishes on an exposed sandy beach at Fukiagehama, South-West Kyushu Island, Japan
NASA Astrophysics Data System (ADS)
Nakane, Yukinori; Suda, Yusuke; Sano, Mitsuhiko
2011-06-01
To clarify the feeding habits and major food sources of sandy beach fishes, the gut contents of 55 fish species collected on a sandy beach at Fukiagehama, South-West Kyushu Island, Japan, were examined. Ontogenetic changes in food preference were recognized in nine species ( Hypoatherina valenciennei, Lateolabrax japonicus, Trachurus japonicus, Sillago japonica, Sphyraena japonica, Paralichthys olivaceus, Heteromycteris japonica, Paraplagusia japonica, and Takifugu niphobles). A cluster analysis based on dietary overlaps showed that the sandy beach fish assemblage comprised six trophic groups (mysid, amphipod, zooplankton, juvenile fish, terrestrial insect, and mollusk feeders). Of these, the first three groups were the most abundantly represented, whereas the last two were represented by only a single species. These results indicated that epibenthic macrofauna, such as mysids and gammaridean amphipods, and zooplankton, were important food resources for the fish assemblage at the study site, but infaunal macrobenthos, such as polychaetes and bivalves, being relatively unimportant.
Bonaldo, Roberta M; Pires, Mathias M; Guimarães, Paulo Roberto; Hoey, Andrew S; Hay, Mark E
2017-01-01
The establishment of no-take marine protected areas (MPAs) on coral reefs is a common management strategy for conserving the diversity, abundance, and biomass of reef organisms. Generally, well-managed and enforced MPAs can increase or maintain the diversity and function of the enclosed coral reef, with some of the benefits extending to adjacent non-protected reefs. A fundamental question in coral reef conservation is whether these benefits arise within small MPAs (<1 km2), because larval input of reef organisms is largely decoupled from local adult reproduction. We examined the structure of fish assemblages, composition of fish feeding groups, benthic cover, and key ecosystem processes (grazing, macroalgal browsing, and coral replenishment) in three small (0.5-0.8 km2) no-take MPAs and adjacent areas where fisheries are allowed (non-MPAs) on coral reefs in Fiji. The MPAs exhibited greater species richness, density, and biomass of fishes than non-MPAs. Furthermore, MPAs contained a greater abundance and biomass of grazing herbivores and piscivores as well as a greater abundance of cleaners than fished areas. We also found differences in fish associations when foraging, with feeding groups being generally more diverse and having greater biomass within MPAs than adjacent non-MPAs. Grazing by parrotfishes was 3-6 times greater, and macroalgal browsing was 3-5 times greater in MPAs than in non-MPAs. On average, MPAs had 260-280% as much coral cover and only 5-25% as much macroalgal cover as their paired non-MPA sites. Finally, two of the three MPAs had three-fold more coral recruits than adjacent non-MPAs. The results of this study indicate that small MPAs benefit not only populations of reef fishes, but also enhance ecosystem processes that are critical to reef resilience within the MPAs.
Miller, Matthew P.; Kennen, Jonathan G.; Mabe, Jeffrey A.; Mize, Scott V.
2012-01-01
Site-specific temporal trends in algae, benthic invertebrate, and fish assemblages were investigated in 15 streams and rivers draining basins of varying land use in the south-central United States from 1993–2007. A multivariate approach was used to identify sites with statistically significant trends in aquatic assemblages which were then tested for correlations with assemblage metrics and abiotic environmental variables (climate, water quality, streamflow, and physical habitat). Significant temporal trends in one or more of the aquatic assemblages were identified at more than half (eight of 15) of the streams in the study. Assemblage metrics and abiotic environmental variables found to be significantly correlated with aquatic assemblages differed between land use categories. For example, algal assemblages at undeveloped sites were associated with physical habitat, while algal assemblages at more anthropogenically altered sites (agricultural and urban) were associated with nutrient and streamflow metrics. In urban stream sites results indicate that streamflow metrics may act as important controls on water quality conditions, as represented by aquatic assemblage metrics. The site-specific identification of biotic trends and abiotic–biotic relations presented here will provide valuable information that can inform interpretation of continued monitoring data and the design of future studies. In addition, the subsets of abiotic variables identified as potentially important drivers of change in aquatic assemblages provide policy makers and resource managers with information that will assist in the design and implementation of monitoring programs aimed at the protection of aquatic resources.
Komyakova, Valeriya; Munday, Philip L.; Jones, Geoffrey P.
2013-01-01
The structure of coral reef habitat has a pronounced influence on the diversity, composition and abundance of reef-associated fishes. However, the particular features of the habitat that are most critical are not always known. Coral habitats can vary in many characteristics, notably live coral cover, topographic complexity and coral diversity, but the relative effects of these habitat characteristics are often not distinguished. Here, we investigate the strength of the relationships between these habitat features and local fish diversity, abundance and community structure in the lagoon of Lizard Island, Great Barrier Reef. In a spatial comparison using sixty-six 2m2 quadrats, fish species richness, total abundance and community structure were examined in relation to a wide range of habitat variables, including topographic complexity, habitat diversity, coral diversity, coral species richness, hard coral cover, branching coral cover and the cover of corymbose corals. Fish species richness and total abundance were strongly associated with coral species richness and cover, but only weakly associated with topographic complexity. Regression tree analysis showed that coral species richness accounted for most of the variation in fish species richness (63.6%), while hard coral cover explained more variation in total fish abundance (17.4%), than any other variable. In contrast, topographic complexity accounted for little spatial variation in reef fish assemblages. In degrading coral reef environments, the potential effects of loss of coral cover and topographic complexity are often emphasized, but these findings suggest that reduced coral biodiversity may ultimately have an equal, or greater, impact on reef-associated fish communities. PMID:24349455
Komyakova, Valeriya; Munday, Philip L; Jones, Geoffrey P
2013-01-01
The structure of coral reef habitat has a pronounced influence on the diversity, composition and abundance of reef-associated fishes. However, the particular features of the habitat that are most critical are not always known. Coral habitats can vary in many characteristics, notably live coral cover, topographic complexity and coral diversity, but the relative effects of these habitat characteristics are often not distinguished. Here, we investigate the strength of the relationships between these habitat features and local fish diversity, abundance and community structure in the lagoon of Lizard Island, Great Barrier Reef. In a spatial comparison using sixty-six 2m(2) quadrats, fish species richness, total abundance and community structure were examined in relation to a wide range of habitat variables, including topographic complexity, habitat diversity, coral diversity, coral species richness, hard coral cover, branching coral cover and the cover of corymbose corals. Fish species richness and total abundance were strongly associated with coral species richness and cover, but only weakly associated with topographic complexity. Regression tree analysis showed that coral species richness accounted for most of the variation in fish species richness (63.6%), while hard coral cover explained more variation in total fish abundance (17.4%), than any other variable. In contrast, topographic complexity accounted for little spatial variation in reef fish assemblages. In degrading coral reef environments, the potential effects of loss of coral cover and topographic complexity are often emphasized, but these findings suggest that reduced coral biodiversity may ultimately have an equal, or greater, impact on reef-associated fish communities.
Diets and trophic guilds of small fishes from coastal marine habitats in western Taiwan.
Egan, J P; Chew, U-S; Kuo, C-H; Villarroel-Diaz, V; Hundt, P J; Iwinski, N G; Hammer, M P; Simons, A M
2017-07-01
The diets and trophic guilds of small fishes were examined along marine sandy beaches and in estuaries at depths <1·5 m in western Taiwan, Republic of China. Copepods were the most frequently identified item in fish guts, indicating they are key prey for the fish assemblages studied. Piscivore, crustacivore, detritivore, omnivore, zooplanktivore and terrestrial invertivore trophic guilds were identified. The zooplanktivore guild contained the most fish species. Maximum prey size consumption was positively correlated with standard length (L S ) in seven species and at the assemblage level and negatively correlated with L S in a single detritivorous species. The diet data and trophic guild scheme produced by this study contribute to an understanding of coastal marine food webs and can inform ecosystem-based fisheries management. © 2017 The Fisheries Society of the British Isles.
Metrics for assessing freshwater fish in Narragansett Bay
Freshwater fish are ecologically important in stream ecosystems, and they provide significant value to humans. Historically, the streams and rivers of southern New England supported moderately diverse and abundant assemblages of native fishes. Currently, these habitats are impact...
NASA Astrophysics Data System (ADS)
Farré, Marc; Tuset, Víctor M.; Cartes, Joan E.; Massutí, Enric; Lombarte, Antoni
2016-09-01
The morphological and functional traits of fishes are key factors defining the ecological and biological habits of species within ecosystems. However, little is known about how the depth gradient affects these factors. In the present study, several demersal fish assemblages from the Balearic Islands (western Mediterranean Sea) along a wide depth range (40-2200 m) were morphologically, functionally and ecologically described. The morphological characterization of communities was performed using geometric morphometric methods, while the functional structures were obtained by the functional categorization of species and the application of principal coordinates analysis (PCoA). The results revealed that morphospaces presented less richness of body forms as depth increases, although they showed a progressive spreading of species toward the periphery, with a proliferation of more extreme body traits, demonstrating lower morphological redundancy. In addition, a trend toward the elongation of body shape was also observed with depth. Moreover, functional diversity increased with bathymetry up to 1400 m, where it sharply decreased downwards. This decrease was parallel to a progressive fall of H‧ (ecological diversity) up to 2200 m. Functional redundancy progressively decreased until the deepest assemblage (more constantly in the deeper levels), which was almost exclusively dominated by benthopelagic wandering species feeding on suprabenthos. Redundancy analysis (RDA) demonstrated that both morphological and functional spaces showed high variation along the bathymetric range. Mantel test indicated that the majority of species presented similar spatial distribution within the morphospace and functional space, although in the functional space the more abundant species were always located at the periphery. These results demonstrate that the assessment of the morpho-functional variation between marine communities helps to understand the processes that affect the structure and functioning of communities, such as resource partitioning, trophic interactions, or interspecific relationships within ecosystem such as coexistence and dominance.
Rapid biotic homogenization of marine fish assemblages
Magurran, Anne E.; Dornelas, Maria; Moyes, Faye; Gotelli, Nicholas J.; McGill, Brian
2015-01-01
The role human activities play in reshaping biodiversity is increasingly apparent in terrestrial ecosystems. However, the responses of entire marine assemblages are not well-understood, in part, because few monitoring programs incorporate both spatial and temporal replication. Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic groundfish assemblages monitored over 5° latitude to the west of Scotland. These fish assemblages show no systematic change in species richness through time, but steady change in species composition, leading to an increase in spatial homogenization: the species identity of colder northern localities increasingly resembles that of warmer southern localities. This biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over the same time period suggesting that climate change is primarily responsible for the spatial homogenization we observe. In this and other ecosystems, apparent constancy in species richness may mask major changes in species composition driven by anthropogenic change. PMID:26400102
Investigating phenology of larval fishes in St. Louis River estuary shallow water habitats
As part of the development of an early detection monitoring strategy for non-native fishes, larval fish surveys have been conducted since 2012 in the St. Louis River estuary. Survey data demonstrates there is considerable variability in fish abundance and species assemblages acro...
A century later: Long-term change of an inshore temperate marine fish assemblage
NASA Astrophysics Data System (ADS)
McHugh, Matthew; Sims, David W.; Partridge, Julian C.; Genner, Martin J.
2011-02-01
There is compelling evidence that European marine fish assemblages have undergone extensive changes in composition over the last century. However, our knowledge of which species have changed in abundance and body size distributions, and the reasons for these changes, is limited due to a paucity of historical data. Here we report a study of long-term change in a marine fish assemblage from the inshore waters of the Western English Channel, near Plymouth. We compiled data from historic trawls undertaken between 1913 and 1922, and resurveyed those sites in 2008 and 2009. Our results revealed highly significant temporal differences in assemblage composition, but the scale of change was not consistent among taxonomic groups. Dramatic changes were recorded within the elasmobranchs, characterised by a reduction in abundance of all skate (Rajiidae) species, apparent extirpation of the angel shark ( Squatina squatina), and large increases in the abundance of lesser-spotted catshark ( Scyliorhinus canicula). By contrast we observed less evidence of change among 'flatfishes' (Pleuronectiformes) or 'roundfishes' (other teleosts). Changes were also observed in length-frequency distributions, with a significant decline in the size distribution of elasmobranchs (excluding S. canicula), but no significant change in size distributions of either group of teleosts. These data provide further evidence that larger, slow-maturing species have undergone declines in UK waters over the last century, and form useful benchmarks for assessment of future changes in this coastal faunal assemblage.
Icthyoplankton Assemblages and Distribution in the Chukchi Sea 2012-2013
NASA Astrophysics Data System (ADS)
Busby, M. S.; Duffy-Anderson, J. T.; Mier, K. L.; Tabisola, H. M.
2016-02-01
There is significant interest in the effects of climate change on the Pacific arctic ecosystem, and in determining relationships between physical drivers and biological response. Ichthyoplankton surveys have become an integral component of ecosystem studies in the Pacific arctic over the past decade. In summer 2012 and 2013, large scale fisheries oceanographic surveys that included ichthyoplankton tows were conducted in the northern Bering and eastern Chukchi Seas as part of the Arctic Ecosystem Integrated Survey (Arctic Eis). Spatial and temporal analyses of fish larvae collected determined that yellowfin sole (Limanda aspera) was the most abundant larval fish caught followed by Arctic cod (Boreogadus saida). Cluster analyses showed L. aspera to be the dominant component of a southern, nearshore assemblage strongly associated with the northward moving Alaska Coastal Current (ACC) characterized by relatively warm-low salinity water. Boreogadus saida larvae dominated a more northern assemblage in close proximity to the ice edge and were more abundant in 2013 than 2012. Collections of pelagic fish eggs determined locations of spawning centers for L. aspera nearshore of the Seward Peninsula and Bering flounder (Hippoglossoides robustus) to the west and offshore from Point Barrow in 2012. Similar but less pronounced trends in egg distribution were observed in 2013. Larvae of the forage fish species capelin (Mallotus villosus) and Arctic sand lance (Ammodytes hexapterus) were important assemblage components in 2012 and 2013 respectively. These patterns in the distribution of eggs and larvae are similar to those observed in other studies. The influence of circulation patterns on the distributions of fish in the Chukchi Sea is being investigated and will be discussed.
Brown, L.R.; Moyle, P.B.
1997-01-01
We examined invasions of non-native fishes into the Eel River, California. At least 16 species of fish have been introduced into the drainage which originally supported 12-14 fish species. Our study was prompted by the unauthorized introduction in 1979 of Sacramento squawfish, Ptychocheilus grandis, a large predatory cyprinid. From 1986 to 1990, we conducted growth and diet studies of squaw fish, conducted intensive surveys of the distribution and habitat associations of both native and introduced species, and examined the nature of species-habitat and interspecies relationships. We found no evidence for increased growth or expanded feeding habits, compared to native populations, of Sacramento squawfish as they invaded the Eel River drainage. Ten of the introduced species were well established, with four species limited to a reservoir and six species established in streams. The success or failure of introductions of stream species appeared to be a function of the ability of a species to survive the fluctuating, highly seasonal, flow regime. The present mixture of native and exotic species has not formed stable fish assemblages but it seems likely that four habitat-associated assemblages will develop. The overall effect of the successful species introductions has been to assemble a group of species, with some exceptions, that are native to and occur together in many California streams. The assemblages now forming are similar to those found in other California streams. The assemblage characterized by squawfish and suckers is likely to be resistant to invasion, in the absence of human caused habitat modifications.
The Fish Assemblage of a Newfoundland Estuary: Diel, Monthly and Annual Variation
NASA Astrophysics Data System (ADS)
Methven, D. A.; Haedrich, R. L.; Rose, G. A.
2001-06-01
Twice monthly sampling over two 16 month periods at a shallow site on Newfoundland's east coast showed the fish assemblage to be dominated by four taxa ( Gasterosteus aculeatus, G. wheatlandi, Osmerus mordax, Gadus spp.) that accounted for 96% of the individuals collected. Of the 16 479 fish measured, 65% were adults based on the estimated size of first spawning. The fish assemblage was dominated (86%) by species with demersal eggs, several of which spawn at the same shallow sites used by juveniles as nursery sites. Coastal spawning and demersal eggs maintain offspring in coastal nursery areas where survival is thought to be increased. Number of species and number of fish were both correlated with water temperature being highest from mid-summer to early autumn and lowest in winter. Temperature, time of spawning, and movements of juveniles and adults facilitated grouping species into five assemblages based on seasonal abundance: seasonal periodic species (summer and winter), regular species, regular species collected in all seasons except winter, and occasional (rare) species. At the diel scale, two consistent species groupings were observed: species that showed no significant difference between day and night and species caught primarily at night. Number of night species exceeded day species by a factor of two. No seine-caught species in shallow water exhibited significantly higher catches during the day. Observations by SCUBA divers indicated some species were more abundant during day time at slightly deeper depths. This observation in conjunction with day and night seining in shallower water, suggests these species aggregate in deeper water during day and move to shallow waters at night.
Effects of enhanced loads of nutrients on epiphytes on leaves and rhizomes of Posidonia oceanica
NASA Astrophysics Data System (ADS)
Balata, David; Piazzi, Luigi; Nesti, Ugo; Bulleri, Fabio; Bertocci, Iacopo
2010-04-01
The increase of anthropogenic activities has severely altered both terrestrial and aquatic systems. Urbanisation, excessive use of agricultural fertilisers, organic runoff and climate change have caused an increase of nutrients in coastal waters, altering the diversity and food-web structure of benthic assemblages. The aims of the present paper were to text if an experimentally increased availability of nutrients, primarily nitrogen and phosphorous, in an oligotrophic basin, would affect epiphytic assemblages on leaves and rhizomes of P. oceanica and whether this could change rates of consumption of the plant by herbivores. In particular, we tested the hypothesis i) that changes to species composition and abundance of epiphytic assemblages generated by nutrients enrichment would vary between leaves and rhizomes and that ii) alterations to epiphytic assemblages on leaves might, in turn, modify feeding rates of herbivorous fish. After two years, the structure of both leaf and rhizome epiphytic assemblages responded to changes in nutrient concentrations before the occurrence of drastic alterations to the host plant, but only the former showed significant changes in terms of species composition. Moreover, a larger intensity of grazing on P. oceanica leaves was documented in experimentally enriched areas than in controls. The present findings and conclusions are applicable to other systems where patterns of biodiversity depend on changes in the availability of nutrients due to natural or anthropogenic events, likely interacting with biological processes, such as competition and grazing.
Multimetric Fish Indices for Midcontinent (USA) Great Rivers
As part of the Environmental Monitoring and Assessment Program for Great River Ecosystems we developed a fish-assemblage based multimetric index (Great River Fish Index,GRFIn) as an indicator of ecological conditions in the Lower Missouri, impounded Upper Mississippi, unimpounded...
Watershed Health Assessment Tools Investigating Fisheries
WHATIF is software that integrates a number of calculators, tools, and models for assessing the health of watersheds and streams with an emphasis on fish communities. The tool set consists of hydrologic and stream geometry calculators, a fish assemblage predictor, a fish habitat ...
Dembkowski, Daniel J.; Miranda, Leandro E.
2011-01-01
Disconnection between adjacent habitat patches is one of the most notable factors contributing to the decreased biotic integrity of global ecosystems. Connectivity is especially threatened in river–floodplain ecosystems in which channel modifications have disrupted the lateral links between the main river channel and floodplain lakes. In this study, we examined the interaction between the interconnectedness of floodplain lakes and main river channels and fish assemblage descriptors. Fish assemblages in two segments of an oxbow lake, one connected to and the other isolated from the Yazoo River, Mississippi, were estimated with daytime boat electrofishing during 2007–2010. The frequency of connection for the connected segment ranged from zero to seven individual events per year (mean, ∼2). The timing of most connection events reflected regional precipitation patterns. Greater species richness, diversity, and evenness were observed in the connected segment. Additionally, the connected segment had a greater abundance of piscivores and periodic life history strategists. All fishes collected solely in the connected segment were typically riverine in nature, whereas fishes collected only in the disconnected segment were more lacustrine adapted. These results suggest that periodic connection and the associated habitat heterogeneity that it provides are important for maintaining fish species richness and diversity in large-river floodplain lakes. We suggest that maintenance or restoration of connection be an integral part of fluvial ecosystem management plans.
Green, Stephanie J; Côté, Isabelle M
2014-11-01
Understanding how predators select their prey can provide important insights into community structure and dynamics. However, the suite of prey species available to a predator is often spatially and temporally variable. As a result, species-specific selectivity data are of limited use for predicting novel predator-prey interactions because they are assemblage specific. We present a method for predicting diet selection that is applicable across prey assemblages, based on identifying general morphological and behavioural traits of prey that confer vulnerability to predation independent of species identity. We apply this trait-based approach to examining prey selection by Indo-Pacific lionfish (Pterois volitans and Pterois miles), invasive predators that prey upon species-rich reef fish communities and are rapidly spreading across the western Atlantic. We first generate hypotheses about morphological and behavioural traits recurring across fish species that could facilitate or deter predation by lionfish. Constructing generalized linear mixed-effects models that account for relatedness among prey taxa, we test whether these traits predict patterns of diet selection by lionfish within two independent data sets collected at different spatial scales: (i) in situ visual observations of prey consumption and availability for individual lionfish and (ii) comparisons of prey abundance in lionfish stomach contents to availability on invaded reefs at large. Both analyses reveal that a number of traits predicted to affect vulnerability to predation, including body size, body shape, position in the water column and aggregation behaviour, are important determinants of diet selection by lionfish. Small, shallow-bodied, solitary fishes found resting on or just above reefs are the most vulnerable. Fishes that exhibit parasite cleaning behaviour experience a significantly lower risk of predation than non-cleaning fishes, and fishes that are nocturnally active are at significantly greater risk. Together, vulnerable traits heighten the risk of predation by a factor of nearly 200. Our study reveals that a trait-based approach yields insights into predator-prey interactions that are robust across prey assemblages. Importantly, in situ observations of selection yield similar results to broadscale comparisons of prey use and availability, which are more typically gathered for predator species. A trait-based approach could therefore be of use across predator species and ecosystems to predict the outcomes of changing predator-prey interactions on community dynamics. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.
Adam, Thomas C; Brooks, Andrew J; Holbrook, Sally J; Schmitt, Russell J; Washburn, Libe; Bernardi, Giacomo
2014-09-01
Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities.
Hierarchical drivers of reef-fish metacommunity structure.
MacNeil, M Aaron; Graham, Nicholas A J; Polunin, Nicholas V C; Kulbicki, Michel; Galzin, René; Harmelin-Vivien, Mireille; Rushton, Steven P
2009-01-01
Coral reefs are highly complex ecological systems, where multiple processes interact across scales in space and time to create assemblages of exceptionally high biodiversity. Despite the increasing frequency of hierarchically structured sampling programs used in coral-reef science, little progress has been made in quantifying the relative importance of processes operating across multiple scales. The vast majority of reef studies are conducted, or at least analyzed, at a single spatial scale, ignoring the implicitly hierarchical structure of the overall system in favor of small-scale experiments or large-scale observations. Here we demonstrate how alpha (mean local number of species), beta diversity (degree of species dissimilarity among local sites), and gamma diversity (overall species richness) vary with spatial scale, and using a hierarchical, information-theoretic approach, we evaluate the relative importance of site-, reef-, and atoll-level processes driving the fish metacommunity structure among 10 atolls in French Polynesia. Process-based models, representing well-established hypotheses about drivers of reef-fish community structure, were assembled into a candidate set of 12 hierarchical linear models. Variation in fish abundance, biomass, and species richness were unevenly distributed among transect, reef, and atoll levels, establishing the relative contribution of variation at these spatial scales to the structure of the metacommunity. Reef-fish biomass, species richness, and the abundance of most functional-groups corresponded primarily with transect-level habitat diversity and atoll-lagoon size, whereas detritivore and grazer abundances were largely correlated with potential covariates of larval dispersal. Our findings show that (1) within-transect and among-atoll factors primarily drive the relationship between alpha and gamma diversity in this reef-fish metacommunity; (2) habitat is the primary correlate with reef-fish metacommunity structure at multiple spatial scales; and (3) inter-atoll connectedness was poorly correlated with the nonrandom clustering of reef-fish species. These results demonstrate the importance of modeling hierarchical data and processes in understanding reef-fish metacommunity structure.
Cooper, Ryan N; Wissel, Björn
2012-11-27
Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes.
2012-01-01
Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes. PMID:23186395
Fish community response to dam removal in a Maine coastal river tributary
Zydlewski, Joseph D.; Hogg, Robert S.; Coghlan, Stephen M.; Gardner, Cory
2016-01-01
Sedgeunkedunk Stream, a third-order tributary to the Penobscot River in Maine, historically has supported several anadromous fishes including Atlantic Salmon Salmo salar, Alewife Alosa pseudoharengus, and Sea Lamprey Petromyzon marinus. Two small dams constructed in the 1800s reduced or eliminated spawning runs entirely. In 2009, efforts to restore marine–freshwater connectivity in the system culminated in removal of the lowermost dam (Mill Dam) providing access to 4.7 km of lotic habitat and unimpeded passage into the lentic habitat of Fields Pond. In anticipation of these barrier removals, we initiated a modified before-after-control-impact study, and monitored stream fish assemblages in fixed treatment and reference sites. Electrofishing surveys were conducted twice yearly since 2007. Results indicated that density, biomass, and diversity of the fish assemblage increased at all treatment sites upstream of the 2009 dam removal. No distinct changes in these metrics occurred at reference sites. We documented recolonization and successful reproduction of Atlantic Salmon, Alewife, and Sea Lamprey in previously inaccessible upstream reaches. These results clearly demonstrate that dam removal has enhanced the fish assemblage by providing an undisrupted stream gradient linking a small headwater lake and tributary with a large coastal river, its estuary, and the Atlantic Ocean.
NASA Astrophysics Data System (ADS)
Porteiro, Filipe M.; Gomes-Pereira, José N.; Pham, Christopher K.; Tempera, Fernando; Santos, Ricardo S.
2013-12-01
Distribution of fish assemblages and habitat associations of demersal fishes on the Condor seamount were investigated by analyzing in situ video imagery acquired by the Remotely-Operated Vehicles ROV SP300 and Luso 6000. A total of 51 fish taxa from 32 families were inventoried. Zooplanktivores (10 species) were the most abundant group followed by carnivores (23 species) and benthivores (18 species). Non-metric multidimensional scaling (MDS) analyses were performed on dive segments to visualize the spatial relationships between species and habitat type, substrate type or depth, with depth being the most significant parameter influencing fish distribution. Four major fish groups were identified from their vertical distribution alone: summit species (generally to <300 m depth); broad ranging species (ca. from 200 to 800 m); intermediate ranging slope species (ca. from 400 m to 800-850 m); and deeper species (800-850-1100 m). The fish fauna observed at the summit is more abundant (15.2 fish/100 m2) and habitat-specialized than the fish observed along the seamount slope. Down the seamount slope, the summit fish assemblage is gradually replaced as depth increases, with an overall reduction in abundance. On the summit, three species (Callanthias ruber, Anthias anthias and Lappanella fasciata) had higher affinity to coral habitats compared to non-coral habitats. A coherent specialized fish assemblage associated to coral habitats could not be identified, because most species were observed also in non-coral areas. On the seamount's slope (300-1100 m), no relationship between fish and coral habitats could be identified, although these might occur at larger scales. This study shows that in situ video imagery complements traditional fishing surveys, by providing information on unknown or rarely seen species, being fundamental for the development of more comprehensive ecosystem-based management towards a sustainable use of the marine environment.
How have fisheries affected parasite communities?
Wood, Chelsea L.; Lafferty, Kevin D.
2015-01-01
To understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.
IDENTIFICATION AND PREDICTION OF FISH ASSEMBLAGES IN STREAMS OF THE MID-ATLANTIC HIGHLANDS, USA
Managing aquatic resources requires meaningful assessment endpoints on which to base decisions. In freshwater streams, assessment endpoints are often defined as fish communities. Given limited resources available for environmental monitoring, having a means of predicting fish a...
Fish habitat in lakes is strongly constrained by water temperature and available dissolved oxygen (DO). Suitable fish habitat for three fish assemblages (cold-, cool-, and warm-water) in Minnesota (US) lakes was therefore determined from simulated daily water ...
Fish community-based measures of estuarine ecological quality and pressure-impact relationships
NASA Astrophysics Data System (ADS)
Fonseca, Vanessa F.; Vasconcelos, Rita P.; Gamito, Rita; Pasquaud, Stéphanie; Gonçalves, Catarina I.; Costa, José L.; Costa, Maria J.; Cabral, Henrique N.
2013-12-01
Community-based responses of fish fauna to anthropogenic pressures have been extensively used to assess the ecological quality of estuarine ecosystems. Several methodologies have been developed recently combining metrics reflecting community structure and function. A fish community facing significant environmental disturbances will be characterized by a simplified structure, with lower diversity and complexity. However, estuaries are naturally dynamic ecosystems exposed to numerous human pressures, making it difficult to distinguish between natural and anthropogenic-induced changes to the biological community. In the present work, the variability of several fish metrics was assessed in relation to different pressures in estuarine sites. The response of a multimetric index (Estuarine Fish Assessment Index) was also analysed. Overall, fish metrics and the multimetric index signalled anthropogenic stress, particularly environmental chemical pollution. The fish assemblage associated with this type of pressure was characterized by lower species diversity, lower number of functional guilds, lower abundance of marine migrants and of piscivorous individuals, and higher abundance of estuarine resident species. A decreased ecological quality status, based on the EFAI, was also determined for sites associated with this pressure group. Ultimately, the definition of each pressure groups favoured a stressor-specific analysis, evidencing pressure patterns and accounting for multiple factors in a highly dynamic environment.
Azevedo, Márcia Cristina Costa; Gomes-Gonçalves, Rafaela de Sousa; Mattos, Tailan Moretti; Uehara, Wagner; Guedes, Gustavo Henrique Soares; Araújo, Francisco Gerson
2017-08-01
Several species of marine fish use different coastal systems especially during their early development. However, these habitats are jeopardized by anthropogenic influences threatening the success of fish populations, and urgent measures are needed to priorize areas to protect their sustainability. We applied taxonomic (Δ+) and functional (X+) distinctiveness indices that represent taxonomic composition and functional roles to assess biodiversity of three different costal systems: bays, coastal lagoons and oceanic beaches. We hypothesized that difference in habitat characteristics, especially in the more dynamism and habitat homogeneity of oceanic beaches compared with more habitat diversity and sheltered conditions of bays and coastal lagoons results in differences in fish richness and taxonomic and functional diversity. The main premise is that communities phylogenetically and functionally more distinct have more interest in conservation policies. Significant differences (P < 0.004) were found in the species richness, Δ+ and X+ among the three systems according to PERMANOVA. Fish richness was higher in bays compared with the coastal lagoons and oceanic beaches. Higher Δ+ was found for the coastal lagoons compared with the bays and oceanic beaches, with the bays having some values below the confidence limit. Similar patterns were found for X+, although all values were within the confidence limits for the bays, suggesting that the absence of some taxa does not interfere in functional diversity. The hypothesis that taxonomic and functional structure of fish assemblages differ among the three systems was accepted and we suggest that coastal lagoons should be priorized in conservation programs because they support more taxonomic and functional distinctiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.