Sample records for fish cells response

  1. Immune mechanisms in fish skin against monogeneans--a model.

    PubMed

    Buchmann, K

    1999-01-01

    Host responses against skin inhabiting monogeneans are commonly observed but the responsible immune mechanisms in the fish skin are sufficiently described. Based on recent knowledge of fish immunity and skin response mechanisms in mammals a model for the skin immunity in fish to monogenean infections is proposed. Important cellular components of the model are the epithelial cells, the mucous cells and leucocytes. The release of cytokines, e.g., IL-1, following mechanical or chemical injury of the epithelial cells, initiates a series of events leading to decrease of the ectoparasite population. Cytokines (e.g., IL-1, TNF, INF) are suggested to affect secretions from mucous cell and attract neutrophils and macrophages. Leukotrienes are probably involved in the inflammatory reactions. The subsequent production of humoral substances (among others complement factors and peptides) could be responsible for the antiparasitic response in the later stages of infection. Although non-specific factors dominate the response, the involvement of specific antibodies and lymphocytes cannot be excluded.

  2. A short history of research on immunity to infectious diseases in fish.

    PubMed

    Van Muiswinkel, Willem B; Nakao, Miki

    2014-04-01

    This review describes the history of research on immunity to infectious diseases of fish in the period between 1965 and today. Special attention is paid to those studies, which are dealing with the interaction between immune system and invading pathogens in bony fish. Moreover, additional biographic information will be provided of people involved. In the 1960s and 1970s the focus of most studies was on humoral (Ig, B-cell) responses. Thorough studies on specific cellular (T-cell) responses and innate immunity (lectins, lysozyme, interferon, phagocytic cells) became available later. In the period between 1980 and today an overwhelming amount of data on regulation (e.g. cell cooperation, cytokines) and cell surface receptors (e.g. T-cell receptor; MHC) was published. It became also clear, that innate responses were often interacting with the acquired immune responses. Fish turned out to be vertebrates like all others with a sophisticated immune system showing specificity and memory. These basic data on the immune system could be applied in vaccination or in selection of disease resistant fish. Successful vaccines against bacterial diseases became available in the 1970s and 1980s. Effective anti-viral vaccines appeared from the 1980s onwards. There is no doubt, that Fish Immunology has become a flourishing science by the end of the 20th century and has contributed to our understanding of fish diseases as well as the success of aquaculture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Frequent biphasic cellular responses of permanent fish cell cultures to deoxynivalenol (DON)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pietsch, Constanze, E-mail: constanze.pietsch@unibas.ch; Bucheli, Thomas D.; Wettstein, Felix E.

    Contamination of animal feed with mycotoxins is a major problem for fish feed mainly due to usage of contaminated ingredients for production and inappropriate storage of feed. The use of cereals for fish food production further increases the risk of a potential contamination. Potential contaminants include the mycotoxin deoxynivalenol (DON) which is synthesized by globally distributed fungi of the genus Fusarium. The toxicity of DON is well recognized in mammals. In this study, we confirm cytotoxic effects of DON in established permanent fish cell lines. We demonstrate that DON is capable of influencing the metabolic activity and cell viability inmore » fish cells as determined by different assays to indicate possible cellular targets of this toxin. Evaluation of cell viability by measurement of membrane integrity, mitochondrial activity and lysosomal function after 24 h of exposure of fish cell lines to DON at a concentration range of 0-3000 ng ml{sup -1} shows a biphasic effect on cells although differences in sensitivity occur. The cell lines derived from rainbow trout are particularly sensitive to DON. The focus of this study lies, furthermore, on the effects of DON at different concentrations on production of reactive oxygen species (ROS) in the different fish cell lines. The results show that DON mainly reduces ROS production in all cell lines that were used. Thus, our comparative investigations reveal that the fish cell lines show distinct species-related endpoint sensitivities that also depend on the type of tissue from which the cells were derived and the severity of exposure. - Highlights: > DON uptake by cells is not extensive. > All fish cell lines are sensitive to DON. > DON is most cytotoxic to rainbow trout cells. > Biphasic cellular responses were frequently observed. > Our results are similar to studies on mammalian cell lines.« less

  4. Immunohistochemical analysis of cytochrome P4501A induction in organs and cell types of Rivulus marmoratus exposed to waterborne 2,3,7,8-tetrachlorodibenzo-p-dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegeman, J.; Smolowitz, R.; Burnett, K.

    1994-12-31

    Identifying target cells and organs is critical to establishing the sites and mechanisms of toxicity of Ah-receptor agonists. Previous studies have described the localization of CYPLA induced in multiple organs of fish exposed to Ah-receptor agonists. Here the authors compare the responses in multiple cell types and organs of small fish (Rivulus) exposed to waterborne TCDD. Adult fish were exposed to TCDD at concentrations from 0.01 to 10 ng/liter for 48 hours, then prepared and analyzed by immunohistochemistry with monoclonal antibody to teleost CYPIAI. At the highest dose profound induction was detected in virtually every organ. Structures staining intensely were:more » nasal and cephalic chemoreceptors, including sensory and basal cells; superficial cells in skin and pharynx; cartilage cells (chondrocytes) in the head, gills, growth plates and fins; epithelial and endothelial cells of liver, gut, kidney, and gill; pseudobranch vessels and glandular cells; eye lens epithelium; endothelium in vessels of eye, brain, skin, muscle, thymus and gonad. Lesser concentrations of TCDD elicited less strong responses, and control fish showed mild staining only in cartilage structures. The dose-dependent patterns of induction differed between different cell types. Responsive cells identified is these fish indicate sites where toxicity associated with Ah-receptor agonists or with CYPLA function may be expressed.« less

  5. Direct activation of the Mauthner cell by electric field pulses drives ultrarapid escape responses

    PubMed Central

    Tabor, Kathryn M.; Bergeron, Sadie A.; Horstick, Eric J.; Jordan, Diana C.; Aho, Vilma; Porkka-Heiskanen, Tarja; Haspel, Gal

    2014-01-01

    Rapid escape swims in fish are initiated by the Mauthner cells, giant reticulospinal neurons with unique specializations for swift responses. The Mauthner cells directly activate motoneurons and facilitate predator detection by integrating acoustic, mechanosensory, and visual stimuli. In addition, larval fish show well-coordinated escape responses when exposed to electric field pulses (EFPs). Sensitization of the Mauthner cell by genetic overexpression of the voltage-gated sodium channel SCN5 increased EFP responsiveness, whereas Mauthner ablation with an engineered variant of nitroreductase with increased activity (epNTR) eliminated the response. The reaction time to EFPs is extremely short, with many responses initiated within 2 ms of the EFP. Large neurons, such as Mauthner cells, show heightened sensitivity to extracellular voltage gradients. We therefore tested whether the rapid response to EFPs was due to direct activation of the Mauthner cells, bypassing delays imposed by stimulus detection and transmission by sensory cells. Consistent with this, calcium imaging indicated that EFPs robustly activated the Mauthner cell but only rarely fired other reticulospinal neurons. Further supporting this idea, pharmacological blockade of synaptic transmission in zebrafish did not affect Mauthner cell activity in response to EFPs. Moreover, Mauthner cells transgenically expressing a tetrodotoxin (TTX)-resistant voltage-gated sodium channel retained responses to EFPs despite TTX suppression of action potentials in the rest of the brain. We propose that EFPs directly activate Mauthner cells because of their large size, thereby driving ultrarapid escape responses in fish. PMID:24848468

  6. Immunity to fish rhabdoviruses

    USGS Publications Warehouse

    Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non-virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  7. Immunity to fish rhabdoviruses.

    PubMed

    Purcell, Maureen K; Laing, Kerry J; Winton, James R

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non‑virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  8. Fish T cells: recent advances through genomics

    USGS Publications Warehouse

    Laing, Kerry J.; Hansen, John D.

    2011-01-01

    This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.

  9. Carbaryl exposure and recovery modify the interrenal and thyroidal activities and the mitochondria-rich cell function in the climbing perch Anabas testudineus Bloch.

    PubMed

    Peter, Valsa S; Babitha, G S; Bonga, S E Wendelaar; Peter, M C Subhash

    2013-01-15

    We examined the effects of carbaryl (1-naphthyl methylcarbamate; sevin), a carbamate pesticide, on interrenal and thyroid activities and mitochondrial rich (MR) cell function in climbing perch to understand the physiological basis of toxicity acclimation in this fish to the chemical stressor. Carbaryl exposure (5-20 mg L(-1)) for 48 h increased cortisol and glucose, but decreased the T(3) level without affecting T(4) concentration in the plasma. These responses of the carbaryl-exposed fish were nullified and a rise in plasma T(4) occurred in these fish when they were kept for 96 h recovery in clean water. A tight plasma mineral control was indicated in the carbaryl-exposed fish as reflected by the unchanged plasma Na, K, Ca and inorganic phosphate levels. The ouabain-sensitive Na(+), K(+)-ATPase activity showed an increase in the gills but the intestinal and renal tissues showed little response to carbaryl treatment. However, substantial increases in the intestinal and renal Na(+), K(+)-ATPase activities occurred in the recovery fish. The MR cells in the branchial epithelia showed a strong Na(+), K(+)-ATPase immunoreactivity to carbaryl treatment indicating an activated MR cell function. The numerical MR cell density remained unchanged, but stretching of secondary gill lamellae as part of gill remodeling occurred during carbaryl exposure. The increased surface of these lamellae with abundant MR cells as a result of its migration into the lamellar surface points to marked structural and functional modifications of these cells in the carbaryl-treated fish which is likely to a target for carbaryl action. The rise in plasma T(4) and the restoration of normal branchial epithelia in the recovery fish indicate a thyroidal involvement in the recovery response and survival. Our data thus provide evidence that carbaryl exposure and its recovery evoke interrenal and thyroid disruption in this fish leading to a modified osmotic response including an altered MR cell function. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Sensory Cells of the Fish Ear: A Hairy Enigma

    NASA Technical Reports Server (NTRS)

    Popper, A. N.; Saidel, W. M.

    1995-01-01

    Analysis of the structure of the ears in teleost fishes has led to the tentative suggestion that otolithic endorgans may function differently, in different species. Recently, evidence has demonstrated different 'types' of sensory hair cells can be found in the ears of teleost fishes, and individual hair cell types are found in discrete regions of individual sensory, epithelia. The presence of multiple hair cell types in fishes provides strong support to the hypothesis of regional differences in the responses of individual otolithic sensory epithelia. The finding of hair cell types in fishes that closely resemble those found in amniote vestibular endorgans also suggests that hair cell heterogeneity arose earlier in the evolution of the vertebrate ear than previously thought.

  11. Acquired Protective Immunity in Atlantic Salmon Salmo salar against the Myxozoan Kudoa thyrsites Involves Induction of MHIIβ+ CD83+ Antigen-Presenting Cells.

    PubMed

    Braden, Laura M; Rasmussen, Karina J; Purcell, Sara L; Ellis, Lauren; Mahony, Amelia; Cho, Steven; Whyte, Shona K; Jones, Simon R M; Fast, Mark D

    2018-01-01

    The histozoic myxozoan parasite Kudoa thyrsites causes postmortem myoliquefaction and is responsible for economic losses to salmon aquaculture in the Pacific Northwest. Despite its importance, little is known about the host-parasite relationship, including the host response to infection. The present work sought to characterize the immune response in Atlantic salmon during infection, recovery, and reexposure to K. thyrsites After exposure to infective seawater, infected and uninfected smolts were sampled three times over 4,275 degree-days. Histological analysis revealed infection severity decreased over time in exposed fish, while in controls there was no evidence of infection. Following a secondary exposure of all fish, severity of infection in the controls was similar to that measured in exposed fish at the first sampling time but was significantly reduced in reexposed fish, suggesting the acquisition of protective immunity. Using immunohistochemistry, we detected a population of MHIIβ + cells in infected muscle that followed a pattern of abundance concordant with parasite prevalence. Infiltration of these cells into infected myocytes preceded destruction of the plasmodium and dissemination of myxospores. Dual labeling indicated a majority of these cells were CD83 + /MHIIβ + Using reverse transcription-quantitative PCR, we detected significant induction of cellular effectors, including macrophage/dendritic cells ( mhii / cd83 / mcsf ), B cells ( igm / igt ), and cytotoxic T cells ( cd8 / nkl ), in the musculature of infected fish. These data support a role for cellular effectors such as antigen-presenting cells (monocyte/macrophage and dendritic cells) along with B and T cells in the acquired protective immune response of Atlantic salmon against K. thyrsites . Copyright © 2017 American Society for Microbiology.

  12. The Astonishing Diversity of Ig Classes and B Cell Repertoires in Teleost Fish

    PubMed Central

    Fillatreau, Simon; Six, Adrien; Magadan, Susanna; Castro, Rosario; Sunyer, J. Oriol; Boudinot, Pierre

    2013-01-01

    With lymphoid tissue anatomy different than mammals, and diverse adaptations to all aquatic environments, fish constitute a fascinating group of vertebrate to study the biology of B cell repertoires in a comparative perspective. Fish B lymphocytes express immunoglobulin (Ig) on their surface and secrete antigen-specific antibodies in response to immune challenges. Three antibody classes have been identified in fish, namely IgM, IgD, and IgT, while IgG, IgA, and IgE are absent. IgM and IgD have been found in all fish species analyzed, and thus seem to be primordial antibody classes. IgM and IgD are normally co-expressed from the same mRNA through alternative splicing, as in mammals. Tetrameric IgM is the main antibody class found in serum. Some species of fish also have IgT, which seems to exist only in fish and is specialized in mucosal immunity. IgM/IgD and IgT are expressed by two different sub-populations of B cells. The tools available to investigate B cell responses at the cellular level in fish are limited, but the progress of fish genomics has started to unravel a rich diversity of IgH and immunoglobulin light chain locus organization, which might be related to the succession of genome remodelings that occurred during fish evolution. Moreover, the development of deep sequencing techniques has allowed the investigation of the global features of the expressed fish B cell repertoires in zebrafish and rainbow trout, in steady state or after infection. This review provides a description of the organization of fish Ig loci, with a particular emphasis on their heterogeneity between species, and presents recent data on the structure of the expressed Ig repertoire in healthy and infected fish. PMID:23408183

  13. Transcriptomic and physiological responses to fishmeal substitution with plant proteins in formulated feed in farmed Atlantic salmon (Salmo salar)

    PubMed Central

    2012-01-01

    Background Aquaculture of piscivorous fish is in continual expansion resulting in a global requirement to reduce the dependence on wild caught fish for generation of fishmeal and fish oil. Plant proteins represent a suitable protein alternative to fish meal and are increasingly being used in fish feed. In this study, we examined the transcriptional response of Atlantic salmon (Salmo salar) to a high marine protein (MP) or low fishmeal, higher plant protein replacement diet (PP), formulated to the same nutritional specification within previously determined acceptable maximum levels of individual plant feed materials. Results After 77 days of feeding the fish in both groups doubled in weight, however neither growth performance, feed efficiency, condition factor nor organ indices were significantly different. Assessment of histopathological changes in the heart, intestine or liver did not reveal any negative effects of the PP diet. Transcriptomic analysis was performed in mid intestine, liver and skeletal muscle, using an Atlantic salmon oligonucleotide microarray (Salar_2, Agilent 4x44K). The dietary comparison revealed large alteration in gene expression in all the tissues studied between fish on the two diets. Gene ontology analysis showed, in the mid intestine of fish fed PP, higher expression of genes involved in enteritis, protein and energy metabolism, mitochondrial activity/kinases and transport, and a lower expression of genes involved in cell proliferation and apoptosis compared to fish fed MP. The liver of fish fed PP showed a lower expression of immune response genes but a higher expression of cell proliferation and apoptosis processes that may lead to cell reorganization in this tissue. The skeletal muscle of fish fed PP vs MP was characterized by a suppression of processes including immune response, energy and protein metabolism, cell proliferation and apoptosis which may reflect a more energy efficient tissue. Conclusions The PP diet resulted in significant effects on transcription in all the 3 tissues studied. Despite of these alterations, we demonstrated that high level of plant derived proteins in a salmon diet allowed fish to grow with equal efficiency as those on a high marine protein diet, and with no difference in biometric quality parameters. PMID:22853566

  14. Transcriptomic and physiological responses to fishmeal substitution with plant proteins in formulated feed in farmed Atlantic salmon (Salmo salar).

    PubMed

    Tacchi, Luca; Secombes, Christopher J; Bickerdike, Ralph; Adler, Michael A; Venegas, Claudia; Takle, Harald; Martin, Samuel A M

    2012-08-01

    Aquaculture of piscivorous fish is in continual expansion resulting in a global requirement to reduce the dependence on wild caught fish for generation of fishmeal and fish oil. Plant proteins represent a suitable protein alternative to fish meal and are increasingly being used in fish feed. In this study, we examined the transcriptional response of Atlantic salmon (Salmo salar) to a high marine protein (MP) or low fishmeal, higher plant protein replacement diet (PP), formulated to the same nutritional specification within previously determined acceptable maximum levels of individual plant feed materials. After 77 days of feeding the fish in both groups doubled in weight, however neither growth performance, feed efficiency, condition factor nor organ indices were significantly different. Assessment of histopathological changes in the heart, intestine or liver did not reveal any negative effects of the PP diet. Transcriptomic analysis was performed in mid intestine, liver and skeletal muscle, using an Atlantic salmon oligonucleotide microarray (Salar_2, Agilent 4x44K). The dietary comparison revealed large alteration in gene expression in all the tissues studied between fish on the two diets. Gene ontology analysis showed, in the mid intestine of fish fed PP, higher expression of genes involved in enteritis, protein and energy metabolism, mitochondrial activity/kinases and transport, and a lower expression of genes involved in cell proliferation and apoptosis compared to fish fed MP. The liver of fish fed PP showed a lower expression of immune response genes but a higher expression of cell proliferation and apoptosis processes that may lead to cell reorganization in this tissue. The skeletal muscle of fish fed PP vs MP was characterized by a suppression of processes including immune response, energy and protein metabolism, cell proliferation and apoptosis which may reflect a more energy efficient tissue. The PP diet resulted in significant effects on transcription in all the 3 tissues studied. Despite of these alterations, we demonstrated that high level of plant derived proteins in a salmon diet allowed fish to grow with equal efficiency as those on a high marine protein diet, and with no difference in biometric quality parameters.

  15. Role of pathogen-derived cell wall carbohydrates and prostaglandin E2 in immune response and suppression of fish immunity by the oomycete Saprolegnia parasitica.

    PubMed

    Belmonte, Rodrigo; Wang, Tiehui; Duncan, Gary J; Skaar, Ida; Mélida, Hugo; Bulone, Vincent; van West, Pieter; Secombes, Christopher J

    2014-11-01

    Saprolegnia parasitica is a freshwater oomycete that is capable of infecting several species of fin fish. Saprolegniosis, the disease caused by this microbe, has a substantial impact on Atlantic salmon aquaculture. No sustainable treatment against saprolegniosis is available, and little is known regarding the host response. In this study, we examined the immune response of Atlantic salmon to S. parasitica infection and to its cell wall carbohydrates. Saprolegnia triggers a strong inflammatory response in its host (i.e., induction of interleukin-1β1 [IL-1β1], IL-6, and tumor necrosis factor alpha), while severely suppressing the expression of genes associated with adaptive immunity in fish, through downregulation of T-helper cell cytokines, antigen presentation machinery, and immunoglobulins. Oomycete cell wall carbohydrates were recognized by fish leukocytes, triggering upregulation of genes involved in the inflammatory response, similar to what is observed during infection. Our data suggest that S. parasitica is capable of producing prostaglandin [corrected] E2 (PGE2) in vitro, a metabolite not previously shown to be produced by oomycetes, and two proteins with homology to vertebrate enzymes known to play a role in prostaglandin biosynthesis have been identified in the oomycete genome. Exogenous PGE2 was shown to increase the inflammatory response in fish leukocytes incubated with cell wall carbohydrates while suppressing genes involved in cellular immunity (gamma interferon [IFN-γ] and the IFN-γ-inducible protein [γ-IP]). Inhibition of S. parasitica zoospore germination and mycelial growth by two cyclooxygenase inhibitors (aspirin and indomethacin) also suggests that prostaglandins may be involved in oomycete development. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Role of Pathogen-Derived Cell Wall Carbohydrates and Prostaglandin E2 in Immune Response and Suppression of Fish Immunity by the Oomycete Saprolegnia parasitica

    PubMed Central

    Belmonte, Rodrigo; Wang, Tiehui; Duncan, Gary J.; Skaar, Ida; Mélida, Hugo; Bulone, Vincent; van West, Pieter

    2014-01-01

    Saprolegnia parasitica is a freshwater oomycete that is capable of infecting several species of fin fish. Saprolegniosis, the disease caused by this microbe, has a substantial impact on Atlantic salmon aquaculture. No sustainable treatment against saprolegniosis is available, and little is known regarding the host response. In this study, we examined the immune response of Atlantic salmon to S. parasitica infection and to its cell wall carbohydrates. Saprolegnia triggers a strong inflammatory response in its host (i.e., induction of interleukin-1β1 [IL-1β1], IL-6, and tumor necrosis factor alpha), while severely suppressing the expression of genes associated with adaptive immunity in fish, through downregulation of T-helper cell cytokines, antigen presentation machinery, and immunoglobulins. Oomycete cell wall carbohydrates were recognized by fish leukocytes, triggering upregulation of genes involved in the inflammatory response, similar to what is observed during infection. Our data suggest that S. parasitica is capable of producing prostaglanding E2 (PGE2) in vitro, a metabolite not previously shown to be produced by oomycetes, and two proteins with homology to vertebrate enzymes known to play a role in prostaglandin biosynthesis have been identified in the oomycete genome. Exogenous PGE2 was shown to increase the inflammatory response in fish leukocytes incubated with cell wall carbohydrates while suppressing genes involved in cellular immunity (gamma interferon [IFN-γ] and the IFN-γ-inducible protein [γ-IP]). Inhibition of S. parasitica zoospore germination and mycelial growth by two cyclooxygenase inhibitors (aspirin and indomethacin) also suggests that prostaglandins may be involved in oomycete development. PMID:25114122

  17. Size and cell number of the utricle in kinetotically swimming fish: a parabolic aircraft flight study

    NASA Astrophysics Data System (ADS)

    Bäuerle, A.; Anken, R. H.; Hilbig, R.; Baumhauer, N.; Rahmann, H.

    2004-01-01

    Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behavior during PAFs (especially so-called spinning movements and looping responses) and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalization of gravity in teleosteans) of fish swimming kinetotically at microgravity in comparison with animals from the same batch who swam normally. On the histological level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100 μm 2), however, was reduced in kinetotic animals ( p < 0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in malformed sensory epithelia.

  18. No adaptive response is induced by chronic low-dose radiation from Ra-226 in the CHSE/F fish embryonic cell line and the HaCaT human epithelial cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaopei, E-mail: shix22@mcmaster.ca; Mothersi

    Purpose: To determine whether chronic low-dose α-particle radiation from Ra-226 over multiple cell generations can lead to an adaptive response in CHSE/F fish embryonic cells or HaCaT human epithelial cells receiving subsequent acute high-dose γ-ray radiation. Methods: CHSE/F and HaCaT cells were exposed to very low doses of Ra-226 in medium for multiple generations prior to being challenged by a higher dose γ-ray radiation. The clonogenic assay was used to test the clonogenic survival of cells with or without being pretreated by radiation from Ra-226. Results: In general, pretreatment with chronic radiation has no significant influence on the reaction ofmore » cells to the subsequent challenge radiation. Compared to unprimed cells, the change in clonogenic survival of primed cells after receiving challenge radiation is mainly due to the influence of the chronic exposure, and there's little adaptive response induced. However at several dose points, pretreatment of CHSE/F fish cells with chronic radiation resulted in a radiosensitive response to a challenge dose of γ-ray radiation, and pretreatment of HaCaT cells resulted in no effect except for a slightly radioresistant response to the challenge radiation which was not significant. Conclusion: The results suggest that chronic low-dose radiation is not effective enough to induce adaptive response. There was a difference between human and fish cells and it may be important to consider results from multiple species before making conclusions about effects of chronic or low doses of radiation in the environment. The term “radiosensitive” or “adaptive” make no judgment about whether such responses are ultimately beneficial or harmful. - Highlights: • No obvious adaptive response is induced by chronic low-dose radiation from Ra-226. • Priming radiation from Ra-226 sensitized CHSE/F cells to the challenge radiation. • Linear model is inconsistent with current work using chronic low-dose radiation.« less

  19. Adjuvant effect in aquaculture fish of cell-wall glycolipids isolated from acid-fast bacteria.

    PubMed

    Matsumoto, Megumi; Araki, Kyosuke; Nishimura, Sayaka; Kuriyama, Hideki; Nakanishi, Teruyuki; Shiozaki, Kazuhiro; Takeuchi, Yutaka; Yamamoto, Atsushi

    2018-08-01

    Mycobacteriosis and nocardiosis in cultured fish caused by infections with acid-fast bacteria, are responsible for large economic losses globally. In this study, we suggest a novel adjuvant using glycolipids that activates host immune systems. The immune response to glycolipids stimulation was investigated using ginbuna crucian carp. Ginbuna vaccinated with FKC (formalin-killed cells) + glycolipids isolated from Mycobacterium sp., upregulated inflammatory- and Th1-related cytokines, and a DTH (delayed-type hypersensitivity) response was confirmed only in ginbuna vaccinated with FKC + glycolipids. These observations suggest that glycolipids activated host innate and cell-mediated immunity. Subsequently, we evaluated the adjuvant effect of glycolipids against amberjack nocardiosis. In a challenge test, a higher survival rate was observed in amberjack vaccinated with FKC + glycolipids emulsified with conventional oil adjuvant than in fish vaccinated with FKC + oil adjuvant without glycolipids. Therefore, glycolipids potentially could be used as a practical, economical and safe adjuvant for aquaculture fish. Copyright © 2018. Published by Elsevier Ltd.

  20. Archer fish fast hunting maneuver may be guided by directionally selective retinal ganglion cells.

    PubMed

    Tsvilling, Vadim; Donchin, Opher; Shamir, Maoz; Segev, Ronen

    2012-02-01

    Archer fish are known for their unique hunting method, where one fish in a group shoots down an insect with a jet of water while all the other fish are observing the prey's motion. To reap its reward, the archer fish must reach the prey before its competitors. This requires fast computation of the direction of motion of the prey, which enables the fish to initiate a turn towards the prey with an accuracy of 99%, at about 100 ms after the prey is shot. We explored the hypothesis that direction-selective retinal ganglion cells may underlie this rapid processing. We quantified the degree of directional selectivity of ganglion cells in the archer fish retina. The cells could be categorized into three groups: sharply (5%), broadly (37%) and non-tuned (58%) directionally selective cells. To relate the electrophysiological data to the behavioral results we studied a computational model and estimated the time required to accumulate sufficient directional information to match the decision accuracy of the fish. The computational model is based on two direction-selective populations that race against each other until one reaches the threshold and drives the decision. We found that this competition model can account for the observed response time at the required accuracy. Thus, our results are consistent with the hypothesis that the fast response behavior of the archer fish relies on retinal identification of movement direction. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. Infectious pancreatic necrosis virus triggers antiviral immune response in rainbow trout red blood cells, despite not being infective

    PubMed Central

    Nombela, Ivan; Carrion, Aurora; Puente-Marin, Sara; Chico, Verónica; Mercado, Luis; Perez, Luis; Coll, Julio; Ortega-Villaizan, Maria del Mar

    2017-01-01

    Background: Some fish viruses, such as piscine orthoreovirus and infectious salmon anemia virus, target red blood cells (RBCs), replicate inside them and induce an immune response. However, the roles of RBCs in the context of infectious pancreatic necrosis virus (IPNV) infection  have not been studied yet. Methods: Ex vivo rainbow trout RBCs were obtained from peripheral blood, Ficoll purified and exposed to IPNV in order to analyze infectivity and immune response using RT-qPCR, immune fluorescence imaging, flow cytometry and western-blotting techniques. Results: IPNV could not infect RBCs; however, IPNV increased the expression of the INF1-related genes ifn-1, pkr and mx genes. Moreover, conditioned media from IPNV-exposed RBCs conferred protection against IPNV infection in CHSE-214 fish cell line. Conclusions: Despite not being infected, rainbow trout RBCs could respond to IPNV with increased expression of antiviral genes. Fish RBCs could be considered as mediators of the antiviral response and therefore targets of new strategies against fish viral infections. Further research is ongoing to completely understand the molecular mechanism that triggers this antiviral response in rainbow trout RBCs. PMID:29333244

  2. Infectious pancreatic necrosis virus triggers antiviral immune response in rainbow trout red blood cells, despite not being infective.

    PubMed

    Nombela, Ivan; Carrion, Aurora; Puente-Marin, Sara; Chico, Verónica; Mercado, Luis; Perez, Luis; Coll, Julio; Ortega-Villaizan, Maria Del Mar

    2017-01-01

    Background : Some fish viruses, such as piscine orthoreovirus and infectious salmon anemia virus, target red blood cells (RBCs), replicate inside them and induce an immune response. However, the roles of RBCs in the context of infectious pancreatic necrosis virus (IPNV) infection  have not been studied yet. Methods : Ex vivo rainbow trout RBCs were obtained from peripheral blood, Ficoll purified and exposed to IPNV in order to analyze infectivity and immune response using RT-qPCR, immune fluorescence imaging, flow cytometry and western-blotting techniques. Results : IPNV could not infect RBCs; however, IPNV increased the expression of the INF1-related genes ifn-1 , pkr and mx genes. Moreover, conditioned media from IPNV-exposed RBCs conferred protection against IPNV infection in CHSE-214 fish cell line. Conclusions : Despite not being infected, rainbow trout RBCs could respond to IPNV with increased expression of antiviral genes. Fish RBCs could be considered as mediators of the antiviral response and therefore targets of new strategies against fish viral infections. Further research is ongoing to completely understand the molecular mechanism that triggers this antiviral response in rainbow trout RBCs.

  3. Teleost Fish Mount Complex Clonal IgM and IgT Responses in Spleen upon Systemic Viral Infection

    PubMed Central

    Castro, Rosario; Jouneau, Luc; Pham, Hang-Phuong; Bouchez, Olivier; Giudicelli, Véronique; Lefranc, Marie-Paule; Quillet, Edwige; Benmansour, Abdenour; Cazals, Frédéric; Six, Adrien; Fillatreau, Simon; Sunyer, Oriol; Boudinot, Pierre

    2013-01-01

    Upon infection, B-lymphocytes expressing antibodies specific for the intruding pathogen develop clonal responses triggered by pathogen recognition via the B-cell receptor. The constant region of antibodies produced by such responding clones dictates their functional properties. In teleost fish, the clonal structure of B-cell responses and the respective contribution of the three isotypes IgM, IgD and IgT remain unknown. The expression of IgM and IgT are mutually exclusive, leading to the existence of two B-cell subsets expressing either both IgM and IgD or only IgT. Here, we undertook a comprehensive analysis of the variable heavy chain (VH) domain repertoires of the IgM, IgD and IgT in spleen of homozygous isogenic rainbow trout (Onchorhynchus mykiss) before, and after challenge with a rhabdovirus, the Viral Hemorrhagic Septicemia Virus (VHSV), using CDR3-length spectratyping and pyrosequencing of immunoglobulin (Ig) transcripts. In healthy fish, we observed distinct repertoires for IgM, IgD and IgT, respectively, with a few amplified μ and τ junctions, suggesting the presence of IgM- and IgT-secreting cells in the spleen. In infected animals, we detected complex and highly diverse IgM responses involving all VH subgroups, and dominated by a few large public and private clones. A lower number of robust clonal responses involving only a few VH were detected for the mucosal IgT, indicating that both IgM+ and IgT+ spleen B cells responded to systemic infection but at different degrees. In contrast, the IgD response to the infection was faint. Although fish IgD and IgT present different structural features and evolutionary origin compared to mammalian IgD and IgA, respectively, their implication in the B-cell response evokes these mouse and human counterparts. Thus, it appears that the general properties of antibody responses were already in place in common ancestors of fish and mammals, and were globally conserved during evolution with possible functional convergences. PMID:23326228

  4. Zebra Fish Lacking Adaptive Immunity Acquire an Antiviral Alert State Characterized by Upregulated Gene Expression of Apoptosis, Multigene Families, and Interferon-Related Genes

    PubMed Central

    García-Valtanen, Pablo; Martínez-López, Alicia; López-Muñoz, Azucena; Bello-Perez, Melissa; Medina-Gali, Regla M.; Ortega-Villaizán, María del Mar; Varela, Monica; Figueras, Antonio; Mulero, Víctoriano; Novoa, Beatriz; Estepa, Amparo; Coll, Julio

    2017-01-01

    To investigate fish innate immunity, we have conducted organ and cell immune-related transcriptomic as well as immunohistologic analysis in mutant zebra fish (Danio rerio) lacking adaptive immunity (rag1−/−) at different developmental stages (egg, larvae, and adult), before and after infection with spring viremia carp virus (SVCV). The results revealed that, compared to immunocompetent zebra fish (rag1+/+), rag1−/− acquired increased resistance to SVCV with age, correlating with elevated transcript levels of immune genes in skin/fins and lymphoid organs (head kidney and spleen). Gene sets corresponding to apoptotic functions, immune-related multigene families, and interferon-related genes were constitutively upregulated in uninfected adult rag1−/− zebra fish. Overexpression of activated CASPASE-3 in different tissues before and after infection with SVCV further confirmed increased apoptotic function in rag1−/− zebra fish. Concurrently, staining of different tissue samples with a pan-leukocyte antibody marker showed abundant leukocyte infiltrations in SVCV-infected rag1−/− fish, coinciding with increased transcript expression of genes related to NK-cells and macrophages, suggesting that these genes played a key role in the enhanced immune response of rag1−/− zebra fish to SVCV lethal infection. Overall, we present evidence that indicates that rag1−/− zebra fish acquire an antiviral alert state while they reach adulthood in the absence of adaptive immunity. This antiviral state was characterized by (i) a more rapid response to viral infection, which resulted in increased survival, (ii) the involvement of NK-cell- and macrophage-mediated transcript responses rather than B- and/or T-cell dependent cells, and (iii) enhanced apoptosis, described here for the first time, as well as the similar modulation of multigene family/interferon-related genes previously associated to fish that survived lethal viral infections. From this and other studies, it might be concluded that some of the characteristics of mammalian trained immunity are present in lower vertebrates. PMID:28243233

  5. Channel catfish response to ultraviolet-B radiation

    USGS Publications Warehouse

    Ewing, M.S.; Blazer, V.S.; Fabacher, D.L.; Little, E.E.; Kocan, K.M.

    1999-01-01

    Fingerling channel catfish Ictalurus punctatus exposed to simulated ultraviolet-B radiation at an average daily dose of 2.9 J/cm2 were quite sensitive to the radiation. After a 24-h exposure, thinning of the most dorsal epidermis frequently was accompanied by edema. Compared with epidermis of unexposed fish, mucous cells in exposed fish were less superficial and club cells were less numerous both dorsally and high on the lateral surface of the body. Sunburn cells with pyknotic nuclei were evident in the epidermis of exposed fish. Among fish exposed for 48 h, focal necrosis and sloughing of the outer epidermal layer were widespread. A methanol-extractable skin substance that is associated with resistance to sunburn in other fish species was not detected in channel catfish.

  6. Neuroepithelial cells and the hypoxia emersion response in the amphibious fish Kryptolebias marmoratus.

    PubMed

    Regan, Kelly S; Jonz, Michael G; Wright, Patricia A

    2011-08-01

    Teleost fish have oxygen-sensitive neuroepithelial cells (NECs) in the gills that appear to mediate physiological responses to hypoxia, but little is known about oxygen sensing in amphibious fish. The mangrove rivulus, Kryptolebias marmoratus, is an amphibious fish that respires via the gills and/or the skin. First, we hypothesized that both the skin and gills are sites of oxygen sensing in K. marmoratus. Serotonin-positive NECs were abundant in both gills and skin, as determined by immunohistochemical labelling and fluorescence microscopy. NECs retained synaptic vesicles and were found near nerve fibres labelled with the neuronal marker zn-12. Skin NECs were 42% larger than those of the gill, as estimated by measurement of projection area, and 45% greater in number. Moreover, for both skin and gill NECs, NEC area increased significantly (30-60%) following 7 days of exposure to hypoxia (1.5 mg l(-1) dissolved oxygen). Another population of cells containing vesicular acetylcholine transporter (VAChT) proteins were also observed in the skin and gills. The second hypothesis we tested was that K. marmoratus emerse in order to breathe air cutaneously when challenged with severe aquatic hypoxia, and this response will be modulated by neurochemicals associated chemoreceptor activity. Acute exposure to hypoxia induced fish to emerse at 0.2 mg l(-1). When K. marmoratus were pre-exposed to serotonin or acetylcholine, they emersed at a significantly higher concentration of oxygen than untreated fish. Pre-exposure to receptor antagonists (ketanserin and hexamethonium) predictably resulted in fish emersing at a lower concentration of oxygen. Taken together, these results suggest that oxygen sensing occurs at the branchial and/or cutaneous surfaces in K. marmoratus and that serotonin and acetylcholine mediate, in part, the emersion response.

  7. The skin immune response of rainbow trout, Oncorhynchus mykiss (Walbaum), associated with puffy skin disease (PSD).

    PubMed

    Christie, Lyndsay; van Aerle, Ronny; Paley, Richard K; Verner-Jeffreys, David W; Tidbury, Hannah; Green, Matthew; Feist, Stephen W; Cano, Irene

    2018-07-01

    Puffy skin disease (PSD) is an emerging skin condition which affects rainbow trout, Oncorhynchus mykiss (Walbaum). The transmission pattern of PSD suggests an infectious aetiology, however, the actual causative infectious agent(s) remain(s) unknown. In the present study, the rainbow trout epidermal immune response to PSD was characterised. Skin samples from infected fish were analysed and classified as mild, moderate or severe PSD by gross pathology and histological assessment. The level of expression of 26 immune-associated genes including cytokines, immunoglobulins and cell markers were examined by TaqMan qPCR assays. A significant up-regulation of the gene expression of C3, lysozyme, IL-1β and T-bet and down-regulation of TGFβ and TLR3 was observed in PSD fish compared to control fish. MHCI gene expression was up-regulated only in severe PSD lesions. Histological examinations of the epidermis showed a significant increase in the number of eosinophil cells and dendritic melanocytes in PSD fish. In severe lesions, mild diffuse lymphocyte infiltration was observed. IgT and CD8 positive cells were detected locally in the skin of PSD fish by in situ hybridisation (ISH), however, the gene expression of those genes was not different from control fish. Total IgM in serum of diseased animals was not different from control fish, measured by a sandwich ELISA, nor was significant up regulation of IgM gene expression in PSD lesions observed. Taken together, these results show activation of the complement pathway, up-regulation of a Th17 type response and eosinophilia during PSD. This is typical of a response to extracellular pathogens (i.e. bacteria and parasites) and allergens, commonly associated with acute dermatitis. Copyright © 2018. Published by Elsevier Ltd.

  8. Exploring Androgen-Regulated Pathways in Teleost Fish Using Transcriptomics and Proteomics

    PubMed Central

    Martyniuk, Christopher J.; Denslow, Nancy D.

    2012-01-01

    In the environment, there are aquatic pollutants that disrupt androgen signaling in fish. Laboratory and field-based experiments have utilized omics technologies to characterize the molecular mechanisms underlying androgen-receptor agonism/antagonism. Transcriptomics and proteomics studies with 17β-trenbolone, a growth-promoting pharmaceutical found in water systems surrounding cattle feed lots, and androgens such as 17α-methyltestosterone and 17α-methyldihydrotestosterone, have been conducted in ovary and liver of fish that include the fathead minnow (FHM) (Pimephales promelas), common carp (Cyprinus carpio), Qurt medaka (Oryzias latipes), and zebrafish (Danio rerio). In this mini-review, we survey recent omics studies in fish and reveal that, despite the diversity of species and tissues examined, there are common cellular responses that are observed with waterborne androgenic treatments. Recurring themes in gene ontology include apoptosis, transport and oxidation of lipids, synthesis and transport of hormones, immune response, protein metabolism, and cell proliferation. However, we also discuss other mechanisms other than androgen receptor (AR) activation, such as responses to toxicant stress, estrogen receptor agonism, aromatization of androgens into estrogens, and inhibitory feedback mechanisms by high levels of androgens that may also explain molecular responses in fish. To further explore androgen-responsive protein networks, a sub-network enrichment analysis was performed on protein data collected from the livers of female FHMs exposed to 17β-trenbolone. We construct a putative AR-regulated protein/cell process network in the liver that includes B-lymphocyte differentiation, xenobiotic clearance, low-density lipoprotein oxidation, proliferation of smooth muscle cells, and permeability of blood vessels. We demonstrate that construction of protein networks can offer insight into cell processes that are potentially regulated by androgens. PMID:22596056

  9. Size and Cell Number of the Utricle in kinetotically swimming Fish: A parabolic Aircraft Flight Study

    NASA Astrophysics Data System (ADS)

    Baeuerle, A.; Anken, R.; Baumhauer, N.; Hilbig, R.; Rahmann, H.

    Humans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behaviour during PAFs (especially so-called spinning movements and looping responses), and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalisation of gravity in teleosteans) of fish swimming kinetotically during the μg-phases in the course of PAFs in comparison with animals from the same batch who swam normally. On the light microscopical level, it was found that the total number of both sensory and supporting cells of the utricular maculae did not differ between kinetotic animals as compared to normally swimming fish. Cell density (sensory and supporting cells/100μm -μm), however, was reduced in kinetotic animals (p<0.0001), which seemed to be due to malformed epithelial cells (increase in cell size) of the kinetotic specimens. Susceptibility to kinetoses may therefore originate in asymmetric inner ear otoliths as has been suggested earlier, but also in genetically predispositioned, malformed sensory epithelia. This work was financially supported by the German Aerospace Center (DLR) e.V. (FKZ: 50 WB 9997).

  10. Immunity to betanodavirus infections of marine fish.

    PubMed

    Chen, Young-Mao; Wang, Ting-Yu; Chen, Tzong-Yueh

    2014-04-01

    Betanodaviruses cause viral nervous necrosis in numerous fish species, but some species are resistant to infection by these viruses. It is essential to fully characterize the immune responses that underlie this protective response. Complete characterization of the immune responses against nodaviruses may allow the development of methods that stimulate fish immunity and of an effective betanodavirus vaccine. Such strategies could include stimulation of specific immune system responses or blockage of factors that decrease the immune response. The innate immune system clearly provides a front-line defense, and this includes the production of interferons and other cytokines. Interferons that are released inside infected cells and that suppress viral replication may be the most ancient form of innate immunity. This review focuses on the immune responses of fish to betanodavirus infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Bioenergetic phenotypes and metabolic stress responses in cells derived from ecologically and commercially important fish species

    USDA-ARS?s Scientific Manuscript database

    As organisms intimately associated with their environment, fish are sensitive to numerous environmental insults which can negatively affect their cellular physiology. For our purposes, fish subject to intensive farming practices can experience a host of acute and chronic stressors such as changes in...

  12. Cooperative roles of fish protein kinase containing Z-DNA binding domains and double-stranded RNA-dependent protein kinase in interferon-mediated antiviral response.

    PubMed

    Liu, Ting-Kai; Zhang, Yi-Bing; Liu, Ying; Sun, Fan; Gui, Jian-Fang

    2011-12-01

    The double-stranded RNA (dsRNA)-dependent protein kinase (PKR) inhibits protein synthesis by phosphorylating eukaryotic translation initiation factor 2α (eIF2α). In fish species, in addition to PKR, there exists a PKR-like protein kinase containing Z-DNA binding domains (PKZ). However, the antiviral role of fish PKZ and the functional relationship between fish PKZ and PKR remain unknown. Here we confirmed the coexpression of fish PKZ and PKR proteins in Carassius auratus blastula embryonic (CAB) cells and identified them as two typical interferon (IFN)-inducible eIF2α kinases, both of which displayed an ability to inhibit virus replication. Strikingly, fish IFN or all kinds of IFN stimuli activated PKZ and PKR to phosphorylated eIF2α. Overexpression of both fish kinases together conferred much more significant inhibition of virus replication than overexpression of either protein, whereas morpholino knockdown of both made fish cells more vulnerable to virus infection than knockdown of either. The antiviral ability of fish PKZ was weaker than fish PKR, which correlated with its lower ability to phosphorylate eIF2α than PKR. Moreover, the independent association of fish PKZ or PKR reveals that each of them formed homodimers and that fish PKZ phosphorylated eIF2α independently on fish PKR and vice versa. These results suggest that fish PKZ and PKR play a nonredundant but cooperative role in IFN antiviral response.

  13. Interactome of E. piscicida and grouper liver proteins reveals strategies of bacterial infection and host immune response.

    PubMed

    Li, Hui; Zhu, Qing-Feng; Peng, Xuan-Xian; Peng, Bo

    2017-01-03

    The occurrence of infectious diseases is related to heterogeneous protein interactions between a host and a microbe. Therefore, elucidating the host-pathogen interplay is essential. We previously revealed the protein interactome between Edwardsiella piscicida and fish gill cells, and the present study identified the protein interactome between E. piscicida and E. drummondhayi liver cells. E. drummondhayi liver cells and bacterial pull-down approaches were used to identify E. piscicida outer membrane proteins that bind to liver cells and fish liver cell proteins that interact with bacterial cells, respectively. Eight bacterial proteins and 11 fish proteins were characterized. Heterogeneous protein-protein interactions between these bacterial cells and fish liver cells were investigated through far-Western blotting and co-immunoprecipitation. A network was constructed based on 42 heterogeneous protein-protein interactions between seven bacterial proteins and 10 fish proteins. A comparison of the new interactome with the previously reported interactome showed that four bacterial proteins overlapped, whereas all of the identified fish proteins were new, suggesting a difference between bacterial tricks for evading host immunity and the host strategy for combating bacterial infection. Furthermore, these bacterial proteins were found to regulate the expression of host innate immune-related proteins. These findings indicate that the interactome contributes to bacterial infection and host immunity.

  14. The Vibrio alginolyticus T3SS effectors, Val1686 and Val1680, induce cell rounding, apoptosis and lysis of fish epithelial cells

    PubMed Central

    Zhao, Zhe; Liu, Jinxin; Deng, Yiqin; Huang, Wen; Ren, Chunhua; Call, Douglas R.; Hu, Chaoqun

    2018-01-01

    ABSTRACT Vibrio alginolyticus is a Gram-negative bacterium that is an opportunistic pathogen of both marine animals and people. Its pathogenesis likely involves type III secretion system (T3SS) mediated induction of rapid apoptosis, cell rounding and osmotic lysis of infected eukaryotic cells. Herein, we report that effector proteins, Val1686 and Val1680 from V. alginolyticus, were responsible for T3SS-mediated death of fish cells. Val1686 is a Fic-domain containing protein that not only contributed to cell rounding by inhibiting Rho guanosine triphosphatases (GTPases), but was requisite for the induction of apoptosis because the deletion mutant (Δval1686) was severely weakened in its ability to induce cell rounding and apoptosis in fish cells. In addition, Val1686 alone was sufficient to induce cell rounding and apoptosis as evidenced by the transfection of Val1686 into fish cells. Importantly, the Fic-domain essential for cell rounding activity was equally important to activation of apoptosis of fish cells, indicating that apoptosis is a downstream event of Val1686-dependent GTPase inhibition. V. alginolyticus infection likely activates JNK and ERK pathways with sequential activation of caspases (caspase-8/-10, -9 and -3) and subsequent apoptosis. Val1680 contributed to T3SS-dependent lysis of fish cells in V. alginolyticus, but did not induce autophagy as has been reported for its homologue (VopQ) in V. parahaemolyticus. Together, Val1686 and Val1680 work together to induce apoptosis, cell rounding and cell lysis of V. alginolyticus-infected fish cells. These findings provide new insights into the mechanism of cell death caused by T3SS of V. alginolyticus. PMID:29252102

  15. Osmolality/salinity-responsive enhancers (OSREs) control induction of osmoprotective genes in euryhaline fish

    PubMed Central

    Wang, Xiaodan; Kültz, Dietmar

    2017-01-01

    Fish respond to salinity stress by transcriptional induction of many genes, but the mechanism of their osmotic regulation is unknown. We developed a reporter assay using cells derived from the brain of the tilapia Oreochromis mossambicus (OmB cells) to identify osmolality/salinity-responsive enhancers (OSREs) in the genes of O. mossambicus. Genomic DNA comprising the regulatory regions of two strongly salinity-induced genes, inositol monophosphatase 1 (IMPA1.1) and myo-inositol phosphate synthase (MIPS), was isolated and analyzed with dual luciferase enhancer trap reporter assays. We identified five sequences (two in IMPA1.1 and three in MIPS) that share a common consensus element (DDKGGAAWWDWWYDNRB), which we named “OSRE1.” Additional OSREs that were less effective in conferring salinity-induced trans-activation and do not match the OSRE1 consensus also were identified in both MIPS and IMPA1.1. Although OSRE1 shares homology with the mammalian osmotic-response element/tonicity-responsive enhancer (ORE/TonE) enhancer, the latter is insufficient to confer osmotic induction in fish. Like other enhancers, OSRE1 trans-activates genes independent of orientation. We conclude that OSRE1 is a cis-regulatory element (CRE) that enhances the hyperosmotic induction of osmoregulated genes in fish. Our study also shows that tailored reporter assays developed for OmB cells facilitate the identification of CREs in fish genomes. Knowledge of the OSRE1 motif allows affinity-purification of the corresponding transcription factor and computational approaches for enhancer screening of fish genomes. Moreover, our study enables targeted inactivation of OSRE1 enhancers, a method superior to gene knockout for functional characterization because it confines impairment of gene function to a specific context (salinity stress) and eliminates pitfalls of constitutive gene knockouts (embryonic lethality, developmental compensation). PMID:28289196

  16. Will advances in fish immunology change vaccination strategies?

    PubMed

    Secombes, Chris

    2008-10-01

    This review will discuss some of the recent advances in discovering immune genes in fish, in terms of their relevance to vaccine design and development. Particular emphasis will be placed on the many cytokine and costimulatory molecules now known, with examples drawn from the mammalian literature as to their potential value for fish vaccinology. A new area of vaccine research will also be touched upon, where efficacious responses are elicited by inhibiting the natural negative regulators of immune responses, such as Treg cell products and SOCS proteins.

  17. Influence of the Cholinergic System on the Immune Response of Teleost Fishes: Potential Model in Biomedical Research

    PubMed Central

    Toledo-Ibarra, G. A.; Rojas-Mayorquín, A. E.; Girón-Pérez, M. I.

    2013-01-01

    Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh) on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system); however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals. PMID:24324508

  18. Influence of the cholinergic system on the immune response of teleost fishes: potential model in biomedical research.

    PubMed

    Toledo-Ibarra, G A; Rojas-Mayorquín, A E; Girón-Pérez, M I

    2013-01-01

    Fishes are the phylogenetically oldest vertebrate group, which includes more than one-half of the vertebrates on the planet; additionally, many species have ecological and economic importance. Fish are the first evolved group of organisms with adaptive immune mechanisms; consequently, they are an important link in the evolution of the immune system, thus a potential model for understanding the mechanisms of immunoregulation. Currently, the influence of the neurotransmitter acetylcholine (ACh) on the cells of the immune system is widely studied in mammalian models, which have provided evidence on ACh production by immune cells (the noncholinergic neuronal system); however, these neuroimmunomodulation mechanisms in fish and lower vertebrates are poorly studied. Therefore, the objective of this review paper was to analyze the influence of the cholinergic system on the immune response of teleost fish, which could provide information concerning the possibility of bidirectional communication between the nervous and immune systems in these organisms and provide data for a better understanding of basic issues in neuroimmunology in lower vertebrates, such as bony fishes. Thus, the use of fish as a model in biomedical research may contribute to a better understanding of human diseases and diseases in other animals.

  19. Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish

    PubMed Central

    Lenkowski, Jenny R.; Raymond, Pamela A.

    2014-01-01

    Adult zebrafish generate new neurons in the brain and retina throughout life. Growth-related neurogenesis allows a vigorous regenerative response to damage, and fish can regenerate retinal neurons, including photoreceptors, and restore functional vision following photic, chemical, or mechanical destruction of the retina. Müller glial cells in fish function as radial-glial-like neural stem cells. During adult growth, Müller glial nuclei undergo sporadic, asymmetric, self-renewing mitotic divisions in the inner nuclear layer to generate a rod progenitor that migrates along the radial fiber of the Müller glia into the outer nuclear layer, proliferates, and differentiates exclusively into rod photoreceptors. When retinal neurons are destroyed, Müller glia in the immediate vicinity of the damage partially and transiently dedifferentiate, re-express retinal progenitor and stem cell markers, re-enter the cell cycle, undergo interkinetic nuclear migration (characteristic of neuroepithelial cells), and divide once in an asymmetric, self-renewing division to generate a retinal progenitor. This daughter cell proliferates rapidly to form a compact neurogenic cluster surrounding the Müller glia; these multipotent retinal progenitors then migrate along the radial fiber to the appropriate lamina to replace missing retinal neurons. Some aspects of the injury-response in fish Müller glia resemble gliosis as observed in mammals, and mammalian Müller glia exhibit some neurogenic properties, indicative of a latent ability to regenerate retinal neurons. Understanding the specific properties of fish Müller glia that facilitate their robust capacity to generate retinal neurons will inform and inspire new clinical approaches for treating blindness and visual loss with regenerative medicine. PMID:24412518

  20. Regenerating Fish Optic Nerves and a Regeneration-Like Response in Injured Optic Nerves of Adult Rabbits

    NASA Astrophysics Data System (ADS)

    Schwartz, M.; Belkin, M.; Harel, A.; Solomon, A.; Lavie, V.; Hadani, M.; Rachailovich, I.; Stein-Izsak, C.

    1985-05-01

    Regeneration of fish optic nerve (representing regenerative central nervous system) was accompanied by increased activity of regeneration-triggering factors produced by nonneuronal cells. A graft of regenerating fish optic nerve, or a ``wrap-around'' implant containing medium conditioned by it, induced a response associated with regeneration in injured optic nerves of adult rabbits (representing a nonregenerative central nervous system). This response was manifested by an increase of general protein synthesis and of selective polypeptides in the retinas and by the ability of the retina to sprout in culture.

  1. Effects of rearing temperature on immune functions in sockeye salmon (Oncorhynchus nerka)

    USGS Publications Warehouse

    Alcorn, S.W.; Murray, A.L.; Pascho, R.J.

    2002-01-01

    To determine if the defences of sockeye salmon (Oncorhynchus nerka) raised in captivity are affected by the rearing temperature or their life-cycle stage, various indices of the humoral and cellular immune functions were measured in fish reared at either 8 or 12??C for their entire life-cycle. Measures of humoral immunity included the commonly used haematological parameters, as well as measurements of complement, and lysozyme activity. Cellular assays quantified the ability of macrophages from the anterior kidney to phagocytise Staphylococcus aureus cells, or the activities of certain bactericidal systems of those cells. The T-dependent antibody response to a recombinant 57 kDa protein of Renibacterium salmoninarum was used to quantify the specific immune response. Fish were sampled during the spring and fall of their second, third and fourth years, corresponding to a period that began just before smolting and ended at sexual maturation. Fish reared at 8??C tended to have a greater percentage of phagocytic kidney macrophages during the first 2 years of sampling than the fish reared at 12??C. During the last half of the study the complement activity of the fish reared at 8??C was greater than that of the 12??C fish. Conversely, a greater proportion of the blood leucocytes were lymphocytes in fish reared at 12??C compared to the fish reared at 8??C. Fish reared at 12??C also produced a greater antibody response than those reared at 8??C. Results suggested that the immune apparatus of sockeye salmon reared at 8??C relied more heavily on the non-specific immune response, while the specific immune response was used to a greater extent when the fish were reared at 12??C. Although a seasonal effect was not detected in any of the indices measured, varying effects were observed in some measurements during sexual maturation of fish in both temperature groups. At that time there were dramatic decreases in complement activity and lymphocyte numbers. This study was unique in its scope because it was the first quantitative assessment of salmon immune functions for an entire life-cycle. ?? 2002 Elsevier Science Ltd.

  2. Stress response of Salmo salar (Linnaeus 1758) when heavily infested by Caligus rogercresseyi (Boxshall & Bravo 2000) copepodids.

    PubMed

    González, Margarita P; Vargas-Chacoff, Luis; Marín, Sandra L

    2016-02-01

    The year-round presence of ovigerous females of the parasite Caligus rogercresseyi in the fish farms of southern Chile results in a continuous source of the copepodid (infestive) stage of this louse. The short generation time in spring-summer could lead to high abundances of this copepodid, potentially leading to high infestation levels for fish. Knowing how heavy lice infestations affect Salmo salar can help determine how to time antiparasitic treatments so as to both minimize the treatment impact and reduce lice infestation levels for fish. This study aimed to describe the effects of high infestations of the copepodid stage of C. rogercresseyi on the physiology of S. salar. Two groups of S. salar were used: an infested group (75 copepodids per fish) and a control group (not infested). Sixty-five days after the first infestation, the infested fish group was re-infested at an infestation pressure of 200 copepodids per fish. Sampling was done prior to and following the second infestation, at 56 and 67 days (the latter 2 days following the second infestation). Several physiological variables were measured: cortisol (primary stress response) and glucose, proteins, amino acids, triglycerides, lactate, osmolality levels, and number and diameter of skin mucous cells (secondary stress responses). The plasma cortisol, glucose, and triglyceride levels were altered in the heavily infested fish, as was the diameter of skin mucous cells. These results suggest that heavy infestations of C. rogercresseyi lead to an acute stress response, metabolic reorganization, and increased mucus production in S. salar under heavy infestation conditions.

  3. Vaccine-induced modulation of gene expression in turbot peritoneal cells. A microarray approach.

    PubMed

    Fontenla, Francisco; Blanco-Abad, Verónica; Pardo, Belén G; Folgueira, Iria; Noia, Manuel; Gómez-Tato, Antonio; Martínez, Paulino; Leiro, José M; Lamas, Jesús

    2016-07-01

    We used a microarray approach to examine changes in gene expression in turbot peritoneal cells after injection of the fish with vaccines containing the ciliate parasite Philasterides dicentrarchi as antigen and one of the following adjuvants: chitosan-PVMMA microspheres, Freund́s complete adjuvant, aluminium hydroxide gel or Matrix-Q (Isconova, Sweden). We identified 374 genes that were differentially expressed in all groups of fish. Forty-two genes related to tight junctions and focal adhesions and/or actin cytoskeleton were differentially expressed in free peritoneal cells. The profound changes in gene expression related to cell adherence and cytoskeleton may be associated with cell migration and also with the formation of cell-vaccine masses and their attachment to the peritoneal wall. Thirty-five genes related to apoptosis were differentially expressed. Although most of the proteins coded by these genes have a proapoptotic effect, others are antiapoptotic, indicating that both types of signals occur in peritoneal leukocytes of vaccinated fish. Interestingly, many of the genes related to lymphocytes and lymphocyte activity were downregulated in the groups injected with vaccine. We also observed decreased expression of genes related to antigen presentation, suggesting that macrophages (which were abundant in the peritoneal cavity after vaccination) did not express these during the early inflammatory response in the peritoneal cavity. Finally, several genes that participate in the inflammatory response were differentially expressed, and most participated in resolution of inflammation, indicating that an M2 macrophage response is generated in the peritoneal cavity of fish one day post vaccination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Identification of immune-related genes in gill cells of Japanese eels (Anguilla japonica) in adaptation to water salinity changes.

    PubMed

    Gu, Jie; Dai, Shuya; Liu, Haitao; Cao, Quanquan; Yin, Shaowu; Lai, Keng Po; Tse, William Ka Fai; Wong, Chris Kong Chu; Shi, Haifeng

    2018-02-01

    The changes in ambient salinity influence ion and water homeostasis, hormones secretion, and immune response in fish gills. The physiological functions of hormones and ion transporters in the regulation of gill-osmoregulation have been widely studied, however the modulation of immune response under salinity changes is not determined. Using transcriptome sequencing, we obtained a comprehensive profile of osmo-responsive genes in gill cells of Japanese eel (Anguilla japonica). Herein, we applied bioinformatics analysis to identify the immune-related genes that were significantly higher expressed in gill pavement cells (PVCs) and mitochondrial-rich cells (MRCs) in freshwater (FW) than seawater (SW) adapted fish. We validated the data using the real-time qPCR, which showed a high correlation between the RNA-seq and real-time qPCR data. In addition, the immunohistochemistry results confirmed the changes of the expression of selected immune-related genes, including C-reactive protein (CRP) in PVCs, toll-like receptor 2 (TLR2) in MRCs and interleukin-1 receptor type 2 (IL-1R2) in both PVCs and MRCs. Collectively our results demonstrated that those immune-related genes respond to salinity changes, and might trigger related special signaling pathways and network. This study provides new insights into the impacts of ambient salinity changes on adaptive immune response in fish gill cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Antioxidant defense system, immune response and erythron profile modulation in gold fish, Carassius auratus, after acute manganese treatment.

    PubMed

    Aliko, Valbona; Qirjo, Mihallaq; Sula, Eldores; Morina, Valon; Faggio, Caterina

    2018-05-01

    The manganese contamination has become a global problem, recently, because it is perceived as a real threat to the human health and the environment. It is well-known that overexposure to Mn 2+ may have negative physiological effects on fish and other organisms inhabiting heavy metal polluted waters. To the best of our knowledge, studies relating with manganese effects on fish antioxidant enzyme response in the blood, immunocompetence and erythron profile alteration, are scarce. In this study, the acute sub-lethal effects of manganese on blood antioxidant response, immune status and erythron profile were determined by exposing the freshwater model organism, Carassius auratus, to two doses of this metal (3.88 ± 0.193 mg/L and 7.52 ± 0.234 mg/L Mn 2+ ) for 96 h. Significant increases in blood antioxidant enzyme activity like superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST), were observed in fish exposed to manganese. Furthermore, plasmatic glucose and cortisol levels increased, while total protein decreased significantly. White blood cell differential count revealed a significant increase in monocyte and neutrophil number and a significant decrease of lymphocyte's number in fish exposed to manganese compared with those of control group. That can be considered as a clear evidence of altered immune system. Measured of erythron profile revealed a significant increasing of cellular and nuclear alteration of red blood cells, with karryorhectic, dividing and micronucleated erythrocytes in exposed fish, indicating the cytotoxic and genotoxic effects Mn 2+ ions. Our data shown also that manganese could trigger antioxidant response, modulate immune response and induce erythron profile modification leading to eryptosis, compromising the blood oxygen carrying capacity, and overall health status in fish. This may suggest those parameters consider as useful biomarkers for monitoring effects of sub-lethal metal exposure on fish. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. An examination of the intestinal tract of Atlantic salmon, Salmo salar L., parr fed different varieties of soy and maize.

    PubMed

    Sanden, M; Berntssen, M H G; Krogdahl, A; Hemre, G-I; Bakke-McKellep, A-M

    2005-06-01

    This study was conducted to investigate the long-term effects of feeding plant products from both traditional breeding and from biotechnology on intestinal somatic indices, histology and cell proliferation in first-feeding Atlantic salmon, Salmo salar L. (initial weight 0.21 +/- 0.02 g). A standard fishmeal diet (standard fishmeal) was formulated to contain fishmeal as the sole protein source and suprex maize as the main starch source. Six experimental diets were then developed: two in which some of the fishmeal was replaced with commercially available, genetically modified Roundup Ready full-fat soybean meal (GM-soy) or commercially available, non-GM full-fat soybean meal (nGM-soy) at a level of 12.5% of the total diet, and four diets in which the suprex maize was replaced with two lines of GM-maize (Dekalb 1; D1 and Pioneer 1; P1), both products of event MON810, and their half-sibling non-GM counterparts (Dekalb 2; D2 and Pioneer 2; P2), at a level of 12.1% of total diet. Each diet was fed to fish in triplicate tanks and the experiment lasted for 8 months, during which the fish reached a final weight of 101-116 g. There was no significant effect of diet on the intestinal indices, nor were histological changes observed in the pyloric caeca or mid intestine. In the distal intestine, one of nine sampled fish fed nGM-soy showed moderate changes, two of nine sampled fish fed GM-soy showed changes, one with moderate and one with severe changes, and two of nine fish fed nGM-maize D2 had moderate changes. Using a monoclonal antibody against proliferating cell nuclear antigen (PCNA), cell proliferative responses to the experimental diets were assessed. In fish fed both soy diets, a significantly higher (P < 0.05) cell proliferation response was observed in the distal intestine concomitant with an increased localization of PCNA positive cells along the whole distal intestinal folds. The PCNA response among the nGM-soy group was significantly higher compared with all the other diet groups. In contrast, for fish exposed to dietary maize (type D) compared with fish fed the standard fishmeal, the soy-diets (GM-soy and nGM-soy) and maize (type P), a significantly lower (P < 0.05) cell proliferation response was observed in the distal intestine. Results indicated that the GM plant products investigated in this study, at about 12% inclusion level, were as safe as commercially available non-GM products, at least in terms of their effect on indices and histological parameters of the Atlantic salmon intestinal tract.

  7. Impact of thiamine deficiency on T-cell dependent and T-cell independent antibody production in lake trout

    USGS Publications Warehouse

    Ottinger, Christopher A.; Honeyfield, Dale C.; Densmore, Christine L.; Iwanowicz, Luke R.

    2012-01-01

    Lake trout Salvelinus namaycush on thiamine-replete and thiamine-depleted diets were evaluated for the effects of thiamine status on in vivo responses to the T-dependent antigen trinitophenol (TNP)-keyhole limpet hemocyanin (TNP-KLH), the T-independent antigen trinitrophenol-lipolysaccaharide (TNP-LPS), or Dulbecco's phosphate-buffered saline (DPBS; negative control fish). Plasma antibody concentrations were evaluated for possible differences in total anti-TNP activity as well as differences in response kinetics. Associations between anti-TNP activity and muscle and liver thiamine concentrations as well as ratios of muscle-to-liver thiamine to anti-TNP activity were also examined. Thiamine-depleted lake trout that were injected with TNP-LPS exhibited significantly more anti-TNP activity than thiamine-replete fish. The depleted fish injected with TNP-LPS also exhibited significantly different response kinetics relative to thiamine-replete lake trout. No differences in activity or kinetics were observed between the thiamine-replete and -depleted fish injected with TNP-KLH or in the DPBS negative controls. Anti-TNP activity in thiamine-depleted lake trout injected with TNP-KLH was positively associated with muscle thiamine pyrophosphate (thiamine diphosphate; TPP) concentration. A negative association was observed between the ratio of muscle-to-liver TPP and T-independent responses. No significant associations between anti-TNP activity and tissue thiamine concentration were observed in the thiamine-replete fish. We demonstrated that thiamine deficiency leads to alterations in both T-dependent and T-independent immune responses in lake trout.

  8. Impact of thiamine deficiency on T-cell dependent and T-cell independent antibody production in lake trout.

    PubMed

    Ottinger, Christopher A; Honeyfield, Dale C; Densmore, Christine L; Iwanowicz, Luke R

    2012-12-01

    Lake trout Salvelinus namaycush on thiamine-replete and thiamine-depleted diets were evaluated for the effects of thiamine status on in vivo responses to the T-dependent antigen trinitophenol (TNP)-keyhole limpet hemocyanin (TNP-KLH), the T-independent antigen trinitrophenol-lipolysaccaharide (TNP-LPS), or Dulbecco's phosphate-buffered saline (DPBS; negative control fish). Plasma antibody concentrations were evaluated for possible differences in total anti-TNP activity as well as differences in response kinetics. Associations between anti-TNP activity and muscle and liver thiamine concentrations as well as ratios of muscle-to-liver thiamine to anti-TNP activity were also examined. Thiamine-depleted lake trout that were injected with TNP-LPS exhibited significantly more anti-TNP activity than thiamine-replete fish. The depleted fish injected with TNP-LPS also exhibited significantly different response kinetics relative to thiamine-replete lake trout. No differences in activity or kinetics were observed between the thiamine-replete and -depleted fish injected with TNP-KLH or in the DPBS negative controls. Anti-TNP activity in thiamine-depleted lake trout injected with TNP-KLH was positively associated with muscle thiamine pyrophosphate (thiamine diphosphate; TPP) concentration. A negative association was observed between the ratio of muscle-to-liver TPP and T-independent responses. No significant associations between anti-TNP activity and tissue thiamine concentration were observed in the thiamine-replete fish. We demonstrated that thiamine deficiency leads to alterations in both T-dependent and T-independent immune responses in lake trout.

  9. Evolutionary and Functional Relationships of B Cells from Fish and Mammals: Insights into their Novel Roles in Phagocytosis and Presentation of Particulate Antigen

    PubMed Central

    Sunyer, J. Oriol

    2012-01-01

    The evolutionary origins of Ig-producing B cells appear to be linked to the emergence of fish in this planet. There are three major classes of living fish species, which from most primitive to modern they are referred to as agnathan (e.g., lampreys), Chondrichthyes (e.g., sharks), and teleost fish (e.g., rainbow trout). Agnathans do not have immunoglobulin-producing B cells, however these fish contain a subset of lymphocytes-like cells producing type B variable lymphocyte receptors (VLRBs) that appear to act as functional analogs of immunoglobulins. Chondrichthyes fish represent the most primitive living species containing bona-fide immunoglobulin-producing B cells. Their B cells are known to secrete three types of antibodies, IgM, IgW and IgNAR. Teleost fish are also called bony fish since they represent the most ancient living species containing true bones. Teleost B cells produce three different immunoglobulin isotypes, IgM, IgD and the recently described IgT. While teleost IgM is the principal player in systemic immunity, IgT appears to be a teleost immunoglobulin class specialized in mucosal immune responses. Thus far, three major B cell lineages have been described in teleost, those expressing either IgT or IgD, and the most common lineage which co-expresses IgD and IgM. A few years ago, the study of teleost fish B cells revealed for the first time in vertebrates the existence of B cell subsets with phagocytic and intracellular bactericidal capacities. This finding represented a paradigm shift as professional phagocytosis was believed to be exclusively performed by some cells of the myeloid lineage (i.e., macrophages, monocytes, neutrophils). This phagocytic capacity was also found in amphibians and reptiles, suggesting that this innate capacity was evolutionarily conserved in certain B cell subsets of vertebrates. Recently, the existence of subsets of B cells with phagocytic and bactericidal abilities have also been confirmed in mammals. Moreover, it has been shown that phagocytic B-1 B cells have a potent ability to present particulate antigen to CD4+ T cells. Thus, studies carried out originally on fish B cells have lead to the discovery of new innate and adaptive roles of B cells in mammals. This review will concentrate on the evolutionary and functional relationships of fish and mammalian B cells, focusing mainly on the newly discovered roles of these cells in phagocytosis, intracellular killing and presentation of particulate antigen. PMID:22394174

  10. Antibody-producing cells correlated to body weight in juvenile chinook salmon (Oncorhynchus tshawytscha) acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, C.B.; Maule, A.G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21?? C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures. ?? 2001 Academic Press.

  11. Antibody-producting cells correlated with body weight in juvenile Chinook salmon Oncorhynchus tshawytscha acclimated to optimal and elevated temperatures

    USGS Publications Warehouse

    Harrahy, L.N.M.; Schreck, Carl B.; Maule, Alec G.

    2001-01-01

    The immune response of juvenile chinook salmon (Oncorhynchus tshawytscha) ranging in weight from approximately 10 to 55 g was compared when the fish were acclimated to either 13 or 21° C. A haemolytic plaque assay was conducted to determine differences in the number of antibody-producing cells (APC) among fish of a similar age but different body weights. Regression analyses revealed significant increases in the number of APC with increasing body weight when fish were acclimated to either water temperature. These results emphasise the importance of standardising fish weight in immunological studies of salmonids before exploring the possible effects of acclimation temperatures.

  12. Influence of long-term social interaction on chirping behavior, steroid levels and neurogenesis in weakly electric fish.

    PubMed

    Dunlap, Kent D; Chung, Michael; Castellano, James F

    2013-07-01

    Social interactions dramatically affect the brain and behavior of animals. Studies in birds and mammals indicate that socially induced changes in adult neurogenesis participate in the regulation of social behavior, but little is known about this relationship in fish. Here, we review studies in electric fish (Apteronotus leptorhychus) that link social stimulation, changes in electrocommunication behavior and adult neurogenesis in brain regions associated with electrocommunication. Compared with isolated fish, fish living in pairs have greater production of chirps, an electrocommunication signal, during dyadic interactions and in response to standardized artificial social stimuli. Social interaction also promotes neurogenesis in the periventricular zone, which contributes born cells to the prepacemaker nucleus, the brain region that regulates chirping. Both long-term chirp rate and periventricular cell addition depend on the signal dynamics (amplitude and waveform variation), modulations (chirps) and novelty of the stimuli from the partner fish. Socially elevated cortisol levels and cortisol binding to glucocorticoid receptors mediate, at least in part, the effect of social interaction on chirping behavior and brain cell addition. In a closely related electric fish (Brachyhypopomus gauderio), social interaction enhances cell proliferation specifically in brain regions for electrocommunication and only during the breeding season, when social signaling is most elaborate. Together, these studies demonstrate a consistent correlation between brain cell addition and environmentally regulated chirping behavior across many social and steroidal treatments and suggest a causal relationship.

  13. The protective effects of taurine on acute ammonia toxicity in grass carp Ctenopharynodon idellus.

    PubMed

    Xing, Xiaodan; Li, Ming; Yuan, Lixia; Song, Meize; Ren, Qianyan; Shi, Ge; Meng, Fanxing; Wang, Rixin

    2016-09-01

    The four experimental groups were carried out to test the response of grass carp Ctenopharyngodon idella to ammonia toxicity and taurine: group 1 was injected with NaCl, group 2 was injected with ammonium acetate, group 3 was injected with ammonium acetate and taurine, and group 4 was injected taurine. Fish in group 2 had the highest ammonia content in the liver and brain, and alanine, arginine, glutamine, glutamate and glycine contents in liver. Brain alanine and glutamate of fish in group 2 were significantly higher than those of fish in group 1. Malondialdehyde content of fish in group 2 was the highest, but superoxide dismutase and glutathione activities were the lowest. Although fish in group 2 had the lowest red cell count and hemoglobin, the highest alkaline phosphatase, complement C3, C4 and total immunoglobulin contents appeared in this group. In addition, superoxide dismutase and glutathione activities, red cell count and hemoglobin of fish in group 3 were significantly higher than those of fish in group 2, but malondialdehyde content is the opposite. This study indicates that ammonia exerts its toxic effects by interfering with amino acid transport, inducing reactive oxygen species generation and malondialdehyde accumulation, leading to blood deterioration and over-activation of immune response. The exogenous taurine could mitigate the adverse effect of high ammonia level on fish physiological disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. [Response and prognosis of patients with multiple myeloma induced by PAD/TAD].

    PubMed

    Zeng, Tianmei; He, Haiyan; Shi, Haotian; Xi, Hao; Du, Juan; Zhang, Chunyang; Jiang, Hua; Fu, Weijun; Zhou, Fan; Hou, Jian

    2015-03-17

    To evaluate the impact of cytogenetic grouping and autologous stem cell transplantation on the prognosis of patients with multiple myeloma (MM) induced by PAD (velcade+epirubicin+dexamethasone) and TAD (thalidomide+epirubicin+dexamethasone). A total of 191 patients with a definite diagnosis of MM were enrolled from May 2008 to December 2013 into this prospective study. They were non-randomly induced by PAD (n = 132) or TAD (n = 59) plus autologous stem cell transplantation or chemotherapy. Response and survival rates were also analyzed between two groups. The overall response rates of PAD and TAD groups were 84.4% (108/128) and 69.5% (41/59) (P = 0.011) respectively. The very good partial remission (VGPR) rates were 70.3% (90/128) and 32.2% (19/59) (P < 0.001) and near complete remission/complete remission (nCR/CR) rates 68.0% (87/128) and 25.4% (15/59) respectively (P < 0.001). Both progression-free survival (PFS) and overall survival (OS) showed no significant inter-group difference (P = 0.223, 0.989). The survival analysis of PAD group showed that FISH high-risk group had shorter PFS and OS than FISH low-risk group (15.2 vs 19.1 months for PFS, P = 0.098; 41.2 months vs non-attaining for OS, P = 0.017). In FISH high-risk group, patients consolidated with autologous stem cell transplantation showed longer PFS than those with chemotherapy (17.8 vs 14.6 months, P = 0.029) while the OS showed no difference (P = 0.840). In FISH low-risk group, no difference were observed in PFS and OS between patients with consolidation therapies alone (P = 0.131, 0.294). The response rates are higher in patients induced by PAD than by TAD. After PAD induction, cytogenetic grouping may further distinguish the prognosis of MM patients. For FISH high-risk patients, their PFS is prolonged by autologous stem cell transplantation.

  15. Food web dynamics in a seasonally varying wetland

    USGS Publications Warehouse

    DeAngelis, D.L.; Trexler, J.C.; Donalson, D.D.

    2008-01-01

    A spatially explicit model is developed to simulate the small fish community and its underlying food web, in the freshwater marshes of the Everglades. The community is simplified to a few small fish species feeding on periphyton and invertebrates. Other compartments are detritus, crayfish, and a piscivorous fish species. This unit food web model is applied to each of the 10,000 spatial cells on a 100 x 100 pixel landscape. Seasonal variation in water level is assumed and rules are assigned for fish movement in response to rising and falling water levels, which can cause many spatial cells to alternate between flooded and dry conditions. It is shown that temporal variations of water level on a spatially heterogeneous landscape can maintain at least three competing fish species. In addition, these environmental factors can strongly affect the temporal variation of the food web caused by top-down control from the piscivorous fish.

  16. Phylogeny of lymphocyte heterogeneity: the cellular requirements for the mixed leucocyte reaction with channel catfish.

    PubMed Central

    Miller, N W; Deuter, A; Clem, L W

    1986-01-01

    Vigorous mixed leucocyte reactions (MLR) were obtained using channel catfish peripheral blood leucocytes (PBL) when equal numbers of responder and stimulator cells (5 X 10(5) cells each) were cocultured. The use of 2000 rads of X-irradiation was sufficient to block subsequent proliferative responses of the stimulator cells. The cellular requirements for channel catfish MLR responses were assessed by using three functionally distinct leucocyte subpopulations isolated from the PBL. B cells (sIg+ lymphocytes) and T cells (sIg- lymphocytes) were isolated by an indirect panning procedure employing a monoclonal antibody specific for channel catfish Ig. A third population, monocytes, was isolated or depleted by adherence to baby hamster kidney cell microexudate-coated surfaces or adherence to Sephadex G-10, respectively. The results indicated that only the T cells were able to respond in the fish MLR, with monocytes being required as accessory cells. In contrast, all three cell types could function as stimulator cells. In addition, it was observed that low in vitro culture temperatures inhibited the generation of channel catfish MLRs, thereby supporting the contention that low temperature immunosuppression in fish results from a preferential inhibition of the generation of primary T-cell responses. PMID:2944817

  17. Coding “What” and “When” in the Archer Fish Retina

    PubMed Central

    Vasserman, Genadiy; Shamir, Maoz; Ben Simon, Avi; Segev, Ronen

    2010-01-01

    Traditionally, the information content of the neural response is quantified using statistics of the responses relative to stimulus onset time with the assumption that the brain uses onset time to infer stimulus identity. However, stimulus onset time must also be estimated by the brain, making the utility of such an approach questionable. How can stimulus onset be estimated from the neural responses with sufficient accuracy to ensure reliable stimulus identification? We address this question using the framework of colour coding by the archer fish retinal ganglion cell. We found that stimulus identity, “what”, can be estimated from the responses of best single cells with an accuracy comparable to that of the animal's psychophysical estimation. However, to extract this information, an accurate estimation of stimulus onset is essential. We show that stimulus onset time, “when”, can be estimated using a linear-nonlinear readout mechanism that requires the response of a population of 100 cells. Thus, stimulus onset time can be estimated using a relatively simple readout. However, large nerve cell populations are required to achieve sufficient accuracy. PMID:21079682

  18. The effect of triploidy and vaccination on neutrophils and B-cells in the peripheral blood and head kidney of 0+ and 1+ Atlantic salmon (Salmo salar L.) post-smolts.

    PubMed

    Fraser, Thomas W K; Rønneseth, Anita; Haugland, Gyri T; Fjelldal, Per Gunnar; Mayer, Ian; Wergeland, Heidrun I

    2012-07-01

    Sterile triploid fish are being used in aquaculture to prevent early unwanted sexual maturation and the genetic interaction between wild and cultured fish; however, triploid fish are typically considered to be more susceptible to disease than diploid counterparts. Proportions of leucocytes from the head kidney and peripheral blood were identified using monoclonal antibodies and flow cytometry in triploid and diploid, vaccinated and unvaccinated, out-of-season (0+) and 1+ Atlantic salmon (Salmo salar L.) three weeks post seawater transfer. Triploid 1+ fish were significantly (P<0.05) heavier than diploid fish at the time of sampling, whereas triploid 0+ had a significantly lower condition factor than diploids. Ploidy had a significant effect on the proportion of B-cells in the blood of both 0+ and 1+ fish, and the head kidney of 1+ fish, with triploids having lower proportions of B-cells to diploids in both smolt groups. In addition, a significant ploidy×vaccination interaction effect was observed in the response of neutrophils in the blood (vaccinated diploids had a higher mean proportion than diploid unvaccinated) and B-cells in the head kidney (in vaccinated fish, triploids had a lower mean proportion than diploids) in 0+ smolts. Vaccination was found to significantly increase the proportion of B-cells in the head kidney of 1+ smolts in both ploidy. Size (fish weight) was positively correlated with neutrophil proportions in 1+ fish. Our findings are discussed in relation to the physiological differences related to ploidy. The results suggest that ploidy as well as smelting regime influences the immune system of Atlantic salmon post-smolts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Evaluation of a Dual ALK/ROS1 Fluorescent In Situ Hybridization Test in Non-Small-cell Lung Cancer.

    PubMed

    Ginestet, Florent; Lambros, Laetitia; Le Flahec, Glen; Marcorelles, Pascale; Uguen, Arnaud

    2018-05-05

    Several therapeutics targets have emerged to treat patients with non-small-cell lung carcinoma (NSCLC), with numerous biomarkers available to test for treatment choices. Minimum tumor wastage is necessary to permit the analysis of every potentially relevant target. Searching for targetable ALK and ROS1 rearrangements is now mandatory in NSCLC. In the present study, we evaluated the performance of a dual ALK/ROS1 fluorescent in situ hybridization (FISH) probe that concurrently analyzed the 2 oncogenes on a same FISH slide. We used the FlexISH ALK/ROS1 DistinguISH Probe (Zytovision, Bremerhaven, Germany) to analyze a set of 28 formalin-fixed paraffin-embedded NSCLC tumor samples enriched in tumors with ALK- and ROS1-rearranged status. The dual ALK/ROS1 FISH probe test results were fully concordant with the results of previous single ALK and ROS1 FISH tests (15 ALK and 3 ROS1 rearrangements) without any false-positive results. Dual- and single-probe FISH test results were also concordant regarding the unusual ALK FISH patterns. These included 1 sample that had negative FISH results with diffuse single 5'-ALK signals and positive ALK immunohistochemistry findings in a patient with a response to crizotinib, 2 paired samples with high percentages of ALK FISH-rearranged nuclei despite negative ALK immunohistochemistry findings, and ALK FISH-positive samples from 2 patients lacking a response to crizotinib therapy despite concordant ALK FISH and immunohistochemistry-positive results. The dual ALK/ROS1 FISH probe test is a valuable tool to search concurrently for both ALK and ROS1 rearrangements on a same FISH slide and could help to spare tumor tissue for other biomarkers tests. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Polish Scientists in Fish Immunology: A Short History.

    PubMed

    Van Muiswinkel, Willem B; Pilarczyk, Andrzej

    2015-11-11

    This review describes the role played by Polish scientists in the field of fish immunology and vaccination starting around 1900. In the early days, most publications were dealing with a description of relevant cells and organs in fish. Functional studies (phagocytosis, antibody response) came later starting in the late 1930s. Detailed papers on fish vaccination were published from 1970 onwards. Another important development was the unraveling of neuro-endocrine-immune interactions in the 1970s until today. Around 1980, it became more and more clear how important immunomodulation (stimulation or suppression by environmental factors, food components, drugs) was for fish health. The most recent findings are focusing on the discovery of genetic factors, signaling molecules, and receptors, which play a crucial role in the immune response. It can be concluded, that Polish scientists made considerable contributions to our present understanding of fish immunity and to applications in aquaculture worldwide.

  1. Polish Scientists in Fish Immunology: A Short History

    PubMed Central

    Van Muiswinkel, Willem B.; Pilarczyk, Andrzej

    2015-01-01

    This review describes the role played by Polish scientists in the field of fish immunology and vaccination starting around 1900. In the early days, most publications were dealing with a description of relevant cells and organs in fish. Functional studies (phagocytosis, antibody response) came later starting in the late 1930s. Detailed papers on fish vaccination were published from 1970 onwards. Another important development was the unraveling of neuro-endocrine-immune interactions in the 1970s until today. Around 1980, it became more and more clear how important immunomodulation (stimulation or suppression by environmental factors, food components, drugs) was for fish health. The most recent findings are focusing on the discovery of genetic factors, signaling molecules, and receptors, which play a crucial role in the immune response. It can be concluded, that Polish scientists made considerable contributions to our present understanding of fish immunity and to applications in aquaculture worldwide. PMID:26569323

  2. Na+/K+-ATPase and vacuolar-type H+-ATPase in the gills of the aquatic air-breathing fish Trichogaster microlepis in response to salinity variation.

    PubMed

    Huang, Chun-Yen; Chao, Pei-Lin; Lin, Hui-Chen

    2010-03-01

    The aquatic air-breathing fish, Trichogaster microlepis, can be found in fresh water and estuaries. We further evaluated the changes in two important osmoregulatory enzymes, Na(+)/K(+)-ATPase (NKA) and vacuolar-type H(+)-ATPase (VHA), in the gills when fish were subjected to deionized water (DW), fresh water (FW), and salinated brackish water (salinity of 10 g/L). Fish were sampled only 4 days after experimental transfer. The mortality, plasma osmolality, and Na(+) concentration were higher in 10 g/L acclimated fish, while their muscle water content decreased with elevated external salinity. The highest NKA protein abundance was found in the fish gills in 10 g/L, and NKA activity was highest in the DW and 10 g/L acclimated fish. The VHA protein levels were highest in 10 g/L, and VHA activity was highest in the DW treatment. From immunohistochemical results, we found three different cell populations: (1) NKA-immunoreactive (NKA-IR) cells, (2) both NKA-IR and HA-IR cells, and (3) HA-IR cells. NKA-IR cells in the lamellar and interlamellar regions significantly increased in DW and 10 g/L treatments. Only HA-IR cells in the lamellar region were significantly increased in DW. In the interlamellar region, there was no difference in the number of HA-IR cells among the three treated. From these results, T. microlepis exhibited osmoregulatory ability in DW and 10 g/L treatments. The cell types involved in ionic regulation were also examined with immunofluorescence staining; three ionocyte types were found which were similar to the zebrafish model. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Fish innate immunity against intestinal helminths.

    PubMed

    Dezfuli, B S; Bosi, G; DePasquale, J A; Manera, M; Giari, L

    2016-03-01

    Most individual fish in farmed and wild populations are infected with parasites. Upon dissection of fish, helminths from gut are often easily visible. Enteric helminths include several species of digeneans, cestodes, acanthocephalans and nematodes. Some insights into biology, morphology and histopathological effects of the main fish enteric helminths taxa will be described here. The immune system of fish, as that of other vertebrates, can be subdivided into specific and aspecific types, which in vivo act in concert with each other and indeed are interdependent in many ways. Beyond the small number of well-described models that exist, research focusing on innate immunity in fish against parasitic infections is lacking. Enteric helminths frequently cause inflammation of the digestive tract, resulting in a series of chemical and morphological changes in the affected tissues and inducing leukocyte migration to the site of infection. This review provides an overview on the aspecific defence mechanisms of fish intestine against helminths. Emphasis will be placed on the immune cellular response involving mast cells, neutrophils, macrophages, rodlet cells and mucous cells against enteric helminths. Given the relative importance of innate immunity in fish, and the magnitude of economic loss in aquaculture as a consequence of disease, this area deserves considerable attention and support. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Hybrid mechanosensing system to generate the polarity needed for migration in fish keratocytes

    PubMed Central

    Okimura, Chika; Iwadate, Yoshiaki

    2016-01-01

    ABSTRACT Crawling cells can generate polarity for migration in response to forces applied from the substratum. Such reaction varies according to cell type: there are both fast- and slow-crawling cells. In response to periodic stretching of the elastic substratum, the intracellular stress fibers in slow-crawling cells, such as fibroblasts, rearrange themselves perpendicular to the direction of stretching, with the result that the shape of the cells extends in that direction; whereas fast-crawling cells, such as neutrophil-like differentiated HL-60 cells and Dictyostelium cells, which have no stress fibers, migrate perpendicular to the stretching direction. Fish epidermal keratocytes are another type of fast-crawling cell. However, they have stress fibers in the cell body, which gives them a typical slow-crawling cell structure. In response to periodic stretching of the elastic substratum, intact keratocytes rearrange their stress fibers perpendicular to the direction of stretching in the same way as fibroblasts and migrate parallel to the stretching direction, while blebbistatin-treated stress fiber-less keratocytes migrate perpendicular to the stretching direction, in the same way as seen in HL-60 cells and Dictyostelium cells. Our results indicate that keratocytes have a hybrid mechanosensing system that comprises elements of both fast- and slow-crawling cells, to generate the polarity needed for migration. PMID:27124267

  5. Immunohistochemical study of inducible nitric oxide synthase and tumour necrosis factor alpha response in turbot (Scophthalmus maximus) experimentally infected with Aeromonas salmonicida subsp. salmonicida.

    PubMed

    Coscelli, Germán; Bermúdez, Roberto; Ronza, Paolo; Losada, Ana Paula; Quiroga, María Isabel

    2016-09-01

    Aeromonas salmonicida subsp. salmonicida represents one of the major threats in aquaculture, especially in salmonid fish and turbot farming. In order to fight bacterial infections, fish have an immune system composed by innate and specific cellular and humoral elements analogous to those present in mammals. However, innate immunity plays a primordial role against bacterial infections in teleost fish. Among these non-specific mechanisms, the production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) pathway and the tumour necrosis factor-alpha (TNFα) produced by mononuclear phagocytes, are two of the main immune effectors to eliminate bacterial pathogens. In this study, the distribution and kinetic of iNOS and TNFα-producing cells of kidney and spleen of turbot experimentally inoculated with A. salmonicida was assessed by immunohistochemistry. In control and challenged fish, individual iNOS(+) and TNFα(+) cells, showing a similar pattern of distribution, were detected. In challenged fish, the number of immunoreactive cells was significantly increased in the evaluated organs, as well as the melanomacrophage centres showed variable positivity for both antigens. These results indicate that A. salmonicida induced an immune response in challenged turbot, which involved the increase of the activity of iNOS and TNFα in the leukocytic population from kidney and spleen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Influence of long-term social interaction on chirping behavior, steroid levels and neurogenesis in weakly electric fish

    PubMed Central

    Dunlap, Kent D.; Chung, Michael; Castellano, James F.

    2013-01-01

    Summary Social interactions dramatically affect the brain and behavior of animals. Studies in birds and mammals indicate that socially induced changes in adult neurogenesis participate in the regulation of social behavior, but little is known about this relationship in fish. Here, we review studies in electric fish (Apteronotus leptorhychus) that link social stimulation, changes in electrocommunication behavior and adult neurogenesis in brain regions associated with electrocommunication. Compared with isolated fish, fish living in pairs have greater production of chirps, an electrocommunication signal, during dyadic interactions and in response to standardized artificial social stimuli. Social interaction also promotes neurogenesis in the periventricular zone, which contributes born cells to the prepacemaker nucleus, the brain region that regulates chirping. Both long-term chirp rate and periventricular cell addition depend on the signal dynamics (amplitude and waveform variation), modulations (chirps) and novelty of the stimuli from the partner fish. Socially elevated cortisol levels and cortisol binding to glucocorticoid receptors mediate, at least in part, the effect of social interaction on chirping behavior and brain cell addition. In a closely related electric fish (Brachyhypopomus gauderio), social interaction enhances cell proliferation specifically in brain regions for electrocommunication and only during the breeding season, when social signaling is most elaborate. Together, these studies demonstrate a consistent correlation between brain cell addition and environmentally regulated chirping behavior across many social and steroidal treatments and suggest a causal relationship. PMID:23761468

  7. Vitellogenin synthesis in primary cultures of fish liver cells as endpoint for in vitro screening of the (anti)estrogenic activity of chemical substances.

    PubMed

    Navas, José M; Segner, Helmut

    2006-10-25

    Concern over possible adverse effects of endocrine-disrupting compounds on fish has caused the development of appropriate testing methods. In vitro screening assays may provide initial information on endocrine activities of a test compound and thereby may direct and optimize subsequent testing. Induction of vitellogenin (VTG) is used as a biomarker of exposure of fish to estrogen-active substances. Since VTG induction can be measured not only in vivo but also in fish hepatocytes in vitro, the use of VTG induction response in isolated fish liver cells has been suggested as in vitro screen for identifying estrogenic-active substances. The main advantages of the hepatocyte VTG assay are considered its ability to detect effects of estrogenic metabolites, since hepatocytes in vitro remain metabolically competent, and its ability to detect both estrogenic and anti-estrogenic effects. In this article, we critically review the current knowledge on the VTG response of cultured fish hepatocytes to (anti)estrogenic substances. In particular, we discuss the sensitivity, specificity, and variability of the VTG hepatocyte assay. In addition, we review the available data on culture factors influencing basal and induced VTG production, the response to natural and synthetic estrogens as well as to xenoestrogens, the detection of indirect estrogens, and the sources of assay variability. The VTG induction in cultured fish hepatocytes is clearly influenced by culture conditions (medium composition, temperature, etc.) and culture system (hepatocyte monolayers, aggregates, liver slices, etc.). The currently available database on estrogen-mediated VTG induction in cultured teleost hepatocytes is too small to support conclusive statements on whether there exist systematic differences of the VTG response between in vitro culture systems, VTG analytical methods or fish species. The VTG hepatocyte assay detects sensitively natural and synthetic estrogens, whereas the response to xenoestrogens appears to be more variable. The detection of weak estrogens can be critical due to the overshadow with cytotoxic concentrations. Moreover, the VTG hepatocyte assay is able to detect antiestrogens as well as indirect estrogens, i.e substances which require metabolic activation to induce an estrogenic response. Nevertheless, more chemicals need to be analysed to corroborate this statement. It will be necessary to establish standardized protocols to minimize assay variability, and to develop a set of pass-fail criteria as well as cut-offs for designating positive and negative responses.

  8. Role of Viral Hemorrhagic Septicemia Virus (VHSV) Matrix (M) Protein in Suppressing Host Transcription

    USDA-ARS?s Scientific Manuscript database

    Viral Hemorrhagic Septicemia virus (VHSV) is a pathogenic fish rhabdovirus found in discrete locales throughout the northern hemisphere. VHSV infection of fish cells leads to upregulation of the host's virus detection response, but the virus quickly suppresses interferon (IFN) production and antivir...

  9. Evidence that histamine is the causative toxin of scombroid-fish poisoning.

    PubMed

    Morrow, J D; Margolies, G R; Rowland, J; Roberts, L J

    1991-03-14

    The highest morbidity worldwide from fish poisoning results from the ingestion of spoiled scombroid fish, such as tuna and mackerel, and its cause is not clear. Histamine could be responsible, because spoiled scombroid fish contain large quantities of histamine. Whether histamine is the causative toxin, however, has remained in question. To address this issue, we investigated whether histamine homeostasis is altered in poisoned people. The urinary excretion of histamine and its metabolite, N-methylhistamine, was measured in three persons who had scombroid-fish poisoning (scombrotoxism) after the ingestion of marlin. We measured 9 alpha, 11 beta-dihydroxy-15-oxo-2,3,18,19-tetranorprost-5-ene-1,20-dioic acid (PGD-M), the principal metabolite of prostaglandin D2, a mast-cell secretory product, to assess whether mast cells had been activated to release histamine. The fish contained high levels of histamine (842 to 2503 mumol per 100 g of tissue). Symptoms of scombrotoxism--flushing and headache--began 10 to 30 minutes after the ingestion of fish. In urine samples collected one to four hours after fish ingestion, the levels of histamine and N-methylhistamine were 9 to 20 times and 15 to 20 times the normal mean, respectively. During the subsequent 24 hours, the levels fell to 4 to 15 times and 4 to 11 times the normal values. Levels of both were normal 14 days later. PGD-M excretion was not increased at any time. Two persons treated with diphenhydramine had prompt amelioration of symptoms. Scombroid-fish poisoning is associated with urinary excretion of histamine in quantities far exceeding those required to produce toxicity. The histamine is most likely derived from the spoiled fish. These results identify histamine as the toxin responsible for scombroid-fish poisoning.

  10. Maternal exposure to fish oil primes offspring to harbor intestinal pathobionts associated with altered immune cell balance.

    PubMed

    Gibson, D L; Gill, S K; Brown, K; Tasnim, N; Ghosh, S; Innis, S; Jacobson, K

    2015-01-01

    Our previous studies revealed that offspring from rat dams fed fish oil (at 8% and 18% energy), developed impaired intestinal barriers sensitizing the colon to exacerbated injury later in life. To discern the mechanism, we hypothesized that in utero exposure to fish oil, rich in n-3 polyunsaturated fatty acid (PUFA), caused abnormal intestinal reparative responses to mucosal injury through differences in intestinal microbiota and the presence of naïve immune cells. To identify such mechanisms, gut microbes and naïve immune cells were compared between rat pups born to dams fed either n-6 PUFA, n-3 PUFA or breeder chow. Maternal exposure to either of the PUFA rich diets altered the development of the intestinal microbiota with an overall reduction in microbial density. Using qPCR, we found that each type of PUFA differentially altered the major gut phyla; fish oil increased Bacteroidetes and safflower oil increased Firmicutes. Both PUFA diets reduced microbes known to dominate the infant gut like Enterobacteriaceae and Bifidobacteria spp. when compared to the chow group. Uniquely, maternal fish oil diets resulted in offspring showing blooms of opportunistic pathogens like Bilophila wadsworthia, Enterococcus faecium and Bacteroides fragilis in their gut microbiota. As well, fish oil groups showed a reduction in colonic CD8+ T cells, CD4+ Foxp3+ T cells and arginase+ M2 macrophages. In conclusion, fish oil supplementation in pharmacological excess, at 18% by energy as shown in this study, provides an example where excess dosing in utero can prime offspring to harbor intestinal pathobionts and alter immune cell homeostasis.

  11. Stress response of Salmo salar (Linnaeus 1758) facing low abundance infestation of Caligus rogercresseyi (Boxshall & Bravo 2000), an object in the tank, and handling.

    PubMed

    González Gómez, M P; Marín Arribas, S L; Vargas-Chacoff, L

    2016-07-01

    This study looks at how low infestation loads of adult Caligus rogercresseyi and other stressors affect the physiology of Salmo salar. Experimental fish groups were with (infested) or without (control) exposure to the parasite. The parasite cohort was followed for 78 days post-infestation (dpi), and only adult lice were observed. Additional stressors were applied at 60 and 75 dpi. The analysis included measurements of fish physiology and weight. Low-level infestations by adult C. rogercresseyi for more than 50 dpi induced moderate stress in S. salar as well as a high energy demand and increased small skin mucous cells. Threshold lice loads were identified, and above those loads, a high stress response was observed. Additional stressors altered fish physiology, inducing downregulation of the cortisol response after the first stressor and upregulation after the second stressor, but infested fish responded more strongly. Parasitism by C. rogercresseyi is energetically demanding, affecting the primary and secondary responses (e.g. cortisol and glucose levels), as well as the tertiary response (fish weight). © 2015 John Wiley & Sons Ltd.

  12. Bacterial DNA indicated as an important inducer of fish cathelicidins.

    PubMed

    Maier, Valerie Helene; Schmitt, Clemens Nikolaus Zeno; Gudmundsdottir, Sigridur; Gudmundsson, Gudmundur Hrafn

    2008-04-01

    Cathelicidins are antimicrobial peptides indicated as important in the control of the natural microflora as well as in the fight against bacterial invasion in mammals. Little is known about cathelicidins in fish and here the Chinook salmon (Oncorhynchus tshawytscha) embryo cell line (CHSE-214) was used as a model system to study the expression of cathelicidins due to fish pathogenic bacteria. The cDNA of cathelicidin from CHSE-214 cells (csCath) was cloned and shown to be closely related to gene 2 of both rainbow trout and Atlantic salmon. The deducted amino acid sequence showed highest sequence identity to rtCath2 with 95% and 72% for the cathelin and the antibacterial part, respectively. Cathelicidin gene expression was studied and various Gram positive and Gram negative bacteria caused the upregulation of the gene (csCath). Bacterial DNA and protein were shown important for the induction of cathelicidin expression in these cells. LPS (Escherichia coli) also causes the upregulation of cathelicidins, but digestion of the LPS with DNase I before incubation of the cells, totally abolished the upregulation of cathelicidin and suggests DNA contamination in the LPS to be the trigger for this effect. These results could explain the limited responsiveness of fish cells towards pure LPS and confirm previous suggestions that fish cells are less sensitive to LPS than mammalian cells.

  13. Two Virus-Induced MicroRNAs Known Only from Teleost Fishes Are Orthologues of MicroRNAs Involved in Cell Cycle Control in Humans

    PubMed Central

    Schyth, Brian Dall; Bela-ong, Dennis Berbulla; Jalali, Seyed Amir Hossein; Kristensen, Lasse Bøgelund Juel; Einer-Jensen, Katja; Pedersen, Finn Skou; Lorenzen, Niels

    2015-01-01

    MicroRNAs (miRNAs) are ~22 base pair-long non-coding RNAs which regulate gene expression in the cytoplasm of eukaryotic cells by binding to specific target regions in mRNAs to mediate transcriptional blocking or mRNA cleavage. Through their fundamental roles in cellular pathways, gene regulation mediated by miRNAs has been shown to be involved in almost all biological phenomena, including development, metabolism, cell cycle, tumor formation, and host-pathogen interactions. To address the latter in a primitive vertebrate host, we here used an array platform to analyze the miRNA response in rainbow trout (Oncorhynchus mykiss) following inoculation with the virulent fish rhabdovirus Viral hemorrhagic septicaemia virus. Two clustered miRNAs, miR-462 and miR-731 (herein referred to as miR-462 cluster), described only in teleost fishes, were found to be strongly upregulated, indicating their involvement in fish-virus interactions. We searched for homologues of the two teleost miRNAs in other vertebrate species and investigated whether findings related to ours have been reported for these homologues. Gene synteny analysis along with gene sequence conservation suggested that the teleost fish miR-462 and miR-731 had evolved from the ancestral miR-191 and miR-425 (herein called miR-191 cluster), respectively. Whereas the miR-462 cluster locus is found between two protein-coding genes (intergenic) in teleost fish genomes, the miR-191 cluster locus is found within an intron of a protein-coding gene (intragenic) in the human genome. Interferon (IFN)-inducible and immune-related promoter elements found upstream of the teleost miR-462 cluster locus suggested roles in immune responses to viral pathogens in fish, while in humans, the miR-191 cluster functionally associated with cell cycle regulation. Stimulation of fish cell cultures with the IFN inducer poly I:C accordingly upregulated the expression of miR-462 and miR-731, while no stimulatory effect on miR-191 and miR-425 expression was observed in human cell lines. Despite high sequence conservation, evolution has thus resulted in different regulation and presumably also different functional roles of these orthologous miRNA clusters in different vertebrate lineages. PMID:26207374

  14. Molecular cloning and characterization of interferon regulatory factor 7 (IRF-7) in Japanese flounder, Paralichthys olivaceus.

    PubMed

    Hu, Guobin; Yin, Xiangyan; Xia, Jun; Dong, Xianzhi; Zhang, Jianyie; Liu, Qiuming

    2010-12-01

    Interferon regulatory factor (IRF) 7 in mammals is known to be a key player in regulating the type I interferon (IFN) response to viral infection as a transcription activator of IFNs and IFN-stimulated genes (ISGs). In this study, a full-length cDNA of Japanese flounder, Paralichthys olivaceus, (Po)IRF-7 was cloned and characterized. PoIRF-7 is 2032 bp in length, with an open reading frame (ORF) of 1293 bp that encodes 430 amino acid residues. The putative amino acid sequence shows the highest homology to fish IRF-7 with 51.5-76.3% identity and possesses a DNA-binding domain (DBD), an IRF association domain (IAD) and a serine-rich domain of vertebrate IRF-7. In addition, the tryptophan cluster of PoIRF-7 DBD consists of only four tryptophans, which is a characteristic unique to all fish IRF-7 members. The PoIRF-7 was expressed constitutively in all tested tissues of healthy flounders, with high levels in head kidney, spleen, gill, intestine and skin, and moderately expressed in FG9307 cells, a flounder gill epithelial cell line. Using a luciferase assay, PoIRF-7 was proved to be capable of activating fish type I IFN promoter in FG9307 cells. A quantitative real time PCR assay was employed to monitor the gene expression of PoIRF-7 and Mx in FG9307 cells and flounder head kidney and gill. Both genes were up-regulated by polyinosinic:polycytidylic acid (poly I:C) and lymphocystis disease virus (LCDV) though to a much lesser extent in FG9307 cells. Further, their transcription kinetics were similar in fish organs but different in FG9307 cells. These data provide insights into the functions of PoIRF-7 and imply a difference in PoIRF-7-related signaling pathways in antiviral response between cultured cells and live fish. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. The distribution of mitochondria-rich cells in the gills of air-breathing fishes.

    PubMed

    Lin, Hui-Chen; Sung, Wen-Ting

    2003-01-01

    Respiration and ion regulation are the two principal functions of teleostean gills. Mainly found in the gill filaments of fish, mitochondria-rich cells (MRCs) proliferate to increase the ionoregulatory capacity of the gill in response to osmotic challenges. Gill lamellae consist mostly of pavement cells, which are the major site of gas exchange. Although lamellar MRCs have been reported in some fish species, there has been little discussion of which fish species are likely to have lamellar MRCs. In this study, we first compared the number of filament and lamellar MRCs in air-breathing and non-air-breathing fish species acclimated to freshwater and 5 g NaCl L(-1) conditions. An increase in filament MRCs was found in both air-breathing and non-air-breathing fish acclimated to freshwater. Lamellar MRCs were found only in air-breathing species, but the number of lamellar MRCs did not change significantly with water conditions, except in Periophthalmus cantonensis. Next, we surveyed the distribution of MRCs in the gills of 66 fish species (including 29 species from the previous literature) from 12 orders, 28 families, and 56 genera. Our hypothesis that lamellar MRCs are more likely to be found in air-breathing fishes was supported by a significant association between the presence of lamellar MRCs and the mode of breathing at three levels of systematic categories (species, genus, and family). Based on this integrative view of the multiple functions of fish gills, we should reexamine the role of MRCs in freshwater fish.

  16. Fish oil supplementation in early infancy modulates developing infant immune responses.

    PubMed

    D'Vaz, N; Meldrum, S J; Dunstan, J A; Lee-Pullen, T F; Metcalfe, J; Holt, B J; Serralha, M; Tulic, M K; Mori, T A; Prescott, S L

    2012-08-01

    Maternal fish oil supplementation during pregnancy has been associated with altered infant immune responses and a reduced risk of infant sensitization and eczema. To examine the effect of early postnatal fish oil supplementation on infant cellular immune function at 6 months of age in the context of allergic disease. In a double-blind randomized controlled trial (ACTRN12606000281594), 420 infants of high atopic risk received fish oil [containing 280 mg docosahexaenoic acid (DHA) and 110 mg eicosapentanoic acid (EPA)] or control oil daily from birth to 6 months. One hundred and twenty infants had blood collected at 6 months of age. Fatty acid levels, induced cytokine responses, T cell subsets and monocyte HLA-DR expression were assessed at 6 months of age. Infant allergies were assessed at 6 and 12 months of age. DHA and EPA levels were significantly higher in the fish oil group and erythrocyte arachidonic acid (AA) levels were lower (all P < 0.05). Infants in the fish oil group had significantly lower IL-13 responses (P = 0.036) to house dust mite (HDM) and higher IFNγ (P = 0.035) and TNF (P = 0.017) responses to phytohaemaglutinin (PHA). Infants with relatively high DHA levels had lower Th2 responses to allergens including lower IL-13 to β-lactoglobulin (BLG) (P = 0.020), and lower IL-5 to BLG (P = 0.045). Postnatal fish oil supplementation increased infant n-3 polyunsaturated fatty acid (PUFA) levels and associated with lowered allergen-specific Th2 responses and elevated polyclonal Th1 responses. Our results add to existing evidence of n-3 PUFA having immunomodulatory properties that are potentially allergy-protective. © 2012 Blackwell Publishing Ltd.

  17. Comprehensive Genomic Profiling Identifies a Subset of Crizotinib-Responsive ALK-Rearranged Non-Small Cell Lung Cancer Not Detected by Fluorescence In Situ Hybridization

    PubMed Central

    Hensing, Thomas; Schrock, Alexa B.; Allen, Justin; Sanford, Eric; Gowen, Kyle; Kulkarni, Atul; He, Jie; Suh, James H.; Lipson, Doron; Elvin, Julia A.; Yelensky, Roman; Chalmers, Zachary; Chmielecki, Juliann; Peled, Nir; Klempner, Samuel J.; Firozvi, Kashif; Frampton, Garrett M.; Molina, Julian R.; Menon, Smitha; Brahmer, Julie R.; MacMahon, Heber; Nowak, Jan; Ou, Sai-Hong Ignatius; Zauderer, Marjorie; Ladanyi, Marc; Zakowski, Maureen; Fischbach, Neil; Ross, Jeffrey S.; Stephens, Phil J.; Miller, Vincent A.; Wakelee, Heather

    2016-01-01

    Introduction. For patients with non-small cell lung cancer (NSCLC) to benefit from ALK inhibitors, sensitive and specific detection of ALK genomic rearrangements is needed. ALK break-apart fluorescence in situ hybridization (FISH) is the U.S. Food and Drug Administration approved and standard-of-care diagnostic assay, but identification of ALK rearrangements by other methods reported in NSCLC cases that tested negative for ALK rearrangements by FISH suggests a significant false-negative rate. We report here a large series of NSCLC cases assayed by hybrid-capture-based comprehensive genomic profiling (CGP) in the course of clinical care. Materials and Methods. Hybrid-capture-based CGP using next-generation sequencing was performed in the course of clinical care of 1,070 patients with advanced lung cancer. Each tumor sample was evaluated for all classes of genomic alterations, including base-pair substitutions, insertions/deletions, copy number alterations and rearrangements, as well as fusions/rearrangements. Results. A total of 47 patients (4.4%) were found to harbor ALK rearrangements, of whom 41 had an EML4-ALK fusion, and 6 had other fusion partners, including 3 previously unreported rearrangement events: EIF2AK-ALK, PPM1B-ALK, and PRKAR1A-ALK. Of 41 patients harboring ALK rearrangements, 31 had prior FISH testing results available. Of these, 20 were ALK FISH positive, and 11 (35%) were ALK FISH negative. Of the latter 11 patients, 9 received crizotinib based on the CGP results, and 7 achieved a response with median duration of 17 months. Conclusion. Comprehensive genomic profiling detected canonical ALK rearrangements and ALK rearrangements with noncanonical fusion partners in a subset of patients with NSCLC with previously negative ALK FISH results. In this series, such patients had durable responses to ALK inhibitors, comparable to historical response rates for ALK FISH-positive cases. Implications for Practice: Comprehensive genomic profiling (CGP) that includes hybrid capture and specific baiting of intron 19 of ALK is a highly sensitive, alternative method for identification of drug-sensitive ALK fusions in patients with non-small cell lung cancer (NSCLC) who had previously tested negative using standard ALK fluorescence in situ hybridization (FISH) diagnostic assays. Given the proven benefit of treatment with crizotinib and second-generation ALK inhibitors in patients with ALK fusions, CGP should be considered in patients with NSCLC, including those who have tested negative for other alterations, including negative results using ALK FISH testing. PMID:27245569

  18. Comprehensive Genomic Profiling Identifies a Subset of Crizotinib-Responsive ALK-Rearranged Non-Small Cell Lung Cancer Not Detected by Fluorescence In Situ Hybridization.

    PubMed

    Ali, Siraj M; Hensing, Thomas; Schrock, Alexa B; Allen, Justin; Sanford, Eric; Gowen, Kyle; Kulkarni, Atul; He, Jie; Suh, James H; Lipson, Doron; Elvin, Julia A; Yelensky, Roman; Chalmers, Zachary; Chmielecki, Juliann; Peled, Nir; Klempner, Samuel J; Firozvi, Kashif; Frampton, Garrett M; Molina, Julian R; Menon, Smitha; Brahmer, Julie R; MacMahon, Heber; Nowak, Jan; Ou, Sai-Hong Ignatius; Zauderer, Marjorie; Ladanyi, Marc; Zakowski, Maureen; Fischbach, Neil; Ross, Jeffrey S; Stephens, Phil J; Miller, Vincent A; Wakelee, Heather; Ganesan, Shridar; Salgia, Ravi

    2016-06-01

    For patients with non-small cell lung cancer (NSCLC) to benefit from ALK inhibitors, sensitive and specific detection of ALK genomic rearrangements is needed. ALK break-apart fluorescence in situ hybridization (FISH) is the U.S. Food and Drug Administration approved and standard-of-care diagnostic assay, but identification of ALK rearrangements by other methods reported in NSCLC cases that tested negative for ALK rearrangements by FISH suggests a significant false-negative rate. We report here a large series of NSCLC cases assayed by hybrid-capture-based comprehensive genomic profiling (CGP) in the course of clinical care. Hybrid-capture-based CGP using next-generation sequencing was performed in the course of clinical care of 1,070 patients with advanced lung cancer. Each tumor sample was evaluated for all classes of genomic alterations, including base-pair substitutions, insertions/deletions, copy number alterations and rearrangements, as well as fusions/rearrangements. A total of 47 patients (4.4%) were found to harbor ALK rearrangements, of whom 41 had an EML4-ALK fusion, and 6 had other fusion partners, including 3 previously unreported rearrangement events: EIF2AK-ALK, PPM1B-ALK, and PRKAR1A-ALK. Of 41 patients harboring ALK rearrangements, 31 had prior FISH testing results available. Of these, 20 were ALK FISH positive, and 11 (35%) were ALK FISH negative. Of the latter 11 patients, 9 received crizotinib based on the CGP results, and 7 achieved a response with median duration of 17 months. Comprehensive genomic profiling detected canonical ALK rearrangements and ALK rearrangements with noncanonical fusion partners in a subset of patients with NSCLC with previously negative ALK FISH results. In this series, such patients had durable responses to ALK inhibitors, comparable to historical response rates for ALK FISH-positive cases. Comprehensive genomic profiling (CGP) that includes hybrid capture and specific baiting of intron 19 of ALK is a highly sensitive, alternative method for identification of drug-sensitive ALK fusions in patients with non-small cell lung cancer (NSCLC) who had previously tested negative using standard ALK fluorescence in situ hybridization (FISH) diagnostic assays. Given the proven benefit of treatment with crizotinib and second-generation ALK inhibitors in patients with ALK fusions, CGP should be considered in patients with NSCLC, including those who have tested negative for other alterations, including negative results using ALK FISH testing. ©AlphaMed Press.

  19. Developing immune function assays to monitor fish health in field studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C.D.; Kergosien, D.H.; Adams, S.M.

    1995-12-31

    The East Fork Poplar Creek system, a 24km long stream in TN that receives point source discharges of contaminants near its headwaters, was chosen to evaluate a field approach to fish immunotoxicology. Previous studies in this stream have shown that cytochrome P4501A activity, liver somatic indices, macrophage aggregates, and parasitic liver lesions are significantly elevated in sunfish with the degree of impact decreasing with distance from the contaminant source. Red-breasted sunfish were collected between May 23 and June 3 of 1994. Captured fish were anesthetized in MS-222 and processed by two different methods. One group was sacrificed at each samplingmore » station, weights and lengths recorded, and the spleen and anterior kidney tissues removed and placed in buffer on ice. The other group was kept in MS-222 for 2 hr and transported to the laboratory. The spleen and anterior kidney from each fish were then prepared as a single cell suspension and shipped overnight to Mississippi State University. Cells were then washed by centrifugation and resuspended in appropriate media to evaluate PMA-stimulated phagocyte oxidative burst and non-specific cytotoxic cell (NCC) activity against K562 tumor targets. Oxidative burst responses were dramatically suppressed in both groups at stations near the headwaters but returned to reference levels further downstream. There were no differences between treatment groups at each station. NCC activities did not follow gradient-response patterns observed with phagocyte oxidative burst data and there were inconsistent differences between treatment groups at each station. These data show that simple immune function assays, such as phagocyte oxidative burst responses, can be used as an ancillary biomarker in fish health monitoring.« less

  20. Hypercapnia and low pH induce neuroepithelial cell proliferation and emersion behaviour in the amphibious fish Kryptolebias marmoratus.

    PubMed

    Robertson, Cayleih E; Turko, Andy J; Jonz, Michael G; Wright, Patricia A

    2015-10-01

    Aquatic hypercapnia may have helped to drive ancestral vertebrate invasion of land. We tested the hypothesis that amphibious fishes sense and respond to elevated aquatic PCO2 by behavioural avoidance mechanisms, and by morphological changes at the chemoreceptor level. Mangrove rivulus (Kryptolebias marmoratus) were exposed to 1 week of normocapnic control water (pH 8), air, hypercapnia (5% CO2, pH 6.8) or isocapnic acidosis (pH 6.8). We found that the density of CO2/H(+) chemoreceptive neuroepithelial cells (NECs) was increased in hypercapnia or isocapnic acidosis-exposed fish. Projection area (a measure of cell size) was unchanged. Acute exposure to progressive hypercapnia induced the fish to emerse (leave water) at water pH values ∼6.1, whereas addition of HCl to water caused a more variable response with a lower pH threshold (∼pH 5.5). These results support our hypothesis and suggest that aquatic hypercapnia provides an adequate stimulus for extant amphibious fishes to temporarily transition from aquatic to terrestrial habitats. © 2015. Published by The Company of Biologists Ltd.

  1. Unique Features of Fish Immune Repertoires: Particularities of Adaptive Immunity Within the Largest Group of Vertebrates

    PubMed Central

    Sunyer, Oriol J.

    2016-01-01

    Fishes (i.e., teleost fishes) are the largest group of vertebrates. Although their immune system is based on the fundamental receptors, pathways, and cell types found in all groups of vertebrates, fishes show a diversity of particular features that challenge some classical concepts of immunology. In this chapter, we discuss the particularities of fish immune repertoires from a comparative perspective. We examine how allelic exclusion can be achieved when multiple Ig loci are present, how isotypic diversity and functional specificity impact clonal complexity, how loss of the MHC class II molecules affects the cooperation between T and B cells, and how deep sequencing technologies bring new insights about somatic hypermutation in the absence of germinal centers. The unique coexistence of two distinct B-cell lineages respectively specialized in systemic and mucosal responses is also discussed. Finally, we try to show that the diverse adaptations of immune repertoires in teleosts can help in understanding how somatic adaptive mechanisms of immunity evolved in parallel in different lineages across vertebrates. PMID:26537384

  2. In vivo regulation of colonic cell proliferation, differentiation, apoptosis, and P27Kip1 by dietary fish oil and butyrate in rats.

    PubMed

    Hong, Mee Young; Turner, Nancy D; Murphy, Mary E; Carroll, Raymond J; Chapkin, Robert S; Lupton, Joanne R

    2015-11-01

    We have shown that dietary fish oil is protective against experimentally induced colon cancer, and the protective effect is enhanced by coadministration of pectin. However, the underlying mechanisms have not been fully elucidated. We hypothesized that fish oil with butyrate, a pectin fermentation product, protects against colon cancer initiation by decreasing cell proliferation and increasing differentiation and apoptosis through a p27(Kip1)-mediated mechanism. Rats were provided diets of corn or fish oil, with/without butyrate, and terminated 12, 24, or 48 hours after azoxymethane (AOM) injection. Proliferation (Ki-67), differentiation (Dolichos Biflorus Agglutinin), apoptosis (TUNEL), and p27(Kip1) (cell-cycle mediator) were measured in the same cell within crypts in order to examine the coordination of cell cycle as a function of diet. DNA damage (N(7)-methylguanine) was determined by quantitative IHC analysis. Dietary fish oil decreased DNA damage by 19% (P = 0.001) and proliferation by 50% (P = 0.003) and increased differentiation by 56% (P = 0.039) compared with corn oil. When combined with butyrate, fish oil enhanced apoptosis 24 hours after AOM injection compared with a corn oil/butyrate diet (P = 0.039). There was an inverse relationship between crypt height and apoptosis in the fish oil/butyrate group (r = -0.53, P = 0.040). The corn oil/butyrate group showed a positive correlation between p27(Kip1) expression and proliferation (r = 0.61, P = 0.035). These results indicate the in vivo effect of butyrate on apoptosis and proliferation is dependent on dietary lipid source. These results demonstrate the presence of an early coordinated colonocyte response by which fish oil and butyrate protects against colon tumorigenesis. ©2015 American Association for Cancer Research.

  3. The sensitivity of Turing self-organization to biological feedback delays: 2D models of fish pigmentation.

    PubMed

    Gaffney, E A; Lee, S Seirin

    2015-03-01

    Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing's ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing's model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106: , 8429-8434; Yamaguchi et al., 2007, PNAS, 104: , 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  4. Sensory processing and corollary discharge effects in posterior caudal lobe Purkinje cells in a weakly electric mormyrid fish.

    PubMed

    Alviña, Karina; Sawtell, Nathaniel B

    2014-07-15

    Although it has been suggested that the cerebellum functions to predict the sensory consequences of motor commands, how such predictions are implemented in cerebellar circuitry remains largely unknown. A detailed and relatively complete account of predictive mechanisms has emerged from studies of cerebellum-like sensory structures in fish, suggesting that comparisons of the cerebellum and cerebellum-like structures may be useful. Here we characterize electrophysiological response properties of Purkinje cells in a region of the cerebellum proper of weakly electric mormyrid fish, the posterior caudal lobe (LCp), which receives the same mossy fiber inputs and projects to the same target structures as the electrosensory lobe (ELL), a well-studied cerebellum-like structure. We describe patterns of simple spike and climbing fiber activation in LCp Purkinje cells in response to motor corollary discharge, electrosensory, and proprioceptive inputs and provide evidence for two functionally distinct Purkinje cell subtypes within LCp. Protocols that induce rapid associative plasticity in ELL fail to induce plasticity in LCp, suggesting differences in the adaptive functions of the two structures. Similarities and differences between LCp and ELL are discussed in light of these results. Copyright © 2014 the American Physiological Society.

  5. Behavioral characterization of the alarm reaction and anxiolytic-like effect of acute treatment with fluoxetine in piauçu fish.

    PubMed

    Barbosa Júnior, Augusto; Alves, Fabiana Luca; Pereira, Aparecida de Sousa Fim; Ide, Liliam Midori; Hoffmann, Anette

    2012-02-01

    In Ostariophysan fish, the detection of the alarm substance liberated into the water as a consequence of an attack by a predator elicits an alarm reaction or anti-predatory behavior. In this study, experiments were performed to: (i) describe and quantitatively characterize the behavioral and ventilatory responses in piauçu fish (Leporinus macrocephalus), individually and as part of a school, to conspecific alarm substance (CAS) and; (ii) test the effect of acute fluoxetine treatment on alarm reaction. Histological analysis revealed the presence of club cells in the intermediate and superficial layers of the epidermis. The predominant behavioral response to CAS was freezing for fish held individually, characterized by the cessation of the swimming activity as the animal settles to a bottom corner of the aquarium. Fish exposed to CAS showed decrease in the mean ventilatory frequency (approximately 13%) relative to control. In schools, CAS elicited a biphasic response that was characterized by erratic movements followed by increased school cohesion and immobility, reflected as an increased school cohesion (65.5% vs. -5.8% for controls) and in the number of animals near the bottom of the aquarium (42.0% vs. 6.5% for controls). Animals treated with single i.p. injections of fluoxetine (10 μg/g b.w.) did not exhibit alarm behavior following CAS stimulation. These results show that an alarm pheromone system is present in piauçu fish, evidenced by the presence of epidermal club cells and an alarm reaction induced by CAS and consequently of a chemosensory system to transmit the appropriate information to neural structures responsible for initiating anti-predator behavioral responses. In addition, fluoxetine treatment caused an anxiolytic-like effect following CAS exposure. Thus, the alarm reaction in piauçu can be a useful model for neuroethological and pharmacological studies of anxiety-related states. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Isolation of potential probiotic Bacillus spp. and assessment of their subcellular components to induce immune responses in Labeo rohita against Aeromonas hydrophila.

    PubMed

    Ramesh, Dharmaraj; Vinothkanna, Annadurai; Rai, Amit Kumar; Vignesh, Venkada Subramanian

    2015-08-01

    Bacillus species isolated from the gut of healthy Labeo rohita (Hamilton) were screened for antibacterial activity against selected fish pathogens. Among the isolates, KADR5 and KADR6 showed antibacterial activity, tolerated low pH and high bile concentrations and were susceptibility to various antibiotics. Based on morphological and biochemical tests and 16S rRNA gene analysis the probiotic strains KADR5 and KADR6 were identified as Bacillus licheniformis and Bacillus pumilus, respectively. The immune stimulatory effect of subcellular components of probiotic Bacillus licheniformis KADR5 and Bacillus pumilus KADR6 in L. rohita against Aeromonas hydrophila infection was studied. Fish were immunized intraperitoneally in case of subcellular components [cell wall proteins (CWPs), extracellular proteins (ECPs), whole cell proteins (WCPs)] and orally in case of live cells (10(8) CFU/g of feed). After 14th day of administration, fishes from each group were challenged intraperitoneally with 0.1 ml of A. hydrophila cell suspension in PBS (10(5) cells ml(-1)). Groups immunized with subcellular components and live cells had significantly lower mortalities of 20-40% and 23-33%, respectively in comparison to control (80% mortality). The non specific immune factors in the cellular components and viable cells of the probiotics increased the expression of lysozyme and respiratory burst. Use of WCPs and CWPs resulted in better protection against A. hydrophila in L. rohita. Our results clearly reflect the potential of cellular components of the probiotics Bacillus species for the protection of fish against A. hydrophila infection by enhancing the immune response. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Maternal exposure to fish oil primes offspring to harbor intestinal pathobionts associated with altered immune cell balance

    PubMed Central

    Gibson, DL; Gill, SK; Brown, K; Tasnim, N; Ghosh, S; Innis, S; Jacobson, K

    2015-01-01

    Our previous studies revealed that offspring from rat dams fed fish oil (at 8% and 18% energy), developed impaired intestinal barriers sensitizing the colon to exacerbated injury later in life. To discern the mechanism, we hypothesized that in utero exposure to fish oil, rich in n-3 polyunsaturated fatty acid (PUFA), caused abnormal intestinal reparative responses to mucosal injury through differences in intestinal microbiota and the presence of naïve immune cells. To identify such mechanisms, gut microbes and naïve immune cells were compared between rat pups born to dams fed either n-6 PUFA, n-3 PUFA or breeder chow. Maternal exposure to either of the PUFA rich diets altered the development of the intestinal microbiota with an overall reduction in microbial density. Using qPCR, we found that each type of PUFA differentially altered the major gut phyla; fish oil increased Bacteroidetes and safflower oil increased Firmicutes. Both PUFA diets reduced microbes known to dominate the infant gut like Enterobacteriaceae and Bifidobacteria spp. when compared to the chow group. Uniquely, maternal fish oil diets resulted in offspring showing blooms of opportunistic pathogens like Bilophila wadsworthia, Enterococcus faecium and Bacteroides fragilis in their gut microbiota. As well, fish oil groups showed a reduction in colonic CD8+ T cells, CD4+ Foxp3+ T cells and arginase+ M2 macrophages. In conclusion, fish oil supplementation in pharmacological excess, at 18% by energy as shown in this study, provides an example where excess dosing in utero can prime offspring to harbor intestinal pathobionts and alter immune cell homeostasis. PMID:25559197

  8. Pigment pattern in jaguar/obelix zebrafish is caused by a Kir7.1 mutation: implications for the regulation of melanosome movement.

    PubMed

    Iwashita, Motoko; Watanabe, Masakatsu; Ishii, Masaru; Chen, Tim; Johnson, Stephen L; Kurachi, Yoshihisa; Okada, Norihiro; Kondo, Shigeru

    2006-11-24

    Many animals have a variety of pigment patterns, even within a species, and these patterns may be one of the driving forces of speciation. Recent molecular genetic studies on zebrafish have revealed that interaction among pigment cells plays a key role in pattern formation, but the mechanism of pattern formation is unclear. The zebrafish jaguar/obelix mutant has broader stripes than wild-type fish. In this mutant, the development of pigment cells is normal but their distribution is altered, making these fish ideal for studying the process of pigment pattern formation. Here, we utilized a positional cloning method to determine that the inwardly rectifying potassium channel 7.1 (Kir7.1) gene is responsible for pigment cell distribution among jaguar/obelix mutant fish. Furthermore, in jaguar/obelix mutant alleles, we identified amino acid changes in the conserved region of Kir7.1, each of which affected K(+) channel activity as demonstrated by patch-clamp experiments. Injection of a bacterial artificial chromosome containing the wild-type Kir7.1 genomic sequence rescued the jaguar/obelix phenotype. From these results, we conclude that mutations in Kir7.1 are responsible for jaguar/obelix. We also determined that the ion channel function defect of melanophores expressing mutant Kir7.1 altered the cellular response to external signals. We discovered that mutant melanophores cannot respond correctly to the melanosome dispersion signal derived from the sympathetic neuron and that melanosome aggregation is constitutively activated. In zebrafish and medaka, it is well known that melanosome aggregation and subsequent melanophore death increase when fish are kept under constant light conditions. These observations indicate that melanophores of jaguar/obelix mutant fish have a defect in the signaling pathway downstream of the alpha2-adrenoceptor. Taken together, our results suggest that the cellular defect of the Kir7.1 mutation is directly responsible for the pattern change in the jaguar/obelix mutant.

  9. Pigment Pattern in jaguar/obelix Zebrafish Is Caused by a Kir7.1 Mutation: Implications for the Regulation of Melanosome Movement

    PubMed Central

    Iwashita, Motoko; Watanabe, Masakatsu; Ishii, Masaru; Chen, Tim; Johnson, Stephen L; Kurachi, Yoshihisa; Okada, Norihiro; Kondo, Shigeru

    2006-01-01

    Many animals have a variety of pigment patterns, even within a species, and these patterns may be one of the driving forces of speciation. Recent molecular genetic studies on zebrafish have revealed that interaction among pigment cells plays a key role in pattern formation, but the mechanism of pattern formation is unclear. The zebrafish jaguar/obelix mutant has broader stripes than wild-type fish. In this mutant, the development of pigment cells is normal but their distribution is altered, making these fish ideal for studying the process of pigment pattern formation. Here, we utilized a positional cloning method to determine that the inwardly rectifying potassium channel 7.1 (Kir7.1) gene is responsible for pigment cell distribution among jaguar/obelix mutant fish. Furthermore, in jaguar/obelix mutant alleles, we identified amino acid changes in the conserved region of Kir7.1, each of which affected K+ channel activity as demonstrated by patch-clamp experiments. Injection of a bacterial artificial chromosome containing the wild-type Kir7.1 genomic sequence rescued the jaguar/obelix phenotype. From these results, we conclude that mutations in Kir7.1 are responsible for jaguar/obelix. We also determined that the ion channel function defect of melanophores expressing mutant Kir7.1 altered the cellular response to external signals. We discovered that mutant melanophores cannot respond correctly to the melanosome dispersion signal derived from the sympathetic neuron and that melanosome aggregation is constitutively activated. In zebrafish and medaka, it is well known that melanosome aggregation and subsequent melanophore death increase when fish are kept under constant light conditions. These observations indicate that melanophores of jaguar/obelix mutant fish have a defect in the signaling pathway downstream of the α2-adrenoceptor. Taken together, our results suggest that the cellular defect of the Kir7.1 mutation is directly responsible for the pattern change in the jaguar/obelix mutant. PMID:17121467

  10. Effects of functional feeds on the lipid composition, transcriptomic responses and pathology in heart of Atlantic salmon (Salmo salar L.) before and after experimental challenge with Piscine Myocarditis Virus (PMCV).

    PubMed

    Martinez-Rubio, Laura; Evensen, Øystein; Krasnov, Aleksei; Jørgensen, Sven Martin; Wadsworth, Simon; Ruohonen, Kari; Vecino, Jose L G; Tocher, Douglas R

    2014-06-11

    Cardiomyopathy syndrome (CMS) is a severe cardiac disease of Atlantic salmon (Salmo salar) recently associated with a double-stranded RNA virus, Piscine Myocarditis Virus (PMCV). The disease has been diagnosed in 75-85 farms in Norway each year over the last decade resulting in annual economic losses estimated at up to €9 million. Recently, we demonstrated that functional feeds led to a milder inflammatory response and reduced severity of heart lesions in salmon experimentally infected with Atlantic salmon reovirus, the causal agent of heart and skeletal muscle inflammation (HSMI). In the present study we employed a similar strategy to investigate the effects of functional feeds, with reduced lipid content and increased eicosapentaenoic acid levels, in controlling CMS in salmon after experimental infection with PMCV. Hepatic steatosis associated with CMS was significantly reduced over the time course of the infection in fish fed the functional feeds. Significant differences in immune and inflammatory responses and pathology in heart tissue were found in fish fed the different dietary treatments over the course of the infection. Specifically, fish fed the functional feeds showed a milder and delayed inflammatory response and, consequently, less severity of heart lesions at earlier and later stages after infection with PMCV. Decreasing levels of phosphatidylinositol in cell membranes combined with the increased expression of genes related with T-cell signalling pathways revealed new interactions between dietary lipid composition and the immune response in fish during viral infection. Dietary histidine supplementation did not significantly affect immune responses or levels of heart lesions. Combined with the previous findings on HSMI, the results of the present study highlight the potential role of clinical nutrition in controlling inflammatory diseases in Atlantic salmon. In particular, dietary lipid content and fatty acid composition may have important immune-modulatory effects in Atlantic salmon that could be potentially beneficial in fish balancing the immune and tissue responses to viral infections.

  11. Fish erythrocytes as biomarkers for the toxicity of sublethal doses of an azo dye, Basic Violet-1 (CI: 42535).

    PubMed

    Kaur, Kirandeep; Kaur, Arvinder

    2015-02-01

    The aim of the present study was to investigate poikilocytosis in Labeo rohita (an important food fish) as an early indicator of stress due to an azo dye, Basic Violet-1 (CI: 42535). This dye was observed to be very toxic to test fish (96 h LC50 as0.45 mg/L dye). Fish were given short-term (96 h) and subchronic (150 days) exposures to the dye, and poikilocytosis was recorded under light and scanning electron microscopy (SEM). Light microscopy helped in identification of micronuclei along with irregularities, notches, blebs, lobes, crenation, clumps, chains, spherocytes, vacuolation, and necrosis in erythrocytes. However, SEM indicated shrinkage, oozing of cytoplasm, and several new abnormal shapes including marginal foldings, discocytes, keratocytes, dacrocytes, degmacytes, acanthocytes, echinocytes, protuberances, stomatocytes, drepanocytes, holes in the membrane, stippling/spicules, crescent-shaped cells, triangular cells, and pentagonal cells. Earlier studies speculated changes in the membrane to be responsible for clumping and chaining of erythrocytes, whereas the present SEM study clearly indicates that oozing out of cytoplasm is also responsible for the formation of chains and clumps. This study also shows that erythrocytes exhibit pathological symptoms before the appearance of other external symptoms such as abnormal behavior or mortality of fish. There was a dose- and duration-dependent increase; therefore, poikilocytosis, especially echinocytes, spherocytes, and clumps, can act as a biomarker for the stress caused by azo dyes.

  12. Combination of Fluorescent in situ Hybridization (FISH) and Immunofluorescence Imaging for Detection of Cytokine Expression in Microglia/Macrophage Cells

    PubMed Central

    Fe Lanfranco, Maria; Loane, David J.; Mocchetti, Italo; Burns, Mark P.; Villapol, Sonia

    2017-01-01

    Microglia and macrophage cells are the primary producers of cytokines in response to neuroinflammatory processes. But these cytokines are also produced by other glial cells, endothelial cells, and neurons. It is essential to identify the cells that produce these cytokines to target their different levels of activation. We used dual RNAscope® fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) techniques to visualize the mRNA expression pattern of pro- and anti-inflammatory cytokines in microglia/macrophages cells. Using these methods, we can associate one mRNA to specific cell types when combining with different cellular markers by immunofluorescence. Results from RNAscope® probes IL-1β, TNFα, TGFβ, IL-10 or Arg1, showed colocalization with antibodies for microglia/macrophage cells. These target probes showed adequate sensitivity and specificity to detect mRNA expression. New FISH detection techniques combined with immunohistochemical techniques will help to jointly determine the protein and mRNA localization, as well as provide reliable quantification of the mRNA expression levels. PMID:29238736

  13. Altered gene expression in the brain and ovaries of zebrafish (Danio rerio) exposed to the aromatase inhibitor fadrozole: microarray analysis and hypothesis generation.

    PubMed

    Villeneuve, L; Wang, Rong-Lin; Bencic, David C; Biales, Adam D; Martinović, Dalma; Lazorchak, James M; Toth, Gregory; Ankley, Gerald T

    2009-08-01

    As part of a research effort examining system-wide responses of the hypothalamic-pituitary-gonadal (HPG) axis in fish to endocrine-active chemicals (EACs) with different modes of action, zebrafish (Danio rerio) were exposed to 25 or 100 microg/L of the aromatase inhibitor fadrozole for 24, 48, or 96 h. Global transcriptional response in brain and ovarian tissue of fish exposed to 25 microg/L of fadrozole was compared to that in control fish using a commercially available, 22,000-gene oligonucleotide microarray. Transcripts altered in brain were functionally linked to differentiation, development, DNA replication, and cell cycle. Additionally, multiple genes associated with the one-carbon pool by folate pathway (KEGG 00670) were significantly up-regulated. Transcripts altered in ovary were functionally linked to cell-cell adhesion, extracellular matrix, vasculogenesis, and development. Promoter motif analysis identified GATA-binding factor 2, Ikaros 2, alcohol dehydrogenase gene regulator 1, myoblast-determining factor, and several heat shock factors as being associated with coexpressed gene clusters that were differentially expressed following exposure to fadrozole. Based on the transcriptional changes observed, it was hypothesized that fadrozole elicits neurodegenerative stress in brain tissue and that fish cope with this stress through proliferation of radial glial cells. Additionally, it was hypothesized that changes of gene expression in the ovary of fadrozole-exposed zebrafish reflect disruption of oocyte maturation and ovulation because of impaired vitellogenesis. These hypotheses and others derived from the microarray results provide a foundation for future studies aimed at understanding responses of the HPG axis to EACs and other chemical stressors.

  14. Copper alters hypoxia sensitivity and the behavioural emersion response in the amphibious fish Kryptolebias marmoratus.

    PubMed

    Blewett, Tamzin A; Simon, Robyn A; Turko, Andy J; Wright, Patricia A

    2017-08-01

    Elevated levels of metals have been reported in mangrove ecosystems worldwide. Mangrove fishes also routinely experience severe environmental stressors, such as hypoxia. In the amphibious fish Kryptolebias marmoratus (mangrove rivulus), a key behavioural response to avoid aquatic stress is to leave water (emersion). We hypothesized that copper (Cu) exposure would increase the sensitivity of this behavioural hypoxia avoidance response due to histopathological effects of Cu on gill structure and function. K. marmoratus were exposed to either control (no added Cu) or Cu (300μg/L) for 96h. Following this period, fish were exposed to an acute hypoxic challenge (decline in dissolved oxygen to ∼0% over 15min), and the emersion response was recorded. Gills were examined for histological changes. Fish exposed to Cu emersed at a higher dissolved oxygen level (7.5±0.6%), relative to the control treatment group (5.8±0.4%). Histological analysis showed that the gill surface area increased and the interlamellar cell mass (ILCM) was reduced following Cu exposure, contrary to our prediction. Overall, these data indicate that Cu induces hypoxia-like changes to gill morphology and increases the sensitivity of the hypoxia emersion response. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Biological dosimetry of ionizing radiation: Evaluation of the dose with cytogenetic methodologies by the construction of calibration curves

    NASA Astrophysics Data System (ADS)

    Zafiropoulos, Demetre; Facco, E.; Sarchiapone, Lucia

    2016-09-01

    In case of a radiation accident, it is well known that in the absence of physical dosimetry biological dosimetry based on cytogenetic methods is a unique tool to estimate individual absorbed dose. Moreover, even when physical dosimetry indicates an overexposure, scoring chromosome aberrations (dicentrics and rings) in human peripheral blood lymphocytes (PBLs) at metaphase is presently the most widely used method to confirm dose assessment. The analysis of dicentrics and rings in PBLs after Giemsa staining of metaphase cells is considered the most valid assay for radiation injury. This work shows that applying the fluorescence in situ hybridization (FISH) technique, using telomeric/centromeric peptide nucleic acid (PNA) probes in metaphase chromosomes for radiation dosimetry, could become a fast scoring, reliable and precise method for biological dosimetry after accidental radiation exposures. In both in vitro methods described above, lymphocyte stimulation is needed, and this limits the application in radiation emergency medicine where speed is considered to be a high priority. Using premature chromosome condensation (PCC), irradiated human PBLs (non-stimulated) were fused with mitotic CHO cells, and the yield of excess PCC fragments in Giemsa stained cells was scored. To score dicentrics and rings under PCC conditions, the necessary centromere and telomere detection of the chromosomes was obtained using FISH and specific PNA probes. Of course, a prerequisite for dose assessment in all cases is a dose-effect calibration curve. This work illustrates the various methods used; dose response calibration curves, with 95% confidence limits used to estimate dose uncertainties, have been constructed for conventional metaphase analysis and FISH. We also compare the dose-response curve constructed after scoring of dicentrics and rings using PCC combined with FISH and PNA probes. Also reported are dose response curves showing scored dicentrics and rings per cell, combining PCC of lymphocytes and CHO cells with FISH using PNA probes after 10 h and 24 h after irradiation, and, finally, calibration data of excess PCC fragments (Giemsa) to be used if human blood is available immediately after irradiation or within 24 h.

  16. Indoleamine 2,3-dioxygenase: First evidence of expression in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Cortés, Jimena; Alvarez, Claudio; Santana, Paula; Torres, Elisa; Mercado, Luis

    2016-12-01

    The role of enzymes as active antimicrobial agents of the innate immunity in teleost fish is proposed in diverse works. Secretion of Indoleamine 2,3-dioxygenase (IDO) has been described in higher vertebrates; it degrades l-tryptophan in extracellular environments associated mainly with mucosal organs. The effect of IDO on decreasing amino acid concentration may inhibit the growth of potential pathogens. In fish the study of this molecule is still. Here we report the identification of an Onchorhyncus mykiss IDO homologue (OmIDO). IDO was cloned, sequenced, and the primary structure shows conservation of key functional sites. The constitutive expression is altered when the fish is challenged with LPS as a pathogen-associated molecular pattern (PAMPs). Up-regulation of IDO was shown preferentially in the fish's mucosal cells. In order to obtain evidence of a possible regulation mechanism, an in vitro cell model was used for to show that OmIDO is induced by rIFN. These study has identified a Indoleamine 2,3-dyoxigenase in O. mykiss will contribute to expands our knowledge of the function this protein in fish immune response. These findings allow to propose the use of OmIDO as a molecular indicator of strength of the animal's immune response and wellbeing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Incorporation of eicosapentaenoic and docosahexaenoic acids into lipid pools when given as supplements providing doses equivalent to typical intakes of oily fish.

    PubMed

    Browning, Lucy M; Walker, Celia G; Mander, Adrian P; West, Annette L; Madden, Jackie; Gambell, Joanna M; Young, Stephen; Wang, Laura; Jebb, Susan A; Calder, Philip C

    2012-10-01

    Estimation of the intake of oily fish at a population level is difficult. The measurement of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in biological samples may provide a useful biomarker of intake. We identified the most appropriate biomarkers for the assessment of habitual oily fish intake and changes in intake by elucidating the dose- and time-dependent response of EPA and DHA incorporation into various biological samples that represent roles in fatty acid transport, function, and storage. This was a double-blind, randomized, controlled intervention trial in 204 men and women that lasted 12 mo. EPA and DHA capsules were provided in a manner to reflect sporadic consumption of oily fish (ie, 1, 2, or 4 times/wk). EPA and DHA were assessed at 9 time points over 12 mo in 9 sample types (red blood cells, mononuclear cells, platelets, buccal cells, adipose tissue, plasma phosphatidylcholine, triglycerides, cholesteryl esters, and nonesterified fatty acids). A dose response (P < 0.05) was observed for EPA and DHA in all pools except for red blood cell EPA (P = 0.057). EPA and DHA measures in plasma phosphatidylcholine and platelets were best for the discrimination between different intakes (P < 0.0001). The rate of incorporation varied between sample types, with the time to maximal incorporation ranging from days (plasma phosphatidylcholine) to months (mononuclear cells) to >12 mo (adipose tissue). Plasma phosphatidylcholine EPA plus DHA was identified as the most suitable biomarker of acute changes in EPA and DHA intake, and platelet and mononuclear cell EPA plus DHA were the most suitable biomarkers of habitual intake.

  18. Effect of americium-241 alpha-particles on the dose-response of chromosome aberrations in human lymphocytes analysed by fluorescence in situ hybridization.

    PubMed

    Barquinero, J F; Stephan, G; Schmid, E

    2004-02-01

    To evaluate by the fluorescent in-situ hybridization (FISH) technique the dose-response and intercellular distribution of alpha-particle-induced chromosome aberrations. In particular, the validity of using the yield of characteristic types of chromosome abnormalities in stable cells as quantitative indicators for retrospective dose reconstruction has been evaluated. Monolayers of human peripheral lymphocytes were exposed at doses from 0.02 to 1 Gy to alpha-particles emitted from a source of americium-241. The most probable energy of the alpha-particles entering the cells was 2.7 MeV. FISH painting was performed using DNA probes for chromosomes 2, 4 and 8 in combination with a pan-centromeric probe. In complete first-division cells, identified by harlequin staining, aberrations involving painted target chromosomal material were recorded as well as aberrations involving only unpainted chromosomal material. In total, the percentage of complex aberrations was about 35% and no dose dependence was observed. When complex-type exchanges were reduced to simple base types, the different cell distributions were clearly over-dispersed, and the linear coefficients of the dose-effect curves for translocations were significantly higher than for dicentrics. For past dose reconstruction, only a few complex aberrations were in stable cells. The linear coefficient obtained for transmissible aberrations in stable cells was more than seven times lower than that obtained in all analysed cells, i.e. including unstable cells. FISH-based analysis of complex rearrangements allows discrimination between partial-body exposures to low-linear energy transfer radiation and high-linear energy transfer exposures. In assessing past or chronic exposure to alpha-particles, the use of a dose-effect curve obtained by FISH-based translocation data, which had not excluded data determined in unstable cells, would underestimate the dose. Insertions are ineffective biomarkers because their frequency is too low.

  19. Cold-induced retrotransposition of fish LINEs.

    PubMed

    Chen, Shue; Yu, Mengchao; Chu, Xu; Li, Wenhao; Yin, Xiujuan; Chen, Liangbiao

    2017-08-20

    Classes of retrotransposons constitute a large portion of metazoan genome. There have been cases reported that genomic abundance of retrotransposons is correlated with the severity of low environmental temperatures. However, the molecular mechanisms underlying such correlation are unknown. We show here by cell transfection assays that retrotransposition (RTP) of a long interspersed nuclear element (LINE) from an Antarctic notothenioid fish Dissostichus mawsoni (dmL1) could be activated by low temperature exposure, causing increased dmL1 copies in the host cell genome. The cold-induced dmL1 propagation was demonstrated to be mediated by the mitogen-activated protein kinases (MAPK)/p38 signaling pathway, which is activated by accumulation of reactive oxygen species (ROS) in cold-stressed conditions. Surprisingly, dmL1 transfected cells showed an increase in the number of viable cells after prolonged cold exposures than non-transfected cells. Features of cold inducibility of dmL1 were recapitulated in LINEs of zebrafish origin both in cultured cell lines and tissues, suggesting existence of a common cold-induced LINE amplification in fishes. The findings reveal an important function of LINEs in temperature adaptation and provid insights into the MAPK/p38 stress responsive pathway that shapes LINE composition in fishes facing cold stresses. Copyright © 2017. Published by Elsevier Ltd.

  20. The release of bystander factor(s) from tissue explant cultures of rainbow trout (Onchorhynchus mykiss) after exposure to gamma radiation.

    PubMed

    O'Dowd, Colm; Mothersill, Carmel E; Cairns, Michael T; Austin, Brian; McClean, Brendan; Lyng, Fiona M; Murphy, James E J

    2006-10-01

    The bystander response has been documented in cell lines and cell cultures derived from aquatic species over the past several years. However, little work has been undertaken to identify a similar bystander response in tissue explant cultures from fish. In this study, indirect effects of ionizing gamma radiation on tissue explant cultures of fish were investigated. Tissue explants in culture were exposed to 0.5 Gy and 5 Gy gamma radiation from a 60Co teletherapy unit. A bystander response in Epithelioma papulosum cyprini (EPC) cells exposed to gamma-irradiated tissue conditioned medium from rainbow trout explants was investigated, and the effects on cell survival were quantified by the clonogenic survival assay. Dichlorofluorescein and rhodamine 123 fluorescent dyes were used to identify alterations in reactive oxygen species (ROS) and mitochondrial membrane potential (MMP), respectively. Results indicate a different response for the three tissue types investigated. Clonogenic assay results vary from a decrease in cell survival (gill) to no effect (skin) to a stimulatory effect (spleen). Results from fluorescence assays of ROS and MMP show similarities to clonogenic assay results. This study identifies a useful model for further studies relating to the bystander effect in aquatic organisms in vivo and ex vivo.

  1. Fish Viruses: Buffers and Methods for Plaquing Eight Agents Under Normal Atmosphere

    PubMed Central

    Wolf, Ken; Quimby, M. C.

    1973-01-01

    A universal procedure was sought for plaque assay of eight fish viruses (bluegill myxovirus, channel catfish virus, eel virus, Egtved virus, infectious hematopoietic necrosis virus, infectious pancreatic necrosis virus, lymphocystis virus, and the agent of spring viremia of carp (Rhabdovirus carpio), in dish cultures of various fish cells. Eagle minimal essential medium with sodium bicarbonate-CO2 buffer (Earle’s salt solution) was compared with minimal essential medium buffered principally with tris (hydroxymethyl)aminomethane or N-2-hydroxyethylpiperazine-N′-2′-ethanesulfonic acid at a pH or in the range of 7.6 to 8.0 depending upon temperature. Five fish cell lines collectively capable of replicating all fish viruses thus far isolated were tested and quantitatively found to grow comparably well in the three media. Two-phase (gel-liquid) media incorporating the various buffer systems allowed plaquing at 15 to 33 C either in partial pressures of CO2 or in normal atmosphere, but greater efficiency and sensitivity were obtained with the organic buffers, and, overall, the best results were obtained with tris(hydroxymethyl)aminomethane. Epizootiological data, specific fish cell line response, and plaque morphology permit presumptive identification of most of the agents. At proper pH, use of organic buffers obviates the need for CO2 incubators. Images PMID:4349252

  2. Development of a Fish Cell Biosensor System for Genotoxicity Detection Based on DNA Damage-Induced Trans-Activation of p21 Gene Expression

    PubMed Central

    Geng, Deyu; Zhang, Zhixia; Guo, Huarong

    2012-01-01

    p21CIP1/WAF1 is a p53-target gene in response to cellular DNA damage. Here we report the development of a fish cell biosensor system for high throughput genotoxicity detection of new drugs, by stably integrating two reporter plasmids of pGL3-p21-luc (human p21 promoter linked to firefly luciferase) and pRL-CMV-luc (CMV promoter linked to Renilla luciferase) into marine flatfish flounder gill (FG) cells, referred to as p21FGLuc. Initial validation of this genotoxicity biosensor system showed that p21FGLuc cells had a wild-type p53 signaling pathway and responded positively to the challenge of both directly acting genotoxic agents (bleomycin and mitomycin C) and indirectly acting genotoxic agents (cyclophosphamide with metabolic activation), but negatively to cyclophosphamide without metabolic activation and the non-genotoxic agents ethanol and D-mannitol, thus confirming a high specificity and sensitivity, fast and stable response to genotoxic agents for this easily maintained fish cell biosensor system. This system was especially useful in the genotoxicity detection of Di(2-ethylhexyl) phthalate (DEHP), a rodent carcinogen, but negatively reported in most non-mammalian in vitro mutation assays, by providing a strong indication of genotoxicity for DEHP. A limitation for this biosensor system was that it might give false positive results in response to sodium butyrate and any other agents, which can trans-activate the p21 gene in a p53-independent manner. PMID:25585933

  3. Fish oil lipid emulsions and immune response: what clinicians need to know.

    PubMed

    Waitzberg, Dan Linetzky; Torrinhas, Raquel Susana

    2009-01-01

    Current evidence indicates that omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid and docosahexaenoic acid found in fish oil, can prevent the development of inflammatory diseases by affecting different steps of the immune response. The capacity of omega-3 PUFAs to modulate synthesis of eicosanoids, activity of nuclear receptor and nuclear transcription factors, and production of resolvins may also mitigate inflammatory processes already present. Parenteral infusion of omega-3 PUFAs is advantageous, particularly in severely ill patients, because the fatty acids are rapidly incorporated by cells. In addition, when fatty acids are given parenterally, there are no losses from digestion and absorption as there are with enteral infusion. Recently, lipid emulsions enriched with omega-3 fish oil have been introduced as a component of parenteral nutrition. Currently, there is one lipid emulsion that contains only fish oil; it is infused together with conventionally used lipid emulsions. Other commercially available lipid emulsions contain fish oil in a fat mixture; one contains 10% fish oil and another 15% fish oil. Relevant experimental and clinical data from studies evaluating fish oil lipid emulsions are discussed in the present review. Administration of fish oil lipid emulsion, when compared with soybean oil lipid emulsion (rich in omega-6 PUFA), decreases the length of hospital and intensive care unit stay in surgical patients.

  4. The Relevance of External Quality Assessment for Molecular Testing for ALK Positive Non-Small Cell Lung Cancer: Results from Two Pilot Rounds Show Room for Optimization

    PubMed Central

    Tembuyser, Lien; Tack, Véronique; Zwaenepoel, Karen; Pauwels, Patrick; Miller, Keith; Bubendorf, Lukas; Kerr, Keith; Schuuring, Ed; Thunnissen, Erik; Dequeker, Elisabeth M. C.

    2014-01-01

    Background and Purpose Molecular profiling should be performed on all advanced non-small cell lung cancer with non-squamous histology to allow treatment selection. Currently, this should include EGFR mutation testing and testing for ALK rearrangements. ROS1 is another emerging target. ALK rearrangement status is a critical biomarker to predict response to tyrosine kinase inhibitors such as crizotinib. To promote high quality testing in non-small cell lung cancer, the European Society of Pathology has introduced an external quality assessment scheme. This article summarizes the results of the first two pilot rounds organized in 2012–2013. Materials and Methods Tissue microarray slides consisting of cell-lines and resection specimens were distributed with the request for routine ALK testing using IHC or FISH. Participation in ALK FISH testing included the interpretation of four digital FISH images. Results Data from 173 different laboratories was obtained. Results demonstrate decreased error rates in the second round for both ALK FISH and ALK IHC, although the error rates were still high and the need for external quality assessment in laboratories performing ALK testing is evident. Error rates obtained by FISH were lower than by IHC. The lowest error rates were observed for the interpretation of digital FISH images. Conclusion There was a large variety in FISH enumeration practices. Based on the results from this study, recommendations for the methodology, analysis, interpretation and result reporting were issued. External quality assessment is a crucial element to improve the quality of molecular testing. PMID:25386659

  5. The relevance of external quality assessment for molecular testing for ALK positive non-small cell lung cancer: results from two pilot rounds show room for optimization.

    PubMed

    Tembuyser, Lien; Tack, Véronique; Zwaenepoel, Karen; Pauwels, Patrick; Miller, Keith; Bubendorf, Lukas; Kerr, Keith; Schuuring, Ed; Thunnissen, Erik; Dequeker, Elisabeth M C

    2014-01-01

    Molecular profiling should be performed on all advanced non-small cell lung cancer with non-squamous histology to allow treatment selection. Currently, this should include EGFR mutation testing and testing for ALK rearrangements. ROS1 is another emerging target. ALK rearrangement status is a critical biomarker to predict response to tyrosine kinase inhibitors such as crizotinib. To promote high quality testing in non-small cell lung cancer, the European Society of Pathology has introduced an external quality assessment scheme. This article summarizes the results of the first two pilot rounds organized in 2012-2013. Tissue microarray slides consisting of cell-lines and resection specimens were distributed with the request for routine ALK testing using IHC or FISH. Participation in ALK FISH testing included the interpretation of four digital FISH images. Data from 173 different laboratories was obtained. Results demonstrate decreased error rates in the second round for both ALK FISH and ALK IHC, although the error rates were still high and the need for external quality assessment in laboratories performing ALK testing is evident. Error rates obtained by FISH were lower than by IHC. The lowest error rates were observed for the interpretation of digital FISH images. There was a large variety in FISH enumeration practices. Based on the results from this study, recommendations for the methodology, analysis, interpretation and result reporting were issued. External quality assessment is a crucial element to improve the quality of molecular testing.

  6. Rapid Steroid Hormone Actions Initiated at the Cell Surface and the Receptors that Mediate Them with an Emphasis on Recent Progress in Fish Models

    PubMed Central

    Thomas, Peter

    2011-01-01

    In addition to the classic genomic mechanism of steroid action mediated by activation of intracellular nuclear receptors, there is now extensive evidence that steroids also activate receptors on the cell surface to initiate rapid intracellular signaling and biological responses that are often nongenomic. Recent progress in our understanding of rapid, cell surface-initiated actions of estrogens, progestins, androgens and corticosteroids and the identities of the membrane receptors that act as their intermediaries is briefly reviewed with a special emphasis on studies in teleost fish. Two recently discovered novel proteins with seven-transmembrane domains, G protein-coupled receptor 30 (GPR30), and membrane progestin receptors (mPRs) have the ligand binding and signaling characteristics of estrogen and progestin membrane receptors, respectively, but their functional significance is disputed by some researchers. GPR30 is expressed on the cell surface of fish oocytes and mediates estrogen inhibition of oocyte maturation. mPRα is also expressed on the oocyte cell surface and is the intermediary in progestin induction of oocyte maturation in fish. Recent results suggest there is cross-talk between these two hormonal pathways and that there is reciprocal down-regulation of GPR30 and mPRα expression by estrogens and progestins at different phases of oocyte development to regulate the onset of oocyte maturation. There is also evidence in fish that mPRs are involved in progestin induction of sperm hypermotility and anti-apoptotic actions in ovarian follicle cells. Nonclassical androgen and corticosteroid actions have also been described in fish models but the membrane receptors mediating these actions have not been identified. PMID:22154643

  7. Concordance of anaplastic lymphoma kinase (ALK) gene rearrangements between circulating tumor cells and tumor in non-small cell lung cancer

    PubMed Central

    Lim, Tony KH; Tan, Daniel Shao-Weng; Chua, Yong Wei; Ang, Mei Kim; Pang, Brendan; Lim, Chwee Teck; Takano, Angela; Lim, Alvin Soon-Tiong; Leong, Man Chun; Lim, Wan-Teck

    2016-01-01

    Anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer (NSCLC) is routinely evaluated by fluorescent in-situ hybridization (FISH) testing on biopsy tissues. Testing can be challenging however, when suitable tissue samples are unavailable. We examined the relevance of circulating tumor cells (CTC) as a surrogate for biopsy-based FISH testing. We assessed paired tumor and CTC samples from patients with ALK rearranged lung cancer (n = 14), ALK-negative lung cancer (n = 12), and healthy controls (n = 5) to derive discriminant CTC counts, and to compare ALK rearrangement patterns. Blood samples were enriched for CTCs to be used for ALK FISH testing. ALK-positive CTCs counts were higher in ALK-positive NSCLC patients (3–15 cells/1.88 mL of blood) compared with ALK-negative NSCLC patients and healthy donors (0–2 cells/1.88 mL of blood). The latter range was validated as the ‘false positive’ cutoff for ALK FISH testing of CTCs. ALK FISH signal patterns observed on tumor biopsies were recapitulated in CTCs in all cases. Sequential CTC counts in an index case of lung cancer with no evaluable tumor tissue treated with crizotinib showed six, three and eleven ALK-positive CTCs per 1.88 mL blood at baseline, partial response and post-progression time points, respectively. Furthermore, ALK FISH rearrangement suggestive of gene copy number increase was observed in CTCs following progression. Recapitulation of ALK rearrangement patterns in the tumor on CTCs, suggested that CTCs might be used to complement tissue-based ALK testing in NSCLC to guide ALK-targeted therapy when suitable tissue biopsy samples are unavailable for testing. PMID:26993609

  8. Concordance of anaplastic lymphoma kinase (ALK) gene rearrangements between circulating tumor cells and tumor in non-small cell lung cancer.

    PubMed

    Tan, Chye Ling; Lim, Tse Hui; Lim, Tony Kh; Tan, Daniel Shao-Weng; Chua, Yong Wei; Ang, Mei Kim; Pang, Brendan; Lim, Chwee Teck; Takano, Angela; Lim, Alvin Soon-Tiong; Leong, Man Chun; Lim, Wan-Teck

    2016-04-26

    Anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer (NSCLC) is routinely evaluated by fluorescent in-situ hybridization (FISH) testing on biopsy tissues. Testing can be challenging however, when suitable tissue samples are unavailable. We examined the relevance of circulating tumor cells (CTC) as a surrogate for biopsy-based FISH testing. We assessed paired tumor and CTC samples from patients with ALK rearranged lung cancer (n = 14), ALK-negative lung cancer (n = 12), and healthy controls (n = 5) to derive discriminant CTC counts, and to compare ALK rearrangement patterns. Blood samples were enriched for CTCs to be used for ALK FISH testing. ALK-positive CTCs counts were higher in ALK-positive NSCLC patients (3-15 cells/1.88 mL of blood) compared with ALK-negative NSCLC patients and healthy donors (0-2 cells/1.88 mL of blood). The latter range was validated as the 'false positive' cutoff for ALK FISH testing of CTCs. ALK FISH signal patterns observed on tumor biopsies were recapitulated in CTCs in all cases. Sequential CTC counts in an index case of lung cancer with no evaluable tumor tissue treated with crizotinib showed six, three and eleven ALK-positive CTCs per 1.88 mL blood at baseline, partial response and post-progression time points, respectively. Furthermore, ALK FISH rearrangement suggestive of gene copy number increase was observed in CTCs following progression. Recapitulation of ALK rearrangement patterns in the tumor on CTCs, suggested that CTCs might be used to complement tissue-based ALK testing in NSCLC to guide ALK-targeted therapy when suitable tissue biopsy samples are unavailable for testing.

  9. Sensitive-cell-based fish chromatophore biosensor

    NASA Astrophysics Data System (ADS)

    Plant, Thomas K.; Chaplen, Frank W.; Jovanovic, Goran; Kolodziej, Wojtek; Trempy, Janine E.; Willard, Corwin; Liburdy, James A.; Pence, Deborah V.; Paul, Brian K.

    2004-07-01

    A sensitive biosensor (cytosensor) has been developed based on color changes in the toxin-sensitive colored living cells of fish. These chromatophores are highly sensitive to the presence of many known and unknown toxins produced by microbial pathogens and undergo visible color changes in a dose-dependent manner. The chromatophores are immobilized and maintained in a viable state while potential pathogens multiply and fish cell-microbe interactions are monitored. Low power LED lighting is used to illuminate the chromatophores which are magnified using standard optical lenses and imaged onto a CCD array. Reaction to toxins is detected by observing changes is the total area of color in the cells. These fish chromatophores are quite sensitive to cholera toxin, Staphococcus alpha toxin, and Bordatella pertussis toxin. Numerous other toxic chemical and biological agents besides bacterial toxins also cause readily detectable color effects in chromatophores. The ability of the chromatophore cell-based biosensor to distinguish between different bacterial pathogens was examined. Toxin producing strains of Salmonella enteritis, Vibrio parahaemolyticus, and Bacillus cereus induced movement of pigmented organelles in the chromatophore cells and this movement was measured by changes in the optical density over time. Each bacterial pathogen elicited this measurable response in a distinctive and signature fashion. These results suggest a chromatophore cell-based biosensor assay may be applicable for the detection and identification of virulence activities associated with certain air-, food-, and water-borne bacterial pathogens.

  10. Induction of viral interference by IPNV-carrier cells on target cells: A cell co-culture study.

    PubMed

    Parreño, Ricardo; Torres, Susana; Almagro, Lucía; Belló-Pérez, Melissa; Estepa, Amparo; Perez, Luis

    2016-11-01

    IPNV is a salmonid birnavirus that possesses the ability to establish asymptomatic persistent infections in a number of valuable fish species. The presence of IPNV may interfere with subsequent infection by other viruses. In the present study we show that an IPNV-carrier cell line (EPC IPNV ) can induce an antiviral state in fresh EPC by co-cultivating both cell types in three different ways: a "droplet" culture system, a plastic chamber setup, and a transmembrane (Transwell ® ) system. All three cell co-culture methods were proven useful to study donor/target cell interaction. Naïve EPC cells grown in contact with EPC IPNV cells develop resistance to VHSV superinfection. The transmembrane system seems best suited to examine gene expression in donor and target cells separately. Our findings point to the conclusion that one or more soluble factors produced by the IPNV carrier culture induce the innate immune response within the target cells. This antiviral response is associated to the up-regulation of interferon (ifn) and mx gene expression in target EPC cells. To our knowledge this is the first article describing co-culture systems to study the interplay between virus-carrier cells and naive cells in fish. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Structural Diversity in the Inner Ear of Teleost Fishes: Implications for Connections to the Mauthner Cell

    NASA Technical Reports Server (NTRS)

    Popper, Arthur N.; Edds-Walton, Peggy L.

    1995-01-01

    A body of literature suggests that the Mauthner cell startle response can be elicited by stimulation of the ear. While we know that there are projections to the M-cell from the ear, the specific endorgan(s) of the ear projecting to the M-cell are not known. Moreover, there are many reasons to question whether there is one pattern of inner ear to M-cell connection or whether the endorgan(s) projection to the M-cell varies in species that have different hearing capabilities of hearing structures. In this paper, we briefly review the structure of fish ears, with an emphasis on structural regionalization within the ear. We also review the central projections of the ear, along with a discussion of the limited data on projections to the M-cell.

  12. Antigen-binding cells in the peripheral blood of sockeye salmon, Oncorhynchus nerka Walbaum, induced by immersion or intraperitoneal injection of Vibrio languilarum bacterin

    USGS Publications Warehouse

    1981-01-01

    We used an immunocytoadherence assay to monitor the response of antigen-binding cells (ABC) in the peripheral blood of sockeye salmon, Oncorhynchus nerka, after immersion in, or intraperitoneal injection of, Vibrio anguillarum LS 1–74 bacterin. Both methods initiated an elevated ABC response in less than one day; this response persisted one week longer in the injected than in the immersed fish.

  13. Pathophysiology of infectious hematopoietic necrosis virus disease in rainbow trout (Salmo gairdneri): early changes in blood and aspects of the immune Response after Injection of IHN Virus

    USGS Publications Warehouse

    Amend, Donald F.; Smith, Lynnwood

    1974-01-01

    Juvenile rainbow trout (Salmo gairdneri) were injected with infectious hematopoietic necrosis (IHN) virus and various hematological and blood chemical changes were monitored over 9 days. The packed cell volume, hemoglobin, red blood cell count, and plasma bicarbonate were significantly depressed by day 4. Plasma chloride, calcium, phosphorus, total protein, and blood cell types did not change during the 9 days. Furthermore, plasma  LDH isozyme was significantly increased by the fourth day, and fish infected with infectious pancreatic necrosis virus, Vibrio anguillarum, Aeromonas salmonicida, and redmouth bacterium did not show specific LDH isozyme alterations. Acid-base alterations occurred at 10 C but not at 18 C. The acid-base imbalance and elevation of the  LDH isozyme were consistently associated with the early development of the disease.The immune response after injection of IHN virus was determined and protection from disease was tested by passive immunization. Actively immunized fish developed IHN-neutralizing antibodies within 54 days after injection of virus, and the antibodies were protective when juvenile fish were passively immunized and experimentally challenged with IHN virus.

  14. Acute trimethyltin exposure induces oxidative stress response and neuronal apoptosis in Sebastiscus marmoratus.

    PubMed

    Wang, Xinli; Cai, Jiali; Zhang, Jiliang; Wang, Chonggang; Yu, Ang; Chen, Yixin; Zuo, Zhenghong

    2008-10-20

    Trimethyltin (TMT) is a well-documented neurotoxicant that affects the function of central nervous system (CNS). In this study, we studied the neurotoxicity of TMT on the brain of marine fish Sebastiscus marmoratus. Our results showed that TMT acute exposure induced brain cell apoptosis in the telencephalon, optic tectum and cerebellum. In addition, we observed increased production of reactive oxygen species (ROS), nitric oxide (NO) and one asparate-specific cysteinyl protease named caspase-3 which are often associated with the processes of cell apoptosis, in the brain of S. marmoratus after acute treatment of TMT. Our results indicated that TMT induces neurotoxicity and oxidative stress in marine fish S. marmoratus. Our results suggested that TMT exposure in the environment may affect fish behaviors including schooling, sensory and motorial learnings, based on the observation of cell apoptosis in the cerebral regions.

  15. Effect of Dietary Combination of Methionine and Fish Oil on Cellular Immunity and Plasma Fatty Acids in Infectious Bursal Disease Challenged Chickens

    PubMed Central

    Kasim, Azhar; Yong Meng, Goh; Teck Chwen, Loh; Kamalidehghan, Behnam; Soleimani Farjam, Abdoreza

    2013-01-01

    This study was carried out to investigate the modulatory effects of dietary methionine and fish oil on immune response, plasma fatty acid profile, and blood parameters of infectious bursal disease (IBD) challenged broiler chickens. A total of 300 one-day-old male broiler chicks were assigned to one of six dietary treatment groups in a 3 × 2 factorial arrangement. There were three levels of fish oil (0, 2.5 and 5.5%), and two levels of methionine (NRC recommendation and twice NRC recommendation). The results showed that the birds fed with 5.5% fish oil had higher total protein, white blood cell count, and IL-2 concentration than those of other groups at 7 days after IBD challenge. Inclusion of fish oil in diet had no effect on IFN-γ concentration. However, supplementation of methionine twice the recommendation enhanced the serum IFN-γ and globulin concentration. Neither of fish oil nor methionine supplementation affected the liver enzymes concentration. It can be suggested that a balance of moderate level of fish oil (2.5%) and methionine level (twice NRC recommendation) might enhance immune response in IBD challenged broiler chickens. PMID:24198724

  16. High hydrostatic pressure influences the in vitro response to xenobiotics in Dicentrarchus labrax liver.

    PubMed

    Lemaire, Benjamin; Mignolet, Eric; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean Pierre; Rees, Jean François

    2016-04-01

    Hydrostatic pressure (HP) increases by about 1 atmosphere (0.1MPa) for each ten-meter depth increase in the water column. This thermodynamical parameter could well influence the response to and effects of xenobiotics in the deep-sea biota, but this possibility remains largely overlooked. To grasp the extent of HP adaptation in deep-sea fish, comparative studies with living cells of surface species exposed to chemicals at high HP are required. We initially conducted experiments with precision-cut liver slices of a deep-sea fish (Coryphaenoides rupestris), co-exposed for 15h to the aryl hydrocarbon receptor (AhR) agonist 3-methylcholanthrene at HP levels representative of the surface (0.1MPa) and deep-sea (5-15MPa; i.e., 500-1500m depth) environments. The transcript levels of a suite of stress-responsive genes, such as the AhR battery CYP1A, were subsequently measured (Lemaire et al., 2012; Environ. Sci. Technol. 46, 10310-10316). Strikingly, the AhR agonist-mediated increase of CYP1A mRNA content was pressure-dependently reduced in C. rupestris. Here, the same co-exposure scenario was applied for 6 or 15h to liver slices of a surface fish, Dicentrarchus labrax, a coastal species presumably not adapted to high HP. Precision-cut liver slices of D. labrax were also used in 1h co-exposure studies with the pro-oxidant tert-butylhydroperoxide (tBHP) as to investigate the pressure-dependence of the oxidative stress response (i.e., reactive oxygen production, glutathione and lipid peroxidation status). Liver cells remained viable in all experiments (adenosine triphosphate content). High HP precluded the AhR agonist-mediated increase of CYP1A mRNA expression in D. labrax, as well as that of glutathione peroxidase, and significantly reduced that of heat shock protein 70. High HP (1h) also tended per se to increase the level of oxidative stress in liver cells of the surface fish. Trends to an increased resistance to tBHP were also noted. Whether the latter observation truly reflects a protective response to oxidative stress will be addressed in future co-exposure studies with both surface and deep-sea fish liver cells, using additional pro-oxidant chemicals. Altogether, data on CYP1A inducibility with D. labrax and C. rupestris support the view that high HP represses AhR signaling in marine fishes, and that only species adapted to thrive in the deep-sea have evolved the molecular adaptations necessary to counteract to some extent this inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Inhibition of caudal fin regeneration in Corydoras aeneus by lithium chloride.

    PubMed

    Zarnescu, Otilia; Stavri, Simona; Moldovan, Lucia

    2013-03-01

    In the present study we examined the effects of lithium chloride on the Corydoras aeneus caudal fin regeneration. After caudal fin amputation, the fish were exposed 3h daily to 35 mM lithium chloride for 9 days. The effects of lithium chloride treatment were evaluated by analyzing the caudal fin structure at 3, 6 and 9 days after amputation. Comparison of normal and LiCl treated fish clearly shows that regeneration of amputated caudal fins was inhibited or delayed after lithium treatment. By the third day after amputation (dpa) either no epidermal cap or blastema ever formed or the epidermal cap had an abnormal morphology in lithium treated fish. By the 3 and 6 dpa no lepidotrichial matrix deposition was observed in the lithium treated fish compared to control fish. Unlike the control fish that completely regenerate their caudal fins after 9 dpa and have fully mineralized lepidotrichia, lithium treated fish have small blastema. In some treated fish, small amounts of new lepidotrichial matrix were observed at this time, in some fin rays. Ultrastructural observations have shown differences between control and lithium treated fish. Thus, in the lithium treated fish we observed expanded intercellular spaces between epidermal cells and many apoptotic cells. Results of this study suggest the use of this model in elucidating the molecular mechanisms that are responsible for regeneration of complex structures such as fish fins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. First in-depth analysis of the novel Th2-type cytokines in salmonid fish reveals distinct patterns of expression and modulation but overlapping bioactivities

    PubMed Central

    Wang, Tiehui; Johansson, Petronella; Abós, Beatriz; Holt, Amy; Tafalla, Carolina; Jiang, Youshen; Wang, Alex; Xu, Qiaoqing; Qi, Zhitao; Huang, Wenshu; Costa, Maria M.; Diaz-Rosales, Patricia; Holland, Jason W.; Secombes, Christopher J.

    2016-01-01

    IL-4 and IL-13 are closely related canonical type-2 cytokines in mammals and have overlapping bioactivities via shared receptors. They are frequently activated together as part of the same immune response and are the signature cytokines produced by T-helper (Th)2 cells and type-2 innate lymphoid cells (ILC2), mediating immunity against extracellular pathogens. Little is known about the origin of type-2 responses, and whether they were an essential component of the early adaptive immune system that gave a fitness advantage by limiting collateral damage caused by metazoan parasites. Two evolutionary related type-2 cytokines, IL-4/13A and IL-4/13B, have been identified recently in several teleost fish that likely arose by duplication of an ancestral IL-4/13 gene as a consequence of a whole genome duplication event that occurred at the base of this lineage. However, studies of their comparative expression levels are largely missing and bioactivity analysis has been limited to IL-4/13A in zebrafish. Through interrogation of the recently released salmonid genomes, species in which an additional whole genome duplication event has occurred, four genomic IL-4/13 loci have been identified leading to the cloning of three active genes, IL-4/13A, IL-4/13B1 and IL-4/13B2, in both rainbow trout and Atlantic salmon. Comparative expression analysis by real-time PCR in rainbow trout revealed that the IL-4/13A expression is broad and high constitutively but less responsive to pathogen-associated molecular patterns (PAMPs) and pathogen challenge. In contrast, the expression of IL-4/13B1 and IL-4/13B2 is low constitutively but is highly induced by viral haemorrhagic septicaemia virus (VHSH) infection and during proliferative kidney disease (PKD) in vivo, and by formalin-killed bacteria, PAMPs, the T cell mitogen PHA, and the T-cell cytokines IL-2 and IL-21 in vitro. Moreover, bioactive recombinant cytokines of both IL-4/13A and B were produced and found to have shared but also distinct bioactivities. Both cytokines rapidly induce the gene expression of antimicrobial peptides and acute phase proteins, providing an effector mechanism of fish type-2 cytokines in immunity. They are anti-inflammatory via up-regulation of IL-10 and down-regulation of IL-1β and IFN-γ. They modulate the expression of cellular markers of T cells, macrophages and B cells, the receptors of IFN-γ, the IL-6 cytokine family and their own potential receptors, suggesting multiple target cells and important roles of fish type-2 cytokines in the piscine cytokine network. Furthermore both cytokines increased the number of IgM secreting B cells but had no effects on the proliferation of IgM+ B cells in vitro. Taken as a whole, fish IL-4/13A may provide a basal level of type-2 immunity whilst IL-4/13B, when activated, provides an enhanced type-2 immunity, which may have an important role in specific cell-mediated immunity. To our knowledge this is the first in-depth analysis of the expression, modulation and bioactivities of type-2 cytokines in the same fish species, and in any early vertebrate. It contributes to a broader understanding of the evolution of type-2 immunity in vertebrates, and establishes a framework for further studies and manipulation of type-2 cytokines in fish. PMID:26870894

  19. Fish oil-enriched diet protects against ischemia by improving angiogenesis, endothelial progenitor cell function and postnatal neovascularization.

    PubMed

    Turgeon, Julie; Dussault, Sylvie; Maingrette, Fritz; Groleau, Jessika; Haddad, Paola; Perez, Gemma; Rivard, Alain

    2013-08-01

    Fish oil consumption has been associated with a reduced incidence of cardiovascular diseases. However, the precise mechanisms involved are not completely understood. Here we tested the hypothesis that a fish oil-enriched diet improves neovascularization in response to ischemia. C57Bl/6 mice were fed a diet containing either 20% fish oil, rich in long-chain n-3 polyunsaturated fatty acids (PUFAs), or 20% corn oil, rich in n-6 PUFAs. After 4 weeks, hindlimb ischemia was surgically induced by femoral artery removal. We found that blood flow recovery was significantly improved in mice fed a fish oil diet compared to those fed a corn oil diet (Doppler flow ratio (DFR) at day 21 after surgery 78 ± 5 vs. 56 ± 4; p < 0.01). Clinically, this was associated with a significant reduction of ambulatory impairment and ischemic damage in the fish oil group. At the microvascular level, capillary density was significantly improved in ischemic muscles of mice fed a fish oil diet. This correlated with increased expression of VEGF and eNOS in ischemic muscles, and higher NO concentration in the plasma. Endothelial progenitor cells (EPCs) have been shown to have an important role for postnatal neovascularization. We found that the number of EPCs was significantly increased in mice fed a fish oil diet. In addition, oxidative stress levels (DCF-DA, DHE) were reduced in EPCs isolated from mice exposed to fish oil, and this was associated with improved EPC functional activities (migration and integration into tubules). In vitro, treatment of EPCs with fish oil resulted in a significant increase of cellular migration. In addition, the secretion of angiogenic growth factors including IL6 and leptin was significantly increased in EPCs exposed to fish oil. Fish oil-enriched diet is associated with improved neovascularization in response to ischemia. Potential mechanisms involved include activation of VEGF/NO pathway in ischemic tissues together with an increase in the number and the functional activities of EPCs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Effects of ammonia stress, dietary linseed oil and Edwardsiella ictaluri challenge on juvenile darkbarbel catfish Pelteobagrus vachelli.

    PubMed

    Li, Ming; Yu, Na; Qin, Jian G; Li, Erchao; Du, Zhenyu; Chen, Liqiao

    2014-05-01

    A two-stage study was carried out to test the response of juvenile darkbarbel catfish Pelteobagrus vachelli to ammonia stress, dietary lipid and bacterial challenge. At stage 1, the catfish (0.99 ± 0.01 g) fed a commercial diet were exposed to 0.01 and 5.70 mg L(-1) total ammonia nitrogen in nine replicates for 14 days. At stage 2, all fish previously exposed to either low or high ammonia were separately transferred into low ammonia (<0.01 mg L(-1)), and divided into three feeding groups. Fish were then fed three levels of linseed oil (0, 2 and 4%) in triplicate for 46 days. Fish growth performance and immune response were low in high ammonia at stage 1. At stage 2, fish growth and immune response were not significantly different between fish previously exposed to low and high ammonia in all diets. Fish fed 4% linseed oil showed the greatest weight gain, feed efficiency ratio, red blood cells, hemoglobin and hematocrit, and achieved higher lysozyme activity, phagocytic index, respiratory burst and total immunoglobulin than fish fed 0% linseed oil, but did not differ from fish fed 2% linseed oil regardless of previous ammonia exposure. After 14-day infection of Edwardsiella ictaluri, cumulative mortality of fish previously exposed to low ammonia was lower than that of fish exposed to high ammonia in all diets. Cumulative mortality of fish fed 0% linseed oil was highest, but the antibody titer of fish fed 4% linseed oil was highest regardless of previous ammonia treatments. This study indicates that ammonia stress has a lasting effect even after ammonia is lowed, but the adverse effect on fish can be mitigated through manipulation of dietary oil inclusion, especially under the challenge of pathogenic bacteria. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of fish oils on ex vivo B-cell responses of obese subjects upon BCR/TLR stimulation: a pilot study.

    PubMed

    Guesdon, William; Kosaraju, Rasagna; Brophy, Patricia; Clark, Angela; Dillingham, Steve; Aziz, Shahnaz; Moyer, Fiona; Willson, Kate; Dick, James R; Patil, Shivajirao Prakash; Balestrieri, Nicholas; Armstrong, Michael; Reisdroph, Nichole; Shaikh, Saame Raza

    2018-03-01

    The long-chain n-3 polyunsaturated fatty acids (LC-PUFAs) eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) in fish oil have immunomodulatory properties. B cells are a poorly studied target of EPA/DHA in humans. Therefore, in this pilot study, we tested how n-3 LC-PUFAs influence B-cell responses of obese humans. Obese men and women were assigned to consume four 1-g capsules per day of olive oil (OO, n=12), fish oil (FO, n=12) concentrate or high-DHA-FO concentrate (n=10) for 12 weeks in a parallel design. Relative to baseline, FO (n=9) lowered the percentage of circulating memory and plasma B cells, whereas the other supplements had no effect. There were no postintervention differences between the three supplements. Next, ex vivo B-cell cytokines were assayed after stimulation of Toll-like receptors (TLRs) and/or the B-cell receptor (BCR) to determine if the effects of n-3 LC-PUFAs were pathway-dependent. B-cell IL-10 and TNFα secretion was respectively increased with high DHA-FO (n=10), relative to baseline, with respective TLR9 and TLR9+BCR stimulation. OO (n=12) and FO (n=12) had no influence on B-cell cytokines compared to baseline, and there were no differences in postintervention cytokine levels between treatment groups. Finally, ex vivo antibody levels were assayed with FO (n=7) after TLR9+BCR stimulation. Compared to baseline, FO lowered IgM but not IgG levels accompanied by select modifications to the plasma lipidome. Altogether, the results suggest that n-3 LC-PUFAs could modulate B-cell activity in humans, which will require further testing in a larger cohort. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The B7 family of immunoregulatory receptors: A comparative and evolutionary perspective

    USGS Publications Warehouse

    Hansen, J.D.; Pasquier, L.D.; Lefranc, M.-P.; Lopez, V.; Benmansour, A.; Boudinot, P.

    2009-01-01

    In mammals, T cell activation requires specific recognition of the peptide-MHC complex by the TcR and co-stimulatory signals. Important co-stimulatory receptors expressed by T cells are the molecules of the CD28 family, that regulate T cell activation, proliferation and tolerance. These receptors recognize B7s and B7-homologous (B7H) molecules that are typically expressed by the antigen presenting cells. In teleost fish, typical T cell responses have been described and the TcR, MHC and CD28/CTLA4 genes have been characterized. In contrast, the members of the B7 gene family have only been described in mammals and birds and have yet to be addressed in lower vertebrates. To learn more about the evolution of components guiding T cell activation in vertebrates, we performed a systematic genomic survey for the B7 co-stimulatory and co-inhibitory IgSF receptors in lower vertebrates with an emphasis on teleost fish. Our search identified fish sequences that are orthologous to B7, B7-H1/B7-DC, B7-H3 and B7-H4 as defined by sequence identity, phylogeny and combinations of short or long-range syntenic relationships. However, we were unable to identify clear orthologs for B7-H2 (CD275, ICOS ligand) in bony fish, which correlates with our prior inability to find ICOS in fish. Interestingly, our results indicate that teleost fish possess a single B7.1/B7.2 (CD80/86) molecule that likely interacts with CD28/CTLA4 as the ligand-binding regions seem to be conserved in both partners. Overall, our analyses implies that gene duplication (and loss) have shaped a molecular repertoire of B7-like molecules that was recruited for the refinement of T cell activation during the evolution of the vertebrates.

  3. Physiological, biochemical and histometric responses of Nile tilapia (Oreochromis niloticus L.) by dietary organic chromium (chromium picolinate) supplementation.

    PubMed

    Mehrim, Ahmed I

    2014-05-01

    Chromium has been recognized as a new and important micro-nutrient, essential for both human and animal nutrition. This study was conducted to evaluate the appropriateness and/or the use of safety level of dietary chromium picolinate (Cr-Pic), and its effects on the physiological responses, the histometric characteristics, and the chemical analysis of dorsal muscles of mono-sex Nile tilapia, Oreochromis niloticus. A total of 420 fingerlings (28.00 ± 0.96 g) were randomly distributed into 21 fiberglass tanks representing seven treatments at a rate of 20 fish m(-3). The control fish group (T1) was fed a Cr-Pic free basal diet. Other fish groups were fed the basal diet supplemented with 200 (T2), 400 (T3), 600 (T4), 800 (T5), 1000 (T6) and 1200 μg Cr-Pic kg(-1) diet (T7). Diets were offered to fish at a feeding rate of 3% of life body weight for 12 weeks. Results revealed that blood hematological parameters (hemoglobin, red blood cells, packed cell volume, mean corpuscular hemoglobin concentration, blood platelets, and white blood cells lymphocytes); serum biochemical measurements (total testosterone, high density lipoprotein, total protein, albumin, and globulin); and the dry matter and crude protein of the fish dorsal muscles all have significantly increased (P ⩽ 0.05) in the T3 treatment compared with the other treatments. Meanwhile, no significant differences were found among all treatments with regard to the histometric characteristics. It can be concluded that Cr-Pic at 400 μg kg(-1) diet (T3) seems to be the most appropriate level for O. niloticus fingerlings.

  4. INFLUENCE OF TEMPERATURE ON AN ESTROGEN-RESPONSIVE RAINBOW TROUT CELL TRANSFECTION ASSAY

    EPA Science Inventory

    One uncertainty in extrapolating estrogenic effects in mammalian systems to those in fish and wildlife is the influence that temperature has on these effects. A reporter gene assay in cultured rainbow trout cell lines was used to determine the influence of temperature on the exp...

  5. Proteome response of fish under multiple stress exposure: Effects of pesticide mixtures and temperature increase.

    PubMed

    Gandar, Allison; Laffaille, Pascal; Marty-Gasset, Nathalie; Viala, Didier; Molette, Caroline; Jean, Séverine

    2017-03-01

    Aquatic systems can be subjected to multiple stressors, including pollutant cocktails and elevated temperature. Evaluating the combined effects of these stressors on organisms is a great challenge in environmental sciences. To the best of our knowledge, this is the first study to assess the molecular stress response of an aquatic fish species subjected to individual and combined pesticide mixtures and increased temperatures. For that, goldfish (Carassius auratus) were acclimated to two different temperatures (22 and 32°C) for 15 days. They were then exposed for 96h to a cocktail of herbicides and fungicides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin and tebuconazole) at two environmentally relevant concentrations (total concentrations of 8.4μgL -1 and 42μgL -1 ) at these two temperatures (22 and 32°C). The molecular response in liver was assessed by 2D-proteomics. Identified proteins were integrated using pathway enrichment analysis software to determine the biological functions involved in the individual or combined stress responses and to predict the potential deleterious outcomes. The pesticide mixtures elicited pathways involved in cellular stress response, carbohydrate, protein and lipid metabolisms, methionine cycle, cellular functions, cell structure and death control, with concentration- and temperature-dependent profiles of response. We found that combined temperature increase and pesticide exposure affected the cellular stress response: the effects of oxidative stress were more marked and there was a deregulation of the cell cycle via apoptosis inhibition. Moreover a decrease in the formation of glucose by liver and in ketogenic activity was observed in this multi-stress condition. The decrease in both pathways could reflect a shift from a metabolic compensation strategy to a conservation state. Taken together, our results showed (1) that environmental cocktails of herbicides and fungicides induced important changes in pathways involved in metabolism, cell structure and cell cycle, with possible deleterious outcomes at higher biological scales and (2) that increasing temperature could affect the response of fish to pesticide exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Dietary salt loading and ion-poor water exposure provide insight into the molecular physiology of the rainbow trout gill epithelium tight junction complex.

    PubMed

    Kolosov, Dennis; Kelly, Scott P

    2016-08-01

    This study utilized dietary salt loading and ion-poor water (IPW) exposure of rainbow trout (Oncorhynchus mykiss) to further understand the role of fish gill epithelium tight junction (TJ) physiology in salt and water balance. Gill morphology, biochemistry and molecular physiology were examined, with an emphasis on genes encoding TJ proteins. Fish were either fed a control or salt-enriched diet (~10 % NaCl) for 4 weeks prior to IPW exposure for 24 h. Serum [Na(+)], [Cl(-)] and muscle moisture content were unaltered by salt feeding, but changed in response to IPW irrespective of diet. Dietary salt loading altered the morphology (reduced Na(+)-K(+)-ATPase-immunoreactive cell numbers and surface exposure of mitochondrion-rich cells), biochemistry (decreased vacuolar-type H(+)-ATPase activity) and molecular physiology (decreased nkaα1a and cftrII mRNA abundance) of the gill in a manner indicative of reduced active ion uptake activity. But in control fish and not salt-fed fish, gill mRNA abundance of nkaα1c increased and nbc decreased after IPW exposure. Genes encoding TJ proteins were typically either responsive to salt feeding or IPW, but select genes responded to combined experimental treatment (e.g. IPW responsive but only if fish were salt-fed). Therefore, using salt feeding and IPW exposure, new insights into what factors influence gill TJ proteins and the role that specific TJ proteins might play in regulating the barrier properties of the gill epithelium have been acquired. In particular, evidence suggests that TJ proteins in the gill epithelium, or the regulatory networks that control them, respond independently to external or internal stimuli.

  7. Increased intake of oily fish in pregnancy: effects on neonatal immune responses and on clinical outcomes in infants at 6 mo.

    PubMed

    Noakes, Paul S; Vlachava, Maria; Kremmyda, Lefkothea-Stella; Diaper, Norma D; Miles, Elizabeth A; Erlewyn-Lajeunesse, Mich; Williams, Anthony P; Godfrey, Keith M; Calder, Philip C

    2012-02-01

    Long-chain n-3 PUFAs found in oily fish may have a role in lowering the risk of allergic disease. The objective was to assess whether an increased intake of oily fish in pregnancy modifies neonatal immune responses and early markers of atopy. Women (n = 123) were randomly assigned to continue their habitual diet, which was low in oily fish, or to consume 2 portions of salmon per week (providing 3.45 g EPA plus DHA) from 20 wk gestation until delivery. In umbilical cord blood samples (n = 101), we measured n-3 fatty acids, IgE concentrations, and immunologic responses. Infants were clinically evaluated at age 6 mo (n = 86). Cord blood mononuclear cell (CBMC) production of interleukin (IL)-2, IL-4, IL-5, IL-10, and tumor necrosis factor-α in response to phytohemagglutinin (PHA) and of IL-2 in response to Dermatophagoides pteronyssinus allergen 1 (Derp1) was lower in the salmon group (all P ≤ 0.03). In the subgroup of CBMCs in which an allergic phenotype was confirmed in the mother or father, IL-10 production in response to Toll-like receptor 2, 3, and 4 agonists, ovalbumin, salmon parvalbumin, or Derp1 and prostaglandin E(2) production in response to lipopolysaccharide or PHA was lower in the salmon group (all P ≤ 0.045). Total IgE at birth and total IgE, incidence and severity of atopic dermatitis, and skin-prick-test positivity at 6 mo of age were not different between the 2 groups. Oily fish intervention in pregnancy modifies neonatal immune responses but may not affect markers of infant atopy assessed at 6 mo of age. This trial is registered at clinicaltrials.gov as NCT00801502.

  8. Humoral and mucosal immune responses in meagre (Argyrosomus regius) juveniles fed diets with varying inclusion levels of carob seed germ meal.

    PubMed

    Guardiola, Francisco Antonio; Barroso, Carolina; Enes, Paula; Couto, Ana; Díaz-Rosales, Patricia; Afonso, António; Kanashiro, Erika; Peres, Helena; Matos, Elisabete; Oliva-Teles, Aires; Pousão-Ferreira, Pedro; Costas, Benjamín

    2018-05-18

    Many studies have assessed the effects of incorporation of plant feedstuffs in fish diets on growth performance, whereas few studies have addressed the effects of fish meal replacement by plant protein sources on fish immune parameters. Thus, the aim of this study was to evaluate the effects on immune response of different inclusion levels of carob seed germ meal (CSGM) as partial replacement for fish meal in diets for meagre (Argyrosomus regius) juveniles. Fish were fed four experimental diets with increased CSGM inclusion levels [0% (control), 7.5% (CSGM7.5), 15% (CSGM15) and 22.5% (CSGM22.5)]. After 1, 2, and 8 weeks of feeding fish were sampled to determine haematological profile and several humoral parameters in plasma and intestine. Results showed that dietary inclusion of CSGM did not negatively affect the immune parameters of meagre. In addition, total numbers of red and white blood cells, as well as thrombocytes, lymphocytes, monocytes, and neutrophils counts were not affected by dietary treatments. All parameters evaluated in plasma were unaffected by dietary CSGM inclusion after 1 and 2 weeks of feeding, with only the haemolytic complement activity showing an increase in fish fed diets with CSGM after 1 week and in fish fed CSGM22.5 diet after 2 weeks. Regarding the innate immune parameters analysed in the intestine, it could be highlighted the increase in alkaline phosphatase and antiprotease activities in fish fed the diet with the higher inclusion of CSGM at 8 weeks. Overall, results suggest that high dietary CSGM inclusion do not compromise immune status or induce an inflammatory response in meagre juveniles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Oncogenic PIK3CA gene mutations and HER2/neu gene amplifications determine the sensitivity of uterine serous carcinoma cell lines to GDC-0980, a selective inhibitor of Class I PI3 kinase and mTOR kinase (TORC1/2).

    PubMed

    English, Diana P; Bellone, Stefania; Cocco, Emiliano; Bortolomai, Ileana; Pecorelli, Sergio; Lopez, Salvatore; Silasi, Dan-Arin; Schwartz, Peter E; Rutherford, Thomas; Santin, Alessandro D

    2013-11-01

    To evaluate PIK3CA mutational status and c-erbB2 gene amplification in a series of primary uterine serous carcinomas (USC) cell lines. To assess the efficacy of GDC-0980, a potent inhibitor of Class I PI3 kinase and mTOR kinase (TORC1/2), against primary USC harboring HER2/neu gene amplification and/or PIK3CA mutations. Twenty-two primary USC cell lines were evaluated for c-erbB2 oncogene amplification by fluorescence in situ hybridization (FISH) assays and for PIK3CA gene mutations by direct DNA sequencing of exons 9 and 20. In vitro sensitivity to GDC-0980 was evaluated by flow-cytometry-based viability and proliferation assays. Downstream cellular responses to GDC-0980 were assessed by measuring phosphorylation of the 4-EBP1 protein by flow-cytometry. Five of 22 (22.7%) USC cell lines contained oncogenic PIK3CA mutations although 9 (40.9%) harbored c-erbB2 gene amplification by FISH. GDC-0980 caused a strong differential growth inhibition in FISH+ USC when compared with FISH- (GDC-0980 IC50 mean ± SEM = 0.29 ± 0.05 μM in FISH+ vs 1.09 ± 0.20 μM in FISH- tumors, P = .02). FISH+ USC harboring PIK3CA mutations were significantly more sensitive to GDC-0980 exposure when compared with USC cell lines harboring wild-type PIK3CA (P = .03). GDC-0980 growth-inhibition was associated with a significant and dose-dependent decline in phosphorylated 4-EBP1 levels. Oncogenic PIK3CA mutations and c-erbB2 gene amplification may represent biomarkers to identify patients harboring USC who may benefit most from the use of GDC-0980. Copyright © 2013 Mosby, Inc. All rights reserved.

  10. Identification of diverse defense mechanisms in rainbow trout red blood cells in response to halted replication of VHS virus.

    PubMed

    Nombela, Ivan; Puente-Marin, Sara; Chico, Veronica; Villena, Alberto J; Carracedo, Begoña; Ciordia, Sergio; Mena, Maria Carmen; Mercado, Luis; Perez, Luis; Coll, Julio; Estepa, Amparo; Ortega-Villaizan, Maria Del Mar

    2017-01-01

    Background: It has been described that fish nucleated red blood cells (RBCs) generate a wide variety of immune-related gene transcripts when viruses highly replicate inside them and are their main target cell. The immune response and mechanisms of fish RBCs against viruses targeting other cells or tissues has not yet been explored and is the objective of our study. Methods: Rainbow trout RBCs were obtained from peripheral blood, ficoll purified and exposed to Viral Haemorrhagic Septicaemia virus (VHSV). Immune response was evaluated by means of RT-qPCR, flow cytometry, immunofluorescence and isobaric tag for relative and absolute quantification (iTRAQ) protein profiling. Results: VHSV N gene transcripts incremented early postexposure and were drastically decreased after 6 hours postexposure (hpe). The expression of type I interferon ( ifn1 ) gene was significantly downregulated at early postexposure (3 hpe), together with a gradual downregulation of interferon-inducible mx and pkr genes until 72 hpe. Type I IFN protein was downregulated and interferon-inducible Mx protein was maintained at basal levels. Co-culture assays of RBCs, previously exposed to UV-inactivated VHSV, and TSS (stromal cell line from spleen) revealed IFN crosstalk between both cell types. On the other hand, anti-microbial peptide β-defensin 1 and neutrophil chemotactic factor interleukin 8 were slightly upregulated in VHSV-exposed RBCs. iTRAQ profiling revealed that VHSV exposure can induce a global protein downregulation in rainbow trout RBCs, mainly related to RNA stability and proteasome pathways. Antioxidant/antiviral response is also suggested to be involved in the response of rainbow trout RBCs to VHSV. Conclusions: A variety of mechanisms are proposed to be implicated in the antiviral response of rainbow trout RBCs against VHSV halted infection. Ongoing research is focused on understanding the mechanisms in detail.

  11. Canned bluefin tuna, an in vitro cardioprotective functional food potentially safer than commercial fish oil based pharmaceutical formulations.

    PubMed

    Tenore, Gian Carlo; Calabrese, Giorgio; Ritieni, Alberto; Campiglia, Pietro; Giannetti, Daniela; Novellino, Ettore

    2014-09-01

    Commercial canned fish species typical in the Italian market were evaluated for their lipid profile. Bluefin tuna samples showed the highest content in omega-3 fatty acids (n-3 PUFA) among the canned fish samples analyzed. Tests on H9C2 cardiomyocytes revealed that bluefin tuna n-3 PUFA may responsible for a significant cell protection against both physiological and doxorubicin-induced oxidative stress. Analogous tests performed by incubating cardiac cells with n-3 PUFA ethyl esters, of which most of fish oil pharmaceutical formulations (FOPF) are based, showed cytotoxicity at high doses. Our results highlighted that n-3 PUFA contents in a 50 g canned bluefin tuna portion would be almost equivalent to and potentially safer than those of 1 FOPF capsule (1000 mg)/die usually suggested for hyperlipidaemic subjects. Thus, Italian commercial canned bluefin tuna could be indicated as a functional food with potential health benefits for the prevention and care of cardiovascular disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Recent findings on the structure and function of teleost IgT

    PubMed Central

    Zhang, Yong-An; Salinas, Irene; Sunyer, J. Oriol

    2011-01-01

    As key effector molecules of jawed vertebrate’s adaptive immune system, immunoglobulins are produced by B lymphocytes, either as a secretory form (antibody) or as a membrane form (B cell receptor). Until recently, teleost fish B cells were thought to express only two classes of immunoglobulins, IgM and IgD. In addition, IgM in these species was thought to be the only immunoglobulin isotype responding to pathogens both in systemic or mucosal compartments. However, the unexpected discovery of IgT, a new teleost immunoglobulin unearthed in 2005, has provided for new opportunities to analyze further roles of teleost immunoglobulins in these two physiologically distinct compartments. The smoke about the potential function of IgT has cleared recently with the finding that this immunoglobulin appears to be specialized in gut mucosal immunity. Significantly, the new capability of measuring not only IgM but also IgT responses will greatly facilitate the evaluation and understanding of fish immune responses as well as the protective effects of fish vaccines. The purpose of this review is to summarize the molecular characterization of new IgT orthologs and subtypes in teleosts, as well as to describe the new findings concerning the protein structure of IgT, the B cells producing it, and its role in mucosal immunity. PMID:21466854

  13. Pathological alterations typical of human Tay-Sachs disease, in the retina of a deep-sea fish.

    PubMed

    Fishelson, L; Delarea, Y; Galil, B S

    2000-08-01

    Micrographs of retinas from the deep-sea fish Cataetyx laticeps revealed visual cells containing membranous whorls in the ellipsoids of the inner segments resulting from stretching and modifications of the mitochondria membranes and their cristae. These pathological structures seem to be homologous to the whorls observed in retinas of human carriers of Tay-Sachs disease. This disease, a genetic disorder, is found in humans and some mammals. Our findings in fish suggest that the gene responsible can be found throughout the vertebrate evolutionary tree, possibly dormant in most taxa.

  14. Proteomic response to sublethal cadmium exposure in a sentinel fish species, Cottus gobio.

    PubMed

    Dorts, Jennifer; Kestemont, Patrick; Dieu, Marc; Raes, Martine; Silvestre, Frédéric

    2011-02-04

    The present study aimed at evaluating the toxicity of short-term cadmium (Cd) exposure in the European bullhead Cottus gobio, a candidate sentinel species. Several enzymatic activity assays (citrate synthase, cytochrome c oxidase, and lactate dehydrogenase) were carried out in liver and gills of fish exposed to 0.01, 0.05, 0.25, and 1 mg Cd/L for 4 days. Exposure to high Cd concentrations significantly altered the activity of these enzymes either in liver and/or in gills. Second, 2D-DIGE technique was used to identify proteins differentially expressed in tissues of fish exposed to either 0.01 or 1 mg Cd/L. Fifty-four hepatic protein spots and 37 branchial protein spots displayed significant changes in abundance in response to Cd exposure. A total of 26 and 12 different proteins were identified using nano LC-MS/MS in liver and gills, respectively. The identified differentially expressed proteins can be categorized into diverse functional classes, related to metabolic process, general stress response, protein fate, and cell structure for instance. This work provides new insights into the biochemical and molecular events in Cd-induced toxicity in fish and suggests that further studies on the identified proteins could provide crucial information to better understand the mechanisms of Cd toxicity in fish.

  15. Cytotoxicity and genotoxicity of polyethylenimine and nickel chloride in red sea bream ( Pagrosomus major) fin cell line RSBF

    NASA Astrophysics Data System (ADS)

    Guo, Hua-Rong; Zhang, Shi-Cui

    2002-12-01

    A continuous marine fish cell line RSBF (i. c. Red Sea Bream Fin) was utilized to screen the cytotoxicity and genotoxicity of polyethylenimine (PEI) and nickel chloride (NiCl2) in this study on the deleterious effects of aquatic genotoxins on fish. At the 0.01 to 1 μg/ml concentration tested, PEI had acute toxicity to the treated RSBF cells (IC50=1.12, 0.92, 0.88 and 0.64 μg/ml PEI for time 0 h, 24 h, 48 h and 72 h after treatment, respectively) and markedly inhibited their proliferation in a dose-dependent manner. At the 0.001 to 5 μmol/L concentration tested, NiCl2 posed no acute toxicity but significantly stimulated their growth (107% 214% of control). Random amplified polymorphic DNA (RAPD) technique was used to detect the genotoxic effects of PEI and NiCl2 by comparing the RAPD banding patterns of the control and treated cells. RAPD analysis indicated that at the concentrations tested, PEI was more genotoxic than NiCl2 to RSBF cells; that there was a slight dose-dependent response in the genotoxic effect of PEI but not NiCl2; and that RAPD technique might provide a sensitive, non-specific genotoxic endpoint. And the potent cytotoxicity and genotoxicity of PEI on fish cells showed that we should be cautious in utilizing it as gene, vector in fish gene transfer and human gene therapy.

  16. RNA flow cytometric FISH for investigations into HIV immunology, vaccination and cure strategies.

    PubMed

    Baxter, Amy E; Niessl, Julia; Morou, Antigoni; Kaufmann, Daniel E

    2017-09-12

    Despite the tremendous success of anti-retroviral therapy (ART) no current treatment can eradicate latent HIV reservoirs from HIV-infected individuals or generate, effective HIV-specific immunity. Technological limitations have hampered the identification and characterization of both HIV-infected cells and HIV-specific responses in clinical samples directly ex vivo. RNA-flow cytometric fluorescence in situ hybridisation (RNA Flow-FISH) is a powerful technique, which enables detection of mRNAs in conjunction with proteins at a single-cell level. Here, we describe how we are using this technology to address some of the major questions remaining in the HIV field in the era of ART. We discuss how CD4 T cell responses to HIV antigens, both following vaccination and HIV infection, can be characterized by measurement of cytokine mRNAs. We describe how our development of a dual HIV mRNA/protein assay (HIV RNA/Gag assay) enables high sensitivity detection of very rare HIV-infected cells and aids investigations into the translation-competent latent reservoir in the context of HIV cure.

  17. mRNA-seq reveals skeletal muscle atrophy in response to handling stress in a marine teleost, the red cusk-eel (Genypterus chilensis).

    PubMed

    Aedo, Jorge E; Maldonado, Jonathan; Aballai, Víctor; Estrada, Juan M; Bastias-Molina, Macarena; Meneses, Claudio; Gallardo-Escarate, Cristian; Silva, Herman; Molina, Alfredo; Valdés, Juan A

    2015-12-01

    Fish reared under intensive conditions are repeatedly exposed to stress, which negatively impacts growth. Although most fish follow a conserved pattern of stress response, with increased concentrations of cortisol, each species presents specificities in the cell response and stress tolerance. Therefore, culturing new species requires a detailed knowledge of these specific responses. The red cusk-eel (Genypterus chilensis) is a new economically important marine species for the Chilean aquaculture industry. However, there is no information on the stress- and cortisol-induced mechanisms that decrease skeletal muscle growth in this teleost. Using Illumina RNA-seq technology, skeletal muscle sequence reads for G. chilensis were generated under control and handling stress conditions. Reads were mapped onto a reference transcriptome, resulting in the in silico identification of 785 up-regulated and 167 down-regulated transcripts. Gene ontology enrichment analysis revealed a significant up-regulation of catabolic genes associated with skeletal muscle atrophy. These results were validated by RT-qPCR analysis for ten candidates genes involved in ubiquitin-mediated proteolysis, autophagy and skeletal muscle growth. Additionally, using a primary culture of fish skeletal muscle cells, the effect of cortisol was evaluated in relation to red cusk-eel skeletal muscle atrophy. The present data demonstrated that handling stress promotes skeletal muscle atrophy in the marine teleost G. chilensis through the expression of components of the ubiquitin-proteasome and autophagy-lysosome systems. Furthermore, cortisol was a powerful inductor of skeletal muscle atrophy in fish myotubes. This study is an important step towards understanding the atrophy system in non-model teleost species and provides novel insights on the cellular and molecular mechanisms that control skeletal muscle growth in early vertebrates.

  18. Effects of different cytokines on immune responses of rainbow trout in a virus DNA vaccination model

    PubMed Central

    Cao, Yongsheng; Zhang, Qiya; Xu, Liming; Li, Shaowu; Wang, Di; Zhao, Jingzhuang; Liu, Hongbai; Feng, Jian; Lu, Tongyan

    2017-01-01

    Seven rainbow trout cytokine genes (interleukin (IL)-2, IL-8, IL-15, IL-17, IL-1β, intracellular interferon (iIFN) 1a, and IFN-γ2) were evaluated for their adjuvant effects on a DNA vaccine, called pG, containing the glycoprotein gene of infectious hematopoietic necrosis virus (IHNV). Distinct DNA constructs in expression plasmid pcDNA3.1 encoding a cytokine gene were generated. Immunofluorescence assays in rainbow trout gonadal cells demonstrated successful protein expression from all these constructs. Subsequently, fish were immunized with pG alone or together with a cytokine expression plasmid. Results showed that each cytokine plasmids at an appropriate dose showed notable effects on immune gene expression. IL-17 and IFN-γ2 can enhance early specific IgM response. All cytokines, except IL-8, can benefit initial neutralizing antibody (NAb) titers. At 35 days post immunization (dpi), NAb titers of fish immunized with pG and IL-2, iIFN1a, or IFN-γ2 plasmids remained at high levels (1:160). NAb titers of fish immunized with pG alone decreased to 1:40. IL-8 or IL-1β can enhance antigen-specific proliferative T-cell responses at 14 dpi. At 28 dpi, coinjection of pG with IL-2, IL-8, IL-15, or IL-17 plasmids induced considerably stronger lymphocyte proliferation than that with injection of pG alone. All cytokine plasmids delivered with pG plasmid enhanced protection of trout against IHNV-mediated mortality. These results indicate that the type and dose of trout cytokine genes injected into fish affect quality of immune response to DNA vaccination. PMID:29348820

  19. High-throughput transcriptome analysis of ISAV-infected Atlantic salmon Salmo salar unravels divergent immune responses associated to head-kidney, liver and gills tissues.

    PubMed

    Valenzuela-Miranda, Diego; Boltaña, Sebastian; Cabrejos, Maria E; Yáñez, José M; Gallardo-Escárate, Cristian

    2015-08-01

    Infectious salmon anaemia virus (ISAV) is an orthomyxovirus causing high mortality in farmed Atlantic salmon (Salmo salar). The collective data from the Atlantic salmon-ISAV interactions, performed "in vitro" using various salmon cell lines and "in vivo" fish infected with different ISAV isolates, have shown a strong regulation of immune related transcripts during the infection. Despite this strong defence response, the majority of fish succumb to infections with ISAV. The deficient protection of the host against ISAV is in part due to virulence factors of the virus, which allow evade the host-defence machinery. As such, the viral replication is uninhibited and viral loads quickly spread to several tissues causing massive cellular damage before the host can develop an effective cell-mediated and humoral outcome. To interrogate the correlation of the viral replication with the host defence response, we used fish that have been infected by cohabitation with ISAV-injected salmons. Whole gene expression patterns were measured with RNA-seq using RNA extracted from Head-kidney, Liver and Gills. The results show divergent mRNA abundance of functional modules related to interferon pathway, adaptive/innate immune response and cellular proliferation/differentiation. Furthermore, gene regulation in distinct tissues during the infection process was independently controlled within the each tissue and the observed mRNA expression suggests high modulation of the ISAV-segment transcription. Importantly this is the first time that strong correlations between functional modules containing significant immune process with protein-protein affinities and viral-segment transcription have been made between different tissues of ISAV-infected fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The Immunoglobulins of Cold-Blooded Vertebrates

    PubMed Central

    Pettinello, Rita; Dooley, Helen

    2014-01-01

    Although lymphocyte-like cells secreting somatically-recombining receptors have been identified in the jawless fishes (hagfish and lamprey), the cartilaginous fishes (sharks, skates, rays and chimaera) are the most phylogenetically distant group relative to mammals in which bona fide immunoglobulins (Igs) have been found. Studies of the antibodies and humoral immune responses of cartilaginous fishes and other cold-blooded vertebrates (bony fishes, amphibians and reptiles) are not only revealing information about the emergence and roles of the different Ig heavy and light chain isotypes, but also the evolution of specialised adaptive features such as isotype switching, somatic hypermutation and affinity maturation. It is becoming increasingly apparent that while the adaptive immune response in these vertebrate lineages arose a long time ago, it is most definitely not primitive and has evolved to become complex and sophisticated. This review will summarise what is currently known about the immunoglobulins of cold-blooded vertebrates and highlight the differences, and commonalities, between these and more “conventional” mammalian species. PMID:25427250

  1. Comparison of the responses of different recombinant fish type I interferons against betanodavirus infection in grouper.

    PubMed

    Kuo, Hsiang-Ping; Chung, Chia-Ling; Hung, Yu-Fang; Lai, Yu-Shen; Chiou, Pinwen P; Lu, Ming-Wei; Kong, Zwe-Ling

    2016-02-01

    The nervous necrosis virus (NNV) is an aquatic virus that can infect more than 30 species including the grouper, which is a valuable fish species in Taiwan. NNV causes up to 90-100% mortality in the aquaculture industry. Interferons (IFNs) are a family of cytokines that stimulate the expression of numerous proteins to protect the host against viruses and possess very unique specific characteristics in fish. The cross-reactivity of heterologous IFNs on grouper cells and larvae has not been well-studied to date. To evaluate and compare the anti-NNV effect of different fish IFNs in grouper, we successfully synthesized, subcloned, expressed and purified several fish type I IFNs in the present study: grouper (gIFN), salmon (sIFN), seabass (sbIFN) and tilapia (tpIFN). The gIFN and sIFN proteins up-regulated myxovirus resistance protein (Mx) gene expression in grouper kidney (GK) cells, but similar effects were not observed for sbIFN and tpIFN. Following co- and pre-treatment with the 4 types of IFNs with NNV infection in GK cells, sIFN exhibited the strongest antiviral ability to suppress NNV gene replication (especially at 24 h) and significantly reduced the cytopathic effect (CPE) at 72 h, followed by gIFN. Unsurprisingly, sbIFN and tpIFN had no significant effect on CPE but slightly suppressed NNV gene replication. The cytotoxicity of these four fish IFNs on GK cells was also examined for the first time. In the in vivo test, we confirmed that gIFN and sIFN had a significant protective effect against NNV when administered by intraperitoneal (IP) injection and the oral route in Malabar grouper (Epinephelus malabaricus) larvae. This study compared the protective effects of IFNs from various fish species against NNV and demonstrated crosstalk between sIFN and grouper cells for the first time. These results provide information concerning the efficacy of fish IFNs for possible therapeutic applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Endocrine regulation of gonadotropin and growth hormone gene transcription in fish.

    PubMed

    Melamed, P; Rosenfeld, H; Elizur, A; Yaron, Z

    1998-06-01

    The pituitary of a number of teleosts contains two gonadotropins (GtHs) which are produced in distinct populations of cells; the beta subunit of the GtH I being found in close proximity to the somatotrophs, while the II beta cells are more peripheral. In several species the GtH beta subunits are expressed at varying levels throughout the reproductive cycle, the I beta dominating in early maturing fish, after which the II beta becomes predominant. This suggests differential control of the beta subunit synthesis which may be regulated by both hypothalamic hormones and gonadal steroids. At ovulation and spawning, changes also occur in the somatotrophs, which become markedly more active, while plasma growth hormone (GH) levels increase. In a number of species, GnRH elevates either the I beta or the II beta mRNA levels, depending on the reproductive state of the fish. In tilapia, the GnRH effect on the II beta appears to be mediated through both cAMP-PKA and PKC pathways. GnRH also stimulates GH release in both goldfish and tilapia, but it increases the GH transcript levels only in goldfish; both GnRH and direct activation of PKC are ineffective in altering GH mRNA in tilapia pituitary cells. Dopamine (DA) does not alter II beta transcript levels in cultured tilapia pituitary cells, but increases GH mRNA levels in both rainbow trout and tilapia, in a PKA-dependent manner. This effect appears to be through interactions with Pit-1 and also by stabilizing the mRNA. Somatostatin (SRIF) does not alter GH transcript levels in either tilapia or rainbow trout, although it may alter GH synthesis by modulation of translation. Gonadal steroids appear to have differential effects on the transcription of the beta subunits. In tilapia, testosterone (T) elevates I beta mRNA levels in cells from immature or early maturing fish (in low doses), but depresses them in cells from late maturing fish and is ineffective in cells from regressed fish. Similar results were seen in early recrudescing male coho salmon injected with T or E2. T or E2 administered in vivo has dramatic stimulatory effects on the II beta transcript levels in immature fish of a number of species, while less powerful effects are seen in vitro. A response is also seen in cells from early maturing rainbow trout or tilapia, or regressed tilapia, but not in cells from late maturing or spawning fish. These results are substantiated by the finding that the promoter of the salmon II beta gene contains several estrogen responsive elements (EREs) which react and interact differently when exposed to varying levels of E2. In addition, activator protein-1 (AP-1) and steroidogenic factor-1 (SF-1) response elements are also found in the salmon II beta promoter; the AP-1 site is located close to a half ERE, while the SF-1 acts synergistically with the E2 receptor. The mRNA levels of both AP-1 and SP-1 are elevated, at least in mammals, by GnRH, suggesting possible sites for cross-talk between GnRH and steroid activated pathways. Reports of the effects of T or E2 on GH transcription differ. No effect is seen in vitro in pituitaries of tilapia, juvenile rainbow trout or common carp, but T does increase the transcript levels in pituitaries of both immature and mature goldfish. Reasons for these discrepancies are unclear, but other systemic hormones may be more instrumental than the gonadal steroids in regulating GH transcription. These include T3 which increases both GH mRNA levels and de novo synthesis (in tilapia and common carp) and insulin-like growth factor-I (IGF-I) which reduces GH transcript levels as well as inhibiting GH release.

  3. Surface properties of Streptococcus phocae strains isolated from diseased Atlantic salmon, Salmo salar L.

    PubMed

    González-Contreras, A; Magariños, B; Godoy, M; Irgang, R; Toranzo, A E; Avendaño-Herrera, R

    2011-03-01

    Streptococcus phocae is an emerging pathogen for Chilean Atlantic salmon, Salmo salar, but the factors determining its virulence are not yet elucidated. In this work, cell surface-related properties such as hydrophobicity and haemagglutination, adhesion to mucus and cell lines, capsule detection, survival and biofilm formation in skin mucus and serum resistance of the isolates responsible for outbreaks in Atlantic salmon and seals were examined. Adhesion to hydrocarbons and the results of salt aggregation tests indicated most of the S. phocae were strongly hydrophobic. All isolates exhibited a similar ability to attach to the Chinook salmon embryo (CHSE) cells line, but were not able to enter CHSE cells. Haemagglutination was not detected. Our data clearly indicate that S. phocae can resist the killing activity of mucus and serum and proliferate in them, which could be associated with the presence of a capsular layer around the cells. Pathogenicity studies using seal and fish isolates demonstrated mortality or pathological signs in fish injected only with the Atlantic salmon isolate. No mortalities or histopathological alterations were observed in fish injected with extracellular products. © 2011 Blackwell Publishing Ltd.

  4. Development of a transient expression assay for detecting environmental oestrogens in zebrafish and medaka embryos

    PubMed Central

    2012-01-01

    Background Oestrogenic contaminants are widespread in the aquatic environment and have been shown to induce adverse effects in both wildlife (most notably in fish) and humans, raising international concern. Available detecting and testing systems are limited in their capacity to elucidate oestrogen signalling pathways and physiological impacts. Here we developed a transient expression assay to investigate the effects of oestrogenic chemicals in fish early life stages and to identify target organs for oestrogenic effects. To enhance the response sensitivity to oestrogen, we adopted the use of multiple tandem oestrogen responsive elements (EREc38) in a Tol2 transposon mediated Gal4ff-UAS system. The plasmid constructed (pTol2_ERE-TATA-Gal4ff), contains three copies of oestrogen response elements (3ERE) that on exposure to oestrogen induces expression of Gal4ff which this in turn binds Gal4-responsive Upstream Activated Sequence (UAS) elements, driving the expression of a second reporter gene, EGFP (Enhanced Green Fluorescent Protein). Results The response of our construct to oestrogen exposure in zebrafish embryos was examined using a transient expression assay. The two plasmids were injected into 1–2 cell staged zebrafish embryos, and the embryos were exposed to various oestrogens including the natural steroid oestrogen 17ß-oestradiol (E2), the synthetic oestrogen 17α- ethinyloestradiol (EE2), and the relatively weak environmental oestrogen nonylphenol (NP), and GFP expression was examined in the subsequent embryos using fluorescent microscopy. There was no GFP expression detected in unexposed embryos, but specific and mosaic expression of GFP was detected in the liver, heart, somite muscle and some other tissue cells for exposures to steroid oestrogen treatments (EE2; 10 ng/L, E2; 100 ng/L, after 72 h exposures). For the NP exposures, GFP expression was observed at 10 μg NP/L after 72 h (100 μg NP/L was toxic to the fish). We also demonstrate that our construct works in medaka, another model fish test species, suggesting the transient assay is applicable for testing oestrogenic chemicals in fish generally. Conclusion Our results indicate that the transient expression assay system can be used as a rapid integrated testing system for environmental oestrogens and to detect the oestrogenic target sites in developing fish embryos. PMID:22726887

  5. Overview on the effects of parasites on fish health

    USGS Publications Warehouse

    Iwanowicz, D.D.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.

    2011-01-01

    It is believed by many that parasites are only as important as the fish they infect. Parasites are ubiquitous, primarily surviving in a dynamic equilibrium with their host(s) and they are often overlooked in fish health assessments. Changes in the environment, both anthropogenic and environmental, can alter the parasite/host equilibrium and cause disease or mortality in fish. Therefore it is imperative that we have knowledge of both parasites and parasitic communities within a given population. When fish kills occur, it can often be associated with changes in parasite density and community composition. Often the damage associated with these fish is relative to the rate of infestation with the parasite; a fish that is lightly infected will show few signs of the parasite, while a heavily infected fish may become physiologically impaired and even die. Parasites can cause mechanical damage (fusion of gill lamellae, tissue replacement), physiological damage (cell proliferation, immunomodulation, detrimental behavioral responses, altered growth) and reproductive damage. As parasitism is the most common lifestyle on the planet, understanding its role in the environment may help researchers understand changes in a given fish population or stream ecosystem.

  6. Physiology of primary saccular afferents of goldfish: implications for Mauthner cell response.

    PubMed

    Fay, R R

    1995-01-01

    Mauthner cells receive neurally coded information from the otolith organs in fishes, and it is most likely that initiation and directional characteristics of the C-start response depend on this input. In the goldfish, saccular afferents are sensitive to sound pressure (< -30 dB re: 1 dyne cm-2) in the most sensitive frequency range (200 to 800 Hz). This input arises from volume fluctuations of the swimbladder in response to the sound pressure waveform and is thus nondirectional. Primary afferents of the saccule, lagena, and utricle of the goldfish also respond with great sensitivity to acoustic particle motion (< 1 nanometer between 100 and 200 Hz). This input arises from the acceleration of the fish in a sound field and is inherently directional. Saccular afferents can be divided into two groups based on their tuning: one group is tuned at about 250 Hz, and the other tuned between 400 Hz and 1 kHz. All otolithic primary afferents phaselock to sinusoids throughout the frequency range of hearing (up to about 2 kHz). Based on physiological and behavioral studies on Mauthner cells, it appears that highly correlated binaural input to the M-cell, from the sacculi responding to sound pressure, may be required for a decision to respond but that the direction of the response is extracted from small deviations from a perfect interaural correlation arising from the directional response of otolith organs to acoustic particle motion.

  7. The role of thyroid hormones in stress response of fish.

    PubMed

    Peter, M C Subhash

    2011-06-01

    Thyroxine (T(4)) and triiodothyronine (T(3)), the principal thyroid hormones (THs) secreted from the hypothalamic-pituitary-thyroid (HPT) axis, produce a plethora of physiologic actions in fish. The diverse actions of THs in fishes are primarily due to the sensitivity of thyroid axis to many physical, chemical and biological factors of both intrinsic and extrinsic origins. The regulation of THs homeostasis becomes more complex due to extrathyroidal deiodination pathways by which the delivery of biologically active T(3) to target cells has been controlled. As primary stress hormones and the end products of hypothalamic-pituitary-interrenal (HPI) and brain-sympathetic-chromaffin (BSC) axes, cortisol and adrenaline exert its actions on its target tissues where it promote and integrate osmotic and metabolic competence. Despite possessing specific osmoregulatory and metabolic actions at cellular and whole-body levels, THs may fine-tune these processes in accordance with the actions of hormones like cortisol and adrenaline. Evidences are presented that THs can modify the pattern and magnitude of stress response in fishes as it modifies either its own actions or the actions of stress hormones. In addition, multiple lines of evidence indicate that hypothalamic and pituitary hormones of thyroid and interrenal axes can interact with each other which in turn may regulate THs/cortisol-mediated actions. Even though it is hard to define these interactions, the magnitude of stress response in fish has been shown to be modified by the changes in the status of THs, pointing to its functional relationship with endocrine stress axes particularly with the interrenal axis. The fine-tuned mechanism that operates in fish during stressor-challenge drives the THs to play both fundamental and modulator roles in stress response by controlling osmoregulation and metabolic regulation. A major role of THs in stress response is thus evident in fish. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Effects of ω-3 Polyunsaturated Fatty Acids on the Homeostasis of CD4+ T Cells and Lung Injury in Mice With Polymicrobial Sepsis.

    PubMed

    Chang, Yu-Fan; Hou, Yu-Chen; Pai, Man-Hui; Yeh, Sung-Ling; Liu, Jun-Jen

    2017-07-01

    Sepsis is a common cause of death in critically ill patients. An overwhelming inflammatory response and imbalance of helper T (Th) cells and regulatory T (Treg) cells are thought to be involved in the progression of sepsis. ω-3 Polyunsaturated fatty acids (PUFAs) were found to have anti-inflammatory and immunomodulatory properties. This study investigated the effects of ω-3 PUFAs on the balance of Th subsets, Treg cells, and the inflammatory response in septic mice. Mice were randomly assigned to soybean oil (SO) and fish oil (FO) groups. The 2 groups received an identical nutrient distribution except for the sources of the fat. The SO group was fed soybean oil, while part of the soybean oil was replaced by fish oil in the FO group. The FO group had an ω-6/ω-3 PUFA ratio of 2:1. After feeding the diets for 3 weeks, sepsis was induced by cecal ligation and puncture (CLP), and mice were sacrificed on days 0, 1, and 3. Compared with the SO group, the FO group had lower inflammatory mediator levels in the plasma and peritoneal lavage fluid after CLP. Also, the FO group had lower Th1, Th2, and Th17 percentages and a higher Th1/Th2 ratio in blood. In lung tissues, neutrophil infiltration was reduced, whereas peroxisome proliferator-activated receptor γ expression was upregulated. A fish oil diet with an ω-6/ω-3 PUFA ratio of 2:1 may elicit more balanced Th polarization, alleviate inflammatory responses, and attenuate lung injury in CLP-induced sepsis.

  9. Risk and toxicity assessments of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake, China.

    PubMed

    Fu, Jie; Hu, Xin; Tao, Xiancong; Yu, Hongxia; Zhang, Xiaowei

    2013-11-01

    Heavy metal pollution is one of the most serous environmental issues globally. To evaluate the metal pollution in Jiangsu Province of China, the total concentrations of heavy metals in sediments and fishes from the Yangtze River and Taihu Lake were analyzed. Ecological risk of sediments and human health risk of fish consumption were assessed respectively. Furthermore, toxicity of samples on expression of the stress responsive genes was evaluated using microbial live cell-array method. The results showed that the heavy metals concentrations in sediments from the Yangtze River were much higher than those in sediments from the Taihu Lake. However, the fishes from the Taihu Lake had higher concentrations of heavy metals than fishes from the Yangtze River. Ecological risk evaluation showed that the heavy metal contaminants in sediments from the Yangtze River posed higher risk of adverse ecological effects, while sediments from the study areas of Taihu Lake were relatively safe. Health risk assessment suggested that the heavy metals in fishes of both Yangtze River and Taihu Lake might have risk of adverse health effects to human. The toxicity assessment indicated that the heavy metals in these sediments and fishes showed transcriptional effects on the selected 21 stress responsive genes, which were involved in the pathways of DNA damage response, chemical stress, and perturbations of electron transport. Together, this field investigation combined with chemical analysis, risk assessment and toxicity bioassay would provide useful information on the heavy metal pollution in Jiangsu Province. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. ALK ambiguous-positive non-small cell lung cancers are tumors challenged by diagnostic and therapeutic issues.

    PubMed

    Uguen, Arnaud; Andrieu-Key, Sophie; Vergne, Florence; Descourt, Renaud; Quéré, Gilles; Quintin-Roué, Isabelle; Key, Stéphane; Guéguen, Paul; Talagas, Matthieu; De Braekeleer, Marc; Marcorelles, Pascale

    2016-09-01

    Searching for ALK rearrangements using the approved fluorescent in situ hybridization (FISH) test and complementary immunohistochemistry (IHC) has become the rule to treat patients with advanced non‑small cell lung cancer (NSCLC) with anti‑ALK targeted therapy. The concordance between the two techniques is reported to be strong but imperfect. We report our experience with cases of ALK‑rearranged lung adenocarcinomas pointing out particularly ambiguous cases. FISH and IHC data on ALK but also c‑MET IHC as well as EGFR and KRAS mutation screening are considered, together with response to crizotinib treatment. We classified the 55 FISH ALK‑rearranged tumors into two groups according to the FISH and IHC results: a concordant FISH+IHC+ group (31 tumors) and an ambiguous group (24 tumors). These tumors were considered as 'ambiguous' ALK‑positive due to negative (21 tumors) or non‑contributive (3 tumors) IHC. In addition, the percentage of FISH-positive nuclei was between 15 and 20% in 17 tumors belonging to one or the other group (now called borderline tumors). We discuss the accuracy of the different tests with intent to determine whether ambiguous and borderline tumors are real positive ALK‑rearranged tumors. To conclude, ambiguous ALK‑positive lung cancers are challenging tumors with diagnosis and therapeutic issues that can justify parallel FISH, IHC and molecular screening strategy.

  11. Regulation of branchial V-H(+)-ATPase, Na(+)/K(+)-ATPase and NHE2 in response to acid and base infusions in the Pacific spiny dogfish (Squalus acanthias).

    PubMed

    Tresguerres, Martin; Katoh, Fumi; Fenton, Heather; Jasinska, Edyta; Goss, Greg G

    2005-01-01

    To study the mechanisms of branchial acid-base regulation, Pacific spiny dogfish were infused intravenously for 24 h with either HCl (495+/- 79 micromol kg(-1) h(-1)) or NaHCO(3) (981+/-235 micromol kg(-1) h(-1)). Infusion of HCl produced a transient reduction in blood pH. Despite continued infusion of acid, pH returned to normal by 12 h. Infusion of NaHCO(3) resulted in a new steady-state acid-base status at approximately 0.3 pH units higher than the controls. Immunostained serial sections of gill revealed the presence of separate vacuolar proton ATPase (V-H(+)-ATPase)-rich or sodium-potassium ATPase (Na(+)/K(+)-ATPase)-rich cells in all fish examined. A minority of the cells also labeled positive for both transporters. Gill cell membranes prepared from NaHCO(3)-infused fish showed significant increases in both V-H(+)-ATPase abundance (300+/-81%) and activity. In addition, we found that V-H(+)-ATPase subcellular localization was mainly cytoplasmic in control and HCl-infused fish, while NaHCO(3)-infused fish demonstrated a distinctly basolateral staining pattern. Western analysis in gill membranes from HCl-infused fish also revealed increased abundance of Na(+)/H(+) exchanger 2 (213+/-5%) and Na(+)/K(+)-ATPase (315+/-88%) compared to the control.

  12. Beta-glucan enhances the response to SVCV infection in zebrafish.

    PubMed

    M Medina-Gali, Regla; Ortega-Villaizan, María Del Mar; Mercado, Luis; Novoa, Beatriz; Coll, Julio; Perez, Luis

    2018-07-01

    The antiviral effects of beta-glucan, an immunostimulatory agent were studied in zebrafish both in vitro and in vivo. Here we show that zebrafish ZF4 cells as well as whole fish primed with yeast β-glucan zymosan exhibited increased cytokine expression and elevated response to spring viremia of carp virus (SVCV) infection. In vitro, previous treatment of β-glucan enhanced ZF4 cell viability against SVCV infection which is associated to the activation of interferon signaling pathway and inflammatory cytokines gene expression. In vivo, the SVCV-infected fish primed with β-glucan had a higher survival rate (≈73%) than the control SVCV-infected group (≈33%). Additionally, up-regulation of the expression of a set of genes involved in innate immune response was detected in zebrafish intraperitoneally injected of β-glucan: il1b, il6, il8, il10 and tnfa transcripts showed increased expression that appear to be rapid (2 days) but not long-lived (less than 2 weeks). The present study is, to our knowledge, the first to combine cell culture and in vivo approaches to describe host response to β-glucan stimulation and viral infection in zebrafish. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Origins of bone repair in the armour of fossil fish: response to a deep wound by cells depositing dentine instead of dermal bone.

    PubMed

    Johanson, Zerina; Smith, Moya; Kearsley, Anton; Pilecki, Peter; Mark-Kurik, Elga; Howard, Charles

    2013-10-23

    The outer armour of fossil jawless fishes (Heterostraci) is, predominantly, a bone with a superficial ornament of dentine tubercles surrounded by pores leading to flask-shaped crypts (ampullae). However, despite the extensive bone present in these early dermal skeletons, damage was repaired almost exclusively with dentine. Consolidation of bone, by dentine invading and filling the vascular spaces, was previously recognized in Psammolepis and other heterostracans but was associated with ageing and dermal shield wear (reparative). Here, we describe wound repair by deposition of dentine directly onto a bony scaffold of fragmented bone. An extensive wound response occurred from massive deposition of dentine (reactionary), traced from tubercle pulp cavities and surrounding ampullae. These structures may provide the cells to make reparative and reactionary dentine, as in mammalian teeth today in response to stimuli (functional wear or damage). We suggest in Psammolepis, repair involved mobilization of these cells in response to a local stimulatory mechanism, for example, predator damage. By comparison, almost no new bone is detected in repair of the Psammolepis shield. Dentine infilling bone vascular tissue spaces of both abraded dentine and wounded bone suggests that recruitment of this process has been evolutionarily conserved over 380 Myr and precedes osteogenic skeletal repair.

  14. Whole Body Melanoma Transcriptome Response in Medaka

    PubMed Central

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K.; Postlethwait, John; Warren, Wesley C.

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model. PMID:26714172

  15. Whole Body Melanoma Transcriptome Response in Medaka.

    PubMed

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K; Postlethwait, John; Warren, Wesley C

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model.

  16. Constitutional Mosaic Trisomy 13 in Two Germ Cell Layers is Different from Patau Syndrome? A Case Report.

    PubMed

    Kunwar, Fulesh; Pandya, Vidhi; Bakshi, Sonal R

    2016-03-01

    The heterogeneous phenotype of known syndromes is a clinical challenge, and harmonized description using globally accepted ontology is desirable. This report attempts phenotypic analysis in a patient of constitutional mosaic trisomy 13 in mesoderm and ectoderm to make globally comparable clinical description. Phenotypic features (minor/major abnormalities) were recorded and matched with the Human Phenotype Ontology terms that were used to query web-based tool Phenomizer. We report here a case of 24-year-old girl born to non consanguineous parents with history of one abortion. Her phenotypic evaluation included short columella, low-set ears, seizures, enlarged naris, bifid tongue, infra-orbital fold, smooth philtrum, microtia, microcephaly, carious teeth, downslanted palpebral fissures, proportionate short stature, high palate, thin upper lip vermilion, small for gestational age, broad fingertip, broad hallux, mandibular prognathia and dental malocclusion. Karyotype and interphase FISH (Fluorescence in situ hybridization) was done in blood cells. Interphase FISH was also performed on buccal epithelial cells. Cytogenetic analysis demonstrated trisomy 13 mosaicism in 25% cells i.e. 47, XX,+13(9)/46,XX(27). The interphase FISH in blood cells showed trisomy 13 in 15%, whereas in buccal mucosa cells showed nearly 6%. Mosaic aneuploidy in constitutional karyotype can be responsible for variation in clinical and morphological presentation of patient with genetic disorder.

  17. Characterization of BAFF and APRIL subfamily receptors in rainbow trout (Oncorhynchus mykiss). Potential role of the BAFF / APRIL axis in the pathogenesis of proliferative kidney disease

    PubMed Central

    Granja, Aitor G.; Holland, Jason W.; Pignatelli, Jaime; Secombes, Christopher J.; Tafalla, Carolina

    2017-01-01

    Proliferative kidney disease (PKD) is a parasitic infection of salmonid fish characterized by hyper-secretion of immunoglobulins in response to the presence of the myxozoan parasite, Tetracapsuloides bryosalmonae. In this context, we hypothesized that the BAFF/APRIL axis, known to play a major role in B cell differentiation and survival in mammals, could be affected by the parasite and consequently be involved in the apparent shift in normal B cell activity. To regulate B cell activity, BAFF and APRIL bind to transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA), whereas BAFF also binds to BAFF receptor (BAFF-R). In teleost fish, although some BAFF and APRIL sequences have been reported, their receptors have not been identified. Thus, as a first step in the current work, we have identified homologues to mammalian TACI, BCMA and BAFF-R in rainbow trout (Oncorhynchus mykiss), that constitute the first report of BAFF and APRIL receptor sequences in fish. Subsequently we studied the transcriptional modulation of BAFF, APRIL, and the fish-specific related cytokine, BALM and their putative receptors in fish naturally exposed to T. bryosalmonae. Finally, to gain further insights on the functional role that these cytokines play during the course of PKD, we have studied their effect on the survival of kidney IgM+ B cells and on immunoglobulin transcription. Our results support the premise that the BAFF / APRIL axis could play an important role during PKD, which may open the possibility of new therapeutic treatments against the disease. PMID:28323891

  18. The effectiveness of fish oil supplementation in asthmatic rats is limited by an inefficient action on ASM function.

    PubMed

    Miranda, D T S Z; Zanatta, A L; Dias, B C L; Fogaça, R T H; Maurer, J B B; Donatti, L; Calder, P C; Nishiyama, A

    2013-09-01

    Episodes of acute exacerbation are the major clinical feature of asthma and therefore represent an important focus for developing novel therapies for this disease. There are many reports that the n-3 fatty acids found in fish oil exert anti-inflammatory effects, but there are few studies of the action of fish oil on airway smooth muscle (ASM) function. In the present investigation, we evaluated the effect of fish oil supplementation on smooth muscle force of contraction in ovalbumin-induced asthmatic Wistar rats, and its consequences on static lung compliance, mucus production, leukocyte chemotaxis and production of proinflammatory cytokines. Fish oil supplementation suppressed the infiltration of inflammatory cells into the lung in asthmatic animals (2.04 ± 0.19 × 10(6) cells vs. 3.33 ± 0.43 × 10(6) cells in the control asthmatic group; P < 0.05). Static lung compliance increased with fish oil supplementation in asthmatic rats (0.640 ± 0.053 mL/cm H2O vs. 0.399 ± 0.043 mL/cm H2O; P < 0.05). However, fish oil did not prevent asthma-associated lung eosinophilia and did not affect the concentrations of tumor necrosis factor-α and interleukin-1β in lung tissue or the proportion of the airways obliterated with mucus. Fish oil had no effect on the force of contraction in asthmatic rats in response to acetylcholine (3.026 ± 0.274 mN vs. 2.813 ± 0.364 mN in the control asthmatic group). In conclusion, although fish oil exerts some benefits in this model of asthma, its effectiveness appears to be limited by an inefficient action on airway smooth muscle function.

  19. Hormonal control of euryhalinity

    USGS Publications Warehouse

    Takei, Yoshio; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.

  20. Smolt physiology and endocrinology

    USGS Publications Warehouse

    McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.

  1. Stolephorus sp Behavior in Different LED (Light Emitting Diode) Color and Light Intensities

    NASA Astrophysics Data System (ADS)

    Fitri Aristi, D. P.; Ramadanita, I. A.; Hapsari, T. D.; Susanto, A.

    2018-02-01

    This research aims to observe anchovy (Stolephorus sp) behavior under different LED light intensities that affect eye physiology (cell cone structure). The materials used were Stolephorus sp taken from the waters off Jepara and 13 and 10 watt light emitting diode (LED). The research method was an experiment conducted from March through August 2015 in the waters off Jepara. Data analysis of visual histology and fish respond was carried out at the fishing gear material laboratory, anatomy and cultivate. Cone cell structure (mosaic cone) of Stolephorus sp forms a connected regular square pattern with every single cone surrounded by four double cones, which indicate that anchovies are sensitive to light. The 13 watt LED (628 lux) has faster response than the 10 watt LED (531 lux) as it has wider and higher emitting intensity, which also attracts fish to gather quicker.

  2. Environmental genotoxicity and risk assessment in the Gulf of Riga (Baltic Sea) using fish, bivalves, and crustaceans.

    PubMed

    Butrimavičienė, Laura; Baršienė, Janina; Greiciūnaitė, Janina; Stankevičiūtė, Milda; Valskienė, Roberta

    2018-06-21

    Environmental genotoxicity in the Gulf of Riga was assessed using different bioindicators (fish, clams, and isopods) collected from 14 study stations. Comparison of genotoxicity responses (micronuclei (MN) and nuclear buds (NB)) in blood erythrocytes of herring (Clupea harengus), eelpout (Zoarces viviparous), and flounder (Platichthys flesus) revealed the species- and site-specific differences. For the first time, the analysis of genotoxicity was carried out in gill cells of isopods Saduria entomon. The highest inductions of MN and NB in gill cells of investigated S. entomon and clams (Macoma balthica) were evaluated in specimens from station 111A (offshore zone). In fish, the highest incidences of MN were measured in eelpout and in herring collected in the southern part of Gulf of Riga (station GOR3/41S). Moreover, in the southern coastal area, the assessment of genotoxicity risk (according to micronuclei levels) indicated exceptionally high risk for flounder, eelpout, and clams.

  3. Cytotoxicity assays with fish cells as an alternative to the acute lethality test with fish.

    PubMed

    Segner, Helmut

    2004-10-01

    In ecotoxicology, in vitro assays with fish cells are currently applied for mechanistic studies, bioanalytical purposes and toxicity screening. This paper discusses the potential of cytotoxicity assays with fish cells to reduce, refine or replace acute lethality tests using fish. Basal cytotoxicity data obtained with fish cell lines or fish primary cell cultures show a reasonable to good correlation with lethality data from acute toxicity tests, with the exception of compounds that exert a specific mode of toxic action. Basal cytotoxicity data from fish cell lines also correlate well with cytotoxicity data from mammalian cell lines. However, both the piscine and mammalian in vitro assays are clearly less sensitive than the fish test. Therefore, in vivo LC50 values (concentrations of the test compounds that are lethal to 50% of the fish in the experiment within 96 hours) currently cannot be predicted from in vitro values. This in vitro-in vivo difference in sensitivity appears to be true for both fish cell lines and mammalian cell lines. Given the good in vitro-in vivo correlation in toxicity ranking, together with the clear-cut difference in sensitivity, the role of cytotoxicity assays in a tiered alternative testing strategy could be in priority setting in relation to toxic hazard and in the toxicity classification of chemicals and environmental samples.

  4. Responses of neurogenesis and neuroplasticity related genes to elevated CO2 levels in the brain of three teleost species.

    PubMed

    Lai, Floriana; Fagernes, Cathrine E; Bernier, Nicholas J; Miller, Gabrielle M; Munday, Philip L; Jutfelt, Fredrik; Nilsson, Göran E

    2017-08-01

    The continuous increase of anthropogenic CO 2 in the atmosphere resulting in ocean acidification has been reported to affect brain function in some fishes. During adulthood, cell proliferation is fundamental for fish brain growth and for it to adapt in response to external stimuli, such as environmental changes. Here we report the first expression study of genes regulating neurogenesis and neuroplasticity in brains of three-spined stickleback ( Gasterosteus aculeatus ), cinnamon anemonefish ( Amphiprion melanopus ) and spiny damselfish ( Acanthochromis polyacanthus ) exposed to elevated CO 2 The mRNA expression levels of the neurogenic differentiation factor (NeuroD) and doublecortin (DCX) were upregulated in three-spined stickleback exposed to high-CO 2 compared with controls, while no changes were detected in the other species. The mRNA expression levels of the proliferating cell nuclear antigen (PCNA) and the brain-derived neurotrophic factor (BDNF) remained unaffected in the high-CO 2 exposed groups compared to the control in all three species. These results indicate a species-specific regulation of genes involved in neurogenesis in response to elevated ambient CO 2 levels. The higher expression of NeuroD and DCX mRNA transcripts in the brain of high-CO 2 -exposed three-spined stickleback, together with the lack of effects on mRNA levels in cinnamon anemonefish and spiny damselfish, indicate differences in coping mechanisms among fish in response to the predicted-future CO 2 level. © 2017 The Author(s).

  5. A BCWD-resistant line of rainbow trout exhibits higher abundance of IgT+ B cells and heavy chain tau transcripts compared to a susceptible line following challenge with Flavobacterium psychrophilum.

    PubMed

    Zwollo, Patty; Hennessey, Erin; Moore, Catherine; Marancik, David P; Wiens, Gregory D; Epp, Lidia

    2017-09-01

    Bacterial Cold Water Disease (BCWD) is a common, chronic disease in rainbow trout, and is caused by the gram-negative bacterium Flavobacterium psychrophilum (Fp). Through selective breeding, the National Center for Cool and Cold Water Aquaculture has generated a genetic line that is highly resistant to Fp challenge, designated ARS-Fp-R (or R-line), as well as a susceptible "control" line, ARS-Fp-S (S-line). In previous studies, resistance to Fp had been shown to correlate with naive animal spleen size, and further, naïve R-line trout had been shown to have a lower abundance of IgM + and IgM ++ cells compared to S-line fish. Here we wished to first determine whether the abundance of IgT + and/or IgT ++ cells differed between the two lines in naïve fish, and if so, how these patterns differed after in vivo challenge with Fp. Fp challenge was by intramuscular injection of live Fp and tissue collections were on days 5, 6, and/or 28 post-challenge, in two independent challenge experiments. Flow cytometric and gene expression analyses revealed that naïve R-line fish had a higher abundance of IgT + B cells in their anterior kidney, spleen, and blood, compared to S line fish. Further, that after Fp challenge, this difference was maintained between the two lines. Lastly, abundance of IgT + B cells and expression of secHCtau correlated with lower Fp pathogen loads in challenged fish. In the anterior kidney, IgM + B cell abundance correlated with increased Fp loads. Together, these results suggest that IgT + B lineage cells may have a protective function in the immune response to Fp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. From cell extracts to fish schools to granular layers: the universal hydrodynamics of self-driven systems

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram

    2007-03-01

    Collections of self-driven or ``active'' particles are now recognised as a distinct kind of nonequilibrium matter, and an understanding of their phases, hydrodynamics, mechanical response, and correlations is a vital and rapidly developing part of the statistical physics of soft-matter systems far from equilibrium. My talk will review our recent results, from theory, simulation and experiment, on order, fluctuations, and flow instabilities in collections of active particles, in suspension or on a solid surface. Our work, which began by adapting theories of flocking to include the hydrodynamics of the ambient fluid, provides the theoretical framework for understanding active matter in all its diversity: contractile filaments in cell extracts, crawling or dividing cells, collectively swimming bacteria, fish schools, and agitated monolayers of orientable granular particles.

  7. The antiviral defense mechanisms in mandarin fish induced by DNA vaccination against a rhabdovirus.

    PubMed

    Chen, Zhong-Yuan; Lei, Xiao-Ying; Zhang, Qi-Ya

    2012-06-15

    Plasmid DNAs containing Siniperca chuatsi rhabdovirus (SCRV) glycoprotein gene (pcDNA-G) and nucleoprotein gene (pcDNA-N) were constructed, and used to determine the antiviral immune response elicited by DNA vaccination in mandarin fish. In vitro and in vivo expression of the plasmid constructs was confirmed in transfected cells and muscle tissues of vaccinated fish by Western blot, indirect immunofluorescence or RT-PCR analysis. Fish injected with pcDNA-G exhibited protective effect against SCRV challenge with a relative percent survival (RPS) of 77.5%, but no significant protection (RPS of 2.5%) was observed in fish vaccinated with pcDNA-N. Immunohistochemical analysis showed that vaccination with pcDNA-G decreased histological lesions and suppressed the virus replication in fish target organs, e.g. kidney, liver, spleen, gill and heart. Transcriptional analysis further revealed that the expression levels of type I IFN system genes including interferon regulation factor-7 (IRF-7) gene, myxovirus resistance (Mx) gene and virus inhibitory protein (Viperin) gene were strongly up-regulated after injection with pcDNA-G, whereas the level of transcription of immunoglobulin M (IgM) gene did not show a statistically significant change. These results reveal that type I IFN antiviral immune response is rapidly triggered by the plasmid DNA containing rhabdovirus glycoprotein gene in fish, which offers an explanation of molecular mechanisms for DNA vaccination inducing mandarin fish resist to SCRV disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A mini review on immune role of chemokines and its receptors in snakehead murrel Channa striatus.

    PubMed

    Bhatt, Prasanth; Kumaresan, Venkatesh; Palanisamy, Rajesh; Ravichandran, Gayathri; Mala, Kanchana; Amin, S M Nurul; Arshad, Aziz; Yusoff, Fatimah Md; Arockiaraj, Jesu

    2018-01-01

    Chemokines are ubiquitous cytokine molecules involved in migration of cells during inflammation and normal physiological processes. Though the study on chemokines in mammalian species like humans have been extensively studied, characterization of chemokines in teleost fishes is still in the early stage. The present review provides an overview of chemokines and its receptors in a teleost fish, Channa striatus. C. striatus is an air breathing freshwater carnivore, which has enormous economic importance. This species is affected by an oomycete fungus, Aphanomyces invadans and a Gram negative bacteria Aeromonas hydrophila is known to cause secondary infection. These pathogens impose immune changes in the host organism, which in turn mounts several immune responses. Of these, the role of cytokines in the immune response is immense, due to their involvement in several activities of inflammation such as cell trafficking to the site of inflammation and antigen presentation. Given that importance, chemokines in fishes do have significant role in the immunological and other physiological functions of the organism, hence there is a need to understand the characteristics, activities and performace of these small molecules in details. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. In situ DNA hybridized chain reaction (FISH-HCR) as a better method for quantification of bacteria and archaea within marine sediment

    NASA Astrophysics Data System (ADS)

    Buongiorno, J.; Lloyd, K. G.; Shumaker, A.; Schippers, A.; Webster, G.; Weightman, A.; Turner, S.

    2015-12-01

    Nearly 75% of the Earth's surface is covered by marine sediment that is home to an estimated 2.9 x 1029 microbial cells. A substantial impediment to understanding the abundance and distribution of cells within marine sediment is the lack of a consistent and reliable method for their taxon-specific quantification. Catalyzed reporter fluorescent in situ hybridization (CARD-FISH) provides taxon-specific enumeration, but this process requires passing a large enzyme through cell membranes, decreasing its precision relative to general cell counts using a small DNA stain. In 2015, Yamaguchi et al. developed FISH hybridization chain reaction (FISH-HCR) as an in situ whole cell detection method for environmental microorganisms. FISH-HCR amplifies the fluorescent signal, as does CARD-FISH, but it allows for milder cell permeation methods that might prevent yield loss. To compare FISH-HCR to CARD-FISH, we examined bacteria and archaea cell counts within two sediment cores, Lille Belt (~78 meters deep) and Landsort Deep (90 meters deep), which were retrieved from the Baltic Sea Basin during IODP Expedition 347. Preliminary analysis shows that CARD-FISH counts are below the quantification limit for most depths across both cores. By contrast, quantification of cells was possible with FISH-HCR in all examined depths. When quantification with CARD-FISH was above the limit of detection, counts with FISH-HCR were up to 11 fold higher for Bacteria and 3 fold higher for Archaea from the same sediment sample. Further, FISH-HCR counts follow the trends of on board counts nicely, indicating that FISH-HCR may better reflect the cellular abundance within marine sediment than other quantification methods, including qPCR. Using FISH-HCR, we found that archaeal cell counts were on average greater than bacterial cell counts, but within the same order of magnitude.

  10. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens

    PubMed Central

    Gomez, Daniela; Sunyer, J Oriol; Salinas, Irene

    2013-01-01

    The field of mucosal immunology research has grown fast over the past few years, and our understanding on how mucosal surfaces respond to complex antigenic cocktails is expanding tremendously. With the advent of new molecular sequencing techniques, it is easier to understand how the immune system of vertebrates is, to a great extent, orchestrated by the complex microbial communities that live in symbiosis with their hosts. The commensal microbiota is now seen as the “extended self” by many scientists. Similarly, fish immunologist are devoting important research efforts to the field of mucosal immunity and commensals. Recent breakthroughs on our understanding of mucosal immune responses in teleost fish open up the potential of teleosts as animal research models for the study of human mucosal diseases. Additionally, this new knowledge places immunologists in a better position to specifically target the fish mucosal immune system while rationally designing mucosal vaccines and other immunotherapies. In this review, an updated view on how teleost skin, gills and gut immune cells and molecules, function in response to pathogens and commensals is provided. Finally, some of the future avenues that the field of fish mucosal immunity may follow in the next years are highlighted. PMID:24099804

  11. Effects of supplementation with fish oil and n-3 PUFAs enriched egg yolk phospholipids on anhedonic-like response and body weight in the rat chronic mild stress model of depression.

    PubMed

    Rutkowska, M; Trocha, M; Szandruk, M; Słupski, W; Rymaszewska, J

    2013-08-01

    Polyunsaturated fatty acids play an important role in the human organism. They guarantee a normal function of nervous cells, influence neurotransmission, and build some elements of cellular membranes. Several reports indicate an association between a deficiency of polyunsaturated fatty acids and depression. The aim of this study was to examine the effects of diet supplemented with fish oil, which is rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs) and n-3 PUFAs enriched phospholipids ("super lecithin") obtained from designed eggs on anhedonic-like response and body weight in the rat chronic mild stress (CMS) model of depression. The results showed that neither fish oil nor n-3 PUFAs enriched egg yolk phospholipids supplementation reversed disturbances caused by CMS, such as anhedonic-like state or reduction of body weight gain.

  12. Influence of salinity on the localization of Na+/K +-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and CFTR anion channel in chloride cells of the Hawaiian goby (Stenogobius hawaiiensis)

    USGS Publications Warehouse

    McCormick, S.D.; Sundell, K.; Bjornsson, Bjorn Thrandur; Brown, C.L.; Hiroi, J.

    2003-01-01

    Na+/K+-ATPase, Na+/K+/2Cl- cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR) are the three major transport proteins thought to be involved in chloride secretion in teleost fish. If this is the case, the levels of these transporters should be high in chloride cells of seawater-acclimated fish. We therefore examined the influence of salinity on immunolocalization of Na +/K+-ATPase, NKCC and CFTR in the gills of the Hawaiian goby (Stenogobius hawaiiensis). Fish were acclimated to freshwater and 20??? and 30??? seawater for 10 days. Na+/K +-ATPase and NKCC were localized specifically to chloride cells and stained throughout most of the cell except for the nucleus and the most apical region, indicating a basolateral/tubular distribution. All Na+/K +-ATPase-positive chloride cells were also positive for NKCC in all salinities. Salinity caused a slight increase in chloride cell number and size and a slight decrease in staining intensity for Na+/K +-ATPase and NKCC, but the basic pattern of localization was not altered. Gill Na+/K+-ATPase activity was also not affected by salinity. CFTR was localized to the apical surface of chloride cells, and only cells staining positive for Na+/K+-ATPase were CFTR-positive. CFTR-positive cells greatly increased in number (5-fold), area stained (53%) and intensity (29%) after seawater acclimation. In freshwater, CFTR immunoreactivity was light and occurred over a broad apical surface on chloride cells, whereas in seawater there was intense immunoreactivity around the apical pit (which was often punctate in appearance) and a light subapical staining. The results indicate that Na+/K +-ATPase, NKCC and CFTR are all present in chloride cells and support current models that all three are responsible for chloride secretion by chloride cells of teleost fish.

  13. Paraneurons in the gills and airways of fishes.

    PubMed

    Zaccone, G; Fasulo, S; Ainis, L; Licata, A

    1997-04-01

    This chapter describes the distributional patterns of the neuroendocrine cells in the respiratory surfaces of fishes and their bioactive secretions which are compared with similar elements in higher vertebrates. The neuroendocrine cells in the airways of fishes differentiate as solitary and clustered cells, but the clusters are not converted into neuroepithelial bodies which are reported in terrestrial vertebrates. The dipnoan fish Protopterus has innervated neuroendocrine cells in the pneumatic duct region. In Polypterus and Amia the lungs have neuroendocrine cells that are apparently not innervated. Two types of neuroendocrine cells are found in the gill of teleost fishes. These cells are very different by their location, structure and immunohistochemistry. Advanced studies on functional morphology of neuroendocrine cells in fish airways are still necessary to increase our understanding of their multifunctional role in the gill area.

  14. Plant and Animal Gravitational Biology. Part 2

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session WA2 includes short reports concerning: (1) The Asymmetrical Growth of Otoliths in Fish Affected by Altered Gravity and Causes Kinetosis; (2) Neurobiological Responses of Fish to Altered Gravity conditions: A Review; (3) An Age-Dependent Sensitivity of the Roll-Induced Vestibulocular Reflex to Hypergravity Exposure of Several Days in an Amphibian (Xenopus Laevis); (4) Mechanically-Induced Membrane Wounding During Parabolic Flight; and (5) Erythropoietin Stimulates Increased F Cell Numbers in Bone Marrow Cultures Established in Gravity and Microgravity Conditions.

  15. How to generate a sound-localization map in fish

    NASA Astrophysics Data System (ADS)

    van Hemmen, J. Leo

    2015-03-01

    How sound localization is represented in the fish brain is a research field largely unbiased by theoretical analysis and computational modeling. Yet, there is experimental evidence that the axes of particle acceleration due to underwater sound are represented through a map in the midbrain of fish, e.g., in the torus semicircularis of the rainbow trout (Wubbels et al. 1997). How does such a map arise? Fish perceive pressure gradients by their three otolithic organs, each of which comprises a dense, calcareous, stone that is bathed in endolymph and attached to a sensory epithelium. In rainbow trout, the sensory epithelia of left and right utricle lie in the horizontal plane and consist of hair cells with equally distributed preferred orientations. We model the neuronal response of this system on the basis of Schuijf's vector detection hypothesis (Schuijf et al. 1975) and introduce a temporal spike code of sound direction, where optimality of hair cell orientation θj with respect to the acceleration direction θs is mapped onto spike phases via a von-Mises distribution. By learning to tune in to the earliest synchronized activity, nerve cells in the midbrain generate a map under the supervision of a locally excitatory, yet globally inhibitory visual teacher. Work done in collaboration with Daniel Begovic. Partially supported by BCCN - Munich.

  16. Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull.

    PubMed

    Geurtzen, Karina; Knopf, Franziska; Wehner, Daniel; Huitema, Leonie F A; Schulte-Merker, Stefan; Weidinger, Gilbert

    2014-06-01

    Zebrafish have an unlimited capacity to regenerate bone after fin amputation. In this process, mature osteoblasts dedifferentiate to osteogenic precursor cells and thus represent an important source of newly forming bone. By contrast, differentiated osteoblasts do not appear to contribute to repair of bone injuries in mammals; rather, osteoblasts form anew from mesenchymal stem cells. This raises the question whether osteoblast dedifferentiation is specific to appendage regeneration, a special feature of the lepidotrichia bone of the fish fin, or a process found more generally in fish bone. Here, we show that dedifferentiation of mature osteoblasts is not restricted to fin regeneration after amputation, but also occurs during repair of zebrafish fin fractures and skull injuries. In both models, mature osteoblasts surrounding the injury downregulate the expression of differentiation markers, upregulate markers of the pre-osteoblast state and become proliferative. Making use of photoconvertible Kaede protein as well as Cre-driven genetic fate mapping, we show that osteoblasts migrate to the site of injury to replace damaged tissue. Our findings suggest a fundamental role for osteoblast dedifferentiation in reparative bone formation in fish and indicate that adult fish osteoblasts display elevated cellular plasticity compared with mammalian bone-forming cells. © 2014. Published by The Company of Biologists Ltd.

  17. [Fish interferon response and its molecular regulation: a review].

    PubMed

    Zhang, Yibing; Gui, Jianfang

    2011-05-01

    Interferon response is the first line of host defense against virus infection. Recent years have witnessed tremendous progress in understanding of fish innate response to virus infection, especially in fish interferon antiviral response. A line of fish genes involved in interferon antiviral response have been identified and functional studies further reveal that fish possess an IFN antiviral system similar to mammals. However, fish virus-induced interferon genes contain introns similar to mammalian type III interferon genes although they encode proteins similar to type I interferons, which makes it hard to understand the evolution of vertebrate interferon genes directly resulting in a debate on nomenclature of fish interferon genes. Actually, fish display some unique mechanisms underlying interferon antiviral response. This review documents the recent progress on fish interferon response and its molecular mechanism.

  18. Inflammatory responses and side effects generated by several adjuvant-containing vaccines in turbot.

    PubMed

    Noia, M; Domínguez, B; Leiro, J; Blanco-Méndez, J; Luzardo-Álvarez, A; Lamas, J

    2014-05-01

    Several of the adjuvants used in fish vaccines cause adhesions in internal organs when they are injected intraperitoneally. We describe the damage caused by vaccines containing different adjuvants in the turbot Scophthalmus maximus and show that internal adhesions can be greatly reduced by injecting the fish in a specific way. Injection of fish with the needle directed towards the anterior part of the peritoneal cavity induced formation of a single cell-vaccine mass (CVM) that became attached to the parietal peritoneum. However, injection of the fish with the needle pointing in the opposite direction generated many small CVM that became attached to the visceral and parietal peritoneum and in some cases caused internal adhesions. We describe the structural and cellular changes in the adjuvant-induced CVMs. The CVMs mainly comprised neutrophils and macrophages, although most of the former underwent apoptosis, which was particularly evident from day 3 post-injection. The apoptotic cells were phagocytosed by macrophages, which were the dominant cell type from the first days onwards. All of the vaccines induced angiogenesis in the area of contact between the CVM and the mesothelium. Vaccines containing oil-based adjuvants or microspheres induced the formation of granulomas in the CVM; however, no granulomas were observed in the CVM induced by vaccines containing aluminium hydroxide or Matrix-Q(®) as adjuvants. All of the vaccines induced strong migration of cells to the peritoneal cavity. Although some of these cells remained unattached in the peritoneal cavity, most of them formed part of the CVM. We also observed migration of the cells from the peritoneal cavity to lymphoid organs, indicating bidirectional traffic of cells between the inflamed areas and these organs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. From 'omics to otoliths: responses of an estuarine fish to endocrine disrupting compounds across biological scales.

    PubMed

    Brander, Susanne M; Connon, Richard E; He, Guochun; Hobbs, James A; Smalling, Kelly L; Teh, Swee J; White, J Wilson; Werner, Inge; Denison, Michael S; Cherr, Gary N

    2013-01-01

    Endocrine disrupting chemicals (EDCs) cause physiological abnormalities and population decline in fishes. However, few studies have linked environmental EDC exposures with responses at multiple tiers of the biological hierarchy, including population-level effects. To this end, we undertook a four-tiered investigation in the impacted San Francisco Bay estuary with the Mississippi silverside (Menidia audens), a small pelagic fish. This approach demonstrated links between different EDC sources and fish responses at different levels of biological organization. First we determined that water from a study site primarily impacted by ranch run-off had only estrogenic activity in vitro, while water sampled from a site receiving a combination of urban, limited ranch run-off, and treated wastewater effluent had both estrogenic and androgenic activity. Secondly, at the molecular level we found that fish had higher mRNA levels for estrogen-responsive genes at the site where only estrogenic activity was detected but relatively lower expression levels where both estrogenic and androgenic EDCs were detected. Thirdly, at the organism level, males at the site exposed to both estrogens and androgens had significantly lower mean gonadal somatic indices, significantly higher incidence of severe testicular necrosis and altered somatic growth relative to the site where only estrogens were detected. Finally, at the population level, the sex ratio was significantly skewed towards males at the site with measured androgenic and estrogenic activity. Our results suggest that mixtures of androgenic and estrogenic EDCs have antagonistic and potentially additive effects depending on the biological scale being assessed, and that mixtures containing androgens and estrogens may produce unexpected effects. In summary, evaluating EDC response at multiple tiers is necessary to determine the source of disruption (lowest scale, i.e. cell line) and what the ecological impact will be (largest scale, i.e. sex ratio).

  20. Measurement of in vitro leucocyte mitogenesis in fish: ELISA based detection of the thymidine analogue 5'-bromo-2'-deoxyuridine

    USGS Publications Warehouse

    Gauthier, David T.; Cartwright, Deborah D.; Densmore, Christine L.; Blazer, Vicki; Ottinger, Christopher A.

    2003-01-01

    In this study we present a method for the measurement of in vitro mitogenesis in fish leucocytes that is based on the incorporation of the thymidine analogue 5′-bromo-2′-deoxyuridine (BrdU) into the DNA of replicating cells, followed by ELISA-based detection. This technique, adapted from methods developed for mammalian cells, operates on a similar biological principle to 3H-thymidine incorporation, but circumvents the logistical and safety issues inherent with the radioactive label. Because it directly measures DNA proliferation, the assay has advantages over other colorimetric methods that may be strongly influenced by leucocyte metabolic status. Using BrdU incorporation followed by ELISA, we evaluate the responsiveness of rainbow trout (Oncorhynchus mykiss [Walbaum]) leucocytes to the mammalian T-cell mitogen Concanavalin A (Con A) as well as the differential response of white perch (Morone americana [Gmelin]) leucocytes to Con A and pokeweed mitogen. Specific considerations intrinsic to the assay system are discussed, including the implications of utilising enzyme-based detection.

  1. Synergies between vaccination and dietary arginine and glutamine supplementation improve the immune response of channel catfish against Edwardsiella ictaluri.

    PubMed

    Pohlenz, Camilo; Buentello, Alejandro; Criscitiello, Michael F; Mwangi, Waithaka; Smith, Roger; Gatlin, Delbert M

    2012-09-01

    Channel catfish was used to investigate the enhancement of vaccine efficacy following dietary supplementation with arginine (ARG, 4% of diet), glutamine (GLN, 2% of diet), or a combination of both. After vaccination against Edwardsiella ictaluri, humoral and cellular immune responses, along with lymphoid organ responses were evaluated. E. ictaluri-specific antibody titers in plasma were higher (P < 0.05) in fish fed the supplemented diets compared to those fed the basal diet as early as 7 d post-vaccination (dpv). B-cell proportion in head-kidney was higher (P < 0.05) at 14 dpv in vaccinated fish fed the GLN diet. The responsiveness of spleen and head-kidney lymphocytes against E. ictaluri was enhanced (P < 0.05) by dietary supplementation of ARG or GLN at 14 dpv. Additionally, at 7 dpv, vaccinated fish fed the GLN diet had higher (P < 0.05) head kidney weights relative to the other dietary treatments, and vaccinated fish fed ARG-supplemented diets had higher (P < 0.05) protein content in this tissue. Results from this study suggest that dietary supplementation of ARG and GLN may improve specific cellular and humoral mechanisms, enhancing the acquired immunity in vaccinated channel catfish. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Identification of diverse defense mechanisms in rainbow trout red blood cells in response to halted replication of VHS virus

    PubMed Central

    Nombela, Ivan; Puente-Marin, Sara; Chico, Veronica; Villena, Alberto J.; Carracedo, Begoña; Ciordia, Sergio; Mena, Maria Carmen; Mercado, Luis; Perez, Luis; Coll, Julio; Ortega-Villaizan, Maria del Mar

    2018-01-01

    Background: It has been described that fish nucleated red blood cells (RBCs) generate a wide variety of immune-related gene transcripts when viruses highly replicate inside them and are their main target cell. The immune response and mechanisms of fish RBCs against viruses targeting other cells or tissues has not yet been explored and is the objective of our study. Methods: Rainbow trout RBCs were obtained from peripheral blood, ficoll purified and exposed to Viral Haemorrhagic Septicaemia virus (VHSV). Immune response was evaluated by means of RT-qPCR, flow cytometry, immunofluorescence and isobaric tag for relative and absolute quantification (iTRAQ) protein profiling. Results: VHSV N gene transcripts incremented early postexposure and were drastically decreased after 6 hours postexposure (hpe). The expression of type I interferon ( ifn1) gene was significantly downregulated at early postexposure (3 hpe), together with a gradual downregulation of interferon-inducible mx and pkr genes until 72 hpe. Type I IFN protein was downregulated and interferon-inducible Mx protein was maintained at basal levels. Co-culture assays of RBCs, previously exposed to UV-inactivated VHSV, and TSS (stromal cell line from spleen) revealed IFN crosstalk between both cell types. On the other hand, anti-microbial peptide β-defensin 1 and neutrophil chemotactic factor interleukin 8 were slightly upregulated in VHSV-exposed RBCs. iTRAQ profiling revealed that VHSV exposure can induce a global protein downregulation in rainbow trout RBCs, mainly related to RNA stability and proteasome pathways. Antioxidant/antiviral response is also suggested to be involved in the response of rainbow trout RBCs to VHSV. Conclusions: A variety of mechanisms are proposed to be implicated in the antiviral response of rainbow trout RBCs against VHSV halted infection. Ongoing research is focused on understanding the mechanisms in detail. PMID:29527292

  3. Hydrolyzed fish proteins modulates both inflammatory and antioxidant gene expression as well as protein expression in a co culture model of liver and head kidney cells isolated from Atlantic salmon (Salmo salar).

    PubMed

    Holen, Elisabeth; He, Juyun; Araujo, Pedro; Seliussen, Jørgen; Espe, Marit

    2016-07-01

    Hydrolyzed fish proteins (H-pro) contain high concentrations of free amino acids and low molecular peptides that potentially may benefit fish health. The following study aimed to test whether the water-soluble phase of H-pro could attenuate lipopolysaccharide (LPS) provoked inflammation in liver cells and head kidney cells isolated from Atlantic salmon. Cells were grown as mono cultures or co cultures to assess possible crosstalk between immune cells and metabolic cells during treatments. Cells were added media with or without H-pro for 2 days before LPS exposure and harvested 24 h post LPS exposure. Respective cells without H-pro and LPS were used as controls. H-pro alone could affect expression of proteins directly as H-pro increased catalase protein expression in head kidney- and liver cells, regardless of culturing methods and LPS treatment. Leukotriene B4 (LTB4) production was also increased by H-pro in head kidney cells co cultured with liver cells. H-pro increased LPS induced interleukin 1β (IL-1β) transcription in liver cells co cultured with head kidney cells. All cultures of head kidney cells showed a significant increase in IL-1β transcription when treated with H-pro + LPS. H-pro decreased caspase-3 transcription in liver cells cultured co cultured with head kidney cells. Peroxisome proliferator activated receptor α (PPAR α) was upregulated, regardless of treatment, in liver cells co cultured with head kidney cells clearly showing that culturing method alone affected gene transcription. H-pro alone and together with LPS as an inflammation inducer, affect both antioxidant and inflammatory responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Evaluation of ALK rearrangement in Chinese non-small cell lung cancer using FISH, immunohistochemistry, and real-time quantitative RT- PCR on paraffin-embedded tissues.

    PubMed

    Zhang, Yun-Gang; Jin, Mu-Lan; Li, Li; Zhao, Hong-Ying; Zeng, Xuan; Jiang, Lei; Wei, Ping; Diao, Xiao-Li; Li, Xue; Cao, Qing; Tian, Xin-Xia

    2013-01-01

    Patients with ALK gene rearrangements often manifest dramatic responses to crizotinib, an ALK inhibitor. Accurate identification of patients with ALK-positive non-small cell lung cancer (NSCLC) is essential for the clinical application of ALK-targeted therapy. However, assessing EML4-ALK rearrangement in NSCLC remains challenging in routine pathology practice. The aim of this study was to compare the diagnostic accuracy of FISH, immunohistochemistry (IHC), and real-time quantitative RT-PCR (QPCR) methodologies for detection of EML4-ALK rearrangement in NSCLC and to appraise immunohistochemistry as a pre-screening tool. In this study, a total of 473 paraffin-embedded NSCLC samples from surgical resections and biopsies were analyzed by IHC with ALK antibody. ALK rearrangement was further confirmed by FISH and QPCR. ALK protein expression was detected in twenty patients (20/473, 4.2%). Of the 20 ALK-positive cases by IHC, 15 cases were further confirmed as ALK rearrangement by FISH, and 5 cases were not interpretable. Also, we evaluated 13 out of the 20 IHC-positive tissues by QPCR in additional to FISH, and found that 9 cases were positive and 2 cases were equivocal, whereas 2 cases were negative although they were positive by both IHC and FISH. The ALK status was concordant in 5 out of 8 cases that were interpretable by three methods. Additionally, none of the 110 IHC-negative cases with adenocarcinoma histology showed ALK rearrangements by FISH. Histologically, almost all the ALK-rearranged cases were adenocarcinoma, except that one case was sarcomatoid carcinoma. A solid signet-ring cell pattern or mucinous cribriform pattern was presented at least focally in all ALK-positive tumors. In conclusion, our findings suggested that ALK rearrangement was associated with ALK protein expression. The conventional IHC assay is a valuable tool for the pre-screening of patients with ALK rearrangement in clinical practice and a combination of FISH and QPCR is required for further confirmation.

  5. Chemokines in teleost fish species.

    PubMed

    Alejo, Alí; Tafalla, Carolina

    2011-12-01

    Chemokines are chemoattractant cytokines defined by the presence of four conserved cysteine residues which in mammals can be divided into four subfamilies depending on the arrangement of the first two conserved cysteines in their sequence: CXC (α), CC (β), C and CX(3)C classes. Evolutionarily, fish can be considered as an intermediate step between species which possess only innate immunity (invertebrates) and species with a fully developed acquired immune network such as mammals. Therefore, the functionality of their different immune cell types and molecules is sometimes also intermediate between innate and acquired responses. The first chemokine gene identified in a teleost was a rainbow trout (Oncorhynchus mykiss) chemokine designated as CK1 in 1998. Since then, many different chemokine genes have been identified in several fish species, but their role in homeostasis and immune response remains largely unknown. Extensive genomic duplication events and the fact that chemokines evolve more quickly than other immune genes, make it very difficult to establish true orthologues between fish and mammalian chemokines that would help us with the ascription of immune roles. In this review, we describe the current state of knowledge of chemokine biology in teleost fish, focusing mainly on which genes have been identified so far and highlighting the most important aspects of their expression regulation, due to the great lack of functional information available for them. As the number of chemokine genes begins to close down for some teleost species, there is an important need for functional assays that may elucidate the role of each of these molecules within the fish immune response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Endocrine and Local IGF-I in the Bony Fish Immune System.

    PubMed

    Franz, Anne-Constance; Faass, Oliver; Köllner, Bernd; Shved, Natallia; Link, Karl; Casanova, Ayako; Wenger, Michael; D'Cotta, Helena; Baroiller, Jean-François; Ullrich, Oliver; Reinecke, Manfred; Eppler, Elisabeth

    2016-01-26

    A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived), which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine) IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health.

  7. Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia.

    PubMed

    Nikinmaa, M

    2001-11-15

    The evolution of erythrocytic hypoxia responses is reviewed by comparing the cellular control of haemoglobin-oxygen affinity in agnathans, teleost fish and terrestrial vertebrates. The most ancient response to hypoxic conditions appears to be an increase in cell volume, which increases the haemoglobin-oxygen affinity in lampreys. In teleost fish, an increase of cell volume in hypoxic conditions is also evident. The volume increase is coupled to an increase in erythrocyte pH. These changes are caused by an adrenergic activation of sodium/proton exchange across the erythrocyte membrane. The mechanism is important in acute hypoxia and is followed by a decrease in cellular adenosine triphosphate (ATP) and guanosine triphosphate (GTP) concentrations in continued hypoxia. In hypoxic bird embryos, the ATP levels are also reduced. The mechanisms by which hypoxia decreases cellular ATP and GTP concentrations remains unknown, although at least in bird embryos cAMP-dependent mechanisms have been implicated. In mammals, hypoxia responses appear to occur mainly via modulation of cellular organic phosphate concentrations. In moderate hypoxia, 2,3-diphosphoglycerate levels are increased as a result of alkalosis caused by increased ventilation.

  8. Immunomodulation of intestinal macrophages by mercury involves oxidative damage and rise of pro-inflammatory cytokine release in the fresh water fish Channa punctatus Bloch.

    PubMed

    Begam, Moriom; Sengupta, Mahuya

    2015-08-01

    Mercury and its compounds have been parts of widespread pollutants of the aquatic environment. The present study was designed to assess the effect of mercury on fish immune responses. Since the metal is absorbed by fish and passed up the food chain to other fish-eating species, it not only affects aquatic ecosystems but also humans through bioaccumulation. In the present study, it was found that innate immunity of the fresh water fish Channa punctatus Bloch. was significantly debilitated after a periods of exposure to a sub-lethal concentration of mercury (0.3 mg/L). After 7 days of exposure, phagocytosis, cell adhesion and intracellular killing activity were found to decrease significantly along with significant decreases in nitric oxide (NO) and myeloperoxidase (MPO) production from macrophages as compared to the control group indicating intracellular damages. Levels of pro-inflammatory cytokines like TNF-α and IL-6 were found to be significantly more in mercury treated groups than that of control group indicating inflammatory damage. This included significant ultrastructural changes like fragmented epithelium, lesions in mucosal foldings, degenerated mitochondria, reduction in the number of goblet cells and disoriented microvilli as evident from transmission electron micrographs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Ichthyotoxicity studies of milkfish Chanos chanos fingerlings exposed to a harmful dinoflagellate Alexandrium minutum.

    PubMed

    Chen, C -Y.; Chou, H -N.

    2001-07-30

    Milkfish (Chanos chanos Forsskal) fingerlings were treated with toxic, nontoxic dinoflagellate Alexandrium minutum cells or toxic algal extract in the water medium without any aeration. Mortality of fish increased with increasing concentrations of toxic, nontoxic algal cells and water-soluble toxic algae extract. Milkfish fingerlings, which were exposed to toxic algae (1.5x10(4)-3.0x10(4) cells/ml) or algal extract [5.13x10(3)-2.05x10(4) cells/ml, 0.195 MU/10(4) cells (toxin concentration)] for 24 h, revealed by light microscopic observations a noticeable edema, hyperplasia and necrosis of secondary gill lamellae. The same toxicological symptom was observed in fish exposed to pure saxitoxin (STX) (6.475x10(-2) &mgr;g/ml) in the water medium. A higher critical oxygen pressure and oxygen consumption rate were also found in the milkfish fingerlings exposed to toxic algae extract (5.13x10(3)-2.05x10(4) cells/ml) and STX (6.475x10(-2) &mgr;g/ml). The cells of nontoxic A. minutum did not cause the gill damage to milkfish, and the extract of nontoxic algae did not cause an increase in oxygen consumption rate or critical oxygen demand of milkfish. From these results, we infer that toxic cells and its extract cause nonspecific response in gill tissues of milkfish. An instant increase in oxygen consumption rate and oxygen demand may be one of the major causes of fish death.

  10. Constitutional Mosaic Trisomy 13 in Two Germ Cell Layers is Different from Patau Syndrome? A Case Report

    PubMed Central

    Kunwar, Fulesh; Pandya, Vidhi

    2016-01-01

    The heterogeneous phenotype of known syndromes is a clinical challenge, and harmonized description using globally accepted ontology is desirable. This report attempts phenotypic analysis in a patient of constitutional mosaic trisomy 13 in mesoderm and ectoderm to make globally comparable clinical description. Phenotypic features (minor/major abnormalities) were recorded and matched with the Human Phenotype Ontology terms that were used to query web-based tool Phenomizer. We report here a case of 24-year-old girl born to non consanguineous parents with history of one abortion. Her phenotypic evaluation included short columella, low-set ears, seizures, enlarged naris, bifid tongue, infra-orbital fold, smooth philtrum, microtia, microcephaly, carious teeth, downslanted palpebral fissures, proportionate short stature, high palate, thin upper lip vermilion, small for gestational age, broad fingertip, broad hallux, mandibular prognathia and dental malocclusion. Karyotype and interphase FISH (Fluorescence in situ hybridization) was done in blood cells. Interphase FISH was also performed on buccal epithelial cells. Cytogenetic analysis demonstrated trisomy 13 mosaicism in 25% cells i.e. 47, XX,+13(9)/46,XX(27). The interphase FISH in blood cells showed trisomy 13 in 15%, whereas in buccal mucosa cells showed nearly 6%. Mosaic aneuploidy in constitutional karyotype can be responsible for variation in clinical and morphological presentation of patient with genetic disorder. PMID:27134897

  11. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells.

    PubMed

    Fernández, Dolores; García-Gómez, Concepción; Babín, Mar

    2013-05-01

    Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this study was to evaluate the cytotoxic potentials of ZnO-NPs in established fish cell lines (RTG-2, RTH-149 and RTL-W1) and compare them with those of bulk ZnO and Zn(2+) ions. Membrane function (CFDA-AM assay), mitochondrial function (MTT assay), cell growth (KBP assay), cellular stress (β-galactosidase assay), reductase enzyme activity (AB assay), reactive oxygen species (ROS), total glutathione cellular content (tGSH assay) and glutathione S-transferase (GST) activities were assessed for all cell lines. ZnO-NPs cytotoxicity was greater than those of bulk ZnO and Zn(2+). ZnO-NPs induced oxidative stress is dependent on their dose. Low cost tests, such as CFDA-AM, ROS, GST activity and tGSH cell content test that use fish cell lines, may be used to detect oxidative stress and redox status changes. Particle dissolution of the ZnO-NPs did not appear to play an important role in the observed toxicity in this study. Published by Elsevier B.V.

  12. Tissue Phthalate Levels Correlate With Changes in Immune Gene Expression in a Population of Juvenile Wild Salmon.

    PubMed

    Martins, Kelly; Hagedorn, Birgit; Ali, Shareen; Kennish, John; Applegate, Ben; Leu, Matthias; Epp, Lidia; Pallister, Chris; Zwollo, Patty

    2016-07-01

    Phthalates have detrimental effects on health and have been shown to dysregulate the immune system of mammals, birds, and fish. We recently reported that di(2-ethylhexyl) phthalate exposure reduces the abundance and inhibits the proliferation of rainbow trout (Oncorhynchus mykiss) IgM(+) B lymphocytes and expression of secreted immunoglobulin heavy-chain mu transcripts in an in vitro culture system. We proposed that phthalates act as immunomodulators by modifying the normal B cell-activation pathways by accelerating B cell differentiation while suppressing plasmablast expansion, thus resulting in fewer IgM-secreting plasma cells. This hypothesis was tested here in an in vivo field study of juvenile Dolly Varden (Salvelinus malma) from a plastic-polluted lake in the Gulf of Alaska. Fish tissues were analyzed for both phthalate levels using liquid chromatography-coupled tandem mass spectrometry and for changes in immune gene expression using reverse transcriptase-real time polymerase chain reaction. Results showed that fish with higher tissue levels of di(2-ethylhexyl) phthalate, di(n-butyl) phthalate, and/or dimethyl phthalate expressed significantly fewer secreted and membrane-bound immunoglobulin heavy-chain mu and Blimp1 transcripts in their hematopoietic tissue. This suggests that in vivo uptake of phthalates in fish changes the expression of B cell-specific genes. Chronic exposure to phthalates likely dysregulates normal B-lymphoid development and antibody responses in salmonids and may increase susceptibility to infection. Given the conserved nature of B-lineage cells in vertebrate animals, other marine species may be similarly affected by chronic phthalate exposure.

  13. Biological Entanglement-Like Effect After Communication of Fish Prior to X-Ray Exposure.

    PubMed

    Mothersill, Carmel; Smith, Richard; Wang, Jiaxi; Rusin, Andrej; Fernandez-Palomo, Cris; Fazzari, Jennifer; Seymour, Colin

    2018-01-01

    The phenomenon by which irradiated organisms including cells in vitro communicate with unirradiated neighbors is well established in biology as the radiation-induced bystander effect (RIBE). Generally, the purpose of this communication is thought to be protective and adaptive, reflecting a highly conserved evolutionary mechanism enabling rapid adjustment to stressors in the environment. Stressors known to induce the effect were recently shown to include chemicals and even pathological agents. The mechanism is unknown but our group has evidence that physical signals such as biophotons acting on cellular photoreceptors may be implicated. This raises the question of whether quantum biological processes may occur as have been demonstrated in plant photosynthesis. To test this hypothesis, we decided to see whether any form of entanglement was operational in the system. Fish from 2 completely separate locations were allowed to meet for 2 hours either before or after which fish from 1 location only (group A fish) were irradiated. The results confirm RIBE signal production in both skin and gill of fish, meeting both before and after irradiation of group A fish. The proteomic analysis revealed that direct irradiation resulted in pro-tumorigenic proteomic responses in rainbow trout. However, communication from these irradiated fish, both before and after they had been exposed to a 0.5 Gy X-ray dose, resulted in largely beneficial proteomic responses in completely nonirradiated trout. The results suggest that some form of anticipation of a stressor may occur leading to a preconditioning effect or temporally displaced awareness after the fish become entangled.

  14. Cough response and uptake of mercury by Brook trout, Salvelinus fontinalis, exposed to mercuric compounds at different hydrogen-ion concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drummond, R.A.; Olson, G.F.; Battermna, A.R.

    1974-01-01

    The lowest concentration of methylmercuric chloride (MMC) and mercuric chloride added to Lake Superior water that caused a significant increase in cough frequency in Brook trout was 3 micrograms Hg/liter. Cough frequency is a good short-term indicator of the long-term effects of MMC. The response can be used to predict the safe concentration of mercuric chloride since the long-term effects of the compound are not known. Increases in cough frequency were proportional to the concentration (from 3 to 12 micrograms Hg/liter) of both compounds at pH 7.5. The fish were more responsive to MMC when the pH of the testmore » water was lowered to 6.0; response to mercuric chloride was not changed by lowered pH. Fish exposed to MMC at pH 6.0 contained more total mercury in their gills and red blood cells than fish tested at pH 9.0. The uptake of mercury by brook trout exposed to mercuric chloride did not differ significantly at pH 6.0 and 9.0.« less

  15. Exposure of sea bream (Sparus aurata) to toxic concentrations of benzo[a]pyrene: possible human health effect.

    PubMed

    Zena, R; Speciale, A; Calabrò, C; Calò, M; Palombieri, D; Saija, A; Cimino, F; Trombetta, D; Lo Cascio, P

    2015-12-01

    Polycyclic aromatic hydrocarbons (PAHs) can accumulate in the food chain, due to their lipophilic properties. Fish can accumulate contaminants including PAHs and frequent consumption of such contaminated fish can pose risk to human health. The aim of this study was to clarify if acute exposure of sea bream (Sparus aurata, a fish species of great economic importance in the Atlantic and Mediterranean areas) to a PAH, benzo[a]pyrene (B[a]P), at a dose that can induce CYP1A and pathological changes in fish gills, liver and muscle, can induce accumulation in muscle. We investigated the cytotoxic effects (as changes in cell viability, DNA laddering and glutathione content) of in vitro exposure of human peripheral blood mononuclear cells (PBMCs) to organic extracts obtained from muscle of sea breams previously exposed via water to B[a]P (2mg/l, for 12, 24 and 72 h). At this level of exposure, B[a]P caused morphological changes, inflammatory response and CYP1A induction not only in sea bream gills and liver but also in muscle; furthermore, in fish muscle we observed a substantial B[a]P accumulation, which may be associated with the increased CYP1A activity in liver and especially in muscle. However, when PBMCs were exposed to organic extracts obtained from sea bream muscle contaminated with B[a]P, a toxic, although modest effect was revealed, consisting in a significant decrease in cell glutathione levels without alterations in cell viability and DNA laddering. This suggests that consumption of sea breams from B[a]P contaminated waters might represent a risk for human health. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Detection of MET Gene Copy Number in Cancer Samples Using the Droplet Digital PCR Method.

    PubMed

    Zhang, Yanni; Tang, En-Tzu; Du, Zhiqiang

    2016-01-01

    The analysis of MET gene copy number (CN) has been considered to be a potential biomarker to predict the response to MET-targeted therapies in various cancers. However, the current standard methods to determine MET CN are SNP 6.0 in the genomic DNA of cancer cell lines and fluorescence in situ hybridization (FISH) in tumor models, respectively, which are costly and require advanced technical skills and result in relatively subjective judgments. Therefore, we employed a novel method, droplet digital PCR (ddPCR), to determine the MET gene copy number with high accuracy and precision. The genomic DNA of cancer cell lines or tumor models were tested and compared with the MET gene CN and MET/CEN-7 ratio determined by SNP 6.0 and FISH, respectively. In cell lines, the linear association of the MET CN detected by ddPCR and SNP 6.0 is strong (Pearson correlation = 0.867). In tumor models, the MET CN detected by ddPCR was significantly different between the MET gene amplification and non-amplification groups according to FISH (mean: 15.4 vs 2.1; P = 0.044). Given that MET gene amplification is defined as MET CN >5.5 by ddPCR, the concordance rate between ddPCR and FISH was 98.0%, and Cohen's kappa coefficient was 0.760 (95% CI, 0.498-1.000; P <0.001). The results demonstrated that the ddPCR method has the potential to quantify the MET gene copy number with high precision and accuracy as compared with the results from SNP 6.0 and FISH in cancer cell lines and tumor samples, respectively.

  17. The effect of dietary cricket meal (Gryllus bimaculatus) on growth performance, antioxidant enzyme activities, and haematological response of African catfish (Clarias gariepinus).

    PubMed

    Taufek, Norhidayah Mohd; Aspani, Firdaus; Muin, Hasniyati; Raji, Ameenat Abiodun; Razak, Shaharudin Abdul; Alias, Zazali

    2016-08-01

    This study was conducted to investigate the growth performance, biomarkers of oxidative stress, catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST) as well as the haematological response of African catfish after being fed with fish feed containing different levels of cricket meal. The juvenile fish were assigned to three different treatments with isonitrogenous (35 %) and isoenergetic (19 kJ g(-1)) diets containing 100 % cricket meal (100 % CM), 75 % cricket meal (75 % CM), and 100 % fishmeal (100 % FM) as control groups for 7 weeks. The results indicated that a diet containing 100 % CM and 75 % CM improved growth performance in terms of body weight gain and specific growth rate, when compared to 100 % FM. The feed conversion ratio (FCR) and protein efficiency ratio (PER) did not differ significantly between all diets, but reduced FCR and increased PER were observed with a higher inclusion of cricket meal. A haematological examination of fish demonstrated no significant difference of red blood cells in all diets and white blood cells showed a significantly higher value in fishmeal-fed fish. On the other hand, haemoglobin and haematocrit significantly increased with increasing amounts of cricket meal in the diet. Antioxidant activity of CAT was higher in the 100 % CM group compared to fish fed other diets, whereas GST and SOD showed increasing trends with a higher incorporation of cricket, although insignificant differences were observed between all diets. These results suggest that cricket meal could be an alternative to fishmeal as a protein source in the African catfish diet.

  18. Pathogenesis and immune response in Atlantic salmon (Salmo salar L.) parr experimentally infected with salmon pancreas disease virus (SPDV).

    PubMed

    Desvignes, L; Quentel, C; Lamour, F; le, Ven A

    2002-01-01

    Atlantic salmon parr were injected intraperitoneally with salmon pancreas disease virus (SPDV) grown on CHSE-214 cells. The viraemia, the histopathological changes in target organs and some immune parameters were taken at intervals up to 30 days post-infection (dpi). The earliest kind of lesion was necrosis of exocrine pancreas, appearing as soon as 2 dpi. It progressed towards complete tissue breakdown at 9 dpi before resolving gradually. Concurrent to this necrosis, a strong inflammatory response was in evidence from 9 dpi in the pancreatic area for a majority of fish. A necrosis of the myocardial cells of the ventricle occurred in infected fish mainly at 16 dpi and it faded thereafter. The monitoring of the plasma viral load showed a rapid haematogenous spreading of SPDV, peaking at 4 dpi, but also the absence of a secondary viraemia. No interferon (IFN) was detected following the infection of parr with SPDV, probably owing to an IFN activity in Atlantic salmon below the detection level of the technique. Neutralising antibodies against SPDV were in evidence from 16 dpi and they showed a time-related increasing titre and prevalence. The phagocytic activity in head-kidney leucocytes was always significantly higher in the infected fish than in the control fish, being particularly high by 9 dpi. Lysozyme and complement levels were both increased and they peaked significantly in the infected fish at 9 and 16 dpi respectively. These results demonstrated that an experimental infection of Atlantic salmon parr with SPDV provoked a stimulation of both specific and non-specific immunity with regards to the viraemia and the histopathology.

  19. Species specific inhibition of viral replication using dicer substrate siRNAs (DsiRNAs) targeting the viral nucleoprotein of the fish pathogenic rhabdovirus viral hemorrhagic septicemia virus (VHSV).

    PubMed

    Bohle, Harry; Lorenzen, Niels; Schyth, Brian Dall

    2011-06-01

    Gene knock down by the use of small interfering RNAs (siRNAs) is widely used as a method for reducing the expression of specific genes in eukaryotic cells via the RNA interference pathway. But, the effectivity of siRNA induced gene knock down in cells from fish has in several studies been questioned and the specificity seems to be a general problem in cells originating from both lower and higher vertebrates. Here we show that we are able to reduce the level of viral gene expression and replication specifically in fish cells in vitro. We do so by using 27/25-mer DsiRNAs acting as substrates for dicer for the generation of siRNAs targeting the nucleoprotein N gene of viral hemorrhagic septicemia virus (VHSV). This rhabdovirus infects salmonid fish and is responsible for large yearly losses in aquaculture production. Specificity of the DsiRNA is assured in two ways: first, by using the conventional method of testing a control DsiRNA which should not target the gene of interest. Second, by assuring that replication of a heterologous virus of the same genus as the target virus was not inhibited by the DsiRNA. Target controls are, as we have previously highlighted, essential for verification of the specificity of siRNA-induced interference with virus multiplication, but they are still not in general use. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Detection of EML4-ALK in Lung Adenocarcinoma Using Pleural Effusion with FISH, IHC, and RT-PCR Methods

    PubMed Central

    Zhou, Xiaodie; Song, Yong; Zhou, Xiaojun; Yu, Like; Wang, Jiandong

    2015-01-01

    Anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) gene rearrangements occur in approximately 5% of non-small-cell lung cancers (NSCLC), leading to the overexpression of anaplastic lymphoma kinase and predicting a response to the targeted inhibitor, crizotinib. Malignant pleural effusion occurs in most patients with advanced lung cancer, especially adenocarcinoma, and tissue samples are not always available from these patients. We attempted to clarify the feasibility of detecting the EML4-ALK fusion gene in pleural effusion cells using different methods. We obtained 66 samples of pleural effusion from NSCLC patients. The pleural effusion fluid was centrifuged, and the cellular components obtained were formalin fixed and paraffin embedded. The EML4-ALK fusion gene status was determined with fluorescent in situ hybridization (FISH), reverse transcription—polymerase chain reaction (RT-PCR), and immunohistochemistry (IHC). EML4-ALK was detected in three of 66 patient samples (4.5%) with RT-PCR. When the RT-PCR data were used as the standard, one false positive and one false negative samples were identified with IHC; and one false negative sample was identified with FISH. These results suggest that a block of pleural effusion cells can be used to detect the EML4-ALK fusion gene. IHC had good sensitivity, but low specificity. FISH had low sensitivity, but high specificity. RT-PCR is a good candidate method for detecting EML4-ALK in blocks of pleural effusion cells from lung cancer patients. PMID:25785456

  1. Detection of EML4-ALK in lung adenocarcinoma using pleural effusion with FISH, IHC, and RT-PCR methods.

    PubMed

    Liu, Leilei; Zhan, Ping; Zhou, Xiaodie; Song, Yong; Zhou, Xiaojun; Yu, Like; Wang, Jiandong

    2015-01-01

    Anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) gene rearrangements occur in approximately 5% of non-small-cell lung cancers (NSCLC), leading to the overexpression of anaplastic lymphoma kinase and predicting a response to the targeted inhibitor, crizotinib. Malignant pleural effusion occurs in most patients with advanced lung cancer, especially adenocarcinoma, and tissue samples are not always available from these patients. We attempted to clarify the feasibility of detecting the EML4-ALK fusion gene in pleural effusion cells using different methods. We obtained 66 samples of pleural effusion from NSCLC patients. The pleural effusion fluid was centrifuged, and the cellular components obtained were formalin fixed and paraffin embedded. The EML4-ALK fusion gene status was determined with fluorescent in situ hybridization (FISH), reverse transcription-polymerase chain reaction (RT-PCR), and immunohistochemistry (IHC). EML4-ALK was detected in three of 66 patient samples (4.5%) with RT-PCR. When the RT-PCR data were used as the standard, one false positive and one false negative samples were identified with IHC; and one false negative sample was identified with FISH. These results suggest that a block of pleural effusion cells can be used to detect the EML4-ALK fusion gene. IHC had good sensitivity, but low specificity. FISH had low sensitivity, but high specificity. RT-PCR is a good candidate method for detecting EML4-ALK in blocks of pleural effusion cells from lung cancer patients.

  2. Effect of Ichthyophthirius multifiliis parasitism on the survival, hematology and bacterial load in channel catfish previously exposed to Edwardsiella ictaluri.

    PubMed

    Shoemaker, Craig A; Martins, Maurício L; Xu, De-Hai; Klesius, Phillip H

    2012-11-01

    The effect of Ichthyophthirius multifiliis (Ich) parasitism on survival, hematology and bacterial load in channel catfish, Ictalurus punctatus, previously exposed to Edwardsiella ictaluri was studied. Fish were exposed to E. ictaluri 1 day prior to Ich in the following treatments: (1) infected by E. ictaluri and Ich at 2,500 theronts/fish; (2) infected by E. ictaluri only; (3) infected by Ich at 2,500 theronts/fish only; and (4) non infected control. Mortality was significantly higher in fish previously exposed to E. ictaluri and then infected by Ich (71.1 %). Mortalities were 26.7 %, 28.9 % and 0 % for fish infected by E. ictaluri only, by Ich only and non-infected control, respectively. Quantitative polymerase chain reaction demonstrated the presence of E. ictaluri in the brain, gill, kidney and liver of fish infected with E. ictaluri regardless of Ich parasitism. At day 8, E. ictaluri parasitized fish had significantly more bacteria present in the brain, gill and liver, with no bacteria detected in these organs in the E. ictaluri-only treatment, suggesting that the bacteria persisted longer in parasitized fish. Decreased red blood cells count and hematocrit in fish at days 8 and 19 after co-infection suggests chronic anemia. Lymphocyte numbers significantly decreased in all infected treatments versus the non-infected controls at days 2, 8 and 19. Lymphopenia suggests that lymphocytes were actively involved in the immune response. Bacterial clearance was probably influenced by the stress of parasitism and/or the mucosal response induced by ectoparasitic Ich that resulted in the higher mortality seen in the co-infected treatment.

  3. Characterization of a hypoxia-response element in the Epo locus of the pufferfish, Takifugu rubripes.

    PubMed

    Kulkarni, Rashmi P; Tohari, Sumanty; Ho, Adrian; Brenner, Sydney; Venkatesh, Byrappa

    2010-06-01

    Animals respond to hypoxia by increasing synthesis of the glycoprotein hormone erythropoietin (Epo) which in turn stimulates the production of red blood cells. The gene encoding Epo has been recently cloned in teleost fishes such as the pufferfish Takifugu rubripes (fugu) and zebrafish (Danio rerio). It has been shown that the transcription levels of Epo in teleost fishes increase in response to anemia or hypoxia in a manner similar to its human ortholog. However, the cis-regulatory element(s) mediating the hypoxia response of Epo gene in fishes has not been identified. In the present study, using the human hepatoma cell line (Hep3B), we have identified and characterized a hypoxia response element (HRE) in the fugu Epo locus. The sequence of the fugu HRE (ACGTGCTG) is identical to that of the HRE in the human EPO locus. However, unlike the HRE in the mammalian Epo locus, which is located in the 3' region of the gene, the fugu HRE is located in the 5' flanking region and on the opposite strand of DNA. This HRE is conserved in other teleosts such as Tetraodon and zebrafish in a similar location. A 365-bp fragment containing the fugu HRE was able to drive GFP expression in the liver of transgenic zebrafish. However, we could not ascertain if the expression of transgene is induced by hypoxia in vivo due to the low and variable levels of GFP expression in transgenic zebrafish. Our investigations also revealed that the Epo locus has experienced extensive rearrangements during vertebrate evolution. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Fish glucose transporter (GLUT)-4 differs from rat GLUT4 in its traffic characteristics but can translocate to the cell surface in response to insulin in skeletal muscle cells.

    PubMed

    Díaz, Mònica; Antonescu, Costin N; Capilla, Encarnación; Klip, Amira; Planas, Josep V

    2007-11-01

    In mammals, glucose transporter (GLUT)-4 plays an important role in glucose homeostasis mediating insulin action to increase glucose uptake in insulin-responsive tissues. In the basal state, GLUT4 is located in intracellular compartments and upon insulin stimulation is recruited to the plasma membrane, allowing glucose entry into the cell. Compared with mammals, fish are less efficient restoring plasma glucose after dietary or exogenous glucose administration. Recently our group cloned a GLUT4-homolog in skeletal muscle from brown trout (btGLUT4) that differs in protein motifs believed to be important for endocytosis and sorting of mammalian GLUT4. To study the traffic of btGLUT4, we generated a stable L6 muscle cell line overexpressing myc-tagged btGLUT4 (btGLUT4myc). Insulin stimulated btGLUT4myc recruitment to the cell surface, although to a lesser extent than rat-GLUT4myc, and enhanced glucose uptake. Interestingly, btGLUT4myc showed a higher steady-state level at the cell surface under basal conditions than rat-GLUT4myc due to a higher rate of recycling of btGLUT4myc and not to a slower endocytic rate, compared with rat-GLUT4myc. Furthermore, unlike rat-GLUT4myc, btGLUT4myc had a diffuse distribution throughout the cytoplasm of L6 myoblasts. In primary brown trout skeletal muscle cells, insulin also promoted the translocation of endogenous btGLUT4 to the plasma membrane and enhanced glucose transport. Moreover, btGLUT4 exhibited a diffuse intracellular localization in unstimulated trout myocytes. Our data suggest that btGLUT4 is subjected to a different intracellular traffic from rat-GLUT4 and may explain the relative glucose intolerance observed in fish.

  5. Lymphocystis virus: isolation and propagation in centrarchid fish cell lines.

    PubMed

    Wolf, K; Gravell, M; Malsberger, R G

    1966-02-25

    A virus from fish with lymphocystis disease was isolated in fish cell cultures. Eleven serial transfers were made and the pathognomonic lymphocystis cells were produced in vitro in each transfer. Fish inoculated with 6th- and 9th-passage material developed the disease, and virus was reisolated front them.

  6. Histological and transcriptomic responses of two immune organs, the spleen and head kidney, in Nile tilapia (Oreochromis niloticus) to long-term hypersaline stress.

    PubMed

    Xu, Chang; Li, Erchao; Suo, Yantong; Su, Yujie; Lu, Minghui; Zhao, Qun; Qin, Jian G; Chen, Liqiao

    2018-05-01

    Hyperosmotic stress can adversely affect fish immunity, but little is known about the histological and transcriptomic responses of immune organs in fish in a hyperosmotic environment. This study evaluated the effects of long-term hypersaline conditions (16‰) on the growth, histology and transcriptomics of the two main immune organs, the spleen and head kidney, in Nile tilapia Oreochromis niloticus relative to those reared in freshwater for eight weeks. No differences in weight gain and specific growth rate were found between fish reared under these two salinities. Hyperosmotic stress induced a congestive or enlarged spleen. Platelet- and coagulation-related gene expression was significantly decreased in tilapia at 16‰. The red cell distribution width and value of the mean corpuscular hemoglobin were significantly greater in fish at 16‰ salinity than in control fish in freshwater. A large volume of melano-macrophages in the spleen and pigment deposition in both the spleen and head kidney were observed in the histological sections in fish at 16‰ salinity. Transmission electron microscopic results showed abnormal macrophages with deposition granules in the spleen and head kidney and more neutrophils in the head kidney of fish at 16‰ than in control fish. In total, 772 and 502 genes were annotated for significantly different expression in the spleen and head kidney, respectively, and corresponded to five and one significantly changed immune system pathways, respectively. The complement pathway in the spleen was significantly down-regulated at 16‰. This study indicates that long-term exposure of Nile tilapia to a hyperosmotic environment can induce splenomegaly, reduce coagulation function, enhance phagocytic activity and down-regulate the complement pathway in the spleen. The spleen is a more sensitive organ for immune responses to chronic ambient salinity stress than the head kidney in Nile tilapia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Infiltration and activation of acidophilic granulocytes in skin lesions of gilthead seabream, Sparus aurata, naturally infected with lymphocystis disease virus.

    PubMed

    Dezfuli, B S; Lui, A; Giari, L; Castaldelli, G; Mulero, V; Noga, E J

    2012-01-01

    Light, ultrastructural and immunocytochemical investigations were carried out on the skin of gilthead seabream, Sparus aurata L., naturally infected with lymphocystis iridovirus, to assess pathology and host cellular responses. Of 220,000 young seabream examined, 32,400 (14.7%) had clinical signs of lymphocystis and within 6 months of disease appearance, 45% of clinically affected fish had died. A subsample of 20 S. aurata (80.0 ± 12.5mm total length, mean ± S.D.), including 10 with lymphocystis on the skin and 10 clinically normal, were examined via immunohistochemistry. Affected skin displayed macroscopic, wart-like clusters of hypertrophic fibroblasts which arose from the dermis and were covered by the epithelium. Clusters were encountered on the head, trunk and fins, but there was no evidence of visceral lymphocystis. The lymphocysts were surrounded by numerous granular cells that were positive for the antimicrobial peptide (AMP) piscidin 3 and underwent intense degranulation. To identify the type of granular cells involved in this viral disease, a double immunohistochemical staining with the monoclonal antibody G7 (mAb G7), which is specific for seabream acidophilic granulocytes (AGs), and with anti-histamine (as a marker for mast cells, MCs) was applied to the skin sections of the 10 clinically normal fish and 10 fish with lymphocystis. In infected skin, the number of G7-positive cells (i.e., AGs) (18.5 ± 10.5, mean number of cells per 20,000 μm(2) ± S.D.) was significantly higher compared to their density in uninfected skin (1.4 ± 2.2) (t test, p<0.01). Notably, the AGs that infiltrated the skin lesions of infected animals were found to be degranulated and to produce the pro-inflammatory cytokine interleukin-1β. No histamine-positive granular cells (i.e., MCs) were encountered in the lymphocystis lesions. The present study shows the response of skin to lymphocystis disease virus (LCDV) and provides evidence that AGs, but not MCs, are recruited and activated in response to this skin infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Efficiency of introns from various origins in fish cells.

    PubMed

    Bétancourt, O H; Attal, J; Théron, M C; Puissant, C; Houdebine, L M

    1993-06-01

    Several vectors containing (1) regulatory regions from Rous sarcoma virus (RSV), human cytomegalovirus (CMV), and herpes simplex thymidine kinase (TK); (2) introns from early or late SV40 genes and from trout growth hormone gene (tGH); (3) chloramphenicol acetyltransferase gene (CAT); and (4) transcription terminators from SV40 were transfected into carp EPC cells, salmon CHSE cells, tilapia TO2 cells, quail QT6 cells, and hamster CHO cells. CAT activity was measured in extracts from several cell lines 3 days after transfection and in the fish EPC stable clones. The CMV and RSV promoters were the most potent in all cell types. The intron from late SV40 genes (VP1 intron) worked properly in QT6 and CHO cells but not in EPC and very weakly in TO2 cells. The tGH intron was efficient in all cell types but preferentially in fish cells. The small t intron from SV40 was processed in all cell types. The small t and, to a lesser extent, the tGH introns amplified expression of cat gene in stable clones, in comparison to the transiently transfected cells. These results indicate that elements from mammalian genes may not be properly recognized by the fish cellular machinery and in an unpredictable manner. This finding suggests that vectors prepared to express foreign genes in transfected cultured fish cells and transgenic fish should preferably contain DNA sequences from fish genes or, alternatively, those sequences from mammalian genes that have been previously proved to be compatible with the fish cellular machinery.

  9. The amphibious fish Kryptolebias marmoratus uses different strategies to maintain oxygen delivery during aquatic hypoxia and air exposure.

    PubMed

    Turko, Andy J; Robertson, Cayleih E; Bianchini, Kristin; Freeman, Megan; Wright, Patricia A

    2014-11-15

    Despite the abundance of oxygen in atmospheric air relative to water, the initial loss of respiratory surface area and accumulation of carbon dioxide in the blood of amphibious fishes during emersion may result in hypoxemia. Given that the ability to respond to low oxygen conditions predates the vertebrate invasion of land, we hypothesized that amphibious fishes maintain O2 uptake and transport while emersed by mounting a co-opted hypoxia response. We acclimated the amphibious fish Kryptolebias marmoratus, which are able to remain active for weeks in both air and water, for 7 days to normoxic brackish water (15‰, ~21kPa O2; control), aquatic hypoxia (~3.6kPa), normoxic air (~21 kPa) or aerial hypoxia (~13.6kPa). Angiogenesis in the skin and bucco-opercular chamber was pronounced in air- versus water-acclimated fish, but not in response to hypoxia. Aquatic hypoxia increased the O2-carrying capacity of blood via a large (40%) increase in red blood cell density and a small increase in the affinity of hemoglobin for O2 (P50 decreased 11%). In contrast, air exposure increased the hemoglobin O2 affinity (decreased P50) by 25% without affecting the number of red blood cells. Acclimation to aerial hypoxia both increased the O2-carrying capacity and decreased the hemoglobin O2 affinity. These results suggest that O2 transport is regulated both by O2 availability and also, independently, by air exposure. The ability of the hematological system to respond to air exposure independent of O2 availability may allow extant amphibious fishes, and may also have allowed primitive tetrapods to cope with the complex challenges of aerial respiration during the invasion of land. © 2014. Published by The Company of Biologists Ltd.

  10. From Global Stresses to Local Cell Packing During Development

    NASA Astrophysics Data System (ADS)

    Lubensky, David

    2011-03-01

    To perform their functions, cells in epithelial tissues must often adopt highly regular packings. It is still not fully understood how these ordered arrangements of cells arise from disordered, proliferative epithelia during development. I will use experimental and theoretical studies on an attractive model system, the cone cell mosaic in fish retina, to illustrate some ways that mechanical forces and cell signaling can interact to produce this transformation. Experiments examining the response to surgical lesions suggest that the correct mechanical environment at the tissue scale is essential to induce cone cells to rearrange into a rectangular lattice. Starting from this observation, I will argue that large-scale mechanical stresses naturally couple to and orient cell polarization and that this coupling can lead cells to line up in regular rows, as observed in the fish retina. This model predicts that cells in the rows will adopt characteristic trapezoidal shapes and that fragments of rows will persist even in tissue where the mosaic pattern is disrupted by lesions; these predictions are borne out by an analysis of cell packings at the level of the zonula occludens in wildtype and lesioned retinas. Supported by NSF grant IOS-0952873.

  11. Immune-Specific Expression and Estrogenic Regulation of the Four Estrogen Receptor Isoforms in Female Rainbow Trout (Oncorhynchus mykiss).

    PubMed

    Casanova-Nakayama, Ayako; Wernicke von Siebenthal, Elena; Kropf, Christian; Oldenberg, Elisabeth; Segner, Helmut

    2018-03-21

    Genomic actions of estrogens in vertebrates are exerted via two intracellular estrogen receptor (ER) subtypes, ERα and ERβ, which show cell- and tissue-specific expression profiles. Mammalian immune cells express ERs and are responsive to estrogens. More recently, evidence became available that ERs are also present in the immune organs and cells of teleost fish, suggesting that the immunomodulatory function of estrogens has been conserved throughout vertebrate evolution. For a better understanding of the sensitivity and the responsiveness of the fish immune system to estrogens, more insight is needed on the abundance of ERs in the fish immune system, the cellular ratios of the ER subtypes, and their autoregulation by estrogens. Consequently, the aims of the present study were (i) to determine the absolute mRNA copy numbers of the four ER isoforms in the immune organs and cells of rainbow trout, Oncorhynchus mykiss , and to compare them to the hepatic ER numbers; (ii) to analyse the ER mRNA isoform ratios in the immune system; and, (iii) finally, to examine the alterations of immune ER mRNA expression levels in sexually immature trout exposed to 17β-estradiol (E2), as well as the alterations of immune ER mRNA expression levels in sexually mature trout during the reproductive cycle. All four ER isoforms were present in immune organs-head kidney, spleen-and immune cells from head kidney and blood of rainbow trout, but their mRNA levels were substantially lower than in the liver. The ER isoform ratios were tissue- and cell-specific, both within the immune system, but also between the immune system and the liver. Short-term administration of E2 to juvenile female trout altered the ER mRNA levels in the liver, but the ERs of the immune organs and cells were not responsive. Changes of ER gene transcript numbers in immune organs and cells occurred during the reproductive cycle of mature female trout, but the changes in the immune ER profiles differed from those in the liver and gonads. The correlation between ER gene transcript numbers and serum E2 concentrations was only moderate to low. In conclusion, the low mRNA numbers of nuclear ER in the trout immune system, together with their limited estrogen-responsiveness, suggest that the known estrogen actions on trout immunity may be not primarily mediated through genomic actions, but may involve other mechanisms, such as non-genomic pathways or indirect effects.

  12. The effect of nonylphenol on gene expression in Atlantic salmon smolts

    USGS Publications Warehouse

    Robertson, Laura S.; McCormick, Stephen D.

    2012-01-01

    The parr–smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to investigate the effects of nonylphenol on gene expression in Atlantic salmon smolts. Nonylphenol exposure reduced gill Na+/K+-ATPase activity and plasma cortisol and triiodothyronine levels. Transcriptional responses were examined in gill, liver, olfactory rosettes, hypothalamus, and pituitary. Expression of 124 features was significantly altered in the liver of fish exposed to nonylphenol; little to no transcriptional effects were observed in other tissues. mRNA abundance of genes involved in protein biosynthesis, folding, modification, transport and catabolism; nucleosome assembly, cell cycle, cell differentiation, microtubule-based movement, electron transport, and response to stress increased in nonylphenol-treated fish. This study expands our understanding of the effect of nonylphenol on smolting and provides potential targets for development of biomarkers.

  13. Linking physiological and cellular responses to thermal stress: β-adrenergic blockade reduces the heat shock response in fish.

    PubMed

    Templeman, Nicole M; LeBlanc, Sacha; Perry, Steve F; Currie, Suzanne

    2014-08-01

    When faced with stress, animals use physiological and cellular strategies to preserve homeostasis. We were interested in how these high-level stress responses are integrated at the level of the whole animal. Here, we investigated the capacity of the physiological stress response, and specifically the β-adrenergic response, to affect the induction of the cellular heat shock proteins, HSPs, following a thermal stress in vivo. We predicted that blocking β-adrenergic stimulation during an acute heat stress in the whole animal would result in reduced levels of HSPs in red blood cells (RBCs) of rainbow trout compared to animals where adrenergic signaling remained intact. We first determined that a 1 h heat shock at 25 °C in trout acclimated to 13 °C resulted in RBC adrenergic stimulation as determined by a significant increase in cell swelling, a hallmark of the β-adrenergic response. A whole animal injection with the β2-adrenergic antagonist, ICI-118,551, successfully reduced this heat-induced RBC swelling. The acute heat shock caused a significant induction of HSP70 in RBCs of 13 °C-acclimated trout as well as a significant increase in plasma catecholamines. When heat-shocked fish were treated with ICI-118,551, we observed a significant attenuation of the HSP70 response. We conclude that circulating catecholamines influence the cellular heat shock response in rainbow trout RBCs, demonstrating physiological/hormonal control of the cellular stress response.

  14. Derivation and Osmotolerance Characterization of Three Immortalized Tilapia (Oreochromis mossambicus) Cell Lines

    PubMed Central

    Gardell, Alison M.; Qin, Qin; Rice, Robert H.; Li, Johnathan; Kültz, Dietmar

    2014-01-01

    Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish. PMID:24797371

  15. Correlation of transforming growth factor-β messenger RNA (TGF-β mRNA) expression with cellular immunoassays in Triamcinolone-treated captive hybrid striped bass

    USGS Publications Warehouse

    Harms, Craig A.; Ottinger, Christopher A.; Kennedy-Stoskopf, S.

    2000-01-01

    Assessing fish immune status with molecular markers has been hampered by a lack of specific reagents. A quantitative polymerase chain reaction (PCR) method (reverse transcription quantitative–competitive PCR, RT-qcPCR) for measuring transforming growth factor-β (TGF-β) transcription from a broad range of teleost fish has recently been developed. The quantitative PCR now permits monitoring production of this important immunosuppressive cytokine in response to immunomodulating agents and conditions. We examined anterior kidney and spleen mononuclear cells from hybrid striped bass (female striped bass Morone saxatilis× male white bass M. chrysops) for production of TGF-β messenger RNA (mRNA) in response to administration of the synthetic glucocorticoid triamcinolone. We also compared TGF-β transcription with anterior kidney macrophage bactericidal activity and splenic lymphocyte blastogenesis. Anterior kidney mononuclear cell TGF-β mRNA levels decreased, whereas bactericidal activity increased. Spleen TGF-β mRNA levels did not change significantly, and splenic lymphocyte pokeweed mitogen stimulation index increased in triamcinolone-treated fish. Since triamcinolone is used therapeutically as a suppressive immunomodulator, the enhanced immune functions indicated by the cellular immunoassays were unexpected; however, the inverse response of TGF-β production and macrophage bactericidal activity was consistent with the known relationship between TGF-β and macrophage activation in mammals. Induced immunomodulation in hybrid striped bass was detectable by both traditional cellular immunoassays and the new RT-qcPCR for TGF-β.

  16. The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water.

    PubMed

    Lin, Y M; Chen, C N; Lee, T H

    2003-07-01

    Juvenile milkfish Chanos chanos (Forsskål, 1775) were transferred from a local fish farm to fresh water (FW; 0 per thousand ), brackish water (BW; 10 per thousand, 20 per thousand ) and seawater (SW; 35 per thousand ) conditions in the laboratory and reared for at least two weeks. The blood and gill of the fish adapted to various salinities were analyzed to determine the osmoregulatory ability of this euryhaline species. No significant difference was found in plasma osmolality, sodium or chloride concentrations of milkfish adapted to various salinities. In FW, the fish exhibited the highest specific activity of Na, K-ATPase (NKA) in gills, while the SW group was found to have the lowest. Relative abundance of branchial NKA alpha-subunit revealed similar profiles. However, in contrary to other euryhaline teleosts, i.e. tilapia, salmon and eel, the naturally SW-dwelling milkfish expresses higher activity of NKA in BW and FW. Immunocytochemical staining has shown that most Na, K-ATPase immunoreactive (NKIR) cells in fish adapted to BW and SW were localized to the filaments with very few on the lamellae. Moreover, in FW-adapted milkfish, the number of NKIR cells found on the lamellae increased significantly. Such responses as elevated NKIR cell number and NKA activity are thought to improve the osmoregulatory capacity of the milkfish in hyposaline environments.

  17. Molecular cloning and multifunctional characterization of GRIM-19 (gene associated with retinoid-interferon-induced mortality 19) homologue from turbot (Scophthalmus maximus).

    PubMed

    Wang, Na; Wang, Xianli; Yang, Changgeng; Zhao, Xiaojie; Zhang, Yuxi; Wang, Tianzi; Chen, Songlin

    2014-03-01

    GRIM-19 (gene associated with retinoid-interferon-induced mortality 19), a novel cell death regulatory gene, plays important roles in cell apoptosis, embryogenesis, mitochondrial respiratory chain and immune response. To date, little information is known about fish GRIM-19 characteristics except orange-spotted grouper (Epinephelus coioides). Here a new GRIM-19 gene is identified and characterized from turbot (Scophthalmus maximus), an economic marine fish in China and Europe. Briefly, turbot GRIM-19 is a 595-bp gene encoding a 144 amino acids protein, which shares the closest relationship with Atlantic halibut (Hippoglossus hippoglossus). The expression of turbot grim-19 in liver, spleen and kidney is up-regulated by the infection of Vibrio anguillarum and LCDV (lymphocystis disease virus). Subsequently, a recombinant protein of turbot GRIM-19 is acquired and the anti-bacterial function is proved by liquid culture inhibition experiment. The subcellular location indicates that turbot GRIM-19 is co-localized with STAT3 in the cytoplasm, which is mainly determined by GRIM-19 41-84 amino acids and STAT3 1-321 amino acids. Finally, the involvements of turbot GRIM-19 in cell apoptosis and NF-κB pathway are investigated. All these data help to understand GRIM-19 function in fish, as well as provide the application possibility of GRIM-19 in fish disease resistance breeding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cell proliferation and apoptosis in the anterior intestine of an amphibious, euryhaline mudskipper (Periophthalmus modestus).

    PubMed

    Takahashi, H; Sakamoto, T; Narita, K

    2006-06-01

    In order to replace the diffusive loss of water to the surrounding environment, seawater (SW)-acclimated euryhaline fishes have gastrointestinal tracts with higher ion/water flux in concert with greater permeability, and contrast that to freshwater (FW)-acclimated fish. To understand the cellular basis for these differences, we examined cell proliferation and apoptosis in the anterior intestine of mudskipper transferred from one-third SW to FW or to SW for 1 and 7 days, and those kept out of water for 1 day. The intestinal apoptosis (indicated by DNA laddering) increased during seawater acclimation. TUNEL staining detected numerous apoptotic cells over the epithelium of SW-acclimated fish. Cell proliferation ([3H]thymidine incorporation) in the FW fish was greater than those in SW 7 days after transfer. Labeling with a Proliferating cell nuclear antigen (PCNA) antibody indicated that proliferating cells were greater in number and randomly distributed in the epithelium of FW fish, whereas in SW fish they were almost entirely in the troughs of the intestinal folds. There were no changes in cell turnover in fish kept out of water. During acclimation to different salinities, modification of the cell turnover and abundance may play an important role in regulating the permeability (and transport capacity) of the gastrointestinal tract of fish.

  19. A FISH-based method for assessment of HER-2 amplification status in breast cancer circulating tumor cells following CellSearch isolation.

    PubMed

    Frithiof, Henrik; Aaltonen, Kristina; Rydén, Lisa

    2016-01-01

    Amplification of the HER-2/neu ( HER-2 ) proto-oncogene occurs in 10%-15% of primary breast cancer, leading to an activated HER-2 receptor, augmenting growth of cancer cells. Tumor classification is determined in primary tumor tissue and metastatic biopsies. However, malignant cells tend to alter their phenotype during disease progression. Circulating tumor cell (CTC) analysis may serve as an alternative to repeated biopsies. The Food and Drug Administration-approved CellSearch system allows determination of the HER-2 protein, but not of the HER-2 gene. The aim of this study was to optimize a fluorescence in situ hybridization (FISH)-based method to quantitatively determine HER-2 amplification in breast cancer CTCs following CellSearch-based isolation and verify the method in patient samples. Using healthy donor blood spiked with human epidermal growth factor receptor 2 (HER-2)-positive breast cancer cell lines, SKBr-3 and BT-474, and a corresponding negative control (the HER-2-negative MCF-7 cell line), an in vitro CTC model system was designed. Following isolation in the CellSearch system, CTC samples were further enriched and fixed on microscope slides. Immunocytochemical staining with cytokeratin and 4',6-diamidino-2'-phenylindole dihydrochloride identified CTCs under a fluorescence microscope. A FISH-based procedure was optimized by applying the HER2 IQFISH pharmDx assay for assessment of HER-2 amplification status in breast cancer CTCs. A method for defining the presence of HER-2 amplification in single breast cancer CTCs after CellSearch isolation was established using cell lines as positive and negative controls. The method was validated in blood from breast cancer patients showing that one out of six patients acquired CTC HER-2 amplification during treatment against metastatic disease. HER-2 amplification status of CTCs can be determined following CellSearch isolation and further enrichment. FISH is superior to protein assessment of HER-2 status in predicting response to HER-2-targeted immunotherapy in breast cancer patients. This assay has the potential of identifying patients with a shift in HER-2 status who may benefit from treatment adjustments.

  20. Dietary probiotic supplementation improves growth and the intestinal morphology of Nile tilapia.

    PubMed

    Ramos, M A; Batista, S; Pires, M A; Silva, A P; Pereira, L F; Saavedra, M J; Ozório, R O A; Rema, P

    2017-08-01

    Probiotic administration can be a nutritional strategy to improve the immune response and growth performance of fish. The current study aimed to evaluate the effects of a probiotic blend (Bacillus sp., Pediococcus sp., Enterococcus sp., Lactobacillus sp.) as a dietary supplement on growth performance, feed utilization, innate immune and oxidative stress responses and intestinal morphology in juvenile Nile tilapia (Oreochromis niloticus). The probiotic was incorporated into a basal diet at three concentrations: 0 g/kg (A0: control), 3 g/kg (A1: 1.0×106 colony forming unit (CFU)/g) and 6 g/kg (A2: 2.3×106 CFU/g diet). After 8 weeks of probiotic feeding, weight and specific growth rate where significantly higher in fish-fed A1 diet than in fish-fed A0. Alternative complement in plasma was significantly enhanced in fish-fed A2 when compared with A0. The hepatic antioxidant indicators were not affected by probiotic supplementation. Villi height and goblet cell counts increased significantly in the intestine of fish-fed A1 and A2 diets compared with A0. The dietary probiotic supplementation was maintained until 20 weeks of feeding. Then the selected immune parameters, digestive enzymes and apparent digestibility of diets were studied. No effect of probiotic feeding was observed after that longer period supplementation. The dietary supplementation of mixed species probiotic may constitute a valuable nutritional approach towards a sustainable tilapia aquaculture. The improvement of the immune responses and intestinal morphology play an important role in increasing growth performance, nutrient absorption and disease resistance in fish, important outcomes in such a competitive and developing aquaculture sector.

  1. Physiological, behavioral and biochemical adaptations of intertidal fishes to hypoxia.

    PubMed

    Richards, Jeffrey G

    2011-01-15

    Hypoxia survival in fish requires a well-coordinated response to either secure more O(2) from the hypoxic environment or to limit the metabolic consequences of an O(2) restriction at the mitochondria. Although there is a considerable amount of information available on the physiological, behavioral, biochemical and molecular responses of fish to hypoxia, very little research has attempted to determine the adaptive value of these responses. This article will review current attempts to use the phylogenetically corrected comparative method to define physiological and behavioral adaptations to hypoxia in intertidal fish and further identify putatively adaptive biochemical traits that should be investigated in the future. In a group of marine fishes known as sculpins, from the family Cottidae, variation in hypoxia tolerance, measured as a critical O(2) tension (P(crit)), is primarily explained by variation in mass-specific gill surface area, red blood cell hemoglobin-O(2) binding affinity, and to a lesser extent variation in routine O(2) consumption rate (M(O(2))). The most hypoxia-tolerant sculpins consistently show aquatic surface respiration (ASR) and aerial emergence behavior during hypoxia exposure, but no phylogenetically independent relationship has been found between the thresholds for initiating these behaviors and P(crit). At O(2) levels below P(crit), hypoxia survival requires a rapid reorganization of cellular metabolism to suppress ATP consumption to match the limited capacity for O(2)-independent ATP production. Thus, it is reasonable to speculate that the degree of metabolic rate suppression and the quantity of stored fermentable fuel is strongly selected for in hypoxia-tolerant fishes; however, these assertions have not been tested in a phylogenetic comparative model.

  2. Clinical and immunological characteristics of a pediatric population with food protein-induced enterocolitis syndrome (FPIES) to fish.

    PubMed

    González-Delgado, Purificación; Caparrós, Esther; Moreno, M Victoria; Clemente, Fernando; Flores, Emilio; Velásquez, Laura; Rubio, Gonzalo; Fernández, Javier

    2016-05-01

    Food protein-induced enterocolitis (FPIES) is an uncommon, non-IgE-mediated food allergy that usually debuts in infancy with profuse vomiting, lethargy, and pallor 2-4 h following ingestion of the offending food. Its immune mechanism is not known. We aimed to describe the clinical features and outcome of children with fish-FPIES as well as to investigate on cellular immune response implicated. Prospective and follow-up clinical study of children with FPIES by fish over a period between 2004 and 2013 was conducted. Measurement in vitro of both cytokine production in peripheral blood mononuclear cells (PBMCs) and expression of HLA-DR in monocyte-derived dendritic cells stimulated with fish extracts. Sixteen children (seven male and nine female) were included, with a mean age of onset at 10 months. Diagnosis was established after a median of 4 reactions. Twelve patients were treated in emergency room, and two were admitted in intensive care. Patch tests were positive in six patients. Skin prick tests (SPTs) and specific IgE to all fish tested were negative. Only three children reached tolerance at a mean age of 4.5 years. Eight children avoided fish because of positive oral food challenge (OFC) after 6 years of age. Other patients have not been challenged because of parent refusal to OFC or a recent diagnosis. TNF-α was increased in patients, and a significant elevation of the HLA-DR marker was also observed in these patients vs. control donors. FPIES caused by fish in many cases presents with severe clinical manifestations. Patch test has poor diagnostic value, and OFC is the gold standard to test tolerance. The cytokine TNF-α may be implicated in the clinical symptoms. Higher expression of HLA-DR in dendritic cells has also been detected in our patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Physiological response, blood chemistry profile and mucus secretion of red sea bream (Pagrus major) fed diets supplemented with Lactobacillus rhamnosus under low salinity stress.

    PubMed

    Dawood, Mahmoud A O; Koshio, Shunsuke; Ishikawa, Manabu; El-Sabagh, Mabrouk; Yokoyama, Saichiro; Wang, Wei-Long; Yukun, Zhang; Olivier, Adissin

    2017-02-01

    Environmental stressors caused by inadequate aquaculture management strategies suppress the immune response of fish and make them more susceptible to diseases. Therefore, efforts have been made to relieve stress in fish by using various functional feed additives in the diet, including probiotics. The present work evaluates the effects of Lactobacillus rhamnosus (LR) on physiological stress response, blood chemistry and mucus secretion of red sea bream (Pagrus major) under low salinity stress. Fish were fed four diets supplemented with LR at [0 (LR0), 1 × 10 2 (LR1), 1 × 10 4 (LR2) and 1 × 10 6 (LR3) cells g -1 ] for 56 days. Before stress, blood cortisol, urea nitrogen (BUN) and total bilirubin (T-BIL) showed no significant difference (P > 0.05), whereas plasma glucose and triglyceride (TG) of fish-fed LR2 and LR3 diets were significantly lower (P < 0.05) than those of the other groups. Plasma total cholesterol (T-CHO) of fish-fed LR3 diet was significantly (P < 0.05) lower than that of the other groups. Furthermore, total plasma protein, mucus myeloperoxidase activity and the amount of mucus secretion were significantly enhanced in LR-supplemented groups when compared with the control group (P < 0.05). After the application of the low salinity stress test, plasma cortisol, glucose, T-CHO and TG contents in all groups showed an increased trend significantly (P < 0.01) compared to the fish before the stress challenge. However, plasma total protein and the amount of secreted mucus showed a decreased trend in all groups. On the other hand, BUN, T-BIL and mucus myeloperoxidase activity showed no significant difference after exposure to the low salinity stress (P > 0.05). In addition, the fish that received LR-supplemented diets showed significantly higher tolerance against low salinity stress than the fish-fed LR-free diet (P < 0.05). The physiological status and the detected immune responses, including total plasma protein and mucus myeloperoxidase activity in red sea bream, will provide a more comprehensive outlook of the effects of probiotics to relieve stress in fish.

  4. Chronic fluoride exposure exacerbates headkidney pathology and causes immune commotion in Clarias gariepinus.

    PubMed

    Singh, Rashmi; Hussain, Md Arafat; Kumar, Jai; Kumar, Manmohan; Kumari, Usha; Mazumder, Shibnath

    2017-11-01

    The current study was aimed to understand the effects of chronic fluoride exposure on fish immune system. African sharp tooth catfish (Clarias gariepinus) were exposed to 73.45mg/L of fluoride corresponding to 1/10 96h LC 50 for 30 d and the effects on general fish health and several immune parameters were studied. Chronic fluoride exposure led to significant alteration in serum biochemical parameters including alkaline phosphatase, alanine transaminase, aspartate transaminase, triglycerides, cholesterol and blood urea nitrogen levels revealing the detrimental effect of fluoride on general fish health. Upregulation in cytochrome P450 1A expression, both at mRNA and protein level suggested that fluoride activates the detoxification machinery in headkidney (HK) of C. gariepinus. Histopathological analysis of HK from exposed fish further revealed fluoride-induced hypertrophy, increase in melano-macrophage centers (MMCs) and the development of cell-depleted regions. Fluoride reduced headkidney somatic index (HKSI) and the phagocytic potential of headkidney macrophages (HKM). It induced caspase-3-dependent headkidney leukocyte (HKL) apoptosis, elevated superoxide generation and production of pro-inflammatory cytokine TNF-α besides suppressed T-cell proliferation in the exposed fish. We surmise the elevation in superoxide levels coupled with increased TNF-α production to be plausible causes of fluoride-induced HKL apoptosis. It is concluded that chronic fluoride exposure induces structure-function alterations in HK, the primary lymphoid organ in fish leading to impairment in immune responses. Copyright © 2017. Published by Elsevier B.V.

  5. Developing a list of reference chemicals for testing alternatives to whole fish toxicity tests.

    PubMed

    Schirmer, Kristin; Tanneberger, Katrin; Kramer, Nynke I; Völker, Doris; Scholz, Stefan; Hafner, Christoph; Lee, Lucy E J; Bols, Niels C; Hermens, Joop L M

    2008-11-11

    This paper details the derivation of a list of 60 reference chemicals for the development of alternatives to animal testing in ecotoxicology with a particular focus on fish. The chemicals were selected as a prerequisite to gather mechanistic information on the performance of alternative testing systems, namely vertebrate cell lines and fish embryos, in comparison to the fish acute lethality test. To avoid the need for additional experiments with fish, the U.S. EPA fathead minnow database was consulted as reference for whole organism responses. This database was compared to the Halle Registry of Cytotoxicity and a collation of data by the German EPA (UBA) on acute toxicity data derived from zebrafish embryos. Chemicals that were present in the fathead minnow database and in at least one of the other two databases were subject to selection. Criteria included the coverage of a wide range of toxicity and physico-chemical parameters as well as the determination of outliers of the in vivo/in vitro correlations. While the reference list of chemicals now guides our research for improving cell line and fish embryo assays to make them widely applicable, the list could be of benefit to search for alternatives in ecotoxicology in general. One example would be the use of this list to validate structure-activity prediction models, which in turn would benefit from a continuous extension of this list with regard to physico-chemical and toxicological data.

  6. Transcriptomic variation of locally-infected skin of Epinephelus coioides reveals the mucosal immune mechanism against Cryptocaryon irritans.

    PubMed

    Hu, Yazhou; Li, Anxing; Xu, Yang; Jiang, Biao; Lu, Geling; Luo, Xiaochun

    2017-07-01

    Fish skin is the largest immunologically active mucosal organ, providing first-line defense against external pathogens. However, the skin-associated immune mechanisms of fish are still unclear. Cryptocaryon irritans is an obligate ectoparasitic ciliated protozoan that infects almost all marine fish, and is believed to be an excellent pathogen model to study fish mucosal immunity. In this study, a de novo transcriptome assembly of Epinephelus coioides skin post C. irritans tail-infection was performed for the first time using the Illumina HiSeq™ 2500 system. Comparative analyses of infected skin (group Isk) and uninfected skin (group Nsk) from the same challenged fish and control skin (group C) from uninfected control fish were conducted. As a result, a total of 91,082 unigenes with an average length of 2880 base pairs were obtained and among them, 38,704 and 48,617 unigenes were annotated based on homology with matches in the non-redundant and zebrafish database, respectively. Pairwise comparison resulted in 10,115 differentially-expressed genes (DEGs) in the Isk/C group comparison (4,983 up-regulated and 5,132 down-regulated), 2,275 DEGs in the Isk/Nsk group comparison (1,319 up-regulated and 956 down-regulated) and 4,566 DEGs in the Nsk/C group comparison (1,534 up-regulated and 3,032 down-regulated). Seven immune-related categories including 91 differentially-expressed immune genes (86 up-regulated and 5 down-regulated) were scrutinized. Both DEGs and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and immune-related gene expression analysis were used, and both analyses showed that the genes were more significantly altered in the locally-infected skin than in the uninfected skin of the same challenged fish. This suggests the skin's local immune response is important for host defense against this ectoparasite infection. Innate immune molecules, including hepcidin, C-type lectin, transferrin, transferrin receptor protein, serum amyloid A, cathepsin and complement components were significantly up-regulated (fold-change ranged from 3.3 to 12,944) in infected skin compared with control skin. The up-regulation of chemokines and chemokine receptors and activation of the leukocyte transendothelial migration pathway suggested that leucocytes intensively migrated to the local infected sites to mount a local immune defense. Toll-like receptors (TLRs) 1, 2, 5 and 5S were most significantly up-regulated in the infected skin, suggesting that these TLRs may be involved in parasite pathogen-associated molecular pattern (PAMPs) recognition. Up-regulation of the dendritic cell markers CD209 and CD83 and other antigen presentation pathway molecules provided evidence for skin local antigen presentation. Up-regulation of the T cell markers CD4 and CD48, B cell markers CD22 and CD81 and B cell receptor signaling kinase Lyn, showed the presence and population expansion of T/B cells at locally-infected sites, which suggested possible activation of a local specific immune response in the skin. Our results will facilitate in-depth understanding of local immune defense mechanisms in fish skin against ectoparasite infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A history of fish immunology and vaccination I. The early days.

    PubMed

    Van Muiswinkel, Willem B

    2008-10-01

    This historic review describes the people that were involved in studying some aspect of fish immunology and vaccination from as early as 1854. Between 1850 and 1940, most scientists were looking at fish from the angle of comparative anatomy, embryology, physiology, taxonomy and fish diseases. Most publications from this early period are describing the morphology of blood cells and hemopoietic or lymphoid organs. The first publications on specific immune responses and vaccination of fish were found in the period 1935-1938. However, the immune mechanisms behind protective immunization were largely unknown in those days. In the period after 1940, the first researchers can be found devoting their whole career to fish immunology. This paper has been organized largely by individuals and not so much by accomplishments. It is not the intent of this review to evaluate the scientific merit of the work discussed, but to provide the reader with information that was - at least in part - lost to the scientific community. Publications from before 1940 or in languages other than English (e.g. Russian) are usually not found by today's database searches on the Internet.

  8. Analysis of specific RNA in cultured cells through quantitative integration of q-PCR and N-SIM single cell FISH images: Application to hormonal stimulation of StAR transcription.

    PubMed

    Lee, Jinwoo; Foong, Yee Hoon; Musaitif, Ibrahim; Tong, Tiegang; Jefcoate, Colin

    2016-07-05

    The steroidogenic acute regulatory protein (StAR) has been proposed to serve as the switch that can turn on/off steroidogenesis. We investigated the events that facilitate dynamic StAR transcription in response to cAMP stimulation in MA-10 Leydig cells, focusing on splicing anomalies at StAR gene loci. We used 3' reverse primers in a single reaction to respectively quantify StAR primary (p-RNA), spliced (sp-RNA/mRNA), and extended 3' untranslated region (UTR) transcripts, which were quantitatively imaged by high-resolution fluorescence in situ hybridization (FISH). This approach delivers spatio-temporal resolution of initiation and splicing at single StAR loci, and transfers individual mRNA molecules to cytoplasmic sites. Gene expression was biphasic, initially showing slow splicing, transitioning to concerted splicing. The alternative 3.5-kb mRNAs were distinguished through the use of extended 3'UTR probes, which exhibited distinctive mitochondrial distribution. Combining quantitative PCR and FISH enables imaging of localization of RNA expression and analysis of RNA processing rates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. The zebrafish galectins Drgal1-L2 and Drgal3-L1 bind in vitro to the infectious hematopoietic necrosis virus (IHNV) glycoprotein and reduce viral adhesion to fish epithelial cells*

    PubMed Central

    Feng, Chiguang; González-Montalbán, Núria; Ravindran, Chinnarajan; Jackson, Shawn; de las Heras-Sánchez, Ana; Giomarelli, Barbara; Ahmed, Hafiz; Haslam, Stuart M.; Wu, Gang; Dell, Anne; Ammayappan, Arun; Vakharia, Vikram N.; Vasta, Gerardo R.

    2015-01-01

    The infectious hematopoietic necrosis virus (IHNV; Rhabdoviridae, Novirhabdovirus) infects teleost fish, such as salmon and trout, and is responsible for significant losses in the aquaculture industry and in wild fish populations. Although IHNV enters the host through the skin at the base of the fins, the viral adhesion and entry mechanisms are not fully understood. In recent years, evidence has accumulated in support of the key roles played by protein-carbohydrate interactions between host lectins secreted to the extracellular space and virion envelope glycoproteins in modulating viral adhesion and infectivity. In this study, we assessed in vitro the potential role(s) of zebrafish (Danio rerio) proto type galectin-1 (Drgal1-L2) and a chimera galectin-3 (Drgal3-L1) in IHNV adhesion to epithelial cells. Our results suggest that the extracellular Drgal1-L2 and Drgal3-L1 interact directly and in a carbohydrate-dependent manner with the IHNV glycosylated envelope and glycans on the epithelial cell surface, significantly reducing viral adhesion. PMID:26429411

  10. Exophiala angulospora causes systemic inflammation in atlantic cod Gadus morhua.

    PubMed

    Gjessing, Mona Cecilie; Davey, Marie; Kvellestad, Agnar; Vrålstad, Trude

    2011-10-06

    Species of Exophiala are opportunistic fungal pathogens that may infect a broad range of warm- and cold-blooded animals, including salmonids and Atlantic cod. In the present study, we observed abnormal swimming behaviour and skin pigmentation and increased mortality in cod kept in an indoor tank. Necropsy revealed foci of different sizes with a greyish to brownish colour in internal organs of diseased fish. The foci consisted of ramifying darkly pigmented fungal hyphae surrounded by distinct layers of inflammatory cells, including macrophage-like cells. In the inner layer with many hyphae, the macrophage-like cells were dead. We observed no apparent restriction of fungal growth by the inflammatory response. A darkly pigmented fungus was repeatedly isolated in pure culture from foci of diseased fish and identified as Exophiala angulospora using morphological and molecular characters. This species has not been previously reported to cause disease in cod, but has been reported as an opportunistic pathogen of both marine and freshwater fish. Based on the morphology and sequence analysis presented here, we conclude that E. angulospora caused the observed chronic multifocal inflammation in internal organs of cod, leading to severe disease and mortality.

  11. Supplementation with a fish oil-enriched, high-protein medical food leads to rapid incorporation of EPA into white blood cells and modulates immune responses within one week in healthy men and women.

    PubMed

    Faber, Joyce; Berkhout, Marloes; Vos, Arjan P; Sijben, John W C; Calder, Philip C; Garssen, Johan; van Helvoort, Ardy

    2011-05-01

    Immune modulatory effects of EPA and DHA are well described. However, these fatty acids must be effectively incorporated into cell membrane phospholipids to modify cell function. To address the absence of human data regarding short-term incorporation, the present study investigated the incorporation of EPA and DHA into white blood cells (WBC) at different time points during 1 wk of supplementation with a medical food, which is high in protein and leucine and enriched with fish oil and specific oligosaccharides. Additionally, the effects on ex vivo immune function were determined. In a single-arm, open label study, 12 healthy men and women consumed 2 × 200 mL of medical food providing 2.4 g EPA, 1.2 g DHA, 39.7 g protein (including 4.4 g L-leucine), and 5.6 g oligosaccharides daily. Blood samples were taken at d 0 (baseline), 1, 2, 4, and 7. Within 1 d of nutritional intervention, the percentage of EPA in phospholipids of WBC increased from 0.5% at baseline to 1.3% (P < 0.001). After 1 wk, the percentage of EPA rose to 2.8% (P < 0.001). Additionally, the production of proinflammatory cytokines in LPS-stimulated whole blood cultures was significantly increased within 1 wk. Nutritional supplementation with a fish oil-enriched medical food significantly increased the percentage of EPA in phospholipids of WBC within 1 wk. Simultaneously, ex vivo immune responsiveness to LPS increased significantly. These results hold promise for novel applications such as fast-acting nutritional interventions in cancer patients, which should be investigated in future studies.

  12. Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus).

    PubMed

    Cheng, Chang-Hong; Yang, Fang-Fang; Ling, Ren-Zhi; Liao, Shao-An; Miao, Yu-Tao; Ye, Chao-Xia; Wang, An-Li

    2015-07-01

    Ammonia is one of major environmental pollutants in the freshwater aquatic system that affects the survival and growth of organisms. In the present study, we investigated the effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Fish were exposed to various concentrations of ammonia (0, 1.43, 3.57, 7.14mM) for 72h. The date showed that ammonia exposure could induce intracellular reactive oxygen species (ROS), interrupt intracellular Ca(2+) (cf-Ca(2+)) homeostasis, and subsequently lead to DNA damage and cell apoptosis. To test the apoptotic pathway, the expression patterns of some key apoptotic related genes including P53, Bax Bcl2, Caspase 9, Caspase 8 and Caspase 3 in the liver were examined. The results showed that ammonia stress could change these genes transcription, associated with increasing of cell apoptosis, suggesting that the P53-Bax-Bcl2 pathway and caspase-dependent apoptotic pathway could be involved in cell apoptosis induced by ammonia stress. In addition, ammonia stress could induced up-regulation of inflammatory cytokines (BAFF, TNF-α, IL-6 and IL-12) transcription, indicating that innate immune system play important roles in ammonia-induced toxicity in fish. Furthermore, the gene expressions of antioxidant enzymes (Mn-SOD, CAT, GPx, and GR) and heat shock proteins (HSP90 and HSP70) in the liver were induced by ammonia stress, suggesting that antioxidant system and heat shock proteins tried to protect cells from oxidative stress and apoptosis induced by ammonia stress. Our results will be helpful to understand the mechanism of aquatic toxicology induced by ammonia in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Seasonal plasticity of auditory saccular sensitivity in the vocal plainfin midshipman fish, Porichthys notatus.

    PubMed

    Sisneros, Joseph A

    2009-08-01

    The plainfin midshipman fish, Porichthys notatus, is a seasonally breeding species of marine teleost fish that generates acoustic signals for intraspecific social and reproductive-related communication. Female midshipman use the inner ear saccule as the main acoustic endorgan for hearing to detect and locate vocalizing males that produce multiharmonic advertisement calls during the breeding season. Previous work showed that the frequency sensitivity of midshipman auditory saccular afferents changed seasonally with female reproductive state such that summer reproductive females became better suited than winter nonreproductive females to encode the dominant higher harmonics of the male advertisement calls. The focus of this study was to test the hypothesis that seasonal reproductive-dependent changes in saccular afferent tuning is paralleled by similar changes in saccular sensitivity at the level of the hair-cell receptor. Here, I examined the evoked response properties of midshipman saccular hair cells from winter nonreproductive and summer reproductive females to determine if reproductive state affects the frequency response and threshold of the saccule to behaviorally relevant single tone stimuli. Saccular potentials were recorded from populations of hair cells in vivo while sound was presented by an underwater speaker. Results indicate that saccular hair cells from reproductive females had thresholds that were approximately 8 to 13 dB lower than nonreproductive females across a broad range of frequencies that included the dominant higher harmonic components and the fundamental frequency of the male's advertisement call. These seasonal-reproductive-dependent changes in thresholds varied differentially across the three (rostral, middle, and caudal) regions of the saccule. Such reproductive-dependent changes in saccule sensitivity may represent an adaptive plasticity of the midshipman auditory sense to enhance mate detection, recognition, and localization during the breeding season.

  14. First characterization of fish CD22: An inhibitory role in the activation of peripheral blood leukocytes.

    PubMed

    Li, Yi-Qun; Zhang, Jian; Li, Jun; Sun, Li

    2017-08-01

    In mammals, CD22 is a member of the Ig superfamily that serves as an inhibitor during B cell responses to foreign antigens. In this study, we characterized for the first time a fish CD22 from tongue sole Cynoglossus semilaevis (CsCD22). CsCD22 possesses the conserved structural features of CD22 and shares 35%-54% sequence identities with other fish CD22. mRNA expression of CsCD22 was most abundant in head kidney and heart. CsCD22 protein was detected on the surface of peripheral blood leukocytes (PBL). In the presence of rCsCD22 antibody, the proliferation, phagocytosis, and antibacterial activity of PBL were significantly increased. These results indicate for the first time that fish CD22 plays an inhibitory role in PBL activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Fish Stem Cell Cultures

    PubMed Central

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-01-01

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer. PMID:21547056

  16. Fish stem cell cultures.

    PubMed

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-04-13

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  17. Species of the toxic Pfiesteria complex, and the importance of functional type in data interpretation.

    PubMed Central

    Burkholder, J M; Glasgow, H B; Deamer-Melia, N J; Springer, J; Parrow, M W; Zhang, C; Cancellieri, P J

    2001-01-01

    We describe the two species of the toxic Pfiesteria complex to date (Pfiesteria piscicida and Pfiesteria shumwayae), their complex life cycles, and the characteristics required for inclusion within this complex. These species resemble P. piscicida Steidinger & Burkholder and also have a) strong attraction to fresh fish tissues and excreta, b) toxic activity stimulated by live fish, and c) production of toxin that can cause fish death and disease. Amoeboid stages were verified in 1992-1997 by our laboratory (various stages from toxic cultures) and that of K. Steidinger and co-workers (filose amoebae in nontoxic cultures), and in 2000 by H. Marshall and co-workers (various stages from toxic cultures), from clonal Pfiesteria spp. cultures, using species-specific polymerase chain reaction-based molecular probes with cross-confirmation by an independent specialist. Data were provided from tests of the hypothesis that Pfiesteriastrains differ in response to fresh fish mucus and excreta, algal prey, and inorganic nutrient (N, P) enrichment, depending on functional type or toxicity status. There are three functional types: TOX-A, in actively toxic, fish-killing mode; TOX-B, temporarily nontoxic, without access to live fish for days to weeks, but capable of toxic activity if fish are added; and NON-IND, noninducible with negligible toxicity in the presence of live fish. NON-IND Pfiesteria attained highest zoospore production on algal prey without or without inorganic nitrogen or inorganic phosphorus enrichment. TOX-B Pfiesteria was intermediate and TOX-A was lowest in zoospore production on algal prey with or without nutrients. TOX-A Pfiesteria spp. showed strong behavioral attraction to fresh fish mucus and excreta in short-term trials, with intermediate attraction of TOX-B zoospores and relatively low attraction of NON-IND cultures when normalized for cell density. The data for these clones indicated a potentially common predatory behavioral response, although differing in intensity distinct from a toxicity effect, in attack of fish prey. The data also demonstrated that functional types of Pfiesteria spp. show distinct differences in response to fish, algal prey, and inorganic nutrient enrichment. Collectively, the experiments indicate that NON-IND strains should not be used in research to gain insights about environmental controls on toxic strains of Pfiesteria spp. PMID:11677174

  18. Responses of blind fish to gravitational changes as achieved in parabolic flight

    NASA Technical Reports Server (NTRS)

    Vonbaumgarten, R. J.; Shillinger, G. L., Jr.; Baldright, G.

    1972-01-01

    Blind fish, during parabolic flight, display a measurable and consistent behavior. The most spectacular new behavioral response is the forward looping of blind fish in or near weightlessness. This response shows no measurable adaptation during the entire period of weightlessness of about 30 sec. During the entrance and exit of weightless parabolas (pushover and pullout) respectively, the fish assumes a forward tilted diving position. Parabolic flight with negative g in the range between 0g and -1g causes similar diving responses of the fish with the only difference being that the dive is directed toward the top of the fish tank. When the response to a g value less than 1g is compared to the response to increased g load on the ground (escape of darting response) an essential difference is seen: higher horizontal acceleration or jerk on the ground causes fish to swim, or even dart, against the direction of inertial force; fish during weightless parabolas move into the direction of the inertial or gravitational force. Since the vestibular system of fish is homologous to that of man, the observed behavior of fish in weightless flight could help to better understand human performance and sensations in comparable situations.

  19. Mycobacterium marinum infection in fish and man: epidemiology, pathophysiology and management; a review.

    PubMed

    Hashish, Emad; Merwad, Abdallah; Elgaml, Shimaa; Amer, Ali; Kamal, Huda; Elsadek, Ahmed; Marei, Ayman; Sitohy, Mahmoud

    2018-12-01

    Mycobacterium marinum is an opportunistic pathogen inducing infection in fresh and marine water fish. This pathogen causes necrotizing granuloma like tuberculosis, morbidity and mortality in fish. The cell wall-associated lipid phthiocerol dimycocerosates, phenolic glycolipids and ESAT-6 secretion system 1 (ESX-1) are the conserved virulence determinant of the organism. Human infections with Mycobacterium marinum hypothetically are classified into four clinical categories (type I-type IV) and have been associated with the exposure of damaged skin to polluted water from fish pools or contacting objects contaminated with infected fish. Fish mycobacteriosis is clinically manifested and characterized in man by purple painless nodules, liable to develop into superficial crusting ulceration with scar formation. Early laboratory diagnosis of M. marinum including histopathology, culture and PCR is essential and critical as the clinical response to antibiotics requires months to be attained. The pathogenicity and virulence determinants of M. marinum need to be thoroughly and comprehensively investigated and understood. In spite of accumulating information on this pathogen, the different relevant data should be compared, connected and globally compiled. This article is reviewing the epidemiology, virulence factors, diagnosis and disease management in fish while casting light on the potential associated public health hazards.

  20. Directional Cell Migration in Response to Repeated Substratum Stretching

    NASA Astrophysics Data System (ADS)

    Okimura, Chika; Iwadate, Yoshiaki

    2017-10-01

    Crawling migration plays an essential role in a variety of biological phenomena, including development, wound healing, and immune system function. Migration properties such as anterior-posterior polarity, directionality, and velocity are regulated not only by the reception of a chemoattractant but also by sensing mechanical inputs from the external environment. In this review, we describe the mechanical response of migrating cells, particularly under repeated stretching of the elastic substratum, highlighting the fact that there appear to be two independent mechanosensing systems that generate the polarity needed for migration. Cells that have no stress fibers, such as Dictyostelium cells and neutrophil-like differentiated HL-60 cells, migrate perpendicular to the stretching direction via myosin II localization. Cells that do possess stress fibers, however, such as fish keratocytes, migrate parallel to the stretching via a stress-fiber-dependent process.

  1. Chemical Ototoxicity of the Fish Inner Ear and Lateral Line.

    PubMed

    Coffin, Allison B; Ramcharitar, John

    2016-01-01

    Hair cell-driven mechanosensory systems are crucial for successful execution of a number of behaviors in fishes, and have emerged as good models for exploring questions relevant to human hearing. This review focuses on ototoxic effects in the inner ear and lateral line system of fishes. We specifically examine studies where chemical ototoxins such as aminoglycoside antibiotics have been employed as tools to disable the lateral line. Lateral line ablation results in alterations to feeding behavior and orientation to water current in a variety of species. However, neither behavior is abolished in the presence of additional sensory cues, supporting the hypothesis that many fish behaviors are driven by multisensory integration. Within biomedical research, the larval zebrafish lateral line has become an important model system for understanding signaling mechanisms that contribute to hair cell death and for developing novel pharmacological therapies that protect hair cells from ototoxic damage. Furthermore, given that fishes robustly regenerate damaged hair cells, ototoxin studies in fishes have broadened our understanding of the molecular and genetic events in an innately regenerative system, offering potential targets for mammalian hair cell regeneration. Collectively, studies of fish mechanosensory systems have yielded insight into fish behavior and in mechanisms of hair cell death, protection, and regeneration.

  2. Acclimation of brackish water pearl spot (Etroplus suratensis) to various salinities: relative changes in abundance of branchial Na(+)/K (+)-ATPase and Na (+)/K (+)/2Cl (-) co-transporter in relation to osmoregulatory parameters.

    PubMed

    Chandrasekar, S; Nich, T; Tripathi, G; Sahu, N P; Pal, A K; Dasgupta, S

    2014-06-01

    The present study was conducted to elucidate the osmoregulatory ability of the fish pearl spot (Etroplus suratensis) to know the scope of this species for aquaculture under various salinities. Juvenile pearl spot were divided into three groups and acclimated to freshwater (FW), brackish water (BW) or seawater (SW) for 15 days. The fish exhibited effective salinity tolerance under osmotic challenges. Although the plasma osmolality and Na(+), K(+) and Cl(-) levels increased with the increasing salinities, the parameters remained within the physiological range. The muscle water contents were constant among FW-, BW- and SW-acclimated fish. Two Na+/K+-ATPase α-isoforms (NKA α) were expressed in gills during acclimation in FW, BW and SW. Abundance of one isoform was up-regulated in response to seawater acclimation, suggesting its role in ion secretion similar to NKA α1b, while expression of another isoform was simultaneously up-regulated in response to both FW and SW acclimation, suggesting the presence of isoforms switching phenomenon during acclimation to different salinities. Nevertheless, NKA enzyme activities in the gills of the SW and FW individuals were higher (p < 0.05) than in BW counterparts. Immunohistochemistry revealed that Na(+)/K(+)-ATPase immunoreactive (NKA-IR) cells were mainly distributed in the interlamellar region of the gill filaments in FW groups and in the apical portion of the filaments in BW and SW groups. The number of NKA-IR cells in the gills of the FW-acclimated fish was almost similar to that of SW individuals, which exceeded that of the BW individuals. The NKA-IR cells of BW and SW were bigger in size than their FW counterparts. Besides, the relative abundance of branchial Na(+)/K(+)/2Cl(-) co-transporter showed stronger evidence in favor of involvement of this protein in hypo-osmoregulation, requiring ion secretion by the chloride cells. To the best of our knowledge, this is the first study reporting the wide salinity tolerance of E. suratensis involving differential activation of ion transporters and thereby suggesting its potential as candidate for fish farming under different external salinities.

  3. Physiological stress and pathology in European whitefish (Coregonus lavaretus) induced by subchronic exposure to environmentally relevant densities of Planktothrix rubescens.

    PubMed

    Ernst, Bernhard; Hoeger, Stefan J; O'brien, Evelyn; Dietrich, Daniel R

    2007-04-20

    Planktothrix rubescens belongs to the most ubiquitous cyanobacterial species in mesotrophic and oligotrophic lakes in the pre-alpine regions. In most of these lakes, coregonids are among the dominant species of the ichthyofauna with great importance for the professional fishery. A possible link between the occurrence of toxic Planktothrix blooms and the recurrent slumps in coregonid yields has been suggested. Indeed, acute toxic effects of microcystins and other cyanobacterial toxins have been shown for various fish species. However, chronic exposure scenarios appear to be more common and thus more environmentally realistic than acute intoxications. The aim of this study was therefore to investigate the physiological stress response and organ pathology in coregonids sub-chronically exposed to ambient water containing low, medium and high P. rubescens densities, known to be typical of pre-alpine lakes. Coregonid hatchlings were exposed in four tanks containing 0 (sham-control) and approximately 1500 (low), 15,000 (medium) and 55,000 (high) P. rubescens cells/ml for up to 28 days. Temperature, oxygen concentration, pH-value, P. rubescens cell density and microcystin concentration were recorded and the fish were observed for behavioural changes and examined for parasite infestations. Gill ventilation rates, general condition factors and mortalities were determined and liver, kidney, gut and gill were assessed histopathologically and immunhistologically. Depending on the cell density, exposed fish showed behavioural changes, including increased ventilation rates possibly representing a physiological stress response. Susceptibility to ectoparasitic infestation and increased mortality in exposed fish suggested P. rubescens associated effects on fish fitness. Histopathological alterations in liver, gastrointestinal tract and kidney, which were also immunopositive for microcystin suggested causality of tissue damage and the presence of microcystins. In contrast, observed gill pathology appeared to result primarily from mechanical abrasion and irritation due to ectoparasitic infestation. The current exposure experiment confirmed the hypothesis that subchronic and chronic exposure to low cyanobacterial cell densities and hence microcystins can exacerbate physiological stress and sustained pathological alterations in exposed coregonids. The study therefore supports the theory that P. rubescens blooms may be causal to the observed weight reduction and hence fitness of coregonids in pre-alpine lakes such as Lake Ammersee (Germany).

  4. Accurate Detection and Quantification of the Fish Viral Hemorrhagic Septicemia virus (VHSv) with a Two-Color Fluorometric Real-Time PCR Assay

    PubMed Central

    Palsule, Vrushalee V.; Yeo, Jiyoun; Shepherd, Brian S.; Crawford, Erin L.; Stepien, Carol A.

    2013-01-01

    Viral Hemorrhagic Septicemia virus (VHSv) is one of the world's most serious fish pathogens, infecting >80 marine, freshwater, and estuarine fish species from Eurasia and North America. A novel and especially virulent strain – IVb – appeared in the Great Lakes in 2003, has killed many game fish species in a series of outbreaks in subsequent years, and shut down interstate transport of baitfish. Cell culture is the diagnostic method approved by the USDA-APHIS, which takes a month or longer, lacks sensitivity, and does not quantify the amount of virus. We thus present a novel, easy, rapid, and highly sensitive real-time quantitative reverse transcription PCR (qRT-PCR) assay that incorporates synthetic competitive template internal standards for quality control to circumvent false negative results. Results demonstrate high signal-to-analyte response (slope = 1.00±0.02) and a linear dynamic range that spans seven orders of magnitude (R2 = 0.99), ranging from 6 to 6,000,000 molecules. Infected fishes are found to harbor levels of virus that range to 1,200,000 VHSv molecules/106 actb1 molecules with 1,000 being a rough cut-off for clinical signs of disease. This new assay is rapid, inexpensive, and has significantly greater accuracy than other published qRT-PCR tests and traditional cell culture diagnostics. PMID:23977162

  5. Accurate detection and quantification of the fish viral hemorrhagic Septicemia virus (VHSv) with a two-color fluorometric real-time PCR assay.

    PubMed

    Pierce, Lindsey R; Willey, James C; Palsule, Vrushalee V; Yeo, Jiyoun; Shepherd, Brian S; Crawford, Erin L; Stepien, Carol A

    2013-01-01

    Viral Hemorrhagic Septicemia virus (VHSv) is one of the world's most serious fish pathogens, infecting >80 marine, freshwater, and estuarine fish species from Eurasia and North America. A novel and especially virulent strain - IVb - appeared in the Great Lakes in 2003, has killed many game fish species in a series of outbreaks in subsequent years, and shut down interstate transport of baitfish. Cell culture is the diagnostic method approved by the USDA-APHIS, which takes a month or longer, lacks sensitivity, and does not quantify the amount of virus. We thus present a novel, easy, rapid, and highly sensitive real-time quantitative reverse transcription PCR (qRT-PCR) assay that incorporates synthetic competitive template internal standards for quality control to circumvent false negative results. Results demonstrate high signal-to-analyte response (slope = 1.00±0.02) and a linear dynamic range that spans seven orders of magnitude (R(2) = 0.99), ranging from 6 to 6,000,000 molecules. Infected fishes are found to harbor levels of virus that range to 1,200,000 VHSv molecules/10(6) actb1 molecules with 1,000 being a rough cut-off for clinical signs of disease. This new assay is rapid, inexpensive, and has significantly greater accuracy than other published qRT-PCR tests and traditional cell culture diagnostics.

  6. Monitoring of Dual CRISPR/Cas9-Mediated Steroidogenic Acute Regulatory Protein Gene Deletion and Cholesterol Accumulation Using High-Resolution Fluorescence In Situ Hybridization in a Single Cell

    PubMed Central

    Lee, Jinwoo; Jefcoate, Colin

    2017-01-01

    Recent advances in fluorescence microscopy, coupled with CRISPR/Cas9 gene editing technology, provide opportunities for understanding gene regulation at the single-cell level. The application of direct imaging shown here provides an in situ side-by-side comparison of CRISPR/Cas9-edited cells and adjacent unedited cells. We apply this methodology to the steroidogenic acute regulatory protein (StAR) gene in Y-1 adrenal cells and MA-10 testis cells. StAR is a gatekeeper protein that controls the access of cholesterol from the cytoplasm to the inner mitochondria. The loss of this mitochondrial cholesterol transfer mediator rapidly increases lipid droplets in cells, as seen in StAR−/− mice. Here, we describe a dual CRISPR/Cas9 strategy marked by GFP/mCherry expression that deletes StAR activity within 12 h. We used single-molecule fluorescence in situ hybridization (sm-FISH) imaging to directly monitor the time course of gene editing in single cells. We achieved StAR gene deletion at high efficiency dual gRNA targeting to the proximal promoter and exon 2. Seventy percent of transfected cells showed a slow DNA deletion as measured by PCR, and loss of Br-cAMP stimulated transcription. This DNA deletion was seen by sm-FISH in both loci of individual cells relative to non-target Cyp11a1 and StAR exon 7. sm-FISH also distinguishes two effects on stimulated StAR expression without this deletion. Br-cAMP stimulation of primary and spliced StAR RNA at the gene loci were removed within 4 h in this dual CRISPR/Cas9 strategy before any effect on cytoplasmic mRNA and protein occurred. StAR mRNA disappeared between 12 and 24 h in parallel with this deletion, while cholesterol ester droplets increased fourfold. These alternative changes match distinct StAR expression processes. This dual gRNA and sm-FISH approach to CRISPR/Cas9 editing facilitates rapid testing of editing strategies and immediate assessment of single-cell adaptation responses without the perturbation of clonal expansion procedures. PMID:29118738

  7. Distinct responses of Purkinje neurons and roles of simple spikes during associative motor learning in larval zebrafish

    PubMed Central

    Harmon, Thomas C; Magaram, Uri; McLean, David L; Raman, Indira M

    2017-01-01

    To study cerebellar activity during learning, we made whole-cell recordings from larval zebrafish Purkinje cells while monitoring fictive swimming during associative conditioning. Fish learned to swim in response to visual stimulation preceding tactile stimulation of the tail. Learning was abolished by cerebellar ablation. All Purkinje cells showed task-related activity. Based on how many complex spikes emerged during learned swimming, they were classified as multiple, single, or zero complex spike (MCS, SCS, ZCS) cells. With learning, MCS and ZCS cells developed increased climbing fiber (MCS) or parallel fiber (ZCS) input during visual stimulation; SCS cells fired complex spikes associated with learned swimming episodes. The categories correlated with location. Optogenetically suppressing simple spikes only during visual stimulation demonstrated that simple spikes are required for acquisition and early stages of expression of learned responses, but not their maintenance, consistent with a transient, instructive role for simple spikes during cerebellar learning in larval zebrafish. DOI: http://dx.doi.org/10.7554/eLife.22537.001 PMID:28541889

  8. Synaptic plasticity in a cerebellum-like structure depends on temporal order

    NASA Astrophysics Data System (ADS)

    Bell, Curtis C.; Han, Victor Z.; Sugawara, Yoshiko; Grant, Kirsty

    1997-05-01

    Cerebellum-like structures in fish appear to act as adaptive sensory processors, in which learned predictions about sensory input are generated and subtracted from actual sensory input, allowing unpredicted inputs to stand out1-3. Pairing sensory input with centrally originating predictive signals, such as corollary discharge signals linked to motor commands, results in neural responses to the predictive signals alone that are Negative images' of the previously paired sensory responses. Adding these 'negative images' to actual sensory inputs minimizes the neural response to predictable sensory features. At the cellular level, sensory input is relayed to the basal region of Purkinje-like cells, whereas predictive signals are relayed by parallel fibres to the apical dendrites of the same cells4. The generation of negative images could be explained by plasticity at parallel fibre synapses5-7. We show here that such plasticity exists in the electrosensory lobe of mormyrid electric fish and that it has the necessary properties for such a model: it is reversible, anti-hebbian (excitatory postsynaptic potentials (EPSPs) are depressed after pairing with a postsynaptic spike) and tightly dependent on the sequence of pre- and postsynaptic events, with depression occurring only if the postsynaptic spike follows EPSP onset within 60 ms.

  9. Identification of a gene set to evaluate the potential effects of loud sounds from seismic surveys on the ears of fishes: a study with Salmo salar

    PubMed Central

    Andrews, C D; Payne, J F; Rise, M L

    2014-01-01

    Functional genomic studies were carried out on the inner ear of Atlantic salmon Salmo salar following exposure to a seismic airgun. Microarray analyses revealed 79 unique transcripts (passing background threshold), with 42 reproducibly up-regulated and 37 reproducibly down-regulated in exposed v. control fish. Regarding the potential effects on cellular energetics and cellular respiration, altered transcripts included those with roles in oxygen transport, the glycolytic pathway, the Krebs cycle and the electron transport chain. Of these, a number of transcripts encoding haemoglobins that are important in oxygen transport were up-regulated and among the most highly expressed. Up-regulation of transcripts encoding nicotinamide riboside kinase 2, which is also important in energy production and linked to nerve cell damage, points to evidence of neuronal damage in the ear following noise exposure. Transcripts related to protein modification or degradation also indicated potential damaging effects of sound on ear tissues. Notable in this regard were transcripts associated with the proteasome–ubiquitin pathway, which is involved in protein degradation, with the transcript encoding ubiquitin family domain-containing protein 1 displaying the highest response to exposure. The differential expression of transcripts observed for some immune responses could potentially be linked to the rupture of cell membranes. Meanwhile, the altered expression of transcripts for cytoskeletal proteins that contribute to the structural integrity of the inner ear could point to repair or regeneration of ear tissues including auditory hair cells. Regarding potential effects on hormones and vitamins, the protein carrier for thyroxine and retinol (vitamin A), namely transthyretin, was altered at the transcript expression level and it has been suggested from studies in mammalian systems that retinoic acid may play a role in the regeneration of damaged hair cells. The microarray experiment identified the transcript encoding growth hormone I as up-regulated by loud sound, supporting previous evidence linking growth hormone to hair cell regeneration in fishes. Quantitative (q) reverse transcription (RT) polymerase chain reaction (qRT-PCR) analyses confirmed dysregulation of some microarray-identified transcripts and in some cases revealed a high level of biological variability in the exposed group. These results support the potential utility of molecular biomarkers to evaluate the effect of seismic surveys on fishes with studies on the ears being placed in a priority category for development of exposure–response relationships. Knowledge of such relationships is necessary for addressing the question of potential size of injury zones. PMID:24814183

  10. How have fisheries affected parasite communities?

    USGS Publications Warehouse

    Wood, Chelsea L.; Lafferty, Kevin D.

    2015-01-01

    To understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.

  11. Relationship Between Hair Cell Loss and Hearing Loss in Fishes.

    PubMed

    Smith, Michael E

    2016-01-01

    Exposure to intense sound or ototoxic chemicals can damage the auditory hair cells of vertebrates, resulting in hearing loss. Although the relationship between such hair cell damage and auditory function is fairly established for terrestrial vertebrates, there are limited data available to understand this relationship in fishes. Although investigators have measured either the morphological damage of the inner ear or the functional deficits in the hearing of fishes, very few have directly measured both in an attempt to find a relationship between the two. Those studies that have examined both auditory hair cell damage in the inner ear and the resulting hearing loss in fishes are reviewed here. In general, there is a significant linear relationship between the number of hair cells lost and the severity of hearing threshold shifts, although this varies between species and different hair cell-damaging stimuli. After trauma to the fish ear, auditory hair cells are able to regenerate to control level densities. With this regeneration also comes a restoration of hearing. Thus there is also a significant relationship between hair cell recovery and hearing recovery in fishes.

  12. Evaluation of ALK Rearrangement in Chinese Non-Small Cell Lung Cancer Using FISH, Immunohistochemistry, and Real-Time Quantitative RT- PCR on Paraffin-Embedded Tissues

    PubMed Central

    Zhang, Yun-Gang; Jin, Mu-Lan; Li, Li; Zhao, Hong-Ying; Zeng, Xuan; Jiang, Lei; Wei, Ping; Diao, Xiao-Li; Li, Xue; Cao, Qing; Tian, Xin-Xia

    2013-01-01

    Patients with ALK gene rearrangements often manifest dramatic responses to crizotinib, an ALK inhibitor. Accurate identification of patients with ALK-positive non-small cell lung cancer (NSCLC) is essential for the clinical application of ALK-targeted therapy. However, assessing EML4-ALK rearrangement in NSCLC remains challenging in routine pathology practice. The aim of this study was to compare the diagnostic accuracy of FISH, immunohistochemistry (IHC), and real-time quantitative RT-PCR (QPCR) methodologies for detection of EML4-ALK rearrangement in NSCLC and to appraise immunohistochemistry as a pre-screening tool. In this study, a total of 473 paraffin-embedded NSCLC samples from surgical resections and biopsies were analyzed by IHC with ALK antibody. ALK rearrangement was further confirmed by FISH and QPCR. ALK protein expression was detected in twenty patients (20/473, 4.2%). Of the 20 ALK-positive cases by IHC, 15 cases were further confirmed as ALK rearrangement by FISH, and 5 cases were not interpretable. Also, we evaluated 13 out of the 20 IHC-positive tissues by QPCR in additional to FISH, and found that 9 cases were positive and 2 cases were equivocal, whereas 2 cases were negative although they were positive by both IHC and FISH. The ALK status was concordant in 5 out of 8 cases that were interpretable by three methods. Additionally, none of the 110 IHC-negative cases with adenocarcinoma histology showed ALK rearrangements by FISH. Histologically, almost all the ALK-rearranged cases were adenocarcinoma, except that one case was sarcomatoid carcinoma. A solid signet-ring cell pattern or mucinous cribriform pattern was presented at least focally in all ALK-positive tumors. In conclusion, our findings suggested that ALK rearrangement was associated with ALK protein expression. The conventional IHC assay is a valuable tool for the pre-screening of patients with ALK rearrangement in clinical practice and a combination of FISH and QPCR is required for further confirmation. PMID:23741400

  13. [Specific features of blood cell composition and structure in fishes from the pelagial and coastal zones of Lake Baikal].

    PubMed

    Iakhnenko, V M; Klimenkov, I V

    2009-01-01

    Differences in the proportions and ultrastructure of peripheral blood cells between the Baikal cisco and roach have been revealed. Both species contain all main cell types involved in the immune response in higher vertebrates. However, cells mediating the innate immune response are represented in the Baikal cisco only by monocytes and pseudogranulocytes, whereas the blood of roach additionally contains true granulocytes. Significantly greater numbers of leukocytes and thrombocytes per unit volume in the roach are evidence for mobilization of the immune system in this species. The peripheral blood of both species contains lymphocytes, which are responsible for adaptive immunity. The content of hemoglobin in erythrocytes is lower in the roach than in the Baikal cisco. The state of blood in the two species may be considered adapted to typical conditions in their habitats.

  14. A comparative analysis of somatolactin-related immunoreactivity in the pituitaries of four neopterygian fishes and one chondrostean fish: an immunohistochemical study.

    PubMed

    Dores, R M; Hoffman, N E; Chilcutt-Ruth, T; Lancha, A; Brown, C; Marra, L; Youson, J

    1996-04-01

    An antiserum to cod somatolactin (SL) was used for immunohistochemical screening for the pars intermedia of two teleosts (Oreochromis mossambicus and Gymothorax meleagris), two holostean fishes (Lepisosteus osseus and Amia calva), and a chondrostean fish (Acipenser fulvescens) for SL-immunopositive (SL-IR) cells. As expected, a subset of the epithelial cells in the pars intermedia of O. mossambicus (tilapia) was immunopositive for SL, and the remainder of the epithelial cells was immunopositive for alpha-MSH-specific antiserum (alpha-MSH-IR). SL-IR was not detected in any of the epithelial cells in the pars intermedia of the moray eel G. meleagris. To determine whether SL-IR could be detected in nonteleost fishes, immunohistochemical analyses were done on the pituitaries of two holostean fishes and one chondrostean fish. In the pars intermedia of the gar, L. osseus, a subset of cells was immunopositive for alpha-MSH only. However, in the pars intermedia of the bowfin, A. calva, all of the epithelial cells indicated the presence of both SL and alpha-MSH. Finally, no SL-positive cells were detected in the pars intermedia of the sturgeon, A. fulvescens.

  15. Electrosensory neural responses to natural electro-communication stimuli are distributed along a continuum

    PubMed Central

    Sproule, Michael K. J.

    2017-01-01

    Neural heterogeneities are seen ubiquitously within the brain and greatly complicate classification efforts. Here we tested whether the responses of an anatomically well-characterized sensory neuron population to natural stimuli could be used for functional classification. To do so, we recorded from pyramidal cells within the electrosensory lateral line lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus in response to natural electro-communication stimuli as these cells can be anatomically classified into six different types. We then used two independent methodologies to functionally classify responses: one relies of reducing the dimensionality of a feature space while the other directly compares the responses themselves. Both methodologies gave rise to qualitatively similar results: while ON and OFF-type cells could easily be distinguished from one another, ELL pyramidal neuron responses are actually distributed along a continuum rather than forming distinct clusters due to heterogeneities. We discuss the implications of our results for neural coding and highlight some potential advantages. PMID:28384244

  16. Antioxidative and angiotensin-I-converting enzyme inhibitory potential of a Pacific Hake ( Merluccius productus ) fish protein hydrolysate subjected to simulated gastrointestinal digestion and Caco-2 cell permeation.

    PubMed

    Samaranayaka, Anusha G P; Kitts, David D; Li-Chan, Eunice C Y

    2010-02-10

    Pacific hake fish protein hydrolysate (FPH) with promising chemical assay based antioxidative capacity was studied for in vitro angiotensin-I-converting enzyme (ACE)-inhibitory potential, intestinal cell permeability characteristics, and intracellular antioxidative potential using the Caco-2 cell model system. FPH showed substrate-type inhibition of ACE with IC(50) of 161 microg of peptides/mL. HPLC analysis revealed that different peptides were responsible for antioxidative and ACE-inhibitory activity. FPH inhibited 2,2'-azobis(2-amidinopropane) dihydrochloride-induced oxidation in Caco-2 cells at noncytotoxic concentrations. In vitro simulated gastrointestinal digestion increased (P < 0.05) antioxidative capacity; ACE-inhibitory activity of FPH remained unchanged, although individual peptide fractions showed decreased or no activity after digestion. Some FPH peptides passed through Caco-2 cells: the permeates showed 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity but no ACE-inhibitory activity. These results suggest the potential for application of Pacific hake FPH to reduce oxidative processes in vivo. Further studies are needed to assess prospective antihypertensive effects.

  17. Making maxillary barbels with a proximal-distal gradient of Wnt signals in matrix-bound mesenchymal cells

    PubMed Central

    Figueroa, Francisco; Singer, Susan S.; LeClair, Elizabeth E.

    2015-01-01

    The evolution of specific appendages is made possible by the ontogenetic deployment of general cell signaling pathways. Many fishes, amphibians and reptiles have unique skin appendages known as barbels, which are poorly understood at the cellular and molecular level. In this study, we examine the cell arrangements, cell division patterns, and gene expression profiles associated with the zebrafish maxillary barbel, or ZMB. The earliest cellular organization of the ZMB is an internal whorl of mesenchymal cells in the dermis of the maxilla; there is no epithelial placode, nor any axially-elongated epithelial cells as expected of an apical ectodermal ridge (AER). As the ZMB develops, cells in S-phase are at first distributed randomly throughout the appendage, gradually transitioning to a proliferative population concentrated at the distal end. By observing ZMB ontogenetic stages in a Wnt-responsive transgenic reporter line, TCFsiam, we identified a strongly fluorescent mesenchymal cell layer within these developing appendages. Using an in vitro explant culture technique on developing barbel tissues, we co-localized the fluorescent label in these cells with the mitotic marker EdU. Surprisingly, TCF+ cells showed little proliferation, indicating a slow-cycling subpopulation. Transmission electron microscopy of the ZMB located the TCF+ cells in a single, circumferential layer within the barbel’s matrix core. Morphologically, these cells resemble fibroblasts or osteoblasts; in addition to their matrix-bound location, they are identified by their pancake-shaped nuclei, abundant rough endoplasmic reticulum, and cytoplasmic extensions into the surrounding extracellular matrix. Taken together, these features define a novel mesenchymal cell population in zebrafish, the ‘TCF+ core cells.’ A working model of barbel development is proposed, in which these minimally mitotic mesodermal cells produce collagenous matrix in response to ectodermally-derived Wnt signals deployed in a proximal-distal gradient along the appendage. This documents a novel mechanism of vertebrate appendage outgrowth. Similar genetic signals and cell behaviors may be responsible for the independent and repeated evolution of barbel structures in other fish species. PMID:26492827

  18. Safety assessment of EPA-rich triglyceride oil produced from yeast: genotoxicity and 28-day oral toxicity in rats.

    PubMed

    Belcher, Leigh A; MacKenzie, Susan A; Donner, Maria; Sykes, Greg P; Frame, Steven R; Gillies, Peter J

    2011-02-01

    The 28-day repeat-dose oral and genetic toxicity of eicosapentaenoic acid triglyceride oil (EPA oil) produced from genetically modified Yarrowia lipolytica yeast were assessed. Groups of rats received 0 (olive oil), 940, 1880, or 2820 mg EPA oil/kg/day, or fish oil (sardine/anchovy source) by oral gavage. Lower total serum cholesterol was seen in all EPA and fish oil groups. Liver weights were increased in the medium and high-dose EPA (male only), and fish oil groups but were considered non-adverse physiologically adaptive responses. Increased thyroid follicular cell hypertrophy was observed in male high-dose EPA and fish oil groups, and was considered to be an adaptive response to high levels of polyunsaturated fatty acids. No adverse test substance-related effects were observed on body weight, nutritional, or other clinical or anatomic pathology parameters. The oil was not mutagenic in the in vitro Ames or mouse lymphoma assay, and was not clastogenic in the in vivo mouse micronucleus test. In conclusion, exposure for 28 days to EPA oil derived from yeast did not produce adverse effects at doses up to 2820 mg/kg/day and was not genotoxic. The safety profile of the EPA oil in these tests was comparable to a commercial fish oil. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokoo, Masako; Fujita, Ryosuke; Innate Immunity Laboratory, Graduate School of Life Science and Creative Research Institution, Hokkaido University, Sapporo 001-0021

    Highlights: •The baculovirus vector infiltrates the cells of economic important fishes. •Drosophila Mos1 transposase expressed in fish cells maintains its ability to localize to the nucleus. •The baculoviral vector carrying Mos1 is a useful tool to stably transform fish cells. -- Abstract: Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes locatedmore » between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells.« less

  20. Method for Differentiation between Fresh and Frozen-thawed Fish

    NASA Astrophysics Data System (ADS)

    Kitamikado, Manabu; Yoshioka, Keiko

    In Japan fresh fish has a much higher market price than that for frozen-thawed fish. However, a large number of frozen-thawed fish are sold without being differentiated from fresh fish. We discuss here the differentiation methods described in literatures and our works in the search for such a method. We used the opacity of crystalline lens and the destruction of red blood cells as the index for the differentiation, in addition to the activity of neutral β-N-acetylglucosaminidase in blood. Thus, a fluorometric method and a rapid paper test method were developed based on measurement of the activity of this enzyme. This enzyme, found in fish red blood cells, was inactive in intact cells but was activated when cells were disrupted by freezing, and thawing. Both methods were applicable for testing most commom edible fish prior to filleting and required about 20 min using a UV-lamp.

  1. Combined DNA-RNA Fluorescent In situ Hybridization (FISH) to Study X Chromosome Inactivation in Differentiated Female Mouse Embryonic Stem Cells

    PubMed Central

    Barakat, Tahsin Stefan; Gribnau, Joost

    2014-01-01

    Fluorescent in situ hybridization (FISH) is a molecular technique which enables the detection of nucleic acids in cells. DNA FISH is often used in cytogenetics and cancer diagnostics, and can detect aberrations of the genome, which often has important clinical implications. RNA FISH can be used to detect RNA molecules in cells and has provided important insights in regulation of gene expression. Combining DNA and RNA FISH within the same cell is technically challenging, as conditions suitable for DNA FISH might be too harsh for fragile, single stranded RNA molecules. We here present an easily applicable protocol which enables the combined, simultaneous detection of Xist RNA and DNA encoded by the X chromosomes. This combined DNA-RNA FISH protocol can likely be applied to other systems where both RNA and DNA need to be detected. PMID:24961515

  2. Cellular immune responses and phagocytic activity of fishes exposed to pollution of volcano mud.

    PubMed

    Risjani, Yenny; Yunianta; Couteau, Jerome; Minier, Christophe

    2014-05-01

    Since May 29, 2006, a mud volcano in the Brantas Delta of the Sidoarjo district has emitted mud that has inundated nearby villages. Pollution in this area has been implicated in detrimental effects on fish health. In fishes, leukocyte and phagocytic cells play a vital role in body defenses. We report for the first time the effect of "LUSI" volcano mud on the immune systems of fish in the Brantas Delta. The aim of this study was to find biomarkers to allow the evaluation of the effects of volcanic mud and anthropogenic pollution on fish health in the Brantas Delta. The study took places at the Brantas Delta, which was polluted by volcano mud, and at reference sites in Karangkates and Pasuruan. Leukocyte numbers were determined using a Neubauer hemocytometer and a light microscope. Differential leukocyte counts were determined using blood smears stained with May Grunwald-Giemsa, providing neutrophil, lymphocyte and monocyte counts. Macrophages were taken from fish kidney, and their phagocytic activity was measured. In vitro analyses revealed that leukocyte and differential leukocyte counts (DLC) were higher in Channa striata and Chanos chanos caught from the polluted area. Macrophage numbers were higher in Oreochromis mossambicus than in the other species, indicating that this species is more sensitive to pollution. In areas close to volcanic mud eruption, all specimens had lower phagocytic activity. Our results show that immune cells were changed and phagocytic activity was reduced in the polluted area indicating cytotoxicity and alteration of the innate immune system in fishes exposed to LUSI volcano mud and anthropogenic pollution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Early activation of teleost B cells in response to rhabdovirus infection.

    PubMed

    Abós, Beatriz; Castro, Rosario; González Granja, Aitor; Havixbeck, Jeffrey J; Barreda, Daniel R; Tafalla, Carolina

    2015-02-01

    To date, the response of teleost B cells to specific pathogens has been only scarcely addressed. In this work, we have demonstrated that viral hemorrhagic septicemia virus (VHSV), a fish rhabdovirus, has the capacity to infect rainbow trout spleen IgM-positive (IgM(+)) cells, although the infection is not productive. Consequently, we have studied the effects of VHSV on IgM(+) cell functionality, comparing these effects to those elicited by a Toll-like receptor 3 (TLR3) ligand, poly(I·C). We found that poly(I·C) and VHSV significantly upregulated TLR3 and type I interferon (IFN) transcription in spleen and blood IgM(+) cells. Further effects included the upregulated transcription of the CK5B chemokine. The significant inhibition of some of these effects in the presence of bafilomycin A1 (BAF), an inhibitor of endosomal acidification, suggests the involvement of an intracellular TLR in these responses. In the case of VHSV, these transcriptional effects were dependent on viral entry into B cells and the initiation of viral transcription. VHSV also provoked the activation of NF-κB and the upregulation of major histocompatibility complex class II (MHC-II) cell surface expression on IgM(+) cells, which, along with the increased transcription of the costimulatory molecules CD80/86 and CD83, pointed to VHSV-induced IgM(+) cell activation toward an antigen-presenting profile. Finally, despite the moderate effects of VHSV on IgM(+) cell proliferation, a consistent effect on IgM(+) cell survival was detected. Innate immune responses to pathogens established through their recognition by pattern recognition receptors (PRRs) have been traditionally ascribed to innate cells. However, recent evidence in mammals has revealed that innate pathogen recognition by B lymphocytes is a crucial factor in shaping the type of immune response that is mounted. In teleosts, these immediate effects of viral encounter on B lymphocytes have not been addressed to date. In our study, we have demonstrated that VHSV infection provoked immediate transcriptional effects on B cells, at least partially mediated by intracellular PRR signaling. VHSV also activated NF-κB and increased IgM(+) cell survival. Interestingly, VHSV activated B lymphocytes toward an antigen-presenting profile, suggesting an important role of IgM(+) cells in VHSV presentation. Our results provide a first description of the effects provoked by fish rhabdoviruses through their early interaction with teleost B cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. The expression and function of hsp30-like small heat shock protein genes in amphibians, birds, fish, and reptiles.

    PubMed

    Heikkila, John J

    2017-01-01

    Small heat shock proteins (sHSPs) are a superfamily of molecular chaperones with important roles in protein homeostasis and other cellular functions. Amphibians, reptiles, fish and birds have a shsp gene called hsp30, which was also referred to as hspb11 or hsp25 in some fish and bird species. Hsp30 genes, which are not found in mammals, are transcribed in response to heat shock or other stresses by means of the heat shock factor that is activated in response to an accumulation of unfolded protein. Amino acid sequence analysis revealed that representative HSP30s from different classes of non-mammalian vertebrates were distinct from other sHSPs including HSPB1/HSP27. Studies with amphibian and fish recombinant HSP30 determined that they were molecular chaperones since they inhibited heat- or chemically-induced aggregation of unfolded protein. During non-mammalian vertebrate development, hsp30 genes were differentially expressed in selected tissues. Also, heat shock-induced stage-specific expression of hsp30 genes in frog embryos was regulated at the level of chromatin structure. In adults and/or tissue culture cells, hsp30 gene expression was induced by heat shock, arsenite, cadmium or proteasomal inhibitors, all of which enhanced the production of unfolded/damaged protein. Finally, immunocytochemical analysis of frog and chicken tissue culture cells revealed that proteotoxic stress-induced HSP30 accumulation co-localized with aggresome-like inclusion bodies. The congregation of damaged protein in aggresomes minimizes the toxic effect of aggregated protein dispersed throughout the cell. The current availability of probes to detect the presence of hsp30 mRNA or encoded protein has resulted in the increased use of hsp30 gene expression as a marker of proteotoxic stress in non-mammalian vertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Zymosan-induced immune challenge modifies the stress response of hypoxic air-breathing fish (Anabas testudineus Bloch): Evidence for reversed patterns of cortisol and thyroid hormone interaction, differential ion transporter functions and non-specific immune response.

    PubMed

    Simi, S; Peter, Valsa S; Peter, M C Subhash

    2017-09-15

    Fishes have evolved physiological mechanisms to exhibit stress response, where hormonal signals interact with an array of ion transporters and regulate homeostasis. As major ion transport regulators in fish, cortisol and thyroid hormones have been shown to interact and fine-tune the stress response. Likewise, in fishes many interactions have been identified between stress and immune components, but the physiological basis of such interaction has not yet delineated particularly in air-breathing fish. We, therefore, investigated the responses of thyroid hormones and cortisol, ion transporter functions and non-specific immune response of an obligate air-breathing fish Anabas testudineus Bloch to zymosan treatment or hypoxia stress or both, to understand how immune challenge modifies the pattern of stress response in this fish. Induction of experimental peritonitis in these fish by zymosan treatment (200ngg -1 ) for 24h produced rise in respiratory burst and lysozomal activities in head kidney phagocytes. In contrast, hypoxia stress for 30min in immune-challenged fish reversed these non-specific responses of head kidney phagocytes. The decline in plasma cortisol in zymosan-treated fish and its further suppression by hypoxia stress indicate that immune challenge suppresses the cortisol-driven stress response of this fish. Likewise, the decline in plasma T 3 and T 4 after zymosan-treatment and the rise in plasma T 4 after hypoxia stress in immune-challenged fish indicate a critical role for thyroid hormone in immune-stress response due to its differential sensitivity to both immune and stress challenges. Further, analysis of the activity pattern of ion-dependent ATPases viz. Na + /K + -ATPase, H + /K + -ATPase and Na + /NH 4 + -ATPase indicates a functional interaction of ion transport system with the immune response as evident in its differential and spatial modifications after hypoxia stress in immune-challenged fish. The immune-challenge that produced differential pattern of mRNA expression of Na + /K + -ATPase α-subunit isoforms; nkaα1a, nkaα1b and nkaα1c and the shift in nkaα1a and nkaα1b isoforms expression after hypoxia stress in immune-challenged fish, presents transcriptomic evidence for a modified Na + /K + ion transporter system in these fish. Collectively, our data thus provide evidence for an interactive immune-stress response in an air-breathing fish, where the patterns of cortisol-thyroid hormone interaction, the ion transporter functions and the non-specific immune responses are reversed by hypoxia stress in immune-challenged fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Effects of mining chemicals on fish: exposure to tailings containing Lilaflot D817M induces CYP1A transcription in Atlantic salmon smolt.

    PubMed

    Olsvik, Pål A; Urke, Henning A; Nilsen, Tom O; Ulvund, John B; Kristensen, Torstein

    2015-08-29

    Mine tailings, containing metals and production chemicals such as flotation chemicals and flocculants, may pose an environmental threat to aquatic organisms living in downstream ecosystems. The aim of this work was to study to which degree Lilaflot D817M, a flotation chemical extensively used by the mining industry, represents a hazard for migrating salmon in rivers affected by mining activity. Smoltifying Atlantic salmon were exposed to four concentrations of iron-ore mine tailings containing residual Lilaflot D817M [water versus tailing volumes of 0.002 (Low), 0.004 (Medium), 0.013 (High) and 0.04 (Max)]. After 96 h of exposure, gill and liver tissues were harvested for transcriptional responses. Target genes included markers for oxidative stress, detoxification, apoptosis and DNA repair, cell signaling and growth. Of the 16 evaluated markers, significant transcriptional responses of exposure to tailings enriched with Lilaflot D817M were observed for CYP1A, HSP70 and HMOX1 in liver tissue and CYP1A in gill tissue. The significant induction of CYP1A in both liver and gills suggest that the flotation chemical is taken up by the fish and activates cytochrome P450 detoxification via phase I biotransformation in the cells. The overall weak transcriptional responses to short-term exposure to Lilaflot D817M-containing iron-ore tailings suggest that the mining chemical has relatively low toxic effect on fish. The underlying mechanisms behind the observed CYP1A induction should be studied further.

  7. Poly(N-isopropylacrylamide)-coated thermo-responsive nanoparticles for controlled delivery of sulfonated Zn-phthalocyanine in Chinese hamster ovary cells in vitro and zebra fish in vivo

    NASA Astrophysics Data System (ADS)

    He, Jia; Chen, Ji-Yao; Wang, Pu; Wang, Pei-Nan; Guo, Jia; Yang, Wu-Li; Wang, Chang-Chun; Peng, Qian

    2007-10-01

    Poly(N-isopropylacrylamide) (PNIPAM)-coated Fe3O4@SiO2@CdTe multifunctional nanoparticles with photoluminescent (PL), thermosensitive and magnetic properties, were investigated as carriers to deliver water-soluble, fluorescent sulfonated Zn-phthalocyanine (ZnPcS), a photosensitizing drug for photodynamic therapy of cancer, in Chinese hamster ovary (CHO) cells in vitro and zebra fish in vivo. PNIPAM is a well-known thermo-responsive polymer with a volume phase transition temperature. This property allows it to be swollen in water at temperatures lower than 32-34 °C to take up ZnPcS and shrunken to expel the drug at higher temperatures. Since the PL band of CdTe quantum dots (QDs) as indicators for the nanoparticles is at 585 nm and the emission band of ZnPcS is at 680 nm, it is possible to study the temperature-dependent release of ZnPcS from the nanoparticles by fluorescence measurements. ZnPcS was embedded in the PNIPAM of the nanoparticles at 25 °C in phosphate buffered saline (PBS) solution and released at 37 °C, measured with a spectrophotometer. When CHO cells had been incubated with the ZnPcS-loaded nanoparticles at 27 °C, a similar intracellular localization pattern of CdTe QDs and ZnPcS was seen by multichannel measurements in confocal laser scanning microscopy (CLSM), but a diffuse pattern of only ZnPcS fluorescence was detected in the cytoplasm of the cells at 37 °C, indicating a release of ZnPcS from the nanoparticles. Similar results were also found in the intestinal tract of zebra fish in vivo after intake of the nanoparticles. Since the nanoparticles contain magnetic (Fe3O4) material, the nanoparticles could also be manipulated to change their location in the intestinal tract of the zebra fish with an external magnetic field gradient of 300 G mm-1. The results presented suggest that such multifunctional nanoparticles may have combined potential for temperature-dependent drug delivery, QD photodetection and magnetic manipulation in diagnosis and therapy of diseases.

  8. Glucocorticoid synthesis inhibitor metyrapone blocks stress-induced suppression along luteinizing hormone secreting cells–ovary axis in the fish Oreochromis mossambicus.

    PubMed

    Chabbi, Ambarisha; Ganesh, C B

    2014-03-01

    We showed previously that exposure to mild acute stressors leads to inhibition of follicular development and luteinizing hormone (LH) secretion in tilapia. In this study, we examined whether the hypothalamo–pituitary–interrenal axis was involved in such inhibition. Administration (i.p.) of corticotropin-releasing hormone (CRH) to stripped Oreochromis mossambicus (eggs manually removed from mouth brooder) during the ovarian cycle for 22 days resulted in a significant increase in the serum levels of cortisol, and significantly lower gonadosomatic and hepatosomatic indices concomitant with complete absence of stage V (vitellogenic) follicles in the ovary compared to controls. Furthermore, the LH secreting cells at the proximal pars distalis (PPD) in the pituitary gland showed weak immunostaining in contrast to the intensely stained immunoreactive cells in controls during prespawning phase. On the other hand, while exposure of fish to aquacultural stressors produced effects similar to that of CRH treatment, treatment of glucocorticoid synthesis inhibitor metyrapone to stressed fish during the ovarian cycle did not show significant serum cortisol response. The LH secreting cells in these fish showed intense immunostaining at the PPD in the pituitary gland, and the ovary contained stage V follicles similar to that of controls prior to spawning phase. These results suggest that the inhibitory effects of CRH treatment on LH secretion and recruitment of follicles for vitellogenic growth are mediated through the stress hormone cortisol in O. mossambicus. © 2013 Wiley Periodicals, Inc.

  9. Functional Genomic Analysis of the Impact of Camelina (Camelina sativa) Meal on Atlantic Salmon (Salmo salar) Distal Intestine Gene Expression and Physiology.

    PubMed

    Brown, Tyler D; Hori, Tiago S; Xue, Xi; Ye, Chang Lin; Anderson, Derek M; Rise, Matthew L

    2016-06-01

    The inclusion of plant meals in diets of farmed Atlantic salmon can elicit inflammatory responses in the distal intestine (DI). For the present work, fish were fed a standard fish meal (FM) diet or a diet with partial replacement of FM with solvent-extracted camelina meal (CM) (8, 16, or 24 % CM inclusion) during a 16-week feeding trial. A significant decrease in growth performance was seen in fish fed all CM inclusion diets (Hixson et al. in Aquacult Nutr 22:615-630, 2016). A 4x44K oligonucleotide microarray experiment was carried out and significance analysis of microarrays (SAM) and rank products (RP) methods were used to identify differentially expressed genes between the DIs of fish fed the 24 % CM diet and those fed the FM diet. Twelve features representing six known transcripts and two unknowns were identified as CM responsive by both SAM and RP. The six known transcripts (including thioredoxin and ependymin), in addition to tgfb, mmp13, and GILT, were studied using qPCR with RNA templates from all four experimental diet groups. All six microarray-identified genes were confirmed to be CM responsive, as was tgfb and mmp13. Histopathological analyses identified signs of inflammation in the DI of salmon fed CM-containing diets, including lamina propria and sub-epithelial mucosa thickening, infiltration of eosinophilic granule cells, increased goblet cells and decreased enterocyte vacuolization. All of these were significantly altered in 24 % CM compared to all other diets, with the latter two also altered in 16 % CM compared with 8 % CM and control diet groups. Significant correlation was seen between histological parameters as well as between five of the qPCR analyzed genes and histological parameters. These molecular biomarkers of inflammation arising from long-term dietary CM exposure will be useful in the development of CM-containing diets that do not have deleterious effects on salmon growth or physiology.

  10. Role of Tetrasomy for the Diagnosis of Urothelial Carcinoma Using UroVysion Fluorescent In Situ Hybridization.

    PubMed

    Zhou, Amy G; Liu, Yuxin; Cyr, Maryann St; Garver, Joanne; Woda, Bruce A; Cosar, Ediz F; Hutchinson, Lloyd M

    2016-06-01

    -UroVysion fluorescent in situ hybridization (FISH) is routinely used to detect urothelial carcinoma (UC). A positive threshold is defined as chromosome polysomy in 4 or more cells, which also includes tetrasomy, a natural product of cell division. -To evaluate tetrasomy for UC detection and explore the relation to the surgical diagnosis or patient history. -The FISH was performed on 1532 urine samples from patients with cytology results and 4 or more years of follow-up. We created separate polysomy and tetrasomy categories and constructed receiver operating curves to determine appropriate thresholds using biopsy (n = 194) as the gold standard. Standard FISH and a novel assay integrating cytomorphology and FISH (Target-FISH) were compared. Matching tissue biopsies of urine samples with 10 or more tetrasomy cells were analyzed. -No significant threshold was found for tetrasomy cells. Exclusion of tetrasomy from the polysomy category changed the threshold from 8.5 to 4.5 cells, increased specificity (59.2% to 78.9%), but reduced sensitivity (78.9% to 65.9%). In Target-FISH, the same approach yielded a specificity of 93.7% and sensitivity of 65.2%. Similarly, specificity improved significantly for low- and high-grade UC, but sensitivity decreased for low-grade UC. No evidence of UC was observed in 95% (52 of 55) of the patients referred for screening who had 10 or more tetrasomy cells by FISH. Matching biopsies for urines containing 10 or more tetrasomy cells showed few or no tetrasomy cells. -Tetrasomy is a nonspecific finding frequently encountered in urine FISH and should be excluded from the polysomy classification. Target-FISH is an optimal approach, offering the ability to detect rare tetrasomy tumors.

  11. Influence of omega-3 polyunsaturated fatty acids from fish oil or meal on the structure of lipid microdomains in bovine luteal cells.

    PubMed

    Plewes, M R; Burns, P D; Graham, P E; Bruemmer, J E; Engle, T E

    2018-06-01

    Biological membranes are composed of a lipid bilayer and proteins that form lipid microdomains. This study examined the effects of fish byproducts on lipid-protein interactions within lipid microdomains of bovine luteal cells. In Exp. 1 and 2, luteal cells were prepared from corpora lutea (CL; n = 4 to 8) collected at an abattoir. Exp. 1 was conducted to optimize ultrasonication in a detergent-free protocol for isolation of lipid microdomains. A power setting of 10 to 20% was effective in isolating lipid microdomains from bulk lipid. In Exp. 2, cells were cultured in control medium or fish oil to determine influence of fish oil on distribution of lipid microdomain markers and prostaglandin F 2α (FP) receptors. Cells treated with fish oil had a smaller percentage of microdomain markers and FP receptor in microdomains (P < 0.05). In Exp. 3 and 4, cells were prepared from mid-cycle CL obtained from cows supplemented with corn gluten meal (n = 4) or fish meal (n = 4). Exp. 3 examined effects of dietary supplementation on distribution of lipid microdomain markers and FP receptor and Exp. 4 on fatty acid composition within lipid microdomains. A smaller percentage of lipid microdomain markers and FP receptor was detected in microdomains of cells collected from fish meal supplemented animals (P < 0.05). In Exp. 4, a greater percentage of omega-3 polyunsaturated fatty acids was detected in bulk lipid from fish meal supplemented cows (P < 0.05). Results show that fish byproducts influence lipid-protein interactions in lipid microdomains in bovine luteal cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Effects of acoustic alarms, designed to reduce small cetacean bycatch in gillnet fisheries, on the behaviour of North Sea fish species in a large tank.

    PubMed

    Kastelein, Ronald A; van der Heul, Sander; van der Veen, Jan; Verboom, Willem C; Jennings, Nancy; de Haan, Dick; Reijnders, Peter J H

    2007-08-01

    World-wide many cetaceans drown incidentally in fishing nets. To reduce the unwanted bycatch in gillnets, pingers (acoustic alarms) have been developed that are attached to the nets. In the European Union, pingers will be made compulsory in some areas in 2005 and in others in 2007. However, pingers may effect non-target marine fauna such as fish. Therefore in this study, the effects of seven commercially-available pingers on the behaviour of five North Sea fish species in a large tank were quantified. The species tested were: sea bass (Dicentrarchus labrax), pout (Trisopterus luscus), thicklip mullet (Chelon labrosus), herring (Clupea harengus), and cod (Gadus morhua). The fish were housed as single-species schools of 9-13 individuals in a tank. The behaviour of fish in quiet periods was compared with their behaviour during periods with active pingers. The results varied both between pingers and between fish species. Sea bass decreased their speed in response to one pinger and swam closer to the surface in response to another. Thicklip mullet swam closer to the bottom in response to two pingers and increased their swimming speed in response to one pinger. Herring swam faster in response to one pinger, and pout and cod (close relatives) showed no behavioural responses to any of the pingers. Of the seven pingers tested, four elicited responses in at least one fish species, and three elicited no responses. Whether similar responses would be elicited in these fish species in the wild, and if so, whether such responses would influence the catch rate of fisheries, cannot be derived from the results of this study. However, the results indicate the need for field studies with pingers and fish. Based on the small number of fish species tested, the present study suggests that the higher the frequency of a pinger, the less likely it is to affect the behaviour of marine fish.

  13. Development of the salmon louse Lepeophtheirus salmonis and its effects on juvenile sockeye salmon Oncorhynchus nerka.

    PubMed

    Jakob, E; Sweeten, T; Bennett, W; Jones, S R M

    2013-11-06

    Responses of sockeye salmon Oncorhynchus nerka during infection with Lepeophtheirus salmonis were assessed in controlled laboratory trials. Juvenile salmon were exposed to 100 copepodids fish-1 (Trials 1 and 2) or 300 copepodids fish-1 (Trial 3) at mean weights of approximately 40, 80 and 135 g, respectively. Infections occurred on all salmon in all trials, and mean abundances (infection densities) ranged between 3.3 and 19.4 lice fish-1 (0.08 and 0.44 lice g-1 fish) in Trial 1, between 7.2 and 18.3 (0.09 and 0.22) in Trial 2 and between 19.5 and 60.7 (0.15 and 0.46) in Trial 3. A cumulative mortality of 24.4% occurred in Trial 3. At attachment sites on gills, we observed hyperplasia of basal epithelial cells and fusion of secondary lamellae occasionally associated with a cellular infiltrate. At attachment sites on fins, partial to complete skin erosion occurred, with limited evidence of hyperplasia or inflammation. Scale loss and abrasions coincided with pre-adult lice around 20 d post infection (dpi). Plasma osmolality was significantly elevated in exposed fish in Trials 1 (21 dpi), 2 (15 and 36 dpi) and 3 (20 dpi), whereas haematocrit was significantly depressed in exposed fish in Trials 1 (21 and 28 dpi) and 3 (20 dpi). Plasma cortisol was significantly elevated in exposed fish at 20 dpi (Trial 3). Physiological changes and mortality were related to the intensity of infection and became most prominent with pre-adult stages, suggesting patterns of infection and response in sockeye salmon similar to those reported for Atlantic and Chinook salmon.

  14. Exploring Effects of Hypoxia on Fish and Fisheries in the Northern Gulf of Mexico using a Dynamic Spatially-Explicit Ecosystem Model

    NASA Astrophysics Data System (ADS)

    de Mutsert, K.; Steenbeek, J.; Lewis, K.; Buszowski, J.; Cowan, J. H., Jr.; Christensen, V.

    2016-02-01

    The formation of an extensive hypoxic area off the Louisiana coast has been well publicized. However, determining the effects of this hypoxic zone on fish and fisheries has proven to be more difficult. The dual effect of nutrient loading on secondary production (positive effects of bottom-up fueling, and negative effects of reduced oxygen levels) impedes the quantification of hypoxia effects on fish and fisheries. The objective of this study was to develop an ecosystem model that is able to separate the two effects, and to evaluate net effects of hypoxia on fish biomass and fisheries landings. An Ecospace model was developed using Ecopath with Ecosim software with an added plug-in to include spatially and temporally dynamic Chlorophyll a (Chl a) and dissolved oxygen (DO) values derived from a coupled physical-biological hypoxia model. Effects of hypoxia were determined by simulating scenarios with DO and Chl a included separately and combined, and a scenario without fish response to Chl a or DO. Fishing fleets were included in the model as well; fleets move to cells with highest revenue following a gravitational model. Results of this model suggest that the increases in total fish biomass and fisheries landings as a result of an increase in primary production outweigh the decreases as a result of hypoxic conditions. However, the results also demonstrated that responses were species-specific, and some species such as red snapper (Lutjanus campechanus) did suffer a net loss in biomass. Scenario-analyses with this model could be used to determine the optimal nutrient load reduction from a fisheries perspective.

  15. Differential detection of pathogenic Yersinia spp. by fluorescence in situ hybridization.

    PubMed

    Rohde, Alexander; Hammerl, Jens Andre; Appel, Bernd; Dieckmann, Ralf; Al Dahouk, Sascha

    2017-04-01

    Yersinia enterocolitica, Y. pseudotuberculosis and Y. pestis are pathogens of major medical importance, which are responsible for a considerable number of infections every year. The detection of these species still relies on cultural methods, which are slow, labour intensive and often hampered by the presence of high amounts of accompanying flora. In this study, fluorescence in situ hybridization (FISH) was used to develop a fast, sensitive and reliable alternative to detect viable bacteria in food. For this purpose, highly specific probes targeting the 16S and 23S ribosomal RNA were employed to differentially detect each of the three species. In order to enable the differentiation of single nucleotide polymorphisms (SNPs), suitable competitor oligonucleotides and locked nucleic acids (LNAs) were used. Starved cells still showed a strong signal and a direct viable count (DVC) approach combined with FISH optimized live/dead discrimination. Sensitivity of the FISH test was high and even a single cell per gram of spiked minced pork meat could be detected within a day, demonstrating the applicability to identify foodborne hazards at an early stage. In conclusion, the established FISH tests proved to be promising tools to compensate existing drawbacks of the conventional cultural detection of these important zoonotic agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Comparison of IHC, FISH and RT-PCR methods for detection of ALK rearrangements in 312 non-small cell lung cancer patients in Taiwan.

    PubMed

    Wu, Yi-Cheng; Chang, Il-Chi; Wang, Chi-Liang; Chen, Tai-Di; Chen, Ya-Ting; Liu, Hui-Ping; Chu, Yen; Chiu, Yu-Ting; Wu, Tzu-Hua; Chou, Li-Hui; Chen, Yi-Rong; Huang, Shiu-Feng

    2013-01-01

    Recently Echinoderm microtubule-associated protein-like 4- anaplastic lymphoma kinase (EML4-ALK) fusion gene has become an important biomarker for ALK tyrosine kinase inhibitor (crizotinib) treatment in NSCLC. However, the best detection method and the significance of EML4-ALK variant types remain uncertain. Reverse transcriptase-polymerase chain reaction (RT-PCR), fluorescence in Situ hybridization (FISH) and Immunohistochemical (IHC) stain were performed on tumor tissues of 312 NSCLC patients for detection of ALK rearrangements. Mutation analyses for EGFR and KRAS genes were also performed. Thirteen of the 312 patients (4.17%) had ALK rearrangements detected by RT-PCR. If RT-PCR data was used as the gold standard, FISH tests had a low sensitivity (58.33%), but very good specificity (99.32%). IHC stain had better sensitivity (91.67%) than FISH, but lower specificity (79.52%), when the cut off was IHC2+. All of the 8 patients with high abundance of EML4-ALK positive cells in tumor tissues (assessed by the signal intensities of the RT-PCR product), were also have high expression of ALK protein (IHC3+), and positive for FISH, except one failed in FISH. Variants 3a+3b (4/5, 80%) of EML4-ALK fusion gene were more common to have high abundance of EML4-ALK positive cells in tumor tissues than variant 1 (1/3, 33.3%). Meta-analysis of the published data of 2273 NSCLC patients revealed that variant 3 (23/44, 52.3%) was the most common type in Chinese population, while variant 1 (28/37, 75.7%) was most common in Caucasian. Among the three detection methods, RT-PCR could detect not only the presence of EML4-ALK fusion gene and their variant types, but also the abundance of EML4-ALK positive cells in NSCLC tumor tissues. The latter two factors might affect the treatment response to anti-ALK inhibitor. Including RT-PCR as a diagnostic test for ALK inhibitor treatment in the prospective clinical trials is recommended.

  17. Comparison of IHC, FISH and RT-PCR Methods for Detection of ALK Rearrangements in 312 Non-Small Cell Lung Cancer Patients in Taiwan

    PubMed Central

    Wang, Chi-Liang; Chen, Tai-Di; Chen, Ya-Ting; Liu, Hui-Ping; Chu, Yen; Chiu, Yu-Ting; Wu, Tzu-Hua; Chou, Li-Hui; Chen, Yi-Rong; Huang, Shiu-Feng

    2013-01-01

    Background Recently Echinoderm microtubule-associated protein-like 4- anaplastic lymphoma kinase (EML4-ALK) fusion gene has become an important biomarker for ALK tyrosine kinase inhibitor (crizotinib) treatment in NSCLC. However, the best detection method and the significance of EML4-ALK variant types remain uncertain. Methods Reverse transcriptase-polymerase chain reaction (RT-PCR), fluorescence in Situ hybridization (FISH) and Immunohistochemical (IHC) stain were performed on tumor tissues of 312 NSCLC patients for detection of ALK rearrangements. Mutation analyses for EGFR and KRAS genes were also performed. Results Thirteen of the 312 patients (4.17%) had ALK rearrangements detected by RT-PCR. If RT-PCR data was used as the gold standard, FISH tests had a low sensitivity (58.33%), but very good specificity (99.32%). IHC stain had better sensitivity (91.67%) than FISH, but lower specificity (79.52%), when the cut off was IHC2+. All of the 8 patients with high abundance of EML4-ALK positive cells in tumor tissues (assessed by the signal intensities of the RT-PCR product), were also have high expression of ALK protein (IHC3+), and positive for FISH, except one failed in FISH. Variants 3a+3b (4/5, 80%) of EML4-ALK fusion gene were more common to have high abundance of EML4-ALK positive cells in tumor tissues than variant 1 (1/3, 33.3%). Meta-analysis of the published data of 2273 NSCLC patients revealed that variant 3 (23/44, 52.3%) was the most common type in Chinese population, while variant 1 (28/37, 75.7%) was most common in Caucasian. Conclusions Among the three detection methods, RT-PCR could detect not only the presence of EML4-ALK fusion gene and their variant types, but also the abundance of EML4-ALK positive cells in NSCLC tumor tissues. The latter two factors might affect the treatment response to anti-ALK inhibitor. Including RT-PCR as a diagnostic test for ALK inhibitor treatment in the prospective clinical trials is recommended. PMID:23951022

  18. Neuropeptide Y in the forebrain of the adult male cichlid fish Oreochromis mossambicus: distribution, effects of castration and testosterone replacement.

    PubMed

    Sakharkar, Amul J; Singru, Praful S; Sarkar, Koustav; Subhedar, Nishikant K

    2005-08-22

    We studied the organization of the neuropeptide Y (NPY)-immunoreactive system in the forebrain of adult male cichlid fish Oreochromis mossambicus and its response to castration and testosterone replacement by using morphometric methods. Immunoreactivity for NPY was widely distributed in the forebrain, and the pattern generally resembled that in other teleosts. Whereas immunoreactivity was conspicuous in the ganglia of nervus terminalis (NT; or nucleus olfactoretinalis), a weak reaction was detected in some granule cells in the olfactory bulb and in the cells of area ventralis telencephali pars lateralis (Vl). Moderately to intensely immunoreactive cells were distinctly seen in the nucleus entopeduncularis (NE), nucleus preopticus (NPO), nucleus lateralis tuberis (NLT), paraventricular organ (PVO), and midbrain tegmentum (MT). NPY fibers were widely distributed in the forebrain. Castration for 10/15 days resulted in a drastic loss of immunoreactivity in the cells of NE (P<0.001) and a significant decrease (P<0.01) in their cell nuclear size. However, cell nuclei of the NT neurons showed a significant increase in size. A highly significant reduction in the NPY-immunoreactive fiber density (P<0.001) was observed in several areas of the forebrain. Although testosterone replacement reversed these changes, fibers in some areas showed supranormal responses. Immunoreactive cells in Vl, NPO, NLT, PVO, and MT and fiber density in some other areas did not respond to castration. We suggest that the NPY-immunoreactive elements that respond to castration and testosterone replacement may serve as the substrate for processing the positive feedback action of the steroid hormone. (c) 2005 Wiley-Liss, Inc.

  19. FISH Finder: a high-throughput tool for analyzing FISH images

    PubMed Central

    Shirley, James W.; Ty, Sereyvathana; Takebayashi, Shin-ichiro; Liu, Xiuwen; Gilbert, David M.

    2011-01-01

    Motivation: Fluorescence in situ hybridization (FISH) is used to study the organization and the positioning of specific DNA sequences within the cell nucleus. Analyzing the data from FISH images is a tedious process that invokes an element of subjectivity. Automated FISH image analysis offers savings in time as well as gaining the benefit of objective data analysis. While several FISH image analysis software tools have been developed, they often use a threshold-based segmentation algorithm for nucleus segmentation. As fluorescence signal intensities can vary significantly from experiment to experiment, from cell to cell, and within a cell, threshold-based segmentation is inflexible and often insufficient for automatic image analysis, leading to additional manual segmentation and potential subjective bias. To overcome these problems, we developed a graphical software tool called FISH Finder to automatically analyze FISH images that vary significantly. By posing the nucleus segmentation as a classification problem, compound Bayesian classifier is employed so that contextual information is utilized, resulting in reliable classification and boundary extraction. This makes it possible to analyze FISH images efficiently and objectively without adjustment of input parameters. Additionally, FISH Finder was designed to analyze the distances between differentially stained FISH probes. Availability: FISH Finder is a standalone MATLAB application and platform independent software. The program is freely available from: http://code.google.com/p/fishfinder/downloads/list Contact: gilbert@bio.fsu.edu PMID:21310746

  20. Effects of a fish oil-based emulsion on rat hepatoma cell invasion in culture.

    PubMed

    Hagi, Akifumi; Nakayama, Mitsuo; Miura, Yutaka; Yagasaki, Kazumi

    2007-01-01

    Total parenteral nutrition containing a lipid emulsion is often employed after surgical tumor resection. This study investigated the effects of a fish oil-based infusion on rat hepatoma cell invasion. Rat ascites hepatoma cell line AH109A was precultured with a fish oil-based or safflower oil-based emulsion for 48 h. Changes in membranous fatty acid composition were evaluated by gas chromatography. The invasiveness of hepatoma cells was assessed by coculturing with mesentery-derived mesothelial cells. To examine ex vivo effects of the fish oil-based infusion on hepatoma invasion, sera were prepared from rats infused with fish oil- or safflower oil-based emulsion and the effects of these sera were assessed. To clarify the mechanism of inhibition of invasion by the fish oil-based emulsion, the effects of prostaglandin (PG) E(2) and PGE(3) on invasion were examined. Pretreatment with the fish oil-based emulsion reduced invasiveness without affecting growth compared with the safflower oil-based emulsion. Pretreatment with the sera from rats infused with the fish oil-based emulsion also reduced invasiveness compared with the sera from rats infused with the safflower oil-based emulsion. The addition of PGE(2) eliminated the inhibitory effect of the fish oil-based emulsion, and the addition of PGE(3) reduced the invasiveness of hepatoma cells pretreated with the safflower oil-based emulsion. These results suggest that the fish oil-based emulsion may have anti-invasive effects. Changes in the membranous fatty acid composition and consequent changes in the prostaglandins produced may be involved in this inhibitory effect.

  1. Screening Complex Effluents for Estrogenic Activity with the T47D-Kbluc Cell Bioassay: Assay Optimization and Comparison to In Vivo Responses in Fish

    EPA Science Inventory

    The endocrine activity of complex mixtures of chemicals associated with wastewater treatment plant effluents, runoff from concentrated animal feeding operations (CAFOs), and/or other environmental samples can be difficult to characterize based on analytical chemistry. In vitro bi...

  2. Stress response of lead-exposed rainbow trout (Oncorhynchus mykiss) during swimming performance and hypoxia challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, K.A.; Caldwell, C.A.; Sandheinrich, M.B.

    1995-12-31

    Contaminants often invoke a stress response in aquatic organisms, and may compromise their capacity to respond to secondary stressors. This may reduce growth, reproduction and survival. The authors objectives were to assess the effects of lead and secondary stressors on hematology and blood chemistry of rainbow trout. After a 7 to 8-week aqueous exposure to Pb(100{micro}g/L), rainbow trout were challenged with forced swimming or hypoxia. Lead significantly reduced concentrations of 5-aminolevulinic acid dehydratase (ALAD), but not other constituents in the blood. Lead did not affect the swimming endurance of the fish. Hematocrit, mean cell hemoglobin content, and mean cell volumemore » were significantly lower in Pb-exposed trout following the swimming challenge. Although hypoxia resulted in increased hematocrit and plasma glucose concentrations, there were no significant differences between the Pb and control groups. Hypoxia did not affect plasma chloride concentrations, although concentrations increased in Pb-exposed trout. There was no difference in lactic acid concentrations between Pb-exposed and control fish after forced swimming or hypoxia.« less

  3. The effect of nonylphenol on gene expression in Atlantic salmon smolts.

    PubMed

    Robertson, Laura S; McCormick, Stephen D

    2012-10-15

    The parr-smolt transformation in Atlantic salmon (Salmo salar) is a complex developmental process that culminates in the ability to migrate to and live in seawater. Exposure to environmental contaminants like nonylphenol can disrupt smolt development and may be a contributing factor in salmon population declines. We used GRASP 16K cDNA microarrays to investigate the effects of nonylphenol on gene expression in Atlantic salmon smolts. Nonylphenol exposure reduced gill Na(+)/K(+)-ATPase activity and plasma cortisol and triiodothyronine levels. Transcriptional responses were examined in gill, liver, olfactory rosettes, hypothalamus, and pituitary. Expression of 124 features was significantly altered in the liver of fish exposed to nonylphenol; little to no transcriptional effects were observed in other tissues. mRNA abundance of genes involved in protein biosynthesis, folding, modification, transport and catabolism; nucleosome assembly, cell cycle, cell differentiation, microtubule-based movement, electron transport, and response to stress increased in nonylphenol-treated fish. This study expands our understanding of the effect of nonylphenol on smolting and provides potential targets for development of biomarkers. Published by Elsevier B.V.

  4. Dietary camu camu, Myrciaria dubia, enhances immunological response in Nile tilapia.

    PubMed

    Yunis-Aguinaga, Jefferson; Fernandes, Dayanne C; Eto, Silas F; Claudiano, Gustavo S; Marcusso, Paulo F; Marinho-Neto, Fausto A; Fernandes, João B K; de Moraes, Flávio R; de Moraes, Julieta R Engrácia

    2016-11-01

    Camu camu, Myrciaria dubia, is an Amazon plant that presents high levels of vitamin C in its composition. Several studies in animals and humans have demonstrated their efficiency in the prevention and treatment of various diseases. However, there are no reports of its properties in fish. The aim of this study was to evaluate the effect of the oral administration of the extract of this plant in the immune parameters in Nile tilapia, Oreochromis niloticus. 400 Nile tilapia (80 ± 5 g) were randomly distributed into 20 tanks with 1500 L capacity each (20 fish/tank). After a week of adaptation to environmental conditions, it was provided a diet for 5 weeks, using different levels of inclusion of camu camu extract: 0, 50, 100, 250, and 500 mg/kg of feed. Each treatment consisted of four replicates. It was obtained 40.5 mg of vitamin C/g of camu camu pulp powder by high-performance liquid chromatography. At the end of the trial period, fish were inoculated with Aeromonas hydrophila in the swim bladder. Samples were taken after 6; 24 and 48 h of the challenge. Results revealed that fish supplemented with this herb showed significant increase (P < 0.05) in white blood cells counts in blood and exudate, burst respiratory activity, lysozyme activity, serum bactericidal activity, direct agglutination, and melanomacrophage centers count. Red blood cells count, hemoglobin, hematocrit, and biochemical profile of fish supplemented with the herb presented no statistical differences compared to control group (P > 0.05). No histopathological lesions were observed in intestine, kidney, spleen, and gills. It can be concluded that the addition of Myrciaria dubia in tilapia feed improves the immune response and the growth after 5 weeks, especially, at a dose of 500 mg/kg. Copyright © 2016. Published by Elsevier Ltd.

  5. Differential tissue distribution, developmental programming, estrogen regulation and promoter characteristics of cyp19 genes in teleost fish.

    PubMed

    Callard, G V; Tchoudakova, A V; Kishida, M; Wood, E

    2001-12-01

    Teleost fish are characterized by exceptionally high levels of brain estrogen biosynthesis when compared to the brains of other vertebrates or to the ovaries of the same fish. Goldfish (Carassius auratus) and zebrafish (Danio rerio) have utility as complementary models for understanding the molecular basis and functional significance of exaggerated neural estrogen biosynthesis. Multiple cytochrome P450 aromatase (P450arom) cDNAs that derive from separate gene loci (cyp19a and cyp19b) are differentially expressed in brain (P450aromB>A) and ovary (P450aromA>B) and have a different developmental program (B>A) and response to estrogen upregulation (B only). As measured by increased P450aromB mRNA, a functional estrogen response system is first detected 24-48 h post-fertilization (hpf), consistent with the onset of estrogen receptor (ER) expression (alpha, beta, and gamma). The 5'-flanking region of the cyp19b gene has a TATA box, two estrogen response elements (EREs), an ERE half-site (ERE1/2), a nerve growth factor inducible-B protein (NGFI-B)/Nur77 responsive element (NBRE) binding site, and a sequence identical to the zebrafish GATA-2 gene neural specific enhancer. The cyp19a promoter region has TATA and CAAT boxes, a steroidogenic factor-1 (SF-1) binding site, and two aryl hydrocarbon receptor (AhR)/AhR nuclear translocator factor (ARNT) binding motifs. Both genes have multiple potential SRY/SOX binding sites (16 and 8 in cyp19b and cyp19a, respectively). Luciferase reporters have basal promoter activity in GH3 cells, but differences (a>b) are opposite to fish pituitary (b>a). When microinjected into fertilized zebrafish eggs, a cyp19b promoter-driven green fluorescent protein (GFP) reporter (but not cyp19a) is expressed in neurons of 30-48 hpf embryos, most prominently in retinal ganglion cells (RGCs) and their projections to optic tectum. Further studies are required to identify functionally relevant cis-elements and cellular factors, and to determine the regulatory role of estrogen in neurodevelopment.

  6. Digestive Physiological Characteristics of the Gobiidae

    PubMed Central

    Hur, Sang-Woo; Kim, Shin-Kwon; Kim, Dae-Jung; Lee, Bae-Ik; Park, Su-Jin; Hwang, Hyung-Gyu; Jun, Je-Cheon; Myeong, Jeong-In; Lee, Chi-Hoon; Lee, Young-Don

    2016-01-01

    In this study, we investigated the characteristics of CCK-producing cells and mucus-secreting goblet cells with respect to stomach fish and stomachless fish of the Gobiidae in order to provide a basis for understanding the digestive physiology. Hairychin goby (Sagamia geneionema), which is stomachless fish, the numbers of mucus-secreting goblet cells is highest in the posterior intestine portion (P<0.05), while CCK-producing cells are scattered throughout the intestine. Gluttonous goby (Chasmichthys gulosus), which is stomach fish, mucus-secreting goblet cells are most abundant in the mid intestine portion (P<0.05), whereas CCK-producing cells are observed only in the anterior and mid intestine portion. Trident goby (Tridentiger obscurus) which is stomach fish, mucus-secreting goblet cells were most abundant in the mid intestine portion (P<0.05). CCK-producing cells are found in the anterior and mid intestine portion. Giurine goby, Rhinogobius giurinus which is also stomach fish, the largest number of mucus-secreting goblet cells showed in anterior intestine portion except for esophagus (P<0.05). CCK-producing cells are present only in the anterior and mid intestine portion. In S. geneionema, digestive action occurs in the posterior intestine portion to protect and functions to activate digestion. In contrast, in C. gulosus, T. obscurus and R. giurinus, their digestive action occurs in the anterior and mid intestine portion to protect and functions to activate digestion. Further studies of the modes of food ingestion by these fish, the contents of their digestive tracts, and the staining characteristics of the goblet cells need to be carried out. PMID:27796002

  7. Fasting modifies Aroclor 1254 impact on plasma cortisol, glucose and lactate responses to a handling disturbance in Arctic charr

    USGS Publications Warehouse

    Jorgensen, E.H.; Vijayan, M.M.; Aluru, N.; Maule, A.G.

    2002-01-01

    Integrated effects of polychlorinated biphenyl (PCB) and nutritional status on responses to handling disturbance were investigated in the Arctic charr (Salvelinus alpinus). The fish were orally contaminated with Aroclor 1254 and held either with or without food for 5 months before they were subjected to a 10-min handling disturbance. Food-deprived fish were given 0, 1, 10 or 100 mg PCB kg−1 and the fed fish 0 or 100 mg PCB kg−1. Plasma cortisol, glucose and lactate levels were measured at 0 (pre-handling), 1, 3, 6 and 23 h after the handling disturbance. Food-deprived control fish had elevated plasma cortisol levels compared with fed fish before handling. These basal cortisol levels were suppressed by PCB in food-deprived fish, and elevated by PCB in fed fish. The immediate cortisol and glucose responses to handling disturbance were suppressed by PCB in a dose-dependent way in food-deprived fish. Although these responses were also lowered by PCB in the fed fish, the effect was much less pronounced than in food-deprived fish. There were only minor effects on plasma lactate responses. Our findings suggest that the stress responses of the Arctic charr are compromised by PCB and that the long-term fasting, typical of high-latitude fish, makes these species particularly sensitive to organochlorines such as PCB.

  8. Detection of Gene Rearrangements in Circulating Tumor Cells: Examples of ALK-, ROS1-, RET-Rearrangements in Non-Small-Cell Lung Cancer and ERG-Rearrangements in Prostate Cancer.

    PubMed

    Catelain, Cyril; Pailler, Emma; Oulhen, Marianne; Faugeroux, Vincent; Pommier, Anne-Laure; Farace, Françoise

    2017-01-01

    Circulating tumor cells (CTCs) hold promise as biomarkers to aid in patient treatment stratification and disease monitoring. Because the number of cells is a critical parameter for exploiting CTCs for predictive biomarker's detection, we developed a FISH (fluorescent in situ hybridization) method for CTCs enriched on filters (filter-adapted FISH [FA-FISH]) that was optimized for high cell recovery. To increase the feasibility and reliability of the analyses, we combined fluorescent staining and FA-FISH and developed a semi-automated microscopy method for optimal FISH signal identification in filtration-enriched CTCs . Here we present these methods and their use for the detection and characterization of ALK-, ROS1-, RET-rearrangement in CTCs from non-small-cell lung cancer and ERG-rearrangements in CTCs from prostate cancer patients.

  9. Endogenous orienting in the archer fish.

    PubMed

    Saban, William; Sekely, Liora; Klein, Raymond M; Gabay, Shai

    2017-07-18

    The literature has long emphasized the neocortex's role in volitional processes. In this work, we examined endogenous orienting in an evolutionarily older species, the archer fish, which lacks neocortex-like cells. We used Posner's classic endogenous cuing task, in which a centrally presented, spatially informative cue is followed by a target. The fish responded to the target by shooting a stream of water at it. Interestingly, the fish demonstrated a human-like "volitional" facilitation effect: their reaction times to targets that appeared on the side indicated by the precue were faster than their reaction times to targets on the opposite side. The fish also exhibited inhibition of return, an aftermath of orienting that commonly emerges only in reflexive orienting tasks in human participants. We believe that this pattern demonstrates the acquisition of an arbitrary connection between spatial orienting and a nonspatial feature of a centrally presented stimulus in nonprimate species. In the literature on human attention, orienting in response to such contingencies has been strongly associated with volitional control. We discuss the implications of these results for the evolution of orienting, and for the study of volitional processes in all species, including humans.

  10. Measured and Modeled Toxicokinetics in Cultured Fish Cells and Application to In Vitro - In Vivo Toxicity Extrapolation

    PubMed Central

    Stadnicka-Michalak, Julita; Tanneberger, Katrin; Schirmer, Kristin; Ashauer, Roman

    2014-01-01

    Effect concentrations in the toxicity assessment of chemicals with fish and fish cells are generally based on external exposure concentrations. External concentrations as dose metrics, may, however, hamper interpretation and extrapolation of toxicological effects because it is the internal concentration that gives rise to the biological effective dose. Thus, we need to understand the relationship between the external and internal concentrations of chemicals. The objectives of this study were to: (i) elucidate the time-course of the concentration of chemicals with a wide range of physicochemical properties in the compartments of an in vitro test system, (ii) derive a predictive model for toxicokinetics in the in vitro test system, (iii) test the hypothesis that internal effect concentrations in fish (in vivo) and fish cell lines (in vitro) correlate, and (iv) develop a quantitative in vitro to in vivo toxicity extrapolation method for fish acute toxicity. To achieve these goals, time-dependent amounts of organic chemicals were measured in medium, cells (RTgill-W1) and the plastic of exposure wells. Then, the relation between uptake, elimination rate constants, and log KOW was investigated for cells in order to develop a toxicokinetic model. This model was used to predict internal effect concentrations in cells, which were compared with internal effect concentrations in fish gills predicted by a Physiologically Based Toxicokinetic model. Our model could predict concentrations of non-volatile organic chemicals with log KOW between 0.5 and 7 in cells. The correlation of the log ratio of internal effect concentrations in fish gills and the fish gill cell line with the log KOW was significant (r>0.85, p = 0.0008, F-test). This ratio can be predicted from the log KOW of the chemical (77% of variance explained), comprising a promising model to predict lethal effects on fish based on in vitro data. PMID:24647349

  11. How Tom Moon's research highlighted the question of glucose tolerance in carnivorous fish.

    PubMed

    Polakof, S; Panserat, S

    2016-09-01

    Fifteen years ago, Tom Moon wrote a review on this journal in order to propose some explanations to the exacerbated glycaemic response after a glucose load or a carbohydrate meal intake observed in fish, the so-called intolerance to glucose. Before, but in most of cases after this paper, several laboratories worldwide started to make important efforts in order to better understand this strange phenotype observed in fish and that so far seemed to belong to diabetic humans only. Tom had been worked on fish metabolism for at least 30years when he proposed that mini-review and the paths opened by him in 2001 were followed by tens of fish researchers, making this paper a breaking point on the field. Fifteen years later, we propose not only to have a look to the answers given to the questions rose in that paper, but also to summarize how his career over all these years impacted the domain of glucose metabolism in fish. In the review, we will show how Tom Moon analysed at different levels (from genes up to the whole organism), using distinct experimental tools (cells, hormone or glucose injection, pumps, drugs) the questions of glucose metabolism, tolerance and nutrition in fish species. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Bile duct regeneration and immune response by passenger lymphocytes signals biliary recovery versus complications after liver transplantation.

    PubMed

    Junger, Henrik H; Schlitt, Hans J; Geissler, Edward K; Fichtner-Feigl, Stefan; Brunner, Stefan M

    2017-11-01

    This study aimed to elucidate the impact of epithelial regenerative responses and immune cell infiltration on biliary complications after liver transplantation. Bile duct (BD) damage after cold storage was quantified by a BD damage score and correlated with patient outcome in 41 patients. Bacterial infiltration was determined by fluorescence in situ hybridization (FISH). BD samples were analyzed by immunohistochemistry for E-cadherin, cytokeratin, CD56, CD14, CD4, CD8, and double-immunofluorescence for cytokine production and by messenger RNA (mRNA) microarray. Increased mRNA levels of adherens junctions (P < 0.01) were detected in damaged BDs from patients without complications compared with damaged BDs from patients with biliary complications. Immunohistochemistry showed increased expression of E-cadherin and cytokeratin in BDs without biliary complications (P = 0.03; P = 0.047). FISH analysis demonstrated translocation of bacteria in BDs. However, mRNA analysis suggested an enhanced immune response in BDs without biliary complications (P < 0.01). Regarding immune cell infiltration, CD4 + and CD8 + cells were significantly increased in patients without complications compared with those with complications (P = 0.02; P = 0.01). In conclusion, following BD damage during cold storage, we hypothesize that the functional regenerative capacity of biliary epithelium and enhanced local adaptive immune cell infiltration are crucial for BD recovery. Such molecular immunological BD analyses therefore could help to predict biliary complications in cases of "major" epithelial damage after cold storage.Liver Transplantation 23 1422-1432 2017 AASLD. © 2017 by the American Association for the Study of Liver Diseases.

  13. Using silver and bighead carp cell lines for the identification of a unique metabolite fingerprint from thiram-specific chemical exposure

    USGS Publications Warehouse

    Putnam, Joel G.; Nelson, Justine; Leis, Eric M; Erickson, Richard A.; Hubert, Terrance D.; Amberg, Jon J.

    2017-01-01

    Conservation biology often requires the control of invasive species. One method is the development and use of biocides. Identifying new chemicals as part of the biocide registration approval process can require screening millions of compounds. Traditionally, screening new chemicals has been done in vivo using test organisms. Using in vitro (e.g., cell lines) and in silico (e.g., computer models) methods decrease test organism requirements and increase screening speed and efficiency. These methods, however, would be greatly improved by better understanding how individual fish species metabolize selected compounds.We combined cell assays and metabolomics to create a powerful tool to facilitate the identification of new control chemicals. Specifically, we exposed cell lines established from bighead carp and silver carp larvae to thiram (7 concentrations) then completed metabolite profiling to assess the dose-response of the bighead carp and silver carp metabolome to thiram. Forty one of the 700 metabolomic markers identified in bighead carp exhibited a dose-response to thiram exposure compared to silver carp in which 205 of 1590 metabolomic markers exhibited a dose-response. Additionally, we identified 11 statistically significant metabolomic markers based upon volcano plot analysis common between both species. This smaller subset of metabolites formed a thiram-specific metabolomic fingerprint which allowed for the creation of a toxicant specific, rather than a species-specific, metabolomic fingerprint. Metabolomic fingerprints may be used in biocide development and improve our understanding of ecologically significant events, such as mass fish kills.

  14. Assessing the Sensitivity of Different Life Stages for Sexual Disruption in Roach (Rutilus rutilus) Exposed to Effluents from Wastewater Treatment Works

    PubMed Central

    Liney, Katherine E.; Jobling, Susan; Shears, Jan A.; Simpson, Peter; Tyler, Charles R.

    2005-01-01

    Surveys of U.K. rivers have shown a high incidence of sexual disruption in populations of wild roach (Rutilus rutilus) living downstream from wastewater treatment works (WwTW), and the degree of intersex (gonads containing both male and female structural characteristics) has been correlated with the concentration of effluent in those rivers. In this study, we investigated feminized responses to two estrogenic WwTWs in roach exposed for periods during life stages of germ cell division (early life and the postspawning period). Roach were exposed as embryos from fertilization up to 300 days posthatch (dph; to include the period of gonadal sex differentiation) or as postspawning adult males, and including fish that had received previous estrogen exposure, for either 60 or 120 days when the annual event of germ cell proliferation occurs. Both effluents induced vitellogenin synthesis in both life stages studied, and the magnitude of the vitellogenic responses paralleled the effluent content of steroid estrogens. Feminization of the reproductive ducts occurred in male fish in a concentration-dependent manner when the exposure occurred during early life, but we found no effects on the reproductive ducts in adult males. Depuration studies (maintenance of fish in clean water after exposure to WwTW effluent) confirmed that the feminization of the reproductive duct was permanent. We found no evidence of ovotestis development in fish that had no previous estrogen exposure for any of the treatments. In wild adult roach that had previously received exposure to estrogen and were intersex, the degree of intersex increased during the study period, but this was not related to the immediate effluent exposure, suggesting a previously determined programming of ovotestis formation. PMID:16203238

  15. Utilization of protein expression profiles as indicators of environmental impairment of smallmouth bass (Micropterus dolomieu) from the Shenandoah River, Virginia, USA.

    PubMed

    Ripley, Jennifer; Iwanowicz, Luke; Blazer, Vicki; Foran, Christy

    2008-08-01

    The Shenandoah River (VA, USA), the largest tributary of the Potomac River (MD, USA) and an important source of drinking water, has been the site of extensive fish kills since 2004. Previous investigations indicate environmental stressors may be adversely modulating the immune system of smallmouth bass (Micropterus dolomieu) and other species. Anterior kidney (AK) tissue, the major site of blood cell production in fish, was collected from smallmouth bass at three sites along the Shenandoah River. The tissue was divided for immune function and proteomics analyses. Bactericidal activity and respiratory burst were significantly different between North Fork and mainstem Shenandoah River smallmouth bass, whereas South Fork AK tissue did not significantly differ in either of these measures compared with the other sites. Cytotoxic cell activity was highest among South Fork and lowest among North Fork AK leukocytes. The composite two-dimension gels of the North Fork and mainstem smallmouth bass AK tissues contained 584 and 591 spots, respectively. South Fork smallmouth bass AK expressed only 335 proteins. Nineteen of 50 proteins analyzed by matrix-assisted laser desorption ionization-time of flight were successfully identified. Three of the four identified proteins with increased expression in South Fork AK tissue were involved in metabolism. Seven proteins exclusive to mainstem and North Fork smallmouth bass AK and expressed at comparable abundances serve immune and stress response functions. The proteomics data indicate these fish differ in metabolic capacity of AK tissue and in the ability to produce functional leukocytes. The variable responses of the immune function assays further indicate disruption to the immune system. Our results allow us to hypothesize underlying physiological changes that may relate to fish kills and suggest relevant contaminants known to produce similar physiological disruption.

  16. Utilization of protein expression profiles as indicators of environmental impairment of smallmouth bass (Micropterus dolomieu) from the Shenandoah River, Virginia, USA

    USGS Publications Warehouse

    Ripley, J.; Iwanowicz, L.; Blazer, V.; Foran, C.

    2008-01-01

    The Shenandoah River (VA, USA), the largest tributary of the Potomac River (MD, USA) and an important source of drinking water, has been the site of extensive fish kills since 2004. Previous investigations indicate environmental stressors may be adversely modulating the immune system of smallmouth bass (Micropterus dolomieu) and other species. Anterior kidney (AK) tissue, the major site of blood cell production in fish, was collected from smallmouth bass at three sites along the Shenandoah River. The tissue was divided for immune function and proteomics analyses. Bactericidal activity and respiratory burst were significantly different between North Fork and mainstem Shenandoah River smallmouth bass, whereas South Fork AK tissue did not significantly differ in either of these measures compared with the other sites. Cytotoxic cell activity was highest among South Fork and lowest among North Fork AK leukocytes. The composite two-dimension gels of the North Fork and mainstem smallmouth bass AK tissues contained 584 and 591 spots, respectively. South Fork smallmouth bass AK expressed only 335 proteins. Nineteen of 50 proteins analyzed by matrix-assisted laser desorption ionization-time of flight were successfully identified. Three of the four identified proteins with increased expression in South Fork AK tissue were involved in metabolism. Seven proteins exclusive to mainstem and North Fork smallmouth bass AK and expressed at comparable abundances serve immune and stress response functions. The proteomics data indicate these fish differ in metabolic capacity of AK tissue and in the ability to produce functional leukocytes. The variable responses of the immune function assays further indicate disruption to the immune system. Our results allow us to hypothesize underlying physiological changes that may relate to fish kills and suggest relevant contaminants known to produce similar physiological disruption. ?? 2008 SETAC.

  17. Chromosome Aberration in Human Blood Lymphocytes Exposed to Energetic Protons

    NASA Technical Reports Server (NTRS)

    Hada, M.; George, Kerry A.; Cucinotta, F. A.

    2008-01-01

    During space flight, astronauts are exposed to a space radiation consisting of high-energy protons, high charge and energy (HZE) nuclei, as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary particles have a higher LET value than primary protons and therefore expected to have a higher relative biological effectiveness (RBE). To investigate this theory, we exposed human peripheral blood lymphocytes to protons with energies of 250 MeV, 800MeV, 2 GeV, or 2.5 GeV. LET values for these protons ranged from 0.4 to 0.2 keV/micrometer. and doses ranged from 0.2 to 3 Gy. Over this energy the probability of nuclear reaction leading to secondary radiation, and the multiplicity of reaction produces such as neutrons and mesons increases substantially. The effect of aluminum and polyethylene shielding was also assessed using the 2 GeV and 2.5GeV proton beams. After exposure lymphocytes were stimulated to divide and chromosomes were collected from cells in the first G2 and metaphase cell cycle after exposure using a chemical induced premature chromosome condensation (PCC) technique. Dose response data for chromosome damage was analyzed using the fluorescence in situ hybridization (FISH) chromosome painting technique. Selected samples were also analyzed with multicolor FISH (mFISH) and multicolor banding FISH (mBAND) techniques. Data indicates that the dose response for simple-type exchanges is similar for proton and gamma exposure, whereas protons induce higher yields of complex exchanges that are LET dependent. RBE values will be presented for each proton energy, and the effects of shielding and possible cytogenetic signatures of proton exposure will be discussed.

  18. Chromosome aberrations in human blood lymphocytes exposed to energetic protons

    NASA Astrophysics Data System (ADS)

    Hada, Megumi; George, Ms Kerry; Cucinotta, Francis A.

    During space flight, astronauts are exposed to space radiation consisting of high-energy protons, high charge and energy (HZE) nuclei, as well as secondary particles that are generated when the primary particles penetrate the spacecraft shielding. Secondary particles have a higher LET value than primary protons and are therefore expected to have a higher relative biological effectiveness (RBE). To investigate this theory, we exposed human peripheral blood lymphocytes to protons with energies of 250 MeV, 800MeV, 2 GeV, or 2.5 GeV. LET values for these protons ranged from 0.4 to 0.2 keV/µm. and doses ranged from 0.2 to 3 Gy. Over this energy range the probability of nuclear reaction leading to secondary radiation, and the multiplicity of reaction products such as neutrons and mesons increases substantially. The effect of aluminum and polyethylene shielding was also assessed using the 2 GeV and 2.5GeV proton beams. After exposure lymphocytes were stimulated to divide and chromosomes were collected from cells in the first G2 and metaphase cell cycle after exposure using a chemical induced premature chromosome condensation (PCC) technique. Dose response data for chromosome damage was analyzed using the fluorescence in situ hybridization (FISH) chromosome painting technique. Selected samples were also analyzed with multicolor FISH (mFISH) and multicolor banding FISH (mBAND) techniques. Data indicates that the dose response for simple-type exchanges is similar for proton and gamma exposure, whereas protons induce higher yields of complex exchanges that are energy dependent. RBE values will be presented for each proton energy, and the effects of shielding and possible cytogenetic signatures of proton exposure will be discussed.

  19. Hypoxia alters testicular functions of marine medaka through microRNAs regulation.

    PubMed

    Tse, Anna Chung-Kwan; Li, Jing-Woei; Wang, Simon Yuan; Chan, Ting-Fung; Lai, Keng Po; Wu, Rudolf Shiu-Sun

    2016-11-01

    Hypoxia is a global environmental concern and poses a significant threat to aquatic ecosystems, including the sustainability of natural fish populations. The deleterious effects of hypoxia on fish reproductive fitness, as mediated by disruption of sex hormones and gene expression along the Brain-Pituitary-Gonad axis, have been well documented. Recently, we further demonstrated that the observed disruption of steroidogenesis in the ovary of marine medaka Oryzias melastigma is mediated through microRNAs (miRNAs). More importantly, we reported the transgenerational epigenetic effect of hypoxia on the male reproductive impairment of marine medaka. This study attempts to elucidate the function of miRNAs and its potential role in the transgenerational effect of hypoxia in the male medaka testis, using small RNA sequencing. A total of 558 miRNAs were found in the testis, of which 9 were significant upregulated and 5 were downregulated by hypoxia. Bioinformatics analysis further revealed that among the 2885 genes targeted by the hypoxia-responsive miRNAs, many are closely related to stress response, cell cycle, epigenetic modification, sugar metabolism and cell motion. Furthermore, the integrated analysis of transcriptome data and the result of target gene prediction demonstrated 108 genes and 65 genes were concordantly upregulated and downregulated, respectively. In which, euchromatic histone-lysine N-methyltransferase 2, the epigenetic regulator of transgenerational reproductive impairment caused by hypoxia, is found to be targeted by miR-125-5p. The present findings not only reveal that miRNAs are crucial downstream mediators of hypoxic stress in fish male gonad, but also shed light on the underlying epigenetic mechanism for the reproductive impairments of hypoxia on male fish, including the observed transgenerational effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Fish oil feeding enhances lymphocyte proliferation but impairs virus-specific T lymphocyte cytotoxicity in mice following challenge with influenza virus

    PubMed Central

    Byleveld, M; Pang, G T; Clancy, R L; Roberts, D C K

    2000-01-01

    The effect of a fish oil diet on virus-specific cytotoxicity and lymphocyte proliferation was investigated. Mice were fed fish oil (17 g fish oil and 3 g sunflower/100 g) or beef tallow (17 g tallow and 3 g sunflower/100 g) diets for 14 days before intranasal challenge with influenza virus. At day 5 after infection, lung virus-specific T lymphocyte, but not macrophage or natural killer (NK) cell, cytotoxicity was significantly lower in mice fed fish oil, while bronchial lymph node cell proliferation to virus was significantly higher. In mice fed fish oil, spleen cell proliferation to virus was also significantly higher following immunization. The results showed that, despite improved lymphocyte proliferation, fish oil impairs primary virus-specific T lymphocyte cytotoxicity. This impairment may explain the delayed virus clearance that we have previously reported in infected mice fed the fish oil diet. PMID:10632664

  1. Fish oil feeding enhances lymphocyte proliferation but impairs virus-specific T lymphocyte cytotoxicity in mice following challenge with influenza virus.

    PubMed

    Byleveld, M; Pang, G T; Clancy, R L; Roberts, D C

    2000-02-01

    The effect of a fish oil diet on virus-specific cytotoxicity and lymphocyte proliferation was investigated. Mice were fed fish oil (17 g fish oil and 3 g sunflower/100 g) or beef tallow (17 g tallow and 3 g sunflower/100 g) diets for 14 days before intranasal challenge with influenza virus. At day 5 after infection, lung virus-specific T lymphocyte, but not macrophage or natural killer (NK) cell, cytotoxicity was significantly lower in mice fed fish oil, while bronchial lymph node cell proliferation to virus was significantly higher. In mice fed fish oil, spleen cell proliferation to virus was also significantly higher following immunization. The results showed that, despite improved lymphocyte proliferation, fish oil impairs primary virus-specific T lymphocyte cytotoxicity. This impairment may explain the delayed virus clearance that we have previously reported in infected mice fed the fish oil diet.

  2. Cyanobacteria blooms induce embryonic heart failure in an endangered fish species.

    PubMed

    Zi, Jinmei; Pan, Xiaofu; MacIsaac, Hugh J; Yang, Junxing; Xu, Runbing; Chen, Shanyuan; Chang, Xuexiu

    2018-01-01

    Cyanobacterial blooms drive water-quality and aquatic-ecosystem deterioration in eutrophic lakes worldwide, mainly owing to their harmful, secondary metabolites. The response of fish exposed to these cyanobacterial chemicals, however, remains largely unknown. In this paper, we employed an endangered fish species (Sinocyclocheilus grahami) in Dianchi Lake, China to evaluate the risks of cell-free exudates (MaE) produced by a dominant cyanobacterium (Microcystis aeruginosa) on embryo development, as well as the molecular mechanisms responsible. MaE (3d cultured) caused a reduction of fertilization (35.4%) and hatching (15.5%) rates, and increased mortality rates (≤90.0%) and malformation rate (27.6%), typically accompanied by heart failure. Proteomics analysis revealed that two greatest changed proteins - protein S100A1 (over-expressed 26 times compared with control) and myosin light chain (under-expressed 25 fold) - are closely associated with heart function. Further study revealed that heart failure was due to calcium ion imbalance and malformed cardiac structure. We conclude that harmful secondary metabolites from cyanobacteria may adversely affect embryo development in this endangered fish, and possibly contribute to its disappearance and unsuccessful recovery in Dianchi Lake. Hazardous consequences of substances released by cyanobacteria should raise concerns for managers addressing recovery of this and other imperiled species in affected lakes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.

    PubMed

    Smith, Michael E; Monroe, J David

    2016-01-01

    Sensory hair cells are the mechanotransductive receptors that detect gravity, sound, and vibration in all vertebrates. Damage to these sensitive receptors often results in deficits in vestibular function and hearing. There are currently two main reasons for studying the process of hair cell loss in fishes. First, fishes, like other non-mammalian vertebrates, have the ability to regenerate hair cells that have been damaged or lost via exposure to ototoxic chemicals or acoustic overstimulation. Thus, they are used as a biomedical model to understand the process of hair cell death and regeneration and find therapeutics that treat or prevent human hearing loss. Secondly, scientists and governmental natural resource managers are concerned about the potential effects of intense anthropogenic sounds on aquatic organisms, including fishes. Dr. Arthur N. Popper and his students, postdocs and research associates have performed pioneering experiments in both of these lines of fish hearing research. This review will discuss the current knowledge regarding the causes and consequences of both lateral line and inner ear hair cell damage in teleost fishes.

  4. Strategies and hurdles using DNA vaccines to fish

    PubMed Central

    2014-01-01

    DNA vaccinations against fish viral diseases as IHNV at commercial level in Canada against VHSV at experimental level are both success stories. DNA vaccination strategies against many other viral diseases have, however, not yet yielded sufficient results in terms of protection. There is an obvious need to combat many other viral diseases within aquaculture where inactivated vaccines fail. There are many explanations to why DNA vaccine strategies against other viral diseases fail to induce protective immune responses in fish. These obstacles include: 1) too low immunogenicity of the transgene, 2) too low expression of the transgene that is supposed to induce protection, 3) suboptimal immune responses, and 4) too high degradation rate of the delivered plasmid DNA. There are also uncertainties with regard distribution and degradation of DNA vaccines that may have implications for safety and regulatory requirements that need to be clarified. By combining plasmid DNA with different kind of adjuvants one can increase the immunogenicity of the transgene antigen – and perhaps increase the vaccine efficacy. By using molecular adjuvants with or without in combination with targeting assemblies one may expect different responses compared with naked DNA. This includes targeting of DNA vaccines to antigen presenting cells as a central factor in improving their potencies and efficacies by means of encapsulating the DNA vaccine in certain carriers systems that may increase transgene and MHC expression. This review will focus on DNA vaccine delivery, by the use of biodegradable PLGA particles as vehicles for plasmid DNA mainly in fish. PMID:24552235

  5. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides)

    PubMed Central

    Annis, Mandy L.; Brumbaugh, William G.; Chasar, Lia C.; Denslow, Nancy D.; Tillitt, Donald E.

    2014-01-01

    Methyl-mercury (MeHg) is a potent neuroendocrine disruptor that impairs reproductive processes in fish. The objectives of this study were to (1) characterize transcriptomic changes induced by MeHg exposure in the female largemouth bass (LMB) hypothalamus under controlled laboratory conditions, (2) investigate the health and reproductive impacts of MeHg exposure on male and female largemouth bass (LMB) in the natural environment, and (3) identify MeHg-associated gene expression patterns in whole brain of female LMB from MeHg-contaminated habitats. The laboratory experiment was a single injection of 2.5 μg MeHg/g body weight for 96 h exposure. The field survey compared river systems in Florida, USA with comparably lower concentrations of MeHg (Wekiva, Santa Fe, and St. Johns Rivers) in fish and one river system with LMB that contained elevated concentrations of MeHg (St. Marys River). Microarray analysis was used to quantify transcriptomic responses to MeHg exposure. Although fish at the high-MeHg site did not show overt health or reproductive impairment, there were MeHg-responsive genes and pathways identified in the laboratory study that were also altered in fish from the high-MeHg site relative to fish at the low-MeHg sites. Gene network analysis suggested that MeHg regulated the expression targets of neuropeptide receptor and steroid signaling, as well as structural components of the cell. Disease-associated gene networks related to MeHg exposure, based upon expression data, included cerebellum ataxia, movement disorders, and hypercalcemia. Gene responses in the CNS are consistent with the documented neurotoxicological and neuroendocrine disrupting effects of MeHg in vertebrates. PMID:24694518

  6. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides).

    PubMed

    Richter, Catherine A; Martyniuk, Christopher J; Annis, Mandy L; Brumbaugh, William G; Chasar, Lia C; Denslow, Nancy D; Tillitt, Donald E

    2014-07-01

    Methyl-mercury (MeHg) is a potent neuroendocrine disruptor that impairs reproductive processes in fish. The objectives of this study were to (1) characterize transcriptomic changes induced by MeHg exposure in the female largemouth bass (LMB) hypothalamus under controlled laboratory conditions, (2) investigate the health and reproductive impacts of MeHg exposure on male and female largemouth bass (LMB) in the natural environment, and (3) identify MeHg-associated gene expression patterns in whole brain of female LMB from MeHg-contaminated habitats. The laboratory experiment was a single injection of 2.5 μg MeHg/g body weight for 96 h exposure. The field survey compared river systems in Florida, USA with comparably lower concentrations of MeHg (Wekiva, Santa Fe, and St. Johns Rivers) in fish and one river system with LMB that contained elevated concentrations of MeHg (St. Marys River). Microarray analysis was used to quantify transcriptomic responses to MeHg exposure. Although fish at the high-MeHg site did not show overt health or reproductive impairment, there were MeHg-responsive genes and pathways identified in the laboratory study that were also altered in fish from the high-MeHg site relative to fish at the low-MeHg sites. Gene network analysis suggested that MeHg regulated the expression targets of neuropeptide receptor and steroid signaling, as well as structural components of the cell. Disease-associated gene networks related to MeHg exposure, based upon expression data, included cerebellum ataxia, movement disorders, and hypercalcemia. Gene responses in the CNS are consistent with the documented neurotoxicological and neuroendocrine disrupting effects of MeHg in vertebrates. Published by Elsevier Inc.

  7. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides)

    USGS Publications Warehouse

    Richter, Catherine A.; Martyniuk, Christopher J.; Annis, Mandy L.; Brumbaugh, William G.; Chasar, Lia C.; Denslow, Nancy D.; Tillitt, Donald E.

    2014-01-01

    Methyl-mercury (MeHg) is a potent neuroendocrine disruptor that impairs reproductive processes in fish. The objectives of this study were to (1) characterize transcriptomic changes induced by MeHg exposure in the female largemouth bass (LMB) hypothalamus under controlled laboratory conditions, (2) investigate the health and reproductive impacts of MeHg exposure on male and female largemouth bass (LMB) in the natural environment, and (3) identify MeHg-associated gene expression patterns in whole brain of female LMB from MeHg-contaminated habitats. The laboratory experiment was a single injection of 2.5 μg MeHg/g body weight for 96 h exposure. The field survey compared river systems in Florida, USA with comparably lower concentrations of MeHg (Wekiva, Santa Fe, and St. Johns Rivers) in fish and one river system with LMB that contained elevated concentrations of MeHg (St. Marys River). Microarray analysis was used to quantify transcriptomic responses to MeHg exposure. Although fish at the high-MeHg site did not show overt health or reproductive impairment, there were MeHg-responsive genes and pathways identified in the laboratory study that were also altered in fish from the high-MeHg site relative to fish at the low-MeHg sites. Gene network analysis suggested that MeHg regulated the expression targets of neuropeptide receptor and steroid signaling, as well as structural components of the cell. Disease-associated gene networks related to MeHg exposure, based upon expression data, included cerebellum ataxia, movement disorders, and hypercalcemia. Gene responses in the CNS are consistent with the documented neurotoxicological and neuroendocrine disrupting effects of MeHg in vertebrates.

  8. Cell block samples from malignant pleural effusion might be valid alternative samples for anaplastic lymphoma kinase detection in patients with advanced non-small-cell lung cancer.

    PubMed

    Zhou, Jianya; Yao, Hongtian; Zhao, Jing; Zhang, Shumeng; You, Qihan; Sun, Ke; Zou, Yinying; Zhou, Caicun; Zhou, Jianying

    2015-06-01

    To evaluate the clinical value of cell block samples from malignant pleural effusion (MPE) as alternative samples to tumour tissue for anaplastic lymphoma kinase (ALK) detection in patients with advanced non-small-cell lung cancer (NSCLC). Fifty-two matched samples were eligible for analysis. ALK status was detected by Ventana immunohistochemistry (IHC) (with the D5F3 clone), reverse transcription polymerase chain reaction (RT-PCR) and fluorescence in-situ hybridization (FISH) in MPE cell block samples, and by FISH in tumour tissue block samples. In total, ALK FISH results were obtained for 52 tumour tissue samples and 41 MPE cell block samples. Eight cases (15.4%) were ALK-positive in tumour tissue samples by FISH, and among matched MPE cell block samples, five were ALK-positive by FISH, seven were ALK-positive by RT-PCR, and eight were ALK-positive by Ventana IHC. The ALK status concordance rates between tumour tissue and MPE cell block samples were 78.9% by FISH, 98.1% by RT-PCR, and 100% by Ventana IHC. In MPE cell block samples, the sensitivity and specificity of Ventana IHC (100% and 100%) and RT-PCR (87.5% and 100%) were higher than those of FISH (62.5% and 100%). Malignant pleural effusion cell block samples had a diagnostic performance for ALK detection in advanced NSCLC that was comparable to that of tumour tissue samples. MPE cell block samples might be valid alternative samples for ALK detection when tissue is not available. Ventana IHC could be the most suitable method for ALK detection in MPE cell block samples. © 2014 John Wiley & Sons Ltd.

  9. Effects of ZnSO4-induced peripheral anosmia on zebrafish behavior and physiology.

    PubMed

    Abreu, Murilo S; Giacomini, Ana C V V; Rodriguez, Rubens; Kalueff, Allan V; Barcellos, Leonardo J G

    2017-03-01

    Olfaction plays a key role in modulating behavioral and physiological responses of various animal species, including fishes. Olfactory deficits can be induced in fish experimentally, and utilized to examine the role of olfaction in their normal and pathological behaviors. Here, we examine whether experimental anosmia, evoked by ZnSO 4 in adult zebrafish can be associated with behavioral and/or physiological responses. We show that experimental ZnSO 4 -induced anosmia caused acute, but not prolonged, anxiogenic-like effects on zebrafish behavior tested in the novel tank test. The procedure also elevated whole-body cortisol levels in zebrafish. Moreover, ZnSO4 treatment, but not sham, produced damage to olfactory epithelium, inducing overt basal cell vacuolization and intercellular edema. The loss of olfaction, assessed by the fish food preference behavior in the aquatic Y-maze, was present 1h, but not 24h, after the treatment. Collectively, this suggests that transient experimental anosmia by ZnSO 4 modulates zebrafish behavior and olfaction, which can be used to evoke and assess their stress-related anxiety-like states. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Immunomodulatory effect of prolactin on Atlantic salmon (Salmo salar) macrophage function.

    PubMed

    Paredes, Marco; Gonzalez, Katerina; Figueroa, Jaime; Montiel-Eulefi, Enrique

    2013-10-01

    The in vitro and in vivo effect of prolactin (PRL) on kidney macrophages from Atlantic salmon (Salmo salar) was investigated under the assumption that PRL stimulates immune innate response in mammals. Kidney macrophages were treated two ways: first, cultured in RPMI 1640 medium containing 10, 25, 50 and 100 ng/mL of PRL and second, isolated from a fish with a PRL-injected dose of 100 ng/Kg. Reduced nitro blue tetrazolium (formazan) was used to produce intracellular superoxide anion. Phagocytic activity of PRL was determined in treated cells by optical microscopy observation of phagocytized Congo red-stained yeast. Kidney lysozyme activity was measured in PRL-injected fish. In vitro and in vivo macrophages treated with PRL presented an enhanced superoxide anion production, elevated phagocytic index and increased phagocytic activity. Treated fish showed higher levels of lysozyme activity in the head kidney compared to the control. These results indicate that PRL-stimulated innate immune response in Atlantic salmon and future studies will allow us to assess the possibility of using PRL as an immunostimulant in the Chilean salmon industry.

  11. Atlantic salmon endothelial cells from the heart were more susceptible than fibroblasts from the bulbus arteriosus to four RNA viruses but protected from two viruses by dsRNA pretreatment.

    PubMed

    Pham, Phuc H; Tong, Winnie W L; Misk, Ehab; Jones, Ginny; Lumsden, John S; Bols, Niels C

    2017-11-01

    Heart diseases caused by viruses are major causes of Atlantic salmon aquaculture loss. Two Atlantic salmon cardiovascular cell lines, an endothelial cell line (ASHe) from the heart and a fibroblast cell line (BAASf) from the bulbus arteriosus, were evaluated for their response to four fish viruses, CSV, IPNV, VHSV IVa and VHSV IVb, and the innate immune agonist, double-stranded RNA mimic poly IC. All four viruses caused cytopathic effects in ASHe and BAASf. However, ASHe was more susceptible to all four viruses than BAASf. When comparing between the viruses, ASHe cells were found to be moderately susceptible to CSV and VHSV IVb, but highly susceptible to IPNV and VHSV IVa induced cell death. All four viruses were capable of propagating in the ASHe cell line, leading to increases in virus titre over time. In BAASf, CSV and IPNV produced more than one log increase in titre from initial infection, but VHSV IVb and IVa did not. When looking at the antiviral response of both cell lines, Mx proteins were induced in ASHe and BAASf by poly IC. All four viruses induced Mx proteins in BAASf, while only CSV and VHSV IVb induced Mx proteins in ASHe. IPNV and VHSV IVa suppressed Mx proteins expression in ASHe. Pretreatment of ASHe with poly IC to allow for Mx proteins accumulation protected the culture from subsequent infections with IPNV and VHSV IVa, resulting in delayed cell death, reduced virus titres and reduced viral proteins expression. These data suggest that endothelial cells potentially can serve as points of infections for viruses in the heart and that two of the four viruses, IPNV and VHSV IVa, have mechanisms to avoid or downregulate antiviral responses in ASHe cells. Furthermore, the high susceptibility of the ASHe cell line to IPNV and VHSV IVa can make it a useful tool for studying antiviral compounds against these viruses and for general detection of fish viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Chirping response of weakly electric knife fish (Apteronotus leptorhynchus) to low-frequency electric signals and to heterospecific electric fish.

    PubMed

    Dunlap, K D; DiBenedictis, B T; Banever, S R

    2010-07-01

    Brown ghost knife fish (Apteronotus leptorhynchus) can briefly increase their electric organ discharge (EOD) frequency to produce electrocommunication signals termed chirps. The chirp rate increases when fish are presented with conspecific fish or high-frequency (700-1100 Hz) electric signals that mimic conspecific fish. We examined whether A. leptorhynchus also chirps in response to artificial low-frequency electric signals and to heterospecific electric fish whose EOD contains low-frequency components. Fish chirped at rates above background when presented with low-frequency (10-300 Hz) sine-wave stimuli; at 30 and 150 Hz, the threshold amplitude for response was 1 mV cm(-1). Low-frequency (30 Hz) stimuli also potentiated the chirp response to high-frequency ( approximately 900 Hz) stimuli. Fish increased their chirp rate when presented with two heterospecific electric fish, Sternopygus macrurus and Brachyhypopomus gauderio, but did not respond to the presence of the non-electric fish Carassius auratus. Fish chirped to low-frequency (150 Hz) signals that mimic those of S. macrurus and to EOD playbacks of B. gauderio. The response to the B. gauderio playback was reduced when the low-frequency component (<150 Hz) was experimentally filtered out. Thus, A. leptorhynchus appears to chirp specifically to the electric signals of heterospecific electric fish, and the low-frequency components of heterospecific EODs significantly influence chirp rate. These results raise the possibility that chirps function to communicate to conspecifics about the presence of a heterospecific fish or to communicate directly to heterospecific fish.

  13. Molecular cloning and characterization of V2-type receptor in two ray-finned fish, gray bichir, Polypterus senegalus and medaka, Oryzias latipes.

    PubMed

    Konno, Norifumi; Kurosawa, Mayumi; Kaiya, Hiroyuki; Miyazato, Mikiya; Matsuda, Kouhei; Uchiyama, Minoru

    2010-07-01

    In tetrapods, vasopressin (VP) and vasotocin (VT) are involved in various aspects of physiology and behavior including osmoregulation, cardiovascular function, reproduction, stress response and social behavior. Pharmacological and molecular studies have identified three types of VP/VT receptors, V1a-type (V1aR), V1b-type (V1bR) and V2-type (V2R). On the other hand, only V1aR has so far been identified in teleosts. In the present study, we successfully cloned V2Rs from two ray-finned fish, gray bichir and medaka. Phylogenetic analysis showed that the cloned receptors belong to the V2R group of lobe-finned fish and tetrapods. The amino acid sequences of bichir V2R and medaka V2R were high identity (60-65.5% and 53.2-80.9%, respectively) with other known V2R members, respectively. Reverse transcriptase PCR revealed that ray-finned fish V2R transcripts have been detected in various tissues including brain, gill, heart, liver, kidney and reproductive organs, suggesting that ray-finned fish V2R might mediate multiple functions of VT. In functional analysis, the cells transfected with the cloned receptors responded with the accumulation of intracellular cAMP in a concentration-dependent manner following VT stimulation, but not respond with [Ca(2+)]i. Furthermore, pretreatment with mammalian V2R antagonist (OPC-31260) to the cells transfected with medaka V2R significantly inhibited an increase of the VT-induced intracellular cAMP. These results suggest that ray-finned fish possess a functional V2R linked to adenylate cyclase and the cAMP signaling pathway as well as V2Rs of lobe-finned fish and tetrapods. Thus, the present study suggests that functional V2R evolved prior to the divergence of the ray- and lobe-finned fish lineages. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Dacomitinib (PF-00299804), a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor, demonstrates remarkable activity against HER2-amplified uterine serous endometrial cancer in vitro.

    PubMed

    Zhu, Liancheng; Lopez, Salvatore; Bellone, Stefania; Black, Jonathan; Cocco, Emiliano; Zigras, Tiffany; Predolini, Federica; Bonazzoli, Elena; Bussi, Beatrice; Stuhmer, Zachary; Schwab, Carlton L; English, Diana P; Ratner, Elena; Silasi, Dan-Arin; Azodi, Masoud; Schwartz, Peter E; Rutherford, Thomas J; Santin, Alessandro D

    2015-07-01

    Uterine serous carcinoma (USC) is an aggressive subtype of endometrial cancer that carries an extremely poor prognosis. Up to 35 % of USC may overexpress the epidermal growth factor receptor-2 (HER2/neu) at strong (i.e., 3+) level by immunohistochemistry (IHC) or harbor HER2/neu gene amplification by fluorescence in situ hybridization (FISH). In this study, we assessed the sensitivity of a panel of USC cell lines with and without HER2/neu gene amplification to dacomitinib (PF-00299804), an irreversible pan-human epidermal growth factor receptor tyrosine kinase inhibitor. Eight primary cell lines (i.e., four harboring HER2/neu gene amplification by FISH and four FISH- cell lines), all demonstrating similar in vitro growth rates, were evaluated in viability/proliferation assays. The effect of dacomitinib on cell growth, cell cycle distribution, and signaling was determined using flow cytometry-based assays. Dacomitinib caused a significantly stronger growth inhibition in HER2/neu FISH+ USC cell lines when compared to FISH- USC (dacomitinib half maximal inhibitory concentration (IC50) mean ± SEM = 0.02803 ± 0.003355 μM in FISH+ versus 1.498 ± 0.2209 μM in FISH- tumors, P < 0.0001). Dacomitinib growth inhibition was associated with a significant and dose-dependent decline in phosphorylated HER2/neu and S6 transcription factor and a dose-dependent and time-dependent cell cycle arrest in G0/G1 in FISH+ USC. Dacomitinib is remarkably effective against chemotherapy-resistant HER2/neu gene-amplified USC. Clinical studies with dacomitinib in HER2/neu FISH+ USC patients resistant to standard salvage chemotherapy are warranted.

  15. Molecular cloning of Salmo salar Toll-like receptors (TLR1, TLR22, TLR5M and TLR5S) and expression analysis in SHK-1 cells during Piscirickettsia salmonis infection.

    PubMed

    Salazar, C; Haussmann, D; Kausel, G; Figueroa, J

    2016-02-01

    In fish, the innate immune system is the primary response against infection. Toll-like receptors (TLRs) recognize pathogens through pathogen-associated molecular patterns (PAMPs), and some target molecules of TLRs are homologous between fish and mammals. Piscirickettsia salmonis is one of the main pathogens affecting the salmon industry in Chile. Better knowledge of mechanisms underlying its invasive capacity and recognition of target cells is crucial for vaccine development. Therefore, Salmo salar L. TLR1, TLR22, membrane TLR5M and soluble TLR5S sequences were cloned, and expression kinetics were analysed by RT-qPCR in salmon head kidney cells (SHK-1) infected with three different P. salmonis preparations: alive, formaldehyde treated, extract. Clearly, all analysed TLRs were expressed and transcription level changes were revealed at 2 hpi, 12 or 16 hpi and 24 hpi depending on P. salmonis infection scheme. Increased IL1-beta expression confirmed TLR pathway response. Furthermore, significant expression modulations of several members of the TLR pathway in this in vitro model suggest that P. salmonis extract rather than formaldehyde-inactivated bacteria might strengthen the salmon immune system. © 2015 John Wiley & Sons Ltd.

  16. Host responses of Japanese flounder Paralichthys olivaceus with lymphocystis cell formation.

    PubMed

    Iwakiri, Shogo; Song, Jun-Young; Nakayama, Kei; Oh, Myung-Joo; Ishida, Minoru; Kitamura, Shin-Ichi

    2014-06-01

    Lymphocystis disease virus (LCDV) is the causative agent of lymphocystis disease (LCD). In this study, we investigated the mechanisms of lymphocystis cell (LCC) formation from the viewpoint of gene expression changes in the infected fish. LCC occurrence and virus titers in the experimentally infected Japanese flounder, Paralichthys olivaceus were monitored by visual confirmation and real-time PCR, respectively. The gene expression changes in the fish fin were investigated by microarray experiments. LCCs firstly appeared in the fish at 21 days post infection (dpi). LCD incidence increased with time and reached 92.9% at 62 dpi. LCDV genome was firstly detected from dorsal fins at 14 dpi, and the relative amount of the genome gradually-increased until 56 dpi. Since the occurrence of LCC was approximately synchronized with increasing of the virus genome, virus replication might play important roles for LCC formation. The microarray detected a few gene expression changes until 28 dpi. However, the number of expression changed genes dramatically increased between 28 and 42 dpi in which LCCs formation was active. From the microarray data analyses, apoptosis and cell division related genes were down-regulated, whereas cell fusion and collagen related genes were up-regulated at 42 dpi. Together with the observation of morphological changes of LCCs in previous reports, it is suggested that the following steps are involved in LCC formation: the virus infected cells were (1) inhibited apoptotic death and (2) cell division before enlargement, (3) hypertrophied by cell fusion, and (4) surrounded by a hyaline capsule associated with the alteration of collagen fibers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Squamous epithelium formation in the respiratory intestine of the bronze Corydoras Corydoras aeneus (Callichthyidae Teleostei).

    PubMed

    Satora, Leszek; Kozioł, Katarzyna; Zebrowski, Jacek

    2017-06-01

    Accessory respiratory organs in fish exhibit great diversity but share the presence of numerous capillaries covered by a simple squamous epithelium. The adoption of the intestine for respiratory function needs certain special modifications. In this study, we explored immunohistochemical and metabolic fingerprint features that could underlay this adaptation in bronze corydoras Corydoras aeneus. Immunohistochemical localization of the cytoplasmic domain of epidermal growth factor receptor (EGFR) in the respiratory part of intestine demonstrated a strong positive immunoreaction in epithelial cells and connective tissue. Fourier Transfer Infrared (FTIR) spectroscopy coupled with chemometrics discriminated between anterior and posterior region of intestine in terms of secondary structure of proteins and the abundance of p-cresol and other phenolics. The latter were reduced in the posterior part of intestine, indicating the cessation of digestive function in this region. It has been suggested that aquatic hypoxia via endocrine cells (hypoxia-sensitive) activate EGFR, which induce proliferation of squamous epithelial cells, thereby enabling gas diffusion in the posterior part of intestine. It seems that hypoxia and normoxia are opposed conditions adjusting the production of squamous epithelial cells in this intestine. The physiological role of EGFR in the respiratory intestine of bronze corydoras is of interest not only from an evolutionary aspect but also in terms of a potential model for observations process proliferation squamous epithelial cells. Future investigations on the molecular responses to different water oxygen levels in air-breathing bronze corydoras fish are required to clarify the mechanism responsible for squamous cell proliferation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Nodavirus Colonizes and Replicates in the Testis of Gilthead Seabream and European Sea Bass Modulating Its Immune and Reproductive Functions

    PubMed Central

    Valero, Yulema; Arizcun, Marta; Esteban, M. Ángeles; Bandín, Isabel; Olveira, José G.; Patel, Sonal; Cuesta, Alberto; Chaves-Pozo, Elena

    2015-01-01

    Viruses are threatening pathogens for fish aquaculture. Some of them are transmitted through gonad fluids or gametes as occurs with nervous necrosis virus (NNV). In order to be transmitted through the gonad, the virus should colonize and replicate inside some cell types of this tissue and avoid the subsequent immune response locally. However, whether NNV colonizes the gonad, the cell types that are infected, and how the immune response in the gonad is regulated has never been studied. We have demonstrated for the first time the presence and localization of NNV into the testis after an experimental infection in the European sea bass (Dicentrarchus labrax), and in the gilthead seabream (Sparus aurata), a very susceptible and an asymptomatic host fish species, respectively. Thus, we localized in the testis viral RNA in both species using in situ PCR and viral proteins in gilthead seabream by immunohistochemistry, suggesting that males might also transmit the virus. In addition, we were able to isolate infective particles from the testis of both species demonstrating that NNV colonizes and replicates into the testis of both species. Blood contamination of the tissues sampled was discarded by completely fish bleeding, furthermore the in situ PCR and immunocytochemistry techniques never showed staining in blood vessels or cells. Moreover, we also determined how the immune and reproductive functions are affected comparing the effects in the testis with those found in the brain, the main target tissue of the virus. Interestingly, NNV triggered the immune response in the European sea bass but not in the gilthead seabream testis. Regarding reproductive functions, NNV infection alters 17β-estradiol and 11-ketotestosterone production and the potential sensitivity of brain and testis to these hormones, whereas there is no disruption of testicular functions according to several reproductive parameters. Moreover, we have also studied the NNV infection of the testis in vitro to assess local responses. Our in vitro results show that the changes observed on the expression of immune and reproductive genes in the testis of both species are different to those observed upon in vivo infections in most of the cases. PMID:26691348

  19. Pros and cons of fish skin cells in culture: long-term full skin and short-term scale cell culture from rainbow trout, Oncorhynchus mykiss.

    PubMed

    Rakers, Sebastian; Klinger, Matthias; Kruse, Charli; Gebert, Marina

    2011-12-01

    Here, we report the establishment of a permanent skin cell culture from rainbow trout (Oncorhynchus mykiss). The cells of the fish skin cell culture could be propagated over 60 passages so far. Furthermore, we show for the first time that it is possible to integrate freshly harvested rainbow trout scales into this new fish skin cell culture. We further demonstrated that epithelial cells derived from the scales survived in the artificial micro-environment of surrounding fibroblast-like cells. Also, antibody staining indicated that both cell types proliferated and started to build connections with the other cell type. It seems that it is possible to generate an 'artificial skin' with two different cell types. This could lead to the development of a three-dimensional test system, which might be a better in vitro representative of fish skin in vivo than individual skin cell lines. Copyright © 2011 Elsevier GmbH. All rights reserved.

  20. Telomere length and somatic mutations in correlation with response to immunosuppressive treatment in aplastic anaemia.

    PubMed

    Park, Hee S; Park, Si N; Im, Kyongok; Kim, Sung-Min; Kim, Jung-Ah; Hwang, Sang M; Lee, Dong S

    2017-08-01

    We investigated the frequencies of cytogenetic aberrations and somatic mutations of prognostic relevance in 393 patients with aplastic anaemia (AA). Clonality was determined by G-banding/fluorescence in situ hybridization (FISH) (n = 245), and targeted capture sequencing was performed for 88 haematopoiesis-related genes (n = 70). The telomere length (TL) of bone marrow nucleated cells was measured at the single cell level by FISH (n = 135). Eighteen (4·6%) patients showed disease progression, and monosomy 7 (50·0%) was the most predominant cytogenetic evolution at disease transformation. One third of patients (32·9%) presented at least 1 mutation; the most frequently mutated genes were NOTCH1, NF1, SCRIB, BCOR and DNMT3A. The patient group with clonal changes (30·7%) showed an adverse response to immunosuppressive treatment (IST), compared to the non-clonal group, but this finding did not show statistical significance. The TL of AA patients was significantly shorter than normal control and patients with clonal changes showed significantly shorter TLs. Patients with TL>5·9 showed a higher response rate to IST (P = 0·048). In conclusion, the patients with clonal changes or TL attrition showed a poor response to IST. Shorter TL can be used not only as a biomarker, but also as a predictive marker for treatment response to IST. © 2017 John Wiley & Sons Ltd.

  1. Detection of ALK rearrangements in malignant pleural effusion cell blocks from patients with advanced non-small cell lung cancer: a comparison of Ventana immunohistochemistry and fluorescence in situ hybridization.

    PubMed

    Wang, Weiya; Tang, Yuan; Li, Jinnan; Jiang, Lili; Jiang, Yong; Su, Xueying

    2015-02-01

    Surgical resections or tumor biopsies are often not available for patients with late-stage non-small cell lung cancer (NSCLC). Cytological specimens, such as malignant pleural effusion (MPE) cell blocks, are critical for molecular testing. Currently, diagnostic methods to identify anaplastic lymphoma kinase (ALK) rearrangements include fluorescence in situ hybridization (FISH), real-time reverse transcriptase-polymerase chain reaction (RT-PCR), and immunohistochemistry (IHC). In the current study, the authors compared Ventana ALK IHC assays and ALK FISH to detect ALK rearrangements in MPE cell blocks from patients with advanced NSCLC. The ALK IHC assay and ALK FISH were performed on 63 MPE cell blocks. RT-PCR analysis was performed as additional validation in cases in which a discrepancy was observed between the IHC assay and FISH results. The Ventana ALK IHC assay was found to be informative for all 63 samples, and 8 cases were positive. Fifty-eight cases were interpretable for FISH detection, and 6 were positive. The concordance between IHC and FISH was 100% among the 58 cases. Of the 5 uninterpretable ALK FISH cases, 2 cases and 3 cases, respectively, were ALK IHC positive and negative. One of the 2 ALK IHC-positive cases also demonstrated a positive result in the RT-PCR assay and the patient benefited from crizotinib treatment. MPE cell blocks can be used successfully for the detection of ALK rearrangement when tumor tissue is not available. The Ventana ALK IHC assay is an effective screening method for ALK rearrangement in MPE cell blocks from patients with advanced NSCLC, demonstrating high agreement with FISH results. © 2014 American Cancer Society.

  2. Hematology, cytochemistry and ultrastructure of blood cells in fishing cat (Felis viverrina).

    PubMed

    Prihirunkit, Kreangsak; Salakij, Chaleow; Apibal, Suntaree; Narkkong, Nual Anong

    2007-06-01

    Hematological, cytochemical and ultrastructural features of blood cells in fishing cat (Felis viverrina) were evaluated using complete blood cell counts with routine and cytochemical blood stains, and scanning and transmission electron microscopy. No statistically significant difference was found in different genders of this animal. Unique features of blood cells in this animal were identified in hematological, cytochemical and ultrastructural studies. This study contributes to broaden hematological resources in wildlife animals and provides a guideline for identification of blood cells in the fishing cat.

  3. Inhibition of an Aquatic Rhabdovirus Demonstrates Promise of a Broad-Spectrum Antiviral for Use in Aquaculture.

    PubMed

    Balmer, Bethany F; Powers, Rachel L; Zhang, Ting-Hu; Lee, Jihye; Vigant, Frederic; Lee, Benhur; Jung, Michael E; Purcell, Maureen K; Snekvik, Kevin; Aguilar, Hector C

    2017-02-15

    Many enveloped viruses cause devastating disease in aquaculture, resulting in significant economic impact. LJ001 is a broad-spectrum antiviral compound that inhibits enveloped virus infections by specifically targeting phospholipids in the lipid bilayer via the production of singlet oxygen ( 1 O 2 ). This stabilizes positive curvature and decreases membrane fluidity, which inhibits virus-cell membrane fusion during viral entry. Based on data from previous mammalian studies and the requirement of light for the activation of LJ001, we hypothesized that LJ001 may be useful as a preventative and/or therapeutic agent for infections by enveloped viruses in aquaculture. Here, we report that LJ001 was more stable with a prolonged inhibitory half-life at relevant aquaculture temperatures (15°C), than in mammalian studies at 37°C. When LJ001 was preincubated with our model virus, infectious hematopoietic necrosis virus (IHNV), infectivity was significantly inhibited in vitro (using the epithelioma papulosum cyprini [EPC] fish cell line) and in vivo (using rainbow trout fry) in a dose-dependent and time-dependent manner. While horizontal transmission of IHNV in a static cohabitation challenge model was reduced by LJ001, transmission was not completely blocked at established antiviral doses. Therefore, LJ001 may be best suited as a therapeutic for aquaculture settings that include viral infections with lower virus-shedding rates than IHNV or where higher viral titers are required to initiate infection of naive fish. Importantly, our data also suggest that LJ001-inactivated IHNV elicited an innate immune response in the rainbow trout host, making LJ001 potentially useful for future vaccination approaches. Viral diseases in aquaculture are challenging because there are few preventative measures and/or treatments. Broad-spectrum antivirals are highly sought after and studied because they target common components of viruses. In our studies, we used LJ001, a broad-spectrum antiviral compound that specifically inhibits enveloped viruses. We used the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV) as a model to study aquatic enveloped virus diseases and their inhibition. We demonstrated inhibition of IHNV by LJ001 both in cell culture as well as in live fish. Additionally, we showed that LJ001 inhibited the transmission of IHNV from infected fish to healthy fish, which lays the groundwork for using LJ001 as a possible therapeutic for aquatic viruses. Our results also suggest that virus inactivated by LJ001 induces an immune response, showing potential for future preventative (e.g., vaccine) applications. Copyright © 2017 American Society for Microbiology.

  4. Immunological responses and disease resistance of rainbow trout (Oncorhynchus mykiss) juveniles following dietary administration of stinging nettle (Urtica dioica).

    PubMed

    Saeidi Asl, Mohammad Reza; Adel, Milad; Caipang, Christopher Marlowe A; Dawood, Mahmoud A O

    2017-12-01

    The present study investigated the effects of dietary supplementation of stinging nettle (Urtica dioica) on growth performance, skin mucus, immune response and disease resistance of rainbow trout (Oncorhynchus mykiss) fed with diets supplemented with U. dioica at 0, 1, 2 and 3%. After 8 weeks of feeding, the addition of U. dioica at 3% level resulted in improved weight gain, specific growth rate and feed conversion ratio significantly when compared to the other groups (P < 0.05). Hematological responses including: hematocrit (Htc), hemoglobin (Hb), lymphocyte and neutrophil populations enhanced significantly in fish fed 3% of stinging nettle when measured after 4 weeks; while, total red blood cells, white blood, Htc, Hb, lymphocyte and neutrophil populations significantly increased after 8 weeks in the same group (P < 0.05). Total serum protein and glucose contents increased significantly in fish fed stinging nettle at 3% when compared to the other groups after 8 weeks; however, triglycerides decreased significantly in the same group on the 4th and 8th week (P < 0.05). Additionally, several immune parameters, namely, IgM, lysozyme, complement components C3 and C4, and respiratory burst of blood leukocytes significantly increased in the 3% fed group on the 4th week; while, after 8 weeks the immune responses enhanced in fish fed 2 and 3% diets (P < 0.05). At the end of the feeding trial, mucus samples obtained from the fish fed stinging nettle supplementation exhibited improved antagonistic activities against several bacterial pathogens (Streptococcus iniae, Yersinia ruckeri, Vibrio anguillarum and Lactococcus garviae), skin mucus enzymes activities (alkaline phosphatase, lysozyme, protease and esterase) and protein levels in 2 and 3% groups with the highest being in case of 3% group when compared to the other groups (P < 0.05). The cumulative mortality of rainbow trout subjected to Y. ruckeri infectious exhibited relatively low mortality levels in all supplemented groups with the lowest being in fish fed 3% stinging nettle. The present findings demonstrated that dietary administration of U. dioica enhanced growth and stimulated fish immunity; thus, enabling the fish to be more resistant against bacterial infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Interrenal dysfunction in fish from contaminated sites: In vivo and in vitro assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hontela, A.

    1998-01-01

    Cortisol, synthesized in the interrenal cells of teleost head kidney, has a major role in the physiologic response to physical and chemical stressors. Plasma levels of cortisol increase in physiologically competent fish acutely exposed to stressors such as cadmium or mercury. The effects of chronic low level exposures are less well understood. The author has diagnosed an endocrine impairment characterized by a reduced capacity to elevate plasma cortisol levels in response to an acute standardized capture stress in yellow perch (Perca flavescens) and in northern pike (Esox lucius) sampled at sites contaminated by mixtures of pollutants (heavy metals, polycyclic aromaticmore » hydrocarbons, and polychlorinated biphenyls), by heavy metals, or by bleached kraft mill effluent. The studies with fish, as well as with amphibians at contaminated sites, demonstrated that low level chronic exposures impair secretion of corticosteroids. The author has developed new tests for assessment of the functional integrity of teleost and amphibian interrenal tissue using an adrenocorticotropic hormone (ACTH) challenge, in vivo and in vitro. The reduced ability to respond to ACTH indicates that the normal neuroendocrine response to stressors may be disrupted and that the ability to cope with biotic and abiotic stressors in the environment may be significantly reduced in the impaired animals.« less

  6. Chronic intake of high fish oil diet induces myeloid-derived suppressor cells to promote tumor growth

    PubMed Central

    Li, Xiaoping; Cheng, Lu; Han, Mutian; Zhang, Miaomiao; Liu, Xia; Xu, Huaxi; Zhang, Minghui; Shao, Qixiang; Qi, Ling

    2014-01-01

    Omega-3 polyunsaturated fatty acids enriched fish oil exerts beneficial anti-inflammatory effects in animal models with acute and chronic inflammatory diseases. Myeloid-derived suppressor cells (MDSCs), comprised of myeloid progenitors and precursors of myeloid cells, play vital roles in cancer. How fish oil affects the generation of MDSCs and the tumor development remains largely unexplored. Here, we show that dietary intake of high fish oil diet suppresses CD8+ T cells activation and proliferation in vivo via elevated levels of MDSCs. Mechanistically, high fish oil diet induces the expression of immunosuppressive cytokine IL-10 and promotes myelopoiesis in the spleen as well as other peripheral tissues. The immature myeloid cells in the spleen exhibit morphological and functional characteristics of MDSCs with the capability to downregulate CD8+ T cells activation. Depletion of MDSCs using anti-Gr-1 antibody decreases the growth of subcutaneously transferred B16 melanoma in mice on high fish oil diet. Interestingly, diet-induced production of MDSCs is not solely dependent of the spleen, as splenectomy has no effect on the tumor progress. Our data show that the liver functions as an alternative extramedullary hematopoiesis organ to support MDSCs differentiation and maintain tumor growth. Taken together, our study provides a novel insight into the physiological effects of fish oil and points to MDSCs as a possible mediator linking dietary fish oil intake and immunosuppression in cancer immunosurveillance. PMID:24691944

  7. FISH-Flow, a protocol for the concurrent detection of mRNA and protein in single cells using fluorescence in situ hybridization and flow cytometry

    PubMed Central

    Arrigucci, Riccardo; Bushkin, Yuri; Radford, Felix; Lakehal, Karim; Vir, Pooja; Pine, Richard; Martin, December; Sugarman, Jeffrey; Zhao, Yanlin; Yap, George S; Lardizabal, Alfred A; Tyagi, Sanjay; Gennaro, Maria Laura

    2017-01-01

    We describe a flow-cytometry-based protocol for intracellular mRNA measurements in nonadherent mammalian cells using fluorescence in situ hybridization (FISH) probes. The method, which we call FISH-Flow, allows for high-throughput multiparametric measurements of gene expression, a task that was not feasible with earlier, microscopy-based approaches. The FISH-Flow protocol involves cell fixation, permeabilization and hybridization with a set of fluorescently labeled oligonucleotide probes. In this protocol, surface and intracellular protein markers can also be stained with fluorescently labeled antibodies for simultaneous protein and mRNA measurement. Moreover, a semiautomated, single-tube version of the protocol can be performed with a commercially available cell-wash device that reduces cell loss, operator time and interoperator variability. It takes ~30 h to perform this protocol. An example of FISH-Flow measurements of cytokine mRNA induction by ex vivo stimulation of primed T cells with specific antigens is described. PMID:28518171

  8. Isolation and identification of a lethal rhabdovirus from farmed rice field eels Monopterus albus.

    PubMed

    Ou, Tong; Zhu, Ruo-Lin; Chen, Zhong-Yuan; Zhang, Qi-Ya

    2013-11-06

    We provide the first description of a virus responsible for a systemic hemorrhagic disease causing high mortality in farmed rice field eels Monopterus albus in China. Typical signs exhibited by the diseased fish were extensive hemorrhages in the skin and viscera and some neurological signs, such as loss of equilibrium and disorganized swimming. Histopathological examination revealed various degrees of necrosis within the spleen and liver. Virus isolation was attempted from visceral tissues of diseased fish by inoculation on 6 fish cell lines. Typical cytopathic effects (CPE) were produced in bluegill fry (BF2) cells, so this cell line was chosen for further isolation and propagation of the virus. Electron microscopy observation showed that the negative stained viral particles had the characteristic bullet shape of rhabdoviruses and an estimated size of 60 × 120 nm. We therefore tentatively refer to this virus as Monopterus albus rhabdovirus (MoARV). Molecular characterization of MoARV, including sequence analysis of the nucleoprotein (N), phosphoprotein (P), and glycoprotein (G) genes, revealed 94.5 to 97.3% amino acid similarity to that of Siniperca chuatsi rhabdovirus. Phylogenetic analysis based on the amino acid sequences of N and G proteins indicated that MoARV should be a member of the genus Vesiculovirus. Koch's postulates were fulfilled by infecting healthy rice field eels with MoARV, which produced an acute infection. RT-PCR analysis demonstrated that MoARV RNA could be detected in both naturally and experimentally infected fish. The data suggest that MoARV was the causative pathogen of the disease.

  9. The secretogranin-II derived peptide secretoneurin modulates electric behavior in the weakly pulse type electric fish, Brachyhypopomus gauderio.

    PubMed

    Pouso, Paula; Quintana, Laura; López, Gabriela C; Somoza, Gustavo M; Silva, Ana C; Trudeau, Vance L

    2015-10-01

    Secretoneurin (SN) in the preoptic area and pituitary of mammals and fish has a conserved close association with the vasopressin and oxytocin systems, members of a peptide family that are key in the modulation of sexual and social behaviors. Here we show the presence of SN-immunoreactive cells and projections in the brain of the electric fish, Brachyhypopomus gauderio. Secretoneurin colocalized with vasotocin (AVT) and isotocin in cells and fibers of the preoptic area. In the rostral pars distalis of the pituitary, many cells were both SN and prolactin-positive. In the hindbrain, at the level of the command nucleus of the electric behavior (pacemaker nucleus; PN), some of SN-positive fibers colocalized with AVT. We also explored the potential neuromodulatory role of SN on electric behavior, specifically on the rate of the electric organ discharge (EOD) that signals arousal, dominance and subordinate status. Each EOD is triggered by the command discharge of the PN, ultimately responsible for the basal EOD rate. SN modulated diurnal basal EOD rate in freely swimming fish in a context-dependent manner; determined by the initial value of EOD rate. In brainstem slices, SN partially mimicked the in vivo behavioral effects acting on PN firing rate. Taken together, our results suggest that SN may regulate electric behavior, and that its effect on EOD rate may be explained by direct action of SN at the PN level through either neuroendocrine and/or endocrine mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Identification of viral hemorrhagic septicemia virus isolated from Pacific cod Gadus macrocephalus in Prince William Sound Alaska, USA

    USGS Publications Warehouse

    Meyers, T.R.; Sullivan, J.; Emmenegger, E.; Follett, J.; Short, S.; Batts, W.N.; Winton, J.R.

    1992-01-01

    Ulcerative slun tissues from 2 Pacific cod Gadus rnacrocephalus caught in Prince William Sound, Alaska, USA, were examined for virus by Fish Pathology staff within the F.R.E.D. Division of the Alaska Department of Fish and Game. Six days after inoculation of Epitheliorna papulosum cyprini (EPC) cells at 14"C, diffuse rounding and lifting of cells from the monolayers suggestive of cytopathlc effect became visible in the lower sample dilutions. Ultrastructural examinations of affected EPC cells showed rhabdovirus particles within cytoplasmic vacuoles and on the cell surface membranes. Virus isolates from both cod were subsequently confirmed as viral hemorrhagic septicemia virus (VHSV) by serum neutralizabon and immunoblot assay. This is the first VHSV isolated from Pacific cod, which represents a new host species for the virus. Histologically, cod skin ulcers appeared to be caused by a foreign-body-type inflammatory response to foci of protozoa resembling X cells that also had plasmodial stages. Whether the rhabdovirus was incidental to the slun lesion or played a role in its etiology remains to be determined. The possible relationship between thls virus and the recent occurrences of VHSV in anadromous salmoruds from Washington State, USA, is discussed.

  11. Threonine modulates immune response, antioxidant status and gene expressions of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream (Megalobrama amblycephala).

    PubMed

    Habte-Tsion, Habte-Michael; Ren, Mingchun; Liu, Bo; Ge, Xianping; Xie, Jun; Chen, Ruli

    2016-04-01

    A 9-week feeding trial was conducted to investigate the effects of graded dietary threonine (Thr) levels (0.58-2.58%) on the hematological parameters, immune response, antioxidant status and hepatopancreatic gene expression of antioxidant enzymes and antioxidant-immune-cytokine-related signaling molecules in juvenile blunt snout bream. For this purpose, 3 tanks were randomly arranged and assigned to each experimental diet. Fish were fed with their respective diet to apparent satiation 4 times daily. The results indicated that white blood cell, red blood cell and haemoglobin significantly responded to graded dietary Thr levels, while hematocrit didn't. Complement components (C3 and C4), total iron-binding capacity (TIBC), immunoglobulin M (IgM), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) increased with increasing dietary Thr levels up to 1.58-2.08% and thereafter tended to decrease. Dietary Thr regulated the gene expressions of Cu/Zn-SOD, Mn-SOD and CAT, GPx1, glutathione S-transferase mu (GST), nuclear factor erythroid 2-related factor 2 (Nrf2), heat shock protein-70 (Hsp70), tumor necrosis factor-alpha (TNF-α), apolipoprotein A-I (ApoA1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and fructose-bisphosphate aldolase B (ALDOB); while the gene expression of peroxiredoxin II (PrxII) was not significantly modified by graded Thr levels. These genes are involved in different functions including antioxidant, immune, and defense responses, energy metabolism and protein synthesis. Therefore, this study could provide a new molecular tool for studies in fish immunonutrition and shed light on the regulatory mechanisms that dietary Thr improved the antioxidant and immune capacities of fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Molecular identification and transmission studies of X-cell parasites from Atlantic cod Gadus morhua (Gadiformes: Gadidae) and the northern black flounder Pseudopleuronectes obscurus (Pleuronectiformes: Pleuronectidae)

    PubMed Central

    2011-01-01

    Background Epidermal pseudotumours from Hippoglossoides dubius and Acanthogobius flavimanus in Japan and gill lesions in Limanda limanda from the UK have been shown to be caused by phylogenetically related protozoan parasites, known collectively as X-cells. However, the phylogenetic position of the X-cell group is not well supported within any of the existing protozoan phyla and they are currently thought to be members of the Alveolata. Ultrastructural features of X-cells in fish pseudotumours are somewhat limited and no typical environmental stages, such as spores or flagellated cells, have been observed. The life cycles for these parasites have not been demonstrated and it remains unknown how transmission to a new host occurs. In the present study, pseudobranchial pseudotumours from Atlantic cod, Gadus morhua, in Iceland and epidermal pseudotumours from the northern black flounder, Pseudopleuronectes obscurus, in Japan were used in experimental transmission studies to establish whether direct transmission of the parasite is achievable. In addition, X-cells from Atlantic cod were sequenced to confirm whether they are phylogenetically related to other X-cells and epidermal pseudotumours from the northern black flounder were analysed to establish whether the same parasite is responsible for infecting different flatfish species in Japan. Results Phylogenetic analyses of small subunit ribosomal DNA (SSU rDNA) sequence data from Atlantic cod X-cells show that they are a related parasite that occupies a basal position to the clade containing other X-cell parasites. The X-cell parasite causing epidermal pseudotumours in P. obscurus is the same parasite that causes pseudotumours in H. dubius. Direct, fish to fish, transmission of the X-cell parasites used in this study, via oral feeding or injection, was not achieved. Non-amoeboid X-cells are contained within discrete sac-like structures that are loosely attached to epidermal pseudotumours in flatfish; these X-cells are able to tolerate exposure to seawater. A sensitive nested PCR assay was developed for the sub clinical detection of both parasites and to assist in future life cycle studies. PCR revealed that the parasite in P. obscurus was detectable in non-pseudotumourous areas of fish that had pseudotumours present in other areas of the body. Conclusions The inability to successfully transmit both parasites in this study suggests that either host detachment combined with a period of independent development or an alternate host is required to complete the life cycle for X-cell parasites. Phylogenetic analyses of SSU rDNA confirm a monophyletic grouping for all sequenced X-cell parasites, but do not robustly support their placement within any established protist phylum. Analysis of SSU rDNA from X-cells in Japanese flatfish reveals that the same parasite can infect more than one species of fish. PMID:21299903

  13. Micronucleus assay in aquatic animals.

    PubMed

    Bolognesi, Claudia; Hayashi, Makoto

    2011-01-01

    Aquatic pollutants produce multiple consequences at organism, population, community and ecosystem level, affecting organ function, reproductive status, population size, species survival and thus biodiversity. Among these, carcinogenic and mutagenic compounds are the most dangerous as their effects may exert a damage beyond that of individual and may be active through several generations. The application of genotoxicity biomarkers in sentinel organisms allows for the assessment of mutagenic hazards and/or for the identification of the sources and fate of the contaminants. Micronucleus (MN) test as an index of accumulated genetic damage during the lifespan of the cells is one of the most suitable techniques to identify integrated response to the complex mixture of contaminants. MN assay is today widely applied in a large number of wild and transplanted aquatic species. The large majority of studies or programmes on the genotoxic effect of the polluted water environment have been carried out with the use of bivalves and fish. Haemocytes and gill cells are the target tissues most frequently considered for the MN determination in bivalves. The MN test was widely validated and was successfully applied in a large number of field studies using bivalves from the genera Mytilus. MN in fish can be visualised in different cell types: erythrocytes and gill, kidney, hepatic and fin cells. The use of peripheral erythrocytes is more widely used because it avoids the complex cell preparation and the killing of the animals. The MN test in fish erythrocytes was validated in laboratory with different species after exposure to a large number of genotoxic agents. The erythrocyte MN test in fish was also widely and frequently applied for genotoxicity assessment of freshwater and marine environment in situ using native or caged animals following different periods of exposure. Large interspecies differences in sensitivity for MN induction were observed. Further validation studies are needed in order to better characterise the different types of nuclear alterations and to clarify the role of biotic and abiotic factors in interspecies and inter-individual variability.

  14. HRGFish: A database of hypoxia responsive genes in fishes

    NASA Astrophysics Data System (ADS)

    Rashid, Iliyas; Nagpure, Naresh Sahebrao; Srivastava, Prachi; Kumar, Ravindra; Pathak, Ajey Kumar; Singh, Mahender; Kushwaha, Basdeo

    2017-02-01

    Several studies have highlighted the changes in the gene expression due to the hypoxia response in fishes, but the systematic organization of the information and the analytical platform for such genes are lacking. In the present study, an attempt was made to develop a database of hypoxia responsive genes in fishes (HRGFish), integrated with analytical tools, using LAMPP technology. Genes reported in hypoxia response for fishes were compiled through literature survey and the database presently covers 818 gene sequences and 35 gene types from 38 fishes. The upstream fragments (3,000 bp), covered in this database, enables to compute CG dinucleotides frequencies, motif finding of the hypoxia response element, identification of CpG island and mapping with the reference promoter of zebrafish. The database also includes functional annotation of genes and provides tools for analyzing sequences and designing primers for selected gene fragments. This may be the first database on the hypoxia response genes in fishes that provides a workbench to the scientific community involved in studying the evolution and ecological adaptation of the fish species in relation to hypoxia.

  15. Effects of acute ammonia toxicity on oxidative stress, immune response and apoptosis of juvenile yellow catfish Pelteobagrus fulvidraco and the mitigation of exogenous taurine.

    PubMed

    Zhang, Muzi; Li, Ming; Wang, Rixin; Qian, Yunxia

    2018-08-01

    Ammonia can easily form in intensive culture systems due to ammonification of uneaten food and animal excretion, which usually brings detrimental health effects to fish. However, little information is available on the mechanisms of the detrimental effects of ammonia stress and mitigate means in fish. In this study, the four experimental groups were carried out to test the response of yellow catfish to ammonia toxicity and their mitigation through taurine: group 1 was injected with NaCl, group 2 was injected with ammonium acetate, group 3 was injected with ammonium acetate and taurine, and group 4 was injected taurine. The results showed that ammonia poisoning could induce ammonia, glutamine, glutamate and malondialdehyde accumulation, and subsequently lead to blood deterioration (red blood cell, hemoglobin and serum biochemical index reduced), oxidative stress (superoxide dismutase and catalase activities declined) and immunosuppression (lysozyme, 50% hemolytic complement, total immunoglobulin, phagocytic index and respiratory burst reduced), but the exogenous taurine could mitigate the adverse effect of ammonia poisoning. In addition, ammonia poisoning could induce up-regulation of antioxidant enzymes (Cu/Zn-SOD, CAT, GPx and GR), inflammatory cytokines (TNF, IL-1 and IL-8) and apoptosis (p53, Bax, caspase 3 and caspase 9) genes transcription, suggesting that cell apoptotic and inflammation may relate to oxidative stress. This result will be helpful to understand the mechanism of aquatic toxicology induced by ammonia in fish. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Acute stress promotes post-injury brain regeneration in fish.

    PubMed

    Sinyakov, Michael S; Haimovich, Amihai; Avtalion, Ramy R

    2017-12-01

    The central nervous system and the immune system, the two major players in homeostasis, operate in the ongoing bidirectional interaction. Stress is the third player that exerts strong effect on these two 'supersystems'; yet, its impact is studied much less. In this work employing carp model, we studied the influence of preliminary stress on neural and immune networks involved in post-injury brain regeneration. The relevant in vivo models of air-exposure stress and precisely directed cerebellum injury have been developed. Neuronal regeneration was evaluated by using specific tracers of cell proliferation and differentiation. Involvement of immune networks was accessed by monitoring the expression of selected T cells markers. Contrast difference between acute and chronic stress manifested in the fact that chronically stressed fish did not survive the brain injury. Neuronal regeneration appeared as a biphasic process whereas involvement of immune system proceeded as a monophasic route. In stressed fish, immune response was fast and accompanied or even preceded neuronal regeneration. In unstressed subjects, immune response took place on the second phase of neuronal regeneration. These findings imply an intrinsic regulatory impact of acute stress on neuronal and immune factors involved in post-injury brain regeneration. Stress activates both neuronal and immune defense mechanisms and thus contributes to faster regeneration. In this context, paradoxically, acute preliminary stress might be considered a distinct asset in speeding up the following post-injury brain regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A comparative study of an innate immune response in Lamprologine cichlid fishes.

    PubMed

    O'Connor, Constance M; Reddon, Adam R; Marsh-Rollo, Susan E; Hellmann, Jennifer K; Ligocki, Isaac Y; Hamilton, Ian M; Balshine, Sigal

    2014-10-01

    Social interactions facilitate pathogen transmission and increase virulence. Therefore, species that live in social groups are predicted to suffer a higher pathogen burden, to invest more heavily in immune defence against pathogens, or both. However, there are few empirical tests of whether social species indeed invest more heavily in immune defence than non-social species. In the current study, we conducted a phylogenetically controlled comparison of innate immune response in Lamprologine cichlid fishes. We focused on three species of highly social cichlids that live in permanent groups and exhibit cooperative breeding (Julidochromis ornatus, Neolamprologus pulcher and Neolamprologus savoryi) and three species of non-social cichlids that exhibit neither grouping nor cooperative behaviour (Telmatochromis temporalis, Neolamprologus tetracanthus and Neolamprologus modestus). We quantified the innate immune response by injecting wild fishes with phytohaemagglutinin (PHA), a lectin that causes a cell-mediated immune response. We predicted that the three highly social species would show a greater immune reaction to the PHA treatment, indicating higher investment in immune defence against parasites relative to the three non-social species. We found significant species-level variation in immune response, but contrary to our prediction, this variation did not correspond to social system. However, we found that immune response was correlated with territory size across the six species. Our results indicate that the common assumption of a positive relationship between social system and investment in immune function may be overly simplistic. We suggest that factors such as rates of both in-group and out-group social interactions are likely to be important mediators of the relationship between sociality and immune function.

  18. A comparative study of an innate immune response in Lamprologine cichlid fishes

    NASA Astrophysics Data System (ADS)

    O'Connor, Constance M.; Reddon, Adam R.; Marsh-Rollo, Susan E.; Hellmann, Jennifer K.; Ligocki, Isaac Y.; Hamilton, Ian M.; Balshine, Sigal

    2014-10-01

    Social interactions facilitate pathogen transmission and increase virulence. Therefore, species that live in social groups are predicted to suffer a higher pathogen burden, to invest more heavily in immune defence against pathogens, or both. However, there are few empirical tests of whether social species indeed invest more heavily in immune defence than non-social species. In the current study, we conducted a phylogenetically controlled comparison of innate immune response in Lamprologine cichlid fishes. We focused on three species of highly social cichlids that live in permanent groups and exhibit cooperative breeding ( Julidochromis ornatus, Neolamprologus pulcher and Neolamprologus savoryi) and three species of non-social cichlids that exhibit neither grouping nor cooperative behaviour ( Telmatochromis temporalis, Neolamprologus tetracanthus and Neolamprologus modestus). We quantified the innate immune response by injecting wild fishes with phytohaemagglutinin (PHA), a lectin that causes a cell-mediated immune response. We predicted that the three highly social species would show a greater immune reaction to the PHA treatment, indicating higher investment in immune defence against parasites relative to the three non-social species. We found significant species-level variation in immune response, but contrary to our prediction, this variation did not correspond to social system. However, we found that immune response was correlated with territory size across the six species. Our results indicate that the common assumption of a positive relationship between social system and investment in immune function may be overly simplistic. We suggest that factors such as rates of both in-group and out-group social interactions are likely to be important mediators of the relationship between sociality and immune function.

  19. Filter-Adapted Fluorescent In Situ Hybridization (FA-FISH) for Filtration-Enriched Circulating Tumor Cells.

    PubMed

    Oulhen, Marianne; Pailler, Emma; Faugeroux, Vincent; Farace, Françoise

    2017-01-01

    Circulating tumor cells (CTCs) may represent an easily accessible source of tumor material to assess genetic aberrations such as gene-rearrangements or gene-amplifications and screen cancer patients eligible for targeted therapies. As the number of CTCs is a critical parameter to identify such biomarkers, we developed fluorescent in situ hybridization (FISH) for CTCs enriched on filters (filter-adapted-FISH, FA-FISH). Here, we describe the FA-FISH protocol, the combination of immunofluorescent staining (DAPI/CD45) and FA-FISH techniques, as well as the semi-automated microscopy method that we developed to improve the feasibility and reliability of FISH analyses in filtration-enriched CTC.

  20. Ambient salinity modifies the action of triiodothyronine in the air-breathing fish Anabas testudineus Bloch: effects on mitochondria-rich cell distribution, osmotic and metabolic regulations.

    PubMed

    Peter, M C Subhash; Leji, J; Peter, Valsa S

    2011-04-01

    The hydromineral and metabolic actions of thyroid hormone on osmotic acclimation in fish is less understood. We, therefore, studied the short-term action of triiodothyronine (T(3)), the potent thyroid hormone, on the distribution and the function of gill mitochondria-rich (MR) cells and on the whole body hydromineral and metabolic regulations of air-breathing fish (Anabas testudineus) adapted to either freshwater (FW) or acclimated to seawater (SA; 30 g L(-1)). As expected, 24 h T(3) injection (100 ng g(-1)) elevated (P<0.05) plasma T(3) but classically reduced (P<0.05) plasma T(4). The higher Na(+), K(+)-ATPase immunoreactivity and the varied distribution pattern of MR cells in the gills of T(3)-treated FW and SA fish, suggest an action of T(3) on gill MR cell migration, though the density of these cells remained unchanged after T(3) treatment. The ouabain-sensitive Na(+), K(+)-ATPase activity, a measure of hydromineral competence, showed increases (P<0.05) in the gills of both FW and SA fish after T(3) administration, but inhibited (P<0.05) in the kidney of the FW fish and not in the SA fish. Exogenous T(3) reduced glucose (P<0.05) and urea (P<0.05) in the plasma of FW fish, whereas these metabolites were elevated (P<0.05) in the SA fish, suggesting a modulatory effect of ambient salinity on the T(3)-driven metabolic actions. Our data identify gill MR cell as a target for T(3) action as it promotes the spatial distribution and the osmotic function of these cells in both fresh water and in seawater. The results besides confirming the metabolic and osmotic actions of T(3) in fish support the hypothesis that the differential actions of T(3) may be due to the direct influence of ambient salinity, a major environmental determinant that alters the osmotic and metabolic strategies of fish. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Visual receptive field properties of cells in the optic tectum of the archer fish.

    PubMed

    Ben-Tov, Mor; Kopilevich, Ivgeny; Donchin, Opher; Ben-Shahar, Ohad; Giladi, Chen; Segev, Ronen

    2013-08-01

    The archer fish is well known for its extreme visual behavior in shooting water jets at prey hanging on vegetation above water. This fish is a promising model in the study of visual system function because it can be trained to respond to artificial targets and thus to provide valuable psychophysical data. Although much behavioral data have indeed been collected over the past two decades, little is known about the functional organization of the main visual area supporting this visual behavior, namely, the fish optic tectum. In this article we focus on a fundamental aspect of this functional organization and provide a detailed analysis of receptive field properties of cells in the archer fish optic tectum. Using extracellular measurements to record activities of single cells, we first measure their retinotectal mapping. We then determine their receptive field properties such as size, selectivity for stimulus direction and orientation, tuning for spatial frequency, and tuning for temporal frequency. Finally, on the basis of all these measurements, we demonstrate that optic tectum cells can be classified into three categories: orientation-tuned cells, direction-tuned cells, and direction-agnostic cells. Our results provide an essential basis for future investigations of information processing in the archer fish visual system.

  2. Socializing makes thick-skinned individuals: on the density of epidermal alarm substance cells in cyprinid fish, the crucian carp (Carassius carassius).

    PubMed

    Stabell, Ole B; Vegusdal, Anne

    2010-09-01

    In cyprinid fish, density of epidermal club cells (i.e. alarm substance cells) has been found to vary between lakes with different predator fauna. Because predators can be labelled with chemical cues from prey, we questioned if club cell density could be controlled indirectly by predators releasing prey cues. In particular, we suspected a possible feedback mechanism between chemical alarm signals and their cellular source. We raised crucian carp singly and in groups of four. For both rearing types, fish were exposed to skin extracts of either conspecifics or brown trout (without club cells), and provided either low or high food rations. Independent of rearing type, condition factor and club cell density increased with food ration size, but no change was found in club cell density following exposure to conspecific alarm signals. However, the density of club cells was found significantly higher for fish raised in groups than for fish raised alone. We conclude that an increased condition factor results in more club cells, but crucian carp may also possess an awareness of conspecific presence, given by higher club cell densities when raised in groups. This increase in club cell density may be induced by unknown chemical factors released by conspecifics.

  3. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng

    Quantitative gene expression analysis in intact single cells can be achieved using single molecule- based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple FISH sub-probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific binding of sub-probes and tissue autofluorescence, limiting its accuracy. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on blinking frequencies of photoswitchable dyes. This fluctuation localization imaging-based FISH (fliFISH) uses blinking frequency patterns, emitted frommore » a transcript bound to multiple sub-probes, which are distinct from blinking patterns emitted from partial or nonspecifically bound sub-probes and autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2, and their ratio (Nkx2-2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct blinking frequency patterns, laying the foundation for reliable single-cell transcriptomics.« less

  4. Within and between Population Variation in Epidermal Club Cell Investment in a Freshwater Prey Fish: A Cautionary Tale for Evolutionary Ecologists

    PubMed Central

    Manek, Aditya K.; Ferrari, Maud C. O.; Pollock, Robyn J.; Vicente, Daniel; Weber, Lynn P.; Chivers, Douglas P.

    2013-01-01

    Many prey fishes possess large club cells in their epidermis. The role of these cells has garnered considerable attention from evolutionary ecologists. These cells likely form part of the innate immune system of fishes, however, they also have an alarm function, releasing chemical cues that serve to warn nearby conspecifics of danger. Experiments aimed at understanding the selection pressures leading to the evolution of these cells have been hampered by a surprisingly large intraspecific variation in epidermal club cell (ECC) investment. The goal of our current work was to explore the magnitude and nature of this variation in ECC investment. In a field survey, we documented large differences in ECC investment both within and between several populations of minnows. We then tested whether we could experimentally reduce variation in mean ECC number by raising fish under standard laboratory conditions for 4 weeks. Fish from different populations responded very differently to being held under standard laboratory conditions; some populations showed an increase in ECC investment while others remained unchanged. More importantly, we found some evidence that we could reduce within population variation in ECC investment through time, but could not reduce among-population variation in mean ECC investment. Given the large variation we observed in wild fish and our limited ability to converge mean cell number by holding the fish under standard conditions, we caution that future studies may be hard pressed to find subtle effects of various experimental manipulations; this will make elucidating the selection pressures leading to the evolution of the cells challenging. PMID:23469175

  5. Association between Plasma Antibody Response and Protection in Rainbow Trout Oncorhynchus mykiss Immersion Vaccinated against Yersinia ruckeri

    PubMed Central

    Raida, Martin K.; Nylén, Jørgen; Holten-Andersen, Lars; Buchmann, Kurt

    2011-01-01

    A key hallmark of the vertebrate adaptive immune system is the generation of antigen-specific antibodies from B cells. Fish are the most primitive gnathostomes (jawed vertebrates) possessing an adaptive immune system. Vaccination of rainbow trout against enteric redmouth disease (ERM) by immersion in Yersinia ruckeri bacterin confers a high degree of protection to the fish. The immune mechanisms responsible for protection may comprise both cellular and humoral elements but the role of specific immunoglobulins in this system has been questioned and not previously described. The present study demonstrates significant increase in plasma antibody titers following immersion vaccination and significantly reduced mortality during Y. ruckeri challenge. Rainbow trout were immersion-vaccinated, using either a commercial ERM vaccine (AquaVac™ ERM vet) or an experimental Y. ruckeri bacterin. Half of the trout vaccinated with AquaVac™ ERM vet received an oral booster (AquaVac™ ERM Oral vet). Sub-groups of the fish from each group were subsequently exposed to 1x109 CFU Y. ruckeri/ml either eight or twenty-six weeks post vaccination (wpv). All vaccinated groups showed 0% mortality when challenged, which was highly significant compared to the non-vaccinated controls (40 and 28% mortality eight and twenty-six weeks post vaccination (wpv), respectively) (P<0.0001). Plasma samples from all groups of vaccinated fish were taken 0, 4, 8, 12, 16 and 26 wpv. and Y. ruckeri specific IgM antibody levels were measured with ELISA. A significant increase in titers was recorded in vaccinated fish, which also showed a reduced bacteremia during challenge. In vitro plasma studies showed a significantly increased bactericidal effect of fresh plasma from vaccinated fish indicating that plasma proteins may play a role in protection of vaccinated rainbow trout. PMID:21731605

  6. Prospective and clinical validation of ALK immunohistochemistry: results from the phase I/II study of alectinib for ALK-positive lung cancer (AF-001JP study)

    PubMed Central

    Takeuchi, K.; Togashi, Y.; Kamihara, Y.; Fukuyama, T.; Yoshioka, H.; Inoue, A.; Katsuki, H.; Kiura, K.; Nakagawa, K.; Seto, T.; Maemondo, M.; Hida, T.; Harada, M.; Ohe, Y.; Nogami, N.; Yamamoto, N.; Nishio, M.; Tamura, T.

    2016-01-01

    Background Anaplastic lymphoma kinase (ALK) fusions need to be accurately and efficiently detected for ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) remains the reference test. Although increasing data are supporting that ALK immunohistochemistry (IHC) is highly concordant with FISH, IHC screening needed to be clinically and prospectively validated. Patients and methods In the AF-001JP trial for alectinib, 436 patients were screened for ALK fusions through IHC (n = 384) confirmed with FISH (n = 181), multiplex RT-PCR (n = 68), or both (n = 16). IHC results were scored with iScore. Result ALK fusion was positive in 137 patients and negative in 250 patients. Since the presence of cancer cells in the samples for RT-PCR was not confirmed, ALK fusion negativity could not be ascertained in 49 patients. IHC interpreted with iScore showed a 99.4% (173/174) concordance with FISH. All 41 patients who had iScore 3 and were enrolled in phase II showed at least 30% tumor reduction with 92.7% overall response rate. Two IHC-positive patients with an atypical FISH pattern responded to ALK inhibitor therapy. The reduction rate was not correlated with IHC staining intensity. Conclusions Our study showed (i) that when sufficiently sensitive and appropriately interpreted, IHC can be a stand-alone diagnostic for ALK inhibitor therapies; (ii) that when atypical FISH patterns are accompanied by IHC positivity, the patients should be considered as candidates for ALK inhibitor therapies, and (iii) that the expression level of ALK fusion is not related to the level of response to ALK inhibitors and is thus not required for patient selection. Registration number JapicCTI-101264 (This study is registered with the Japan Pharmaceutical Information Center). PMID:26487585

  7. Coronary changes in the Atlantic salmon Salmo salar L: characterization and impact of dietary fatty acid compositions.

    PubMed

    Dalum, A; Tangen, R; Falk, K; Hordvik, I; Rosenlund, G; Torstensen, B; Koppang, E O

    2016-01-01

    Consumption of fatty acids from fishes is widely regarded as beneficial for preventing cardiovascular disorders. Nevertheless, salmonids themselves are victims of vascular diseases. As the pathogenesis and nature of these changes are elusive, they are here addressed using novel morphological and transcriptional approaches. Coronary arteries of wild Atlantic salmon Salmo salar L., (n = 12) were investigated using histological and immunohistochemical techniques, and RT-qPCR was employed to investigate expression of stretch-induced genes. In an experimental trial, fish were fed diets with different fatty acids composition, and histological features of the coronary arteries (n = 36) were investigated. In addition, the heart fatty acid profile (n = 60) was analysed. There were no differences in morphological or immunological features between wild fish and groups of experimental fish. Arteriosclerotic lesions consisted of smooth muscle cells in dissimilar differential stages embedded in considerable amounts of extracellular matrix in a similar fashion to what is seen in early stages of human atherosclerosis. No fat accumulations were observed, and very few inflammatory cells were present. In affected arteries, there was an induction of stretch-related genes, pointing to a stress-related response. We suggest that salmon may have a natural resistance to developing atherosclerosis, which corresponds well with their high investment in lipid metabolism. © 2014 John Wiley & Sons Ltd.

  8. Genomic analysis of CD8+ NK/T cell line, ‘SRIK-NKL’, with array-based CGH (aCGH), SKY/FISH and molecular mapping

    PubMed Central

    Rossi, Michael; LaDuca, Jeff; Cowell, John; Srivastava, Bejai I.S.; Matsui, Sei-ichi

    2010-01-01

    We performed aCGH, SKY /FISH, molecular mapping and expression analyses on a permanent CD8+ NK/T cell line, ‘SRIK-NKL’ established from a lymphoma (ALL) patient, in attempt to define the fundamental genetic profile of its unique NK phenotypes. aCGH revealed hemizygous deletion of 6p containing genes responsible for hematopoietic functions. The SKY demonstrated that a constitutive reciprocal translocation, rcpt(5;14)(p13.2;q11) is a stable marker. Using somatic hybrids containing der(5) derived from SRIK-NKL, we found that the breakpoint in one homologue of no. 5 is located upstream of IL7R and also that the breakpoint in no. 14 is located within TRA@. The FISH analysis using BAC which contains TRA@ and its flanking region further revealed a ~231 kb deletion within 14q11 in the der(5) but not in the normal homologue of no. 14. The RT-PCR analysis detected mRNA for TRA@ transcripts which were extending across, but not including, the deleted region. IL7R was detected at least at mRNA levels. These findings were consistent with the immunological findings that TRA@ and IL7R are both expressed at mRNA levels and TRA@ at cytoplasmic protein levels in SRIK-NKL cells. In addition to rept(5;14), aCGH identified novel copy number abnormalities suggesting that the unique phenotype of the SRIK-NKL cell line is not solely due to the TRA@ rearrangement. These findings provide supportive evidence for the notion that SRIK-NKL cells may be useful for studying not only the function of NK cells but also genetic deregulations associated with leukemiogenesis. PMID:17640729

  9. Chromosome 2 short arm translocations revealed by M-FISH analysis of neuroblastoma cell lines.

    PubMed

    Van Roy, N; Van Limbergen, H; Vandesompele, J; Van Gele, M; Poppe, B; Laureys, G; De Paepe, A; Speleman, F

    2000-12-01

    M-FISH analysis was performed on 18 neuroblastoma cell lines, which were previously studied with cytogenetic, standard FISH and CGH data. One of the most striking findings of this study was the detection of chromosome 2 short arm rearrangements in 61% of the investigated cell lines. These rearrangements resulted from translocations with various partner chromosomes. All translocations, except one were unbalanced, leading to the consistent gain of chromosome segment 2pter-p22. A cryptic balanced translocation t(2;4) was observed with a breakpoint located in the vicinity of MYCN in cell line NBL-S. Combination of M-FISH results together with cytogenetic, standard FISH and CGH data yielded the most comprehensive description of chromosome 2 short arm rearrangements, leading to a consistent gain of chromosome 2 short arm material. Copyright 2000 Wiley-Liss, Inc.

  10. Histologic, immunologic and endocrine biomarkers indicate contaminant effects in fishes of the Ashtabula River.

    PubMed

    Iwanowicz, Luke R; Blazer, Vicki S; Hitt, Nathaniel P; McCormick, Stephen D; DeVault, David S; Ottinger, Christopher A

    2012-01-01

    The use of fish as sentinels of aquatic ecosystem health is a biologically relevant approach to environmental monitoring and assessment. We examined the health of the Ashtabula River using histologic, immunologic, and endocrine biomarkers in brown bullhead (BB; Ameiurus nebulosus) and largemouth bass (Micropterus salmoides) and compared fish collected from a reference site (Conneaut Creek). Seasonal analysis was necessary to distinguish differences in fish between the two rivers. Overall BB from the Ashtabula River had a lower condition factor and significantly more macrophage aggregates than those from the reference site. Reduced bactericidal and cytotoxic-cell activity was observed in anterior kidney leukocytes from both BB and largemouth bass from the Ashtabula River. Lower plasma thyroxine and triiodo-L-thyronine in both species in the Ashtabula River indicated disruption of the thyroid axis. Differences in physiological biomarker responses were supported by body burden chemical concentrations when data were analyzed on a seasonal basis. The use of two fish species added a level of rigor that demonstrated biological effects were not exclusive to a single species. The results provide strong evidence that contaminants have affected fish in the Ashtabula River, a Great Lakes Area of Concern, and provide a baseline by which to evaluate remediation activities.

  11. Histologic, immunologic and endocrine biomarkers indicate contaminant effects in fishes of the Ashtabula River

    USGS Publications Warehouse

    Iwanowicz, L.R.; Blazer, V.S.; Hitt, N.P.; McCormick, S.D.; Devault, D.S.; Ottinger, C.A.

    2012-01-01

    The use of fish as sentinels of aquatic ecosystem health is a biologically relevant approach to environmental monitoring and assessment. We examined the health of the Ashtabula River using histologic, immunologic, and endocrine biomarkers in brown bullhead (BB; Ameiurus nebulosus) and largemouth bass (Micropterus salmoides) and compared fish collected from a reference site (Conneaut Creek). Seasonal analysis was necessary to distinguish differences in fish between the two rivers. Overall BB from the Ashtabula River had a lower condition factor and significantly more macrophage aggregates than those from the reference site. Reduced bactericidal and cytotoxic-cell activity was observed in anterior kidney leukocytes from both BB and largemouth bass from the Ashtabula River. Lower plasma thyroxine and triiodo-L-thyronine in both species in the Ashtabula River indicated disruption of the thyroid axis. Differences in physiological biomarker responses were supported by body burden chemical concentrations when data were analyzed on a seasonal basis. The use of two fish species added a level of rigor that demonstrated biological effects were not exclusive to a single species. The results provide strong evidence that contaminants have affected fish in the Ashtabula River, a Great Lakes Area of Concern, and provide a baseline by which to evaluate remediation activities.

  12. FISHing for bacteria in food--a promising tool for the reliable detection of pathogenic bacteria?

    PubMed

    Rohde, Alexander; Hammerl, Jens Andre; Appel, Bernd; Dieckmann, Ralf; Al Dahouk, Sascha

    2015-04-01

    Foodborne pathogens cause millions of infections every year and are responsible for considerable economic losses worldwide. The current gold standard for the detection of bacterial pathogens in food is still the conventional cultivation following standardized and generally accepted protocols. However, these methods are time-consuming and do not provide fast information about food contaminations and thus are limited in their ability to protect consumers in time from potential microbial hazards. Fluorescence in situ hybridization (FISH) represents a rapid and highly specific technique for whole-cell detection. This review aims to summarize the current data on FISH-testing for the detection of pathogenic bacteria in different food matrices and to evaluate its suitability for the implementation in routine testing. In this context, the use of FISH in different matrices and their pretreatment will be presented, the sensitivity and specificity of FISH tests will be considered and the need for automation shall be discussed as well as the use of technological improvements to overcome current hurdles for a broad application in monitoring food safety. In addition, the overall economical feasibility will be assessed in a rough calculation of costs, and strengths and weaknesses of FISH are considered in comparison with traditional and well-established detection methods. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Hematology, cytochemistry and ultrastructure of blood cells in fishing cat (Felis viverrina)

    PubMed Central

    Salakij, Chaleow; Apibal, Suntaree; Narkkong, Nual-Anong

    2007-01-01

    Hematological, cytochemical and ultrastructural features of blood cells in fishing cat (Felis viverrina) were evaluated using complete blood cell counts with routine and cytochemical blood stains, and scanning and transmission electron microscopy. No statistically significant difference was found in different genders of this animal. Unique features of blood cells in this animal were identified in hematological, cytochemical and ultrastructural studies. This study contributes to broaden hematological resources in wildlife animals and provides a guideline for identification of blood cells in the fishing cat. PMID:17519570

  14. Visualization and quantitative analysis of extrachromosomal telomere-repeat DNA in individual human cells by Halo-FISH

    PubMed Central

    Komosa, Martin; Root, Heather; Meyn, M. Stephen

    2015-01-01

    Current methods for characterizing extrachromosomal nuclear DNA in mammalian cells do not permit single-cell analysis, are often semi-quantitative and frequently biased toward the detection of circular species. To overcome these limitations, we developed Halo-FISH to visualize and quantitatively analyze extrachromosomal DNA in single cells. We demonstrate Halo-FISH by using it to analyze extrachromosomal telomere-repeat (ECTR) in human cells that use the Alternative Lengthening of Telomeres (ALT) pathway(s) to maintain telomere lengths. We find that GM847 and VA13 ALT cells average ∼80 detectable G/C-strand ECTR DNA molecules/nucleus, while U2OS ALT cells average ∼18 molecules/nucleus. In comparison, human primary and telomerase-positive cells contain <5 ECTR DNA molecules/nucleus. ECTR DNA in ALT cells exhibit striking cell-to-cell variations in number (<20 to >300), range widely in length (<1 to >200 kb) and are composed of primarily G- or C-strand telomere-repeat DNA. Halo-FISH enables, for the first time, the simultaneous analysis of ECTR DNA and chromosomal telomeres in a single cell. We find that ECTR DNA comprises ∼15% of telomere-repeat DNA in GM847 and VA13 cells, but <4% in U2OS cells. In addition to its use in ALT cell analysis, Halo-FISH can facilitate the study of a wide variety of extrachromosomal DNA in mammalian cells. PMID:25662602

  15. Assessment of Telomere Length, Phenotype, and DNA Content

    PubMed Central

    Kelesidis, Theodoros; Schmid, Ingrid

    2017-01-01

    Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. PMID:28055113

  16. Assessment of Telomere Length, Phenotype, and DNA Content.

    PubMed

    Kelesidis, Theodoros; Schmid, Ingrid

    2017-01-05

    Telomere sequences at the end of chromosomes control somatic cell division; therefore, telomere length in a given cell population provides information about its replication potential. This unit describes a method for flow cytometric measurement of telomere length in subpopulations using fluorescence in situ hybridization of fluorescently-labeled probes (Flow-FISH) without prior cell separation. After cells are stained for surface immunofluorescence, antigen-antibody complexes are covalently cross-linked onto cell membranes before FISH with a telomere-specific probe. Cells with long telomeres are included as internal standards. Addition of a DNA dye permits exclusion of proliferating cells during data analysis. DNA ploidy measurements of cells of interest and internal standard are performed on separate aliquots in parallel to Flow-FISH. Telomere fluorescence of G 0/1 cells of subpopulations and internal standards obtained from Flow-FISH are normalized for DNA ploidy, and telomere length in subsets of interest is expressed as a fraction of the internal standard telomere length. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  17. Oxidative stress markers in fish (Astyanax sp. and Danio rerio) exposed to urban and agricultural effluents in the Brazilian Pampa biome.

    PubMed

    Costa-Silva, D G; Nunes, M E M; Wallau, G L; Martins, I K; Zemolin, A P P; Cruz, L C; Rodrigues, N R; Lopes, A R; Posser, T; Franco, J L

    2015-10-01

    Aquatic ecosystems are under constant risk due to industrial, agricultural, and urban activities, compromising water quality and preservation of aquatic biota. The assessment of toxicological impacts caused by pollutants to aquatic environment using biomarker measurements in fish can provide reliable data to estimate sublethal effects posed by chemicals in contaminated areas. In this study, fish (Astyanax sp. and Danio rerio) exposed to agricultural and urban effluents at the Vacacaí River, Brazil, were tested for potential signs of aquatic contamination. This river comprehends one of the main watercourses of the Brazilian Pampa, a biome with a large biodiversity that has been neglected in terms of environmental and social-economic development. Sites S1 and S2 were chosen by their proximity to crops and wastewater discharge points, while reference site was located upstream of S1 and S2, in an apparently non-degraded area. Fish muscle and brain tissues were processed for determination of acetylcholinesterase as well as oxidative stress-related biomarkers. The results showed signs of environmental contamination, hallmarked by significant changes in cholinesterase activity, expression of metallothionein, antioxidant enzymes, glutathione levels, and activation of antioxidant/cell stress response signaling pathways in fish exposed to contaminated sites when compared to reference. Based on these results, it is evidenced that urban and agricultural activities are posing risk to the environmental quality of water resources at the studied area. It is also demonstrated that cell stress biomarkers may serve as important tools for biomonitoring and development of risk assessment protocols in the Pampa biome.

  18. Cell phone-generated radio frequency electromagnetic field effects on the locomotor behaviors of the fishes Poecilia reticulata and Danio rerio.

    PubMed

    Lee, David; Lee, Joshua; Lee, Imshik

    2015-01-01

    The locomotor behavior of small fish was characterized under a cell phone-generated radio frequency electromagnetic field (RF EMF). The trajectory of movement of 10 pairs of guppy (Poecilia reticulate) and 15 pairs of Zebrafish (Danio rerio) in a fish tank was recorded and tracked under the presence of a cell phone-generated RF EMF. The measures were based on spatial and temporal distributions. A time-series trajectory was utilized to emphasize the dynamic nature of locomotor behavior. Fish movement was recorded in real-time. Their spatial, velocity, turning angle and sinuosity distribution were analyzed in terms of F(v,x), P[n(x,t)], P(v), F (θ) and F(s), respectively. In addition, potential temperature elevation caused by a cellular phone was also examined. We demonstrated that a cellular phone-induced temperature elevation was not relevant, and that our measurements reflected RF EMF-induced effects on the locomotor behavior of Poecilia reticulata and Danio rerio. Fish locomotion was observed under normal conditions, in the visual presence of a cell phone, after feeding, and under starvation. Fish locomotor behavior was random both in normal conditions and in the presence of an off-signaled cell phone. However, there were significant changes in the locomotion of the fish after feeding under the RF EMF. The locomotion of the fed fish was affected in terms of changes in population and velocity distributions under the presence of the RF EMF emitted by the cell phone. There was, however, no significant difference in angular distribution.

  19. Fish assemblage responses to urban intensity gradients in contrasting metropolitan areas: Birmingham, Alabama and Boston, Massachusetts

    USGS Publications Warehouse

    Meador, M.R.; Coles, J.F.; Zappia, H.

    2005-01-01

    We examined fish assemblage responses to urban intensify gradients in two contrasting metropolitan areas: Birmingham, Alabama (BIR) and Boston, Massachusetts (BOS). Urbanization was quantified by using an urban intensity index (UII) that included multiple stream buffers and basin land uses, human population density, and road density variables. We evaluated fish assemblage responses by using species richness metrics and detrended correspondence analyses (DCA). Fish species richness metrics included total fish species richness, and percentages of endemic species richness, alien species, and fluvial specialist species. Fish species richness decreased significantly with increasing urbanization in BIR (r = -0.82, P = 0.001) and BOS (r = -0.48, P = 0.008). Percentages of endemic species richness decreased significantly with increasing urbanization only in BIR (r = - 0.71, P = 0.001), whereas percentages of fluvial specialist species decreased significantly with increasing urbanization only in BOS (r = -0.56, P = 0.002). Our DCA results for BIR indicate that highly urbanized fish assemblages are composed primarily of largescale stoneroller Campostoma oligolepis, largemouth bass Micropterus salmoides, and creek chub Semotilus atromaculatus, whereas the highly urbanized fish assemblages in BOS are dominated by yellow perch Perca flavescens, bluegill Lefomis macrochirus, yellow bullhead Ameiurus natalis, largemouth bass, pumpkinseed L. gibbosus, brown bullhead A. nebulosus, and redfin pickerel Esox americanus. Differences in fish assemblage responses to urbanization between the two areas appear to be related to differences in nutrient enrichment, habitat alterations, and invasive species. Because species richness can increase or decrease with increasing urbanization, a general response model is not applicable. Instead, response models based on species' life histories, behavior, and autecologies offer greater potential for understanding fish assemblage responses to urbanization. ?? 2005 by the American Fisheries Society.

  20. Betanodavirus induces oxidative stress-mediated cell death that prevented by anti-oxidants and zfcatalase in fish cells.

    PubMed

    Chang, Chih-Wei; Su, Yu-Chin; Her, Guor-Mour; Ken, Chuian-Fu; Hong, Jiann-Ruey

    2011-01-01

    The role of oxidative stress in the pathogenesis of RNA nervous necrosis virus infection is still unknown. Red-spotted grouper nervous necrosis virus (RGNNV) induced free radical species (ROS) production at 12-24 h post-infection (pi; early replication stage) in fish GF-1 cells, and then at middle replication stage (24-48 h pi), this ROS signal may upregulate some expressions of the anti-oxidant enzymes Cu/Zn SOD and catalase, and eventually expression of the transcription factor Nrf2. Furthermore, both antioxidants diphenyliodonium and N-acetylcysteine or overexpression of zebrafish catalase in GF-1 cells also reduced ROS production and protected cells for enhancing host survival rate due to RGNNV infection. Furthermore, localization of ROS production using esterase activity and Mitotracker staining assays found that the ROS generated can affect mitochondrial morphology changes and causes ΔΨ loss, both of which can be reversed by antioxidant treatment. Taken together, our data suggest that RGNNV induced oxidative stress response for playing dual role that can initiate the host oxidative stress defense system to upregulate expression of antioxidant enzymes and induces cell death via disrupting the mitochondrial morphology and inducing ΔΨ loss, which can be reversed by anti-oxidants and zfcatalase, which provide new insight into betanodavirus-induced ROS-mediated pathogenesis.

  1. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications.

    PubMed

    Cui, Chenghua; Shu, Wei; Li, Peining

    2016-01-01

    Fluorescence in situ hybridization (FISH) is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes, and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains, and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbias and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH) allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH) using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells DNA and RNA FISH techniques have visualized intra-nuclear genomic structure and sub-cellular transcriptional dynamics of many genes and revealed their functions in various biological processes.

  2. Endocrine disruption and differential gene expression in sentinel fish on St. Lawrence Island, Alaska: Health implications for indigenous residents.

    PubMed

    von Hippel, Frank A; Miller, Pamela K; Carpenter, David O; Dillon, Danielle; Smayda, Lauren; Katsiadaki, Ioanna; Titus, Tom A; Batzel, Peter; Postlethwait, John H; Buck, C Loren

    2018-03-01

    People living a subsistence lifestyle in the Arctic are highly exposed to persistent organic pollutants, including polychlorinated biphenyls (PCBs). Formerly Used Defense (FUD) sites are point sources of PCB pollution; the Arctic contains thousands of FUD sites, many co-located with indigenous villages. We investigated PCB profiles and biological effects in freshwater fish (Alaska blackfish [Dallia pectoralis] and ninespine stickleback [Pungitius pungitius]) living upstream and downstream of the Northeast Cape FUD site on St. Lawrence Island in the Bering Sea. Despite extensive site remediation, fish remained contaminated with PCBs. Vitellogenin concentrations in males indicated exposure to estrogenic contaminants, and some fish were hypothyroid. Downstream fish showed altered DNA methylation in gonads and altered gene expression related to DNA replication, response to DNA damage, and cell signaling. This study demonstrates that, even after site remediation, contaminants from Cold War FUD sites in remote regions of the Arctic remain a potential health threat to local residents - in this case, Yupik people who had no influence over site selection and use by the United States military. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Endogenous orienting in the archer fish

    PubMed Central

    Sekely, Liora; Klein, Raymond M.; Gabay, Shai

    2017-01-01

    The literature has long emphasized the neocortex’s role in volitional processes. In this work, we examined endogenous orienting in an evolutionarily older species, the archer fish, which lacks neocortex-like cells. We used Posner’s classic endogenous cuing task, in which a centrally presented, spatially informative cue is followed by a target. The fish responded to the target by shooting a stream of water at it. Interestingly, the fish demonstrated a human-like “volitional” facilitation effect: their reaction times to targets that appeared on the side indicated by the precue were faster than their reaction times to targets on the opposite side. The fish also exhibited inhibition of return, an aftermath of orienting that commonly emerges only in reflexive orienting tasks in human participants. We believe that this pattern demonstrates the acquisition of an arbitrary connection between spatial orienting and a nonspatial feature of a centrally presented stimulus in nonprimate species. In the literature on human attention, orienting in response to such contingencies has been strongly associated with volitional control. We discuss the implications of these results for the evolution of orienting, and for the study of volitional processes in all species, including humans. PMID:28673997

  4. Behavioural and biochemical investigations of the influence of altered gravity on the CNS of aquatic vertebrates during ontogeny

    NASA Astrophysics Data System (ADS)

    Slenzka, K.; Appel, R.; Hilbig, R.; Kappel, Th.; Vetter, S.; Freischütz, B.; Rahmann, H.

    1994-08-01

    Quantitative data are presented on the influences of hyper-gravity (3+/-1g) and of simulated weightlessness (~0g) during early ontogeny of cichild fish (Oreochromis mossambicus) and clawed toad (Xenopus laevis, Daudin) demonstrating changes in the swimming behaviour and the brain energy and plasma membrane metabolism. After return to 1g conditions, hyper-g reared fish and toads express the well known ``loop-swimming'' behaviour. By means of a computer based video analyzing system different types of swimming movements and velocities were quantitatively determined. Analyses of the brain energy and plasma-membrane metabolism of hyper-g fish larvae demonstrated an increase in energy availability (glucose 6Pi dehydrogenase, G-6P-DH), a decrease of cellular energy transformation (creatine kinase activity, CK) but no changes in energy consumptive processes (e.g. ATPases) and cytochrome oxidase activity (Cyt.-Ox). In contrast hypo-g fish larvae showed a slight increase in brain CK activity. In addition, unlike 1g controls, hyper-g fish larvae showed pronounced variations in the composition (=polarity) of sialoglycosphingolipids (=gangliosides), typical constituents of the nerve cell membranes, and a slight increase in the activity of sialidase, the enzyme responsible for ganglioside degradation.

  5. An integrated model supporting histological and biometric responses as predictive biomarkers of fish health status

    NASA Astrophysics Data System (ADS)

    Torres Junior, Audalio Rebelo; Sousa, Débora Batista Pinheiro; Neta, Raimunda Nonata Fortes Carvalho

    2014-10-01

    In this work, an experimental system of histological (branchial lesions) biomarkers and biometric data in catfish (Sciades herzbergii) was modeled. The fish were sampled along known pollution areas (S1) and from environmental protect areas (S2) in São Marcos' Bay, Brazil. Gills were fixed in 10% formalin and usual histological techniques were used in the first gill arch right. The lesions were observed by light microscopy. There were no histopathological changes in animals captured at reference site (S1). However, in the catfish collected in the potentially contaminated area (S2) was observed several branchial lesions, such as lifting of the lamellar epithelium, fusion of some secondary lamellae, hypertrophy of epithelial cells and lamellar aneurysm. The analysis using the biometric data showed significant differences, being highest in fish analyzed in the reference area. This approach revealed spatial differences related with biometric patterns and morphological modifications of catfish.

  6. Xenobiotic metabolism in the fish hepatic cell lines Hepa-E1 and RTH-149, and the gill cell lines RTgill-W1 and G1B: Biomarkers of CYP450 activity and oxidative stress.

    PubMed

    Franco, Marco E; Sutherland, Grace E; Lavado, Ramon

    2018-04-01

    The use of fish cell cultures has proven to be an effective tool in the study of environmental and aquatic toxicology. Valuable information can be obtained from comparisons between cell lines from different species and organs. In the present study, specific chemicals were used and biomarkers (e.g. 7-Ethoxyresorufin-O-deethylase (EROD) activity and reactive oxygen species (ROS)) were measured to assess the metabolic capabilities and cytotoxicity of the fish hepatic cell lines Hepa-E1 and RTH-149, and the fish gill cell lines RTgill-W1 and G1B. These cell lines were exposed to β-naphthoflavone (BNF) and benzo[a]pyrene (BaP), the pharmaceutical tamoxifen (TMX), and the organic peroxide tert-butylhydroperoxide (tBHP). Cytotoxicity in gill cell lines was significantly higher than in hepatic cells, with BNF and TMX being the most toxic compounds. CYP1-like associated activity, measured through EROD activity, was only detected in hepatic cells; Hepa-E1 cells showed the highest activity after exposure to both BNF and BaP. Significantly higher levels of CYP3A-like activity were also observed in Hepa-E1 cells exposed to TMX, while gill cell lines presented the lowest levels. Measurements of ROS and antioxidant enzymes indicated that peroxide levels were higher in gill cell lines in general. However, levels of superoxide were significantly higher in RTH-149 cells, where no distinctive increase of superoxide-related antioxidants was observed. The present study demonstrates the importance of selecting adequate cell lines in measuring specific metabolic parameters and provides strong evidence for the fish hepatocarcinoma Hepa-E1 cells to be an excellent alternative in assessing metabolism of xenobiotics, and in expanding the applicability of fish cell lines for in vitro studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Application of fish cell lines for evaluating the chromium induced cytotoxicity, genotoxicity and oxidative stress.

    PubMed

    Taju, G; Abdul Majeed, S; Nambi, K S N; Sahul Hameed, A S

    2017-10-01

    In the present study, we hypothesize that cytotoxicity, genotoxicity and oxidative stress play a key role in chromium induced toxicity in SISS, SISK, IEE, IEK, IEG, SICH and ICG cell lines after 24 h exposure. Three fish species namely Lates calcarifer, Etroplus suratensis and Catla catla were exposed to the concentrations of 0, 10, 20, 30, 40 and 50 mg/L of chromium for 96 h under static conditions for conducting acute toxicity tests. LC 50 was then calculated. The percentage cell survival was assessed by multiple endpoints such as MTT, NR, AB and CB assays in the seven fish cell lines exposed to different concentrations of chromium and EC 50 values of all the four endpoints were calculated. High significances were noted in the correlations between each in vitro cytotoxicity assays and in vivo mortality data. Cell shrinkage, cell detachment, vacuolations and cell swelling at the highest concentration of chromium (50 mg/L) were seen on microscopic examination of cell morphology. Comet assay and Hoechst staining were carried out to assess DNA damage and nuclear fragmentation in the seven fish lines exposed to chromium. The results of antioxidant parameters obtained indicate a significant reduction in the level of catalase, superoxide dismutase, glutathione S-transferase and Glutathione peroxidase, and increased level of lipid peroxidation in all the cell lines exposed to chromium. These results confirm that fish cell lines could be used as an alternative to whole fish for cytotoxicity, genotoxicity and oxidative stress assessment in chromium toxicity studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Reach-scale land use drives the stress responses of a resident stream fish.

    PubMed

    Blevins, Zachary W; Wahl, David H; Suski, Cory D

    2014-01-01

    Abstract To date, relatively few studies have tried to determine the practicality of using physiological information to help answer complex ecological questions and assist in conservation actions aimed at improving conditions for fish populations. In this study, the physiological stress responses of fish were evaluated in-stream between agricultural and forested stream reaches to determine whether differences in these responses can be used as tools to evaluate conservation actions. Creek chub Semotilus atromaculatus sampled directly from forested and agricultural stream segments did not show differences in a suite of physiological indicators. When given a thermal challenge in the laboratory, creek chub sampled from cooler forested stream reaches had higher cortisol levels and higher metabolic stress responses to thermal challenge than creek chub collected from warmer and more thermally variable agricultural reaches within the same stream. Despite fish from agricultural and forested stream segments having different primary and secondary stress responses, fish were able to maintain homeostasis of other physiological indicators to thermal challenge. These results demonstrate that local habitat conditions within discrete stream reaches may impact the stress responses of resident fish and provide insight into changes in community structure and the ability of tolerant fish species to persist in agricultural areas.

  9. Behavioural responses to human-induced change: Why fishing should not be ignored.

    PubMed

    Diaz Pauli, Beatriz; Sih, Andrew

    2017-03-01

    Change in behaviour is usually the first response to human-induced environmental change and key for determining whether a species adapts to environmental change or becomes maladapted. Thus, understanding the behavioural response to human-induced changes is crucial in the interplay between ecology, evolution, conservation and management. Yet the behavioural response to fishing activities has been largely ignored. We review studies contrasting how fish behaviour affects catch by passive (e.g., long lines, angling) versus active gears (e.g., trawls, seines). We show that fishing not only targets certain behaviours, but it leads to a multitrait response including behavioural, physiological and life-history traits with population, community and ecosystem consequences. Fisheries-driven change (plastic or evolutionary) of fish behaviour and its correlated traits could impact fish populations well beyond their survival per se , affecting predation risk, foraging behaviour, dispersal, parental care, etc., and hence numerous ecological issues including population dynamics and trophic cascades . In particular, we discuss implications of behavioural responses to fishing for fisheries management and population resilience. More research on these topics, however, is needed to draw general conclusions, and we suggest fruitful directions for future studies.

  10. Demonstration of toxicity to fish and to mammalian cells by Pfiesteria species: Comparison of assay methods and strains

    PubMed Central

    Burkholder, JoAnn M.; Gordon, Andrew S.; Moeller, Peter D.; Law, J. Mac; Coyne, Kathryn J.; Lewitus, Alan J.; Ramsdell, John S.; Marshall, Harold G.; Deamer, Nora J.; Cary, S. Craig; Kempton, Jason W.; Morton, Steven L.; Rublee, Parke A.

    2005-01-01

    Toxicity and its detection in the dinoflagellate fish predators Pfiesteria piscicida and Pfiesteria shumwayae depend on the strain and the use of reliable assays. Two assays, standardized fish bioassays (SFBs) with juvenile fish and fish microassays (FMAs) with larval fish, were compared for their utility to detect toxic Pfiesteria. The comparison included strains with confirmed toxicity, negative controls (noninducible Pfiesteria strains and a related nontoxic cryptoperidiniopsoid dinoflagellate), and P. shumwayae strain CCMP2089, which previously had been reported as nontoxic. SFBs, standardized by using toxic Pfiesteria (coupled with tests confirming Pfiesteria toxin) and conditions conducive to toxicity expression, reliably detected actively toxic Pfiesteria, but FMAs did not. Pfiesteria toxin was found in fish- and algae-fed clonal Pfiesteria cultures, including CCMP2089, but not in controls. In contrast, noninducible Pfiesteria and cryptoperidiniopsoids caused no juvenile fish mortality in SFBs even at high densities, and low larval fish mortality by physical attack in FMAs. Filtrate from toxic strains of Pfiesteria spp. in bacteria-free media was cytotoxic. Toxicity was enhanced by bacteria and other prey, especially live fish. Purified Pfiesteria toxin extract adversely affected mammalian cells as well as fish, and it caused fish death at environmentally relevant cell densities. These data show the importance of testing multiple strains when assessing the potential for toxicity at the genus or species level, using appropriate culturing techniques and assays. PMID:15728353

  11. Cytoarchitecture of a Cichlid Fish Telencephalon

    PubMed Central

    Burmeister, Sabrina S.; Munshi, Rashmi G.; Fernald, Russell D.

    2009-01-01

    Although the telencephalon of ray-finned fishes has garnered considerable attention from comparative neuroanatomists, detailed descriptions of telencephalic organization are available for only a few species. This necessarily limits our understanding of telencephalic evolution, particularly in light of the extraordinary diversity of ray-finned fishes. Thus, we have charted the cyctoarchitecture of the telencephalon of the African cichlid fish, Astatotilapia (Haplochromis) burtoni. We examined tissue sectioned in the transverse plane, and categorized cell groups based on size, shape, and staining intensity of cells, the density and distribution of cells, cell-poor zones, and relationship of cell groups to the anterior commissure and external sulci. In addition, to facilitate visualization of the transitions among cell groups, we aligned and animated a series of 100 sequential brain sections. We found that the A. burtoni telencephalon was similar to other percomorphs in being highly elaborated with many distinct cell groups. In the pallium, Dm, Dl, and Dc had a large number of cell groups, whereas Dd and Dp were more uniform. Although we recognized many similarities between the pallium of A. burtoni and other teleosts, we also recognized two cell groups (Dl-g and Dm-2) that might represent specializations of cichlids. We found that the subpallium had a similar organization to that of other ray-finned fishes. PMID:19729898

  12. Microscopic functional anatomy: Integumentary system: Chapter 17

    USGS Publications Warehouse

    Elliott, Diane G.; Ostrander, Gary K.

    2000-01-01

    Many of the features of the fish integument can only be observed microscopically. Because there are over 20,000 living fishes, mostly higher bony fishes (teleosts), a great diversity exists in the microscopic anatomy of the integument. This chapter presents several examples from varied taxonomic groups to illustrate the variation in morphological features. As in all vertebrate epidermis, the fundamental structural unit is the epithelial cell. This is the only constant feature, as a great diversity of cell types exists in the various fish taxa. Some of these include apocrine mucous cells and a variety of other secretory cells, ionocytes, sensory cells, and wandering cells such as leukocytes. The dermis consists essentially of two sets of collagen fibers arranged in opposing geodesic spirals around the body. The dermis of most fishes is divided into two major layers. The upper (outer) layer, the stratum spongiosum or stratum laxum, is a loose network of connective tissue, whereas the lower layer, the stratum compactum, is a dense layer consisting primarily of orthogonal collagen bands. There are also specialized dermal elements such as chromatophores scales, and fin rays.

  13. Fishing-gear restrictions and biomass gains for coral reef fishes in marine protected areas.

    PubMed

    Campbell, Stuart J; Edgar, Graham J; Stuart-Smith, Rick D; Soler, German; Bates, Amanda E

    2018-04-01

    Considerable empirical evidence supports recovery of reef fish populations with fishery closures. In countries where full exclusion of people from fishing may be perceived as inequitable, fishing-gear restrictions on nonselective and destructive gears may offer socially relevant management alternatives to build recovery of fish biomass. Even so, few researchers have statistically compared the responses of tropical reef fisheries to alternative management strategies. We tested for the effects of fishery closures and fishing gear restrictions on tropical reef fish biomass at the community and family level. We conducted 1,396 underwater surveys at 617 unique sites across a spatial hierarchy within 22 global marine ecoregions that represented 5 realms. We compared total biomass across local fish assemblages and among 20 families of reef fishes inside marine protected areas (MPAs) with different fishing restrictions: no-take, hook-and-line fishing only, several fishing gears allowed, and sites open to all fishing gears. We included a further category representing remote sites, where fishing pressure is low. As expected, full fishery closures, (i.e., no-take zones) most benefited community- and family-level fish biomass in comparison with restrictions on fishing gears and openly fished sites. Although biomass responses to fishery closures were highly variable across families, some fishery targets (e.g., Carcharhinidae and Lutjanidae) responded positively to multiple restrictions on fishing gears (i.e., where gears other than hook and line were not permitted). Remoteness also positively affected the response of community-level fish biomass and many fish families. Our findings provide strong support for the role of fishing restrictions in building recovery of fish biomass and indicate important interactions among fishing-gear types that affect biomass of a diverse set of reef fish families. © 2017 Society for Conservation Biology.

  14. Microscopy and Microanalysis of Blood in a Snake Head Fish, Channa gachua Exposed to Environmental Pollution.

    PubMed

    Pala, Eva M; Dey, Sudip

    2016-02-01

    Conventional and highly sophisticated analytical methods (Cyria et al., 1989; Massar et al., 2012a) were used to analyze micro-structural and micro-analytical aspects of the blood of snake head fish, Channa gachua, exposed to municipal wastes and city garbage. Red (RBC) and white blood cell (WBC) counts and hemhemoglobin content were found to be higher in pollution affected fish as compared with control. Scanning electron microscopy revealed the occurrence of abnormal erythrocytes such as crenated cells, echinocytes, lobopodial projections, membrane internalization, spherocytes, ruptured cells, contracted cells, depression, and uneven elongation of erythrocyte membranes in fish inhabiting the polluted sites. Energy-dispersive X-ray spectroscopy (EDS) revealed the presence of silicon and lead in the RBCs of pollution affected fish. Significance of the study includes the highly sophisticated analytical approach, which revealed the aforementioned micro-structural abnormalities.

  15. Organochlorines and metals induce changes in the mitochondria-rich cells of fish gills: an integrative field study involving chemical, biochemical and morphological analyses.

    PubMed

    Fernandes, M N; Paulino, M G; Sakuragui, M M; Ramos, C A; Pereira, C D S; Sadauskas-Henrique, H

    2013-01-15

    Through integrating chemical, biochemical and morphological analyses, this study investigated the effects of multiple pollutants on the gill mitochondria-rich cells (MRCs) in two fish species, Astyanax fasciatus and Pimelodus maculatus, collected from five sites (FU10, FU20, FU30, FU40 and FU50) in the Furnas Hydroelectric Power Station reservoir. Water analyses revealed aluminum, iron and zinc as well as organochlorine (aldrin/dieldrin, endosulfan, heptachlor/heptachlor epoxide and metolachlor) contamination at all of the sites, with the exception of FU10. Copper, chrome, iron and zinc were detected in the gills of both species, and aldrin/dieldrin, endosulfan and heptachlor/heptachlor epoxide were detected in the gills of fish from all of the sites, with the exception of FU10. Fish collected at FU20, FU30 and FU50 exhibited numerous alterations in the surface architecture of their pavement cells and MRCs. The surface MRC density and MRC fractional area were lower in fish from FU20, FU30, FU40 and FU50 than in those from the reference site (FU10) in the winter, and some variability between the sites was observed in the summer. The organochlorine contamination at FU20 and FU50 was associated with variable changes in the MRCs and inhibition of Na(+)/K(+)-ATPase (NKA) activity, especially in P. maculatus. At FU30, the alterations in the MRCs were associated with the contaminants present, especially metals. A multivariate analysis demonstrated a positive association between the biological responses of both species and environmental contamination, indicating that under realistic conditions, a mixture of organochlorines and metals affected the MRCs by inhibiting NKA activity and inducing morphological changes, which may cause an ionic imbalance. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish.

    PubMed

    Blechinger, Scott R; Kusch, Robin C; Haugo, Kristine; Matz, Carlyn; Chivers, Douglas P; Krone, Patrick H

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae. Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.

  17. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blechinger, Scott R.; Toxicology Group, University of Saskatchewan, Saskatoon, Saskatchewan; Kusch, Robin C.

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae.more » Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.« less

  18. Molecular and functional characterization of the scavenger receptor CD36 in zebrafish and common carp.

    PubMed

    Fink, Inge R; Benard, Erica L; Hermsen, Trudi; Meijer, Annemarie H; Forlenza, Maria; Wiegertjes, Geert F

    2015-02-01

    CD36 is a scavenger receptor which has been studied closely in mammals where it is expressed by many different cell types and plays a role in highly diverse processes, both homeostatic and pathologic. It is among other things important in the innate immune system, in angiogenesis, and in clearance of apoptotic cells, and it is also involved in lipid metabolism and atherosclerosis. Recently, in the cephalochordate amphioxus a primitive CD36 family member was described, which was present before the divergence of CD36 from other scavenger receptor B family members, SCARB1 and SCARB2. Not much is known on the Cd36 molecule in teleost fish. We therefore studied Cd36 in both zebrafish and common carp, two closely related cyprinid fish species. Whereas a single cd36 gene is present in zebrafish, carp has two cd36 genes, and all show conserved synteny compared to mammalian CD36. The gene expression of carp cd36 is high in brain, ovary and testis but absent in immune organs. Although in mammals CD36 expression in erythrocytes, monocytes and macrophages is high, gene expression studies in leukocyte subtypes of adult carp and zebrafish larvae, including thrombocytes and macrophages provided no indication for any substantial expression of cd36 in immune cell types. Surprisingly, analysis of the cd36 promoter region does show the presence of several binding sites for transcription factors known to regulate immune responses. Overexpression of carp cd36 locates the receptor on the cell surface of mammalian cell lines consistent with the predicted topology of cyprinid Cd36 with a large extracellular domain, two transmembrane domains, and short cytoplasmic tails at both ends. Gene expression of cd36 is down-regulated during infection of zebrafish with Mycobacterium marinum, whereas knockdown of cd36 in zebrafish larvae led to higher bacterial burden upon such infection. We discuss the putative role for Cd36 in immune responses of fish in the context of other members of the scavenger receptor class B family. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Purinergic and adenosine receptors contribute to hypoxic hyperventilation in zebrafish (Danio rerio).

    PubMed

    Coe, Alisha J; Picard, Alexina J; Jonz, Michael G

    2017-12-01

    The chemoreceptors involved in oxygen sensing in teleost fish are neuroepithelial cells (NECs) in the gills, and are analogous to glomus cells in the mammalian carotid body. Purinergic signalling mechanisms involving the neurotransmitters, ATP and adenosine, have been identified in mediating hypoxic signalling in the carotid body, but these pathways are not well understood in the fish gill. The present study used a behavioural assay to screen for the effects of drugs, that target purinergic and adenosine receptors, on the hyperventilatory response to hypoxia in larval zebrafish (Danio rerio) in order to determine if the receptors on which these drugs act may be involved in hypoxic signalling. The purinergic receptor antagonist, PPADS, targets purinergic P2X2/3 receptors and inhibited the hyperventilatory response to hypoxia (IC 50 =18.9μM). The broad-spectrum purinergic agonist, ATPγS, elicited a hyperventilatory response (EC 50 =168μM). The non-specific adenosine receptor antagonist, caffeine, inhibited the hyperventilatory response to hypoxia, as did the specific A2a receptor antagonist, SCH58261 (IC 50 =220nM). These results suggest that P2X2/3 and A2a receptors are candidates for mediating hypoxic hyperventilation in zebrafish. This study highlights the potential of applying chemical screening to ventilatory behaviour in zebrafish to further our understanding of the pathways involved in signalling by gill NECs and oxygen sensing in vertebrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Dietary aquaculture by-product hydrolysates: impact on the transcriptomic response of the intestinal mucosa of European seabass (Dicentrarchus labrax) fed low fish meal diets.

    PubMed

    Leduc, Alexandre; Zatylny-Gaudin, Céline; Robert, Marie; Corre, Erwan; Corguille, Gildas Le; Castel, Hélène; Lefevre-Scelles, Antoine; Fournier, Vincent; Gisbert, Enric; Andree, Karl B; Henry, Joël

    2018-05-24

    Aquaculture production is expected to double by 2030, and demands for aquafeeds and raw materials are expected to increase accordingly. Sustainable growth of aquaculture will require the development of highly nutritive and functional raw materials to efficiently replace fish meal. Enzymatic hydrolysis of marine and aquaculture raw materials could bring new functionalities to finished products. The aim of this study was to determine the zootechnical and transcriptomic performances of protein hydrolysates of different origins (tilapia, shrimp, and a combination of the two) in European seabass (Dicentrarchux labrax) fed a low fish meal diet (5%), for 65 days. Results were compared to a positive control fed with 20% of fish meal. Growth performances, anterior intestine histological organization and transcriptomic responses were monitored and analyzed. Dietary inclusion of protein hydrolysates in the low fish meal diet restored similar growth performances to those of the positive control. Inclusion of dietary shrimp hydrolysate resulted in larger villi and more goblet cells, even better than the positive control. Transcriptomic analysis of the anterior intestine showed that dietary hydrolysate inclusion restored a pattern of intestinal gene expression very close to the pattern of the positive control. However, as compared to the low fish meal diet and depending on their origin, the different hydrolysates did not modulate metabolic pathways in the same way. Dietary shrimp hydrolysate inclusion modulated more metabolic pathways related to immunity, while nutritional metabolism was more impacted by dietary tilapia hydrolysate. Interestingly, the combination of the two hydrolysates enhanced the benefits of hydrolysate inclusion in diets: more genes and metabolic pathways were regulated by the combined hydrolysates than by each hydrolysate tested independently. Protein hydrolysates manufactured from aquaculture by-products are promising candidates to help replace fish meal in aquaculture feeds without disrupting animal metabolism and performances.

  1. ALK-FISH borderline cases in non-small cell lung cancer: Implications for diagnostics and clinical decision making.

    PubMed

    von Laffert, Maximilian; Stenzinger, Albrecht; Hummel, Michael; Weichert, Wilko; Lenze, Dido; Warth, Arne; Penzel, Roland; Herbst, Hermann; Kellner, Udo; Jurmeister, Philipp; Schirmacher, Peter; Dietel, Manfred; Klauschen, Frederick

    2015-12-01

    Fluorescence in-situ hybridization (FISH) for the detection of ALK-rearrangements in non-small cell lung cancer (NSCLC) is based on at first sight clear cut-off criteria (≥15% of tumor cells) for split signals (SS) and single red signals (SRS). However, NSCLC with SS-counts around the cut-off may cause interpretation problems. Tissue microarrays containing 753 surgically resected NSCLCs were independently tested for ALK-alterations by FISH and immunohistochemistry (IHC). Our analysis focused on samples with SS/SRS in the range between 10% and 20% (ALK-FISH borderline group). To better understand the role of these samples in routine diagnostics, we performed statistical analyses to systematically estimate the probability of ALK-FISH-misclassification (false negative or positive) for different numbers of evaluated tumor cell nuclei (30, 50, 100, and 200). 94.3% (710/753) of the cases were classified as unequivocally (<10% or ≥20%) ALK-FISH-negative (93%; 700/753) or positive (1.3%; 10/753) and showed concordant IHC results. 5.7% (43/753) of the samples showed SS/SRS between 10% and 20% of the tumor cells. Out of these, 7% (3/43; ALK-FISH: 14%, 18% and 20%) were positive by ALK-IHC, while 93% (40/43) had no detectable expression of the ALK-protein. Statistical analysis showed that ALK-FISH misclassifications occur frequently for samples with rearrangements between 10% and 20% if ALK-characterization is based on a sharp cut-off point (15%). If results in this interval are defined as equivocal (borderline), statistical sampling-related ALK-FISH misclassifications will occur in less than 1% of the cases if 100 tumor cells are evaluated. While ALK status can be determined robustly for the majority of NSCLC by FISH our analysis showed that ∼6% of the cases belong to a borderline group for which ALK-FISH evaluation has only limited reliability due to statistical sampling effects. These cases should be considered equivocal and therapy decisions should include additional tests and clinical considerations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Probiotics, immunostimulants, plant products and oral vaccines, and their role as feed supplements in the control of bacterial fish diseases.

    PubMed

    Newaj-Fyzul, A; Austin, B

    2015-11-01

    There is a rapidly increasing literature pointing to the success of probiotics, immunostimulants, plant products and oral vaccines in immunomodulation, namely stimulation of the innate, cellular and/or humoral immune response, and the control of bacterial fish diseases. Probiotics are regarded as live micro-organisms administered orally and leading to health benefits. However, in contrast with the use in terrestrial animals, a diverse range of micro-organisms have been evaluated in aquaculture with the mode of action often reflecting immunomodulation. Moreover, the need for living cells has been questioned. Also, key subcellular components, including lipopolysaccharides, have been attributed to the beneficial effect in fish. Here, there is a link with immunostimulants, which may also be administered orally. Furthermore, numerous plant products have been reported to have health benefits, namely protection against disease for which stimulation of some immune parameters has been reported. Oral vaccines confer protection against some diseases, although the mode of action is usually linked to humoral rather than the innate and cellular immune responses. This review explores the relationship between probiotics, immunostimulants, plant products and oral vaccines. © 2014 John Wiley & Sons Ltd.

  3. Functional diversity of non-lethal effects, chemical camouflage, and variation in fish avoidance in colonizing beetles.

    PubMed

    Resetarits, William J; Pintar, Matthew R

    2016-12-01

    Predators play an extremely important role in natural communities. In freshwater systems, fish can dominate sorting both at the colonization and post-colonization stage. Specifically, for many colonizing species, fish can have non-lethal, direct effects that exceed the lethal direct effects of predation. Functionally diverse fish species with a range of predatory capabilities have previously been observed to elicit functionally equivalent responses on oviposition in tree frogs. We tested this hypothesis of functional equivalence of non-lethal effects for four predatory fish species, using naturally colonizing populations of aquatic beetles. Among taxa other than mosquitoes, and with the exception of the chemically camouflaged pirate perch, Aphredoderus sayanus, we provide the first evidence of variation in colonization or oviposition responses to different fish species. Focusing on total abundance, Fundulus chrysotus, a gape-limited, surface-feeding fish, elicited unique responses among colonizing Hydrophilidae, with the exception of the smallest and most abundant taxa, Paracymus, while Dytiscidae responded similarly to all avoided fish. Neither family responded to A. sayanus. Analysis of species richness and multivariate characterization of the beetle assemblages for the four fish species and controls revealed additional variation among the three avoided species and confirmed that chemical camouflage in A. sayanus results in assemblages essentially identical to fishless controls. The origin of this variation in beetle responses to different fish is unknown, but may involve variation in cue sensitivity, different behavioral algorithms, or differential responses to species-specific fish cues. The identity of fish species occupying aquatic habitats is crucial to understanding community structure, as varying strengths of lethal and non-lethal effects, as well as their interaction, create complex landscapes of predator effects and challenge the notion of functional equivalence. © 2016 by the Ecological Society of America.

  4. Waterborne aripiprazole blunts the stress response in zebrafish

    NASA Astrophysics Data System (ADS)

    Barcellos, Heloísa Helena De Alcantara; Kalichak, Fabiana; da Rosa, João Gabriel Santos; Oliveira, Thiago Acosta; Koakoski, Gessi; Idalencio, Renan; de Abreu, Murilo Sander; Giacomini, Ana Cristina Varrone; Fagundes, Michele; Variani, Cristiane; Rossini, Mainara; Piato, Angelo L.; Barcellos, Leonardo José Gil

    2016-11-01

    Here we provide, at least to our knowledge, the first evidence that aripiprazole (APPZ) in the water blunts the stress response of exposed fish in a concentration ten times lower than the concentration detected in the environment. Although the mechanism of APPZ in the neuroendocrine axis is not yet determined, our results highlight that the presence of APPZ residues in the environment may interfere with the stress responses in fish. Since an adequate stress response is crucial to restore fish homeostasis after stressors, fish with impaired stress response may have trouble to cope with natural and/or imposed stressors with consequences to their welfare and survival.

  5. Energy deficit does not affect immune responses of experimentally infected pacu (Piaractus mesopotamicus).

    PubMed

    Gimbo, Rodrigo Y; Fávero, Gisele C; Franco Montoya, Luz N; Urbinati, Elisabeth C

    2015-04-01

    We investigated if the energy deficit following a 30-day starvation period could affect the ability of fish to mount immune responses after experimental exposure to Aeromonas hydrophila. Fish were submitted to two feeding strategies during 30 days: starvation and continuously feeding. Fish were then sampled to allow for the assessment of baseline metabolic and immune system indicators, were next intraperitonially inoculated with A. hydrophila, and finally were sampled at 3 and 24 h after the challenge. The respiratory activity of leukocytes was lower in starved fish at baseline, increasing after bacterial inoculation to levels similar to those seen among fed fish. Levels of serum lysozyme were higher in starved fish at baseline. The same response profile was observed 3 h after inoculation, but among fed fish, these levels increased to values similar to those of starved fish 24 h after infection. Among starved fish, lysozyme concentration did not change over the course of the experiment. The serum ACH activity was lower in starved fish at baseline and increased after bacterial inoculation in both fish groups. Baseline levels of blood glucose of starved fish were lower than those of fed fish and increased 3 h after bacterial inoculation in both fish groups, decreasing in both groups at 24 h after inoculation. Baseline liver glycogen levels were similar in both fish groups and higher than at 3 and 24 h after inoculation. Three hours after bacterial inoculation, liver glycogen was less reduced in fed fish. Baseline levels of blood triglycerides were lower in starved fish and the profile remained unchanged 3 h after inoculation. There was a gradual decrease in fed fish, and the levels of starved fish remained unchanged throughout the observation period. Blood glycerol levels at baseline were higher in starved fish than in fed fish and remained unaltered at 3 h after inoculation. However those levels increased at 24 h. In fed fish there was a gradual increase of glycerol levels up to 24 h after bacterial inoculation. Baseline liver lipid levels of starved fish were lower and this difference in the response profile remained unchanged 3 and 24 h after inoculation. The liver lipid levels of starved fish decreased after inoculation, and remained unchanged in fed fish. As observed in liver lipid, muscle lipid levels of starved fish were lower than in fed fish, throughout the experiment. Starved fish levels remained unchanged; however fed fish levels decreased 24 h after bacterial inoculation. Levels of cortisol were higher in starved fish at baseline and increased in both fish groups 3 h after bacterial inoculation, reaching intermediary levels 24 h after inoculation. Our results show that in pacu, although mounting an immune response triggered after bacterial exposure is an energy-expensive process, fish under energetic deficit status were able to display protection against infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Quantitative proteomics in teleost fish: insights and challenges for neuroendocrine and neurotoxicology research.

    PubMed

    Martyniuk, Christopher J; Popesku, Jason T; Chown, Brittany; Denslow, Nancy D; Trudeau, Vance L

    2012-05-01

    Neuroendocrine systems integrate both extrinsic and intrinsic signals to regulate virtually all aspects of an animal's physiology. In aquatic toxicology, studies have shown that pollutants are capable of disrupting the neuroendocrine system of teleost fish, and many chemicals found in the environment can also have a neurotoxic mode of action. Omics approaches are now used to better understand cell signaling cascades underlying fish neurophysiology and the control of pituitary hormone release, in addition to identifying adverse effects of pollutants in the teleostean central nervous system. For example, both high throughput genomics and proteomic investigations of molecular signaling cascades for both neurotransmitter and nuclear receptor agonists/antagonists have been reported. This review highlights recent studies that have utilized quantitative proteomics methods such as 2D differential in-gel electrophoresis (DIGE) and isobaric tagging for relative and absolute quantitation (iTRAQ) in neuroendocrine regions and uses these examples to demonstrate the challenges of using proteomics in neuroendocrinology and neurotoxicology research. To begin to characterize the teleost neuroproteome, we functionally annotated 623 unique proteins found in the fish hypothalamus and telencephalon. These proteins have roles in biological processes that include synaptic transmission, ATP production, receptor activity, cell structure and integrity, and stress responses. The biological processes most represented by proteins detected in the teleost neuroendocrine brain included transport (8.4%), metabolic process (5.5%), and glycolysis (4.8%). We provide an example of using sub-network enrichment analysis (SNEA) to identify protein networks in the fish hypothalamus in response to dopamine receptor signaling. Dopamine signaling altered the abundance of proteins that are binding partners of microfilaments, integrins, and intermediate filaments, consistent with data suggesting dopaminergic regulation of neuronal stability and structure. Lastly, for fish neuroendocrine studies using both high-throughput genomics and proteomics, we compare gene and protein relationships in the hypothalamus and demonstrate that correlation is often poor for single time point experiments. These studies highlight the need for additional time course analyses to better understand gene-protein relationships and adverse outcome pathways. This is important if both transcriptomics and proteomics are to be used together to investigate neuroendocrine signaling pathways or as bio-monitoring tools in ecotoxicology. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Effects of temperature on Veronaea botryosa infections in white sturgeon Acipenser transmontanus and fungal induced cytotoxicity of fish cell lines.

    PubMed

    Coleman, Denver J; Camus, Alvin C; Martínez-López, Beatriz; Yun, Susan; Stevens, Brittany; Soto, Esteban

    2018-02-01

    Veronaea botryosa is a melanized mold and cause of systemic fungal infections in cultured sturgeon (Acipenser spp.). Mortality in adult female sturgeon caused by this emergent pathogen results in significant economic losses for the caviar industry. Little is known regarding environmental conditions conducive to V. botryosa infection. This study evaluated the effect of temperature on V. botryosa infectivity and dissemination following intramuscular injection challenge of white sturgeon maintained at 13 or 18 °C for 40 days. Daily mortality was recorded and persistence of the fungus in the livers of moribund and surviving fish was investigated using culture and histopathological analysis. Fish maintained at 18 °C developed systemic phaeohyphomycosis and had significantly greater mortality than controls and fish maintained at 13 °C (p < 0.05). Challenged fish, regardless of temperature, exhibited lesions in multiple organs. However, muscle lesions, angioinvasion, and systemic dissemination were more severe and widespread in fish challenged at the higher temperature. In vitro cytotoxicity of V. botryosa was evaluated in white sturgeon skin (WSSK-1) and epithelioma papulosum cyprini (EPC) cell lines inoculated at spore:cell ratios of 1:10, 1:1 and 10:1, then incubated 15, 20 and 25 °C. Cytotoxicity, as indicated by quantifying the release of lactate dehydrogenase into culture supernatants, increased with increasing spore dose and incubation temperature in both fish cell lines. Findings suggest that temperature significantly influences the development of systemic V. botryosa infection in white sturgeon and that WSSK-1 and EPC cells are suitable in vitro models for the study of host-pathogen interactions between V. botryosa and fish epithelial cells.

  8. Analysis of the Ush2a gene in medaka fish (Oryzias latipes).

    PubMed

    Aller, Elena; Sánchez-Sánchez, Ana V; Chicote, Javier U; García-García, Gema; Udaondo, Patricia; Cavallé, Laura; Piquer-Gil, Marina; García-España, Antonio; Díaz-Llopis, Manuel; Millán, José M; Mullor, José L

    2013-01-01

    Patients suffering from Usher syndrome (USH) exhibit sensorineural hearing loss, retinitis pigmentosa (RP) and, in some cases, vestibular dysfunction. USH is the most common genetic disorder affecting hearing and vision and is included in a group of hereditary pathologies associated with defects in ciliary function known as ciliopathies. This syndrome is clinically classified into three types: USH1, USH2 and USH3. USH2 accounts for well over one-half of all Usher cases and mutations in the USH2A gene are responsible for the majority of USH2 cases, but also for atypical Usher syndrome and recessive non-syndromic RP. Because medaka fish (Oryzias latypes) is an attractive model organism for genetic-based studies in biomedical research, we investigated the expression and function of the USH2A ortholog in this teleost species. Ol-Ush2a encodes a protein of 5.445 aa codons, containing the same motif arrangement as the human USH2A. Ol-Ush2a is expressed during early stages of medaka fish development and persists into adulthood. Temporal Ol-Ush2a expression analysis using whole mount in situ hybridization (WMISH) on embryos at different embryonic stages showed restricted expression to otoliths and retina, suggesting that Ol-Ush2a might play a conserved role in the development and/or maintenance of retinal photoreceptors and cochlear hair cells. Knockdown of Ol-Ush2a in medaka fish caused embryonic developmental defects (small eyes and heads, otolith malformations and shortened bodies with curved tails) resulting in late embryo lethality. These embryonic defects, observed in our study and in other ciliary disorders, are associated with defective cell movement specifically implicated in left-right (LR) axis determination and planar cell polarity (PCP).

  9. The structure of the conus arteriosus of the sturgeon (Acipenser naccarii) heart: II. The myocardium, the subepicardium, and the conus-aorta transition.

    PubMed

    Icardo, José M; Colvee, Elvira; Cerra, Maria C; Tota, Bruno

    2002-12-01

    Sturgeons constitute a family of living "fossil" fish whose heart is related to that of other ancient fish and the elasmobranches. We have undertaken a systematic study of the structure of the sturgeon heart aimed at unraveling the relationship between the heart structure and the adaptive evolutionary changes. In a related paper, data were presented on the conus valves and the subendocardium. Here, the structure of the conus myocardium, the subepicardial tissue, and the conus-aorta transition were studied by conventional light, transmission, and scanning electron microscopy. In addition, actin localization by fluorescent phalloidin was used. The conus myocardium is organized into bundles whose spatial organization changes along the conus length. The variable orientation of the myocardial cell bundles may be effective in emptying the conus lumen during contraction and in preventing reflux of blood. Myocardial cell bundles are separated by loose connective tissue that contains collagen and elastin fibers, vessels, and extremely flat cells separating the cell bundles and enclosing blood vessels and collagen fibers. The ultrastructure of the myocardial cells was found to be very similar to that of other fish groups, suggesting that it is largely conservative. The subepicardium is characterized by the presence of nodular structures that contain lympho-hemopoietic (thymus-like) tissue in the young sturgeons and a large number of lymphocytes after the sturgeons reach sexual maturity. This tissue is likely implicated in the establishment and maintenance of the immune responses. The intrapericardial ventral aorta shows a middle layer of circumferentially oriented cells and internal and external layers with cells oriented longitudinally. Elastin fibers completely surround each smooth muscle cell, and the spaces between the different layers are occupied by randomly arranged collagen bundles. The intrapericardial segment of the ventral aorta is a true transitional segment whose structural characteristics are different from those of both the conus subendocardium and the rest of the ventral aorta. Copyright 2002 Wiley-Liss, Inc.

  10. Effects of effluent from electoplating industry on the immune response in the freshwater fish, Cyprinus carpio.

    PubMed

    Borgia, V J Florence; Thatheyus, A J; Murugesan, A G; Alexander, S Catherine P; Geetha, I

    2018-08-01

    The present study was designed to assess the effect of sublethal concentrations of electoplating industry effluent (EIE) on the non-specific and specific immune responses in the freshwater fish, Cyprinus carpio. Sublethal concentrations of electroplating industry effluent such as 0.004, 0.007, 0.010 and 0.013% were chosen based on the LC 50 values. Experimental fish were exposed to these sublethal concentrations of EIE for 28 days. After 7, 14, 21 and 28 days of treatment, non-specific immune response by serum lysozyme activity, myeloperoxidase activity and antiprotease activity and specific immune response by antibody response to Aeromonas hydrophila using bacterial agglutination assay and ELISA were assessed. The results showed that chronic exposure of fish to 0.004, 0.007, 0.010 and 0.013% EIE, dose-dependently decreased the non-specific and specific immune responses on all the days tested compared to control fish whereas statistically significant suppressive effects were observed in fish exposed to 0.013% of EIE on all activities tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Differential expression of survival proteins during decreased intracellular oxygen tension in brain endothelial cells of grey mullets.

    PubMed

    Ekambaram, Padmini; Narayanan, Meenakshi; Parasuraman, Parimala

    2017-02-15

    The brain requires constant oxygen supply to perform its biological functions essential for survival. Because of low oxygen capacity and poor oxygen diffusibility of water, many fish species have evolved various adaptive mechanisms to cope with depleted oxygen. Endothelial cells (EC) are the primary components responsible for controlled environment of brain. Brain homeostasis largely depends on integrity of the EC. To elucidate their adaptive strategy, EC were isolated from the fish brain of Kovalam-control site and Ennore estuary-test/field hypoxic site and were subjected to low oxygen tension in laboratory. Cell viability, 4-hydroxynonenal (4HNE) and total antioxidant capacity (TAC) were analyzed to ascertain stress. Hypoxic insult, cytoprotective role of HSPs and apoptotic effect were analyzed by assessing hypoxia-inducible-factor-α (HIF1α), heat-shock-protein-70 (HSP70), heme-oxygenase 1 (HO-1), and apoptosis signal regulating kinase-1 (ASK1). This study evidenced that HSP70 and HO-1 are the key stress proteins, confer high tolerance to decreased oxygen tension mediated stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Establishment of primary cell cultures from fish calcified tissues

    PubMed Central

    Marques, Cátia L.; Rafael, Marta S.; Cancela, M. Leonor

    2007-01-01

    Fishes have been recently recognized as a suitable model organism to study vertebrate physiological processes, in particular skeletal development and tissue mineralization. However, there is a lack of well characterized in vitro cell systems derived from fish calcified tissues. We describe here a protocol that was successfully used to develop the first calcified tissue-derived cell cultures of fish origin. Vertebra and branchial arches collected from young gilthead seabreams were fragmented then submitted to the combined action of collagenase and trypsin to efficiently release cells embedded in the collagenous extracellular matrix. Primary cultures were maintained under standard conditions and spontaneously transformed to form continuous cell lines suitable for studying mechanisms of tissue mineralization in seabream. This simple and inexpensive protocol is also applicable to other calcified tissues and species by adjusting parameters to each particular case. PMID:19002990

  13. Fish communities and their associations with environmental variables, lower San Joaquin River drainage, California

    USGS Publications Warehouse

    Brown, L.R.

    2000-01-01

    Twenty sites in the lower San Joaquin River drainage, California, were sampled from 1993 to 1995 to characterize fish communities and their associations with measures of water quality and habitat quality. The feasibility of developing an Index of Biotic Integrity was assessed by evaluating four fish community metrics, including percentages of native fish, omnivorous fish, fish intolerant of environmental degradation, and fish with external anomalies. Of the thirty-one taxa of fish captured during the study, only 10 taxa were native to the drainage. Multivariate analyses of percentage data identified four site groups characterized by different groups of species. The distributions of fish species were related to specific conductance, gradient, and mean depth; however, specific conductance acted as a surrogate variable for a large group of correlated variables. Two of the fish community metrics - percentage of introduced fish and percentage of intolerant fish - appeared to be responsive to environmental quality but the responses of the other two metrics - percentage of omnivorous fish and percentage of fish with anomalies - were less direct. The conclusion of the study is that fish communities are responsive to environmental conditions, including conditions associated with human-caused disturbances, particularly agriculture and water development. The results suggest that changes in water management and water quality could result in changes in species distributions. Balancing the costs and benefits of such changes poses a considerable challenge to resource managers.

  14. Assemblages of fishes and their associations with environmental variables, lower San Joaquin River drainage, California

    USGS Publications Warehouse

    Brown, Larry R.

    1998-01-01

    Twenty sites in the lower San Joaquin River drainage, California, were sampled from 1993 to 1995 to characterize fish assemblages and their associations with measures of water quality and habitat quality. In addition, four fish community metrics were assessed, including percentages of native fish, omnivorous fish, fish intolerant of environmental degradation, and fish with external anomalies. Of the 31 taxa of fish captured during the study, only 10 taxa were native to the drainage. Multivariate analyses of percentage data identified four site groups characterized by characterized by different groups of species. The distributions of fish species were related to specific conductance, gradient, and mean depth; however, specific conductance acted as a surrogate variable for a large group of correlated variables. Two of the fish community metrics--percentage of introduced fish and percentage of intolerant fish--appeared to be responsive to environmental quality but the responses of the other two metrics--percentage of omnivorous fish and percentage of fish with anomalies--were less direct. The conclusion of the study is that fish assemblages are responsive to environmental conditions, including conditions associated with human-caused disturbances, particularly agriculture and water development. The results suggest that changes in water management and water quality could result in changes in species distributions. Balancing the costs and benefits of such changes poses a considerable challenge to resource managers. different groups of species.

  15. Correlation of IHC and FISH for ALK gene rearrangement in non-small cell lung carcinoma: IHC score algorithm for FISH.

    PubMed

    Yi, Eunhee S; Boland, Jennifer M; Maleszewski, Joseph J; Roden, Anja C; Oliveira, Andre M; Aubry, Marie-Christine; Erickson-Johnson, Michele R; Caron, Bolette L; Li, Yan; Tang, Hui; Stoddard, Shawn; Wampfler, Jason; Kulig, Kimary; Yang, Ping

    2011-03-01

    Accurate, cost-effective methods for testing anaplastic lymphoma kinase gene rearrangement (ALK+) are needed to select patients with non-small cell lung carcinoma for ALK-inhibitor therapy. Fluorescent in situ hybridization (FISH) is used to detect ALK+, but it is expensive and not routinely available. We explored the potential of an immunohistochemistry (IHC) scoring system as an affordable, accessible approach. One hundred one samples were obtained from an enriched cohort of never-smokers with adenocarcinoma from the Mayo Clinic Lung Cancer Cohort. IHC was performed using the ALK1 monoclonal antibody with ADVANCE detection system (Dako) and FISH with dual-color, break-apart probe (Abbott Molecular) on formalin-fixed, paraffin-embedded tissue. Cases were assessed as IHC score 0 (no staining; n = 69), 1+ (faint cytoplasmic staining, n = 21), 2+ (moderate, smooth cytoplasmic staining; n = 3), or 3+ (intense, granular cytoplasmic staining in ≥10% of tumor cells; n = 8). All IHC 3+ cases were FISH+, whereas 1 of 3 IHC 2+ and 1 of 21 IHC 1+ cases were FISH+. All 69 IHC 0 cases were FISH-. Considering FISH a gold-standard reference in this study, sensitivity and specificity of IHC were 90 and 97.8%, respectively, when 2+ and 3+ were regarded as IHC positive and 0 and 1+ as IHC negative. IHC scoring correlates with FISH and may be a useful algorithm in testing ALK+ by FISH in non-small cell lung carcinoma, similar to human epidermal growth factor-2 testing in breast cancer. Further study is needed to validate this approach.

  16. Meta-Analysis of Quantification Methods Shows that Archaea and Bacteria Have Similar Abundances in the Subseafloor

    PubMed Central

    May, Megan K.; Kevorkian, Richard T.; Steen, Andrew D.

    2013-01-01

    There is no universally accepted method to quantify bacteria and archaea in seawater and marine sediments, and different methods have produced conflicting results with the same samples. To identify best practices, we compiled data from 65 studies, plus our own measurements, in which bacteria and archaea were quantified with fluorescent in situ hybridization (FISH), catalyzed reporter deposition FISH (CARD-FISH), polyribonucleotide FISH, or quantitative PCR (qPCR). To estimate efficiency, we defined “yield” to be the sum of bacteria and archaea counted by these techniques divided by the total number of cells. In seawater, the yield was high (median, 71%) and was similar for FISH, CARD-FISH, and polyribonucleotide FISH. In sediments, only measurements by CARD-FISH in which archaeal cells were permeabilized with proteinase K showed high yields (median, 84%). Therefore, the majority of cells in both environments appear to be alive, since they contain intact ribosomes. In sediments, the sum of bacterial and archaeal 16S rRNA gene qPCR counts was not closely related to cell counts, even after accounting for variations in copy numbers per genome. However, qPCR measurements were precise relative to other qPCR measurements made on the same samples. qPCR is therefore a reliable relative quantification method. Inconsistent results for the relative abundance of bacteria versus archaea in deep subsurface sediments were resolved by the removal of CARD-FISH measurements in which lysozyme was used to permeabilize archaeal cells and qPCR measurements which used ARCH516 as an archaeal primer or TaqMan probe. Data from best-practice methods showed that archaea and bacteria decreased as the depth in seawater and marine sediments increased, although archaea decreased more slowly. PMID:24096423

  17. Transposon-mediated generation of BCR-ABL1-expressing transgenic cell lines for unbiased sensitivity testing of tyrosine kinase inhibitors.

    PubMed

    Byrgazov, Konstantin; Lucini, Chantal Blanche; Berkowitsch, Bettina; Koenig, Margit; Haas, Oskar A; Hoermann, Gregor; Valent, Peter; Lion, Thomas

    2016-11-22

    Point mutations in the ABL1 kinase domain are an important mechanism of resistance to tyrosine kinase inhibitors (TKI) in BCR-ABL1-positive and, as recently shown, BCR-ABL1-like leukemias. The cell line Ba/F3 lentivirally transduced with mutant BCR-ABL1 constructs is widely used for in vitro sensitivity testing and response prediction to tyrosine kinase inhibitors. The transposon-based Sleeping Beauty system presented offers several advantages over lentiviral transduction including the absence of biosafety issues, faster generation of transgenic cell lines, and greater efficacy in introducing large gene constructs. Nevertheless, both methods can mediate multiple insertions in the genome. Here we show that multiple BCR-ABL1 insertions result in elevated IC50 levels for individual TKIs, thus overestimating the actual resistance of mutant subclones. We have therefore established flow-sorting-based fractionation of BCR-ABL1-transformed Ba/F3 cells facilitating efficient enrichment of cells carrying single-site insertions, as demonstrated by FISH-analysis. Fractions of unselected Ba/F3 cells not only showed a greater number of BCR-ABL1 hybridization signals, but also revealed higher IC50 values for the TKIs tested. The data presented highlight the need to carefully select transfected cells by flow-sorting, and to control the insertion numbers by FISH and real-time PCR to permit unbiased in vitro testing of drug resistance.

  18. Dietary selenium disrupts hepatic triglyceride stores and transcriptional networks associated with growth and Notch signaling in juvenile rainbow trout.

    PubMed

    Knight, Rosalinda; Marlatt, Vicki L; Baker, Josh A; Lo, Bonnie P; deBruyn, Adrian M H; Elphick, James R; Martyniuk, Christopher J

    2016-11-01

    Dietary Se has been shown to adversely affect adult fish by altering growth rates and metabolism. To determine the underlying mechanisms associated with these observations, we measured biochemical and transcriptomic endpoints in rainbow trout following dietary Se exposures. Treatment groups of juvenile rainbow trout were fed either control Lumbriculus variegatus worms or worms cultured on selenized yeast. Selenized yeast was cultured at four nominal doses of 5, 10, 20 or 40mg/kg Se dry weight (measured dose in the worms of 7.1, 10.7, 19.5, and 31.8mg/kgSedw respectively) and fish were fed for 60days. At 60 d, hepatic triglycerides, glycogen, total glutathione, 8-isoprostane and the transcriptome response in the liver (n=8/group) were measured. Fish fed the nominal dose of 20 and 40mg/kg Se dry weight had lower body weight and a shorter length, as well as lower triglyceride in the liver compared to controls. Evidence was lacking for an oxidative stress response and there was no change in total glutathione, 8-isoprostane levels, nor relative mRNA levels for glutathione peroxidase isoforms among groups. Microarray analysis revealed that molecular networks for long-chain fatty acid transport, lipid transport, and low density lipid oxidation were increased in the liver of fish fed 40mg/kg, and this is hypothesized to be associated with the lower triglyceride levels in these fish. In addition, up-regulated gene networks in the liver of 40mg/kg Se treated fish included epidermal growth factor receptor signaling, growth hormone receptor, and insulin growth factor receptor 1 signaling pathways. These molecular changes are hypothesized to be compensatory and related to impaired growth. A gene network related to Notch signaling, which is involved in cell-cell communication and gene transcription regulation, was also increased in the liver following dietary treatments with both 20 and 40mg/kg Se. Transcriptomic data support the hypothesis that dietary Se increases the expression of networks for growth-related signaling cascades in addition to those related to fatty acid synthesis and metabolism. We propose that the disruption of metabolites related to triglyceride processing and storage, as well as gene networks for epidermal growth factor and Notch signaling in the liver, represent key molecular initiating events for adverse outcomes related to growth and Se toxicity in fish. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Physiological response of wild rainbow trout to angling: Impact of angling duration, fish size, body condition, and temperature

    USGS Publications Warehouse

    Meka, Julie M.; McCormick, S.D.

    2005-01-01

    This study evaluated the immediate physiological response of wild rainbow trout to catch-and-release angling in the Alagnak River, southwest Alaska. Information was recorded on individual rainbow trout (n = 415) captured by angling including landing time and the time required to remove hooks (angling duration), the time to anesthetize fish in clove oil and withdraw blood, fish length and weight, and water temperature at capture locations. Plasma cortisol, glucose, ions (sodium, potassium, chloride), and lactate were analyzed to determine the effects of angling duration, fish size, body condition, and temperature. Levels of plasma ions did not change significantly during the observed physiological response and levels of plasma glucose were sometimes influenced by length (2000, 2001), body condition (2001), or temperature (2001). Levels of plasma cortisol and lactate in extended capture fish (angling duration greater than 2 min) were significantly higher than levels in rapid capture fish (angling duration less than 2 min). Rapid capture fish were significantly smaller than extended capture fish, reflecting that fish size influenced landing and handling times. Fish size was related to cortisol and lactate in 2002, which corresponded to the year when larger fish were captured and there were longer landing times. Body condition (i.e., weight/length regression residuals index), was significantly related to lactate in 2000 and 2001. Water temperatures were higher in 2001 (mean temperature ± S.E., 13 ± 2oC) than in 2002 (10 ± 2oC), and fish captured in 2001 had significantly higher cortisol and lactate concentrations than fish captured in 2002. The pattern of increase in plasma cortisol and lactate was due to the amount of time fish were angled, and the upper limit of the response was due to water temperature. The results of this study indicate the importance of minimizing the duration of angling in order to reduce the sublethal physiological disturbances in wild fish subjected to catch-and-release angling, particularly during warmer water temperatures. It is also important to note that factors such as fish size may influence both the duration of angling and subsequent physiological response. 

  20. A rare case of a three way complex variant positive Philadelphia translocation involving chromosome (9;11;22)(q34;p15;q11) in chronic myeloid leukemia: A case report

    PubMed Central

    Asif, Muhammad; Hussain, Abrar; Rasool, Mahmood

    2016-01-01

    The t(9;22)(q34;q11) translocation is present in 90–95% of patients with chronic myeloid leukemia (CML). Variant complex translocations have been observed in 5–8% of CML patients, in which a third chromosome other than (9;22) is involved. Imatinib mesylate is the first line breakpoint cluster region-Abelson gene (BCR/ABL)-targeted oral therapy for CML, and may produce a complete response in 70–80% of CML patients in the chronic phase. In the present study, a bone marrow sample was used for conventional cytogenetic analysis, and the fluorescence in situ hybridization (FISH) test was used for BCR/ABL gene detection. A hematological analysis was also performed to determine the white blood cell (WBC) count, red blood cell count, hemoglobin levels, packed and mean cell volumes, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration and platelet values of the patient. The hematological analysis of the patient indicated the increased WBC of 186.5×103 cells/µl, and decreased hemoglobin levels of 11.1 g/dl. The FISH test revealed that 67% cells demonstrated BCR/ABL gene translocation. The patient was treated with 400 mg imatinib mesylate daily, and was monitored at various intervals over a 6-month period. The present study reports the rare case of a patient that demonstrates a three-way Philadelphia chromosome-positive translocation involving 46XY,t(9;11;22)(q34;p15;q11)[10], alongside CML in the chronic phase. The translocation was analyzed using cytogenetic and FISH tests. PMID:27602125

  1. Multiple cues produced by a robotic fish modulate aggressive behaviour in Siamese fighting fishes.

    PubMed

    Romano, Donato; Benelli, Giovanni; Donati, Elisa; Remorini, Damiano; Canale, Angelo; Stefanini, Cesare

    2017-07-05

    The use of robotics to establish social interactions between animals and robots, represents an elegant and innovative method to investigate animal behaviour. However, robots are still underused to investigate high complex and flexible behaviours, such as aggression. Here, Betta splendens was tested as model system to shed light on the effect of a robotic fish eliciting aggression. We evaluated how multiple signal systems, including a light stimulus, affect aggressive responses in B. splendens. Furthermore, we conducted experiments to estimate if aggressive responses were triggered by the biomimetic shape of fish replica, or whether any intruder object was effective as well. Male fishes showed longer and higher aggressive displays as puzzled stimuli from the fish replica increased. When the fish replica emitted its full sequence of cues, the intensity of aggression exceeded even that produced by real fish opponents. Fish replica shape was necessary for conspecific opponent perception, evoking significant aggressive responses. Overall, this study highlights that the efficacy of an artificial opponent eliciting aggressive behaviour in fish can be boosted by exposure to multiple signals. Optimizing the cue combination delivered by the robotic fish replica may be helpful to predict escalating levels of aggression.

  2. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    PubMed

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-06

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. © 2015 The Author(s).

  3. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena

    PubMed Central

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S.

    2015-01-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow ‘vision’ and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr0.52Ti0.48)O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s−1) and 8.2 µm s−1, respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  4. Common Fluorescence In Situ Hybridization Applications in Cytology.

    PubMed

    Savic, Spasenija; Bubendorf, Lukas

    2016-12-01

    - Fluorescence in situ hybridization (FISH) is a well-established method for detection of genomic aberrations in diagnostic, prognostic, and predictive marker testing. - To review common applications of FISH in cytology. - The published literature was reviewed. - Cytology is particularly well suited for all kinds of FISH applications, which is highlighted in respiratory tract cytology with an increasing demand for predictive FISH testing in lung cancer. Fluorescence in situ hybridization is the gold standard for detection of predictive anaplastic lymphoma kinase gene (ALK) rearrangements, and the same evaluation criteria as in histology apply to cytology. Several other gene rearrangements, including ROS proto-oncogene 1 receptor tyrosine kinase (ROS1), are becoming clinically important and share the same underlining cytogenetic mechanisms with ALK. MET amplification is one of the most common mechanisms of acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and can be targeted by crizotinib. As genomic aberrations are a hallmark of malignant cells, FISH is a valuable objective ancillary diagnostic tool. In urinary tract cytology, atypical urothelial cells equivocal for malignancy are a common diagnostic dilemma and multitarget FISH can help clarify such cells. Diagnosis of malignant mesothelioma remains one of the most challenging fields in effusion cytology, and ancillary FISH is useful in establishing the diagnosis. Fluorescence in situ hybridization is a morphology-based technique, and the prerequisite for reliable FISH results is a targeted evaluation of the cells in question (eg, cancer or atypical cells). Cytopathologists and cytotechnicians should therefore be involved in molecular testing in order to select the best material and to provide their morphologic expertise.

  5. [Application of polyclonal break-apart probes in the diagnosis of Xp11.2 translocation renal cell carcinoma].

    PubMed

    Chen, Xiancheng; Gan, Weidong; Ye, Qing; Yang, Jun; Guo, Hongqian; Li, Dongmei

    2014-12-16

    To explore the value of self-designed fluorescent in situ hybridization (FISH) polyclonal break-apart probes specific for TFE3 gene in the diagnosis of Xp11.2 translocation renal cell carcinoma. All tissue samples were collected from 2006 to 2013, including Xp11.2 translocation renal cell carcinoma (n = 10), renal clear cell carcinoma (n = 10) and renal papillary cell carcinoma (n = 10). FISH was conducted for paraffin-embedded tumor tissue sections with probes. The types of fluorescence were observed by fluorescent microscopy to determine the existence or non-existence of translocated TFE3 gene. All sections were successfully probed. The split red and green signals within a single nucleus were detected simultaneously in 9 cases of Xp11.2 translocation renal cell carcinoma as diagnosed by traditional pathological and immunohistochemical methods. And it was consistent with the initial diagnosis. Detection of fusion signal in 1/10 and negative FISH result did not conform to the initial diagnosis. The fluorescent types of renal clear cell carcinoma and renal papillary cell carcinoma were all fusion signals. FISH tests were negative for renal clear and papillary cell carcinomas. Xp11.2 translocation renal cell carcinomas diagnosed by traditional pathological and immunohistochemical methods are sometimes misdiagnosed. Detecting the translocation of TFE3 gene with FISH polyclonal break-apart probes is both accurate and reliable for diagnosing Xp11.2 translocation renal cell carcinoma.

  6. Constitutive expression of thymidylate synthase from LCDV-C induces a transformed phenotype in fish cells.

    PubMed

    Zhao, Zhe; Shi, Yan; Ke, Fei; Wei, Sun; Gui, Jianfang; Zhang, Qiya

    2008-03-01

    Thymidylate synthase (TS), an essential enzyme in DNA synthesis and repair, plays a key role in the events of cell cycle regulation and tumor formation. Here, an investigation was presented about subcellular location and biological function of viral TS from lymphocystis disease virus from China (LCDV-C) in fish cells. Fluorescence microscopy revealed that LCDV-C TS was predominantly localized in the cytoplasm in fish cells. Cell cycle analysis demonstrated that LCDV-C TS promoted cell cycle progression into S and G2/M phase in the constitutive expressed cells. As a result, the cells have a faster growth rate compared with the control cells as revealed by cell growth curves. For foci assay, the TS-expressed cells gave rise to foci 4-5 weeks after incubation. Microscopic examination of the TS-induced foci revealed multilayered growth and crisscross morphology characteristic of transformed cells. Moreover, LCDV-C TS predisposed the transfected cells to acquire an anchorage-independent phenotype and could grow in 0.3% soft agar. So the data reveal LCDV-C TS is sufficient to induce a transformed phenotype in fish cells in vitro and exhibits its potential ability in cell transformation. To our knowledge, it is the first report on viral TS sequences associated with transforming activity.

  7. Development and characterization of a new marine fish cell line from turbot (Scophthalmus maximus).

    PubMed

    Wang, N; Wang, X L; Sha, Z X; Tian, Y S; Chen, S L

    2010-12-01

    A new marine fish cell line, TK, derived from turbot (Scophthalmus maximus) kidney, was established by the method of trypsin digestion and subcultured for more than 50 passages over a period of 300 days. The TK cells were maintained in Minimum Essential Medium Eagle (MEM) supplemented with HEPES, antibiotics, fetal bovine serum (FBS), 2-Mercaptoethanol (2-Me), and basic fibroblast growth factor (bFGF). The suitable growth temperature for TK cells was 24°C, and microscopically, TK cells were composed of fibroblast-like cells. Chromosome analysis revealed that the TK cell line has a normal diploid karyotype with 2n=44. Two fish viruses LCDV-C (lymphocystis disease virus from China) and TRBIV (turbot reddish body iridovirus) were used to determine the virus susceptibility of TK cell line. The TK cell line was found to be susceptible to TRBIV, and the infection was confirmed by cytopathic effect (CPE) and transmission electron microscopy, which detected the viral particles in the cytoplasm of virus-infected cells. Finally, significant green fluorescent signals were observed when the TK cells were transfected with pEGFP-N3 vector, indicating its potential utility for fish virus study and genetic manipulation.

  8. Mast cells are present in the choroid of the normal eye in most vertebrate classes.

    PubMed

    McMenamin, Paul Gerard; Polla, Emily

    2013-07-01

    Mast cells are bone marrow-derived tissue-homing leukocytes, which have traditionally been regarded as effector cells in allergic disorders, responses against parasites, and regulation of blood flow, but a broader perspective of their functional heterogeneity, such as immunomodulation, angiogenesis, tissue repair, and remodeling after injury, is now emerging. The persistence of mast cells in connective tissues throughout the evolution of vertebrates is evidence of strong selective pressure suggesting that these cells must have multiple beneficial and important roles in normal homeostasis. While mast cells are present within the uveal tract of eutherian mammals, there is little known about their presence in the choroid of other vertebrate classes. Eye tissues from a range of vertebrate species (fish, amphibian, reptiles, birds, marsupials, monotreme, and eutherian mammals) were investigated. Tissues were fixed in either 2% glutaraldehyde, 2% paraformaldehyde or a mixture of both and processed for resin embedding. Semi-thin sections of the retina and choroid were cut and stained with toluidine blue. Mast cells were identified in the choroid of all classes of vertebrates investigated except sharks. Their morphology, location, and staining characteristics were remarkably similar from teleost fish through to eutherian mammals and bore close morphological resemblance to mammalian connective tissue mast cells. The similar morphology and distribution of mast cells in the choroid of all vertebrate classes studied suggest a basic physiological function that has been retained since the evolution of the vertebrate eye. © 2013 American College of Veterinary Ophthalmologists.

  9. The concept of stress in fish

    USGS Publications Warehouse

    Schreck, Carl B.; Tort, Lluis

    2016-01-01

    The general physiological response of fish to threatening situations, as with all vertebrates, is referred to as stress. A stress response is initiated almost immediately following the perception of a stressor. Mildly stressful situations can have beneficial or positive effects (eustress), while higher severities induce adaptive responses but also can have maladaptive or negative consequences (distress). The stress response is initiated and controlled by two hormonal systems, those leading to the production of corticosteroids (mainly cortisol) and catecholamines (such as adrenaline and noradrenaline and their precursor dopamine). Together these regulate the secondary stress response factors that alter the distribution of necessary resources such as energy sources and oxygen to vital areas of the body, as well as compromise hydromineral imbalance and the immune system. If fish can resist death due to a stressor, they recover to a similar or somewhat similar homeostatic norm. Long-term consequences of repeated or prolonged exposures to stress are maladaptive by negatively affecting other necessary life functions (growth, development, disease resistance, behavior, and reproduction), in large part because of the energetic cost associated with mounting the stress response (allostatic load).There is considerable variation in how fish respond to a stressor because of genetic differences among different taxa and also within stocks and species. Variations within the stress response are introduced by the environmental history of the fish, present ambient environmental conditions, and the fish's present physiological condition. Currently, fish physiology has progressed to the point where we can easily recognize when fish are stressed, but we cannot always recognize when fish are unstressed because the lack of clinical signs of stress does not always correspond to fish being unstressed. In other words, we need to be aware of the possibility of false negatives regarding clinical signs of stress. In addition, we cannot use clinical data to precisely or accurately infer severity of a stressor.

  10. Uranium (238U)-induced ROS and cell cycle perturbations, antioxidant responses and erythrocyte nuclear abnormalities in the freshwater iridescent shark fish Pangasius sutchi.

    PubMed

    Annamalai, Sathesh Kumar; Arunachalam, Kantha Deivi

    2017-05-01

    The strategic plan of this study is to analyze any possible radiological impact on aquatic organisms from forthcoming uranium mining facilities around the Nagarjuna Sagar Dam in the future. The predominantly consumed and dominant fish species Pangasius sutchi, which is available year-round at Nagarjuna Sagar Dam, was selected for the study. To comprehend the outcome and to understand the mode of action of 238 U, the fish species Pangasius sutchi was exposed to ¼ and ½ of the LC 50 doses of waterborne 238 U in a static system in duplicate for 21 days. Blood and organs, including the gills, liver, brain and muscles, were collected at different time periods-0h, 24h, 48h, 72h, 96h, 7, days 14days and 21 days-using ICP-MS to determine the toxic effects of uranium and the accumulation of 238 U concentrations. The bioaccumulation of 238 U in P. sutchi tissues was dependent on exposure time and concentration. The accumulation of uranium was, in order of magnitude, measured as gills>liver>brain>tissue, with the highest accumulation in the gills. It was observed that exposure to 238 U significantly reduced antioxidant enzymes such as superoxide dismutase, catalase, and lipid peroxidase. The analysis of DNA fragmentation by comet assay and cell viability by flow cytometry was performed at different time intervals. DNA histograms by flow cytometry analysis revealed an increase in the G2/M phase and the S phase. The long-term 238 U exposure studies in fish showed increasing micronucleus frequencies in erythrocytes with greater exposure time. The higher the concentration of 238 U is, the greater is the effect observed, suggesting a close relationship between accumulation and toxicity. A possible ROS-mediated 238 U toxicity mechanism and antioxidant responses have been proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Rachycentron canadum (cobia) lectin promoted mitogenic response in mice BALB/c splenocytes.

    PubMed

    Coriolano, M C; de Melo, C M L; Santos, A J G; Pereira, V R A; Coelho, L C B B

    2012-12-01

    The mitogenic lectins are invaluable tools to study the biochemical changes associated with lymphocyte activation and proliferation of various immune cells. Rachycentron canadum lectin (RcaL) was detected and purified from serum of cobia fish. The aim of this study was to evaluate the proliferative response and cytokine production in splenocytes of mice in vitro stimulated with RcaL lectin; Canavalia ensiformis lectin (Con A) was used as positive control. A high proliferation index was induced by RcaL in relation to control cells. Furthermore, RcaL induced higher IL-2 and IL-6 production in relation to control. The cell viability was 90% in splenocytes treated with RcaL lectin, but RcaL promoted significant late apoptosis after 24 and 48 h in relation to control. RcaL induced proliferative responses suggesting that this lectin can be used as a mitogenic agent in immunostimulatory assays. © 2012 The Authors. Scandinavian Journal of Immunology © 2012 Blackwell Publishing Ltd.

  12. Reprint of "fish immunity to scuticociliate parasites".

    PubMed

    Piazzon, María Carla; Leiro, José; Lamas, Jesús

    2014-04-01

    Some species of scuticociliates (Ciliophora) behave as facultative parasites and produce severe mortalities in cultured fish. Pathogenic scuticociliates can cause surface lesions and can also penetrate inside the body, where they feed on tissue and proliferate in the blood and most internal organs, killing the host in a few days. In this review, we describe the current knowledge on the protective role of fish cellular and humoral immune responses against these parasites. Immune humoral factors, especially complement, are of particular importance in defending fish against these ciliates. However, knowledge about how the fish immune system responds to scuticociliates is scant, and the cellular and molecular events that occur during the response are not known. We also describe the possible mechanisms used by scuticociliates to avoid or resist the defensive reaction of the host. For example, the release of proteases can help parasites enter fish tissues and impair the fish cellular and humoral responses. Several vaccine formulations containing scuticociliates have induced a good antibody response and protection in fish immunized and challenged with homologous strains of particular species. However, protection was not achieved in fish immunized and challenged with heterologous strains, and the antigens involved in protection and the antigenic differences between heterologous strains have not yet been determined. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Fish immunity to scuticociliate parasites.

    PubMed

    Piazzon, María Carla; Leiro, José; Lamas, Jesús

    2013-10-01

    Some species of scuticociliates (Ciliophora) behave as facultative parasites and produce severe mortalities in cultured fish. Pathogenic scuticociliates can cause surface lesions and can also penetrate inside the body, where they feed on tissue and proliferate in the blood and most internal organs, killing the host in a few days. In this review, we describe the current knowledge on the protective role of fish cellular and humoral immune responses against these parasites. Immune humoral factors, especially complement, are of particular importance in defending fish against these ciliates. However, knowledge about how the fish immune system responds to scuticociliates is scant, and the cellular and molecular events that occur during the response are not known. We also describe the possible mechanisms used by scuticociliates to avoid or resist the defensive reaction of the host. For example, the release of proteases can help parasites enter fish tissues and impair the fish cellular and humoral responses. Several vaccine formulations containing scuticociliates have induced a good antibody response and protection in fish immunized and challenged with homologous strains of particular species. However, protection was not achieved in fish immunized and challenged with heterologous strains, and the antigens involved in protection and the antigenic differences between heterologous strains have not yet been determined. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A dynamic landscape model for fish in the Everglades and its application to restoration

    USGS Publications Warehouse

    Gaff, H.D.; DeAngelis, D.L.; Gross, L.J.; Salinas, R.; Shorrosh, M.

    2000-01-01

    A model (ALFISH) for fish functional groups in freshwater marshes of the greater Everglades area of southern Florida has been developed. Its main objective is to assess the spatial pattern of fish densities through time across freshwater marshes. This model has the capability of providing a dynamic measure of the spatially-explicit food resources available to wading birds. ALFISH simulates two functional groups, large and small fish, where the larger ones can prey on the small fish type. Both functional groups are size-structured. The marsh landscape is modeled as 500×500 m spatial cells on a grid across southern Florida. A hydrology model predicts water levels in the spatial cells on 5-day time steps. Fish populations spread across the marsh during flooded conditions and either retreat into refugia (alligator ponds), move to other spatial cells, or die if their cell dries out. ALFISH has been applied to the evaluation of alternative water regulation scenarios under the Central and South Florida Comprehensive Project Review Study. The objective of this Review Study is to compare alternative methods for restoring historical ecological conditions in southern Florida. ALFISH has provided information on which plans are most are likely to increase fish biomass and its availability to wading bird populations.

  15. Fish and invertebrate flow-biology relationships to support the determination of ecological flows for North Carolina

    USGS Publications Warehouse

    Phelan, Jennifer; Cuffney, Thomas F.; Patterson, Lauren A.; Eddy, Michele; Dykes, Robert; Pearsall, Sam; Goudreau, Chris; Mead, Jim; Tarver, Fred

    2017-01-01

    A method was developed to characterize fish and invertebrate responses to flow alteration in the state of North Carolina. This method involved using 80th percentile linear quantile regressions to relate six flow metrics to the diversity of riffle-run fish and benthic Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness. All twelve flow-biology relationships were found to be significant, with both benthos and fish showing negative responses to ecodeficits and reductions in flow. The responses of benthic richness to reduced flows were consistent and generally greater than that of fish diversity. However, the riffle-run fish guild showed the greatest reductions in diversity in response to summer ecodeficits. The directional consistency and differential seasonal sensitivities of fish and invertebrates to reductions in flow highlight the need to consider seasonality when managing flows. In addition, all relationships were linear, and therefore do not provide clear thresholds to support ecological flow determinations and flow prescriptions to prevent the degradation of fish and invertebrate communities in North Carolina rivers and streams. A method of setting ecological flows based on the magnitude of change in biological condition that is acceptable to society is explored.

  16. In Vivo Immune Responses of Cross-Linked Electrospun Tilapia Collagen Membrane.

    PubMed

    Hassanbhai, Ammar Mansoor; Lau, Chau Sang; Wen, Feng; Jayaraman, Praveena; Goh, Bee Tin; Yu, Na; Teoh, Swee-Hin

    2017-10-01

    Collagen has been used extensively in tissue engineering applications. However, the source of collagen has been primarily bovine and porcine. In view of the potential risk of zoonotic diseases and religious constraints associated with bovine and porcine collagen, fish collagen was examined as an alternative. The aim of this study is to use tilapia fish collagen to develop a cross-linked electrospun membrane to be used as a barrier membrane in guided bone regeneration. As there is limited data available on the cytotoxicity and immunogenicity of cross-linked tilapia collagen, in vitro and in vivo tests were performed to evaluate this in comparison to the commercially available Bio-Gide ® membrane. In this study, collagen was extracted and purified from tilapia skin and electrospun into a nanofibrous membrane. The resultant membrane was cross-linked to obtain a cross-linked electrospun tilapia collagen (CETC) membrane, which was characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), degradation studies, cytotoxicity studies, and cell proliferation studies. The membranes were also implanted subcutaneously in rats and the host immune responses were examined. The DSC data showed that cross-linking increased the denaturation temperature of tilapia collagen to 58.3°C ± 1.4°C. The in vitro tests showed that CETC exhibited no cytotoxicity toward murine fibroblast L929 cells, and culture of murine preosteoblast MC3T3-E1 cells demonstrated better proliferation on CETC as compared to Bio-Gide. When implanted in rats, CETC caused a higher production of interleukin IL-6 at early time points as compared to Bio-Gide, but there was no long-term inflammatory responses after the acute inflammation phase. This finding was supported with histology data, which clearly illustrated that CETC has a decreased inflammatory response comparable to the benchmark control group. In all, this study demonstrated the viability for the use of CETC as a tissue engineering scaffold and provides an insight on the in vivo immune responses toward xenogenic collagen scaffolds.

  17. Effect of β-1, 3 glucan binding protein based zinc oxide nanoparticles supplemented diet on immune response and disease resistance in Oreochromis mossambicus against Aeromonas hydrophila.

    PubMed

    Anjugam, Mahalingam; Vaseeharan, Baskaralingam; Iswarya, Arokiadhas; Gobi, Narayanan; Divya, Mani; Thangaraj, Merlin P; Elumalai, Preetham

    2018-05-01

    Recently, several immunostimulants such as β-glucan, microbial and plant products have been used as dietary supplements to combat disease outbreaks in aquaculture. The present study investigates the potential of Portunus pelagicus β-1, 3 glucan binding protein based zinc oxide nanoparticles (Ppβ-GBP-ZnO NPs) supplemented diet on growth, immune response and disease resistance in Mozambique tilapia, Oreochromis mossambicus. The immune-related protein β-GBP was purified from the haemolymph of P. pelagicus using Sephadex G-100 affinity column chromatography. Ppβ-GBP-ZnO NPs was physico- chemically characterized and experimental feed was formulated. Fish were separately fed with commercial diet (control-group I) and Ppβ-GBP (group II, III, IV), Ppβ-GBP-ZnO NPs (group V, VI, VII), chem-ZnO NPs (VIII, IX, X) mixed diet at the concentration of 0.001%, 0.002% and 0.004% respectively. Triplicate groups of O. mossambicus were fed with experimental diets twice a day for 30 days. Fish receiving Ppβ-GBP-ZnO NPs supplemented diet showed a significant increase (P < 0.05) in growth performance. Cellular immune responses (myeloperoxidase activity, lysozyme activity and reactive oxygen species activity) and humoral immune responses (complement activity, antiprotease activity and alkaline phosphatase activity) were evaluated at an interval of 15 days during the feeding trial. Results demonstrate that both cellular and humoral immune responses were substantially increased (P < 0.05) in fish fed with 0.004% of Ppβ-GBP-ZnO NPs supplemented diet than others. Antibiofilm potential of Ppβ-GBP-ZnO NPs against Aeromonas hydrophila was visualized through confocal laser scanning microscopy (CLSM), which reveals reduction in the preformed biofilm thickness to 10 μm  at the concentration of 50 μg/ml. Furthermore, after 30 days of feeding trial, fish were challenged with aquatic fish pathogen A. hydrophila (1 × 10 7  cells ml -1 ) through intraperitoneal injection. Challenge study displayed a reduced mortality rate in fish fed with diet containing Ppβ-GBP-ZnO NPs. Thus our study suggests that dietary supplementation of Ppβ-GBP-ZnO NPs at 0.004% may have a potential effect to enhance the immune system and survival of O. mossambicus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Cryopreservation of Fish Spermatogonial Cells: The Future of Natural History Collections.

    PubMed

    Hagedorn, Mary M; Daly, Jonathan P; Carter, Virginia L; Cole, Kathleen S; Jaafar, Zeehan; Lager, Claire V A; Parenti, Lynne R

    2018-04-18

    As global biodiversity declines, the value of biological collections increases. Cryopreserved diploid spermatogonial cells meet two goals: to yield high-quality molecular sequence data; and to regenerate new individuals, hence potentially countering species extinction. Cryopreserved spermatogonial cells that allow for such mitigative measures are not currently in natural history museum collections because there are no standard protocols to collect them. Vertebrate specimens, especially fishes, are traditionally formalin-fixed and alcohol-preserved which makes them ideal for morphological studies and as museum vouchers, but inadequate for molecular sequence data. Molecular studies of fishes routinely use tissues preserved in ethanol; yet tissues preserved in this way may yield degraded sequences over time. As an alternative to tissue fixation methods, we assessed and compared previously published cryopreservation methods by gating and counting fish testicular cells with flow cytometry to identify presumptive spermatogonia A-type cells. Here we describe a protocol to cryopreserve tissues that yields a high percentage of viable spermatogonial cells from the testes of Asterropteryx semipunctata, a marine goby. Material cryopreserved using this protocol represents the first frozen and post-thaw viable spermatogonial cells of fishes archived in a natural history museum to provide better quality material for re-derivation of species and DNA preservation and analysis.

  19. Regeneration-associated genes on optic nerve regeneration in fish retina.

    PubMed

    Ogai, Kazuhiro; Nishitani, Maki; Kuwana, Ayaka; Mawatari, Kazuhiro; Koriyama, Yoshiki; Sugitani, Kayo; Nakashima, Hiroshi; Kato, Satoru

    2014-01-01

    It has been well documented that fish central nervous system, including retina and optic nerve, can regenerate and recover its function after nerve injury. Within a few decades, a number of regeneration-associated genes (RAGs) have been identified in fish retina following optic nerve injury (ONI). RAGs can be classified into two groups: cell survival- and axonal outgrowth-related genes. In fish retina after ONI, cell survival-related genes were upregulated in 1-6 days after ONI, which corresponds to the preparation stage for cell survival and axonal sprouting. Subsequently, axonal outgrowth-related genes were upregulated in 1-6 weeks after ONI, which corresponds to the axonal regrowth stage. Recently, we've found a novel type of RAGs, dedifferentiation-related genes, that are upregulated in overlapping time between cell survival and axonal regrowth (3-10 days after ONI). In this chapter we summarize these three types of RAGs that promote optic nerve regeneration in the fish retina after ONI.

  20. The Use of 3D Telomere FISH for the Characterization of the Nuclear Architecture in EBV-Positive Hodgkin's Lymphoma.

    PubMed

    Knecht, Hans; Mai, Sabine

    2017-01-01

    The 3D nuclear architecture is closely related to cellular functions and chromosomes are organized in distinct territories. Quantitative 3D telomere FISH analysis (3D Q-FISH) and 3D super-resolution imaging (3D-SIM) at a resolution up to 80 nm as well as the recently developed combined quantitative 3D TRF2-telomere immune FISH technique (3D TRF2/Telo-Q-FISH) have substantially contributed to elucidate molecular pathogenic mechanisms of hematological diseases. Here we report the methods we applied to uncover major molecular steps involved in the pathogenesis of EBV-associated Hodgkin's lymphoma. These methods allowed us to identify the EBV-encoded oncoprotein LMP1 as a key element in the formation of Hodgkin (H-cell) and multinucleated Reed-Sternberg cells (RS-cell), the diagnostic tumor cell of classical Hodgkin's lymphoma (cHL). LMP1 mediates multinuclearity through downregulation of shelterin proteins, in particular telomere repeat binding factor 2 (TRF2).

  1. Irradiation of rainbow trout at early life stages results in trans-generational effects including the induction of a bystander effect in non-irradiated fish.

    PubMed

    Smith, Richard W; Seymour, Colin B; Moccia, Richard D; Mothersill, Carmel E

    2016-02-01

    The bystander effect, a non-targeted effect (NTE) of radiation, which describes the response by non-irradiated organisms to signals emitted by irradiated organisms, has been documented in a number of fish species. However transgenerational effects of radiation (including NTE) have yet to be studied in fish. Therefore rainbow trout, which were irradiated as eggs at 48h after fertilisation, eyed eggs, yolk sac larvae or first feeders, were bred to generate a F1 generation and these F1 fish were bred to generate a F2 generation. F1 and F2 fish were swam with non-irradiated bystander fish. Media from explants of F1 eyed eggs, F1 one year old fish gill and F1 two year old fish gill and spleen samples, and F2 two year old gill and spleen samples, as well as from bystander eggs/fish, was used to treat a reporter cell line, which was then assayed for changes in cellular survival/growth. The results were complex and dependent on irradiation history, age (in the case of the F1 generation), and were tissue specific. For example, irradiation of one parent often resulted in effects not seen with irradiation of both parents. This suggests that, unlike mammals, in certain circumstances maternal and paternal irradiation may be equally important. This study also showed that trout can induce a bystander effect 2 generations after irradiation, which further emphasises the importance of the bystander effect in aquatic radiobiology. Given the complex community structure in aquatic ecosystems, these results may have significant implications for environmental radiological protection. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Epidermal 'alarm substance' cells of fishes maintained by non-alarm functions: possible defence against pathogens, parasites and UVB radiation.

    PubMed

    Chivers, Douglas P; Wisenden, Brian D; Hindman, Carrie J; Michalak, Tracy A; Kusch, Robin C; Kaminskyj, Susan G W; Jack, Kristin L; Ferrari, Maud C O; Pollock, Robyn J; Halbgewachs, Colin F; Pollock, Michael S; Alemadi, Shireen; James, Clayton T; Savaloja, Rachel K; Goater, Cameron P; Corwin, Amber; Mirza, Reehan S; Kiesecker, Joseph M; Brown, Grant E; Adrian, James C; Krone, Patrick H; Blaustein, Andrew R; Mathis, Alicia

    2007-10-22

    Many fishes possess specialized epidermal cells that are ruptured by the teeth of predators, thus reliably indicating the presence of an actively foraging predator. Understanding the evolution of these cells has intrigued evolutionary ecologists because the release of these alarm chemicals is not voluntary. Here, we show that predation pressure does not influence alarm cell production in fishes. Alarm cell production is stimulated by exposure to skin-penetrating pathogens (water moulds: Saprolegnia ferax and Saprolegnia parasitica), skin-penetrating parasites (larval trematodes: Teleorchis sp. and Uvulifer sp.) and correlated with exposure to UV radiation. Suppression of the immune system with environmentally relevant levels of Cd inhibits alarm cell production of fishes challenged with Saprolegnia. These data are the first evidence that alarm substance cells have an immune function against ubiquitous environmental challenges to epidermal integrity. Our results indicate that these specialized cells arose and are maintained by natural selection owing to selfish benefits unrelated to predator-prey interactions. Cell contents released when these cells are damaged in predator attacks have secondarily acquired an ecological role as alarm cues because selection favours receivers to detect and respond adaptively to public information about predation.

  3. Visualization of sporopollenin-containing pathogenic green micro-alga Prototheca wickerhamii by fluorescent in situ hybridization (FISH).

    PubMed

    Ueno, Ryohei

    2009-04-01

    Fluorescent in situ hybridization (FISH) using taxon-specific, rRNA-targeted oligonucleotide probes is one of the most powerful tools for the rapid identification of harmful microorganisms. However, eukaryotic algal cells do not always allow FISH probes to permeate over their cell walls. Members of the pathogenic micro-algal genus Prototheca are characterized by their distinctive cell-wall component, sporopollenin, an extremely tough biopolymer that resists acid and alkaline hydrolysis, enzyme attack, and acetolysis. To our knowledge, there has been no report of the successful permeation by the oligonucleotide probes over the cell walls of unicellular green micro-algae, which contain sporopollenin. The DNA probes passed through the cell wall of Prototheca wickerhamii after treating the algal cells with cetyltrimethylammonium bromide (CTAB). Most cells in the middle logarithmic growth phase culture fluoresced when hybridized with the rRNA-targeted universal probe for eukaryotes, though individual cells included in this culture differed in the level of cell-wall vulnerability to attack by the polysaccharide-degrading enzyme, thus reflecting the different stages of the life cycle. This is the first report regarding the visualization of sporopollenin-containing, green micro-algal cells by FISH.

  4. Effects of acute handling stress on short-term central expression of orexigenic/anorexigenic genes in zebrafish.

    PubMed

    Cortés, Raul; Teles, Mariana; Oliveira, Miguel; Fierro-Castro, Camino; Tort, Lluis; Cerdá-Reverter, José Miguel

    2018-02-01

    Physiological mechanisms driving stress response in vertebrates are evolutionarily conserved. These mechanisms involve the activation of both the hypothalamic-sympathetic-chromaffin cell (HSC) and the hypothalamic-pituitary-adrenal (HPA) axes. In fish, the reduction of food intake levels is a common feature of the behavioral response to stress but the central mechanisms coordinating the energetic response are not well understood yet. In this work, we explore the effects of acute stress on key central systems regulating food intake in fish as well as on total body cortisol and glucose levels. We show that acute stress induced a rapid increase in total body cortisol with no changes in body glucose, at the same time promoting a prompt central response by activating neuronal pathways. All three orexigenic peptides examined, i.e., neuropeptide y (npy), agouti-related protein (agrp), and ghrelin, increased their central expression level suggesting that these neuronal systems are not involved in the short-term feeding inhibitory effects of acute stress. By contrast, the anorexigenic precursors tested, i.e., cart peptides and pomc, exhibited increased expression after acute stress, suggesting their involvement in the anorexigenic effects.

  5. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    DOE PAGES

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng; ...

    2017-10-04

    Here, quantitative gene expression analysis in intact single cells can be achieved using single molecule-based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple oligonucleotide probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific probe binding and tissue autofluorescence, especially when only a small number of probes can be fitted to the target transcript. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on on-off duty cycles of photoswitchable dyes.more » This fluctuation localization imaging-based FISH (fliFISH) uses on-time fractions (measured over a series of exposures) collected from transcripts bound to as low as 8 probes, which are distinct from on-time fractions collected from nonspecifically bound probes or autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2 and their ratio ( Nkx2- 2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct on-time fractions, laying the foundation for reliable single-cell transcriptomics.« less

  6. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng

    Here, quantitative gene expression analysis in intact single cells can be achieved using single molecule-based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple oligonucleotide probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific probe binding and tissue autofluorescence, especially when only a small number of probes can be fitted to the target transcript. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on on-off duty cycles of photoswitchable dyes.more » This fluctuation localization imaging-based FISH (fliFISH) uses on-time fractions (measured over a series of exposures) collected from transcripts bound to as low as 8 probes, which are distinct from on-time fractions collected from nonspecifically bound probes or autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2 and their ratio ( Nkx2- 2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct on-time fractions, laying the foundation for reliable single-cell transcriptomics.« less

  7. PRCC-TFE3 dual-fusion FISH assay: A new method for identifying PRCC-TFE3 renal cell carcinoma in paraffin-embedded tissue

    PubMed Central

    Liu, Ning; Wang, Zhen; Miao, Baolei; Li, Dongmei; Guo, Hongqian

    2017-01-01

    PRCC-TFE3 renal cell carcinoma (RCC) is one of the most common types of Xp11.2 translocation renal cell carcinoma (tRCC), of which the diagnosis mainly relies on reverse transcription-polymerase chain reaction (RT-PCR) or chromosomal analysis in fresh frozen samples. Herein, we developed a new dual-fusion fluorescence in situ hybridization (FISH) probe to succinctly identify PRCC-TFE3 RCC in paraffin-embedded tissue. We immunohistochemically analyzed TFE3 and cathepsin K expression in 23 cases of Xp11.2 tRCC which had been confirmed by break-apart TFE3 FISH probe. Next, the dual-fusion FISH assay was performed on these selected cases. Twenty typical cases of clear renal cell carcinoma and 20 cases of papillary renal cell carcinoma were collected as control groups. Seven cases were finally confirmed as PRCC-TFE3 RCC by FISH detection, emerging dual-fusion signals, of which 2 cases were identified as PRCC-TFE3 RCC by RT-PCR previously. All remaining cases were negative for the PRCC-TFE3 rearrangement by FISH. The TFE3 immunohistochemistry was positive in 22/23 cases and the cathepsin K was positive in 16/23 cases. All 7 PRCC-TFE3 RCCs showed positive cathepsin K immunoreactivity. Our results reveal that PRCC-TFE3 dual-fusion FISH probe is an efficient and concise technique for diagnosing PRCC-TFE3 RCC in paraffin-embedded tissue. PMID:28949976

  8. Hair cell heterogeneity and ultrasonic hearing: recent advances in understanding fish hearing.

    PubMed Central

    Popper, A N

    2000-01-01

    The past decade has seen a wealth of new data on the auditory capabilities and mechanisms of fishes. We now have a significantly better appreciation of the structure and function of the auditory system in fishes with regard to their peripheral and central anatomy, physiology, behaviour, sound source localization and hearing capabilities. This paper deals with two of the newest of these findings, hair cell heterogeneity and the detection of ultrasound. As a result of this recent work, we now know that fishes have several different types of sensory hair cells in both the ear and lateral line and there is a growing body of evidence to suggest that these hair cell types arose very early in the evolution of the octavolateralis system. There is also some evidence to suggest that the differences in the hair cell types have functional implications for the way the ear and lateral line of fishes detect and process stimuli. Behavioural studies have shown that, whereas most fishes can only detect sound to 1-3 kHz, several species of the genus Alosa (Clupeiformes, i.e. herrings and their relatives) can detect sounds up to 180 kHz (or even higher). It is suggested that this capability evolved so that these fishes can detect one of their major predators, echolocating dolphins. The mechanism for ultrasound detection remains obscure, though it is hypothesized that the highly derived utricle of the inner ear in these species is involved. PMID:11079414

  9. Automatic classification of fish germ cells through optimum-path forest.

    PubMed

    Papa, João P; Gutierrez, Mario E M; Nakamura, Rodrigo Y M; Papa, Luciene P; Vicentini, Irene B F; Vicentini, Carlos A

    2011-01-01

    The spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques.

  10. Genetic and transcriptomic analyses provide new insights on the early antiviral response to VHSV in resistant and susceptible rainbow trout.

    PubMed

    Verrier, Eloi R; Genet, Carine; Laloë, Denis; Jaffrezic, Florence; Rau, Andrea; Esquerre, Diane; Dechamp, Nicolas; Ciobotaru, Céline; Hervet, Caroline; Krieg, Francine; Jouneau, Luc; Klopp, Christophe; Quillet, Edwige; Boudinot, Pierre

    2018-06-19

    The viral hemorrhagic septicemia virus (VHSV) is a major threat for salmonid farming and for wild fish populations worldwide. Previous studies have highlighted the importance of innate factors regulated by a major quantitative trait locus (QTL) for the natural resistance to waterborne VHSV infection in rainbow trout. The aim of this study was to analyze the early transcriptomic response to VHSV inoculation in cell lines derived from previously described resistant and susceptible homozygous isogenic lines of rainbow trout to obtain insights into the molecular mechanisms responsible for the resistance to the viral infection. We first confirmed the presence of the major QTL in a backcross involving a highly resistant fish isogenic line (B57) and a highly susceptible one (A22), and were able to define the confidence interval of the QTL and to identify its precise position. We extended the definition of the QTL since it controls not only resistance to waterborne infection but also the kinetics of mortality after intra-peritoneal injection. Deep sequencing of the transcriptome of B57 and A22 derived cell lines exposed to inactivated VHSV showed a stronger response to virus inoculation in the resistant background. In line with our previous observations, an early and strong induction of interferon and interferon-stimulated genes was correlated with the resistance to VHSV, highlighting the major role of innate immune factors in natural trout resistance to the virus. Interestingly, major factors of the antiviral innate immunity were much more expressed in naive B57 cells compared to naive A22 cells, which likely contributes to the ability of B57 to mount a fast antiviral response after viral infection. These observations were further extended by the identification of several innate immune-related genes localized close to the QTL area on the rainbow trout genome. Taken together, our results improve our knowledge in virus-host interactions in vertebrates and provide novel insights in the molecular mechanisms explaining the resistance to VHSV in rainbow trout. Our data also provide a collection of potential markers for resistance and susceptibility of rainbow trout to VHSV infection.

  11. Modulation of telomerase activity in fish muscle by biological and environmental factors.

    PubMed

    Peterson, Drew Ryan; Mok, Helen Oi Lam; Au, Doris Wai Ting

    2015-12-01

    Telomerase expression has long been linked to promotion of tumor growth and cell proliferation in mammals. Interestingly, telomerase activity (TA) has been detected in skeletal muscle for a variety of fish species. Despite this being a unique feature in fish, very few studies have investigated the potential role of TA in muscle. The present study was set to prove the concepts that muscle telomerase in fish is related to body growth, and more specifically, to muscle cell proliferation and apoptosis in vivo. Moreover, muscle TA can be influenced by biotic factors and modulated by environmental stress. Using three fish species, mangrove red snapper (Lutjanus argentimaculatus), orange-spotted grouper (Epinephelus coioides), and marine medaka (Oryzias melastigma), the present work reports for the first time that fish muscle TA was sensitive to the environmental stresses of starvation, foodborne exposure to benzo[a]pyrene, and hypoxia. In marine medaka, muscle TA was coupled with fish growth during early life stages. Upon sexual maturation, muscle TA was confounded by sex (female>male). Muscle TA was significantly correlated with telomerase reverse transcriptase (TERT) protein expression (Pearson correlation r=0.892; p≤0.05), which was coupled with proliferating cell nuclear antigen (PCNA) cell proliferation, but not associated with apoptosis (omBax/omBcl2 ratio) in muscle tissue. The results reported here have bridged the knowledge gap between the existence and function of telomerase in fish muscle. The underlying regulatory mechanisms of muscle TA in fish warrant further exploration for comparison with telomerase regulation in mammals. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Evolution of the Mauthner axon cap.

    PubMed

    Bierman, Hilary S; Zottoli, Steven J; Hale, Melina E

    2009-01-01

    Studies of vertebrate brain evolution have focused primarily on patterns of gene expression or changes in size and organization of major brain regions. The Mauthner cell, an important reticulospinal neuron that functions in the startle response of many species, provides an opportunity for evolutionary comparisons at the cellular level. Despite broad interspecific similarities in Mauthner cell morphology, the motor patterns and startle behaviors it initiates vary markedly. Response diversity has been hypothesized to result, in part, from differences in the structure and function of the Mauthner cell-associated axon cap. We used light microscopy techniques to compare axon cap morphology across a wide range of species, including all four extant basal actinopterygian orders, representatives of a variety of teleost lineages and lungfishes, and we combined our data with published descriptions of axon cap structure. The 'composite' axon cap, observed in teleosts, is an organized conglomeration of glia and fibers of inhibitory and excitatory interneurons. Lungfish, amphibian tadpoles and several basal actinopterygian fishes have 'simple' axon caps that appear to lack glia and include few fibers. Several other basal actinopterygian fishes have 'simple-dense' caps that include greater numbers of fibers than simple caps, but lack the additional elements and organization of composite caps. Phylogenetic mapping shows that through evolution there are discrete transitions in axon cap morphology occurring at the base of gnathostomes, within basal actinopterygians, and at the base of the teleost radiation. Comparing axon cap evolution to the evolution of startle behavior and motor pattern provides insight into the relationship between Mauthner cell-associated structures and their functions in behavior. Copyright 2009 S. Karger AG, Basel.

  13. Short-term desensitization of fast escape behavior associated with suppression of Mauthner cell activity in larval zebrafish.

    PubMed

    Takahashi, Megumi; Inoue, Maya; Tanimoto, Masashi; Kohashi, Tsunehiko; Oda, Yoichi

    2017-08-01

    Escape is among the simplest animal behaviors employed to study the neural mechanisms underlying learning. Teleost fishes exhibit behavioral learning of fast escape initiated with a C-shaped body bend (C-start). C-starts are subdivided into short-latency (SLC) and long-latency (LLC) types in larval zebrafish. Whether these two can be separately modified, and the neural correlates of this modification, however, remains undetermined. We thus performed Ca 2+ imaging of Mauthner (M-) cells, a pair of giant hindbrain neurons constituting a core element of SLC circuit, during behavioral learning in larval zebrafish. The Ca 2+ response corresponding to a single spiking of the M-cells was coupled with SLCs but not LLCs. Conditioning with a repeated weak sound at subthreshold intensity to elicit C-starts selectively suppressed SLC occurrence for 10min without affecting LLC responsiveness. The short-term desensitization of SLC was associated with the suppression of M-cell activity, suggesting that changes in single neuron responsiveness mediate behavioral learning. The conditioning did not affect the acoustically evoked mechanotransduction of inner ear hair cells, further suggesting plastic change in transmission efficacy within the auditory input circuit between the hair cells and the M-cell. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  14. Effect of vitamin C on innate immune responses of rainbow trout (Oncorhynchus mykiss) leukocytes.

    PubMed

    Leal, Esther; Zarza, Carlos; Tafalla, Carolina

    2017-08-01

    Vitamin C, also known as ascorbic acid, is an essential micronutrient that influences a wide variety of physiological processes, including immunological functions. Although the positive effects of vitamin C supplementation on the immunological status of fish has been established in different species, the bases for these positive effects are still unknown. Hence, the aim of our study was to evaluate the in vitro effect of vitamin C on several innate immune functions of rainbow trout (Oncorhynchus mykiss) leukocyte populations. For this, we assessed the effects exerted on the established rainbow trout monocyte-macrophage cell line RTS11, and compared them to those observed in trout head kidney leukocytes. Our results demonstrate that vitamin C increases the production of reactive oxygen species and the percentage of phagocytic cells in both cell populations. On the other hand, vitamin C had no effect on the surface MHC II levels and only in the case of RTS11 cells increased the capacity of these cells to migrate towards the CK9 chemokine. Finally, vitamin C also increased the transcription of several pro-inflammatory and antimicrobial genes elicited by Escherichia coli, with some differences depending on the cell population studied. Our results contribute to further understand how vitamin C supplementation regulates the fish immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Fish Scale Collagen Peptides Protect against CoCl2/TNF-α-Induced Cytotoxicity and Inflammation via Inhibition of ROS, MAPK, and NF-κB Pathways in HaCaT Cells

    PubMed Central

    Subhan, Fazli; Kang, Hae Yeong; Lim, Yeseon; Ikram, Muhammad; Baek, Sun-Yong; Jin, Songwan; Jeong, Young Hun; Kwak, Jong Young

    2017-01-01

    Skin diseases associated with inflammation or oxidative stress represent the most common problem in dermatology. The present study demonstrates that fish scale collagen peptides (FSCP) protect against CoCl2-induced cytotoxicity and TNF-α-induced inflammatory responses in human HaCaT keratinocyte cells. Our study is the first to report that FSCP increase cell viability and ameliorate oxidative injury in HaCaT cells through mechanisms mediated by the downregulation of key proinflammatory cytokines, namely, TNF-α, IL-1β, IL-8, and iNOS. FSCP also prevent cell apoptosis by repressing Bax expression, caspase-3 activity, and cytochrome c release and by upregulating Bcl-2 protein levels in CoCl2- or TNF-α-stimulated HaCaT cells. In addition, the inhibitory effects of FSCP on cytotoxicity and the induction of proinflammatory cytokine expression were found to be associated with suppression of the ROS, MAPK (p38/MAPK, ERK, and JNK), and NF-κB signaling pathways. Taken together, our data suggest that FSCP are useful as immunomodulatory agents in inflammatory or immune-mediated skin diseases. Furthermore, our results provide new insights into the potential therapeutic use of FSCP in the prevention and treatment of various oxidative- or inflammatory stress-related inflammation and injuries. PMID:28717410

  16. Betanodavirus Induces Oxidative Stress-Mediated Cell Death That Prevented by Anti-Oxidants and Zfcatalase in Fish Cells

    PubMed Central

    Chang, Chih-Wei; Su, Yu-Chin; Her, Guor-Mour; Ken, Chuian-Fu; Hong, Jiann-Ruey

    2011-01-01

    The role of oxidative stress in the pathogenesis of RNA nervous necrosis virus infection is still unknown. Red-spotted grouper nervous necrosis virus (RGNNV) induced free radical species (ROS) production at 12–24 h post-infection (pi; early replication stage) in fish GF-1 cells, and then at middle replication stage (24–48 h pi), this ROS signal may upregulate some expressions of the anti-oxidant enzymes Cu/Zn SOD and catalase, and eventually expression of the transcription factor Nrf2. Furthermore, both antioxidants diphenyliodonium and N-acetylcysteine or overexpression of zebrafish catalase in GF-1 cells also reduced ROS production and protected cells for enhancing host survival rate due to RGNNV infection. Furthermore, localization of ROS production using esterase activity and Mitotracker staining assays found that the ROS generated can affect mitochondrial morphology changes and causes ΔΨ loss, both of which can be reversed by antioxidant treatment. Taken together, our data suggest that RGNNV induced oxidative stress response for playing dual role that can initiate the host oxidative stress defense system to upregulate expression of antioxidant enzymes and induces cell death via disrupting the mitochondrial morphology and inducing ΔΨ loss, which can be reversed by anti-oxidants and zfcatalase, which provide new insight into betanodavirus-induced ROS-mediated pathogenesis. PMID:21991373

  17. Characterization of the duplicate L-SIGN and DC-SIGN genes in miiuy croaker and evolutionary analysis of L-SIGN in fishes.

    PubMed

    Shu, Chang; Wang, Shanchen; Xu, Tianjun

    2015-05-01

    Dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN/CD209) and liver/lymph node-specific ICAM-grabbing non-integrin (L-SIGN/CD299) which are homologues of DC-SIGN are important members in C-type lectin receptors family as key molecules to recognize and eliminate pathogens in the innate immune system. DC-SIGN and L-SIGN have become hot topics in recent studies which both served as cell adhesion and phagocytic pathogen recognition receptors in mammals. However, there have been almost no studies of DC-SIGN and L-SIGN structure and characters in fish, only DC-SIGN in the zebrafish had been studied. In our study, we identified and characterized the full-length miiuy croaker (Miichthys miiuy) DC-SIGN (mmDC-SIGN) and L-SIGN (mmL-SIGN) genes. The sequence analysis results showed that mmDC-SIGN and mmL-SIGN have the same domains with other vertebrates except primates, and share some conserved motifs in CRD among all the vertebrates which play a crucial role in interacting with Ca(2+) and for recognizing mannose-containing motifs. Gene synteny of DC-SIGN and L-SIGN were analyzed for the first time and gene synteny of L-SIGN was conserved among the five fishes. Interestingly, one gene next to L-SIGN from gene synteny had high similarity with L-SIGN gene that was described as L-SIGN-like in fish species. While only one L-SIGN gene existed in other vertebrates, two L-SIGN in fish may be in consequence of the fish-specific genome duplication to adapt the specific environment. The evolutionary analysis showed that the ancestral lineages of L-SIGN gene in fishes experienced purifying selection and the current lineages of L-SIGN gene in fishes underwent positive selection, indicating that the ancestral lineages and current lineages of L-SIGN gene in fishes underwent different evolutionary patterns. Both mmDC-SIGN and mmL-SIGN were expressed in all tested tissues and ubiquitously up-regulated in infected liver, spleen and kidney at different sampling time points, indicating that the mmDC-SIGN and mmL-SIGN participated in the immune response to defense against bacteria infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Ecotoxicological assessment of sediment, suspended matter and water samples in the upper Danube River. A pilot study in search for the causes for the decline of fish catches.

    PubMed

    Keiter, Steffen; Rastall, Andrew; Kosmehl, Thomas; Wurm, Karl; Erdinger, Lothar; Braunbeck, Thomas; Hollert, Henner

    2006-09-01

    Fish populations, especially those of the grayling (Thymallus thymallus), have declined over the last two decades in the upper Danube River between Sigmaringen and Ulm, despite intensive and continuous stocking and improvement of water quality since the 1970s. Similar problems have been reported for other rivers, e.g. in Switzerland, Great Britain, the United States and Canada. In order to assess if ecotoxicological effects might be related to the decline in fish catch at the upper Danube River, sediment, suspended matter and waste water samples from sewage treatment plants were collected at selected locations and analyzed in a bioanalytical approach using a battery of bioassays. The results of this pilot study will be used to decide if a comprehensive weight-of-evidence study is needed. Freeze-dried sediments and suspended particulate matters were extracted with acetone in a Soxhlet apparatus. Organic pollutants from sewage water were concentrated using XAD-resins. In order to investigate the ecotoxicological burden, the following bioassays were used: (1) neutral red assay with RTL-W1 cells (cytotoxicity), (2) comet assay with RTL-W1 cells (genotoxicity), (3) Arthrobacter globiformis dehydrogenase assay (toxicity to bacteria), (4) yeast estrogen screen assay (endocrine disruption), (5) fish egg assay with the zebrafish (Danio rerio; embryo toxicity) and (6) Ames test with TA98 (mutagenicity). The results of the in vitro tests elucidated a considerable genotoxic, cytotoxic, mutagenic, bacteriotoxic, embryotoxic and estrogenic burden in the upper Danube River, although with a very inhomogeneous distribution of effects. The samples taken from Riedlingen, for example, induced low embryo toxicity, but the second highest 17beta-estradiol equivalent concentration (1.8 ng/L). Using the fish egg assay with native sediments, a broad range of embryotoxic effects could be elucidated, with clear-cut dose-response relationships for the embryotoxic effects of contaminated sediments. With native sediments, embryotoxicity was clearly higher than with corresponding pore waters, thus corroborating the view that--at least for fish eggs--the bioavailability of particle-bound lipophilic substances in native sediments is higher than generally assumed. The effect observed most frequently in the fish egg assay was a developmental delay. A comparison of our own results with locations along the rivers Rhine and Neckar demonstrated similar or even higher ranges of ecotoxicological burdens in the Danube River. The complex pattern of ecotoxicological effects caused by environmental samples from the Danube River, when assessed in an in vitro biotest battery using both acute and more specific endpoints, showed that integration of different endpoints is essential for appropriate hazard assessment. Overall, the ecotoxicological hazard potential shown has indeed to be considered as one potential reason for the decline in fish catches at the upper Danube River. However, based on the results of this pilot study, it is not possible to elucidate that chemically induced alterations are responsible for the fish decline. In order to confirm the ecological relevance of the in vitro results for the situation in the field and especially for the decline of the grayling and other fishes, further integrated investigations are required. For linking the weight of evidence obtained by in vitro assays and fish population investigations, the application of additional, more specific biomarkers (e.g. vitellogenin induction, EROD and micronucleus assay) has been initiated in fish taken from the field as well as in situ investigations.

  19. Neuropeptides and nitric oxide synthase in the gill and the air-breathing organs of fishes.

    PubMed

    Zaccone, Giacomo; Mauceri, Angela; Fasulo, Salvatore

    2006-05-01

    Anatomical and histochemical studies have demonstrated that the bulk of autonomic neurotransmission in fish gill is attributed to cholinergic and adrenergic mechanisms (Nilsson. 1984. In: Hoar WS, Randall DJ, editors. Fish physiology, Vol. XA. Orlando: Academic Press. p 185-227; Donald. 1998. In: Evans DH, editor. The physiology of fishes, 2nd edition. Boca Raton: CRC Press. p 407-439). In many tissues, blockade of adrenergic and cholinergic transmission results in residual responses to nerve stimulation, which are termed NonAdrenergic, NonCholinergic (NANC). The discovery of nitric oxide (NO) has provided a basis for explaining many examples of NANC transmissions with accumulated physiological and pharmacological data indicating its function as a primary NANC transmitter. Little is known about the NANC neurotransmission, and studies on neuropeptides and NOS (Nitric Oxide Synthase) are very fragmentary in the gill and the air-breathing organs of fishes. Knowledge of the distribution of nerves and effects of perfusing agonists may help to understand the mechanisms of perfusion regulation in the gill (Olson. 2002. J Exp Zool 293:214-231). Air breathing as a mechanism for acquiring oxygen has evolved independently in several groups of fishes, necessitating modifications of the organs responsible for the exchange of gases. Aquatic hypoxia in freshwaters has been probably the more important selective force in the evolution of air breathing in vertebrates. Fishes respire with gills that are complex structures with many different effectors and potential control systems. Autonomic innervation of the gill has received considerable attention. An excellent review on branchial innervation includes Sundin and Nilsson's (2002. J Exp Zool 293:232-248) with an emphasis on the anatomy and basic functioning of afferent and efferent fibers of the branchial nerves. The chapters by Evans (2002. J Exp Zool 293:336-347) and Olson (2002) provide new challenges about a variety of neurocrine, endocrine, paracrine and autocrine signals that modulate gill perfusion and ionic transport. The development of the immunohistochemical techniques has led to a new phase of experimentation and to information mainly related to gills rather than air-breathing organs of fishes. During the last few years, identification of new molecules as autonomic neurotransmitters, monoamines and NO, and of their multiple roles as cotransmitters, has reshaped our knowledge of the mechanisms of autonomic regulation of various functions in the organs of teleosts (Donald, '98).NO acts as neurotransmitter and is widely distributed in the nerves and the neuroepithelial cells of the gill, the nerves of visceral muscles of the lung of polypterids, the vascular endothelial cells in the air sac of Heteropneustes fossilis and the respiratory epithelium in the swimbladder of the catfish Pangasius hypophthalmus. In addition, 5-HT, enkephalins and some neuropeptides, such as VIP and PACAP, seem to be NANC transmitter candidates in the fish gill and polypterid lung. The origin and function of NANC nerves in the lung of air-breathing fishes await investigation. Several mechanisms have developed in the Vertebrates to control the flow of blood to respiratory organs. These mechanisms include a local production of vasoactive substances, a release of endocrine hormones into the circulation and neuronal mechanisms. Air breathers may be expected to have different control mechanisms compared with fully aquatic fishes. Therefore, we need to know the distribution and function of autonomic nerves in the air-breathing organs of the fishes.

  20. Combining eicosapentaenoic acid, decosahexaenoic acid and arachidonic acid, using a fully crossed design, affect gene expression and eicosanoid secretion in salmon head kidney cells in vitro.

    PubMed

    Holen, Elisabeth; He, Juyun; Espe, Marit; Chen, Liqiou; Araujo, Pedro

    2015-08-01

    Future feed for farmed fish are based on untraditional feed ingredients, which will change nutrient profiles compared to traditional feed based on marine ingredients. To understand the impact of oils from different sources on fish health, n-6 and n-3 polyunsaturated fatty acids (PUFAs) were added to salmon head kidney cells, in a fully crossed design, to monitor their individual and combined effects on gene expression. Exposing salmon head kidney cells to single fatty acids, arachidonic acid (AA) or decosahexaenoic acid (DHA), resulted in down-regulation of cell signaling pathway genes and specific fatty acid metabolism genes as well as reduced prostaglandin E2 (PGE2) secretion. Eicosapentaenoic acid (EPA) had no impact on gene transcription in this study, but reduced the cell secretion of PGE2. The combined effect of AA + EPA resulted in up-regulation of eicosanoid pathway genes and the pro-inflammatory cytokine, tumor necrosis factor alpha (TNF-α), Bclx (an inducer of apoptosis) and fatty acid translocase (CD36) as well as increased cell secretion of PGE2 into the media. Adding single fatty acids to salmon head kidney cells decreased inflammation markers in this model. The combination AA + EPA acted differently than the rest of the fatty acid combinations by increasing the inflammation markers in these cells. The concentration of fatty acid used in this experiment did not induce any lipid peroxidation responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Viral erythrocytic necrosis: Chapter 2.2.7

    USGS Publications Warehouse

    Winton, James R.; Hershberger, Paul K.

    2014-01-01

    In spite of extensive efforts, the etiological agent of VEN has not been propagated in fish cell lines making its characterization difficult. However, transmission electron microscopy (TEM) of red blood cells from diseased fish convincingly demonstrates the presence of iridovirus-like particles that have been given the name erythrocytic necrosis virus (ENV). While the ENV virions in red blood cells of various species of fish from differing geographic locations may appear morphologically distinct (Smail 1982; Wolf 1988), at least one strain of ENV has now been partially sequenced, confirming it to be a member of the family Iridoviridae (Emmenegger et al. in press). However, the genetic relatedness of ENV from various fish hosts has not yet been investigated. 

  2. Solar powered fishing lure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, B.J.

    1986-12-02

    This patent describes a solar powered fishing lure, comprising (a) a lure body carried on a fishing line proximate a hook, to be pulled in the water, (b) a solar cell on the body and proximate one side thereof to receive sunlight transmitted in the water and develop electrical power, and means carried by the body and receiving power from the cell to provide an output which tends to attract fish to the lure, (c) and means on the lure to cause the lure to cooperate with water flowing relatively past the lure to cause the front of the linemore » to be elevated relative to the rear of the lure, and the cell to face upwardly.« less

  3. Modeling the response of native steelhead to hatchery supplementation programs in an Idaho River

    USGS Publications Warehouse

    Byrne, Alan; Bjornn, T.C.; McIntyre, J.D.

    1993-01-01

    A life history model was used to predict the response of native steelhead Oncorhynchus mykiss in the Lochsa River, Idaho, to long-term supplementation with hatchery fry and smolts. The four key factors affecting the response of the native fish to a stocking program were (1) the number of native spawners, (2) the number of stocked fish, (3) the number and fitness of progeny from stocked fish, and (4) the amount of mating between hatchery and native fish. Long-term stocking of fry or smolts led to the extinction of native fish in some scenarios. The model can be used to help assess the risks and benefits of proposed stocking programs.

  4. Adaptations to the air breathing in the posterior intestine of the catfish (Corydoras aeneus, Callichthyidae). A histological and ultrastructural study.

    PubMed

    Podkowa, Dagmara; Goniakowska-Witalińska, Lucyna

    2002-01-01

    A light and transmission electron microscopic study of the intestine of catfish C. aeneus shows that the anterior part of the intestine is a site of digestion and absorption and its structure is typical of that of other teleostean fishes. However, in this species the thin-walled posterior intestine is adapted to air breathing. In this region mucosa is smooth and lined with respiratory epithelium with capillary network. Several types of cells are observed in the epithelium: flattened respiratory epithelial cells with short microvili, goblet cells, scarce epithelial cells with numerous longer microvilli, and two types of endocrine cells (EC). The solitary brush cells with several long and thick microvilli described here are the first observation of such cells in the gastrointestinal tract of fishes. Bodies of respiratory epithelial cells lie between capillaries. Their cytoplasm, apart from typical organelles contains dense and lamellar bodies, which are a site of accumulation of surfactant. In regions where capillaries are covered by thin cytoplasmic sheets of respiratory epithelial cells, a thin (0.24-3.00 microm) air-blood barrier is formed, thus enabling gas exchange. Epithelial cells with longer microvilli do not participate in the formation of the air-blood barrier and are probably responsible for absorbtion. EC of the closed type are dispersed within the epithelium. Their cytoplasm contains characteristic round or oval dense core vesicles 69 to 230 nm in diameter. The role of EC and brush cells in the regulation of processes related to absorbtion, and to respiration, is disscused.

  5. Cardiorespiratory toxicity of environmentally relevant zinc oxide nanoparticles in the freshwater fish Catostomus commersonii.

    PubMed

    Bessemer, Robin Anne; Butler, Kathryn Marie Alison; Tunnah, Louise; Callaghan, Neal Ingraham; Rundle, Amanda; Currie, Suzanne; Dieni, Christopher Anthony; MacCormack, Tyson James

    2015-01-01

    The inhalation of zinc oxide engineered nanomaterials (ENMs) has been linked to cardiorespiratory dysfunction in mammalian models but the effects of aquatic ENM exposure on fish have not been fully investigated. Nano-zinc oxide (nZnO) is widely used in consumer products such as sunscreens and can make its way into aquatic ecosystems from domestic and commercial wastewater. This study examined the impact of an environmentally relevant nZnO formulation on cardiorespiratory function and energy metabolism in the white sucker (Catostomus commersonii), a freshwater teleost fish. Evidence of oxidative and cellular stress was present in gill tissue, including increases in malondialdehyde levels, heat shock protein (HSP) expression, and caspase 3/7 activity. Gill Na(+)/K(+)-ATPase activity was also higher by approximately three-fold in nZnO-treated fish, likely in response to increased epithelial permeability or structural remodeling. Despite evidence of toxicity in gill, plasma cortisol and lactate levels did not change in animals exposed to 1.0 mg L(-1) nZnO. White suckers also exhibited a 35% decrease in heart rate during nZnO exposure, with no significant changes in resting oxygen consumption or tissue energy stores. Our results suggest that tissue damage or cellular stress resulting from nZnO exposure activates gill neuroepithelial cells, triggering a whole-animal hypoxic response. An increase in parasympathetic nervous signaling will decrease heart rate and may reduce energy demand, even in the face of an environmental toxicant. We have shown that acute exposure to nZnO is toxic to white suckers and that ENMs have the potential to negatively impact cardiorespiratory function in adult fish.

  6. Born Knowing: Tentacled Snakes Innately Predict Future Prey Behavior

    PubMed Central

    Catania, Kenneth C.

    2010-01-01

    Background Aquatic tentacled snakes (Erpeton tentaculatus) can take advantage of their prey's escape response by startling fish with their body before striking. The feint usually startles fish toward the snake's approaching jaws. But when fish are oriented at a right angle to the jaws, the C-start escape response translates fish parallel to the snake's head. To exploit this latter response, snakes must predict the future location of the fish. Adult snakes can make this prediction. Is it learned, or are tentacled snakes born able to predict future fish behavior? Methods and Findings Laboratory-born, naïve snakes were investigated as they struck at fish. Trials were recorded at 250 or 500 frames per second. To prevent learning, snakes were placed in a water container with a clear transparency sheet or glass bottom. The chamber was placed over a channel in a separate aquarium with fish below. Thus snakes could see and strike at fish, without contact. The snake's body feint elicited C-starts in the fish below the transparency sheet, allowing strike accuracy to be quantified in relationship to the C-starts. When fish were oriented at a right angle to the jaws, naïve snakes biased their strikes to the future location of the escaping fish's head, such that the snake's jaws and the fish's translating head usually converged. Several different types of predictive strikes were observed. Conclusions The results show that some predators have adapted their nervous systems to directly compensate for the future behavior of prey in a sensory realm that usually requires learning. Instead of behavior selected during their lifetime, newborn tentacled snakes exhibit behavior that has been selected on a different scale—over many generations. Counter adaptations in fish are not expected, as tentacled snakes are rare predators exploiting fish responses that are usually adaptive. PMID:20585384

  7. Use of Hybridization Chain Reaction-Fluorescent In Situ Hybridization To Track Gene Expression by Both Partners during Initiation of Symbiosis.

    PubMed

    Nikolakakis, K; Lehnert, E; McFall-Ngai, M J; Ruby, E G

    2015-07-01

    The establishment of a productive symbiosis between Euprymna scolopes, the Hawaiian bobtail squid, and its luminous bacterial symbiont, Vibrio fischeri, is mediated by transcriptional changes in both partners. A key challenge to unraveling the steps required to successfully initiate this and many other symbiotic associations is characterization of the timing and location of these changes. We report on the adaptation of hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) to simultaneously probe the spatiotemporal regulation of targeted genes in both E. scolopes and V. fischeri. This method revealed localized, transcriptionally coregulated epithelial cells within the light organ that responded directly to the presence of bacterial cells while, at the same time, provided a sensitive means to directly show regulated gene expression within the symbiont population. Thus, HCR-FISH provides a new approach for characterizing habitat transition in bacteria and for discovering host tissue responses to colonization. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. New immunomodulatory role of neuropeptide Y (NPY) in Salmo salar leucocytes.

    PubMed

    González-Stegmaier, Roxana; Villarroel-Espíndola, Franz; Manríquez, René; López, Mauricio; Monrás, Mónica; Figueroa, Jaime; Enríquez, Ricardo; Romero, Alex

    2017-11-01

    Neuropeptide Y (NPY) plays different roles in mammals such as: regulate food intake, memory retention, cardiovascular functions, and anxiety. It has also been shown in the modulation of chemotaxis, T lymphocyte differentiation, and leukocyte migration. In fish, NPY expression and functions have been studied but its immunomodulatory role remains undescribed. This study confirmed the expression and synthesis of NPY in S. salar under inflammation, and validated a commercial antibody for NPY detection in teleost. Additionally, immunomodulatory effects of NPY were assayed in vitro and in vivo. Phagocytosis and superoxide anion production in leukocytes and SHK cells were induced under stimulation with a synthetic peptide. IL-8 mRNA was selectively and strongly induced in the spleen, head kidney, and isolated cells, after in vivo challenge with NPY. All together suggest that NPY is expressed in immune tissues and modulates the immune response in teleost fish. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test

    PubMed Central

    Kopman, Vladislav; Laut, Jeffrey; Polverino, Giovanni; Porfiri, Maurizio

    2013-01-01

    In this paper, we study the response of zebrafish to a robotic-fish whose morphology and colour pattern are inspired by zebrafish. Experiments are conducted in a three-chambered instrumented water tank where a robotic-fish is juxtaposed with an empty compartment, and the preference of live subjects is scored as the mean time spent in the vicinity of the tank's two lateral sides. The tail-beating of the robotic-fish is controlled in real-time based on feedback from fish motion to explore a spectrum of closed-loop systems, including proportional and integral controllers. Closed-loop control systems are complemented by open-loop strategies, wherein the tail-beat of the robotic-fish is independent of the fish motion. The preference space and the locomotory patterns of fish for each experimental condition are analysed and compared to understand the influence of real-time closed-loop control on zebrafish response. The results of this study show that zebrafish respond differently to the pattern of tail-beating motion executed by the robotic-fish. Specifically, the preference and behaviour of zebrafish depend on whether the robotic-fish tail-beating frequency is controlled as a function of fish motion and how such closed-loop control is implemented. PMID:23152102

  10. Effects of insulin, triiodothyronine and fat soluble vitamins on adipocyte differentiation and LPL gene expression in the stromal-vascular cells of red sea bream, Pagrus major.

    PubMed

    Oku, Hiromi; Tokuda, Masaharu; Okumura, Takuji; Umino, Tetsuya

    2006-07-01

    Various kinds of hormones including insulin, triiodothyronine (T(3)) and fat-soluble vitamins have been proposed as mediators of adipocyte differentiation in mammals. To investigate the factors which are responsible for fish adipocyte differentiation, we developed a serum-free culture system of stromal-vascular cells of red sea bream adipose tissue and examined the effects of bovine insulin, T(3), and fat-soluble vitamins (all-trans retinoic acid, retinyl acetate and 1,25-dihydroxyvitamin D(3)) on the differentiation-linked expression of the lipoprotein lipase (LPL) gene. As assessed by the increase in LPL gene expression after 3 day cultivation, like in mammalian adipocytes, insulin enhanced the adipocyte differentiation in a concentration-dependent manner. During 2 week cultivation, bovine insulin promoted lipid accumulation in differentiating adipocytes concentration-dependently until the terminal differentiation. These results indicate that the differentiation of fish adipocytes is inducible by insulin alone. T(3) alone had no effect but enhanced the differentiation-linked LPL gene expression in the presence of insulin. Fat-soluble vitamins, unlike in mammalian adipocytes, did not show any significant effects. The method developed in this study should be of interest for the characterization of factors involved in fish adipocyte differentiation.

  11. Role of brain-derived neurotrophic factor during the regenerative response after traumatic brain injury in adult zebrafish.

    PubMed

    Cacialli, Pietro; Palladino, Antonio; Lucini, Carla

    2018-06-01

    Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The brain of adult zebrafish, a teleost fish widely used as vertebrate model, possesses high regenerative properties after injury due to the presence of numerous stem cells niches. The ventricular lining of the zebrafish dorsal telencephalon is the most studied neuronal stem cell niche because its dorso-lateral zone is considered the equivalent to the hippocampus of mammals which contains one of the two constitutive neurogenic niches of mammals. To mimic TBI, stab wound in the dorso-lateral telencephalon of zebrafish was used in studies devoted to fish regenerative properties. Brain-derived neurotrophic factor, which is known to play key roles in the repair process after traumatic brain lesions, persists around the lesioned area of injured telencephalon of adult zebrafish. These results are extensively compared to reparative processes in rodent brain. Considering the complete repair of the damaged area in fish, it could be tempting to consider brain-derived neurotrophic factor as a factor contributing to create a permissive environment that enables the establishment of new neuronal population in damaged brain.

  12. Predictive value of EGFR overexpression and gene amplification on icotinib efficacy in patients with advanced esophageal squamous cell carcinoma

    PubMed Central

    Fan, Qingxia; Lu, Ping; Ma, Changwu; Liu, Wei; Liu, Ying; Li, Weiwei; Hu, Shaoxuan; Ling, Yun; Guo, Lei; Ying, Jianming; Huang, Jing

    2016-01-01

    This study aimed to search for a molecular marker for targeted epithelial growth factor receptor (EGFR) inhibitor Icotinib by analyzing protein expression and amplification of EGFR proto-oncogene in esophageal squamous cell carcinoma (ESCC) patients. Immunohistochemistry and fluorescence in situ hybridization (FISH) was used to assess EGFR expression and gene amplification status in 193 patients with ESCC. We also examined the association between EGFR overexpression and the efficacy of a novel EGFR TKI, icotinib, in 62 ESCC patients. Of the 193 patients, 95 (49.2%) patients showed EGFR overexpression (3+), and 47(24.4%) patients harbored EGFR FISH positivity. EGFR overexpression was significantly correlated with clinical stage and lymph node metastasis (p<0.05). In addition, EGFR overexpression was significantly correlated with EGFR FISH positivity (p<0.001). Among the 62 patients who received icotinib, the response rate was 17.6% for patients with high EGFR-expressing tumors, which was markedly higher than the rate (0%) for patients with low to moderate EGFR-expressing tumors (p=0.341). Furthermore, all cases responded to icotinib showed EGFR overexpression. In conclusion, our study suggests that EGFR overexpression might potentially be used in predicting the efficacy in patients treated with Icotinib. These data have implications for both clinical trial design and therapeutic strategies. PMID:27013591

  13. Predictive value of EGFR overexpression and gene amplification on icotinib efficacy in patients with advanced esophageal squamous cell carcinoma.

    PubMed

    Wang, Xi; Niu, Haitao; Fan, Qingxia; Lu, Ping; Ma, Changwu; Liu, Wei; Liu, Ying; Li, Weiwei; Hu, Shaoxuan; Ling, Yun; Guo, Lei; Ying, Jianming; Huang, Jing

    2016-04-26

    This study aimed to search for a molecular marker for targeted epithelial growth factor receptor (EGFR) inhibitor Icotinib by analyzing protein expression and amplification of EGFR proto-oncogene in esophageal squamous cell carcinoma (ESCC) patients.Immunohistochemistry and fluorescence in situ hybridization (FISH) was used to assess EGFR expression and gene amplification status in 193 patients with ESCC. We also examined the association between EGFR overexpression and the efficacy of a novel EGFR TKI, icotinib, in 62 ESCC patients.Of the 193 patients, 95 (49.2%) patients showed EGFR overexpression (3+), and 47(24.4%) patients harbored EGFR FISH positivity. EGFR overexpression was significantly correlated with clinical stage and lymph node metastasis (p<0.05). In addition, EGFR overexpression was significantly correlated with EGFR FISH positivity (p<0.001). Among the 62 patients who received icotinib, the response rate was 17.6% for patients with high EGFR-expressing tumors, which was markedly higher than the rate (0%) for patients with low to moderate EGFR-expressing tumors (p=0.341). Furthermore, all cases responded to icotinib showed EGFR overexpression.In conclusion, our study suggests that EGFR overexpression might potentially be used in predicting the efficacy in patients treated with Icotinib. These data have implications for both clinical trial design and therapeutic strategies.

  14. Seven-hour fluorescence in situ hybridization technique for enumeration of Enterobacteriaceae in food and environmental water sample.

    PubMed

    Ootsubo, M; Shimizu, T; Tanaka, R; Sawabe, T; Tajima, K; Ezura, Y

    2003-01-01

    A fluorescent in situ hybridization (FISH) technique using an Enterobacteriaceae-specific probe (probe D) to target 16S rRNA was improved in order to enumerate, within a single working day, Enterobacteriaceae present in food and environmental water samples. In order to minimize the time required for the FISH procedure, each step of FISH with probe D was re-evaluated using cultured Escherichia coli. Five minutes of ethanol treatment for cell fixation and hybridization were sufficient to visualize cultured E. coli, and FISH could be performed within 1 h. Because of the difficulties in detecting low levels of bacterial cells by FISH without cultivation, a FISH technique for detecting microcolonies on membrane filters was investigated to improve the bacterial detection limit. FISH with probe D following 6 h of cultivation to grow microcolonies on a 13 mm diameter membrane filter was performed, and whole Enterobacteriaceae microcolonies on the filter were then detected and enumerated by manual epifluorescence microscopic scanning at magnification of x100 in ca 5 min. The total time for FISH with probe D following cultivation (FISHFC) was reduced to within 7 h. FISHFC can be applied to enumerate cultivable Enterobacteriaceae in food (above 100 cells g-1) and environmental water samples (above 1 cell ml-1). Cultivable Enterobacteriaceae in food and water samples were enumerated accurately within 7 h using the FISHFC method. A FISHFC method capable of evaluating Enterobacteriaceae contamination in food and environmental water within a single working day was developed.

  15. Apoptosis in fish: environmental factors and programmed cell death.

    PubMed

    AnvariFar, Hossein; Amirkolaie, Abdolsamad Keramat; Miandare, Hamed Kolangi; Ouraji, Hossein; Jalali, M Ali; Üçüncü, Sema İşisağ

    2017-06-01

    Apoptosis, a form of programmed cell death, is a critical component in maintaining homeostasis and growth in all tissues and plays a significant role in immunity and cytotoxicity. In contrast to necrosis or traumatic cell death, apoptosis is a well-controlled and vital process characterized mainly by cytoplasmic shrinkage, chromatin condensation, DNA fragmentation, membrane blebbing and apoptotic bodies. Our understanding of apoptosis is partly based on observations in invertebrates but mainly in mammals. Despite the great advantages of fish models in studying vertebrate development and diseases and the tremendous interest observed in recent years, reports on apoptosis in fish are still limited. Although apoptotic machinery is well conserved between aquatic and terrestrial organisms throughout the history of evolution, some differences exist in key components of apoptotic pathways. Core parts of apoptotic machinery in fish are virtually expressed as equivalent to the mammalian models. Some differences are, however, evident, such as the extrinsic and intrinsic pathways of apoptosis including lack of a C-terminal region in the Fas-associated protein with a death domain in fish. Aquatic species inhabit a complex and highly fluctuating environment, making these species good examples to reveal features of apoptosis that may not be easily investigated in mammals. Therefore, in order to gain a wider view on programmed cell death in fish, interactions between the main environmental factors, chemicals and apoptosis are discussed in this review. It is indicated that apoptosis can be induced in fish by exposure to environmental stressors during different stages of the fish life cycle.

  16. An automated approach to improve efficacy in detecting residual malignant cancer cell for facilitating prognostic assessment of leukemia: an initial study

    NASA Astrophysics Data System (ADS)

    Qiu, Yuchen; Lu, Xianglan; Tan, Maxine; Li, Shibo; Liu, Hong; Zheng, Bin

    2015-03-01

    The purpose of this study is to investigate the feasibility of applying automatic interphase FISH cells analysis method for detecting the residual malignancy of post chemotherapy leukemia patients. In the experiment, two clinical specimens with translocation between chromosome No. 9 and 22 or No. 11 and 14 were selected from the patients underwent leukemia diagnosis and treatment. The entire slide of each specimen was first digitalized by a commercial fluorescent microscope using a 40× objective lens. Then, the scanned images were processed by a computer-aided detecting (CAD) scheme to identify the analyzable FISH cells, which is accomplished by applying a series of features including the region size, Brenner gradient and maximum intensity. For each identified cell, the scheme detected and counted the number of the FISH signal dots inside the nucleus, using the adaptive threshold of the region size and distance of the labeled FISH dots. The results showed that the new CAD scheme detected 8093 and 6675 suspicious regions of interest (ROI) in two specimens, among which 4546 and 3807 ROI contain analyzable interphase FISH cell. In these analyzable ROIs, CAD selected 334 and 405 residual malignant cancer cells, which is substantially more than those visually detected in a cytogenetic laboratory of our medical center (334 vs. 122, 405 vs. 160). This investigation indicates that an automatic interphase FISH cell scanning and CAD method has the potential to improve the accuracy and efficiency of the prognostic assessment for leukemia and other genetic related cancer patients in the future.

  17. Comparison of hydraulics and particle removal efficiencies in a mixed cell raceway and Burrows pond rearing system

    USGS Publications Warehouse

    Moffitt, Christine M.

    2016-01-01

    We compared the hydrodynamics of replicate experimental mixed cell and replicate standard Burrows pond rearing systems at the Dworshak National Fish Hatchery, ID, in an effort to identify methods for improved solids removal. We measured and compared the hydraulic residence time, particle removal efficiency, and measures of velocity using several tools. Computational fluid dynamics was used first to characterize hydraulics in the proposed retrofit that included removal of the traditional Burrows pond dividing wall and establishment of four counter rotating cells with appropriate drains and inlet water jets. Hydraulic residence time was subsequently established in the four full scale test tanks using measures of conductivity of a salt tracer introduced into the systems both with and without fish present. Vertical and horizontal velocities were also measured with acoustic Doppler velocimetry in transects across each of the rearing systems. Finally, we introduced ABS sinking beads that simulated fish solids then followed the kinetics of their removal via the drains to establish relative purge rates. The mixed cell raceway provided higher mean velocities and a more uniform velocity distribution than did the Burrows pond. Vectors revealed well-defined, counter-rotating cells in the mixed cell raceway, and were likely contributing factors in achieving a relatively high particle removal efficiency-88.6% versus 8.0% during the test period. We speculate retrofits of rearing ponds to mixed cell systems will improve both the rearing environments for the fish and solids removal, improving the efficiency and bio-security of fish culture. We recommend further testing in hatchery production trials to evaluate fish physiology and growth.

  18. Infrasound initiates directional fast-start escape responses in juvenile roach Rutilus rutilus.

    PubMed

    Karlsen, Hans E; Piddington, Robert W; Enger, Per S; Sand, Olav

    2004-11-01

    Acoustic stimuli within the sonic range are effective triggers of C-type escape behaviours in fish. We have previously shown that fish have an acute sensitivity to infrasound also, with acceleration thresholds in the range of 10(-5) m s(-2). In addition, infrasound at high intensities around 10(-2) m s(-2) elicits strong and sustained avoidance responses in several fish species. In the present study, the possible triggering of C-escapes by infrasonic single-cycle vibrations was examined in juvenile roach Rutilus rutilus. The fish were accelerated in a controlled and quantifiable manner using a swing system. The applied stimuli simulated essential components of the accelerations that a small fish would encounter in the hydrodynamic flow field produced by a predatory fish. Typical C- and S-type escape responses were induced by accelerations within the infrasonic range with a threshold of 0.023 m s(-2) for an initial acceleration at 6.7 Hz. Response trajectories were on average in the same direction as the initial acceleration. Unexpectedly, startle behaviours mainly occurred in the trailing half of the test chamber, in which the fish were subjected to linear acceleration in combination with compression, i.e. the expected stimuli produced by an approaching predator. Very few responses were observed in the leading half of the test chamber, where the fish were subjected to acceleration and rarefaction, i.e. the stimuli expected from a suction type of predator. We conclude that particle acceleration is essential for the directionality of the startle response to infrasound, and that the response is triggered by the synergistic effects of acceleration and compression.

  19. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki.

    PubMed

    Bilyk, Kevin T; Cheng, C-H Christina

    2014-12-01

    Through evolution in the isolated, freezing (-1.9°C) Southern Ocean, Antarctic notothenioid fish have become cold-adapted as well as cold-specialized. Notothenioid cold specialization is most evident in their limited tolerance to heat challenge, and an apparent loss of the near universal inducible heat shock (HSP70) response. Beyond these it remains unclear how broadly cold specialization pervades the underlying tissue-wide cellular responses. We report the first analysis of massively parallel RNA sequencing (RNA-seq) to identify gene expression changes in the liver in response to elevated body temperature of a high-latitude Antarctic nototheniid, the highly cold-adapted and cold-specialized cryopelagic bald notothen, Pagothenia borchgrevinki. From a large (14,873) mapped set of qualified, annotated liver transcripts, we identified hundreds of significantly differentially expressed genes following two and four days of 4°C exposure, suggesting substantial transcriptional reorganization in the liver when body temperature was raised 5°C above native water temperature. Most notably, and in sharp contrast to heat stressed non-polar fish species, was a widespread down-regulation of nearly all classes of molecular chaperones including HSP70, as well as polyubiquitins that are associated with proteosomal degradation of damaged proteins. In parallel, genes involved in the cell cycle were down-regulated by day two of 4°C exposure, signifying slowing cellular proliferation; by day four, genes associated with transcriptional and translational machineries were down-regulated, signifying general slowing of protein biosynthesis. The log2 fold differential transcriptional changes are generally of small magnitudes but significant, and in total portray a broad down turn of cellular activities in response to four days of elevated body temperature in the cold-specialized bald notothen. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Fluorescence in situ hybridization and qPCR to detect Merkel cell polyomavirus physical status and load in Merkel cell carcinomas.

    PubMed

    Haugg, Anke M; Rennspiess, Dorit; zur Hausen, Axel; Speel, Ernst-Jan M; Cathomas, Gieri; Becker, Jürgen C; Schrama, David

    2014-12-15

    The Merkel cell polyomavirus (MCPyV) is detected in 80% of Merkel cell carcinomas (MCC). Clonal integration and tumor-specific mutations in the large T antigen are strong arguments that MCPyV is a human tumor virus. However, the relationship between viral presence and cancer induction remains discussed controversially. Since almost all studies on virus prevalence are based on PCR techniques, we performed MCPyV fluorescence in situ hybridization (FISH) on MCC to gain information about the quality of the viral presence on the single cell level. MCPyV-FISH was performed on tissue microarrays containing 62 formalin-fixed and paraffin-embedded tissue samples including all tumor grades of 42 patients. The hybridization patterns were correlated to the qPCR data determined on corresponding whole tissue sections. Indeed, MCPyV-FISH and qPCR data were highly correlated, i.e. 83% for FISH-positive and 93% for FISH-negative cores. Accordingly, the mean of the qPCR values of all MCPyV-positive cores differed significantly from the mean of the negative cores (p = 0.0076). Importantly, two hybridization patterns were definable in the MCPyV-FISH: a punctate pattern (85%) indicating viral integration, which correlated with a moderate viral abundance and a combination of the punctate with a diffuse pattern (15%), suggesting a possible coexistence of integrated and episomal virus which was associated with very high viral load and VP1 expression. Thus, MCPyV-FISH adds important information on the single cell level within the histomorphological context and could therefore be an important tool to further elucidate MCPyV related carcinogenesis. © 2014 UICC.

  1. Ocean acidification and responses to predators: can sensory redundancy reduce the apparent impacts of elevated CO2 on fish?

    PubMed

    Lönnstedt, Oona M; Munday, Philip L; McCormick, Mark I; Ferrari, Maud C O; Chivers, Douglas P

    2013-09-01

    Carbon dioxide (CO2) levels in the atmosphere and surface ocean are rising at an unprecedented rate due to sustained and accelerating anthropogenic CO2 emissions. Previous studies have documented that exposure to elevated CO2 causes impaired antipredator behavior by coral reef fish in response to chemical cues associated with predation. However, whether ocean acidification will impair visual recognition of common predators is currently unknown. This study examined whether sensory compensation in the presence of multiple sensory cues could reduce the impacts of ocean acidification on antipredator responses. When exposed to seawater enriched with levels of CO2 predicted for the end of this century (880 μatm CO2), prey fish completely lost their response to conspecific alarm cues. While the visual response to a predator was also affected by high CO2, it was not entirely lost. Fish exposed to elevated CO2, spent less time in shelter than current-day controls and did not exhibit antipredator signaling behavior (bobbing) when multiple predator cues were present. They did, however, reduce feeding rate and activity levels to the same level as controls. The results suggest that the response of fish to visual cues may partially compensate for the lack of response to chemical cues. Fish subjected to elevated CO2 levels, and exposed to chemical and visual predation cues simultaneously, responded with the same intensity as controls exposed to visual cues alone. However, these responses were still less than control fish simultaneously exposed to chemical and visual predation cues. Consequently, visual cues improve antipredator behavior of CO2 exposed fish, but do not fully compensate for the loss of response to chemical cues. The reduced ability to correctly respond to a predator will have ramifications for survival in encounters with predators in the field, which could have repercussions for population replenishment in acidified oceans.

  2. Salinity stress response in estuarine fishes from the Murray Estuary and Coorong, South Australia.

    PubMed

    Hossain, Md Afzal; Aktar, Shefali; Qin, Jian G

    2016-12-01

    Estuaries are unstable ecosystems and can be changed by the environmental and anthropogenic impact. The Murray Estuary and Coorong were degraded by drought and low freshwater input in the last decade and therefore transformed into the largest hyper-saline lagoon in Australia. This study evaluates the physiological stress of two estuarine fish species (small-mouthed hardyhead Atherinosoma microstoma and Tamar goby Afurcagobius tamarensis) to the induced salinity change in captivity. The test fishes were collected from the Coorong and transported to the laboratory in the water from the Coorong. Each fish species was exposed to different levels of salinity, and a number of enzymes were assessed to measure the stress response of fish to salinity change. The activity of reactive oxygen species was significantly increased with the salinity change in both fish species compared with the fish in the control. Significant salinity effect on superoxide dismutase activity was observed on Tamar goby but not on small-mouthed hardyhead. Conversely, the impact of salinity on catalase activity was detected on small-mouthed hardyhead but not on Tamar goby. The study reveals that the induction of physical stress by salinity changes occurred in both Tamar goby and small-mouthed hardyhead despite the varying response of antioxidant enzymes between fish species. The study provides an insight into the understanding of physiological adaptation in estuarine fish to salinity change. The results could improve our knowledge on stress response and resilience of estuarine fish to hypo- and hyper-salinity stress.

  3. Fishing drives declines in fish parasite diversity and has variable effects on parasite abundance.

    PubMed

    Wood, Chelsea L; Sandin, Stuart A; Zgliczynski, Brian; Guerra, Ana Sofía; Micheli, Fiorenza

    2014-07-01

    Despite the ubiquity and ecological importance of parasites, relatively few studies have assessed their response to anthropogenic environmental change. Heuristic models have predicted both increases and decreases in parasite abundance in response to human disturbance, with empirical support for both. However, most studies focus on one or a few selected parasite species. Here, we assess the abundance of parasites of seven species of coral reef fishes collected from three fished and three unfished islands of the Line Islands archipelago in the central equatorial Pacific. Because we chose fish hosts that spanned different trophic levels, taxonomic groups, and body sizes, we were able to compare parasite responses across a broad cross section of the total parasite community in the presence and absence of fishing, a major human impact on marine ecosystems. We found that overall parasite species richness was substantially depressed on fished islands, but that the response of parasite abundance varied among parasite taxa: directly transmitted parasites were significantly more abundant on fished than on unfished islands, while the reverse was true for trophically transmitted parasites. This probably arises because trophically transmitted parasites require multiple host species, some of which are the top predators most sensitive to fishing impacts. The increase in directly transmitted parasites appeared to be due to fishing-driven compensatory increases in the abundance of their hosts. Together, these results provide support for the predictions of both heuristic models, and indicate that the direction of fishing's impact on parasite abundance is mediated by parasite traits, notably parasite transmission strategies.

  4. Microhabitat use, not temperature, regulates intensity of Gyrodactylus cichlidarum long-term infection on farmed tilapia--are parasites evading competition or immunity?

    PubMed

    Rubio-Godoy, Miguel; Muñoz-Córdova, Germán; Garduño-Lugo, Mario; Salazar-Ulloa, Martha; Mercado-Vidal, Gabriel

    2012-02-10

    Gyrodactylids (Monogenea) are ectoparasites of fish, some of which negatively affect commercially valuable fishes. Temperature strongly regulates population dynamics of these viviparous flatworms in farmed and wild fish populations, with most gyrodactylid species showing positive temperature-abundance associations. In agreement with epidemiological theory, numerous laboratory studies demonstrate that these parasites cannot persist in confined fish populations without periodic introduction of susceptible hosts. Extinction of gyrodactylid populations is due to host immunity, which develops in several fish species. In this one-year study, we followed populations of the recognized pathogen Gyrodactylus cichlidarum infecting four genetic groups of confined tilapia (wild type Nile tilapia Oreochromis niloticus niloticus, red O. n. niloticus, Mozambique tilapia O. mossambicus and a red synthetic population called Pargo-UNAM) kept under farming conditions and subject to natural environmental fluctuations. Based on the antecedents given, we postulated the following three hypotheses: (1) parasite abundance will be regulated by water temperature; (2) parasites will induce host mortality, particularly during periods of rapid infrapopulation growth; and (3) gyrodactylid populations will eventually become extinct on confined fish hosts. We disproved the three hypotheses: (1) parasite numbers fluctuated independently of temperature but were associated to changes in microhabitat use; (2) although gyrodactylid populations exhibited considerable growth, no evidence was found of negative effects on the hosts; and (3) infections persisted for one year on confined fish. Microhabitat use changed over time, with most worms apparently migrating anteriorly from the caudal fin and ending on the pectoral fins. Gyrodactylid populations followed similar trajectories in all fish, aggregating and dispersing repeatedly. Several instances were found where increased parasite dispersion coincided with increased intensity of infection; as well as the opposite, where increased aggregation coincided with parasite population declines. Three alternative explanations could account for these observations: that parasites (1) experience differential mortality on different anatomical regions of the fish; (2) migrate to avoid intraspecific competition; and (3) migrate to escape localized immune responses induced by infection. Our data do not allow us to demonstrate which of these alternatives is correct, so we discuss the merits of each. We provide circumstantial evidence in support of the third explanation, because as shown in other fish host-gyrodactylid interactions where immune responses have been characterized, in this study worms progressively moved away from fins with high mucus cell density to those with low density - what would be anticipated if immune defenses occur and reach the fish surface through mucus. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Extinction of a conditioned response in rainbow trout selected for high or low responsiveness to stress.

    PubMed

    Moreira, P S A; Pulman, K G T; Pottinger, T G

    2004-11-01

    Two lines of rainbow trout (Oncorhynchus mykiss) that exhibit divergent endocrine responsiveness to stressors also display disparate behavioral traits. To investigate whether the high-responding (HR) and low-responding (LR) fish also differ in cognitive function, the rate of extinction of a conditioned response was compared between the two lines. Groups of HR and LR fish were exposed to a paired conditioned stimulus (CS; water off) and unconditioned stimulus (US; confinement stressor). After exposure to 18 CS-US pairings, at least 70% of individuals of both lines acquired a conditioned response (CR) manifested as an elevation of blood cortisol levels on presentation of the CS only. Post-conditioning, the fish were tested by presentation of the CS at weekly intervals, for 4 weeks, with no further reinforcement, and the extinction of the CR in the two lines was compared. The decline in mean plasma cortisol levels after exposure to the CS over successive tests suggested that the CR was retained for a shorter period among the HR (<14 days) than LR fish (<21 days). The frequency of individuals within each line whose plasma cortisol levels indicated a stress response when exposed to the CS was significantly greater among the LR than HR fish at 14 and 21 days with no HR fish falling into this category at 21 days. At 28 days post-conditioning, there were no HR fish and only three LR fish were categorized as "stressed". These results suggest that there are differences in cognitive function between the two lines. Possible mechanisms underlying these differences are discussed.

  6. Distinct Differentiation Programs Triggered by IL-6 and LPS in Teleost IgM(+) B Cells in The Absence of Germinal Centers.

    PubMed

    Abós, Beatriz; Wang, Tiehui; Castro, Rosario; Granja, Aitor G; Leal, Esther; Havixbeck, Jeffrey; Luque, Alfonso; Barreda, Daniel R; Secombes, Chris J; Tafalla, Carolina

    2016-08-02

    Although originally identified as a B cell differentiation factor, it is now known that mammalian interleukin-6 (IL-6) only regulates B cells committed to plasma cells in response to T-dependent (TD) antigens within germinal centers (GCs). Even though adaptive immunity is present in teleost fish, these species lack lymph nodes and GCs. Thus, the aim of the present study was to establish the role of trout IL-6 on B cells, comparing its effects to those induced by bacterial lipopolysaccharide (LPS). We demonstrate that the effects of teleost IL-6 on naïve spleen B cells include proliferation, activation of NF-κB, increased IgM secretion, up-regulation of Blimp1 transcription and decreased MHC-II surface expression that point to trout IL-6 as a differentiation factor for IgM antibody-secreting cells (ASCs). However, LPS induced the secretion of IgM without up-regulating Blimp1, driving the cells towards an intermediate activation state in which antigen presenting mechanisms are elicited together with antibody secretion and expression of pro-inflammatory genes. Our results reveal that, in trout, IL-6 is a differentiation factor for B cells, stimulating IgM responses in the absence of follicular structures, and suggest that it was after follicular structures appeared that this cytokine evolved to modulate TD responses within the GC.

  7. Skeletal stiffening in an amphibious fish out of water is a response to increased body weight.

    PubMed

    Turko, Andy J; Kültz, Dietmar; Fudge, Douglas; Croll, Roger P; Smith, Frank M; Stoyek, Matthew R; Wright, Patricia A

    2017-10-15

    Terrestrial animals must support their bodies against gravity, while aquatic animals are effectively weightless because of buoyant support from water. Given this evolutionary history of minimal gravitational loading of fishes in water, it has been hypothesized that weight-responsive musculoskeletal systems evolved during the tetrapod invasion of land and are thus absent in fishes. Amphibious fishes, however, experience increased effective weight when out of water - are these fishes responsive to gravitational loading? Contrary to the tetrapod-origin hypothesis, we found that terrestrial acclimation reversibly increased gill arch stiffness (∼60% increase) in the amphibious fish Kryptolebias marmoratus when loaded normally by gravity, but not under simulated microgravity. Quantitative proteomics analysis revealed that this change in mechanical properties occurred via increased abundance of proteins responsible for bone mineralization in other fishes as well as in tetrapods. Type X collagen, associated with endochondral bone growth, increased in abundance almost ninefold after terrestrial acclimation. Collagen isoforms known to promote extracellular matrix cross-linking and cause tissue stiffening, such as types IX and XII collagen, also increased in abundance. Finally, more densely packed collagen fibrils in both gill arches and filaments were observed microscopically in terrestrially acclimated fish. Our results demonstrate that the mechanical properties of the fish musculoskeletal system can be fine-tuned in response to changes in effective body weight using biochemical pathways similar to those in mammals, suggesting that weight sensing is an ancestral vertebrate trait rather than a tetrapod innovation. © 2017. Published by The Company of Biologists Ltd.

  8. 50 CFR 86.91 - What are my program crediting responsibilities?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG) PROGRAM State Use of Signs and Sport Fish Restoration Symbols § 86.91 What are my program crediting responsibilities? You should give public credit to the Federal Aid in Sport Fish...

  9. 50 CFR 86.91 - What are my program crediting responsibilities?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG) PROGRAM State Use of Signs and Sport Fish Restoration Symbols § 86.91 What are my program crediting responsibilities? You should give public credit to the Federal Aid in Sport Fish...

  10. 50 CFR 86.91 - What are my program crediting responsibilities?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG) PROGRAM State Use of Signs and Sport Fish Restoration Symbols § 86.91 What are my program crediting responsibilities? You should give public credit to the Federal Aid in Sport Fish...

  11. Advances in space biology and medicine. Vol. 1

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L. (Editor)

    1991-01-01

    Topics discussed include the effects of prolonged spaceflights on the human body; skeletal responses to spaceflight; gravity effects on reproduction, development, and aging; neurovestibular physiology in fish; and gravity perception and circumnutation in plants. Attention is also given to the development of higher plants under altered gravitational conditions; the techniques, findings, and theory concerning gravity effects on single cells; protein crystal growth in space; and facilities for animal research in space.

  12. Efficiency of fluorescence in situ hybridization for bacterial cell identification in temporary river sediments with contrasting water content.

    PubMed

    Fazi, Stefano; Amalfitano, Stefano; Pizzetti, Ilaria; Pernthaler, Jakob

    2007-09-01

    We studied the efficiency of two hybridization techniques for the analysis of benthic bacterial community composition under varying sediment water content. Microcosms were set up with sediments from four European temporary rivers. Wet sediments were dried, and dry sediments were artificially rewetted. The percentage of bacterial cells detected by fluorescence in situ hybridization with fluorescently monolabeled probes (FISH) significantly increased from dry to wet sediments, showing a positive correlation with the community activity measured via incorporation of (3)H leucine. FISH and signal amplification by catalyzed reporter deposition (CARD-FISH) could significantly better detect cells with low activity in dried sediments. Through the application of an optimized cell permeabilization protocol, the percentage of hybridized cells by CARD-FISH showed comparable values in dry and wet conditions. This approach was unrelated to (3)H leucine incorporation rates. Moreover, the optimized protocol allowed a significantly better visualization of Gram-positive Actinobacteria in the studied samples. CARD-FISH is, therefore, proposed as an effective technique to compare bacterial communities residing in sediments with contrasting water content, irrespective of differences in the activity state of target cells. Considering the increasing frequencies of flood and drought cycles in European temporary rivers, our approach may help to better understand the dynamics of microbial communities in such systems.

  13. Aneugenicity and clastogenicity in freshwater fish Oreochromis niloticus exposed to incipient safe concentration of tannery effluent.

    PubMed

    Weldetinsae, Abel; Dawit, Mekibib; Getahun, Abebe; Patil, H S; Alemayehu, Esayas; Gizaw, Melaku; Abate, Moa; Abera, Daniel

    2017-04-01

    Conventional effluent bioassays mostly rely on overt responses or endpoints such as apical and Darwinian fitness. Beyond the empirical observation, laboratory toxicity testing needs to rely on effective detection of prognostic biomarkers such as genotoxicity. Indeed, characterization of tannery effluent requires slotting in of genotoxic responses in whole effluent toxicity testing procedures. Hence, the prime objective of the present experimental investigation is to apply the technique of biological assay as a tool of toxicity testing to evaluate the induction of micronuclei (MN) in peripheral erythrocytes, and exfoliated cells of gill and kidney of O.niloticus exposed to Maximum tolerable concentrations (MTCs) of composite Modjo tannery effluent (CMTE) and to compare the sensitivity of each cells origin to the induction of MN. After 72h of exposure, cellular aberrations were detected using MN and nuclear abnormality (NA) tests. The induction of MN was significantly higher in exposed groups (P<0.05) when compared to the control group; moreover the tissue specific MN response was in the order, gill cells>peripheral erythrocyte>kidney. Total NA was found to increase significantly (P<0.05), when compared to the non-exposed group. NA was also further ramified as blebbed (BL), bi-nucleated (BN), lobbed (LB) and notched (NT) abnormalities. The result of each endpoint measured has demonstrated that at a concentration of total chromium (0.1, 0.73 and 1.27mg/L), a perceptible amount cellular aberration was measured, further implicating somber treat of genotoxicity to fishes, if exposed to water contaminated with tannery effluent. This further highlight that conventional effluent monitoring alone cannot reveal the effects expressed at cellular and genetic levels further demanding the incorporation of effluent bioassays in risk assessment and risk management/abatement programs. Copyright © 2016. Published by Elsevier Inc.

  14. Identification of differentially expressed genes of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in response to Tetracapsuloides bryosalmonae (Myxozoa).

    PubMed

    Kumar, Gokhlesh; Abd-Elfattah, Ahmed; El-Matbouli, Mansour

    2015-03-01

    Tetracapsuloides bryosalmonae Canning et al., 1999 (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. We have shown previously that the development and distribution of the European strain of T. bryosalmonae differs in the kidney of brown trout (Salmo trutta) Linnaeus, 1758 and rainbow trout (Oncorhynchus mykiss) Walbaum, 1792, and that intra-luminal sporogonic stages were found in brown trout but not in rainbow trout. We have now compared transcriptomes from kidneys of brown trout and rainbow trout infected with T. bryosalmonae using suppressive subtractive hybridization (SSH). The differentially expressed transcripts produced by SSH were cloned, transformed, and tested by colony PCR. Differential expression screening of PCR products was validated using dot blot, and positive clones having different signal intensities were sequenced. Differential screening and a subsequent NCBI-BLAST analysis of expressed sequence tags revealed nine clones expressed differently between both fish species. These differentially expressed genes were validated by quantitative real-time PCR of kidney samples from both fish species at different time points of infection. Expression of anti-inflammatory (TSC22 domain family protein 3) and cell proliferation (Prothymin alpha) genes were upregulated significantly in brown trout but downregulated in rainbow trout. The expression of humoral immune response (immunoglobulin mu) and endocytic pathway (Ras-related protein Rab-11b) genes were significantly upregulated in rainbow trout but downregulated in brown trout. This study suggests that differential expression of host anti-inflammatory, humoral immune and endocytic pathway responses, cell proliferation, and cell growth processes do not inhibit the development of intra-luminal sporogonic stages of the European strain of T. bryosalmonae in brown trout but may suppress it in rainbow trout.

  15. Local and systemic gene expression responses of Atlantic salmon (Salmo salar L.) to infection with the salmon louse (Lepeophtheirus salmonis)

    PubMed Central

    Skugor, Stanko; Glover, Kevin Alan; Nilsen, Frank; Krasnov, Aleksei

    2008-01-01

    Background The salmon louse (SL) is an ectoparasitic caligid crustacean infecting salmonid fishes in the marine environment. SL represents one of the major challenges for farming of salmonids, and veterinary intervention is necessary to combat infection. This study addressed gene expression responses of Atlantic salmon infected with SL, which may account for its high susceptibility. Results The effects of SL infection on gene expression in Atlantic salmon were studied throughout the infection period from copepodids at 3 days post infection (dpi) to adult lice (33 dpi). Gene expression was analyzed at three developmental stages in damaged and intact skin, spleen, head kidney and liver, using real-time qPCR and a salmonid cDNA microarray (SFA2). Rapid detection of parasites was indicated by the up-regulation of immunoglobulins in the spleen and head kidney and IL-1 receptor type 1, CD4, beta-2-microglobulin, IL-12β, CD8α and arginase 1 in the intact skin of infected fish. Most immune responses decreased at 22 dpi, however, a second activation was observed at 33 dpi. The observed pattern of gene expression in damaged skin suggested the development of inflammation with signs of Th2-like responses. Involvement of T cells in responses to SL was witnessed with up-regulation of CD4, CD8α and programmed death ligand 1. Signs of hyporesponsive immune cells were seen. Cellular stress was prevalent in damaged skin as seen by highly significant up-regulation of heat shock proteins, other chaperones and mitochondrial proteins. Induction of the major components of extracellular matrix, TGF-β and IL-10 was observed only at the adult stage of SL. Taken together with up-regulation of matrix metalloproteinases (MMP), this classifies the wounds afflicted by SL as chronic. Overall, the gene expression changes suggest a combination of chronic stress, impaired healing and immunomodulation. Steady increase of MMP expression in all tissues except liver was a remarkable feature of SL infected fish. Conclusion SL infection in Atlantic salmon is associated with a rapid induction of mixed inflammatory responses, followed by a period of hyporesponsiveness and delayed healing of injuries. Persistent infection may lead to compromised host immunity and tissue self-destruction. PMID:18945374

  16. Prospective and clinical validation of ALK immunohistochemistry: results from the phase I/II study of alectinib for ALK-positive lung cancer (AF-001JP study).

    PubMed

    Takeuchi, K; Togashi, Y; Kamihara, Y; Fukuyama, T; Yoshioka, H; Inoue, A; Katsuki, H; Kiura, K; Nakagawa, K; Seto, T; Maemondo, M; Hida, T; Harada, M; Ohe, Y; Nogami, N; Yamamoto, N; Nishio, M; Tamura, T

    2016-01-01

    Anaplastic lymphoma kinase (ALK) fusions need to be accurately and efficiently detected for ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) remains the reference test. Although increasing data are supporting that ALK immunohistochemistry (IHC) is highly concordant with FISH, IHC screening needed to be clinically and prospectively validated. In the AF-001JP trial for alectinib, 436 patients were screened for ALK fusions through IHC (n = 384) confirmed with FISH (n = 181), multiplex RT-PCR (n = 68), or both (n = 16). IHC results were scored with iScore. ALK fusion was positive in 137 patients and negative in 250 patients. Since the presence of cancer cells in the samples for RT-PCR was not confirmed, ALK fusion negativity could not be ascertained in 49 patients. IHC interpreted with iScore showed a 99.4% (173/174) concordance with FISH. All 41 patients who had iScore 3 and were enrolled in phase II showed at least 30% tumor reduction with 92.7% overall response rate. Two IHC-positive patients with an atypical FISH pattern responded to ALK inhibitor therapy. The reduction rate was not correlated with IHC staining intensity. Our study showed (i) that when sufficiently sensitive and appropriately interpreted, IHC can be a stand-alone diagnostic for ALK inhibitor therapies; (ii) that when atypical FISH patterns are accompanied by IHC positivity, the patients should be considered as candidates for ALK inhibitor therapies, and (iii) that the expression level of ALK fusion is not related to the level of response to ALK inhibitors and is thus not required for patient selection. JapicCTI-101264 (This study is registered with the Japan Pharmaceutical Information Center). © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

  17. Environmental contaminants and biomarker responses in fish from the Columbia River and its tributaries: spatial and temporal trends.

    PubMed

    Hinck, Jo Ellen; Schmitt, Christopher J; Blazer, Vicki S; Denslow, Nancy D; Bartish, Timothy M; Anderson, Patrick J; Coyle, James J; Dethloff, Gail M; Tillitt, Donald E

    2006-08-01

    Fish were collected from 16 sites on rivers in the Columbia River Basin (CRB) from September 1997 to April 1998 to document temporal and spatial trends in the concentrations of accumulative contaminants and to assess contaminant effects on the fish. Sites were located on the mainstem of the Columbia River and on the Snake, Willamette, Yakima, Salmon, and Flathead Rivers. Common carp (Cyprinus carpio), black bass (Micropterus sp.), and largescale sucker (Catostomus macrocheilus) were the targeted species. Fish were field-examined for external and internal lesions, selected organs were weighed to compute somatic indices, and tissue and fluid samples were preserved for fish health and reproductive biomarker analyses. Composite samples of whole fish, grouped by species and gender, from each site were analyzed for organochlorine and elemental contaminants using instrumental methods and for 2,3,7,8-tetrachloro dibenzo-p-dioxin-like activity (TCDD-EQ) using the H4IIE rat hepatoma cell bioassay. Overall, pesticide concentrations were greatest in fish from lower CRB sites and elemental concentrations were greatest in fish from upper CRB sites. These patterns reflected land uses. Lead (Pb) concentrations in fish from the Columbia River at Northport and Grand Coulee, Washington (WA) exceeded fish and wildlife toxicity thresholds (>0.4 microg/g). Selenium (Se) concentrations in fish from the Salmon River at Riggins, Idaho (ID), the Columbia River at Vernita Bridge, WA, and the Yakima River at Granger, WA exceeded toxicity thresholds for piscivorous wildlife (>0.6 microg/g). Mercury (Hg) concentrations in fish were elevated throughout the basin but were greatest (>0.4 microg/g) in predatory fish from the Salmon River at Riggins, ID, the Yakima River at Granger, WA, and the Columbia River at Warrendale, Oregon (OR). Residues of p,p'-DDE were greatest (>0.8 microg/g) in fish from agricultural areas of the Snake, Yakima, and Columbia River basins but were not detected in upper CRB fish. Other organochlorine pesticides did not exceed toxicity thresholds in fish or were detected infrequently. Total polychlorinated biphenyls (PCBs; >0.11 microg/g) and TCDD-EQs (>5 pg/g) exceeded wildlife guidelines in fish from the middle and lower CRB, and ethoxyresorufin O-deethylase (EROD) activity was also elevated at many of the same sites. Temporal trend analysis indicated decreasing or stable concentrations of Pb, Se, Hg, p,p'-DDE, and PCBs at most sites where historical data were available. Altered biomarkers were noted in fish throughout the CRB. Fish from some stations had responded to chronic contaminant exposure as indicated by fish health and reproductive biomarker results. Although most fish from some sites had grossly visible external or internal lesions, histopathological analysis determined these to be inflammatory responses associated with helminth or myxosporidian parasites. Many largescale sucker from the Columbia River at Northport and Grand Coulee, WA had external lesions and enlarged spleens, which were likely associated with infections. Intersex male smallmouth bass (Micropterus dolomieu) were found in the Snake River at Lewiston, ID and the Columbia River at Warrendale, OR. Male bass, carp, and largescale sucker containing low concentrations of vitellogenin were common in the CRB, and comparatively high concentrations (>0.3 mg/mL) were measured in male fish from the Flathead River at Creston, Montana, the Snake River at Ice Harbor Dam, WA, and the Columbia River at Vernita Bridge, WA and Warrendale, OR. Results from our study and other investigations indicate that continued monitoring in the CRB is warranted to identify consistently degraded sites and those with emerging problems.

  18. Identification of Barramundi (Lates calcarifer) DC-SCRIPT, a Specific Molecular Marker for Dendritic Cells in Fish

    PubMed Central

    Zoccola, Emmanuelle; Delamare-Deboutteville, Jérôme; Barnes, Andrew C.

    2015-01-01

    Antigen presentation is a critical step bridging innate immune recognition and specific immune memory. In mammals, the process is orchestrated by dendritic cells (DCs) in the lymphatic system, which initiate clonal proliferation of antigen-specific lymphocytes. However, fish lack a classical lymphatic system and there are currently no cellular markers for DCs in fish, thus antigen-presentation in fish is poorly understood. Recently, antigen-presenting cells similar in structure and function to mammalian DCs were identified in various fish, including rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). The present study aimed to identify a potential molecular marker for DCs in fish and therefore targeted DC-SCRIPT, a well-conserved zinc finger protein that is preferentially expressed in all sub-types of human DCs. Putative dendritic cells were obtained in culture by maturation of spleen and pronephros-derived monocytes. DC-SCRIPT was identified in barramundi by homology using RACE PCR and genome walking. Specific expression of DC-SCRIPT was detected in barramundi cells by Stellaris mRNA FISH, in combination with MHCII expression when exposed to bacterial derived peptidoglycan, suggesting the presence of DCs in L. calcarifer. Moreover, morphological identification was achieved by light microscopy of cytospins prepared from these cultures. The cultured cells were morphologically similar to mammalian and trout DCs. Migration assays determined that these cells have the ability to move towards pathogens and pathogen associated molecular patterns, with a preference for peptidoglycans over lipopolysaccharides. The cells were also strongly phagocytic, engulfing bacteria and rapidly breaking them down. Barramundi DCs induced significant proliferation of responder populations of T-lymphocytes, supporting their role as antigen presenting cells. DC-SCRIPT expression in head kidney was higher 6 and 24 h following intraperitoneal challenge with peptidoglycan and lipopolysaccharide and declined after 3 days relative to PBS-injected controls. Relative expression was also lower in the spleen at 3 days post challenge but increased again at 7 days. As DC-SCRIPT is a constitutively expressed nuclear receptor, independent of immune activation, this may indicate initial migration of immature DCs from head kidney and spleen to the injection site, followed by return to the spleen for maturation and antigen presentation. DC-SCRIPT may be a valuable tool in the investigation of antigen presentation in fish and facilitate optimisation of vaccines and adjuvants for aquaculture. PMID:26173015

  19. Actin Filament Elasticity and Retrograde Flow Shape the Force-Velocity Relation of Motile Cells

    PubMed Central

    Zimmermann, Juliane; Brunner, Claudia; Enculescu, Mihaela; Goegler, Michael; Ehrlicher, Allen; Käs, Josef; Falcke, Martin

    2012-01-01

    Cells migrate through a crowded environment during processes such as metastasis or wound healing, and must generate and withstand substantial forces. The cellular motility responses to environmental forces are represented by their force-velocity relation, which has been measured for fish keratocytes but remains unexplained. Even pN opposing forces slow down lamellipodium motion by three orders of magnitude. At larger opposing forces, the retrograde flow of the actin network accelerates until it compensates for polymerization, and cell motion stalls. Subsequently, the lamellipodium adapts to the stalled state. We present a mechanism quantitatively explaining the cell's force-velocity relation and its changes upon application of drugs that hinder actin polymerization or actomyosin-based contractility. Elastic properties of filaments, close to the lamellipodium leading edge, and retrograde flow shape the force-velocity relation. To our knowledge, our results shed new light on how these migratory responses are regulated, and on the mechanics and structure of the lamellipodium. PMID:22339865

  20. Fish SAMHD1 performs as an activator for IFN expression.

    PubMed

    Li, Meifeng; Xu, Xiaowen; Jiang, Zeyin; Liu, Changxin; Shi, Xiao; Qi, Guoqin; Li, Yinping; Chen, Xin; Huang, Qingli; Mao, Huiling; Hu, Chengyu

    2018-09-01

    As a host limiting factor, Sterile Alpha Motif and Histidine-Aspartate Domain 1 protein (SAMHD1) is associated with IRF3-mediated antiviral and apoptotic responses in mammals. However, the antiviral mechanism of SAMHD1 remains indistinct in fish. In this study, we found the expression of Ctenopharyngodon idella SAMHD1 (MF326081) was up-regulated after transfection with poly I:C (dsRNA analog), B-DNA or Z-DNA into C. idella kidney cells (CIKs), but these expression profiles had no obvious change when the cells were incubated with these nucleic acids. These data may indicate that CiSAMHD1 participates in the intracellular PRR-mediated signaling pathway rather than extracellular PRR-mediated signaling pathway. Subcellular localization assay suggested that a part of over-expressed CiSAMHD1 were translocated from nuclear to cytoplasm when C. idella ovary cells (COs) were transfected with poly I:C, B-DNA or Z-DNA. Nucleic acid pulldown assays were performed to investigate the reason for nuclear-cytoplasm translocation of CiSAMHD1. The results showed that CiSAMHD1 had a high affinity with B-DNA, Z-DNA and ISD-PS (dsRNA analog). In addition, co-IP assays revealed the interaction of CiSAMHD1 with CiSTING (KF494194). Taken together, all these results suggest that grass carp SAMHD1 performs as an activator for innate immune response through STING-mediated signaling pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Ectopic expression of Msx2 in mammalian myotubes recapitulates aspects of amphibian muscle dedifferentiation.

    PubMed

    Yilmaz, Atilgan; Engeler, Rachel; Constantinescu, Simona; Kokkaliaris, Konstantinos D; Dimitrakopoulos, Christos; Schroeder, Timm; Beerenwinkel, Niko; Paro, Renato

    2015-11-01

    In contrast to urodele amphibians and teleost fish, mammals lack the regenerative responses to replace large body parts. Amphibian and fish regeneration uses dedifferentiation, i.e., reversal of differentiated state, as a means to produce progenitor cells to eventually replace damaged tissues. Therefore, induced activation of dedifferentiation responses in mammalian tissues holds an immense promise for regenerative medicine. Here we demonstrate that ectopic expression of Msx2 in cultured mouse myotubes recapitulates several aspects of amphibian muscle dedifferentiation. We found that MSX2, but not MSX1, leads to cellularization of myotubes and downregulates the expression of myotube markers, such as MHC, MRF4 and myogenin. RNA sequencing of myotubes ectopically expressing Msx2 showed downregulation of over 500 myotube-enriched transcripts and upregulation of over 300 myoblast-enriched transcripts. MSX2 selectively downregulated expression of Ptgs2 and Ptger4, two members of the prostaglandin pathway with important roles in myoblast fusion during muscle differentiation. Ectopic expression of Msx2, as well as Msx1, induced partial cell cycle re-entry of myotubes by upregulating CyclinD1 expression but failed to initiate S-phase. Finally, MSX2-induced dedifferentiation in mouse myotubes could be recapitulated by a pharmacological treatment with trichostatin A (TSA), bone morphogenetic protein 4 (BMP4) and fibroblast growth factor 1 (FGF1). Together, these observations indicate that MSX2 is a major driver of dedifferentiation in mammalian muscle cells. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. The effect of strenuous exercise and beta-adrenergic blockade on the visual performance of juvenile rainbow trout, Oncorhynchus mykiss.

    PubMed

    Herbert, N A; Wells, R M G

    2002-12-01

    It is hypothesised that the visual performance of rainbow trout, Oncorhynchus mykiss, will be impaired by strenuous exercise as a result of metabolic stress (blood lactacidosis) that activates the Root effect and limits the oxygen-carrying capacity of blood flowing to the eye. The ability to resolve high contrast objects on a moving background, as a measure of visual performance, was quantified pre- and post-exercise using the optomotor response. Strenuous exercise induced a metabolic acidosis (8.0 mmol l(-1) blood lactate) and a significant red cell swelling response but no change in the optomotor response threshold (120 min of arc) was observed. Beta-adrenergic blockade (propranolol) abolished post-exercise red cell swelling but optomotor response thresholds were still maintained at 120 min of arc despite a significant blood lactate load (7.8 mmol l(-1)). The choroid rete mirabile of the trout is extremely well developed (rete area:eye area = 0.39) and may maintain visual performance by ensuring a relatively direct supply of oxygen to the central regions of the avascular retina. Exercised fish under beta-adrenergic blockade exhibited an enhanced optomotor response at 240-300 min of arc. Assuming that these responses reflect "tunnel vision", adrenergic regulation of red cell function may preserve a high ocular PO(2) gradient that satisfies the oxygen demand of peripheral retinal cells.

  3. The mechanism of color change in the neon tetra fish: a light-induced tunable photonic crystal array.

    PubMed

    Gur, Dvir; Palmer, Benjamin A; Leshem, Ben; Oron, Dan; Fratzl, Peter; Weiner, Steve; Addadi, Lia

    2015-10-12

    The fresh water fish neon tetra has the ability to change the structural color of its lateral stripe in response to a change in the light conditions, from blue-green in the light-adapted state to indigo in the dark-adapted state. The colors are produced by constructive interference of light reflected from stacks of intracellular guanine crystals, forming tunable photonic crystal arrays. We have used micro X-ray diffraction to track in time distinct diffraction spots corresponding to individual crystal arrays within a single cell during the color change. We demonstrate that reversible variations in crystal tilt within individual arrays are responsible for the light-induced color variations. These results settle a long-standing debate between the two proposed models, the "Venetian blinds" model and the "accordion" model. The insight gained from this biogenic light-induced photonic tunable system may provide inspiration for the design of artificial optical tunable systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Mucosal immunoglobulins at respiratory surfaces mark an ancient association that predates the emergence of tetrapods

    PubMed Central

    Xu, Zhen; Takizawa, Fumio; Parra, David; Gómez, Daniela; von Gersdorff Jørgensen, Louise; LaPatra, Scott E.; Sunyer, J. Oriol

    2016-01-01

    Gas-exchange structures are critical for acquiring oxygen, but they also represent portals for pathogen entry. Local mucosal immunoglobulin responses against pathogens in specialized respiratory organs have only been described in tetrapods. Since fish gills are considered a mucosal surface, we hypothesized that a dedicated mucosal immunoglobulin response would be generated within its mucosa on microbial exposure. Supporting this hypothesis, here we demonstrate that following pathogen exposure, IgT+ B cells proliferate and generate pathogen-specific IgT within the gills of fish, thus providing the first example of locally induced immunoglobulin in the mucosa of a cold-blooded species. Moreover, we demonstrate that gill microbiota is predominantly coated with IgT, thus providing previously unappreciated evidence that the microbiota present at a respiratory surface of a vertebrate is recognized by a mucosal immunoglobulin. Our findings indicate that respiratory surfaces and mucosal immunoglobulins are part of an ancient association that predates the emergence of tetrapods. PMID:26869478

  5. Fish DNA vaccine against infectious hematopoietic necrosis virus: efficacy of various routes of immunization

    USGS Publications Warehouse

    Corbeil, Serge; Kurath, Gael; LaPatra, Scott E.

    2000-01-01

    The DNA vaccine, pIHNVw-G, contains the gene for the glycoprotein (G) of the rhabdovirus infectious hematopoietic necrosis virus (IHNV), a major pathogen of salmon and trout. The relative efficacy of various routes of immunisation with pIHNVw-G was evaluated using 1.8 g rainbow trout fry vaccinated via intramuscular injection, scarification of the skin, intraperitoneal injection, intrabuccal administration, cutaneous particle bombardment using a gene gun, or immersion in water containing DNA vaccine-coated beads. Twenty-seven days after vaccination neutralising antibody titres were determined, and 2 days later groups of vaccinated and control unvaccinated fish were subjected to an IHNV immersion challenge. Results of the virus challenge showed that the intramuscular injection and the gene gun immunisation induced protective immunity in fry, while intraperitoneal injection provided partial protection. Neutralising antibodies were not detected in sera of vaccinated fish regardless of the route of immunisation used, suggesting that cell mediated immunity may be at least partially responsible for the observed protection.

  6. RNA expression in a cartilaginous fish cell line reveals ancient 3′ noncoding regions highly conserved in vertebrates

    PubMed Central

    Forest, David; Nishikawa, Ryuhei; Kobayashi, Hiroshi; Parton, Angela; Bayne, Christopher J.; Barnes, David W.

    2007-01-01

    We have established a cartilaginous fish cell line [Squalus acanthias embryo cell line (SAE)], a mesenchymal stem cell line derived from the embryo of an elasmobranch, the spiny dogfish shark S. acanthias. Elasmobranchs (sharks and rays) first appeared >400 million years ago, and existing species provide useful models for comparative vertebrate cell biology, physiology, and genomics. Comparative vertebrate genomics among evolutionarily distant organisms can provide sequence conservation information that facilitates identification of critical coding and noncoding regions. Although these genomic analyses are informative, experimental verification of functions of genomic sequences depends heavily on cell culture approaches. Using ESTs defining mRNAs derived from the SAE cell line, we identified lengthy and highly conserved gene-specific nucleotide sequences in the noncoding 3′ UTRs of eight genes involved in the regulation of cell growth and proliferation. Conserved noncoding 3′ mRNA regions detected by using the shark nucleotide sequences as a starting point were found in a range of other vertebrate orders, including bony fish, birds, amphibians, and mammals. Nucleotide identity of shark and human in these regions was remarkably well conserved. Our results indicate that highly conserved gene sequences dating from the appearance of jawed vertebrates and representing potential cis-regulatory elements can be identified through the use of cartilaginous fish as a baseline. Because the expression of genes in the SAE cell line was prerequisite for their identification, this cartilaginous fish culture system also provides a physiologically valid tool to test functional hypotheses on the role of these ancient conserved sequences in comparative cell biology. PMID:17227856

  7. A Robotic Fish to Emulate the Fast-Start

    NASA Astrophysics Data System (ADS)

    Currier, Todd; Ma, Ganzhong; Modarres-Sadeghi, Yahya

    2017-11-01

    An experimental study is conducted on a robotic fish designed to emulate the fast-start response. The fish body is constructed of 3D printed ribs and a light spring steel spine. The body is actuated using a series of pressured pistons. A total of four pistons are supplied with pressure through lightweight high pressure service lines. The source of pressure is carbon dioxide with a 700 psi peak operating pressure resulting in a body response that can cycle a c-start maneuver in milliseconds. The motion of the fish is precisely controlled through the use of solenoids with a control signal produced by a programmable microprocessor. The fish is constrained in all translational degrees of freedom but allowed to rotate about a vertical axis. The influence of the point of rotation is studied with different mounting points along the length of the head of the fish. The forces are measured in two perpendicular in-plane directions. A high speed camera is used to capture the response of the fish and the corresponding flow around it. Comparison is made with the kinematics observed in live fish.

  8. Tissue engineering of fish skin: behavior of fish cells on poly(ethylene glycol terephthalate)/poly(butylene terephthalate) copolymers in relation to the composition of the polymer substrate as an initial step in constructing a robotic/living tissue hybrid.

    PubMed

    Pouliot, Roxane; Azhari, Rosa; Qanadilo, Hala F; Mahmood, Tahir A; Triantafyllou, Michael S; Langer, Robert

    2004-01-01

    This study presents the development of a biosynthetic fish skin to be used on aquatic robots that can emulate fish. Smoothness of the external surface is desired in improving high propulsive efficiency and maneuvering agility of autonomous underwater vehicles such as the RoboTuna (Triantafyllou, M., and Triantafyllou, G. Sci. Am. 272, 64, 1995). An initial step was to determine the seeding density and select a polymer for the scaffolds. The attachment and proliferation of chinook salmon embryo (CHSE-214) and brown bullhead (BB) cells were studied on different compositions of a poly(ethylene glycol terephthalate) (PEGT) and poly(butylene terephthalate) (PBT) copolymer (Polyactive). Polymer films were used, cast of three different compositions of PEGT/PBT (weight ratios of 55/45, 60/40, and 70/30) and two different molecular masses of PEGT (300 and 1000 Da). When a 55 wt% and a 300-Da molecular mass form of PEGT was used, maximum attachment and proliferation of CHSE-214 and BB cells were achieved. Histological studies and immunostaining indicate the presence of collagen and cytokeratins in the extracellular matrix formed after 14 days of culture. Porous scaffolds of PEGT/PBT copolymers were also used for three-dimensional tissue engineering of fish skin, using BB cells. Overall, our results indicate that fish cells can attach, proliferate, and express fish skin components on dense and porous Polyactive scaffolds.

  9. Effects of fish density and river fertilization on algal standing stocks, invertebrates communities, and fish production in an Arctic River

    USGS Publications Warehouse

    Deegan, Linda A.; Peterson, B.J.; Golden, H.; McIvor, C.C.; Miller, M.C.

    1997-01-01

    This study examined the relative importance of bottom-up and top-down controls of an arctic stream food web by simultaneous manipulation of the top predator and nutrient availability. We created a two-step trophic system (algae to insects) by removal of the top predator (Arctic grayling, Thymallus arcticus) in fertilized and control stream reaches. Fish abundance was also increased 10 times to examine the effect of high fish density on stream ecosystem dynamics and fish. We measured the response of epilithic algae, benthic and drifting insects, and fish to nutrient enrichment and to changes in fish density. Insect grazers had little effect on algae and fish had little effect on insects. In both the control and fertilized reaches, fish growth, energy storage, and reproductive response of females declined with increased fish density. Fish growth and energy storage were more closely correlated with per capita insect availability than with per capita algal standing stock

  10. 50 CFR 86.91 - What are my program crediting responsibilities?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE AND SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG) PROGRAM State Use of Signs and Sport Fish Restoration Symbols § 86.91 What are my program crediting responsibilities? You should give public credit to the Federal Aid in Sport Fish...

  11. 50 CFR 86.91 - What are my program crediting responsibilities?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... THE INTERIOR (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE AND SPORT FISH RESTORATION PROGRAM BOATING INFRASTRUCTURE GRANT (BIG) PROGRAM State Use of Signs and Sport Fish Restoration Symbols § 86.91 What are my program crediting responsibilities? You should give public credit to the Federal Aid in Sport Fish...

  12. Immune responses of channel catfish against parasite Ichthyophthirius multifiliis following theront vaccination

    USDA-ARS?s Scientific Manuscript database

    Ichthyophthirius multifiliis (Ich) is a severe fish parasite and results in heavy losses of freshwater fish. The fish surviving natural infections or vaccinated with live theronts develop strong immune responses. Little is known about how immune genes are induced or how they interact and lead to spe...

  13. Simulating Fish Assemblages in Riverine Networks: Response to Habitat in the Willamette Watershed

    EPA Science Inventory

    We describe a modeling approach for simulating assemblages of fish in riverine landscapes. The approach allows a user to determine the scale and extent of river networks within which fish populations reproduce, move, and survive in response to both environmental drivers and assem...

  14. Differential gene expression in small and large rainbow trout derived from two seasonal spawning groups

    PubMed Central

    2014-01-01

    Background Growth in fishes is regulated via many environmental and physiological factors and is shaped by the genetic background of each individual. Previous microarray studies of salmonid growth have examined fish experiencing either muscle wastage or accelerated growth patterns following refeeding, or the influence of growth hormone and transgenesis. This study determines the gene expression profiles of genetically unmanipulated large and small fish from a domesticated salmonid strain reared on a typical feeding regime. Gene expression profiles of white muscle and liver from rainbow trout (Oncorhynchus mykiss) from two seasonal spawning groups (September and December lots) within a single strain were examined when the fish were 15 months of age to assess the influence of season (late fall vs. onset of spring) and body size (large vs. small). Results Although IGFBP1 gene expression was up-regulated in the livers of small fish in both seasonal lots, few expression differences were detected in the liver overall. Faster growing Dec. fish showed a greater number of differences in white muscle expression compared to Sept. fish. Significant differences in the GO Generic Level 3 categories ‘response to external stimulus’, ‘establishment of localization’, and ‘response to stress’ were detected in white muscle tissue between large and small fish. Larger fish showed up-regulation of cytoskeletal component genes while many genes related to myofibril components of muscle tissue were up-regulated in small fish. Most of the genes up-regulated in large fish within the ‘response to stress’ category are involved in immunity while in small fish most of these gene functions are related to apoptosis. Conclusions A higher proportion of genes in white muscle compared to liver showed similar patterns of up- or down-regulation within the same size class across seasons supporting their utility as biomarkers for growth in rainbow trout. Differences between large and small Sept. fish in the ‘response to stress’ and ‘response to external stimulus’ categories for white muscle tissue, suggests that smaller fish have a greater inability to handle stress compared to the large fish. Sampling season had a significant impact on the expression of genes related to the growth process in rainbow trout. PMID:24450799

  15. Swimming behavior of larval Medaka fish under microgravity

    NASA Astrophysics Data System (ADS)

    Furukawa, R.; Ijiri, K.

    Fish exhibit looping and rolling behaviors when subjected to short periods of microgravity during parabolic flight. Strain-differences in the behavioral response of adult Medaka fish ( Oryzias latipes) were reported previously, however, there have been few studies of larval fish behavior under microgravity. In the present study, we investigated whether microgravity affects the swimming behavior of larvae at various ages (0 to 20 days after hatching), using different strains: HNI-II, HO5, ha strain, and variety of different strains (variety). The preliminary experiments were done in the ground laboratory: the development of eyesight was examined using optokinetic response for the different strains. The visual acuity of larvae improved drastically during 20 days after hatching. Strain differences of response were noted for the development of their visual acuity. In microgravity, the results were significantly different from those of adult Medaka. The larval fish appeared to maintain their orientation, except that a few of them exhibited looping and rolling behavior. Further, most larvae swam normally with their backs turning toward the light source (dorsal light response, DLR), and the rest of them stayed with their abdomen touching the surface of the container (ventral substrate response, VSR). For larval stages, strain-differences and age-differences in behavior were observed, but less pronounced than with adult fish under microgravity. Our observations suggest that adaptability of larval fish to the gravitational change and the mechanism of their postural control in microgravity are more variable than in adult fish.

  16. Effects of chronic exposure to soft, acidic water on gill development and chloride cell numbers in embryo-larval brook trout, Salvelinus fontinalis

    USGS Publications Warehouse

    Conklin, D.J.; Mowbray, R.C.; Gingerich, W.H.

    1992-01-01

    Recruitment failure is considered to be a major factor contributing to the decline of fish populations in soft, acidic waters; direct mortality of embryo-larval fishes has been postulated as a major cause of the decline. Little is understood of the physiological consequences to embryo-larval fishes of prolonged exposure to soft, acidic waters; however, dysfunction of respiratory and ionoregulatory processes is suspected. In order to evaluate the effects of acid exposure on the respiratory and ionoregulatory systems of developing brook trout, Salvelinus fontinalis, differences in gill morphology and numbers of chloride cells were compared between groups cf developing embryo-larval fish continuously exposed to moderately hard well water (130.0 mg.l-1 as CaCO3, pH 7.94) or to reconstituted soft, acidic water (4.4 mg.l-1 as CaCO3, pH 5.25) designed to mimic acidic waters of northern Wisconsin acidified lakes. Exposures were maintained for up to 48 days (82 days after fertilization) during critical periods of growth and differentiation of branchial structures. The second right gill arch of each fish was examined for changes in the development of filaments and lamellae and for differences in numbers of chloride cells. Gills of fish that developed in soft, acidic water contained greater numbers of normal and degenerating chloride cells, exhibited hyperplasia of primary epithelium and multiple fusions of adjacent filaments and lamellar epithelium than the gills of control fish. Filament and lamellar lengths and numbers of lamellae per filament were significantly less (P< 0.05) in fish that developed in soft, acidic water than in fish exposed to well water.

  17. Transposon-mediated generation of BCR-ABL1-expressing transgenic cell lines for unbiased sensitivity testing of tyrosine kinase inhibitors

    PubMed Central

    Berkowitsch, Bettina; Koenig, Margit; Haas, Oskar A.; Hoermann, Gregor; Valent, Peter; Lion, Thomas

    2016-01-01

    Point mutations in the ABL1 kinase domain are an important mechanism of resistance to tyrosine kinase inhibitors (TKI) in BCR-ABL1-positive and, as recently shown, BCR-ABL1-like leukemias. The cell line Ba/F3 lentivirally transduced with mutant BCR-ABL1 constructs is widely used for in vitro sensitivity testing and response prediction to tyrosine kinase inhibitors. The transposon-based Sleeping Beauty system presented offers several advantages over lentiviral transduction including the absence of biosafety issues, faster generation of transgenic cell lines, and greater efficacy in introducing large gene constructs. Nevertheless, both methods can mediate multiple insertions in the genome. Here we show that multiple BCR-ABL1 insertions result in elevated IC50 levels for individual TKIs, thus overestimating the actual resistance of mutant subclones. We have therefore established flow-sorting-based fractionation of BCR-ABL1-transformed Ba/F3 cells facilitating efficient enrichment of cells carrying single-site insertions, as demonstrated by FISH-analysis. Fractions of unselected Ba/F3 cells not only showed a greater number of BCR-ABL1 hybridization signals, but also revealed higher IC50 values for the TKIs tested. The data presented highlight the need to carefully select transfected cells by flow-sorting, and to control the insertion numbers by FISH and real-time PCR to permit unbiased in vitro testing of drug resistance. PMID:27801667

  18. A physiological perspective on fisheries-induced evolution.

    PubMed

    Hollins, Jack; Thambithurai, Davide; Koeck, Barbara; Crespel, Amelie; Bailey, David M; Cooke, Steven J; Lindström, Jan; Parsons, Kevin J; Killen, Shaun S

    2018-06-01

    There is increasing evidence that intense fishing pressure is not only depleting fish stocks but also causing evolutionary changes to fish populations. In particular, body size and fecundity in wild fish populations may be altered in response to the high and often size-selective mortality exerted by fisheries. While these effects can have serious consequences for the viability of fish populations, there are also a range of traits not directly related to body size which could also affect susceptibility to capture by fishing gears-and therefore fisheries-induced evolution (FIE)-but which have to date been ignored. For example, overlooked within the context of FIE is the likelihood that variation in physiological traits could make some individuals within species more vulnerable to capture. Specifically, traits related to energy balance (e.g., metabolic rate), swimming performance (e.g., aerobic scope), neuroendocrinology (e.g., stress responsiveness) and sensory physiology (e.g., visual acuity) are especially likely to influence vulnerability to capture through a variety of mechanisms. Selection on these traits could produce major shifts in the physiological traits within populations in response to fishing pressure that are yet to be considered but which could influence population resource requirements, resilience, species' distributions and responses to environmental change.

  19. Sensory hair cell death and regeneration in fishes

    PubMed Central

    Monroe, Jerry D.; Rajadinakaran, Gopinath; Smith, Michael E.

    2015-01-01

    Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation vs. direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies. PMID:25954154

  20. Embryonic-only arsenic exposure alters skeletal muscle satellite cell function in killifish (Fundulus heteroclitus).

    PubMed

    Szymkowicz, Dana B; Schwendinger, Katey L; Tatnall, Caroline M; Swetenburg, John R; Bain, Lisa J

    2018-05-01

    Arsenic is a contaminant found worldwide in drinking water and food. Epidemiological studies have correlated arsenic exposure with reduced weight gain and improper muscular development, while in vitro studies show that arsenic exposure impairs myogenic differentiation. The purpose of this study was to use Fundulus heteroclitus or killifish as a model organism to determine if embryonic-only arsenic exposure permanently reduces the number or function of muscle satellite cells. Killifish embryos were exposed to 0, 50, 200, or 800 ppb arsenite (As III ) until hatching, and then juvenile fish were raised in clean water. At 28, 40, and 52 weeks after hatching, skeletal muscle injuries were induced by injecting cardiotoxin into the trunk of the fish just posterior to the dorsal fin. Muscle sections were collected at 0, 3 and 10 days post-injury. Collagen levels were used to assess muscle tissue damage and recovery, while levels of proliferating cell nuclear antigen (PCNA) and myogenin were quantified to compare proliferating cells and newly formed myoblasts. At 28 weeks of age, baseline collagen levels were 105% and 112% greater in 200 and 800 ppb groups, respectively, and at 52 weeks of age, were 58% higher than controls in the 200 ppb fish. After cardiotoxin injury, collagen levels tend to increase to a greater extent and take longer to resolve in the arsenic exposed fish. The number of baseline PCNA(+) cells were 48-216% greater in 800 ppb exposed fish compared to controls, depending on the week examined. However, following cardiotoxin injury, PCNA is reduced at 28 weeks in 200 and 800 ppb fish at day 3 during the recovery period. By 52 weeks, there are significant reductions in PCNA in all exposure groups at day 3 of the recovery period. Based on these results, embryonic arsenic exposure increases baseline collagen levels and PCNA(+) cells in skeletal muscle. However, when these fish are challenged with a muscle injury, the proliferation and differentiation of satellite cells into myogenic precursors is impaired and instead, the fish appear to be favoring a fibrotic resolution to the injury. Copyright © 2018 Elsevier B.V. All rights reserved.

Top