Investigating the link between fish community structure and environmental state in deep-time
NASA Astrophysics Data System (ADS)
Sibert, E. C.
2017-12-01
In the modern ocean, a bottom-up ecological viewpoint posits that the composition of plankton communities is often a function of ambient oceanographic conditions, including nutrient concentrations and water temperature. Thus, certain plankton species or communities can be associated with specific oceanographic conditions, giving them potential as carriers of paleoceanographic information. Furthermore, consumer groups, such as fish, depend on the structure and composition of these plankton, and therefore different plankton communities will support different types of fish. In addition, fish have their own physiological constraints for surviving in particular environments, such as oxygen demand, and metabolic rate, causing certain clades to be selectively associated with different water mass characteristics. Thus, the relative or absolute abundances of different fish species or groups could shed light on shifting oxygen concentrations, temperature, or primary productivity in the past. To assess whether fish communities have sufficient environmental control to provide paleoceanographic insights, I use a variety of morphological, phylogenetic, and ecological statistical approaches, to correlate modern fish communities from around the world with environmental variables. I then apply these principles to a series of ichthyolith assemblages from the Cretaceous and Cenozoic, across both space and time, to assess whether fish community composition, abundance, or other characteristics can be predictive of ocean temperature or export productivity. I find that while the abundance of fish fossils in deep-sea cores is often, though not always, correlated with certain export production and temperature proxies, community composition appears to vary independently of these variables on long timescales, driven more by evolutionary processes. However, there are distinct differences in contemporary communities in different locations, suggesting that there is potential in using fish community composition in well-constrained systems. Furthermore, when fish community structure or abundance diverges from the expected state, this may provide significant insight into the structure and functioning of marine ecosystems.
Rinchard, Jacques; Kimmel, David G.
2017-01-01
The variability in zooplankton fatty acid composition may be an indicator of larval fish habitat quality as fatty acids are linked to fish larval growth and survival. We sampled an anadromous fish nursery, the Chowan River, during spring of 2013 in order to determine how the seston fatty acid composition varied in comparison with the zooplankton community composition and fatty acid composition during the period of anadromous larval fish residency. The seston fatty acid profiles showed no distinct pattern in relation to sampling time or location. The mesozooplankton community composition varied spatially and the fatty acid profiles were typical of freshwater species in April. The Chowan River experienced a saltwater intrusion event during May, which resulted in brackish water species dominating the zooplankton community and the fatty acid profile showed an increase in polyunsaturated fatty acids (PUFA), in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The saltwater intrusion event was followed by an influx of freshwater due to high precipitation levels in June. The zooplankton community composition once again became dominated by freshwater species and the fatty acid profiles shifted to reflect this change; however, EPA levels remained high, particularly in the lower river. We found correlations between the seston, microzooplankton and mesozooplankton fatty acid compositions. Salinity was the main factor correlated to the observed pattern in species composition, and fatty acid changes in the mesozooplankton. These data suggest that anadromous fish nursery habitat likely experiences considerable spatial variability in fatty acid profiles of zooplankton prey and that are correlated to seston community composition and hydrodynamic changes. Our results also suggest that sufficient prey density as well as a diverse fatty acid composition is present in the Chowan River to support larval fish production. PMID:28828262
Evidence of a Shift in the Littoral Fish Community of the Sacramento-San Joaquin Delta
Farruggia, Mary Jade; Schreier, Brian; Sommer, Ted
2017-01-01
Many estuarine and freshwater ecosystems worldwide have undergone substantial changes due to multiple anthropogenic stressors. Over the past two decades, the Sacramento-San Joaquin Delta (Delta) in California, USA, saw a severe decline in pelagic fishes, a shift in zooplankton community composition, and a rapid expansion of invasive aquatic vegetation. To evaluate whether major changes have also occurred in the littoral fish community, we analyzed a beach seine survey dataset collected from 1995 to 2015 from 26 sites within the Delta. We examined changes in the Delta fish community at three different ecological scales (species, community, and biomass), using clustering analyses, trend tests, and change-point analyses. We found that the annual catch per effort for many introduced species and some native species have increased since 1995, while few experienced a decline. We also observed a steady pattern of change over time in annual fish community composition, driven primarily by a steady increase in non-native Centrarchid species. Lastly, we found that littoral fish biomass has essentially doubled over the 21-year study period, with Mississippi Silverside Menidia audens and fishes in the Centrarchidae family driving most of this increase. The changes in the catch per effort, fish community composition, and biomass per volume indicate that a shift has occurred in the Delta littoral fish community and that the same factors affecting the Delta’s pelagic food web may have been a key driver of change. PMID:28118393
The Skin-Mucus Microbial Community of Farmed Atlantic Salmon (Salmo salar)
Minniti, Giusi; Hagen, Live Heldal; Porcellato, Davide; Jørgensen, Sven Martin; Pope, Phillip B.; Vaaje-Kolstad, Gustav
2017-01-01
The skin of the teleost is a flexible and scaled structure that protects the fish toward the external environment. The outermost surface of the skin is coated with mucus, which is believed to be colonized by a diverse bacterial community (commensal and/or opportunistic). Little is known about such communities and their role in fish welfare. In aquaculture, fish seem to be more susceptible to pathogens compared to wild fish. Indeed common fish farming practices may play important roles in promoting their vulnerability, possibly by causing changes to their microbiomes. In the present study, 16S rRNA gene amplicon sequencing was employed to analyze the composition of the farmed Salmo salar skin-mucus microbiome before and after netting and transfer. The composition of the bacterial community present in the rearing water was also investigated in order to evaluate its correlation with the community present on the fish skin. Our results reveal variability of the skin-mucus microbiome among the biological replicates before fish handling. On the contrary, after fish handling, the skin-mucus community exhibited structural similarity among the biological replicates and significant changes were observed in the bacterial composition compared to the fish analyzed prior to netting and transfer. Limited correlation was revealed between the skin-mucus microbiome and the bacterial community present in the rearing water. Finally, analysis of skin-mucus bacterial biomasses indicated low abundance for some samples, highlighting the need of caution when interpreting community data due to the possible contamination of water-residing bacteria. PMID:29104567
Evidence of a Shift in the Littoral Fish Community of the Sacramento-San Joaquin Delta.
Mahardja, Brian; Farruggia, Mary Jade; Schreier, Brian; Sommer, Ted
2017-01-01
Many estuarine and freshwater ecosystems worldwide have undergone substantial changes due to multiple anthropogenic stressors. Over the past two decades, the Sacramento-San Joaquin Delta (Delta) in California, USA, saw a severe decline in pelagic fishes, a shift in zooplankton community composition, and a rapid expansion of invasive aquatic vegetation. To evaluate whether major changes have also occurred in the littoral fish community, we analyzed a beach seine survey dataset collected from 1995 to 2015 from 26 sites within the Delta. We examined changes in the Delta fish community at three different ecological scales (species, community, and biomass), using clustering analyses, trend tests, and change-point analyses. We found that the annual catch per effort for many introduced species and some native species have increased since 1995, while few experienced a decline. We also observed a steady pattern of change over time in annual fish community composition, driven primarily by a steady increase in non-native Centrarchid species. Lastly, we found that littoral fish biomass has essentially doubled over the 21-year study period, with Mississippi Silverside Menidia audens and fishes in the Centrarchidae family driving most of this increase. The changes in the catch per effort, fish community composition, and biomass per volume indicate that a shift has occurred in the Delta littoral fish community and that the same factors affecting the Delta's pelagic food web may have been a key driver of change.
Yule, Daniel L.; Adams, Jean V.; Warner, David M.; Hrabik, Thomas R.; Kocovsky, Patrick M.; Weidel, Brian C.; Rudstam, Lars G.; Sullivan, Patrick J.
2013-01-01
Pelagic fish assessments often combine large amounts of acoustic-based fish density data and limited midwater trawl information to estimate species-specific biomass density. We compared the accuracy of five apportionment methods for estimating pelagic fish biomass density using simulated communities with known fish numbers that mimic Lakes Superior, Michigan, and Ontario, representing a range of fish community complexities. Across all apportionment methods, the error in the estimated biomass generally declined with increasing effort, but methods that accounted for community composition changes with water column depth performed best. Correlations between trawl catch and the true species composition were highest when more fish were caught, highlighting the benefits of targeted trawling in locations of high fish density. Pelagic fish surveys should incorporate geographic and water column depth stratification in the survey design, use apportionment methods that account for species-specific depth differences, target midwater trawling effort in areas of high fish density, and include at least 15 midwater trawls. With relatively basic biological information, simulations of fish communities and sampling programs can optimize effort allocation and reduce error in biomass estimates.
Talmage, Philip J.; Lee, Kathy E.; Goldstein, Robert M.; Anderson, Jesse P.; Fallon, James D.
1999-01-01
Water quality, physical habitat, and fish-community composition were characterized at 13 Twin Cities metropolitan area streams during low-flow conditions, September 1997. Fish communities were resampled during September 1998. Sites were selected based on a range of human population density. Nutrient concentrations were generally low, rarely exceeding concentrations found in agricultural streams or water-quality criteria. Seventeen pesticides and five pesticide metabolites were detected, with atrazine being the only pesticide detected at all 13 streams. Colony counts of fecal coliform bacteria ranged from 54 to greater than 11,000 colonies per 100 mL. Instream fish habitat was sparse with little woody debris and few boulders, cobble, or other suitable fish habitat. Thirty-eight species and one hybrid from 10 families were collected. Fish communities were characterized by high percentages of omnivores and tolerant species with few intolerant species. Index of Biotic Integrity scores were low, with most streams rating fair to very poor. Percent impervious surface was positively correlated with sodium and chloride concentrations and human population density, but was negatively correlated with fish species richness and diversity. Urban land use and human population density influence fish communities and water quality in Twin Cities metropolitan area streams. Other factors that may influence fish community composition include percent impervious cover, water chemistry, water temperature, geomorphology, substrate, instream habitat, and migration barriers.
Sullam, Karen E.; Essinger, Steven D.; Lozupone, Catherine A.; O’Connor, Michael P.; Rosen, Gail L.; Knight, Rob; Kilham, Susan S.; Russell, Jacob A.
2013-01-01
Symbiotic bacteria often help their hosts acquire nutrients from their diet, showing trends of co-evolution and independent acquisition by hosts from the same trophic levels. While these trends hint at important roles for biotic factors, the effects of the abiotic environment on symbiotic community composition remain comparably understudied. In this investigation, we examined the influence of abiotic and biotic factors on the gut bacterial communities of fish from different taxa, trophic levels and habitats. Phylogenetic and statistical analyses of 25 16S rRNA libraries revealed that salinity, trophic level and possibly host phylogeny shape the composition of fish gut bacteria. When analysed alongside bacterial communities from other environments, fish gut communities typically clustered with gut communities from mammals and insects. Similar consideration of individual phylotypes (vs. communities) revealed evolutionary ties between fish gut microbes and symbionts of animals, as many of the bacteria from the guts of herbivorous fish were closely related to those from mammals. Our results indicate that fish harbour more specialized gut communities than previously recognized. They also highlight a trend of convergent acquisition of similar bacterial communities by fish and mammals, raising the possibility that fish were the first to evolve symbioses resembling those found among extant gut fermenting mammals. PMID:22486918
González-Sansón, Gaspar; Aguilar, Consuelo; Hernández, Ivet; Cabrera, Yureidy; Suarez-Montes, Noelis; Bretos, Fernando; Guggenheim, David
2009-09-01
The main goal of the study was to obtain field data to build a baseline of fish assemblage composition that can be used comparatively for future analyses of the impact of human actions in the region. A basic network of 68 sampling stations was defined for the entire region (4,050 km2). Fish assemblage species and size composition was estimated using visual census methods at three different spatial scales: a) entire region, b) inside the main reef area and c) along a human impact coastal gradient. Multivariate numerical analyses revealed habitat type as the main factor inducing spatial variability of fish community composition, while the level of human impact appears to play the main role in fish assemblage composition changes along the coast. A trend of decreasing fish size toward the east supports the theory of more severe human impact due to overfishing and higher urban pollution in that direction. This is the first detailed study along the northwest coast of Cuba that focuses on fish community structure and the natural and human-induced variations at different spatial scales for the entire NW shelf. This research also provides input for a more comprehensive understanding of coastal marine fish communities' status in the Gulf of Mexico basin.
[Rapid ecological assessment of tropical fish communities in a gold mine area of Costa Rica].
Espinoza Mendiola, Mario
2008-12-01
Gold mining impacts have generated a great concern regarding aquatic systems and habitat fragmentation. Anthropogenic disturbances on the structure and heterogeneity of a system can have an important effect on aquatic community stability. Ecological rapid assessments (1996, 2002, and 2007) were employed to determine the structure, composition and distribution of tropical fish communities in several rivers and smaller creeks from a gold mining area in Cerro Crucitas, Costa Rica. In addition, species composition and relative abundance were related with habitat structure. A total of 35 species were registered, among which sardine Astyanax aeneus (Characidae) and livebearer Alfaro cultratus (Poeciliidae) were the most abundant fish (71%). The highest species richness was observed in Caño Crucitas (s=19) and Minas Creek (s=18). Significant differences in fish communities structure and composition from Infiernillo river and Minas creek were observed (lamda = 0.0, F(132, 66) = 2.24, p < 0.001). Presence and/or absence of certain species such as Dormitor gobiomorus, Rhamdia nicaraguensis, Parachromis loiseillei and Atractosteus tropicus explained most of the spatial variation among sites. Habitat structure also contributed to explain differences among sites (lamda = 0.004, F(60.183) = 5.52, p < 0.001). Substratum (soft and hard bottom types) and habitat attributes (elevation, width and depth) explained most of the variability observed in Infiernillo River, Caño Crucitas and Tamagá Creek. In addition, a significant association between fish species and habitat structure was observed. This study reveals a high complexity in tropical fish communities that inhabit a gold mine area. Furthermore, it highlights the importance of habitat heterogeneity in fish community dynamics. The loss and degradation of aquatic systems in Cerro Crucitas can have a strong negative effect on fish community structure and composition of local species. A better understanding of the use of specific habitats that serve as essential fish habitats can improve tropical fish conservation and management strategies, thus increasing local diversity, and thereby, the biological importance of the area.
FORAGE FISH AND ZOOPLANKTON COMMUNITY COMPOSITION IN WESTERN LAKE SUPERIOR
We assessed the abundance, size, and species composition of the fish and zooplankton communities of western Lake Superior during 1996 and 1997. Data were analyzed for 3 ecoregions (Duluth-Superior (1), Apostle Islands (2), Minnesota coast (3) differing in lake bathymetry, phsiodo...
NASA Astrophysics Data System (ADS)
Neumann, Hermann; Diekmann, Rabea; Kröncke, Ingrid
2016-02-01
Analysis of ecosystem functioning is essential to describe the ecological status of ecosystems and is therefore directly requested in international directives. There is a lack of knowledge regarding functional aspects of benthic communities and their environmental and anthropogenic driving forces in the southern North Sea. This study linked functional composition of epibenthic communities to environmental conditions and fishing effort and investigated spatial correlations between habitat characteristics to gain insight into potential synergistic and/or cumulative effects. Functional composition of epifauna was assessed by using biological trait analysis (BTA), which considered 15 ecological traits of 54 species. Functional composition was related to ten predictor variables derived from sediment composition, bottom temperature and salinity, hydrodynamics, annual primary production and fishing effort. Our results revealed significantly different functional composition between the Dogger Bank, the Oyster Ground, the West and North Frisian coast. Mobility, feeding type, size and adult longevity were the most important traits differentiating the communities. A high proportion of trait modalities related to an opportunistic life mode were obvious in coastal areas especially at the West Frisian coast and in the area of the Frisian Front indicating disturbed communities. In contrast, functional composition in the Dogger Bank area indicated undisturbed communities with prevalence of large, long-lived and permanently attached species being sensitive towards disturbance such as fishing. Tidal stress, mud content of sediments, salinity, stratification and fishing effort were found to be the most important habitat characteristics shaping functional composition. Strong correlations were found between variables, especially between those which changed gradually from the coast to offshore areas including fishing effort. Unfavourable extremes of these factors in coastal areas resulted in disturbed epibenthic communities, while the relative influence of a single factor on functional composition cannot be quantified. Coastal communities seemed to be well adapted to disturbance and the prevalence of opportunistic trait modalities not necessarily revealed a poor ecological status according to the Marine Strategy Framework Directive (MSFD). The integration of functional aspects into the assessment of ecosystem health is recommended, since widely used structural measures failed in naturally disturbed habitats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrego, Rodrigo; Barra, Ricardo; Chiang, Gustavo
2008-03-01
Patterns of fish community composition in a south-central Chile river were investigated along the altitudinal-spatial and environmental gradient and as a function of anthropogenic factors. The spatial pattern of fish communities in different biocoenotic zones of the Chillan River is influenced by both natural factors such a hydrologic features, habitat, and feeding types, and also by water quality variables which can reduce the diversity and abundance of sensitive species. A principal component analysis incorporating both water quality parameters and biomarker responses of representative fish species was used to evaluate the status of fish communities along the spatial gradient of themore » stream. The abundance and diversity of the fish community changed from a low in the upper reaches where the low pollution-tolerant species such as salmonid dominated, to a reduced diversity in the lower reaches of the river where tolerant browser species such as cypriniformes dominated. Even though the spatial pattern of fish community structure is similar to that found for the Chilean Rivers, the structure of these communities is highly influenced by human disturbance, particularly along the lower reaches of the river.« less
Fish community responses to green tides in shallow estuarine and coastal areas
NASA Astrophysics Data System (ADS)
Le Luherne, E.; Réveillac, E.; Ponsero, A.; Sturbois, A.; Ballu, S.; Perdriau, M.; Le Pape, O.
2016-06-01
All over the world, numerous bays and estuarine systems that are known to shelter essential fish habitats are experiencing proliferations of green macroalgae known as green tides. Although the processes that enhance green tides in response to nutrient enrichment are well known, their consequences for ecological communities -especially for ichthyofauna- remain poorly studied. To estimate these consequences, this analysis focused on the two types of shallow systems that are experiencing green tides: sandy beaches and estuarine mudflats. In these two systems, macroalgae proliferation and fish community were surveyed along seasonal cycles at control and impacted sites that shared similar physico-chemical parameters and sediment structure. To analyse the consequences of green tides on the fish community, a Before-After Control-Impact approach was used. This approach reveals no difference between fish communities at the control and impacted sites before the macroalgal bloom. Then, it underlines an influence of green tides on the fish community, and this influence varies according to the composition, density and duration of the macroalgal bloom. Indeed, when intertidal systems experienced short proliferation and/or weak density, green tides did not seem to impact the fish community. However, when green macroalgae proliferated in large quantities and/or when the proliferation lasted for long periods, the fish community was significantly affected. These modifications in the fish community led to a significant decrease in fish species diversity and density until fish disappeared from impacted sites at high proliferations. Furthermore, the response of fish species to green tides differed according to their functional guilds. Negative consequences for benthic and marine juvenile fish species were beginning at low proliferations, whereas for pelagic fish species they occurred only at high proliferations. Thus, green tides significantly affect fish habitat suitability because they lead to changes in the composition of the fish community and eventually to the local disappearance of fish at high proliferations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veach, Allison M.; Troia, Matthew; Jumpponen, Ari
We report top–down control exerted by macroconsumers can strongly affect lower trophic levels and ecosystem processes. Studies of effects on primary consumers in streams have been focused on algae, and effects on bacteria are largely unknown. We manipulated the density of an omnivorous, grazing minnow, the central stoneroller (Campostoma anomalum), in experimental stream mesocosms (treatments with 0, 1, 2, 3, 4, 5, 6, or 7 individuals) to understand consumer effects on algal and bacterial abundance (chlorophyll a [Chl a] extraction, bacterial cell counts, biomass measurements) and bacterial diversity and community composition (via Illumina MiSeq sequencing of the V4 region ofmore » the 16S ribosomal RNA gene). Increasing C. anomalum density reduced algal biomass until density reached ~2 fish (5 g fish biomass/m 2), and higher fish densities did not affect algal biomass. Fish biomass did not affect bacterial cell counts. Biofilm organic matter decreased with increasing C. anomalum biomass. Bacterial community composition was not affected by fish biomass, but variation in community composition was correlated with shifts in bacterial abundances. Evenness of bacterial operational taxonomic units (OTUs) decreased with increasing C. anomalum biomass, indicating that bacterial communities exhibited a greater degree of OTU dominance when fish biomass was higher. These findings suggest that this grazing fish species reduces algal abundance and organic matter in low-nutrient streams until a threshold of moderate fish abundance is reached and that it reduces evenness of benthic bacterial communities but not bacterial biomass. Finally, given the importance of biofilm bacteria for ecosystem processes and the ubiquity of grazing fishes in streams, future researchers should explore both top–down and bottom–up interactions in alternative environmental contexts and with other grazing fish species.« less
Veach, Allison M.; Troia, Matthew; Jumpponen, Ari; ...
2017-12-21
We report top–down control exerted by macroconsumers can strongly affect lower trophic levels and ecosystem processes. Studies of effects on primary consumers in streams have been focused on algae, and effects on bacteria are largely unknown. We manipulated the density of an omnivorous, grazing minnow, the central stoneroller (Campostoma anomalum), in experimental stream mesocosms (treatments with 0, 1, 2, 3, 4, 5, 6, or 7 individuals) to understand consumer effects on algal and bacterial abundance (chlorophyll a [Chl a] extraction, bacterial cell counts, biomass measurements) and bacterial diversity and community composition (via Illumina MiSeq sequencing of the V4 region ofmore » the 16S ribosomal RNA gene). Increasing C. anomalum density reduced algal biomass until density reached ~2 fish (5 g fish biomass/m 2), and higher fish densities did not affect algal biomass. Fish biomass did not affect bacterial cell counts. Biofilm organic matter decreased with increasing C. anomalum biomass. Bacterial community composition was not affected by fish biomass, but variation in community composition was correlated with shifts in bacterial abundances. Evenness of bacterial operational taxonomic units (OTUs) decreased with increasing C. anomalum biomass, indicating that bacterial communities exhibited a greater degree of OTU dominance when fish biomass was higher. These findings suggest that this grazing fish species reduces algal abundance and organic matter in low-nutrient streams until a threshold of moderate fish abundance is reached and that it reduces evenness of benthic bacterial communities but not bacterial biomass. Finally, given the importance of biofilm bacteria for ecosystem processes and the ubiquity of grazing fishes in streams, future researchers should explore both top–down and bottom–up interactions in alternative environmental contexts and with other grazing fish species.« less
Espinoza, Mario; Salas, Eva
2005-01-01
The reefs are heterogeneous systems that maintain a high diversity of organisms. Fish community structure varies within and among reefs, so it would be expected that reef structure and heterogeneity should affect fish communities inhabiting reefs. Four reef patches at Catalinas Islands (Sur, La Pared, Roca Sucia and Sombrero) and one in Ocotal beach (10 degrees 28'45" N; 85 degrees 52'35" W) were studied with visual censuses (July-December 2003). The structure and composition of fishes between Catalinas islands and Ocotal beach were different, and habitat structure and composition explain most of the variance founded. The presence of the fleshy algae Caulerpa sertularioides in Ocotal, and the corals Tubastrea coccinea and Pocillopora spp. at Catalinas Island explained the variability among sites and how it affected fish community structure and composition. The butterfly fish Johnrandallia nigrirostris, damselfish Microspathodon dorsalis, and surgeon fish Prionurus punctatus were directly correlated with the ahermatipic coral Tubastrea coccinea in Roca Sucia reef, while the angel fish Holacanthus passer was associated to reefs with a major percentage of rocky substrate. Other species such as the damselfish Abudefduf troschelli and Halichoeres dispilus were more abundant at Ocotal, where the algae C sertularioides dominated. The number and abundance of reef fishes was directly correlated with the rugosity index at the reefs of Roca Sucia and Ocotal, but not at reefs of La Pared and Sombrero.
Lanham, Brendan S; Vergés, Adriana; Hedge, Luke H; Johnston, Emma L; Poore, Alistair G B
2018-04-01
Coastal urbanization has led to large-scale transformation of estuaries, with artificial structures now commonplace. Boat moorings are known to reduce seagrass cover, but little is known about their effect on fish communities. We used underwater video to quantify abundance, diversity, composition and feeding behaviour of fish assemblages on two scales: with increasing distance from moorings on fine scales, and among locations where moorings were present or absent. Fish were less abundant in close proximity to boat moorings, and the species composition varied on fine scales, leading to lower predation pressure near moorings. There was no relationship at the location with seagrass. On larger scales, we detected no differences in abundance or community composition among locations where moorings were present or absent. These findings show a clear impact of moorings on fish and highlight the importance of fine-scale assessments over location-scale comparisons in the detection of the effects of artificial structures. Copyright © 2018 Elsevier Ltd. All rights reserved.
Goldstein, R.M.; Stauffer, J.C.; Larson, P.R.; Lorenz, D.L.
1996-01-01
Within the instream habitat data set, measures of habitat volume (channel width and depth) and habitat diversity were most significant in explaining the variability of the fish communities. The amount of nonagricultural land and riparian zone integrity from the terrestrial habitat data set were also useful in explaining fish community composition. Variability of mean monthly discharge and the frequency of high and low discharge events during the three years prior to fish sampling were the most influential of the hydrologic variables.The first two axes of the canonical correspondence analysis accounted for 43.3 percent of the variation in the fish community and 52.5 percent of the variation in the environmental-species relation. Water-quality indicators such as the percent of fine material in suspended sediment, minimum dissolved oxygen concentrations, minimum concentrations of dissolved organic carbon, and the range of concentrations of major ions and nutrients were the variables that were most important in the canonical correspondence analysis of water-quality data with fish. No single environmental variable or data set appeared to be more important than another in explaining variation in the fish community. The environmental factors affecting the fish communities of the Red River of the North are interrelated. For the most part, instream environmental conditions (instream habitat, hydrology, and water chemistry) appear to be more important in explaining variability in fish community composition than factors related to the agricultural nature of the basin.
Stable pelagic vertebrate community structure through extreme Paleogene greenhouse conditions
NASA Astrophysics Data System (ADS)
Sibert, E. C.; Friedman, M.; Hull, P. M.; Hunt, G.; Norris, R. D.
2016-02-01
The species composition (structure) and energy transfer (function) of an ecosystem is reflected by the presence and type of consumers that it supports. Here we use ichthyoliths, microfossil fish teeth and shark denticles, to assess the ecological variability of the pelagic fish community structure and composition from the Late Cretaceous to the middle Eocene from a drill core in the South Pacific gyre (DSDP Site 596). We find that the overall vertebrate community structure, as measured by the relative abundance of sharks to ray-finned fishes, has a punctuated change at the Cretaceous/Paleogene mass extinction. The vertebrate community structure remained stable throughout the Paleogene despite a five-fold increase in overall abundance of ichthyoliths during the extreme greenhouse of the Early Eocene. Further, we use a novel system to quantify the morphological variation in fish teeth. We find that the morphospace occupied by the tooth assemblage is conserved throughout the interval, with a slight expansion following the Cretaceous-Paleogene mass extinction, and the evolution of a distinct morphotype-group around the Paleocene-Eocene boundary. While there are elevated rates of morphotype origination and extinction following the Cretaceous-Paleogene mass extinction, the extreme greenhouse warming of the Early Eocene and associated increase in fish production produce near-zero origination and extinction rates. The relative stability in composition of the pelagic vertebrate community during intervals of extreme climate change and across large ranges of total fish accumulation, suggests that pelagic ecosystem structure is robust to climate events, and that the overall structure of the pelagic fish community may be decoupled from both climate and ecosystem function.
Environmental drivers of fish functional diversity and composition in the Lower Colorado River Basin
Pool, T.K.; Olden, J.D.; Whittier, Joanna B.; Paukert, C.P.
2010-01-01
Freshwater conservation efforts require an understanding of how natural and anthropogenic factors shape the present-day biogeography of native and non-native species. This knowledge need is especially acute for imperiled native fishes in the highly modified Lower Colorado River Basin (LCRB), USA. In the present study we employed both a taxonomic and functional approach to explore how natural and human-related environmental drivers shape landscape-scale patterns of fish community composition in the LCRB. Our results showed that hydrologic alteration, watershed land use, and regional climate explained 30.3% and 44.7% of the total variation in fish community taxonomic and functional composition, respectively. Watersheds with greater dam densities and upstream storage capacity supported higher non-native functional diversity, suggesting that dams have provided additional "niche opportunities" for non-native equilibrium life-history strategists by introducing new reservoir habitat and modifying downstream flow and thermal regimes. By contrast, watersheds characterized by greater upstream land protection, lower dam densities, and higher variation in spring and summer precipitation supported fish communities with a strong complement of native species (opportunistic-periodic strategists). In conclusion, our study highlights the utility of a life-history approach to better understand the patterns and processes by which fish communities vary along environmental gradients.
Cline, Timothy J.; Schindler, Daniel E.; Hilborn, Ray
2017-01-01
Abrupt shifts in natural resources and their markets are a ubiquitous challenge to human communities. Building resilient social-ecological systems requires approaches that are robust to uncertainty and to regime shifts. Harvesting diverse portfolios of natural resources and adapting portfolios in response to change could stabilize economies reliant on natural resources and their markets, both of which are prone to unpredictable shifts. Here we use fisheries catch and revenue data from Alaskan fishing communities over 34 years to test whether diversification and turnover in the composition of fishing opportunities increased economic stability during major ocean and market regime shifts in 1989. More than 85% of communities show reduced fishing revenues following these regime shifts. However, communities with the highest portfolio diversity and those that could opportunistically shift the composition of resources they harvest, experienced negligible or even positive changes in revenue. Maintaining diversity in economic opportunities and enabling turnover facilitates sustainability of communities reliant on renewable resources facing uncertain futures. PMID:28091534
Mechanisms of maintenance of tropical freshwater fish communities in the face of disturbance.
Martin-Smith, K M; Laird, L M; Bullough, L; Lewis, M G
1999-01-01
Community resistance to, and resilience from, perturbation will determine the trajectory of recovery from disturbance. Although selective timber extraction is considered a severe disturbance, fish communities from headwater streams around Danum Valley Field Centre, Sabah, Malaysia, showed few long-term changes in species composition or abundance. However, some species showed short-term (< 18 months) absence or decrease in abundance. These observations suggested that both resistance and resilience were important in maintaining long-term fish community structure. Resistance to perturbation was tested by monitoring fish communities before and after the creation of log-debris dams, while resilience was investigated by following the time-course of recolonization following complete removal of all fish. High community resistance was generally shown although the response was site-specific, dependent on the composition of the starting community, the size of the stream and physical habitat changes. High resilience was demonstrated in all recolonization experiments with strong correlations between pre- and post-defaunation communities, although there was a significant difference between pool and riffle habitats in the time-course of recovery. These differences can be explained by the movement characteristics of the species found in the different habitats. Resilience appeared to be a more predictable characteristic of the community than resistance and the implications of this for ensuring the long-term persistence of fish in the area are discussed. PMID:11605623
NASA Astrophysics Data System (ADS)
Mosepele, K.; Mosepele, B.; Bokhutlo, T.; Amutenya, K.
The species assemblage and community structure of four lagoons was assessed through time series data collected between 2001 and 2005 in the Okavango Delta. The main aim of this study was to evaluate the importance of lagoons as fish habitats in the Delta. Therefore, this study assessed the importance of these habitats through determining fish species diversity, composition, relative abundance, and community structure between the lagoons. Forty six species belonging to 11 families and five orders were collected over the study period. Main results showed that Cichlidae was the most important family and had the highest species richness in the lagoons. Significant differences ( p < 0.05) were observed in species richness, faunal composition, and diversity among some of the lagoons. Moreover, there were also variations in species composition, and also significant differences in mean length and weight of some selected fish species in the four lagoons. This study showed that lagoons are important repositories of food fish to local communities. Moreover, a management of the fish stocks based on restricting fishing in some lagoons as protected areas is not feasible because of these significant differences in species assemblages between lagoons. Furthermore, lagoons are subject to multiple where most of the lodges are constructed, which makes subsequently makes them vulnerable to pollution. Therefore, the integrity of lagoon habitats needs to be maintained so that their ecosystem functioning (i.e. fish repositories) is maintained.
The structure of parasite communities in fish hosts: ecology meets geography and climate.
Poulin, R
2007-09-01
Parasite communities in fish hosts are not uniform in space: their diversity, composition and abundance vary across the geographical range of a host species. Increasingly urgently, we need to understand the geographic component of parasite communities to better predict how they will respond to global climate change. Patterns of geographical variation in the abundance of parasite populations, and in the diversity and composition of parasite communities, are explored here, and the ways in which they may be affected by climate change are discussed. The time has come to transform fish parasite ecology from a mostly descriptive discipline into a predictive science, capable of integrating complex ecological data to generate forecasts about the future state of host-parasite systems.
Ball, J.R.; Esler, Daniel N.; Schmutz, J.A.
2007-01-01
Changing ocean conditions and subsequent shifts in forage fish communities have been linked to numerical declines of some piscivorous marine birds and mammals in the North Pacific. However, limited information about fish communities is available for some regions, including nearshore waters of the eastern Bering Sea, where many piscivores reside. We determined proximate composition and energetic value of a suite of potential forage fish collected from an estuary on the Yukon-Kuskokwim Delta, Alaska, during 2002 and 2003. Across species, energy density ranged from 14.5 to 20.7 kJ g−1 dry mass and varied primarily as a function of lipid content. Total energy content was strongly influenced by body length and we provide species-specific predictive models of total energy based on this relationship; some models may be improved further by incorporating year and date effects. Based on observed energetic differences, we conclude that variation in fish size, quantity, and species composition of the prey community could have important consequences for piscivorous predators.
Labay, Ben; Cohen, Adam E; Sissel, Blake; Hendrickson, Dean A; Martin, F Douglas; Sarkar, Sahotra
2011-01-01
Accurate establishment of baseline conditions is critical to successful management and habitat restoration. We demonstrate the ability to robustly estimate historical fish community composition and assess the current status of the urbanized Barton Creek watershed in central Texas, U.S.A. Fish species were surveyed in 2008 and the resulting data compared to three sources of fish occurrence information: (i) historical records from a museum specimen database and literature searches; (ii) a nearly identical survey conducted 15 years earlier; and (iii) a modeled historical community constructed with species distribution models (SDMs). This holistic approach, and especially the application of SDMs, allowed us to discover that the fish community in Barton Creek was more diverse than the historical data and survey methods alone indicated. Sixteen native species with high modeled probability of occurrence within the watershed were not found in the 2008 survey, seven of these were not found in either survey or in any of the historical collection records. Our approach allowed us to more rigorously establish the true baseline for the pre-development fish fauna and then to more accurately assess trends and develop hypotheses regarding factors driving current fish community composition to better inform management decisions and future restoration efforts. Smaller, urbanized freshwater systems, like Barton Creek, typically have a relatively poor historical biodiversity inventory coupled with long histories of alteration, and thus there is a propensity for land managers and researchers to apply inaccurate baseline standards. Our methods provide a way around that limitation by using SDMs derived from larger and richer biodiversity databases of a broader geographic scope. Broadly applied, we propose that this technique has potential to overcome limitations of popular bioassessment metrics (e.g., IBI) to become a versatile and robust management tool for determining status of freshwater biotic communities.
Valdivia, Abel; Cox, Courtney E.; Silbiger, Nyssa J.; Bruno, John F.
2017-01-01
Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0–10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations. PMID:28560093
Hackerott, Serena; Valdivia, Abel; Cox, Courtney E; Silbiger, Nyssa J; Bruno, John F
2017-01-01
Invasive lionfish are assumed to significantly affect Caribbean reef fish communities. However, evidence of lionfish effects on native reef fishes is based on uncontrolled observational studies or small-scale, unrepresentative experiments, with findings ranging from no effect to large effects on prey density and richness. Moreover, whether lionfish affect populations and communities of native reef fishes at larger, management-relevant scales is unknown. The purpose of this study was to assess the effects of lionfish on coral reef prey fish communities in a natural complex reef system. We quantified lionfish and the density, richness, and composition of native prey fishes (0-10 cm total length) at sixteen reefs along ∼250 km of the Belize Barrier Reef from 2009 to 2013. Lionfish invaded our study sites during this four-year longitudinal study, thus our sampling included fish community structure before and after our sites were invaded, i.e., we employed a modified BACI design. We found no evidence that lionfish measurably affected the density, richness, or composition of prey fishes. It is possible that higher lionfish densities are necessary to detect an effect of lionfish on prey populations at this relatively large spatial scale. Alternatively, negative effects of lionfish on prey could be small, essentially undetectable, and ecologically insignificant at our study sites. Other factors that influence the dynamics of reef fish populations including reef complexity, resource availability, recruitment, predation, and fishing could swamp any effects of lionfish on prey populations.
Cooper, Ryan N; Wissel, Björn
2012-11-27
Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes.
2012-01-01
Salinity is restricting habitatability for many biota in prairie lakes due to limited physiological abilities to cope with increasing osmotic stress. Yet, it remains unclear how salinity effects vary among major taxonomic groups and what role other environmental parameters play in shaping food-web composition. To answer these questions, we sampled fish, zooplankton and littoral macroinvertebrates in 20 prairie lakes (Saskatchewan, Canada) characterized by large gradients in water chemistry and lake morphometry. We showed that salinity thresholds differed among major taxonomic groups, as most fishes were absent above salinities of 2 g L-1, while littoral macroinvertebrates were ubiquitous. Zooplankton occurred over the whole salinity range, but changed taxonomic composition as salinity increased. Subsequently, the complexity of fish community (diversity) was associated with large changes in invertebrate communities. The directional changes in invertebrate communities to smaller taxa indicated that complex fish assemblages resulted in higher predation pressure. Most likely, as the complexity of fish community decreased, controls of invertebrate assemblages shifted from predation to competition and ultimately to productivity in hypersaline lakes. Surprisingly, invertebrate predators did not thrive in the absence of fishes in these systems. Furthermore, the here identified salinity threshold for fishes was too low to be a result of osmotic stress. Hence, winterkill was likely an important factor eliminating fishes in low salinity lakes that had high productivity and shallow water depth. Ultimately, while salinity was crucial, intricate combinations of chemical and biological mechanisms also played a major role in controlling the assemblages of major taxonomic groups in prairie lakes. PMID:23186395
Muñoz, Roldan C; Buckel, Christine A; Whitfield, Paula E; Viehman, Shay; Clark, Randy; Taylor, J Christopher; Degan, Brian P; Hickerson, Emma L
2017-01-01
The world's coral reefs appear to be in a global decline, yet most previous research on coral reefs has taken place at depths shallower than 30 m. Mesophotic coral ecosystem (depths deeper than ~30 m) studies have revealed extensive, productive habitats and rich communities. Despite recent advances, mesophotic coral ecosystems remain understudied due to challenges with sampling at deeper depths. The few previous studies of mesophotic coral ecosystems have shown variation across locations in depth-specific species composition and assemblage shifts, potentially a response to differences in habitat or light availability/water clarity. This study utilized scuba to examine fish and benthic communities from shallow and upper mesophotic (to 45 m) zones of Flower Garden Banks National Marine Sanctuary (FGBNMS, 28°0'N; 93°50'W) from 2010-2012. Dominant planktivores were ubiquitous in shallow and upper mesophotic habitats, and comparisons with previous shallow research suggest this community distribution has persisted for over 30 years. Planktivores were abundant in shallow low-relief habitats on the periphery of the coral reef, and some of these sites that contained habitat transitioning from high to low relief supported high biomass of benthic predators. These peripheral sites at FGBNMS may be important for the trophic transfer of oceanic energy to the benthic coral reef. Distinct differences between upper mesophotic and shallow communities were also observed. These included greater overall fish (as well as apex predator) biomass in the upper mesophotic, differences in apex predator community composition between depth zones, and greater percent cover of algae, rubble, sand, and sponges in the upper mesophotic. Greater fish biomass in the upper mesophotic and similar fish community composition between depth zones provide preliminary support that upper mesophotic habitats at FGBNMS have the capacity to serve as refugia for the shallow-water reefs. Diving surveys of the upper mesophotic and shallow-water coral reef have revealed valuable information concerning the reef fish community in the northern Gulf of Mexico, with implications for the conservation of apex predators, oceanic coral reefs, and the future management of FGBNMS.
Buckel, Christine A.; Whitfield, Paula E.; Viehman, Shay; Clark, Randy; Taylor, J. Christopher; Degan, Brian P.; Hickerson, Emma L.
2017-01-01
The world’s coral reefs appear to be in a global decline, yet most previous research on coral reefs has taken place at depths shallower than 30 m. Mesophotic coral ecosystem (depths deeper than ~30 m) studies have revealed extensive, productive habitats and rich communities. Despite recent advances, mesophotic coral ecosystems remain understudied due to challenges with sampling at deeper depths. The few previous studies of mesophotic coral ecosystems have shown variation across locations in depth-specific species composition and assemblage shifts, potentially a response to differences in habitat or light availability/water clarity. This study utilized scuba to examine fish and benthic communities from shallow and upper mesophotic (to 45 m) zones of Flower Garden Banks National Marine Sanctuary (FGBNMS, 28°0ʹN; 93°50ʹW) from 2010–2012. Dominant planktivores were ubiquitous in shallow and upper mesophotic habitats, and comparisons with previous shallow research suggest this community distribution has persisted for over 30 years. Planktivores were abundant in shallow low-relief habitats on the periphery of the coral reef, and some of these sites that contained habitat transitioning from high to low relief supported high biomass of benthic predators. These peripheral sites at FGBNMS may be important for the trophic transfer of oceanic energy to the benthic coral reef. Distinct differences between upper mesophotic and shallow communities were also observed. These included greater overall fish (as well as apex predator) biomass in the upper mesophotic, differences in apex predator community composition between depth zones, and greater percent cover of algae, rubble, sand, and sponges in the upper mesophotic. Greater fish biomass in the upper mesophotic and similar fish community composition between depth zones provide preliminary support that upper mesophotic habitats at FGBNMS have the capacity to serve as refugia for the shallow-water reefs. Diving surveys of the upper mesophotic and shallow-water coral reef have revealed valuable information concerning the reef fish community in the northern Gulf of Mexico, with implications for the conservation of apex predators, oceanic coral reefs, and the future management of FGBNMS. PMID:29161314
Olsson, Jens; Bergström, Lena; Gårdmark, Anna
2013-01-01
The structure of many marine ecosystems has changed substantially during recent decades, as a result of overexploitation, climate change and eutrophication. Despite of the apparent ecological and economical importance of coastal areas and communities, this aspect has received relatively little attention in coastal systems. Here we assess the temporal development of zoobenthos communities in two areas on the Swedish Baltic Sea coast during 30 years, and relate their development to changes in climate, eutrophication and top-down regulation from fish. Both communities show substantial structural changes, with a decrease in marine polychaetes and species sensitive to increased water temperatures. Concurrently, opportunistic species tolerant to environmental perturbation have increased in abundance. Species composition show a similar temporal development in both communities and significant changes in species composition occurred in both data sets in the late 1980s and early 1990s. The change in species composition was associated with large scale changes in climate (salinity and water temperature) and to the structure of the local fish community, whereas we found no effects of nutrient loading or ambient nutrient concentrations. Our results suggest that these coastal zoobenthos communities have gone through substantial structural changes over the last 30 years, resulting in communities of different species composition with potentially different ecological functions. We hence suggest that the temporal development of coastal zoobenthos communities should be assessed in light of prevailing climatic conditions considering the potential for top-down effects exerted by local fish communities.
Olsson, Jens; Bergström, Lena; Gårdmark, Anna
2013-01-01
The structure of many marine ecosystems has changed substantially during recent decades, as a result of overexploitation, climate change and eutrophication. Despite of the apparent ecological and economical importance of coastal areas and communities, this aspect has received relatively little attention in coastal systems. Here we assess the temporal development of zoobenthos communities in two areas on the Swedish Baltic Sea coast during 30 years, and relate their development to changes in climate, eutrophication and top-down regulation from fish. Both communities show substantial structural changes, with a decrease in marine polychaetes and species sensitive to increased water temperatures. Concurrently, opportunistic species tolerant to environmental perturbation have increased in abundance. Species composition show a similar temporal development in both communities and significant changes in species composition occurred in both data sets in the late 1980s and early 1990s. The change in species composition was associated with large scale changes in climate (salinity and water temperature) and to the structure of the local fish community, whereas we found no effects of nutrient loading or ambient nutrient concentrations. Our results suggest that these coastal zoobenthos communities have gone through substantial structural changes over the last 30 years, resulting in communities of different species composition with potentially different ecological functions. We hence suggest that the temporal development of coastal zoobenthos communities should be assessed in light of prevailing climatic conditions considering the potential for top-down effects exerted by local fish communities. PMID:23737998
Wilkins, Laetitia G E; Rogivue, Aude; Schütz, Frédéric; Fumagalli, Luca; Wedekind, Claus
2015-11-27
The taxonomic composition of egg-associated microbial communities can play a crucial role in the development of fish embryos. In response, hosts increasingly influence the composition of their associated microbial communities during embryogenesis, as concluded from recent field studies and laboratory experiments. However, little is known about the taxonomic composition and the diversity of egg-associated microbial communities within ecosystems; e.g., river networks. We sampled late embryonic stages of naturally spawned brown trout at nine locations within two different river networks and applied 16S rRNA pyrosequencing to describe their bacterial communities. We found no evidence for a significant isolation-by-distance effect on the composition of bacterial communities, and no association between neutral genetic divergence of fish host (based on 11 microsatellites) and phylogenetic distances of the composition of their associated bacterial communities. We characterized core bacterial communities on brown trout eggs and compared them to corresponding water samples with regard to bacterial composition and its presumptive function. Bacterial diversity was positively correlated with water temperature at the spawning locations. We discuss this finding in the context of the increased water temperatures that have been recorded during the last 25 years in the study area.
Wilkins, Laetitia G. E.; Rogivue, Aude; Schütz, Frédéric; Fumagalli, Luca; Wedekind, Claus
2015-01-01
The taxonomic composition of egg-associated microbial communities can play a crucial role in the development of fish embryos. In response, hosts increasingly influence the composition of their associated microbial communities during embryogenesis, as concluded from recent field studies and laboratory experiments. However, little is known about the taxonomic composition and the diversity of egg-associated microbial communities within ecosystems; e.g., river networks. We sampled late embryonic stages of naturally spawned brown trout at nine locations within two different river networks and applied 16S rRNA pyrosequencing to describe their bacterial communities. We found no evidence for a significant isolation-by-distance effect on the composition of bacterial communities, and no association between neutral genetic divergence of fish host (based on 11 microsatellites) and phylogenetic distances of the composition of their associated bacterial communities. We characterized core bacterial communities on brown trout eggs and compared them to corresponding water samples with regard to bacterial composition and its presumptive function. Bacterial diversity was positively correlated with water temperature at the spawning locations. We discuss this finding in the context of the increased water temperatures that have been recorded during the last 25 years in the study area. PMID:26611640
Mass coral bleaching causes biotic homogenization of reef fish assemblages.
Richardson, Laura E; Graham, Nicholas A J; Pratchett, Morgan S; Eurich, Jacob G; Hoey, Andrew S
2018-04-06
Global climate change is altering community composition across many ecosystems due to nonrandom species turnover, typically characterized by the loss of specialist species and increasing similarity of biological communities across spatial scales. As anthropogenic disturbances continue to alter species composition globally, there is a growing need to identify how species responses influence the establishment of distinct assemblages, such that management actions may be appropriately assigned. Here, we use trait-based analyses to compare temporal changes in five complementary indices of reef fish assemblage structure among six taxonomically distinct coral reef habitats exposed to a system-wide thermal stress event. Our results revealed increased taxonomic and functional similarity of previously distinct reef fish assemblages following mass coral bleaching, with changes characterized by subtle, but significant, shifts toward predominance of small-bodied, algal-farming habitat generalists. Furthermore, while the taxonomic or functional richness of fish assemblages did not change across all habitats, an increase in functional originality indicated an overall loss of functional redundancy. We also found that prebleaching coral composition better predicted changes in fish assemblage structure than the magnitude of coral loss. These results emphasize how measures of alpha diversity can mask important changes in the structure and functioning of ecosystems as assemblages reorganize. Our findings also highlight the role of coral species composition in structuring communities and influencing the diversity of responses of reef fishes to disturbance. As new coral species configurations emerge, their desirability will hinge upon the composition of associated species and their capacity to maintain key ecological processes in spite of ongoing disturbances. © 2018 John Wiley & Sons Ltd.
Growns, Ivor; Astles, Karen; Gehrke, Peter
2006-03-01
We studied the multiscale (sites, river reaches and rivers) and short-term temporal (monthly) variability in a freshwater fish assemblage. We found that small-scale spatial variation and short-term temporal variability significantly influenced fish community structure in the Macquarie and Namoi Rivers. However, larger scale spatial differences between rivers were the largest source of variation in the data. The interaction between temporal change and spatial variation in fish community structure, whilst statistically significant, was smaller than the variation between rivers. This suggests that although the fish communities within each river changed between sampling occasions, the underlying differences between rivers were maintained. In contrast, the strongest interaction between temporal and spatial effects occurred at the smallest spatial scale, at the level of individual sites. This means whilst the composition of the fish assemblage at a given site may fluctuate, the magnitude of these changes is unlikely to affect larger scale differences between reaches within rivers or between rivers. These results suggest that sampling at any time within a single season will be sufficient to show spatial differences that occur over large spatial scales, such as comparisons between rivers or between biogeographical regions.
Sullivan, D.J.
1997-01-01
Canonical correspondence analysis (CCA) revealed that soil credibility was a significant predictor of species composition. Though not statistically significant, land use, soil permeability, and bedrock permeability also were indicated as predictors of fish-species composition by CCA.
A comparative study of Northern Ireland's estuaries based on the results of beam trawl fish surveys
NASA Astrophysics Data System (ADS)
Harrison, Trevor D.; Armour, Neil D.; McNeill, Michael T.; Moorehead, Peter W.
2017-11-01
The fish communities of Northern Ireland's estuaries were described and compared using data collected with a modified beam trawl over a six year period from 2009 to 2014. Multivariate analyses identified four estuary groups based on variations in their physico-chemical attributes. These groups broadly corresponded with the distribution and variation of estuary geomorphic types identified around the Irish coast. The dominant fish species captured were also among the main species reported in other North East Atlantic estuaries. A significant link between the estuary types and their fish communities was found; each estuary group contained a somewhat distinctive fish community. The fish communities also showed a significant relationship with the physico-chemical characteristics of the estuaries. Differences in fish species composition are attributed to habitat and environmental preferences of key estuary-associated species.
Intestinal microbiota composition in fishes is influenced by host ecology and environment.
Wong, Sandi; Rawls, John F
2012-07-01
The digestive tracts of vertebrates are colonized by complex assemblages of micro-organisms, collectively called the gut microbiota. Recent studies have revealed important contributions of gut microbiota to vertebrate health and disease, stimulating intense interest in understanding how gut microbial communities are assembled and how they impact host fitness (Sekirov et al. 2010). Although all vertebrates harbour a gut microbiota, current information on microbiota composition and function has been derived primarily from mammals. Comparisons of different mammalian species have revealed intriguing associations between gut microbiota composition and host diet, anatomy and phylogeny (Ley et al. 2008b). However, mammals constitute <10% of all vertebrate species, and it remains unclear whether similar associations exist in more diverse and ancient vertebrate lineages such as fish. In this issue, Sullam et al. (2012) make an important contribution toward identifying factors determining gut microbiota composition in fishes. The authors conducted a detailed meta-analysis of 25 bacterial 16S rRNA gene sequence libraries derived from the intestines of different fish species. To provide a broader context for their analysis, they compared these data sets to a large collection of 16S rRNA gene sequence data sets from diverse free-living and host-associated bacterial communities. Their results suggest that variation in gut microbiota composition in fishes is strongly correlated with species habitat salinity, trophic level and possibly taxonomy. Comparison of data sets from fish intestines and other environments revealed that fish gut microbiota compositions are often similar to those of other animals and contain relatively few free-living environmental bacteria. These results suggest that the gut microbiota composition of fishes is not a simple reflection of the micro-organisms in their local habitat but may result from host-specific selective pressures within the gut (Bevins & Salzman 2011).
Intestinal microbiota in fishes: what's known and what's not.
Clements, Kendall D; Angert, Esther R; Montgomery, W Linn; Choat, J Howard
2014-04-01
High-throughput sequencing approaches have enabled characterizations of the community composition of numerous gut microbial communities, which in turn has enhanced interest in their diversity and functional relationships in different groups of vertebrates. Although fishes represent the greatest taxonomic and ecological diversity of vertebrates, our understanding of their gut microbiota and its functional significance has lagged well behind that of terrestrial vertebrates. In order to highlight emerging issues, we provide an overview of research on fish gut microbiotas and the biology of their hosts. We conclude that microbial community composition must be viewed within an informed context of host ecology and physiology, and that this is of particular importance with respect to research planning and sampling design. © 2014 John Wiley & Sons Ltd.
Marine fish community structure and habitat associations on the Canadian Beaufort shelf and slope
NASA Astrophysics Data System (ADS)
Majewski, Andrew R.; Atchison, Sheila; MacPhee, Shannon; Eert, Jane; Niemi, Andrea; Michel, Christine; Reist, James D.
2017-03-01
Marine fishes in the Canadian Beaufort Sea have complex interactions with habitats and prey, and occupy a pivotal position in the food web by transferring energy between lower- and upper-trophic levels, and also within and among habitats (e.g., benthic-pelagic coupling). The distributions, habitat associations, and community structure of most Beaufort Sea marine fishes, however, are unknown thus precluding effective regulatory management of emerging offshore industries in the region (e.g., hydrocarbon development, shipping, and fisheries). Between 2012 and 2014, Fisheries and Oceans Canada conducted the first baseline survey of offshore marine fishes, their habitats, and ecological relationships in the Canadian Beaufort Sea. Benthic trawling was conducted at 45 stations spanning 18-1001 m depths across shelf and slope habitats. Physical oceanographic variables (depth, salinity, temperature, oxygen), biological variables (benthic chlorophyll and integrated water-column chlorophyll) and sediment composition (grain size) were assessed as potential explanatory variables for fish community structure using a non-parametric statistical approach. Selected stations were re-sampled in 2013 and 2014 for a preliminary assessment of inter-annual variability in the fish community. Four distinct fish assemblages were delineated on the Canadian Beaufort Shelf and slope: 1) Nearshore-shelf: <50 m depth, 2) Offshore-shelf: >50 and ≤200 m depths, 3) Upper-slope: ≥200 and ≤500 m depths, and 4) Lower-slope: ≥500 m depths. Depth was the environmental variable that best explained fish community structure, and each species assemblage was spatially associated with distinct aspects of the vertical water mass profile. Significant differences in the fish community from east to west were not detected, and the species composition of the assemblages on the Canadian Beaufort Shelf have not changed substantially over the past decade. This community analysis provides a framework for testing hypotheses regarding the trophic dynamics and ecosystem roles of Beaufort Sea marine fishes, including biological linkages (i.e., fish movements and trophic interactions) among offshore habitats. Understanding regional-scale habitat associations will also provide context to identify potentially unique and/or sensitive habitats and fish community characteristics, thus aiding identification of ecologically and biologically significant areas, and to inform conservation efforts.
Macroinvertebrates as indicators of fish absence in naturally fishless lakes
Schilling, Emily Gaenzle; Loftin, C.S.; Huryn, Alexander D.
2009-01-01
1. Little is known about native communities in naturally fishless lakes in eastern North America, a region where fish stocking has led to a decline in these habitats. 2. Our study objectives were to: (i) characterise and compare macroinvertebrate communities in fishless lakes found in two biophysical regions of Maine (U.S.A.): kettle lakes in the eastern lowlands and foothills and headwater lakes in the central and western mountains; (ii) identify unique attributes of fishless lake macroinvertebrate communities compared to lakes with fish and (iii) develop a method to efficiently identify fishless lakes when thorough fish surveys are not possible. 3. We quantified macroinvertebrate community structure in the two physiographic fishless lake types (n = 8 kettle lakes; n = 8 headwater lakes) with submerged light traps and sweep nets. We also compared fishless lake macroinvertebrate communities to those in fish-containing lakes (n = 18) of similar size, location and maximum depth. We used non-metric multidimensional scaling to assess differences in community structure and t-tests for taxon-specific comparisons between lakes. 4. Few differences in macroinvertebrate communities between the two physiographic fishless lake types were apparent. Fishless and fish-containing lakes had numerous differences in macroinvertebrate community structure, abundance, taxonomic composition and species richness. Fish presence or absence was a stronger determinant of community structure in our study than differences in physical conditions relating to lake origin and physiography. 5. Communities in fishless lakes were more speciose and abundant than in fish-containing lakes, especially taxa that are large, active and free-swimming. Families differing in abundance and taxonomic composition included Notonectidae, Corixidae, Gyrinidae, Dytiscidae, Aeshnidae, Libellulidae and Chaoboridae. 6. We identified six taxa unique to fishless lakes that are robust indicators of fish absence: Graphoderus liberus, Hesperocorixa spp., Dineutus spp., Chaoborus americanus, Notonecta insulata and Callicorixa spp. These taxa are collected most effectively with submerged light traps. 7. Naturally fishless lakes warrant conservation, because they provide habitat for a unique suite of organisms that thrive in the absence of fish predation. ?? 2008 Blackwell Publishing Ltd.
Labay, Ben; Cohen, Adam E.; Sissel, Blake; Hendrickson, Dean A.; Martin, F. Douglas; Sarkar, Sahotra
2011-01-01
Accurate establishment of baseline conditions is critical to successful management and habitat restoration. We demonstrate the ability to robustly estimate historical fish community composition and assess the current status of the urbanized Barton Creek watershed in central Texas, U.S.A. Fish species were surveyed in 2008 and the resulting data compared to three sources of fish occurrence information: (i) historical records from a museum specimen database and literature searches; (ii) a nearly identical survey conducted 15 years earlier; and (iii) a modeled historical community constructed with species distribution models (SDMs). This holistic approach, and especially the application of SDMs, allowed us to discover that the fish community in Barton Creek was more diverse than the historical data and survey methods alone indicated. Sixteen native species with high modeled probability of occurrence within the watershed were not found in the 2008 survey, seven of these were not found in either survey or in any of the historical collection records. Our approach allowed us to more rigorously establish the true baseline for the pre-development fish fauna and then to more accurately assess trends and develop hypotheses regarding factors driving current fish community composition to better inform management decisions and future restoration efforts. Smaller, urbanized freshwater systems, like Barton Creek, typically have a relatively poor historical biodiversity inventory coupled with long histories of alteration, and thus there is a propensity for land managers and researchers to apply inaccurate baseline standards. Our methods provide a way around that limitation by using SDMs derived from larger and richer biodiversity databases of a broader geographic scope. Broadly applied, we propose that this technique has potential to overcome limitations of popular bioassessment metrics (e.g., IBI) to become a versatile and robust management tool for determining status of freshwater biotic communities. PMID:21966438
Role of ecological factors and reproductive strategies in structuring freshwater mussel communities
Wendell R. Haag; Melvin L. Warren
1998-01-01
Freshwater mussel community composition within two drainage basins in Alabama, U.S.A., was better explained by patterns of variability in the fish community and the type of strategy used by mussels for infecting host-fishes than by patterns of variability in microhabitat. Mussel species richness increased in a downstream direction, and large-stream sites were...
NASA Astrophysics Data System (ADS)
Netburn, A. N.; Koslow, J. A.
2016-02-01
Although the strong physical gradients at fronts are primarily realized in the epipelagic, the biological impacts of frontal ecosystems can extend into mesopelagic waters. In 2008, Lara-Lopez et al. (2012) observed a significant shift in total biomass and community composition of migrating mesopelagic fishes at a strong persistent front off of the Pt. Conception area of the southern California Current Ecosystem. Through the California Current Ecosystem Long-Term Ecological Research Program, two additional intensive sampling cruises have been conducted on frontal systems in the general region. In 2011 and 2012, paired day and night midwater Matsuda-Oozeki-Hu trawls were conducted at stations located on either side of the fronts and at the fronts themselves, a suite of concurrent observations of the physical environment measured, and lower trophic levels sampled. Using satellite imagery, we estimate front duration of each of the 2008, 2011, and 2012 fronts, and investigate changes to the relative abundance and community composition across these systems, comparing the resolved patterns in 2011 and 2012 to those published from 2008. Results of this work will help address the questions: (1) What are the timescales required for front presence to impact mesopelagic fish communities? (2) Do different types of frontal systems (e.g., an eddy front vs. a "classic" front) result in different patterns of mesopelagic fish abundance and community composition? These answers will provide insight into the mechanisms of accumulation of fishes at fronts. As many mesopelagic fishes are important forage species for oceanic predators, understanding their response to the high productivity frontal systems is key to understanding ecosystem-wide impacts of fronts.
Long-term trends in the St. Marys River open water fish community
Schaeffer, Jeffrey S.; Fielder, David G.; Godby, Neal; Bowen, Anjanette; O'Connor, Lisa; Parrish, Josh; Greenwood, Susan; Chong, Stephen; Wright, Greg
2011-01-01
We examined trends in species composition and abundance of the St. Marys River fish community. Abundance data were available approximately once every six years from 1975 through 2006, and size and age data were available from 1995 through 2006. We also compared survey data in 2006 with results of a concurrent creel survey that year, as well as data from prior surveys spanning a 69 year time frame. The St. Marys River fish community was best characterized as a coolwater fish community with apparent little variation in species composition, and only slight variation in overall fish abundance since 1975. However, we did find recent trends in abundance among target species sought by anglers: centrarchids increased, percids appeared stable, and both northern pike Esox lucius and cisco Coregonus artedii declined. Survey results suggested that walleye (Sander vitreus) and yellow perch (Perca flavescens) experienced moderate exploitation but benefited from recent strong recruitment and faster growth. Mechanisms underlying declines of northern pike and cisco were not clear; reduced abundance could have resulted from high exploitation, variation in recruitment, or a combination of both factors. Despite these challenges, the St. Marys River fish community appears remarkably stable. We suggest that managers insure that creel surveys occur simultaneously with assessments, but periodic gill net surveys may no longer provide adequate data in support of recent, more complex management objectives. While additional surveys would add costs, more frequent data might ensure sustainability of a unique fish community that supports a large proportion of angler effort on Lake Huron.
Diet compositions and trophic guild structure of the eastern Chukchi Sea demersal fish community
NASA Astrophysics Data System (ADS)
Whitehouse, George A.; Buckley, Troy W.; Danielson, Seth L.
2017-01-01
Fishes are an important link in Arctic marine food webs, connecting production of lower trophic levels to apex predators. We analyzed 1773 stomach samples from 39 fish species collected during a bottom trawl survey of the eastern Chukchi Sea in the summer of 2012. We used hierarchical cluster analysis of diet dissimilarities on 21 of the most well sampled species to identify four distinct trophic guilds: gammarid amphipod consumers, benthic invertebrate generalists, fish and shrimp consumers, and zooplankton consumers. The trophic guilds reflect dominant prey types in predator diets. We used constrained analysis of principal coordinates (CAP) to determine if variation within the composite guild diets could be explained by a suite of non-diet variables. All CAP models explained a significant proportion of the variance in the diet matrices, ranging from 7% to 25% of the total variation. Explanatory variables tested included latitude, longitude, predator length, depth, and water mass. These results indicate a trophic guild structure is present amongst the demersal fish community during summer in the eastern Chukchi Sea. Regular monitoring of the food habits of the demersal fish community will be required to improve our understanding of the spatial, temporal, and interannual variation in diet composition, and to improve our ability to identify and predict the impacts of climate change and commercial development on the structure and functioning of the Chukchi Sea ecosystem.
NASA Astrophysics Data System (ADS)
Ribeiro, Joaquim; Monteiro, Carlos C.; Monteiro, Pedro; Bentes, Luis; Coelho, Rui; Gonçalves, Jorge M. S.; Lino, Pedro G.; Erzini, Karim
2008-01-01
Fish communities of the Ria Formosa coastal lagoon (south Portugal) were sampled on a monthly basis with a beach seine at 4 sites, during two different time periods: 1980-1986 and 2001-2002. Community indices, species ranking and multivariate analysis were used in order to identify changes in the fish community between the two time periods. A total of 153,511 fish representing 57 taxa were recorded. Although species composition was very similar for both sampling periods, multivariate analysis performed on annual species abundance in number and weight revealed differences in fish community structure between the two periods. Structural changes in fish community were related mostly to a sharp decrease in the abundance of Mugilidae from 1980-1986 to 2001-2002. These changes were probably associated to a decrease in organic matter contents and nutrients concentrations due to improvements in sewage treatment and better water circulation inside the lagoon. The changes in fish community structure are more evident in the inner areas of the lagoon than near the inlet. The association between changes in sewage patterns and changes in the ichthyofaunal community structure reinforces the importance of fish communities as a biological indicator of human induced changes in marine systems.
Vales, Damián Gustavo; García, Néstor Aníbal; Crespo, Enrique Alberto; Timi, Juan Tomás
2011-02-01
Parasite communities of Raneya brasiliensis are described and its parasites used as biological tags to discriminate its populations. Fish were caught in two zones of the Argentine Sea: one sample from San Jorge Gulf (Patagonian Region) and three samples from off the coast of Buenos Aires (Bonaerense Region). A total of 183 fish were examined for parasites and 11 species were found. Host body size and its ecology are pointed out as drivers of the paucity of taxa found. Multivariate similarity analyses allowed the identification of three stocks: one in the San Jorge Gulf, and two other in the Bonaerense Region. The parasite species that contributed most to the separation of the samples were generally those identified as biological markers in previous studies in the area. Patterns of distance decay in similarity among communities in R. brasiliensis were found; with dissimilarity values between distant localities being higher than between close ones. Whereas the composition and structure of parasite assemblages in Bonaerense waters reflect those of other fish species in this region, being mainly determined by the composition of the compound community, no repeatable patterns were found in the composition of parasites assemblages when R. brasiliensis was compared with other hosts species in Patagonia.
The consequences of balanced harvesting of fish communities
Jacobsen, Nis S.; Gislason, Henrik; Andersen, Ken H.
2014-01-01
Balanced harvesting, where species or individuals are exploited in accordance with their productivity, has been proposed as a way to minimize the effects of fishing on marine fish communities and ecosystems. This calls for a thorough examination of the consequences balanced harvesting has on fish community structure and yield. We use a size- and trait-based model that resolves individual interactions through competition and predation to compare balanced harvesting with traditional selective harvesting, which protects juvenile fish from fishing. Four different exploitation patterns, generated by combining selective or unselective harvesting with balanced or unbalanced fishing, are compared. We find that unselective balanced fishing, where individuals are exploited in proportion to their productivity, produces a slightly larger total maximum sustainable yield than the other exploitation patterns and, for a given yield, the least change in the relative biomass composition of the fish community. Because fishing reduces competition, predation and cannibalism within the community, the total maximum sustainable yield is achieved at high exploitation rates. The yield from unselective balanced fishing is dominated by small individuals, whereas selective fishing produces a much higher proportion of large individuals in the yield. Although unselective balanced fishing is predicted to produce the highest total maximum sustainable yield and the lowest impact on trophic structure, it is effectively a fishery predominantly targeting small forage fish. PMID:24307676
Spatio-temporal dynamics of species richness in coastal fish communities
Lekve, K.; Boulinier, T.; Stenseth, N.C.; Gjøsaeter, J.; Fromentin, J-M.; Hines, J.E.; Nichols, J.D.
2002-01-01
Determining patterns of change in species richness and the processes underlying the dynamics of biodiversity are of key interest within the field of ecology, but few studies have investigated the dynamics of vertebrate communities at a decadal temporal scale. Here, we report findings on the spado-temporal variability in the richness and composition of fish communities along the Norwegian Skagerrak coast having been surveyed for more than half a century. Using statistical models incorporating non-detection and associated sampling variance, we estimate local species richness and changes in species composition allowing us to compute temporal variability in species richness. We tested whether temporal variation could be related to distance to the open sea and to local levels of pollution. Clear differences in mean species richness and temporal variability are observed between fjords that were and were not exposed to the effects of pollution. Altogether this indicates that the fjord is an appropriate scale for studying changes in coastal fish communities in space and time. The year-to-year rates of local extinction and turnover were found to be smaller than spatial differences in community composition. At the regional level, exposure to the open sea plays a homogenizing role, possibly due to coastal currents and advection.
Patrick, Christopher J; Yuan, Lester L
2017-07-01
Flow alteration is widespread in streams, but current understanding of the effects of differences in flow characteristics on stream biological communities is incomplete. We tested hypotheses about the effect of variation in hydrology on stream communities by using generalized additive models to relate watershed information to the values of different flow metrics at gauged sites. Flow models accounted for 54-80% of the spatial variation in flow metric values among gauged sites. We then used these models to predict flow metrics in 842 ungauged stream sites in the mid-Atlantic United States that were sampled for fish, macroinvertebrates, and environmental covariates. Fish and macroinvertebrate assemblages were characterized in terms of a suite of metrics that quantified aspects of community composition, diversity, and functional traits that were expected to be associated with differences in flow characteristics. We related modeled flow metrics to biological metrics in a series of stressor-response models. Our analyses identified both drying and base flow instability as explaining 30-50% of the observed variability in fish and invertebrate community composition. Variations in community composition were related to variations in the prevalence of dispersal traits in invertebrates and trophic guilds in fish. The results demonstrate that we can use statistical models to predict hydrologic conditions at bioassessment sites, which, in turn, we can use to estimate relationships between flow conditions and biological characteristics. This analysis provides an approach to quantify the effects of spatial variation in flow metrics using readily available biomonitoring data. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Malek, Anna J.; Collie, Jeremy S.; Gartland, James
2014-06-01
The abundance, biomass, diversity, and species composition of the demersal fish and invertebrate community in Rhode Island Sound and Block Island Sound, an area identified for offshore renewable energy development, were evaluated for spatial and seasonal structure. We conducted 58 otter trawls and 51 beam trawls in the spring, summer and fall of 2009-2012, and incorporated additional data from 88 otter trawls conducted by the Northeast Area Monitoring and Assessment Program. We used regionally-grouped abundance, biomass, diversity, and size spectra to assess spatial patterns in the aggregate fish community, and hierarchical cluster analysis to evaluate trends in species assemblages. Our analyses revealed coherent gradients in fish community biomass, diversity and species composition extending from inshore to offshore waters, as well as patterns related to the differing bathymetry of Rhode Island and Block Island Sounds. The fish communities around Block Island and Cox's Ledge are particularly diverse, suggesting that the proximity of hard bottom habitat may be important in structuring fish communities in this area. Species assemblages in Rhode Island and Block Island Sounds are characterized by a combination of piscivores (silver hake, summer flounder, spiny dogfish), benthivores (American lobster, black sea bass, Leucoraja spp. skates, scup) and planktivores (sea scallop), and exhibit geographic patterns that are persistent from year to year, yet variable by season. Such distributions reflect the cross-shelf migration of fish and invertebrate species in the spring and fall, highlighting the importance of considering seasonal fish behavior when planning construction schedules for offshore development projects. The fine spatial scale (10 s of kms) of this research makes it especially valuable for local marine spatial planning efforts by identifying local-scale patterns in fish community structure that will enable future assessment of the ecological impacts of offshore development. As such, this knowledge of the spatial and temporal structure of the demersal fish community in Rhode Island and Block Island Sounds will help to guide the placement of offshore structures so as to preserve the ecological and economic value of the area.
High Levels of Sediment Contamination Have Little Influence on Estuarine Beach Fish Communities
McKinley, Andrew C.; Dafforn, Katherine A.; Taylor, Matthew D.; Johnston, Emma L.
2011-01-01
While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination. PMID:22039470
Diel shifts in the structure and function of nearshore estuarine fish communities.
Yeoh, D E; Valesini, F J; Hallett, C S; Abdo, D A; Williams, J
2017-04-01
Day-night shifts in the nearshore fish fauna of a temperate microtidal estuary were assessed using a holistic suite of structural and functional community attributes. Mean fish species richness and diversity (taxonomic distinctness) were higher at night across all regions of the estuary and seasons, concurring with the findings of numerous comparable studies reviewed worldwide, while the diel period in which mean abundance was higher varied among seasons. Likewise, species and functional guild compositions (the latter based on feeding modes and habitat use) both differed significantly between day and night, with the extent of the diel shift again varying seasonally. Daytime fish communities were characterized by higher abundances of Atherinidae, Sillaginidae and Mugilidae, while Gobiidae were far more abundant at night. Marked shifts in size composition were also evident, with smaller fishes (<100 mm total length, L T ) being more prevalent during the day and larger fishes (≥200 mm L T ) proportionally more abundant at night. The above diel shifts were feasibly related to a range of predator-prey interactions and feeding-related movements, namely a nocturnal decrease in top-order avian piscivory coupled with an increase in invertebrate prey availability, resulting in changes in the presence and catchability of certain fish species in shallow estuarine waters. © 2016 The Fisheries Society of the British Isles.
Environment shapes the fecal microbiome of invasive carp species.
Eichmiller, Jessica J; Hamilton, Matthew J; Staley, Christopher; Sadowsky, Michael J; Sorensen, Peter W
2016-08-12
Although the common, silver, and bighead carps are native and sparsely distributed in Eurasia, these fish have become abundant and invasive in North America. An understanding of the biology of these species may provide insights into sustainable control methods. The animal-associated microbiome plays an important role in host health. Characterization of the carp microbiome and the factors that affect its composition is an important step toward understanding the biology and interrelationships between these species and their environments. We compared the fecal microbiomes of common, silver, and bighead carps from wild and laboratory environments using Illumina sequencing of bacterial 16S ribosomal RNA (rRNA). The fecal bacterial communities of fish were diverse, with Shannon indices ranging from 2.3 to 4.5. The phyla Proteobacteria, Firmicutes, and Fusobacteria dominated carp guts, comprising 76.7 % of total reads. Environment played a large role in shaping fecal microbial community composition, and microbiomes among captive fishes were more similar than among wild fishes. Although differences among wild fishes could be attributed to feeding preferences, diet did not strongly affect microbial community structure in laboratory-housed fishes. Comparison of wild- and lab-invasive carps revealed five shared OTUs that comprised approximately 40 % of the core fecal microbiome. The environment is a dominant factor shaping the fecal bacterial communities of invasive carps. Captivity alters the microbiome community structure relative to wild fish, while species differences are pronounced within habitats. Despite the absence of a true stomach, invasive carp species exhibited a core microbiota that warrants future study.
The Influence of Coral Reef Benthic Condition on Associated Fish Assemblages
Chong-Seng, Karen M.; Mannering, Thomas D.; Pratchett, Morgan S.; Bellwood, David R.; Graham, Nicholas A. J.
2012-01-01
Accumulative disturbances can erode a coral reef’s resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae. PMID:22870294
The influence of coral reef benthic condition on associated fish assemblages.
Chong-Seng, Karen M; Mannering, Thomas D; Pratchett, Morgan S; Bellwood, David R; Graham, Nicholas A J
2012-01-01
Accumulative disturbances can erode a coral reef's resilience, often leading to replacement of scleractinian corals by macroalgae or other non-coral organisms. These degraded reef systems have been mostly described based on changes in the composition of the reef benthos, and there is little understanding of how such changes are influenced by, and in turn influence, other components of the reef ecosystem. This study investigated the spatial variation in benthic communities on fringing reefs around the inner Seychelles islands. Specifically, relationships between benthic composition and the underlying substrata, as well as the associated fish assemblages were assessed. High variability in benthic composition was found among reefs, with a gradient from high coral cover (up to 58%) and high structural complexity to high macroalgae cover (up to 95%) and low structural complexity at the extremes. This gradient was associated with declining species richness of fishes, reduced diversity of fish functional groups, and lower abundance of corallivorous fishes. There were no reciprocal increases in herbivorous fish abundances, and relationships with other fish functional groups and total fish abundance were weak. Reefs grouping at the extremes of complex coral habitats or low-complexity macroalgal habitats displayed markedly different fish communities, with only two species of benthic invertebrate feeding fishes in greater abundance in the macroalgal habitat. These results have negative implications for the continuation of many coral reef ecosystem processes and services if more reefs shift to extreme degraded conditions dominated by macroalgae.
Fish communities associated with cold-water corals vary with depth and substratum type
NASA Astrophysics Data System (ADS)
Milligan, Rosanna J.; Spence, Gemma; Roberts, J. Murray; Bailey, David M.
2016-08-01
Understanding the processes that drive the distribution patterns of organisms and the scales over which these processes operate are vital when considering the effective management of species with high commercial or conservation value. In the deep sea, the importance of scleractinian cold-water corals (CWCs) to fish has been the focus of several studies but their role remains unclear. We propose this may be due to the confounding effects of multiple drivers operating over multiple spatial scales. The aims of this study were to investigate the role of CWCs in shaping fish community structure and individual species-habitat associations across four spatial scales in the NE Atlantic ranging from "regions" (separated by >500 km) to "substratum types" (contiguous). Demersal fish and substratum types were quantified from three regions: Logachev Mounds, Rockall Bank and Hebrides Terrace Seamount (HTS). PERMANOVA analyses showed significant differences in community composition between all regions which were most likely caused by differences in depths. Within regions, significant variation in community composition was recorded at scales of c. 20-3500 m. CWCs supported significantly different fish communities to non-CWC substrata at Rockall Bank, Logachev and the HTS. Single-species analyses using generalised linear mixed models showed that Sebastes sp. was strongly associated with CWCs at Rockall Bank and that Neocyttus helgae was more likely to occur in CWCs at the HTS. Depth had a significant effect on several other fish species. The results of this study suggest that the importance of CWCs to fish is species-specific and depends on the broader spatial context in which the substratum is found. The precautionary approach would be to assume that CWCs are important for associated fish, but must acknowledge that CWCs in different depths will not provide redundancy or replication within spatially-managed conservation networks.
Spearfishing data reveals the littoral fish communities' association to coastal configuration
NASA Astrophysics Data System (ADS)
Boada, Jordi; Sagué, Oscar; Gordoa, Ana
2017-12-01
Increasing the knowledge about littoral fish communities is important for ecological sciences, fisheries and the sustainability of human communities. The scarcity of baseline data at large spatial scales in a fast-changing world makes it necessary to implement special programs to monitor natural ecosystems. In the present study, we evaluate littoral fish communities using data from spearfishing contests. The Catalan Federation of Underwater Activities (FECDAS) regularly organizes fishing contests across ca. 600 km of coast. Catch records made over the last sixteen years were used to study the fish communities along the coastline. We found two different communities that are closely related to the habitat configuration at a regional level. Interestingly, contests held on the northern coast were mainly grouped together and were characterized by species that inhabit complex rocky habitats, and contests held on the southern coast were grouped together and were mainly determined by soft bottoms species (i.e. mugilids and Sarpa salpa). In the south group the white sea bream was also very abundant compared to the north group. No significant changes in the community composition were found in the studied period and we successfully set descriptive baselines. Finally, based on these results we propose that studying the data from fishing contest records can be used to complement the available tools for monitoring fish communities.
Helminth communities of four commercially important fish species from Chetumal Bay, Mexico.
Aguirre-Macedo, M L; Vidal-Martínez, V M; González-Solís, D; Caballero, P I
2007-03-01
The relative importance of ecology and evolution as factors determining species richness and composition of the helminth communities of fish is a matter of current debate. Theoretical studies use host-parasite lists, but these do not include studies on a temporal or spatial scale. Local environmental conditions and host biological characteristics are shown to influence helminth species richness and composition in four fish species (Eugerres plumieri, Hexanematichthys assimilis, Oligoplites saurus, and Scomberomorus maculatus) in Chetumal Bay, Mexico. With the exception of H. assimilis, the helminth communities had not been previously studied and possible associations between environmental and host biological characteristics as factors determining helminth species richness and composition using redundancy analysis (RDA) are described. Thirty-four helminth species are identified, with the highest number of species (19 total (mean = 6.3 +/- 2.1)) and the lowest (9 (4.0 +/- 1.0)) occurring in H. assimilis and S. maculatus, respectively. The larval nematodes Contracaecum sp. and Pseudoterranova sp. were not only the helminth species shared by all four host species but also were the most prevalent and abundant. Statistical associations between helminth community parameters and local ecological variables such as host habitat use, feeding habits, mobility, and time of residence in coastal lagoons are identified. Phylogeny is important because it clearly separates all four host species by their specialist parasites, although specific habitat and feeding habits also significantly influence the differentiation between the four fish species.
Baldigo, Barry P.; Lawrence, G.B.
2000-01-01
The effects of acidification in lotic systems are not well documented. Spatial and temporal variability of habitat and water quality complicate the evaluation of acidification effects in streams and river. The Neversink River in the Catskill Mountains of southeastern New York, the tributaries of which vary from well buffered to severely acidified, provided an opportunity to investigate the external and magnitude of acidification effects on fish communities of headwater systems. Composition of fish communities, water quality, stream hydrology, stream habitat, and physiographic factors were characterized from 1991 to 1995 at 16 first- to fourth-order sites in the basin. Correlation and regression analyses were used to develop empirical models and to assess the relations among fish species richness, total fish density, and total biomass and environmental variables. Chronic and episodic acidification and elevated concentrations of inorganic monomeric aluminum were common, and fish populations were rare or absent from several sites in the upper reaches of the basin; as many as six fish species were collected from sites in the lower reaches of the basin. Species distribution and species richness were most highly related to stream pH, acid-neutralizing capacity (ANC), inorganic monomeric aluminum (Al(im)), calcium (Ca)2+, and potassium (K)+ concentrations, site elevation, watershed drainage area, and water temperature. Fish density was most highly related to stream pH, Al(im), ANC, K+, Ca2+, and magnesium (Mg)2+ concentrations. Fish biomass, unlike species richness and fish density, was most highly related to physical habitat characteristics, water temperature, and concentrations of Mg2+ and silicon. Acidity characteristics were of secondary importance to fish biomass at all but the most severely acidified sites. Our results indicate that (1) the total biomass of fish communities was not seriously affected at moderately to strongly acidified sites; (2) species richness and total density of fish were adversely affected at strongly to severely acidified sites; and (3) possible changes in competitive interactions may mitigate negative effects of acidification on fish communities in parts of the Neversink River Basin.
2016-01-01
The potential environmental impacts of large-scale storage hydroelectric power (HEP) schemes have been well-documented in the literature. In Europe, awareness of these potential impacts and limited opportunities for politically-acceptable medium- to large-scale schemes, have caused attention to focus on smaller-scale HEP schemes, particularly run-of-river (ROR) schemes, to contribute to meeting renewable energy targets. Run-of-river HEP schemes are often presumed to be less environmentally damaging than large-scale storage HEP schemes. However, there is currently a lack of peer-reviewed studies on their physical and ecological impact. The aim of this article was to investigate the effects of ROR HEP schemes on communities of fish in temperate streams and rivers, using a Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 23 systematically-selected ROR HEP schemes and 23 systematically-selected paired control sites. Six area-normalised metrics of fish community composition were analysed using a linear mixed effects model (number of species, number of fish, number of Atlantic salmon—Salmo salar, number of >1 year old Atlantic salmon, number of brown trout—Salmo trutta, and number of >1 year old brown trout). The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the number of species. However, no statistically significant effects were detected on the other five metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future fish community impact studies. PMID:27191717
Bilotta, Gary S; Burnside, Niall G; Gray, Jeremy C; Orr, Harriet G
2016-01-01
The potential environmental impacts of large-scale storage hydroelectric power (HEP) schemes have been well-documented in the literature. In Europe, awareness of these potential impacts and limited opportunities for politically-acceptable medium- to large-scale schemes, have caused attention to focus on smaller-scale HEP schemes, particularly run-of-river (ROR) schemes, to contribute to meeting renewable energy targets. Run-of-river HEP schemes are often presumed to be less environmentally damaging than large-scale storage HEP schemes. However, there is currently a lack of peer-reviewed studies on their physical and ecological impact. The aim of this article was to investigate the effects of ROR HEP schemes on communities of fish in temperate streams and rivers, using a Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 23 systematically-selected ROR HEP schemes and 23 systematically-selected paired control sites. Six area-normalised metrics of fish community composition were analysed using a linear mixed effects model (number of species, number of fish, number of Atlantic salmon-Salmo salar, number of >1 year old Atlantic salmon, number of brown trout-Salmo trutta, and number of >1 year old brown trout). The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the number of species. However, no statistically significant effects were detected on the other five metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future fish community impact studies.
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
Fishing degrades size structure of coral reef fish communities.
Robinson, James P W; Williams, Ivor D; Edwards, Andrew M; McPherson, Jana; Yeager, Lauren; Vigliola, Laurent; Brainard, Russell E; Baum, Julia K
2017-03-01
Fishing pressure on coral reef ecosystems has been frequently linked to reductions of large fishes and reef fish biomass. Associated impacts on overall community structure are, however, less clear. In size-structured aquatic ecosystems, fishing impacts are commonly quantified using size spectra, which describe the distribution of individual body sizes within a community. We examined the size spectra and biomass of coral reef fish communities at 38 US-affiliated Pacific islands that ranged in human presence from near pristine to human population centers. Size spectra 'steepened' steadily with increasing human population and proximity to market due to a reduction in the relative biomass of large fishes and an increase in the dominance of small fishes. Reef fish biomass was substantially lower on inhabited islands than uninhabited ones, even at inhabited islands with the lowest levels of human presence. We found that on populated islands size spectra exponents decreased (analogous to size spectra steepening) linearly with declining biomass, whereas on uninhabited islands there was no relationship. Size spectra were steeper in regions of low sea surface temperature but were insensitive to variation in other environmental and geomorphic covariates. In contrast, reef fish biomass was highly sensitive to oceanographic conditions, being influenced by both oceanic productivity and sea surface temperature. Our results suggest that community size structure may be a more robust indicator than fish biomass to increasing human presence and that size spectra are reliable indicators of exploitation impacts across regions of different fish community compositions, environmental drivers, and fisheries types. Size-based approaches that link directly to functional properties of fish communities, and are relatively insensitive to abiotic variation across biogeographic regions, offer great potential for developing our understanding of fishing impacts in coral reef ecosystems. © 2016 John Wiley & Sons Ltd.
Establishment of a fish community in the hayden-rhodes and salt-gila aqueducts, Arizona
Mueller, G.
1996-01-01
Fish populations were studied in the Central Arizona Project's canal system during the first 4 years of aqueduct operation (1986-1989). Ichthyoplankton entering the canal from Lake Havasu averaged 1 larva/m3 during April-June 1987 and 1988. Larval fish densities increased significantly in downstream samples, substantiating diver observations that fish were spawning in the canal system. Of the 16 fish species collected, 14 were assumed to have originated from Lake Havasu and 2 were introduced by anglers from their bait buckets. Initially, the fish community was dominated numerically by threadfin shad Dorosoma petenense (>88%), centrarchids (< 10%), cyprinids (<2%), and striped bass Morone saxatilis (<1%). However, as annual water diversions increased from 13 x 108 m3 in 1986 to 9.4 x 108 m3 in 1989, community composition shifted from clupeids to centrarchids (70%). Fish densities dropped from an estimated 1,260 fish/ha in 1986 to 17 fish/ha in 1989, and biomass dropped from 116 to 73 kg/ha. Declines were attributed to higher operational velocities, associated scour, deprivation, and predation. Although initial populations adjusted downward to planned operational conditions, the fish community continued to represent a potentially valuable, but as yet unused, resource.
NASA Astrophysics Data System (ADS)
Badosa, Anna; Boix, Dani; Brucet, Sandra; López-Flores, Rocío; Gascón, Stéphanie; Quintana, Xavier D.
2007-01-01
The influence of hydrology, nutrient composition, food resource availability and predation on zooplankton taxonomic and size diversity was analyzed in several shallow lagoons of a Mediterranean salt marsh (Baix Ter Wetlands, NE Iberian Peninsula). Taxonomic diversity correlated better with variables related to the trophic state, such as nutrient concentrations, whereas size diversity was more sensitive to fish predation. However, the fish predation influence on the size diversity was only significant when fishes reached high densities. Under low fish densities no predation effects were observed and the food resource availability (FR a) appeared to be more important in structuring the zooplankton community. Nevertheless, the two diversity indexes showed opposite responses to this factor. With increasing FR a the taxonomic diversity increased and the size diversity decreased. Neither taxonomic nor size diversity of the zooplankton community correlated with other physical or biotic factors such as hydrological variability or macroinvertebrate predation. The relationships found suggest that the size diversity is mainly related to biotic interactions, such as fish predation or inter/intraspecific competition, while the taxonomic diversity appears to be more sensitive to abiotic factors such as the nutrient composition.
Pierce, C.L.; Sexton, M.D.; Pelham, M.E.; Larscheid, J.G.
2001-01-01
We assessed short-term variability and long-term change in the composition of the littoral fish community in Spirit Lake, Iowa. Fish were sampled in several locations at night with large beach seines during spring, summer and fall of 1995-1998. Long-term changes were inferred from comparison with a similar study conducted over 70 y earlier in Spirit Lake. We found 26 species in the littoral zone. The number of species per sample ranged from 4 to 18, averaging 11.8. The average number of species per sample was higher at stations with greater vegetation density. A distinct seasonal pattern was evident in the number of species collected per sample in most years, increasing steadily from spring to fall. Patterns of variability within our 1995-1998 study period suggest that: (1) numerous samples are necessary to adequately characterize a littoral fish community, (2) sampling should be done when vegetation and young-of-year densities are highest and (3) sampling during a single year is inadequate to reveal the full community. The number of native species has declined by approximately 25% over the last 70 y. A coincident decline in littoral vegetation and associated habitat changes during the same period are likely causes of the long-term community change.
Comparison of outcomes of permanently closed and periodically harvested coral reef reserves.
Bartlett, C Y; Manua, C; Cinner, J; Sutton, S; Jimmy, R; South, R; Nilsson, J; Raina, J
2009-12-01
In many areas of the developing world, the establishment of permanent marine reserves is inhibited by cultural norms or socioeconomic pressures. Community conserved areas that are periodically harvested are increasingly being implemented as fisheries management tools, but few researchers have empirically compared them with permanently closed reserves. We used a hierarchical control-impact experimental design to compare the abundance and biomass of reef fishes, invertebrates, and substrate composition in periodically harvested and permanent reserves and in openly fished (control sites) of the South Pacific island country of Vanuatu. Fished species had significantly higher biomass in periodically harvested reserves than in adjacent openly fished areas. We did not detect differences in substratum composition between permanent reserves and openly fished areas or between permanent reserves and periodically harvested reserves. Giant clams (tridacnids) and top shells (Trochus niloticus) were vulnerable to periodic harvest, and we suggest that for adequate management of these species, periodically harvested community conservation areas be used in conjunction with other management strategies. Periodic harvest within reserves is an example of adaptive and flexible management that may meet conservation goals and that is suited to the social, economic, and cultural contexts of many coastal communities in the developing world.
Characterizing fish community diversity across Virginia landscapes: Prerequisite for conservation
Angermeier, P.L.; Winston, M.R.
1999-01-01
The number of community types occurring within landscapes is an important, but often unprotected, component of biological diversity. Generally applicable protocols for characterizing community diversity need to be developed to facilitate conservation. We used several multivariate techniques to analyze geographic variation in the composition of fish communities in Virginia streams. We examined relationships between community composition and six landscape variables: drainage basin, physiography, stream order, elevation, channel slope, and map coordinates. We compared patterns at two scales (statewide and subdrainage-specific) to assess sensitivity of community classification to spatial scale. We also compared patterns based on characterizing communities by species composition vs. ecological composition. All landscape variables explained significant proportions of the variance in community composition. Statewide, they explained 32% of the variance in species composition and 48% of the variance in ecological composition. Typical communities in each drainage or physiography were statistically distinctive. Communities in different combinations of drainage, physiography, and stream size were even more distinctive, but composition was strongly spatially autocorrelated. Ecological similarity and species similarity of community pairs were strongly related, but replacement by ecologically similar species was common among drainage-physiography combinations. Landscape variables explained significant proportions of variance in community composition within selected subdrainages, but proportions were less than at the statewide scale, and the explanatory power of individual variables varied considerably among subdrainages. Community variation within subdrainages appeared to be much more closely related to environmental variation than to replacement among ecologically similar species. Our results suggest that taxonomic and ecological characterizations of community composition are complementary; both are useful in a conservation context. Landscape features such as drainage, physiography, and water body size generally may provide a basis for assessing aquatic community diversity, especially in regions where the biota is poorly known. Systematic conservation of community types would be a major advance relative to most current conservation programs, which typically focus narrowly on populations of imperiled species. More effective conservation of aquatic biodiversity will require new approaches that recognize the value of both species and assemblages, and that emphasize protection of key landscape-scale processes.
Wilson, Shaun K; Babcock, Russ C; Fisher, Rebecca; Holmes, Thomas H; Moore, James A Y; Thomson, Damian P
2012-10-01
Habitat degradation and fishing are major drivers of temporal and spatial changes in fish communities. The independent effects of these drivers are well documented, but the relative importance and interaction between fishing and habitat shifts is poorly understood, particularly in complex systems such as coral reefs. To assess the combined and relative effects of fishing and habitat we examined the composition of fish communities on patch reefs across a gradient of high to low structural complexity in fished and unfished areas of the Ningaloo Marine Park, Western Australia. Biomass and species richness of fish were positively correlated with structural complexity of reefs and negatively related to macroalgal cover. Total abundance of fish was also positively related to structural complexity, however this relationship was stronger on fished reefs than those where fishing is prohibited. The interaction between habitat condition and fishing pressure is primarily due to the high abundance of small bodied planktivorous fish on fished reefs. However, the influence of management zones on the abundance and biomass of predators and target species is small, implying spatial differences in fishing pressure are low and unlikely to be driving this interaction. Our results emphasise the importance of habitat in structuring reef fish communities on coral reefs especially when gradients in fishing pressure are low. The influence of fishing effort on this relationship may however become more important as fishing pressure increases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs.
Loh, Tse-Lynn; Pawlik, Joseph R
2014-03-18
Ecological studies have rarely been performed at the community level across a large biogeographic region. Sponges are now the primary habitat-forming organisms on Caribbean coral reefs. Recent species-level investigations have demonstrated that predatory fishes (angelfishes and some parrotfishes) differentially graze sponges that lack chemical defenses, while co-occurring, palatable species heal, grow, reproduce, or recruit at faster rates than defended species. Our prediction, based on resource allocation theory, was that predator removal would result in a greater proportion of palatable species in the sponge community on overfished reefs. We tested this prediction by performing surveys of sponge and fish community composition on reefs having different levels of fishing intensity across the Caribbean. A total of 109 sponge species was recorded from 69 sites, with the 10 most common species comprising 51.0% of sponge cover (3.6-7.7% per species). Nonmetric multidimensional scaling indicated that the species composition of sponge communities depended more on the abundance of sponge-eating fishes than geographic location. Across all sites, multiple-regression analyses revealed that spongivore abundance explained 32.8% of the variation in the proportion of palatable sponges, but when data were limited to geographically adjacent locations with strongly contrasting levels of fishing pressure (Cayman Islands and Jamaica; Curaçao, Bonaire, and Martinique), the adjusted R(2) values were much higher (76.5% and 94.6%, respectively). Overfishing of Caribbean coral reefs, particularly by fish trapping, removes sponge predators and is likely to result in greater competition for space between faster-growing palatable sponges and endangered reef-building corals.
Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs
Loh, Tse-Lynn; Pawlik, Joseph R.
2014-01-01
Ecological studies have rarely been performed at the community level across a large biogeographic region. Sponges are now the primary habitat-forming organisms on Caribbean coral reefs. Recent species-level investigations have demonstrated that predatory fishes (angelfishes and some parrotfishes) differentially graze sponges that lack chemical defenses, while co-occurring, palatable species heal, grow, reproduce, or recruit at faster rates than defended species. Our prediction, based on resource allocation theory, was that predator removal would result in a greater proportion of palatable species in the sponge community on overfished reefs. We tested this prediction by performing surveys of sponge and fish community composition on reefs having different levels of fishing intensity across the Caribbean. A total of 109 sponge species was recorded from 69 sites, with the 10 most common species comprising 51.0% of sponge cover (3.6–7.7% per species). Nonmetric multidimensional scaling indicated that the species composition of sponge communities depended more on the abundance of sponge-eating fishes than geographic location. Across all sites, multiple-regression analyses revealed that spongivore abundance explained 32.8% of the variation in the proportion of palatable sponges, but when data were limited to geographically adjacent locations with strongly contrasting levels of fishing pressure (Cayman Islands and Jamaica; Curaçao, Bonaire, and Martinique), the adjusted R2 values were much higher (76.5% and 94.6%, respectively). Overfishing of Caribbean coral reefs, particularly by fish trapping, removes sponge predators and is likely to result in greater competition for space between faster-growing palatable sponges and endangered reef-building corals. PMID:24567392
Nutrient and algal responses to winterkilled fish-derived nutrient subsidies in eutrophic lakes
Schoenebeck, Casey W.; Brown, Michael L.; Chipps, Steven R.; German, David R.
2012-01-01
Fishes inhabiting shallow, glacial lakes of the Prairie Pothole Region in the United States and Canada periodically experience hypoxia in severe winters that can lead to extensive fish mortality resulting in high biomasses of dead fish. However, the role of carcass-derived nutrient subsidies in shallow, eutrophic lakes translocated to pelagic primary producers is not well documented. This study quantified the influence of winterkill events on nutrient contributions from decaying fish carcasses of common carp (Cyprinus carpio) and the phytoplankton response among pre- and postwinterkill years and compared seasonal patterns of nutrient limitation and phytoplankton community composition between winterkill and nonwinterkill lakes. We found that fish carcasses contributed an estimated 2.5–4.3 kg/ha of total (Kjeldahl) nitrogen (N) and 0.3–0.5 kg/ha of total phosphorus (P) to lakes that experienced winterkill conditions. Nutrient bioassays showed that winterkill lakes were primarily N limited, congruent with the low N:P ratios produced by fish carcasses corrected for the disproportionate release of N and P (8.6). Nutrient subsidies translocated from decomposed fish to pelagic primary producers seemed to have little immediate influence on the seasonal phytoplankton community composition, but total N and subsequent chlorophyll-a increased the year following the winterkill event. Cyanobacteria density varied seasonally but was higher in winterkill lakes, presumably due to the integration of nutrients released from fish decomposition. This study provides evidence that large inputs of autochthonous fish-derived nutrients contribute to nutrient availability within winterkilled systems and increase the maximum attainable biomass of the phytoplankton community.
Kelly, Emily L A; Eynaud, Yoan; Clements, Samantha M; Gleason, Molly; Sparks, Russell T; Williams, Ivor D; Smith, Jennifer E
2016-12-01
Patterns of species resource use provide insight into the functional roles of species and thus their ecological significance within a community. The functional role of herbivorous fishes on coral reefs has been defined through a variety of methods, but from a grazing perspective, less is known about the species-specific preferences of herbivores on different groups of reef algae and the extent of dietary overlap across an herbivore community. Here, we quantified patterns of redundancy and complementarity in a highly diverse community of herbivores at a reef on Maui, Hawaii, USA. First, we tracked fish foraging behavior in situ to record bite rate and type of substrate bitten. Second, we examined gut contents of select herbivorous fishes to determine consumption at a finer scale. Finally, we placed foraging behavior in the context of resource availability to determine how fish selected substrate type. All species predominantly (73-100 %) foraged on turf algae, though there were differences among the types of macroalgae and other substrates bitten. Increased resolution via gut content analysis showed the composition of turf algae consumed by fishes differed across herbivore species. Consideration of foraging behavior by substrate availability revealed 50 % of herbivores selected for turf as opposed to other substrate types, but overall, there were variable foraging portfolios across all species. Through these three methods of investigation, we found higher complementarity among herbivorous fishes than would be revealed using a single metric. These results suggest differences across species in the herbivore "rain of bites" that graze and shape benthic community composition.
How many fish? Comparison of two underwater visual sampling methods for monitoring fish communities
Sini, Maria; Vatikiotis, Konstantinos; Katsoupis, Christos
2018-01-01
Background Underwater visual surveys (UVSs) for monitoring fish communities are preferred over fishing surveys in certain habitats, such as rocky or coral reefs and seagrass beds and are the standard monitoring tool in many cases, especially in protected areas. However, despite their wide application there are potential biases, mainly due to imperfect detectability and the behavioral responses of fish to the observers. Methods The performance of two methods of UVSs were compared to test whether they give similar results in terms of fish population density, occupancy, species richness, and community composition. Distance sampling (line transects) and plot sampling (strip transects) were conducted at 31 rocky reef sites in the Aegean Sea (Greece) using SCUBA diving. Results Line transects generated significantly higher values of occupancy, species richness, and total fish density compared to strip transects. For most species, density estimates differed significantly between the two sampling methods. For secretive species and species avoiding the observers, the line transect method yielded higher estimates, as it accounted for imperfect detectability and utilized a larger survey area compared to the strip transect method. On the other hand, large-scale spatial patterns of species composition were similar for both methods. Discussion Overall, both methods presented a number of advantages and limitations, which should be considered in survey design. Line transects appear to be more suitable for surveying secretive species, while strip transects should be preferred at high fish densities and for species of high mobility. PMID:29942703
Evaluating social and ecological vulnerability of coral reef fisheries to climate change.
Cinner, Joshua E; Huchery, Cindy; Darling, Emily S; Humphries, Austin T; Graham, Nicholas A J; Hicks, Christina C; Marshall, Nadine; McClanahan, Tim R
2013-01-01
There is an increasing need to evaluate the links between the social and ecological dimensions of human vulnerability to climate change. We use an empirical case study of 12 coastal communities and associated coral reefs in Kenya to assess and compare five key ecological and social components of the vulnerability of coastal social-ecological systems to temperature induced coral mortality [specifically: 1) environmental exposure; 2) ecological sensitivity; 3) ecological recovery potential; 4) social sensitivity; and 5) social adaptive capacity]. We examined whether ecological components of vulnerability varied between government operated no-take marine reserves, community-based reserves, and openly fished areas. Overall, fished sites were marginally more vulnerable than community-based and government marine reserves. Social sensitivity was indicated by the occupational composition of each community, including the importance of fishing relative to other occupations, as well as the susceptibility of different fishing gears to the effects of coral bleaching on target fish species. Key components of social adaptive capacity varied considerably between the communities. Together, these results show that different communities have relative strengths and weaknesses in terms of social-ecological vulnerability to climate change.
What's All This Fuss about Communities?
ERIC Educational Resources Information Center
Balester, Valerie
Communities of one sort or another are found in the literature of many disciplines and are used to explain any number of things: linguists examine language in terms of speech communities, while composition researchers write of discourse communities. Linguists have advanced various definitions of communities, but Stanley Fish's "Is There a…
NASA Astrophysics Data System (ADS)
Green, Benjamin C.; Smith, David J.; Earley, Sarah E.; Hepburn, Leanne J.; Underwood, Graham J. C.
2009-11-01
European intertidal salt marshes are important nursery sites for juvenile fish and crustaceans. Due to the increasing threat of habitat loss, the seasonal changes of salt marsh fish communities need to be understood in order to appreciate the ecological and economic importance of the saltmarsh habitat. This study was the first in Great Britain to investigate the seasonal changes of salt marsh fish communities and the variation in community structure between closely located marsh habitats. Between February 2007 and March 2008, five marshes on three estuaries of the Essex coastline were sampled using flume nets to block off intertidal creeks at high tide. Fourteen fish species were caught. The community overall was dominated by three species that made up 91.6% of the total catch: the common goby Pomatoschistus microps (46.2% of the total catch), juvenile herring Clupea harengus (24.3%), and juvenile and larval sea bass Dicentrarchus labrax (21.2%). Cluster analysis demonstrated clear seasonal patterns, with some community structures unique to specific marshes or estuaries. The marsh fish community shifts from a highly diverse community during spring, to a community dominated by D. labrax and P. microps in autumn, and low diversity during winter months. Gravimetric stomach content analysis of fish community identified three main trophic guilds; macroinvertivores, planktivores and omnivores. The macroinvertivore feeding guild contained D. labrax and P. microps, the two most frequently occurring species. This investigation demonstrates the importance of British salt marshes as nursery habitats for commercial fish species.
Hierarchical spatial structure of stream fish colonization and extinction
Hitt, N.P.; Roberts, J.H.
2012-01-01
Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182-194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life-history traits such as spawning mound construction, associations with mound-building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound-building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound-building fishes serve as keystone species for colonization of headwater streams.
Lamouroux, N.; Poff, N.L.; Angermeier, P.L.
2002-01-01
Community convergence across biogeographically distinct regions suggests the existence of key, repeated, evolutionary mechanisms relating community characteristics to the environment. However, convergence studies at the community level often involve only qualitative comparisons of the environment and may fail to identify which environmental variables drive community structure. We tested the hypothesis that the biological traits of fish communities on two continents (Europe and North America) are similarly related to environmental conditions. Specifically, from observations of individual fish made at the microhabitat scale (a few square meters) within French streams, we generated habitat preference models linking traits of fish species to local scale hydraulic conditions (Froude number), Using this information, we then predicted how hydraulics and geomorphology at the larger scale of stream reaches (several pool-riffle sequences) should quantitatively influence the trait composition of fish communities. Trait composition for fishes in stream reaches with low Froude number at low flow or high proportion of pools was predicted as nonbenthic, large, fecund, long-lived, nonstreamlined, and weak swimmers. We tested our predictions in contrasting stream reaches in France (n = 11) and Virginia, USA (n = 76), using analyses of covariance to quantify the relative influence of continent vs. physical habitat variables on fish traits. The reach-scale convergence analysis indicated that trait proportions in the communities differed between continents (up to 55% of the variance in each trait was explained by "continent"), partly due to distinct evolutionary histories. However, within continents, trait proportions were comparably related to the hydraulic and geomorphic variables (up to 54% of the variance within continents explained). In particular, a synthetic measure of fish traits in reaches was well explained (50% of its variance) by the Froude number independently of the continent. The effect of physical variables did not differ across continents for most traits, confirming our predictions qualitatively and quantitatively. Therefore, despite phylogenetic and historical differences between continents, fish communities of France and Virginia exhibit convergence in biological traits related to hydraulics and geomorphology. This convergence reflects morphological and behavioral adaptations to physical stress in streams. This study supports the existence of a habitat template for ecological strategies. Some key quantitative variables that define this habitat template can be identified by characterizing how individual organisms use their physical environment, and by using dimensionless physical variables that reveal common energetic properties in different systems. Overall, quantitative tests of community convergence are efficient tools to demonstrate that some community traits are predictable from environmental features.
Siriyappagouder, Prabhugouda; Kiron, Viswanath; Lokesh, Jep; Rajeish, Moger; Kopp, Martina; Fernandes, Jorge
2018-01-01
As an integral part of the resident microbial community of fish intestinal tract, the mycobiota is expected to play important roles in health and disease resistance of the host. The composition of the diverse fungal communities, which colonize the intestine, is greatly influenced by the host, their diet and geographic origin. Studies of fungal communities are rare and the majority of previous studies have relied on culture-based methods. In particular, fungal communities in fish are also poorly characterized. The aim of this study was to provide an in-depth overview of the intestinal mycobiota in a model fish species (zebrafish, Danio rerio) and to determine differences in fungal composition between wild and captive specimens. We have profiled the intestinal mycobiota of wild-caught (Sharavati River, India), laboratory-reared (Bodø, Norway) and wild-caught-laboratory-kept (Uttara, India) zebrafish by sequencing the fungal internal transcribed spacer 2 region on the Illumina MiSeq platform. Wild fish were exposed to variable environmental factors, whereas both laboratory groups were kept in controlled conditions. There were also differences in husbandry practices at Bodø and Uttara, particularly diet. Zebrafish from Bodø were reared in the laboratory for over 10 generations, while wild-caught-laboratory-kept fish from Uttara were housed in the laboratory for only 2 months before sample collection. The intestine of zebrafish contained members of more than 15 fungal classes belonging to the phyla Ascomycota, Basidiomycota, and Zygomycota. Fungal species richness and diversity distinguished the wild-caught and laboratory-reared zebrafish communities. Wild-caught zebrafish-associated mycobiota comprised mainly Dothideomycetes in contrast to their Saccharomycetes-dominated laboratory-reared counterparts. The predominant Saccharomycetes in laboratory-reared fish belonged to the saprotrophic guild. Another characteristic feature of laboratory-reared fish was the significantly higher abundance of Cryptococcus (Tremellomycetes) compared to wild fish. This pioneer study has shed light into the differences in the intestinal fungal communities of wild-caught and laboratory-reared zebrafish and the baseline data generated will enrich our knowledge on fish mycobiota. PMID:29559965
Siriyappagouder, Prabhugouda; Kiron, Viswanath; Lokesh, Jep; Rajeish, Moger; Kopp, Martina; Fernandes, Jorge
2018-01-01
As an integral part of the resident microbial community of fish intestinal tract, the mycobiota is expected to play important roles in health and disease resistance of the host. The composition of the diverse fungal communities, which colonize the intestine, is greatly influenced by the host, their diet and geographic origin. Studies of fungal communities are rare and the majority of previous studies have relied on culture-based methods. In particular, fungal communities in fish are also poorly characterized. The aim of this study was to provide an in-depth overview of the intestinal mycobiota in a model fish species (zebrafish, Danio rerio ) and to determine differences in fungal composition between wild and captive specimens. We have profiled the intestinal mycobiota of wild-caught (Sharavati River, India), laboratory-reared (Bodø, Norway) and wild-caught-laboratory-kept (Uttara, India) zebrafish by sequencing the fungal internal transcribed spacer 2 region on the Illumina MiSeq platform. Wild fish were exposed to variable environmental factors, whereas both laboratory groups were kept in controlled conditions. There were also differences in husbandry practices at Bodø and Uttara, particularly diet. Zebrafish from Bodø were reared in the laboratory for over 10 generations, while wild-caught-laboratory-kept fish from Uttara were housed in the laboratory for only 2 months before sample collection. The intestine of zebrafish contained members of more than 15 fungal classes belonging to the phyla Ascomycota, Basidiomycota, and Zygomycota. Fungal species richness and diversity distinguished the wild-caught and laboratory-reared zebrafish communities. Wild-caught zebrafish-associated mycobiota comprised mainly Dothideomycetes in contrast to their Saccharomycetes-dominated laboratory-reared counterparts. The predominant Saccharomycetes in laboratory-reared fish belonged to the saprotrophic guild. Another characteristic feature of laboratory-reared fish was the significantly higher abundance of Cryptococcus (Tremellomycetes) compared to wild fish. This pioneer study has shed light into the differences in the intestinal fungal communities of wild-caught and laboratory-reared zebrafish and the baseline data generated will enrich our knowledge on fish mycobiota.
Plass-Johnson, Jeremiah G; Taylor, Marc H; Husain, Aidah A A; Teichberg, Mirta C; Ferse, Sebastian C A
2016-01-01
Changes in the coral reef complex can affect predator-prey relationships, resource availability and niche utilisation in the associated fish community, which may be reflected in decreased stability of the functional traits present in a community. This is because particular traits may be favoured by a changing environment, or by habitat degradation. Furthermore, other traits can be selected against because degradation can relax the association between fishes and benthic habitat. We characterised six important ecological traits for fish species occurring at seven sites across a disturbed coral reef archipelago in Indonesia, where reefs have been exposed to eutrophication and destructive fishing practices for decades. Functional diversity was assessed using two complementary indices (FRic and RaoQ) and correlated to important environmental factors (live coral cover and rugosity, representing local reef health, and distance from shore, representing a cross-shelf environmental gradient). Indices were examined for both a change in their mean, as well as temporal (short-term; hours) and spatial (cross-shelf) variability, to assess whether fish-habitat association became relaxed along with habitat degradation. Furthermore, variability in individual traits was examined to identify the traits that are most affected by habitat change. Increases in the general reef health indicators, live coral cover and rugosity (correlated with distance from the mainland), were associated with decreases in the variability of functional diversity and with community-level changes in the abundance of several traits (notably home range size, maximum length, microalgae, detritus and small invertebrate feeding and reproductive turnover). A decrease in coral cover increased variability of RaoQ while rugosity and distance both inversely affected variability of FRic; however, averages for these indices did not reveal patterns associated with the environment. These results suggest that increased degradation of coral reefs is associated with increased variability in fish community functional composition resulting from selective impacts on specific traits, thereby affecting the functional response of these communities to increasing perturbations.
Plass-Johnson, Jeremiah G.; Taylor, Marc H.; Husain, Aidah A. A.; Teichberg, Mirta C.; Ferse, Sebastian C. A.
2016-01-01
Changes in the coral reef complex can affect predator-prey relationships, resource availability and niche utilisation in the associated fish community, which may be reflected in decreased stability of the functional traits present in a community. This is because particular traits may be favoured by a changing environment, or by habitat degradation. Furthermore, other traits can be selected against because degradation can relax the association between fishes and benthic habitat. We characterised six important ecological traits for fish species occurring at seven sites across a disturbed coral reef archipelago in Indonesia, where reefs have been exposed to eutrophication and destructive fishing practices for decades. Functional diversity was assessed using two complementary indices (FRic and RaoQ) and correlated to important environmental factors (live coral cover and rugosity, representing local reef health, and distance from shore, representing a cross-shelf environmental gradient). Indices were examined for both a change in their mean, as well as temporal (short-term; hours) and spatial (cross-shelf) variability, to assess whether fish-habitat association became relaxed along with habitat degradation. Furthermore, variability in individual traits was examined to identify the traits that are most affected by habitat change. Increases in the general reef health indicators, live coral cover and rugosity (correlated with distance from the mainland), were associated with decreases in the variability of functional diversity and with community-level changes in the abundance of several traits (notably home range size, maximum length, microalgae, detritus and small invertebrate feeding and reproductive turnover). A decrease in coral cover increased variability of RaoQ while rugosity and distance both inversely affected variability of FRic; however, averages for these indices did not reveal patterns associated with the environment. These results suggest that increased degradation of coral reefs is associated with increased variability in fish community functional composition resulting from selective impacts on specific traits, thereby affecting the functional response of these communities to increasing perturbations. PMID:27100189
Parasites alter freshwater communities in mesocosms by modifying invasive crayfish behavior.
Reisinger, Lindsey S; Lodge, David M
2016-06-01
Parasites can alter communities by reducing densities of keystone hosts, but few studies have examined how trait-mediated indirect effects of parasites can alter ecological communities. We test how trematode parasites (Microphallus spp.) that affect invasive crayfish (Orconectes rusticus) behavior alter how crayfish impact lake littoral communities. O. rusticus drive community composition in north temperate lakes, and predatory fish can reduce crayfish activity and feeding. In laboratory studies, Microphallus parasites also alter O. rusticus behavior: infected O. rusticus eat fewer macroinvertebrates and are bolder near predatory fish than uninfected individuals. We used a 2 x 2 factorial experiment to test how predatory fish and parasites affect O. rusticus impacts in large mesocosms over 4 weeks. We predicted (1) that when predators were absent, infected crayfish would have lower impacts than uninfected crayfish on macrophytes and macroinvertebrates (as well as reduced growth and higher mortality). However, (2) when predators were present but unable to consume crayfish, infected crayfish would have greater impacts (as well as greater growth and lower mortality) than uninfected crayfish because of increased boldness. Because of its effect on crayfish feeding behavior, we also predicted (3) that infection would alter macrophyte and macroinvertebrate community composition. In contrast to our first hypothesis, we found that infected and uninfected crayfish had similar impacts on lower trophic levels when predators were absent. Across all treatments, infected crayfish were more likely to be outside shelters and had greater growth than uninfected crayfish, suggesting that the reduced feeding observed in short-term experiments does not occur over longer timescales. However, in support of the second hypothesis, when predatory fish were present, infected crayfish ate more macroinvertebrates than did uninfected crayfish, likely due to increased boldness. We also observed a trend for greater macrophyte consumption associated with infection and a trend indicating infection might alter macroinvertebrate community composition. Our results suggest that parasites can alter aquatic communities in mesocosms merely by modifying host behavior.
Seasonal Phenology of Zooplankton Composition in the Southeastern Bering Sea, 2008-2010
NASA Astrophysics Data System (ADS)
Eisner, L. B.; Pinchuk, A. I.; Harpold, C.; Siddon, E. C.; Mier, K.
2016-02-01
The availability of large crustacean zooplankton prey is critical to the condition and survival of forage fish (e.g., age-0 Walleye Pollock), sea birds, and marine mammals in the eastern Bering Sea. Zooplankton community composition and abundances of large lipid-rich copepods (e.g., Calanus spp.) have been evaluated for single seasons, but few studies have investigated seasonal variations in this region. Here, we investigate seasonal changes in taxa (community structure), stage composition (where appropriate), and diversity from spring through late summer/early fall over three consecutive colder than average years. Zooplankton taxonomic samples were collected with oblique bongo tows over the water column during spring (April-May), mid-summer (June-July) and late summer/early fall (August-September) across the southeastern Bering Sea shelf in 2008-2010. Zooplankton abundances were evaluated by oceanographic region, season and year, and related to water mass characteristics (temperature and salinity) and other environmental drivers. Finally, zooplankton phenology was compared to changes in forage fish composition to determine potential overlap of fish predators and zooplankton prey.
Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi
2013-01-01
The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912
William R. Meehan
1996-01-01
The community composition of macroinvertebrates and the feeding habits of juvenile salmonids were studied in eight Oregon streams. Benthic, drift, sticky trap, and water trap samples were taken over a 3-year period, along with stomach samples of the fish. Samples were taken in stream reaches with and without riparian canopy. Both main effectsâfish diet versus...
Kvach, Yuriy; Ondračková, Markéta; Janáč, Michal; Jurajda, Pavel
2018-03-05
The aim of this study was to evaluate the influence of preservation method on the results of parasite community studies. Two host species, European perch Perca fluviatilis and European bitterling Rhodeus amarus, were examined for parasites after having been subjected to 4 different storage treatments: freezing, preservation in 4% formaldehyde or 70% ethanol and transportation of live (fresh) fish as a control. Preservation prior to dissection resulted in a loss of information, leading to incomplete quantitative data (all preservation treatments), qualitative data (ethanol and formaldehyde preservation) and a lowered ability to determine parasites to species level based on morphology compared to dissecting fresh fish. Of the more abundant taxa, only crustaceans and acanthocephalans provided relatively even results between treatments. We conclude that preservation media, such as ethanol or formaldehyde, significantly affects the ability to obtain precise parasite community data; hence, we recommend the use of freshly sacrificed fish for parasite community studies whenever possible. Alternatively, freezing may prove acceptable for evaluating parasite community taxonomic composition.
Lankov, A; Ojaveer, H; Simm, M; Põllupüü, M; Möllmann, C
2010-12-01
The feeding ecology of four pelagic fish species was studied in relation to their prey availability in the Gulf of Riga (Baltic Sea) during the summer 1999-2006. The zooplankton community was dominated by the cladoceran Bosmina longispina, rotifers Keratella cochlearis and K. quadrata and the copepod Eurytemora affinis, with the highest interannual variability in abundance recorded for B. longispina. The last influenced the diet of adult sprat Sprattus sprattus, juvenile smelt Osmerus eperlanus and three-spined stickleback Gasterosteus aculeatus as these were strongly selecting for B. longispina. The fish feeding activity did not match the abundance dynamics of their preferred prey, suggesting that fishes may switch to consume other prey in case the preferred diet was limited. A considerable dietary overlap indicated high potential competition between pelagic fish species. While herring Clupea harengus membras and G. aculeatus were relying on very different food, the diets of young O. eperlanus and G. aculeatus were very similar. Interannual variability in zooplankton composition and abundance significantly affected the diet composition of fishes, but those changes were insufficient to exert a consistent influence upon fish feeding activity and total amounts of zooplankton consumed. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.
Influence of habitat structure on fish assemblage of an artificial reef in southern Brazil.
Hackradt, Carlos Werner; Félix-Hackradt, Fabiana Cézar; García-Charton, José Antonio
2011-12-01
Habitat complexity strongly influences reef fish community composition. An understanding of the underlying reasons for this relationship is important for evaluating the suitability of artificial reef (AR) habitats as a marine resource management tool. We studied the influence of AR habitat structure on fish assemblage composition off the southern coast of Brazil. We found that reef blocks with greater area and number of holes possessed the greatest fish species richness and abundance. Reef blocks with greater complexity had higher abundance of almost 30% of fish species present. Natural reef (NR) and AR were different in their fish species composition, trophic structure and categories of water column occupancy by fish (spatial categories). Although NR was more diverse and harboured more trophic levels, AR presented the higher abundances and the presence of distinct fish species that underlined their importance at a regional scale. The greater availability of sheltering habitat where hard substrate is scarce, together with their frequent use by economically important species, make AR a useful tool for coastal management when certain ecological conditions are met. Copyright © 2011 Elsevier Ltd. All rights reserved.
Guo, Shu Xin; Gao, Dong Kui; Zhang, Xiu Mei; Li, Wen Tao; Zhang, Pei Dong
2017-06-18
To assess the fish attraction and shelter effects of the artificial reefs in Qingshan Bay of Qingdao, the species composition and distribution patterns of ichthyoplankton in artificial reefs were investigated using vertical and horizontal tows in 2014 and 2015. In total, 7306 fish eggs and 52 fish larvae, belonging to 4 orders, 9 families, 11 genera and 12 species, were collected during 7 cruises in spring, summer and autumn of 2014. In 2015, 10373 eggs and 159 fish larvae, belonging to 6 orders, 11 families, 14 genera and 15 species, were collected in the same period as in 2014. Perciformes were the majority for both fish eggs and larvae collected during the two surveys, followed by Pleuronectiformes. Among fish eggs, Sillago japonica and Cynoglossus joyneri were the most dominant species. Among fish larvae, S. japonica exhibited the highest dominance but was not the dominant species. The high dominant species in both fish eggs and larvae appeared alternately in diffe-rent seasons. The Margalef richness index (R), Shannon diversity index (H) and Pielou evenness index (J) of ichthyoplankton community were low during the spring, summer, and autumn, showing an instable community structure of ichthyoplankton. The average trophic level of adult fish corresponding to the ichthyoplankton collected in the two years were 3.71 and 3.78, respectively, and both belonged to low carnivorous fish of third trophic level. All the species were either warm-tempe-rate species or warm-water species, which was coincident with the warm-temperate zone characteristic. Comprehensive analysis showed that the biodiversity of the ichthyoplankton community within the artificial reef areas was higher than that outside the artificial reef areas, which might be linked to flow velocity, flow field characteristics, or spatial heterogeneity of artificial reef areas.
Spatio-temporal variation of fish taxonomic composition in a South-East Asian flood-pulse system.
Kong, Heng; Chevalier, Mathieu; Laffaille, Pascal; Lek, Sovan
2017-01-01
The Tonle Sap Lake (TSL) is a flood-pulse system. It is the largest natural lake in South-East Asia and constitutes one of the largest fisheries over the world, supporting the livelihood of million peoples. Nonetheless, the Mekong River Basin is changing rapidly due to accelerating water infrastructure development (hydropower, irrigation, flood control, and water supply) and climate change, bringing considerable modifications to the annual flood-pulse of the TSL. Such modifications are expected to have strong impacts on fish biodiversity and abundance. This paper aims to characterize the spatio-temporal variations of fish taxonomic composition and to highlights the underlying determinants of these variations. For this purpose, we used data collected from a community catch monitoring program conducted at six sites during 141 weeks, covering two full hydrological cycles. For each week, we estimated beta diversity as the total variance of the site-by-species community matrix and partitioned it into Local Contribution to Beta Diversity (LCBD) and Species Contribution to Beta Diversity (SCBD). We then performed multiple linear regressions to determine whether species richness, species abundances and water level explained the temporal variation in the contribution of site and species to beta diversity. Our results indicate strong temporal variation of beta diversity due to differential contributions of sites and species to the spatial variation of fish taxonomic composition. We further found that the direction, the shape and the relative effect of species richness, abundances and water level on temporal variation in LCBD and SCBD values greatly varied among sites, thus suggesting spatial variation in the processes leading to temporal variation in community composition. Overall, our results suggest that fish taxonomic composition is not homogeneously distributed over space and time and is likely to be impacted in the future if the flood-pulse dynamic of the system is altered by human activities.
Diversity among macroalgae-consuming fishes on coral reefs: a transcontinental comparison.
Vergés, Adriana; Bennett, Scott; Bellwood, David R
2012-01-01
Despite high diversity and abundance of nominally herbivorous fishes on coral reefs, recent studies indicate that only a small subset of taxa are capable of removing dominant macroalgae once these become established. This limited functional redundancy highlights the potential vulnerability of coral reefs to disturbance and stresses the need to assess the functional role of individual species of herbivores. However, our knowledge of species-specific patterns in macroalgal consumption is limited geographically, and there is a need to determine the extent to which patterns observed in specific reefs can be generalised at larger spatial scales. In this study, video cameras were used to quantify rates of macroalgae consumption by fishes in two coral reefs located at a similar latitude in opposite sides of Australia: the Keppel Islands in the Great Barrier Reef (eastern coast) and Ningaloo Reef (western coast). The community of nominally herbivorous fish was also characterised in both systems to determine whether potential differences in the species observed feeding on macroalgae were related to spatial dissimilarities in herbivore community composition. The total number of species observed biting on the dominant brown alga Sargassum myriocystum differed dramatically among the two systems, with 23 species feeding in Ningaloo, compared with just 8 in the Keppel Islands. Strong differences were also found in the species composition and total biomass of nominally herbivorous fish, which was an order of magnitude higher in Ningaloo. However, despite such marked differences in the diversity, biomass, and community composition of resident herbivorous fishes, Sargassum consumption was dominated by only four species in both systems, with Naso unicornis and Kyphosus vaigiensis consistently emerging as dominant feeders of macroalgae.
Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee
2017-05-01
Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.
Lamy, Thomas; Legendre, Pierre; Chancerelle, Yannick; Siu, Gilles; Claudet, Joachim
2015-01-01
Understanding how communities respond to natural disturbances is fundamental to assess the mechanisms of ecosystem resistance and resilience. However, ecosystem responses to natural disturbances are rarely monitored both through space and time, while the factors promoting ecosystem stability act at various temporal and spatial scales. Hence, assessing both the spatial and temporal variations in species composition is important to comprehensively explore the effects of natural disturbances. Here, we suggest a framework to better scrutinize the mechanisms underlying community responses to disturbances through both time and space. Our analytical approach is based on beta diversity decomposition into two components, replacement and biomass difference. We illustrate this approach using a 9-year monitoring of coral reef fish communities off Moorea Island (French Polynesia), which encompassed two severe natural disturbances: a crown-of-thorns starfish outbreak and a hurricane. These disturbances triggered a fast logistic decline in coral cover, which suffered a 90% decrease on all reefs. However, we found that the coral reef fish composition remained largely stable through time and space whereas compensatory changes in biomass among species were responsible for most of the temporal fluctuations, as outlined by the overall high contribution of the replacement component to total beta diversity. This suggests that, despite the severity of the two disturbances, fish communities exhibited high resistance and the ability to reorganize their compositions to maintain the same level of total community biomass as before the disturbances. We further investigated the spatial congruence of this pattern and showed that temporal dynamics involved different species across sites; yet, herbivores controlling the proliferation of algae that compete with coral communities were consistently favored. These results suggest that compensatory changes in biomass among species and spatial heterogeneity in species responses can provide further insurance against natural disturbances in coral reef ecosystems by promoting high levels of key species (herbivores). They can also allow the ecosystem to recover more quickly. PMID:26393511
Lamy, Thomas; Legendre, Pierre; Chancerelle, Yannick; Siu, Gilles; Claudet, Joachim
2015-01-01
Understanding how communities respond to natural disturbances is fundamental to assess the mechanisms of ecosystem resistance and resilience. However, ecosystem responses to natural disturbances are rarely monitored both through space and time, while the factors promoting ecosystem stability act at various temporal and spatial scales. Hence, assessing both the spatial and temporal variations in species composition is important to comprehensively explore the effects of natural disturbances. Here, we suggest a framework to better scrutinize the mechanisms underlying community responses to disturbances through both time and space. Our analytical approach is based on beta diversity decomposition into two components, replacement and biomass difference. We illustrate this approach using a 9-year monitoring of coral reef fish communities off Moorea Island (French Polynesia), which encompassed two severe natural disturbances: a crown-of-thorns starfish outbreak and a hurricane. These disturbances triggered a fast logistic decline in coral cover, which suffered a 90% decrease on all reefs. However, we found that the coral reef fish composition remained largely stable through time and space whereas compensatory changes in biomass among species were responsible for most of the temporal fluctuations, as outlined by the overall high contribution of the replacement component to total beta diversity. This suggests that, despite the severity of the two disturbances, fish communities exhibited high resistance and the ability to reorganize their compositions to maintain the same level of total community biomass as before the disturbances. We further investigated the spatial congruence of this pattern and showed that temporal dynamics involved different species across sites; yet, herbivores controlling the proliferation of algae that compete with coral communities were consistently favored. These results suggest that compensatory changes in biomass among species and spatial heterogeneity in species responses can provide further insurance against natural disturbances in coral reef ecosystems by promoting high levels of key species (herbivores). They can also allow the ecosystem to recover more quickly.
Does human pressure affect the community structure of surf zone fish in sandy beaches?
NASA Astrophysics Data System (ADS)
Costa, Leonardo Lopes; Landmann, Júlia G.; Gaelzer, Luiz R.; Zalmon, Ilana R.
2017-01-01
Intense tourism and human activities have resulted in habitat destruction in sandy beach ecosystems with negative impacts on the associated communities. To investigate whether urbanized beaches affect surf zone fish communities, fish and their benthic macrofaunal prey were collected during periods of low and high human pressure at two beaches on the Southeastern Brazilian coast. A BACI experimental design (Before-After-Control-Impact) was adapted for comparisons of tourism impact on fish community composition and structure in urbanized, intermediate and non-urbanized sectors of each beach. At the end of the summer season, we observed a significant reduction in fish richness, abundance, and diversity in the high tourist pressure areas. The negative association between visitors' abundance and the macrofaunal density suggests that urbanized beaches are avoided by surf zone fish due to higher human pressure and the reduction of food availability. Our results indicate that surf zone fish should be included in environmental impact studies in sandy beaches, including commercial species, e.g., the bluefish Pomatomus saltatrix. The comparative results from the less urbanized areas suggest that environmental zoning and visitation limits should be used as effective management and preservation strategies on beaches with high conservation potential.
Local extinction of a coral reef fish explained by inflexible prey choice
NASA Astrophysics Data System (ADS)
Brooker, R. M.; Munday, P. L.; Brandl, S. J.; Jones, G. P.
2014-12-01
While global extinctions of marine species are infrequent, local extinctions are becoming common. However, the role of habitat degradation and resource specialisation in explaining local extinction is unknown. On coral reefs, coral bleaching is an increasingly frequent cause of coral mortality that can result in dramatic changes to coral community composition. Coral-associated fishes are often specialised on a limited suite of coral species and are therefore sensitive to these changes. This study documents the local extinction of a corallivorous reef fish, Oxymonacanthus longirostris, following a mass bleaching event that altered the species composition of associated coral communities. Local extinction only occurred on reefs that also completely lost a key prey species, Acropora millepora, even though coral cover remained high. In an experimental test, fish continued to select bleached A. millepora over the healthy, but less-preferred prey species that resisted bleaching. These results suggest that behavioural inflexibility may limit the ability of specialists to cope with even subtle changes to resource availability.
Evaluating Social and Ecological Vulnerability of Coral Reef Fisheries to Climate Change
Cinner, Joshua E.; Huchery, Cindy; Darling, Emily S.; Humphries, Austin T.; Graham, Nicholas A. J.; Hicks, Christina C.; Marshall, Nadine; McClanahan, Tim R.
2013-01-01
There is an increasing need to evaluate the links between the social and ecological dimensions of human vulnerability to climate change. We use an empirical case study of 12 coastal communities and associated coral reefs in Kenya to assess and compare five key ecological and social components of the vulnerability of coastal social-ecological systems to temperature induced coral mortality [specifically: 1) environmental exposure; 2) ecological sensitivity; 3) ecological recovery potential; 4) social sensitivity; and 5) social adaptive capacity]. We examined whether ecological components of vulnerability varied between government operated no-take marine reserves, community-based reserves, and openly fished areas. Overall, fished sites were marginally more vulnerable than community-based and government marine reserves. Social sensitivity was indicated by the occupational composition of each community, including the importance of fishing relative to other occupations, as well as the susceptibility of different fishing gears to the effects of coral bleaching on target fish species. Key components of social adaptive capacity varied considerably between the communities. Together, these results show that different communities have relative strengths and weaknesses in terms of social-ecological vulnerability to climate change. PMID:24040228
Evidence of indiscriminate fishing effects in one of the world's largest inland fisheries.
Ngor, Peng Bun; McCann, Kevin S; Grenouillet, Gaël; So, Nam; McMeans, Bailey C; Fraser, Evan; Lek, Sovan
2018-06-12
While human impacts like fishing have altered marine food web composition and body size, the status of the world's important tropical inland fisheries remains largely unknown. Here, we look for signatures of human impacts on the indiscriminately fished Tonle Sap fish community that supports one of the world's largest freshwater fisheries. By analyzing a 15-year time-series (2000-2015) of fish catches for 116 species obtained from an industrial-scale 'Dai' fishery, we find: (i) 78% of the species exhibited decreasing catches through time; (ii) downward trends in catches occurred primarily in medium to large-bodied species that tend to occupy high trophic levels; (iii) a relatively stable or increasing trend in catches of small-sized species, and; (iv) a decrease in the individual fish weights and lengths for several common species. Because total biomass of the catch has remained remarkably resilient over the last 15 years, the increase in catch of smaller species has compensated for declines in larger species. Our finding of sustained production but altered community composition is consistent with predictions from recent indiscriminate theory, and gives a warning signal to fisheries managers and conservationists that the species-rich Tonle Sap is being affected by heavy indiscriminate fishing pressure.
Ajemian, Matthew J.; Wetz, Jennifer J.; Shipley-Lozano, Brooke; Shively, J. Dale; Stunz, Gregory W.
2015-01-01
Artificial structures are the dominant complex marine habitat type along the northwestern Gulf of Mexico (GOM) shelf. These habitats can consist of a variety of materials, but in this region are primarily comprised of active and reefed oil and gas platforms. Despite being established for several decades, the fish communities inhabiting these structures remain poorly investigated. Between 2012 and 2013 we assessed fish communities at 15 sites using remotely operated vehicles (ROVs). Fish assemblages were quantified from standing platforms and an array of artificial reef types (Liberty Ships and partially removed or toppled platforms) distributed over the Texas continental shelf. The depth gradient covered by the surveys (30–84 m) and variability in structure density and relief also permitted analyses of the effects of these characteristics on fish richness, diversity, and assemblage composition. ROVs captured a variety of species inhabiting these reefs from large transient piscivores to small herbivorous reef fishes. While structure type and relief were shown to influence species richness and community structure, major trends in species composition were largely explained by the bottom depth where these structures occurred. We observed a shift in fish communities and relatively high diversity at approximately 60 m bottom depth, confirming trends observed in previous studies of standing platforms. This depth was also correlated with some of the largest Red Snapper captured on supplementary vertical longline surveys. Our work indicates that managers of artificial reefing programs (e.g., Rigs-to-Reefs) in the GOM should carefully consider the ambient environmental conditions when designing reef sites. For the Texas continental shelf, reefing materials at a 50–60 m bottom depth can serve a dual purpose of enhancing diving experiences and providing the best potential habitat for relatively large Red Snapper. PMID:25954943
Global study of probiotic effect on gut microbial communities in fish larvae
USDA-ARS?s Scientific Manuscript database
The goal of this project was to test the long term effects of early microbial colonization on fish gut microbiota composition. To do so, axenically raised tilapia larvae were either reared under conventional conditions in activated suspension tanks (AST) or first exposed to a single strain probioti...
Paxton, Avery B; Pickering, Emily A; Adler, Alyssa M; Taylor, J Christopher; Peterson, Charles H
2017-01-01
Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor so that all EFH across a wide range of habitat complexity may be accurately identified and properly managed.
Nagelkerken, Ivan; Grol, Monique G G; Mumby, Peter J
2012-01-01
No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤ 25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems.
Effects of Marine Reserves versus Nursery Habitat Availability on Structure of Reef Fish Communities
Nagelkerken, Ivan; Grol, Monique G. G.; Mumby, Peter J.
2012-01-01
No-take marine fishery reserves sustain commercial stocks by acting as buffers against overexploitation and enhancing fishery catches in adjacent areas through spillover. Likewise, nursery habitats such as mangroves enhance populations of some species in adjacent habitats. However, there is lack of understanding of the magnitude of stock enhancement and the effects on community structure when both protection from fishing and access to nurseries concurrently act as drivers of fish population dynamics. In this study we test the separate as well as interactive effects of marine reserves and nursery habitat proximity on structure and abundance of coral reef fish communities. Reserves had no effect on fish community composition, while proximity to nursery habitat only had a significant effect on community structure of species that use mangroves or seagrass beds as nurseries. In terms of reef fish biomass, proximity to nursery habitat by far outweighed (biomass 249% higher than that in areas with no nursery access) the effects of protection from fishing in reserves (biomass 21% lower than non-reserve areas) for small nursery fish (≤25 cm total length). For large-bodied individuals of nursery species (>25 cm total length), an additive effect was present for these two factors, although fish benefited more from fishing protection (203% higher biomass) than from proximity to nurseries (139% higher). The magnitude of elevated biomass for small fish on coral reefs due to proximity to nurseries was such that nursery habitats seem able to overrule the usually positive effects on fish biomass by reef reserves. As a result, conservation of nursery habitats gains importance and more consideration should be given to the ecological processes that occur along nursery-reef boundaries that connect neighboring ecosystems. PMID:22675474
The Interactive Effect of Multiple Stressors on Crustacean Zooplankton Communities in Montane Lakes
NASA Astrophysics Data System (ADS)
Brittain, Jeffrey T.; Strecker, Angela L.
2018-02-01
Nonnative fish introductions have altered thousands of naturally fishless montane lakes, resulting in cascading food web repercussions. Nitrogen deposition has been recognized as an anthropogenic contributor to acidification and eutrophication of freshwater ecosystems, which may affect the abundance and composition of planktonic communities. This study identified responses of zooplankton communities from two lakes (fish present versus absent) in Mount Rainier National Park to manipulations simulating an episodic disturbance of acidification and eutrophication via nitrogen addition in mesocosms. Zooplankton communities from lakes with different food web structure (i.e., fish present or absent) responded differently to the singular effects of acid and nitrogen addition. For instance, zooplankton biomass decreased in the acid treatment of the fishless lake experiment, but increased in response to acid in the fish-present experiment. In contrast, the combination of acid and nitrogen often resulted in weak responses for both lake types, resulting in nonadditive effects, i.e., the net effect of the stressors was in the opposite direction than predicted, which is known as a reversal or "ecological surprise." This experiment demonstrates the difficulty in predicting the interactive effects of multiple stressors on aquatic communities, which may pose significant challenges for habitat restoration through fish removal.
Graham, Nicholas A. J.; Chong-Seng, Karen M.; Huchery, Cindy; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.
2014-01-01
Much research on coral reefs has documented differential declines in coral and associated organisms. In order to contextualise this general degradation, research on community composition is necessary in the context of varied disturbance histories and the biological processes and physical features thought to retard or promote recovery. We conducted a spatial assessment of coral reef communities across five reefs of the central Great Barrier Reef, Australia, with known disturbance histories, and assessed patterns of coral cover and community composition related to a range of other variables thought to be important for reef dynamics. Two of the reefs had not been extensively disturbed for at least 15 years prior to the surveys. Three of the reefs had been severely impacted by crown-of-thorns starfish outbreaks and coral bleaching approximately a decade before the surveys, from which only one of them was showing signs of recovery based on independent surveys. We incorporated wave exposure (sheltered and exposed) and reef zone (slope, crest and flat) into our design, providing a comprehensive assessment of the spatial patterns in community composition on these reefs. Categorising corals into life history groupings, we document major coral community differences in the unrecovered reefs, compared to the composition and covers found on the undisturbed reefs. The recovered reef, despite having similar coral cover, had a different community composition from the undisturbed reefs, which may indicate slow successional processes, or a different natural community dominance pattern due to hydrology and other oceanographic factors. The variables that best correlated with patterns in the coral community among sites included the density of juvenile corals, herbivore fish biomass, fish species richness and the cover of macroalgae. Given increasing impacts to the Great Barrier Reef, efforts to mitigate local stressors will be imperative to encouraging coral communities to persist into the future. PMID:24983747
NASA Astrophysics Data System (ADS)
Young, T.; Fuller, E.; Coleman, K.; Provost, M.; Pinsky, M. L.; St Martin, K.
2016-02-01
We know climate is changing and fish are moving in response to those changes. But we understand less about how harvesters are responding to these changes in fish distribution and the ramifications of those changes for fishing communities. Ecological and evolutionary theory suggests that organisms must move, adapt, or die in response to environmental changes, and a related frame may be relevant for human harvesters in the face of climate change. Furthermore, research suggests that there may be a portfolio effect: a wider diversity of catch may buffer harvesters from some effects of climate change. To get at these questions, we explored changes in fishing patterns among commercial fishing communities in the northeast US from 1997-2014 using NOAA-collected logbook data. We found that communities using more mobile gear (large trawl vessels) demonstrated a greater range of latitudinal shift than communities using any other gear. Latitudinal shift was also inversely related to species diversity of catch and port latitude in those communities: southern communities that caught few species shifted dramatically northward, and northern communities that caught many species did not demonstrate marked latitudinal shifts. Those communities that demonstrated larger latitudinal shifts also demonstrated smaller changes in catch composition than their more stationary counterparts. We also found that vessels are indeed leaving many, but not all, fisheries in this region. These results suggest that harvesters are moving, adapting, and leaving fisheries, and that there does appear to be a portfolio effect, with catch diversity mediating some of these responses. While these changes in fishing patterns cannot all be directly attributed to climate change per se, marine fishes in this region are shifting north rapidly, as is expected under climate change. This study provides a valuable test case for exploring the potential ramifications of climate change on coastal socio-ecological systems.
Dolbeth, M; Vendel, A L; Pessanha, A; Patrício, J
2016-11-15
The functional diversity of fish communities was studied along the salinity gradient of two estuaries in Northeast Brazil subjected to different anthropogenic pressures, to gain a better understanding of the response of fish communities to disturbance. We evaluated functional complementarity indices, redundancy and analysed functional composition through functional groups based on combinations of different traits. The fish communities in both estuaries share similar functions performed by few functional groups. The upstream areas had generally lower taxonomic, functional diversity and lower redundancy, suggesting greater vulnerability to impacts caused by human activities. Biomass was slightly more evenly distributed among functional groups in the less disturbed estuary, but total biomass and redundancy were lower in comparison to the urbanized estuary. The present findings lend strength to the notion that the less disturbed estuary may be more susceptible to anthropogenic impacts, underscoring the need for more effective conservation measures directed at this estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aldana Moreno, Alejandro; Montero Muñoz, Jorge; Aldana Aranda, Dalila
2016-12-01
Xel-Ha is a private marine park where the extraction of flora and fauna is not allowed. Here, reef fish are one of the main touristic attractions, but there are no published surveys focused on fish community in this site. In this study we analyzed the spatio-temporal variation of the fish community in different areas of the marine park Xel-Há. Abundance and richness were estimated during one-year period (2012-2013); visual censuses using fixed transects of 100x5 m each distributed in 21 transects along five sites were established in different zones: “Bocana”, “Center”, “North branch”, “Cave” and “River”, including the inlet mouth to the sea, brackish mangrove channels and a zone with freshwater influence. To characterize the fish community, we used species richness, abundance, diversity, and density compared among zones and climatic seasons (rain, “norths” and dry). The similarity among zones and seasons was estimated using a multidimensional scaling analysis. The replacement on the species composition among seasons and sites was realized based on the presence-absence of fish. The influence of physicochemical variables such as temperature, salinity and dissolve oxygen concentration in the fish community was estimated by a principal component analysis. A total of 22 641 individuals were recorded corresponding to sixty-three species over the year. Abundance was higher during the windy season (locally named “norths”) with 7 991 organisms. The most representative species according with abundance and frequency of occurrence were: Haemulon sciurus, H. flavolineatum, Lutjanus griseus, Acanthurus coeruleus, Abudefduf saxatilis, and Gerres cinereus. Diversity increased from the rainy to the dry season; species richness and diversity was lower in “River” than other sites in Xel-Ha. Most species (54 %) species were residents through the year. Four non-shared species were observed during the rainy season and three in dry season. Dissolved oxygen was the most influential variable on the fish community composition among zones. Xel-Ha houses nearly 20 % of fish biodiversity reported for the mexican Caribbean, and the predominance of juveniles of several species confirms its role as a nursery area.
Cervantes-Yoshida, Kristina; Leidy, Robert A.; Carlson, Stephanie M.
2015-01-01
Urbanization is one of the leading threats to freshwater biodiversity, and urban regions continue to expand globally. Here we examined the relationship between recent urbanization and shifts in stream fish communities. We sampled fishes at 32 sites in the Alameda Creek Watershed, near San Francisco, California, in 1993–1994 and again in 2009, and we quantified univariate and multivariate changes in fish communities between the sampling periods. Sampling sites were classified into those downstream of a rapidly urbanizing area (“urbanized sites”), and those found in less impacted areas (“low-impacted sites”). We calculated the change from non-urban to urban land cover between 1993 and 2009 at two scales for each site (the total watershed and a 3km buffer zone immediately upstream of each site). Neither the mean relative abundance of native fish nor nonnative species richness changed significantly between the survey periods. However, we observed significant changes in fish community composition (as measured by Bray-Curtis dissimilarity) and a decrease in native species richness between the sampling periods at urbanized sites, but not at low-impacted sites. Moreover, the relative abundance of one native cyprinid (Lavinia symmetricus) decreased at the urbanized sites but not at low-impacted sites. Increased urbanization was associated with changes in the fish community, and this relationship was strongest at the smaller (3km buffer) scale. Our results suggest that ongoing land change alters fish communities and that contemporary resurveys are an important tool for examining how freshwater taxa are responding to recent environmental change. PMID:26580560
NASA Astrophysics Data System (ADS)
Rosenberger, A. E.; Dunham, J. B.; Wipfli, M. S.; Buffington, J. M.
2005-05-01
Studies examining the effects of fire on the biota of streams are often confined to immediate post-disturbance impacts; however it is also important to consider longer-term effects of fire and fire-related channel disturbances, including both negative and positive influences on stream communities. Fire and subsequent debris flows and hyperconcentrated flows destroy streamside vegetation and alter the channel morphology such that streams are wider and shallower with larger, less mobile substrate. Increased light, high temperatures, and altered stream morphology have the potential to greatly impact invertebrate communities, invertebrate drift, and drift-feeding fish diet. The goal of our study was to determine the effects of wildfire and wildfire-related disturbance on the amount and composition of stream invertebrate drift and how that translates to the diet of resident fishes 10 years post-disturbance. In the summer and fall of 2003, we set drift nets and examined the diet of fishes in 9 streams: 3 unburned; 3 burned (1992-4); and 3 burned with a subsequent channel disturbance (1992-4). Key questions include: does the taxonomic composition (richness, functional feeding groups), origin (terrestrial or aquatic), or total production (biomass) of invertebrate drift and fish diet vary with burn history? Does the composition and biomass of invertebrate drift indicate main sources of energy (allochthonous vs. autochthonous) for headwater streams affected by fire? Differences among streams in channel morphology, streamside vegetation, light input, and temperature did not correspond to consistent or marked differences in invertebrate drift productivity and only slight differences in functional feeding group composition. However, preliminary data suggest that taxon richness, though similar among burned and unburned streams, is lowest in burned and disturbed streams. Although there is a terrestrial component to fish diet in all three treatment groups, in the summer, there is a greater terrestrial contribution in burned streams; while fish in unburned streams have a greater terrestrial component in their diet in the fall. Our results indicate that the effects of fire and disturbance on invertebrate communities are difficult to detect 10-years post event. Resilience in the invertebrate community and a flexible diet may be contributing to the resilience of resident trout found throughout our study streams. However, geomorphic changes and habitat alterations caused by massive channel-reorganizing events after wildfire may prevent full invertebrate community recovery for some time after the disturbance.
Development of Genetic Markers for Environmental DNA (eDNA) Monitoring of Sturgeon
2014-09-01
sturgeon markers were tested for specificity against a battery of 32 non-target fish species common to the Mississippi and Illinois River watersheds...techniques. Such methods, including fishing , netting, seining, and electrofishing, can often be logistically complex and require considerable outlays of... fish and amphibian community composition (Minamoto et al. 2012, Thomsen et al. 2012) and biomass estimation (Takahara et al. 2012). Sturgeon are taxa
Liu, Han; Guo, Xianwu; Gooneratne, Ravi; Lai, Ruifang; Zeng, Cong; Zhan, Fanbin; Wang, Weimin
2016-04-13
Vertebrate gut microbiome often underpins the metabolic capability and provides many beneficial effects on their hosts. However, little was known about how host trophic level influences fish gut microbiota and metabolic activity. In this study, more than 985,000 quality-filtered sequences from 24 16S rRNA libraries were obtained and the results revealed distinct compositions and diversities of gut microbiota in four trophic categories. PCoA test showed that gut bacterial communities of carnivorous and herbivorous fishes formed distinctly different clusters in PCoA space. Although fish in different trophic levels shared a large size of OTUs comprising a core microbiota community, at the genus level a strong distinction existed. Cellulose-degrading bacteria Clostridium, Citrobacter and Leptotrichia were dominant in the herbivorous, while Cetobacterium and protease-producing bacteria Halomonas were dominant in the carnivorous. PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota. Moreover, cellulase and amylase activities in herbivorous fishes were significantly higher than in the carnivorous, while trypsin activity in the carnivorous was much higher than in the herbivorous. These results indicated that host trophic level influenced the structure and composition of gut microbiota, metabolic capacity and gut content enzyme activity.
Riverine fish diversity varies according to geographical isolation and land use modification.
Nicol, Elizabeth; Stevens, Jamie R; Jobling, Susan
2017-10-01
Understanding the environmental factors driving species-genetic diversity correlations (SGDCs) is critical for designing appropriate conservation and management strategies to protect biodiversity. Yet, few studies have explored the impact of changing land use patterns on SGDCs specifically in aquatic communities. This study examined patterns of genetic diversity in roach ( Rutilus rutilus L.) together with fish species composition across 19 locations in a large river catchment, spanning a gradient in land use. Our findings show significant correlations between some, but not all, species and genetic diversity end points. For example, genetic and species differentiation showed a weak but significant linear relationship across the Thames catchment, but additional diversity measures such as allelic richness and fish population abundance did not. Further examination of patterns in species and genetic diversity indicated that land use intensification has a modest effect on fish diversity compared to the combined influence of geographical isolation and land use intensification. These results indicate that environmental changes in riparian habitats have the potential to amplify shifts in the composition of stream fish communities in poorly connected river stretches. Conservation and management strategies for fish populations should, therefore, focus on enhancing connectivity between river stretches and limit conversion of nearby land to arable or urban use to maintain current levels of biodiversity.
Liu, Han; Guo, Xianwu; Gooneratne, Ravi; Lai, Ruifang; Zeng, Cong; Zhan, Fanbin; Wang, Weimin
2016-01-01
Vertebrate gut microbiome often underpins the metabolic capability and provides many beneficial effects on their hosts. However, little was known about how host trophic level influences fish gut microbiota and metabolic activity. In this study, more than 985,000 quality-filtered sequences from 24 16S rRNA libraries were obtained and the results revealed distinct compositions and diversities of gut microbiota in four trophic categories. PCoA test showed that gut bacterial communities of carnivorous and herbivorous fishes formed distinctly different clusters in PCoA space. Although fish in different trophic levels shared a large size of OTUs comprising a core microbiota community, at the genus level a strong distinction existed. Cellulose-degrading bacteria Clostridium, Citrobacter and Leptotrichia were dominant in the herbivorous, while Cetobacterium and protease-producing bacteria Halomonas were dominant in the carnivorous. PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota. Moreover, cellulase and amylase activities in herbivorous fishes were significantly higher than in the carnivorous, while trypsin activity in the carnivorous was much higher than in the herbivorous. These results indicated that host trophic level influenced the structure and composition of gut microbiota, metabolic capacity and gut content enzyme activity. PMID:27072196
Plavan, A Acuña; Gurdek, R; Muñoz, N; Gutierrez, J M; Spósito, M; Correa, P; Caride, A
2017-01-01
The large estuaries can present long narrow branches called subestuaries or tidal creeks. These types of subsystems are distributed along the Uruguayan coast of the Río de la Plata estuary and are very important as nursery and refuge areas for fish. For the first time, the seasonal composition and abundance of the fish community of the Solís Chico subestuary was studied by using beach and gill nets. Fourteen species, mainly euryhaline (86%) presented a significant representation of juvenile stages. The fish community was dominated by Odontesthes argentinensis, Platanichthys platana, Mugil liza, Brevoortia aurea, Micropogonias furnieri and Paralichthys orbignyanus, similar to adjacent subestuaries. While Micropogonias furnieri and B. aurea were the most abundant species, some other species were rarely caught. A seasonal variation of the fish assemblage abundance was detected, with higher values in autumn showing a positive correlation with temperature. Species that complete their life cycle in the Río de la Plata estuary, some of which are relevant to fisheries (64% of the analyzed species) were captured in the Solís Chico subestuary. The importance of this environment as a transitional system for some estuarine fish species is advised.
NASA Astrophysics Data System (ADS)
Stevenson, Duane E.; Lauth, Robert R.
2012-06-01
Latitudinal species diversity gradients are well known in both terrestrial and aquatic ecosystems throughout the world. However, trends in relative abundance and other shifts in community structure with latitude, which can be more sensitive to environmental shifts such as climate change, have received less attention. Here we investigate latitudinal trends in the seafloor community of the eastern Bering Sea using catches of fishes and epibenthic invertebrates in bottom trawl surveys conducted from 1982 to 2010. Our results indicate that the overall biomass of the epibenthic community declines with increasing latitude in the eastern Bering Sea. This latitudinal trend is primarily driven by declining fish catches in the northern Bering Sea, which in turn reflects changes in the structure of the fish community. The fish fauna in northern latitudes is increasingly dominated by gadids, though the species composition of the gadid fauna also changes with latitude, with smaller species becoming more common in the north. The biomass of the invertebrate megafauna remains relatively consistent throughout the eastern Bering Sea, but invertebrates make up a larger proportion of the catch in bottom trawls conducted at higher latitudes. The epibenthic invertebrate megafauna in the eastern Bering Sea is composed primarily of sea stars (Asteriidae) and oregoniid crabs (Chionoecetes and Hyas), though no clear latitudinal trends in the invertebrate community are evident. Limited trawl data from the eastern Chukchi Sea indicate that the fish community farther north is even more heavily dominated by gadids, and the epibenthic invertebrate community is dominated by asteriid sea stars. Temperature data from bottom trawl surveys in the southeastern Bering Sea over the past decade indicate that there was a distinct temperature shift around 2005, and the relatively warm years of 2001-2005 were followed by five relatively cold years. This shift in the summer temperature regime of the Bering Sea has resulted in lower fish catches, particularly in the "cold pool" region (58-61°N), and a higher proportion of epibenthic invertebrates in the bottom trawl catches of the past 5 years.
Hypoxia Impacts on Food Web Linkages in a Pelagic Ecosystem
NASA Astrophysics Data System (ADS)
Sato, M.; Horne, J. K.; Parker-Stetter, S. L.; Essington, T.; Keister, J. E.; Moriarty, P.; Li, L.
2016-02-01
Low dissolved oxygen (DO), or hypoxia, causes significant disturbances on aquatic organisms, but the consequences for key food web linkages is not well understood. Here, we tested how the intensity of low DO events governs the degree of spatial overlap between pelagic zooplanktivorous fish and their zooplankton prey, fish feeding rates, and community compositions of zooplankton. We hypothesized that the greater sensitivity of fish to DO compared to zooplankton would lead to diminished spatial overlap at moderate DO and reduced feeding rates of fish, while severe hypoxia would amplify spatial overlap by preventing zooplankton from using deep refuge habitats leading to increased fish feeding rates. We also hypothesized shifts in zooplankton community composition towards less energetically profitable taxa such as small copepods and gelatinous species. We used a combination of multifrequency acoustic and net sampling for detecting distributions and abundance of zooplankton and pelagic fish in Hood Canal, WA, a seasonally hypoxic fjord. We employed a sampling design which paired hypoxic regions of Hood Canal with normoxic regions sampled prior to, during, and after the onset of hypoxia in two years. Contrary to our hypotheses, we found that fish and zooplankton did not change their horizontal and vertical distributions during periods and in locations with low DO levels. Consequently, the vertical overlap between fish and zooplankton did not change with DO. Fish feeding rates and the dominant zooplankton prey did not change with hypoxia events. The apparent resilience of fish to low DO in our system may be explained by decreased metabolic oxygen demand due to cool temperatures, increased availability and accessibility to their prey in low DO waters, or potential increase in predation risk at shallower depth. This study highlights the importance of both temperature and DO, instead of hypoxia threshold alone, in evaluating the impacts of hypoxia on pelagic communities.
Fish stomach contents in benthic macroinvertebrate assemblage assessments.
Tupinambás, T H; Pompeu, P S; Gandini, C V; Hughes, R M; Callisto, M
2015-01-01
The choice of sampling gears to assess benthic macroinvertebrate communities depends on environmental characteristics, study objectives, and cost effectiveness. Because of the high foraging capacity and diverse habitats and behaviors of benthophagous fishes, their stomach contents may offer a useful sampling tool in studies of benthic macroinvertebrates, especially in large, deep, fast rivers that are difficult to sample with traditional sediment sampling gear. Our objective was to compare the benthic macroinvertebrate communities sampled from sediments with those sampled from fish stomachs. We collected benthic macroinvertebrates and fish from three different habitat types (backwater, beach, riffle) in the wet season, drying season, and dry season along a single reach of the Grande River (Paraná River Basin, southeast Brazil). We sampled sediments through use of a Petersen dredge (total of 216 grabs) and used gill nets to sample fish (total of 36 samples). We analyzed the stomach contents of three commonly occurring benthophagous fish species (Eigenmannia virescens, Iheringichthys labrosus, Leporinus amblyrhynchus). Chironomids dominated in both sampling methods. Macroinvertebrate taxonomic composition and abundances from fish stomachs differed from those from sediment samples, but less so from riffles than from backwater and beach habitats. Macroinvertebrate taxa from E. virescens stomachs were more strongly correlated with sediment samples from all three habitats than were those from the other two species. The species accumulation curves and higher mean dispersion values, compared with with sediment samples suggest that E. virescens is more efficient than sediment samples and the other fish studied at collecting benthic taxa. We conclude that by analyzing the stomach contents of benthophagous fishes it is possible to assess important characteristics of benthic communities (dispersion, taxonomic composition and diversity). This is especially true for studies that only sample fish assemblages to evaluate aquatic ecosystem impacts. Therefore, this approach can be useful to amplify assessments of human impacts, and to incorporate additional bioindicators.
"Traveling Theory" and the Defining of New Rhetorics.
ERIC Educational Resources Information Center
Schilb, John
1992-01-01
Demonstrates how theory can alter as it "travels" from another region of inquiry into composition by examining Elaine Maimon's essay "Knowledge, Acknowledgment, and Writing across the Curriculum: Toward an Educated Community." Discusses how Maimon changes Stanley Fish's theory of "interpretive communities." (PRA)
The limiting layer of fish scales: Structure and properties
Arola, D.; Murcia, S.; Stossel, M.; ...
2017-12-14
Fish scales serve as a flexible natural armor that have received increasing attention across the materials community. Most efforts in this area have focused on the composite structure of the predominately organic elasmodine, and limited work addresses the highly mineralized external portion known as the Limiting Layer (LL). This coating serves as the first barrier to external threats and plays an important role in resisting puncture. Here in this investigation the structure, composition and mechanical behavior of the LL were explored for three different fish, including the arapaima (Arapaima gigas), the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio). Themore » scales of these three fish have received the most attention within the materials community. Features of the LL were evaluated with respect to anatomical position to distinguish site-specific functional differences. Results show that there are significant differences in the surface morphology of the LL from posterior and anterior regions in the scales, and between the three fish species. The calcium to phosphorus ratio and the mineral to collagen ratios of the LL are not equivalent among the three fish. Finally, results from nanoindentation showed that the LL of tarpon scales is the hardest, followed by the carp and the arapaima and the differences in hardness are related to the apatite structure, possibly induced by the growth rate and environment of each fish.« less
The limiting layer of fish scales: Structure and properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arola, D.; Murcia, S.; Stossel, M.
Fish scales serve as a flexible natural armor that have received increasing attention across the materials community. Most efforts in this area have focused on the composite structure of the predominately organic elasmodine, and limited work addresses the highly mineralized external portion known as the Limiting Layer (LL). This coating serves as the first barrier to external threats and plays an important role in resisting puncture. Here in this investigation the structure, composition and mechanical behavior of the LL were explored for three different fish, including the arapaima (Arapaima gigas), the tarpon (Megalops atlanticus) and the carp (Cyprinus carpio). Themore » scales of these three fish have received the most attention within the materials community. Features of the LL were evaluated with respect to anatomical position to distinguish site-specific functional differences. Results show that there are significant differences in the surface morphology of the LL from posterior and anterior regions in the scales, and between the three fish species. The calcium to phosphorus ratio and the mineral to collagen ratios of the LL are not equivalent among the three fish. Finally, results from nanoindentation showed that the LL of tarpon scales is the hardest, followed by the carp and the arapaima and the differences in hardness are related to the apatite structure, possibly induced by the growth rate and environment of each fish.« less
Centrarchid assemblages in Mississippi state-operated fishing lakes
Olive, J.A.; Miranda, L.E.; Hubbard, W.D.
2005-01-01
We evaluated electrofishing catch per effort in 27 state-operated fishing lakes in Mississippi to identify patterns of centrarchid community composition and to determine whether those patterns were related to selected environmental characteristics and to artificial nutrient enrichment. Ordination with detrended correspondence analysis recognized two major axes accounting for 77% of the variability in species ordination. Axis 1 showed a distinct separation between the body sizes of various species. A notable exception was the density of small (<30 cm) largemouth bass Micropterus salmoides, which aligned with the large individuals of other centrarchid species. This pattern suggested that through predation, high densities of small largemouth bass exerted significant control over the size structure of fish communities. Axis 2 separated species of crappies Pomoxis spp., suggesting that conditions other than strong species interactions also moderated the composition of crappies in the assemblages. However, neither lake morphometry nor watershed composition exhibited a major influence over axes 1 or 2. In small, intensively managed lakes with low habitat complexity, the regulatory importance of biotic interactions may overwhelm that of abiotic factors. Nutrient enrichment influenced community structure by changing the densities of bluegill Lepomis macrochirus and largemouth bass substantially but had a minor or no effect on other species. The management techniques used in these state-operated lakes are usually targeted toward a particular species without adequately considering the other species within the community. Our results show that attention to community-level interactions could provide valuable insight into factors that affect the quality of the fishery, insight that is not available through traditional population-level assessments. ?? Copyright by the American Fisheries Society 2005.
Franchini, Paolo; Fruciano, Carmelo; Frickey, Tancred; Jones, Julia C; Meyer, Axel
2014-01-01
Gut bacterial communities are now known to influence a range of fitness related aspects of organisms. But how different the microbial community is in closely related species, and if these differences can be interpreted as adaptive is still unclear. In this study we compared microbial communities in two sets of closely related sympatric crater lake cichlid fish species pairs that show similar adaptations along the limnetic-benthic axis. The gut microbial community composition differs in the species pair inhabiting the older of two crater lakes. One major difference, relative to other fish, is that in these cichlids that live in hypersaline crater lakes, the microbial community is largely made up of Oceanospirillales (52.28%) which are halotolerant or halophilic bacteria. This analysis opens up further avenues to identify candidate symbiotic or co-evolved bacteria playing a role in adaptation to similar diets and life-styles or even have a role in speciation. Future functional and phylosymbiotic analyses might help to address these issues.
Spatiotemporal Variation of Arctic Nearshore Fish Communities in Barrow, AK
NASA Astrophysics Data System (ADS)
Boswell, K. M.; Barton, M. B.; Lemoine, N. P.; Heintz, R.; Vollenweider, J.; Norcross, B.; Sousa, L.
2016-02-01
Climate change, oil and gas development, and increased transportation opportunities associated with retreating sea ice cover are likely to affect the processes underlying community development. Unfortunately, there is a paucity of information that prohibits establishing a baseline from which to examine biological and ecological changes. To address these concerns, we developed an intensive field sampling program using weekly beach seining for the six weeks following land-fast ice break-up during the summers of 2013-2015 (183 beach seine hauls totaling 37,303 fish) in three distinct water masses near Pt. Barrow, Alaska to examine how fish communities develop in the Arctic nearshore. Preliminary analyses indicate that inter-annual variability in temperature and salinity influence species composition observed in late summer, but it is unclear which factors operate on smaller temporal scales. We applied multivariate variance partitioning to quantify variation in community structure on multiple spatial and temporal scales during the summer season and identified several physicochemical parameters as important spatiotemporal drivers in structuring nearshore fish communities. Understanding how these drivers affect nearshore communities on the seasonal scale is an integral step to predict how these ecologically important ecosystems may shift in the face of Arctic climate change and continued development.
Regional climatic warming drives long-term community changes of British marine fish.
Genner, Martin J.; Sims, David W.; Wearmouth, Victoria J.; Southall, Emily J.; Southward, Alan J.; Henderson, Peter A.; Hawkins, Stephen J.
2004-01-01
Climatic change has been implicated as the cause of abundance fluctuations in marine fish populations worldwide, but the effects on whole communities are poorly understood. We examined the effects of regional climatic change on two fish assemblages using independent datasets from inshore marine (English Channel, 1913-2002) and estuarine environments (Bristol Channel, 1981-2001). Our results show that climatic change has had dramatic effects on community composition. Each assemblage contained a subset of dominant species whose abundances were strongly linked to annual mean sea-surface temperature. Species' latitudinal ranges were not good predictors of species-level responses, however, and the same species did not show congruent trends between sites. This suggests that within a region, populations of the same species may respond differently to climatic change, possibly owing to additional local environmental determinants, interspecific ecological interactions and dispersal capacity. This will make species-level responses difficult to predict within geographically differentiated communities. PMID:15156925
Jaureguizar, A J; Solari, A; Cortés, F; Milessi, A C; Militelli, M I; Camiolo, M D; Luz Clara, M; García, M
2016-07-01
The fish diversity and the main environmental factors affecting the spatial distribution of species, life history stages and community structure in the Río de la Plata (RdP) and adjacent waters are reviewed and analysed, with emphasis on the functional guild classification. The functional guild classification indicated that most species in the RdP were marine stragglers, zoobenthivores and oviparous species, although the biomass was dominated by estuarine species. Salinity had a stronger influence than temperature on the spatial pattern for all life stages, shallower and fresher waters are the preferred habitats of neonates and juveniles. During the breeding season (spring-summer), adults showed an intrusion into the inner part of RdP or to its adjacent nearshore waters from the offshore waters for spawning or mating, respectively. Variations in river discharge and wind patterns greatly affected the spatial extent of estuarine water, which ultimately influenced the domain of the main life-history stages (juveniles or adults) for both marine and estuarine fishes, as well as species and fish assemblage composition. The strong environmental gradient restricts some species and life-history stages to a particular section and defines three main fish assemblage areas. The composition of the fish assemblage is indicative of the recruitment of freshwater and marine species to the estuary in opposite ways, determined by the vertical stratification. Seasonal changes in the species composition were related to migration as a result of salinity and temperature variations and reproductive migrations to spawning and mating areas. This overview reveals that the RdP is under environmental variations that are likely to produce modifications to fish distribution and abundance that affect its fisheries. This context plus fish stock declines and changes in exploitation patterns could amplify the magnitude of the variations in the fisheries resources availability and affect the sustainability of fishing communities. © 2016 The Fisheries Society of the British Isles.
Community assembly of a euryhaline fish microbiome during salinity acclimation.
Schmidt, Victor T; Smith, Katherine F; Melvin, Donald W; Amaral-Zettler, Linda A
2015-05-01
Microbiomes play a critical role in promoting a range of host functions. Microbiome function, in turn, is dependent on its community composition. Yet, how microbiome taxa are assembled from their regional species pool remains unclear. Many possible drivers have been hypothesized, including deterministic processes of competition, stochastic processes of colonization and migration, and physiological 'host-effect' habitat filters. The contribution of each to assembly in nascent or perturbed microbiomes is important for understanding host-microbe interactions and host health. In this study, we characterized the bacterial communities in a euryhaline fish and the surrounding tank water during salinity acclimation. To assess the relative influence of stochastic versus deterministic processes in fish microbiome assembly, we manipulated the bacterial species pool around each fish by changing the salinity of aquarium water. Our results show a complete and repeatable turnover of dominant bacterial taxa in the microbiomes from individuals of the same species after acclimation to the same salinity. We show that changes in fish microbiomes are not correlated with corresponding changes to abundant taxa in tank water communities and that the dominant taxa in fish microbiomes are rare in the aquatic surroundings, and vice versa. Our results suggest that bacterial taxa best able to compete within the unique host environment at a given salinity appropriate the most niche space, independent of their relative abundance in tank water communities. In this experiment, deterministic processes appear to drive fish microbiome assembly, with little evidence for stochastic colonization. © 2015 John Wiley & Sons Ltd.
Overview on the effects of parasites on fish health
Iwanowicz, D.D.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.
2011-01-01
It is believed by many that parasites are only as important as the fish they infect. Parasites are ubiquitous, primarily surviving in a dynamic equilibrium with their host(s) and they are often overlooked in fish health assessments. Changes in the environment, both anthropogenic and environmental, can alter the parasite/host equilibrium and cause disease or mortality in fish. Therefore it is imperative that we have knowledge of both parasites and parasitic communities within a given population. When fish kills occur, it can often be associated with changes in parasite density and community composition. Often the damage associated with these fish is relative to the rate of infestation with the parasite; a fish that is lightly infected will show few signs of the parasite, while a heavily infected fish may become physiologically impaired and even die. Parasites can cause mechanical damage (fusion of gill lamellae, tissue replacement), physiological damage (cell proliferation, immunomodulation, detrimental behavioral responses, altered growth) and reproductive damage. As parasitism is the most common lifestyle on the planet, understanding its role in the environment may help researchers understand changes in a given fish population or stream ecosystem.
Crane, Nicole L; Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle
2017-01-01
The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2-oceanic and inhabited (high human impact); and cluster 3-lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.
Comparing isotope signatures of prey fish: does gut removal affect δ13C or δ15N?
Chipps, Steven R.; Fincel, Mark J.; VanDeHey, Justin A.; Wuestewald, Andrew
2011-01-01
Stable isotope analysis is a quick and inexpensive method to monitor the effects of food web changes on aquatic communities. Traditionally, whole specimens have been used when determining isotope composition of prey fish or age-0 recreational fishes. However, gut contents of prey fish could potentially alter isotope composition of the specimen, especially when recent foraging has taken place or when the gut contains non-assimilated material that would normally pass through fishes undigested. To assess the impacts of gut content on prey fish isotope signatures, we examined the differences in isotopic variation of five prey fish species using whole fish, whole fish with the gut contents removed, and dorsal muscle only. We found significant differences in both δ15N and δ13C between the three tissue treatments. In most cases, muscle tissue was enriched compared to whole specimens or gut-removed specimens. Moreover, differences in mean δ15N within a species were up to 2‰ among treatments. This would result in a change of over half a trophic position (TP) based on a 3.4‰ increase per trophic level. However, there were no apparent relationships between tissue isotope values in fish with increased gut fullness (more prey tissue present). We suggest that muscle tissue should be used as the standard tissue for determining isotope composition of prey fish or age-0 recreational fishes, especially when determining enrichment for mixing models, calculating TP, or constructing aquatic food webs.
Trophic structure of a coastal fish community determined with diet and stable isotope analyses.
Malek, A J; Collie, J S; Taylor, D L
2016-09-01
A combination of dietary guild analysis and nitrogen (δ(15) N) and carbon (δ(13) C) stable-isotope analysis was used to assess the trophic structure of the fish community in Rhode Island and Block Island Sounds, an area off southern New England identified for offshore wind energy development. In the autumn of 2009, 2010 and 2011, stomach and tissue samples were taken from 20 fish and invertebrate species for analysis of diet composition and δ(15) N and δ(13) C signatures. The food chain in Rhode Island and Block Island Sounds comprises approximately four trophic levels within which the fish community is divided into distinct dietary guilds, including planktivores, benthivores, crustacivores and piscivores. Within these guilds, inter-species isotopic and dietary overlap is high, suggesting that resource partitioning or competitive interactions play a major role in structuring the fish community. Carbon isotopes indicate that most fishes are supported by pelagic phytoplankton, although there is evidence that benthic production also plays a role, particularly for obligate benthivores such as skates Leucoraja spp. This type of analysis is useful for developing an ecosystem-based approach to management, as it identifies species that act as direct links to basal resources as well as species groups that share trophic roles. © 2016 The Fisheries Society of the British Isles.
Mulvihill, Christiane I.; Baldigo, Barry P.; Ernst, Anne G.
2009-01-01
In 2002, the U.S. Geological Survey, in cooperation with the New York City Department of Environmental Protection, began a 5-year study to develop a database that documents the physical and biological characteristics of nine stable reference reaches from seven streams in the New York City West of Hudson Water Supply Watershed in the Catskill Mountain region of New York State. Primary objectives of this study were to (1) develop a reference-reach database of morphology, aquatic biology, and fluvial processes, and (2) summarize the relations between fish communities, aquatic habitat, and stable stream morphology in streams in the Catskill Mountain region. Secondary objectives included documenting year-to-year variability in fish populations and stream habitat in geomorphically stable streams and demonstrating how reliably Habitat Suitability Index models can be used to characterize habitat conditions and predict the presence and abundance of populations of trout species. Fish and habitat databases were developed, and several important relations were identified. Fish-community indices differed considerably among sites where trout were present and where they were either absent or present in very low numbers; these differences were reflected in higher Habitat Suitability Index scores at trout-dominated sites. Several fish- community and habitat variables were found to be strongly associated with indices of stability and, therefore, determined to be useful tools for evaluating stream condition. Lastly, preliminary results suggest Rosgen stream type data can help refine fish and habitat relations and assist in our ability to predict habitat potential and fish-community composition.
Zhang, Heng; Yang, Sheng-Long; Meng, Hai-Xing
2012-06-01
Based on four surveys of eggs and larvae in the Yangtze estuary in 2005 (April and November) and 2006 (April and September), combined with the historical data of the wetland in 1990 (September) and 1991 (March), we analyzed seasonal changes in fish species composition and quantity of ichthyoplankton. Thirty-six species of egg and larvae were collected and marine fish species were the highest represented ecological guild. Average fish species and average abundance in spring were lower than in autumn for every survey. The total number of eggs in brackish water was higher than in fresh water, but the total number of larvae and juveniles in brackish water was lower. The abundance of eggs and larvae during from 2005 to 2006 in both spring and autumn was higher compared to those from 1990 to 1991. Obvious differences in species composition in September between 1990 and 2006 were found, especially for Erythroculter ilishaeformis and Neosalanx taihuensis. Fish species composition and quantity within the ichthyoplankton community has obviously changed in the Yangtze estuary over the last 20 years.
Kvach, Yuriy; Ondračková, Markéta; Janáč, Michal; Jurajda, Pavel
2016-08-31
In this study, we assessed the impact of sampling method on the results of fish ectoparasite studies. Common roach Rutilus rutilus were sampled from the same gravel pit in the River Dyje flood plain (Czech Republic) using 3 different sampling methods, i.e. electrofishing, beach seining and gill-netting, and were examined for ectoparasites. Not only did fish caught by electrofishing have more of the most abundant parasites (Trichodina spp., Gyrodactylus spp.) than those caught by beach seining or gill-netting, they also had relatively rich parasite infracommunities, resulting in a significantly different assemblage composition, presumably as parasites were lost through handling and 'manipulation' in the net. Based on this, we recommend electrofishing as the most suitable method to sample fish for parasite community studies, as data from fish caught with gill-nets and beach seines will provide a biased picture of the ectoparasite community, underestimating ectoparasite abundance and infracommunity species richness.
Deininger, A; Faithfull, C L; Lange, K; Bayer, T; Vidussi, F; Liess, A
2016-08-01
Climate change scenarios predict intensified terrestrial storm runoff, providing coastal ecosystems with large nutrient pulses and increased turbidity, with unknown consequences for the phytoplankton community. We conducted a 12-day mesocosm experiment in the Mediterranean Thau Lagoon (France), adding soil (simulated runoff) and fish (different food webs) in a 2 × 2 full factorial design and monitored phytoplankton composition, shade adaptation and stoichiometry. Diatoms (Chaetoceros) increased four-fold immediately after soil addition, prymnesiophytes and dinoflagellates peaked after six- and 12 days, respectively. Soil induced no phytoplankton shade adaptation. Fish reduced the positive soil effect on dinoflagellates (Scripsiella, Glenodinium), and diatom abundance in general. Phytoplankton community composition drove seston stoichiometry. In conclusion, pulsed terrestrial runoff can cause rapid, low quality (high carbon: nutrient) diatom blooms. However, bloom duration may be short and reduced in magnitude by fish. Thus, climate change may shift shallow coastal ecosystems towards famine or feast dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pickering, Emily A.; Adler, Alyssa M.; Taylor, J. Christopher; Peterson, Charles H.
2017-01-01
Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor so that all EFH across a wide range of habitat complexity may be accurately identified and properly managed. PMID:28873447
Keeping Food on the Table: Human Responses and Changing Coastal Fisheries in Solomon Islands.
Albert, Simon; Aswani, Shankar; Fisher, Paul L; Albert, Joelle
2015-01-01
Globally the majority of commercial fisheries have experienced dramatic declines in stock and catch. Likewise, projections for many subsistence fisheries in the tropics indicate a dramatic decline is looming in the coming decades. In the Pacific Islands coastal fisheries provide basic subsistence needs for millions of people. A decline in fish catch would therefore have profound impacts on the health and livelihoods of these coastal communities. Given the decrease in local catch rates reported for many coastal communities in the Pacific, it is important to understand if fishers have responded to ecological change (either by expanding their fishing range and/or increasing their fishing effort), and if so, to evaluate the costs or benefits of these responses. We compare data from fish catches in 1995 and 2011 from a rural coastal community in Solomon Islands to examine the potentially changing coastal reef fishery at these time points. In particular we found changes in preferred fishing locations, fishing methodology and catch composition between these data sets. The results indicate that despite changes in catch rates (catch per unit effort) between data collected in 2011 and 16 years previously, the study community was able to increase gross catches through visiting fishing sites further away, diversifying fishing methods and targeting pelagic species through trolling. Such insight into local-scale responses to changing resources and/or fisheries development will help scientists and policy makers throughout the Pacific region in managing the region's fisheries in the future.
Keeping Food on the Table: Human Responses and Changing Coastal Fisheries in Solomon Islands
2015-01-01
Globally the majority of commercial fisheries have experienced dramatic declines in stock and catch. Likewise, projections for many subsistence fisheries in the tropics indicate a dramatic decline is looming in the coming decades. In the Pacific Islands coastal fisheries provide basic subsistence needs for millions of people. A decline in fish catch would therefore have profound impacts on the health and livelihoods of these coastal communities. Given the decrease in local catch rates reported for many coastal communities in the Pacific, it is important to understand if fishers have responded to ecological change (either by expanding their fishing range and/or increasing their fishing effort), and if so, to evaluate the costs or benefits of these responses. We compare data from fish catches in 1995 and 2011 from a rural coastal community in Solomon Islands to examine the potentially changing coastal reef fishery at these time points. In particular we found changes in preferred fishing locations, fishing methodology and catch composition between these data sets. The results indicate that despite changes in catch rates (catch per unit effort) between data collected in 2011 and 16 years previously, the study community was able to increase gross catches through visiting fishing sites further away, diversifying fishing methods and targeting pelagic species through trolling. Such insight into local-scale responses to changing resources and/or fisheries development will help scientists and policy makers throughout the Pacific region in managing the region’s fisheries in the future. PMID:26158694
Using larval fish community structure to guide long-term monitoring of fish spawning activity
Pritt, Jeremy J.; Roseman, Edward F.; Ross, Jason E.; DeBruyne, Robin L.
2015-01-01
Larval fishes provide a direct indication of spawning activity and may therefore be useful for long-term monitoring efforts in relation to spawning habitat restoration. However, larval fish sampling can be time intensive and costly. We sought to understand the spatial and temporal structure of larval fish communities in the St. Clair–Detroit River system, Michigan–Ontario, to determine whether targeted larval fish sampling can be made more efficient for long-term monitoring. We found that larval fish communities were highly nested, with lower river segments and late-spring samples containing the highest genus richness of larval fish. We created four sampling scenarios for each river system: (1) using all available data, (2) limiting temporal sampling to late spring, (3) limiting spatial sampling to lower river segments only, and (4) limiting both spatial and temporal sampling. By limiting the spatial extent of sampling to lower river sites and/or limiting the temporal extent to the late-spring period, we found that effort could be reduced by more than 50% while maintaining over 75% of the observed and estimated total genus richness. Similarly, limiting the sampling effort to lower river sites and/or the late-spring period maintained between 65% and 93% of the observed richness of lithophilic-spawning genera and invasive genera. In general, community composition remained consistent among sampling scenarios. Targeted sampling offers a lower-cost alternative to exhaustive spatial and temporal sampling and may be more readily incorporated into long-term monitoring.
Resilience of coral-associated bacterial communities exposed to fish farm effluent.
Garren, Melissa; Raymundo, Laurie; Guest, James; Harvell, C Drew; Azam, Farooq
2009-10-06
The coral holobiont includes the coral animal, algal symbionts, and associated microbial community. These microbes help maintain the holobiont homeostasis; thus, sustaining robust mutualistic microbial communities is a fundamental part of long-term coral reef survival. Coastal pollution is one major threat to reefs, and intensive fish farming is a rapidly growing source of this pollution. We investigated the susceptibility and resilience of the bacterial communities associated with a common reef-building coral, Porites cylindrica, to coastal pollution by performing a clonally replicated transplantation experiment in Bolinao, Philippines adjacent to intensive fish farming. Ten fragments from each of four colonies (total of 40 fragments) were followed for 22 days across five sites: a well-flushed reference site (the original fragment source); two sites with low exposure to milkfish (Chanos chanos) aquaculture effluent; and two sites with high exposure. Elevated levels of dissolved organic carbon (DOC), chlorophyll a, total heterotrophic and autotrophic bacteria abundance, virus like particle (VLP) abundances, and culturable Vibrio abundance characterized the high effluent sites. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed rapid, dramatic changes in the coral-associated bacterial communities within five days of high effluent exposure. The community composition on fragments at these high effluent sites shifted towards known human and coral pathogens (i.e. Arcobacter, Fusobacterium, and Desulfovibrio) without the host corals showing signs of disease. The communities shifted back towards their original composition by day 22 without reduction in effluent levels. This study reveals fish farms as a likely source of pathogens with the potential to proliferate on corals and an unexpected short-term resilience of coral-associated bacterial communities to eutrophication pressure. These data highlight a need for improved aquaculture practices that can achieve both sustainable industry goals and long-term coral reef survival.
Resilience of Coral-Associated Bacterial Communities Exposed to Fish Farm Effluent
Garren, Melissa; Raymundo, Laurie; Guest, James; Harvell, C. Drew; Azam, Farooq
2009-01-01
Background The coral holobiont includes the coral animal, algal symbionts, and associated microbial community. These microbes help maintain the holobiont homeostasis; thus, sustaining robust mutualistic microbial communities is a fundamental part of long-term coral reef survival. Coastal pollution is one major threat to reefs, and intensive fish farming is a rapidly growing source of this pollution. Methodology & Principal Findings We investigated the susceptibility and resilience of the bacterial communities associated with a common reef-building coral, Porites cylindrica, to coastal pollution by performing a clonally replicated transplantation experiment in Bolinao, Philippines adjacent to intensive fish farming. Ten fragments from each of four colonies (total of 40 fragments) were followed for 22 days across five sites: a well-flushed reference site (the original fragment source); two sites with low exposure to milkfish (Chanos chanos) aquaculture effluent; and two sites with high exposure. Elevated levels of dissolved organic carbon (DOC), chlorophyll a, total heterotrophic and autotrophic bacteria abundance, virus like particle (VLP) abundances, and culturable Vibrio abundance characterized the high effluent sites. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed rapid, dramatic changes in the coral-associated bacterial communities within five days of high effluent exposure. The community composition on fragments at these high effluent sites shifted towards known human and coral pathogens (i.e. Arcobacter, Fusobacterium, and Desulfovibrio) without the host corals showing signs of disease. The communities shifted back towards their original composition by day 22 without reduction in effluent levels. Significance This study reveals fish farms as a likely source of pathogens with the potential to proliferate on corals and an unexpected short-term resilience of coral-associated bacterial communities to eutrophication pressure. These data highlight a need for improved aquaculture practices that can achieve both sustainable industry goals and long-term coral reef survival. PMID:19806190
Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities
NASA Astrophysics Data System (ADS)
Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.
2017-10-01
Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of habitat changes on fish due to coastal development and urbanisation and emphasises that ecosystem management and conservation will benefit from a wider understanding of habitat functional roles and habitat changes influencing the functioning and structure of the fish communities.
The importance of context dependency for understanding the effects of low flow events on fish
Walters, Annika W.
2014-01-01
The natural hydrology of streams and rivers has been extensively altered by dam construction, water diversion, and climate change. An increased frequency of low-flow events will affect fish by changing habitat availability, resource availability, and reproductive cues. I reviewed the literature to characterize the approaches taken to assess low-flow events and fish, the main effects of low-flow events on fish, and the associated mechanistic drivers. Most studies are focused on temperate streams and are comparative in nature. Decreased stream flow is associated with decreased survival, growth, and abundance of fish populations and shifts in community composition, but effects are variable. This variability in effects is probably caused by context dependence. I propose 3 main sources of context dependence that drive the variation in fish responses to low-flow events: attributes of the low-flow event, attributes of the habitat, and attributes of the fish. Awareness of these sources of context dependence can help managers interpret and explain data, predict vulnerability of fish communities, and prioritize appropriate management actions.
Ondracková, M; Simková, A; Gelnar, M; Jurajda, P
2004-12-01
Infection parameters of Posthodiplostomum cuticola, a digenean parasite with a complex life-cycle, were investigated in fish (the second intermediate host) from 6 floodplain water bodies over 2 years. A broad range of factors related to abiotic characteristics of localities, density of the first intermediate (planorbid snails) and definitive (wading birds) hosts and fish community structure were tested for their effects on P. cuticola infection in juvenile and adult fish. Characters of the littoral zone and flood duration were found to be important factors for the presence of the first intermediate and definitive hosts. Visitation time of definitive bird hosts was also related to adult fish host density. Localities with P. cuticola infected fish were visited by a higher number of bird species. Infection of P. cuticola in fish and similarities in infection among fish host assemblages were correlated with fish host density and fish species composition. Parasite infection in both adult and juvenile fishes was associated with the slope of the bank and the bottom type, in particular in juvenile fish assemblages with snail host density. We conclude that habitat characteristics, snail host density and fish community structure contribute significantly to P. cuticola infection in fish hosts.
Ichthyofauna of the Eastern Coast Bays of the Novaya Zemlya Archipelago
NASA Astrophysics Data System (ADS)
Bolshakova, Ya. Yu.; Bolshakov, D. V.
2018-03-01
Based on 2014-2016 studies and published data on the ichthyofauna composition near the eastern coast of Novaya Zemlya, a revised list of fish fauna has been compiled. It includes 30 species from 23 genera and 13 families. The taxonomic diversity of ichthyofauna, its characteristics in respect to geographic range and biotopic groups of fish are considered. In general, ichthyological communities in bays off the eastern coast are similar in the species ratio to the communities in the open Kara Sea, and do not demonstrate any essential features of isolation.
Brightbill, R.A.; Bilger, Michael D.
2001-01-01
The U.S. Army Corps of Engineers, Baltimore District, has been conducting biological surveys of the inflow and outflow streams of Whitney Point Lake since the early 1980's. These surveys are made to identify possible detrimental effects as well as benefits of the reservoir and to better understand the aquatic communities in the vicinity of the lake at the present and over time. The U.S. Army Corps of Engineers and the U.S. Geological Survey jointly conducted a survey of the fish communities upstream and downstream of the reservoir in Otselic River in September 2000. The fish communities upstream and downstream were compared and any differences or similarities seen in the communities were noted.This study found the fish communities upstream and downstream of Whitney Point Lake to be in good condition, with Index of Biotic Integrity (IBI) scores 4.3 upstream and 4.5 downstream. The habitat conditions of both reaches were of suboptimal quality, with a score of 15 for both reaches as determined by use of the U.S. Environmental Protection Agency's Rapid Bioassessment Protocols, yet are capable of supporting fish communities. The Shannon Index was 3.83 upstream and 3.16 downstream of the lake, indicating that both reaches are slightly impacted by species richness and lack of individual evenness among the species. The communities also were different from each other. Only 11 of the 21 species upstream were also captured downstream. The Jaccards Coefficient and the Index of Similarity reflect this community difference with scores of 0.39 and 0.56, respectively.
Coral–algal phase shifts alter fish communities and reduce fisheries production
Ainsworth, Cameron H; Mumby, Peter J
2015-01-01
Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae-dominated system may accompany coral loss. In this case, the composition of the reef-associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae-dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral–algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small-bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species. PMID:24953835
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grout, J.A.
As part of a study to explore the impacts of acid mine drainage from the Britannia Mine, a beach seine sampling program was initiated on Howe Sound to assess the species composition, abundance, and distribution of the near-shore fish community. Sampling was carried out in April 1997 at 23 sites on the east and west shores of the sound to attempt to differentiate between the fish communities using foreshore areas near Britannia Beach, which may be impacted by acid mine drainage, and fish communities in more distant areas thought to be less affected by mine pollution. Data are presented formore » the 13,882 individuals from 18 families and 39 species of fish, and stomach content data are also presented for a subset of the juvenile salmonids caught at Britannia Beach and Furry Creek. In addition, physical oceanographic data for each site are included.« less
Komyakova, Valeriya; Munday, Philip L.; Jones, Geoffrey P.
2013-01-01
The structure of coral reef habitat has a pronounced influence on the diversity, composition and abundance of reef-associated fishes. However, the particular features of the habitat that are most critical are not always known. Coral habitats can vary in many characteristics, notably live coral cover, topographic complexity and coral diversity, but the relative effects of these habitat characteristics are often not distinguished. Here, we investigate the strength of the relationships between these habitat features and local fish diversity, abundance and community structure in the lagoon of Lizard Island, Great Barrier Reef. In a spatial comparison using sixty-six 2m2 quadrats, fish species richness, total abundance and community structure were examined in relation to a wide range of habitat variables, including topographic complexity, habitat diversity, coral diversity, coral species richness, hard coral cover, branching coral cover and the cover of corymbose corals. Fish species richness and total abundance were strongly associated with coral species richness and cover, but only weakly associated with topographic complexity. Regression tree analysis showed that coral species richness accounted for most of the variation in fish species richness (63.6%), while hard coral cover explained more variation in total fish abundance (17.4%), than any other variable. In contrast, topographic complexity accounted for little spatial variation in reef fish assemblages. In degrading coral reef environments, the potential effects of loss of coral cover and topographic complexity are often emphasized, but these findings suggest that reduced coral biodiversity may ultimately have an equal, or greater, impact on reef-associated fish communities. PMID:24349455
Komyakova, Valeriya; Munday, Philip L; Jones, Geoffrey P
2013-01-01
The structure of coral reef habitat has a pronounced influence on the diversity, composition and abundance of reef-associated fishes. However, the particular features of the habitat that are most critical are not always known. Coral habitats can vary in many characteristics, notably live coral cover, topographic complexity and coral diversity, but the relative effects of these habitat characteristics are often not distinguished. Here, we investigate the strength of the relationships between these habitat features and local fish diversity, abundance and community structure in the lagoon of Lizard Island, Great Barrier Reef. In a spatial comparison using sixty-six 2m(2) quadrats, fish species richness, total abundance and community structure were examined in relation to a wide range of habitat variables, including topographic complexity, habitat diversity, coral diversity, coral species richness, hard coral cover, branching coral cover and the cover of corymbose corals. Fish species richness and total abundance were strongly associated with coral species richness and cover, but only weakly associated with topographic complexity. Regression tree analysis showed that coral species richness accounted for most of the variation in fish species richness (63.6%), while hard coral cover explained more variation in total fish abundance (17.4%), than any other variable. In contrast, topographic complexity accounted for little spatial variation in reef fish assemblages. In degrading coral reef environments, the potential effects of loss of coral cover and topographic complexity are often emphasized, but these findings suggest that reduced coral biodiversity may ultimately have an equal, or greater, impact on reef-associated fish communities.
Fish-mediated changes in bacterioplankton community composition: an in situ mesocosm experiment
NASA Astrophysics Data System (ADS)
Luo, Congqiang; Yi, Chunlong; Ni, Leyi; Guo, Longgen
2017-06-01
We characterized variations in bacterioplankton community composition (BCC) in mesocosms subject to three different treatments. Two groups contained fish (group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-day period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly different between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected inC. carpio mesocosms. The redundancy analysis (RDA) result demonstrated that the BCC was closely related to the bottom-up (total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces (biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa (heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.
Fish-mediated changes in bacterioplankton community composition: an in situ mesocosm experiment
NASA Astrophysics Data System (ADS)
Luo, Congqiang; Yi, Chunlong; Ni, Leyi; Guo, Longgen
2018-03-01
We characterized variations in bacterioplankton community composition (BCC) in mesocosms subject to three different treatments. Two groups contained fish (group one: Cyprinus carpio; group two: Hypophthalmichthys molitrix); and group three, the untreated mesocosm, was the control. Samples were taken seven times over a 49-d period, and BCC was analyzed by PCR-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR (qPCR). Results revealed that introduction of C. carpio and H. molitrix had a remarkable impact on the composition of bacterioplankton communities, and the BCC was significantly different between each treatment. Sequencing of DGGE bands revealed that the bacterioplankton community in the different treatment groups was consistent at a taxonomic level, but differed in its abundance. H. molitrix promoted the richness of Alphaproteobacteria and Actinobacteria, while more bands affiliated to Cyanobacteria were detected in C. carpio mesocosms. The redundancy analysis (RDA) result demonstrated that the BCC was closely related to the bottom-up (total phosphorus, chlorophyll a, phytoplankton biomass) and top-down forces (biomass of copepods and cladocera) in C. carpio and control mesocosms, respectively. We found no evidence for top-down regulation of BCC by zooplankton in H. molitrix mesocosms, while grazing by protozoa (heterotrophic nanoflagellates, ciliates) became the major way to regulate BCC. Total bacterioplankton abundances were significantly higher in C. carpio mesocosms because of high nutrient concentration and suspended solids. Our study provided insights into the relationship between fish and bacterioplankton at species level, leading to a deep understanding of the function of the microbial loop and the aquatic ecosystem.
Determining the mechanism by which fish diversity influences production.
Carey, Michael P; Wahl, David H
2011-09-01
Understanding the ability of biodiversity to govern ecosystem function is essential with current pressures on natural communities from species invasions and extirpations. Changes in fish communities can be a major determinant of food web dynamics, and even small shifts in species composition or richness can translate into large effects on ecosystems. In addition, there is a large information gap in extrapolating results of small-scale biodiversity-ecosystem function experiments to natural systems with realistic environmental complexity. Thus, we tested the key mechanisms (resource complementarity and selection effect) for biodiversity to influence fish production in mesocosms and ponds. Fish diversity treatments were created by replicating species richness and species composition within each richness level. In mesocosms, increasing richness had a positive effect on fish biomass with an overyielding pattern indicating species mixtures were more productive than any individual species. Additive partitioning confirmed a positive net effect of biodiversity driven by a complementarity effect. Productivity was less affected by species diversity when species were more similar. Thus, the primary mechanism driving fish production in the mesocosms was resource complementarity. In the ponds, the mechanism driving fish production changed through time. The key mechanism was initially resource complementarity until production was influenced by the selection effect. Varying strength of intraspecific interactions resulting from differences in resource levels and heterogeneity likely caused differences in mechanisms between the mesocosm and pond experiments, as well as changes through time in the ponds. Understanding the mechanisms by which fish diversity governs ecosystem function and how environmental complexity and resource levels alter these relationships can be used to improve predictions for natural systems.
Habitat degradation and fishing effects on the size structure of coral reef fish communities.
Wilson, S K; Fisher, R; Pratchett, M S; Graham, N A J; Dulvy, N K; Turner, R A; Cakacaka, A; Polunin, N V C
2010-03-01
Overfishing and habitat degradation through climate change pose the greatest threats to sustainability of marine resources on coral reefs. We examined how changes in fishing pressure and benthic habitat composition influenced the size spectra of island-scale reef fish communities in Lau, Fiji. Between 2000 and 2006 fishing pressure declined in the Lau Islands due to declining human populations and reduced demand for fresh fish. At the same time, coral cover declined and fine-scale architectural complexity eroded due to coral bleaching and outbreaks of crown-of-thorns starfish, Acanthaster planci. We examined the size distribution of reef fish communities using size spectra analysis, the linearized relationship between abundance and body size class. Spatial variation in fishing pressure accounted for 31% of the variation in the slope of the size spectra in 2000, higher fishing pressure being associated with a steeper slope, which is indicative of fewer large-bodied fish and/or more small-bodied fish. Conversely, in 2006 spatial variation in habitat explained 53% of the variation in the size spectra slopes, and the relationship with fishing pressure was much weaker (approximately 12% of variation) than in 2000. Reduced cover of corals and lower structural complexity was associated with less steep size spectra slopes, primarily due to reduced abundance of fish < 20 cm. Habitat degradation will compound effects of fishing on coral reefs as increased fishing reduces large-bodied target species, while habitat loss results in fewer small-bodied juveniles and prey that replenish stocks and provide dietary resources for predatory target species. Effective management of reef resources therefore depends on both reducing fishing pressure and maintaining processes that encourage rapid recovery of coral habitat.
Biswas, Kristi; Turner, Susan J
2012-02-01
Moving bed biofilm reactor (MBBR) systems are increasingly used for municipal and industrial wastewater treatment, yet in contrast to activated sludge (AS) systems, little is known about their constituent microbial communities. This study investigated the community composition of two municipal MBBR wastewater treatment plants (WWTPs) in Wellington, New Zealand. Monthly samples comprising biofilm and suspended biomass were collected over a 12-month period. Bacterial and archaeal community composition was determined using a full-cycle community approach, including analysis of 16S rRNA gene libraries, fluorescence in situ hybridization (FISH) and automated ribosomal intergenic spacer analysis (ARISA). Differences in microbial community structure and abundance were observed between the two WWTPs and between biofilm and suspended biomass. Biofilms from both plants were dominated by Clostridia and sulfate-reducing members of the Deltaproteobacteria (SRBs). FISH analyses indicated morphological differences in the Deltaproteobacteria detected at the two plants and also revealed distinctive clustering between SRBs and members of the Methanosarcinales, which were the only Archaea detected and were present in low abundance (<5%). Biovolume estimates of the SRBs were higher in biofilm samples from one of the WWTPs which receives both domestic and industrial waste and is influenced by seawater infiltration. The suspended communities from both plants were diverse and dominated by aerobic members of the Gammaproteobacteria and Betaproteobacteria. This study represents the first detailed analysis of microbial communities in full-scale MBBR systems and indicates that this process selects for distinctive biofilm and planktonic communities, both of which differ from those found in conventional AS systems.
Luoma, James A.; Weber, Kerry L.; Denise A. Mayer,
2015-01-01
Further investigations to evaluate the SDP-exposure related effects on freshwater fish at the maximum approved open-water label concentration and exposure duration (100 mg/L for 8 hours) and using the expected lentic application technique (static application) are warranted. The variation in tolerance to P. fluorescens, strain CL145A, exposure observed in this study indicates that fish species community composition should be considered before SDP is applied in open-water environments.
Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia
Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle
2017-01-01
The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1–oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2–oceanic and inhabited (high human impact); and cluster 3–lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an ‘opportunistic’ scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities. PMID:28489903
Villéger, Sébastien; Miranda, Julia Ramos; Hernandez, Domingo Flores; Mouillot, David
2012-01-01
The concept of β-diversity, defined as dissimilarity among communities, has been widely used to investigate biodiversity patterns and community assembly rules. However, in ecosystems with high taxonomic β-diversity, due to marked environmental gradients, the level of functional β-diversity among communities is largely overlooked while it may reveal processes shaping community structure. Here, decomposing biodiversity indices into α (local) and γ (regional) components, we estimated taxonomic and functional β-diversity among tropical estuarine fish communities, through space and time. We found extremely low functional β-diversity values among fish communities (<1.5%) despite high dissimilarity in species composition and species dominance. Additionally, in contrast to the high α and γ taxonomic diversities, α and γ functional diversities were very close to the minimal value. These patterns were caused by two dominant functional groups which maintained a similar functional structure over space and time, despite the strong dissimilarity in taxonomic structure along environmental gradients. Our findings suggest that taxonomic and functional β-diversity deserve to be quantified simultaneously since these two facets can show contrasting patterns and the differences can in turn shed light on community assembly rules. PMID:22792395
Late summer zoogeography of the northern Bering and Chukchi seas
NASA Astrophysics Data System (ADS)
Sigler, Michael F.; Mueter, Franz J.; Bluhm, Bodil A.; Busby, Morgan S.; Cokelet, Edward D.; Danielson, Seth L.; Robertis, Alex De; Eisner, Lisa B.; Farley, Edward V.; Iken, Katrin; Kuletz, Kathy J.; Lauth, Robert R.; Logerwell, Elizabeth A.; Pinchuk, Alexei I.
2017-01-01
Ocean currents, water masses, and seasonal sea ice formation contribute to determining relationships among the biota of the Bering and Chukchi seas. The Bering Sea communicates with the Chukchi Sea via northward advection of water, nutrients, organic matter, and plankton through Bering Strait. We used data from concurrent surveys of zooplankton, pelagic fishes and jellyfish, epibenthic fishes and invertebrates, and seabirds to identify faunal distribution patterns and environmental factors that are related to these faunal distributions within the US portions of the Chukchi Sea shelf and Bering Sea shelf north of Nunivak Island. Regional differences in late summer (August-September) distributions of biota largely reflected the underlying hydrography. Depth, temperature, salinity, stratification, and chlorophyll a, but less so sediment-related or nutrient-related factors, were related to the distributions of the assemblages (zooplankton: depth, salinity, stratification; pelagic fishes and jellyfish: depth, stratification, chlorophyll a; epibenthic fishes and invertebrates: depth, temperature, salinity; seabirds: temperature, salinity, stratification). These six environmental factors that most influenced distributions of zooplankton, pelagic fishes/jellyfish, epibenthic fishes and invertebrate, and seabird assemblages likely can be simplified to three factors reflecting bottom depth, water mass, and their stratification and productivity (which are tightly linked in the study region). The assemblages were principally structured from nearshore to offshore and from south to north. The nearshore to offshore contrast usually was stronger in the south, where the enormous discharge of the Yukon River is more apparent and extends farther offshore, influencing zooplankton, pelagic fish/jellyfish, and seabird assemblages. Some assemblages overlapped spatially (e.g., seabird and zooplankton), indicating shared influential environmental factors or trophic linkages among assemblages. The gradients in assemblage composition were gradual for epibenthic taxa, abrupt for zooplankton taxa, and intermediate for pelagic fish/jellyfish and seabird taxa, implying that zooplankton assemblage structure is most strongly tied to water mass, epibenthic least, with the other two taxa intermediates. Three communities (i.e., cross-assemblage groupings) emerged based on maps of ordination axes and core use areas by taxa; one associated with Alaska Coastal Water (warmer, fresher, nutrient depauperate), second associated with Chirikov Basin and the southern Chukchi Sea (colder, saltier, nutrient rich), and third associated with the northern Chukchi shelf (colder and saltier but not as nutrient rich). Gradients in species composition occurred both within and between these communities. The Chirikov Basin/southern Chukchi Sea community was characterized by distinct zooplankton and seabird taxa, but was not strongly associated with distinct pelagic or epibenthic fish and invertebrate taxa. Although comprehensive data were only available for a single year and annual variation may affect the generality of our results, our comprehensive ecosystem survey approach yielded new insights into the ecological relationships (specifically, gradients in assemblage composition and identification of communities) of this Arctic region.
Gress, Erika; Wright, Georgina; Exton, Dan A.; Rogers, Alex D.
2016-01-01
Mesophotic coral ecosystems (MCEs; reefs 30-150m depth) are of increased research interest because of their potential role as depth refuges from many shallow reef threats. Yet few studies have identified patterns in fish species composition and trophic group structure between MCEs and their shallow counterparts. Here we explore reef fish species and biomass distributions across shallow to upper-MCE Caribbean reef gradients (5-40m) around Utila, Honduras, using a diver-operated stereo-video system. Broadly, we found reef fish species richness, abundance and biomass declining with depth. At the trophic group level we identified declines in herbivores (both total and relative community biomass) with depth, mostly driven by declines in parrotfish (Scaridae). Piscivores increased as a proportion of the community with increased depth while, in contrast to previous studies, we found no change in relative planktivorous reef fish biomass across the depth gradient. In addition, we also found evidence of ontogenetic migrations in the blue tang (Acanthurus coeruleus), striped parrotfish (Scarus iserti), blue chromis (Chromis cyanea), creole wrasse (Clepticus parrae), bluehead wrasse (Thalassoma bifasciatum) and yellowtail snapper (Ocyurus chrysurus), with a higher proportion of larger individuals at mesophotic and near-mesophotic depths than on shallow reefs. Our results highlight the importance of using biomass measures when considering fish community changes across depth gradients, with biomass generating different results to simple abundance counts. PMID:27332811
Partitioning potential fish yields from the Great Lakes
Loftus, D.H.; Olver, C.H.; Brown, Edward H.; Colby, P.J.; Hartman, Wilbur L.; Schupp, D.H.
1987-01-01
We proposed and implemented procedures for partitioning future fish yields from the Great Lakes into taxonomic components. These projections are intended as guidelines for Great Lakes resource managers and scientists. Attainment of projected yields depends on restoration of stable fish communities containing some large piscivores that will use prey efficiently, continuation of control of the sea lamprey (Petromyzon marinus), and restoration of high-quality fish habitat. Because Great Lakes fish communities were harmonic before their collapse, we used their historic yield properties as part of the basis for projecting potential yields of rehabilitated communities. This use is qualified, however, because of possible inaccuracies in the wholly commercial yield data, the presence now of greatly expanded sport fisheries that affect yield composition and magnitude, and some possibly irreversible changes since the 1950s in the various fish communities themselves. We predict that total yields from Lakes Superior, Huron, and Ontario will be increased through rehabilitation, while those from Lakes Michigan and Erie will decline. Salmonines and coregonines will dominate future yields from the upper lakes. The Lake Erie fishery will continue to yield mostly rainbow smelt (Osmerus mordax), but the relative importance of percids, especially of walleye (Stizostedion vitreum vitreum) will increase. In Lake Ontario, yields of salmonines will be increased. Managers will have to apply the most rigorous management strictures to major predator species.
Fazi, Stefano; Amalfitano, Stefano; Pizzetti, Ilaria; Pernthaler, Jakob
2007-09-01
We studied the efficiency of two hybridization techniques for the analysis of benthic bacterial community composition under varying sediment water content. Microcosms were set up with sediments from four European temporary rivers. Wet sediments were dried, and dry sediments were artificially rewetted. The percentage of bacterial cells detected by fluorescence in situ hybridization with fluorescently monolabeled probes (FISH) significantly increased from dry to wet sediments, showing a positive correlation with the community activity measured via incorporation of (3)H leucine. FISH and signal amplification by catalyzed reporter deposition (CARD-FISH) could significantly better detect cells with low activity in dried sediments. Through the application of an optimized cell permeabilization protocol, the percentage of hybridized cells by CARD-FISH showed comparable values in dry and wet conditions. This approach was unrelated to (3)H leucine incorporation rates. Moreover, the optimized protocol allowed a significantly better visualization of Gram-positive Actinobacteria in the studied samples. CARD-FISH is, therefore, proposed as an effective technique to compare bacterial communities residing in sediments with contrasting water content, irrespective of differences in the activity state of target cells. Considering the increasing frequencies of flood and drought cycles in European temporary rivers, our approach may help to better understand the dynamics of microbial communities in such systems.
Comparison of benthic bacterial community composition in nine streams
Xueqing Gao; Ola A. Olapade; Laura G. Leff
2005-01-01
In this study, the abundance of major bacterial taxa (based on fluorescent in situ hybridization, FISH) and the structure of the bacterial community (based on denaturing gradient gel electrophoresis, DGGE) were determined in the benthos of 9 streams in the southeastern and midwestern United States and related to differences in environmental...
Camparison of benthic bacterial community composition in nine streams
Xuqing Gao; Ola A. Olapade; Laura G. Leff
2005-01-01
In this study, the abundance of major bacterial taxa (based on fluorescent in situ hybridization, FISH) and the structure of the bacterial community (based on denaturing gradient gel electrophoresis, DGGE) were determined in the benthos of 9 streams in the southeastern and midwestern United States and related to differences in environmental conditions. Taxa examined...
Low-head sea lamprey barrier effects on stream habitat and fish communities in the Great Lakes basin
Dodd, H.R.; Hayes, D.B.; Baylis, J.R.; Carl, L.M.; Goldstein, J.D.; McLaughlin, R.L.; Noakes, D.L.G.; Porto, L.M.; Jones, M.L.
2003-01-01
Low-head barriers are used to block adult sea lamprey (Petromyzon marinus) from upstream spawning habitat. However, these barriers may impact stream fish communities through restriction of fish movement and habitat alteration. During the summer of 1996, the fish community and habitat conditions in twenty-four stream pairs were sampled across the Great Lakes basin. Seven of these stream pairs were re-sampled in 1997. Each pair consisted of a barrier stream with a low-head barrier and a reference stream without a low-head barrier. On average, barrier streams were significantly deeper (df = 179, P = 0.0018) and wider (df = 179, P = 0.0236) than reference streams, but temperature and substrate were similar (df = 183, P = 0.9027; df = 179, P = 0.999). Barrier streams contained approximately four more fish species on average than reference streams. However, streams with low-head barriers showed a greater upstream decline in species richness compared to reference streams with a net loss of 2.4 species. Barrier streams also showed a peak in richness directly downstream of the barriers, indicating that these barriers block fish movement upstream. Using S??renson's similarity index (based on presence/absence), a comparison of fish community assemblages above and below low-head barriers was not significantly different than upstream and downstream sites on reference streams (n = 96, P > 0.05), implying they have relatively little effect on overall fish assemblage composition. Differences in the frequency of occurrence and abundance between barrier and reference streams was apparent for some species, suggesting their sensitivity to barriers.
Gagliano, M C; Braguglia, C M; Gallipoli, A; Gianico, A; Rossetti, S
2015-05-01
Anaerobic digestion (AD) is one of the few sustainable technologies that both produce energy and treat waste streams. Driven by a complex and diverse community of microbes, AD may be affected by different factors, many of which also influence the composition and activity of the microbial community. In this study, the biodiversity of microbial populations in innovative mesophilic/thermophilic temperature-phased AD of sludge was evaluated by means of fluorescence in situ hybridization (FISH). The increase of digestion temperature drastically affected the microbial composition and selected specialized biomass. Hydrogenotrophic Methanobacteriales and the protein fermentative bacterium Coprothermobacter spp. were identified in the thermophilic anaerobic biomass. Shannon-Weaver diversity (H') and evenness (E) indices were calculated using FISH data. Species richness was lower under thermophilic conditions compared with the values estimated in mesophilic samples, and it was flanked by similar trend of the evenness indicating that thermophilic communities may be therefore more susceptible to sudden changes and less prompt to adapting to operative variations.
High rate of prey consumption in a small predatory fish on coral reefs
NASA Astrophysics Data System (ADS)
Feeney, W. E.; Lönnstedt, O. M.; Bosiger, Y.; Martin, J.; Jones, G. P.; Rowe, R. J.; McCormick, M. I.
2012-09-01
Small piscivores are regarded as important regulators of the composition of coral reef fish communities, but few studies have investigated their predatory ecology or impact on assemblages of juvenile fishes. This study investigated the foraging ecology of a common coral reef predator, the dottyback Pseudochromis fuscus, using underwater focal animal observations. Observations were conducted at two times of year: the summer, when recruit fishes were an available food item and winter, when remaining juveniles had outgrown vulnerability to P. fuscus. During the summer, P. fuscus directed 76% of its strikes at invertebrates and 24% at recruiting juvenile fishes. When striking at fishes, P. fuscus exhibited two distinct feeding modes: an ambush (26% successful) and a pursuit mode (5% successful). Predator activity in the field peaked at midday, averaging 2.5 captures h-1 of juvenile fishes. Monitoring of activity and foraging in the laboratory over 24-h periods found that P. fuscus was a diurnal predator and was active for 13 h d-1 during the summer. The number of hours during which foraging was recorded differed greatly among individuals ( n = 10), ranging from 4 to 13 h. The number of predatory strikes did not increase with standard length, but the success rate and consumption rate of juvenile fishes did increase with size. Estimated hourly mortality on juvenile fish ranged from 0.49 fish h-1 in small P. fuscus individuals (30-39 mm standard length, SL; equating to 6.3 per 13 h day) to 2.4 fish h-1 in large P. fuscus individuals (55-65 mm SL; 30.6 per 13 h day). During the winter, P. fuscus struck at invertebrates with a similar rate to the summer period. These observations of the predatory ecology of P. fuscus support the hypothesis that in coral reef systems, small piscivores, because of their high metabolism and activity, are probably important regulators of coral reef fish community composition.
NASA Astrophysics Data System (ADS)
Lefèvre, Carine D.; Nash, Kirsty L.; González-Cabello, Alonso; Bellwood, David R.
2016-06-01
The majority of coral reef goby species are short-lived, with some highly abundant species living less than 100 d. To understand the role and consequences of this extreme life history in shaping coral reef fish populations, we quantitatively documented the structure of small reef fish populations over a 26-month period (>14 short-lived fish generations) at an inshore reef on the Great Barrier Reef, Australia. Most species with life spans >1 yr, such as pomacentrids, exhibited a peak in recruitment during the austral summer, driving seasonal changes in the small fish community composition. In contrast, there were no clear changes in goby community composition, despite the abundance of short-lived, high turnover species. Species of Eviota, the most abundant gobiid genus observed, showed remarkably similar demographic profiles year-round, with consistent densities of adults as well as recently recruited juveniles. Our results demonstrate ongoing recruitment of these small cryptic fishes, which appears to compensate for an exceptionally short life span on the reef. Our results suggest that gobiid populations are able to overcome demographic limitations, and by maintaining reproduction, larval survival and recruitment throughout the year, they may avoid population bottlenecks. These findings also underline the potential trophodynamic importance of these small species; because of this constant turnover, Eviota species and other short-lived fishes may be particularly valuable contributors to the flow of energy on coral reefs, underpinning the year-round trophic structure.
Temporal change in biological community structure in the Fountain Creek basin, Colorado, 2001-2008
Zuellig, Robert E.; Bruce, James F.; Stogner, Sr., Robert W.
2010-01-01
In 2001, the U.S. Geological Survey, in cooperation with Colorado Springs City Engineering, began a study to better understand the relations between environmental characteristics and biological communities in the Fountain Creek basin in order to aide water-resource management and guide future monitoring activities. To accomplish this task, environmental (streamflow, habitat, and water chemistry) and biological (fish and macroinvertebrate) data were collected annually at 24 sites over a 6- or 8-year period (fish, 2003 to 2008; macroinvertebrates, 2001 to 2008). For this report, these data were first analyzed to determine the presence of temporal change in macroinvertebrate and fish community structure among years using nonparametric multivariate statistics. Where temporal change in the biological communities was found, these data were further analyzed using additional nonparametric multivariate techniques to determine which subset of selected streamflow, habitat, or water-chemistry variables best described site-specific changes in community structure relative to a gradient of urbanization. This study identified significant directional patterns of temporal change in macroinvertebrate and fish community structure at 15 of 24 sites in the Fountain Creek basin. At four of these sites, changes in environmental variables were significantly correlated with the concurrent temporal change identified in macroinvertebrate and fish community structure (Monument Creek above Woodmen Road at Colorado Springs, Colo.; Monument Creek at Bijou Street at Colorado Springs, Colo.; Bear Creek near Colorado Springs, Colo.; Fountain Creek at Security, Colo.). Combinations of environmental variables describing directional temporal change in the biota appeared to be site specific as no single variable dominated the results; however, substrate composition variables (percent substrate composition composed of sand, gravel, or cobble) collectively were present in 80 percent of the environmental variable subsets that were significantly correlated with temporal change in the macroinvertebrate and fish community structure. Other important environmental variables related to temporal change in the biological community structure included those describing channel form (streambank height) and streamflow (normalized annual mean daily flow, high flood-pulse count). Site-specific results from this study were derived from a relatively small number of observations (6 or 8 years of data); therefore, additional years of data may reveal other sites with temporal change in biological community structure, or could define stronger and more consistent linkages between environmental variables and observed temporal change. Likewise current variable subsets could become weaker. Nonetheless, there were several sites where temporal change was detected in this study that could not be explained by the available environmental variables studied herein. Modification of current data-collection activities may be necessary to better understand site-specific temporal relations between biological communities and environmental variables.
Mourão, Keila R M; Ferreira, Valdimere; Lucena-Frédou, Flávia
2014-12-01
The present study describes the spatial and temporal structure of the estuarine fish community in the internal sector of the Amazon Estuary. Samples were obtained in the main channels and tidal creeks of Guajará and Marajó Bays and Guamá River. A total of 41,516 fish specimens were collected, representing 136 taxa, 38 families and 12 orders. In the dry season, the mean salinity of the main channel increased along a limnic-marine gradient, between the Guamá River and the Marajó Bay. Species richness was lowest in the mouth of the Guamá River and in the right margin of the Guajará Bay. Fish species composition and environmental guilds differed markedly among areas: Migrants and Freshwater Stragglers were dominant in the Guamá River and the Guajará Bay, while Estuarine, Marine Stragglers and Migrants predominated in the Marajó Bay. However, the trophic guilds were still relatively well balanced, in functional terms. Piscivores and Zoobenthivores were the dominant feeding functional groups in all the studied areas. In this study, the assessment of the community and the use of the guild approach were efficient to describe the structure and functioning of the assemblages of estuarine fish also helping to assess the anthropogenic pressures in the area.
Spatial patterns of cryptobenthic coral-reef fishes in the Red Sea
NASA Astrophysics Data System (ADS)
Coker, Darren J.; DiBattista, Joseph D.; Sinclair-Taylor, Tane H.; Berumen, Michael L.
2018-03-01
Surveys to document coral-reef fish assemblages are often limited to visually conspicuous species, thus excluding a significant proportion of the biodiversity. Through standardized collections of cryptobenthic reef fishes in the central and southern Red Sea, a total of 238 species and operational taxonomic units (OTUs) from 35 families were collected. Abundance and species richness increased by 60 and 30%, respectively, from north to south, and fish community composition differed between the two regions and with proximity to shore in the central region. Models suggest regional influences in fish communities, with latitudinal patterns influenced by key coral groups ( Acropora, Pocilloporidae) and variation in environmental parameters (chlorophyll a, sea surface temperature, salinity). This study illustrates the limited taxonomic resolution in this group and in this region, and the need to expand baseline data for this under-studied assemblage. To assist in advancing this initiative, we have produced a catalogue of specimens, archived photographs, and established a DNA sequence library based on cytochrome-c oxidase subunit-I barcodes for all OTUs.
Villéger, Sébastien; Ramos Miranda, Julia; Flores Hernández, Domingo; Mouillot, David
2010-09-01
Human activities have strong impacts on ecosystem functioning through their effect on abiotic factors and on biodiversity. There is also growing evidence that species functional traits link changes in species composition and shifts in ecosystem processes. Hence, it appears to be of utmost importance to quantify modifications in the functional structure of species communities after human disturbance in addition to changes in taxonomic structure. Despite this fact, there is still little consensus on the actual impacts of human-mediated habitat alteration on the components of biodiversity, which include species functional traits. Therefore, we studied changes in taxonomic diversity (richness and evenness), in functional diversity, and in functional specialization of estuarine fish communities facing drastic environmental and habitat alterations. The Terminos Lagoon (Gulf of Mexico) is a tropical estuary of primary concern for its biodiversity, its habitats, and its resource supply, which have been severely impacted by human activities. Fish communities were sampled in four zones of the Terminos Lagoon 18 years apart (1980 and 1998). Two functions performed by fish (food acquisition and locomotion) were studied through the measurement of 16 functional traits. Functional diversity of fish communities was quantified using three independent components: richness, evenness, and divergence. Additionally, we measured the degree of functional specialization in fish communities. We used a null model to compare the functional and the taxonomic structure of fish communities between 1980 and 1998. Among the four largest zones studied, three did not show strong functional changes. In the northern part of the lagoon, we found an increase in fish richness but a significant decrease of functional divergence and functional specialization. We explain this result by a decline of specialized species (i.e., those with particular combinations of traits), while newly occurring species are redundant with those already present. The species that decreased in abundance have functional traits linked to seagrass habitats that regressed consecutively to increasing eutrophication. The paradox found in our study highlights the need for a multifaceted approach in the assessment of biodiversity changes in communities under pressure.
Knouft, Jason H
2004-05-01
Many taxonomic and ecological assemblages of species exhibit a right-skewed body size-frequency distribution when characterized at a regional scale. Although this distribution has been frequently described, factors influencing geographic variation in the distribution are not well understood, nor are mechanisms responsible for distribution shape. In this study, variation in the species body size-frequency distributions of 344 regional communities of North American freshwater fishes is examined in relation to latitude, species richness, and taxonomic composition. Although the distribution of all species of North American fishes is right-skewed, a negative correlation exists between latitude and regional community size distribution skewness, with size distributions becoming left-skewed at high latitudes. This relationship is not an artifact of the confounding relationship between latitude and species richness in North American fishes. The negative correlation between latitude and regional community size distribution skewness is partially due to the geographic distribution of families of fishes and apparently enhanced by a nonrandom geographic distribution of species within families. These results are discussed in the context of previous explanations of factors responsible for the generation of species size-frequency distributions related to the fractal nature of the environment, energetics, and evolutionary patterns of body size in North American fishes.
Krause, Rachel J; McLaughlin, J Daniel; Marcogliese, David J
2010-07-01
Parasite communities were examined in johnny darters (Etheostoma nigrum) collected from five localities in the St. Lawrence River in southwestern Quebec: two reference localities, one polluted locality upstream of the Island of Montreal and downstream of industrial and agricultural activity, and two polluted localities downstream of the Island of Montreal in the plume from the wastewater treatment facility. Twenty-four helminth species were found. Fish from the upstream polluted locality had the highest parasite species richness and total parasite numbers, and fish from the downstream polluted localities the lowest. Nonmetric multivariate analyses were conducted using square-root-transformed Bray-Curtis dissimilarity index. An analysis of similarity, dendrogram of centroids, and a permutational multivariate analysis of variance with contrasts all showed that fish from the reference localities had different parasite community composition than those from the polluted localities, and fish from the upstream polluted locality had different parasite communities than fish from the downstream polluted localities. Differences between reference and polluted localities were mainly due to higher abundances of the brain-encysting trematode, Ornithodiplostomum sp., at the reference localities. Differences between upstream and downstream polluted localities were mainly due to a higher diversity and abundance of trematodes in fish at the upstream locality.
Powell, Jeffrey R.
2003-01-01
Response of fish communities to cropland density and natural environmental setting were evaluated at 20 streams in the Eastern Highland Rim Ecoregion of the lower Tennessee River Basin during the spring of 1999. Sites were selected to represent a gradient of cropland densities in basins draining about 30 to 100 square miles. Fish communities were sampled by using a combination of seining and electrofishing techniques. A total of 10,550 individual fish, representing 63 species and 15 families, were collected during the study and included the families Cyprinidae (minnows), 18 species; Percidae (perch and darters), 12 species; and Centrarchidae (sunfish), 12 species. Assessments of environmental characteristics, including instream and terrestrial data and land-cover data, were conducted for each site. Instream measurements, such as depth, velocity, substrate type, and embeddedness, were recorded at 3 points across 11 equidistant transects at each site. Terrestrial measurements, such as bank angle, canopy angle, and canopy closure percentage, were made along the stream bank and midchannel areas. Water-quality data collected included pH, dissolved oxygen, specific conductivity, water temperature, nutrients, and fecal-indicator bacteria. Substrate embeddedness was the only variable correlated with both cropland density and fish communities (as characterized by ordination scores and several community level metrics). Multivariate and nonparametric correlation techniques were used to evaluate fish-community responses to physical and chemical factors associated with a cropland-density gradient, where the gradient was defined as the percentage of the basin in row crops. Principal component analysis and correspondence analysis suggest that the Eastern Highland Rim Ecoregion is composed of three subgroups of sites based on inherent physical and biological differences. Data for the subgroup containing the largest number of sites were then re-analyzed, revealing that several environmental variables, such as nutrient concentrations, stream gradient, bankfull width, and substrate embeddedness, were related to cropland density; however, only a subset of those variables (substrate embeddedness, elevation, and streamflow) were related to fish communities. Results from this analysis suggest that although many water-quality and habitat variables are covariant with cropland density, most of the variables do not significantly affect fish-community composition; instead, fish communities primarily respond to the cumulative effects of sedimentation.
Microbial Diversity and Parasitic Load in Tropical Fish of Different Environmental Conditions
Theisen, Stefan; Abdul-Aziz, Muslihudeen A.; Mrotzek, Grit; Palm, Harry W.; Saluz, Hans Peter
2016-01-01
In this study we analysed fecal bacterial communities and parasites of three important Indonesian fish species, Epinephelus fuscoguttatus, Epinephelus sexfasciatus and Atule mate. We then compared the biodiversity of bacterial communities and parasites of these three fish species collected in highly polluted Jakarta Bay with those collected in less polluted Indonesian areas of Cilacap (E. sexfasciatus, A. mate) and Thousand Islands (E. fuscoguttatus). In addition, E. fuscoguttatus from net cages in an open water mariculture facility was compared with free living E. fuscoguttatus from its surroundings. Both core and shared microbiomes were investigated. Our results reveal that, while the core microbiomes of all three fish species were composed of fairly the same classes of bacteria, the proportions of these bacterial classes strongly varied. The microbial composition of phylogenetically distant fish species, i.e. A. mate and E. sexfasciatus from Jakarta Bay and Cilacap were more closely related than the microbial composition of more phylogentically closer species, i.e. E. fuscoguttatus, E. sexfasciatus from Jakarta Bay, Cilacap and Thousand Islands. In addition, we detected a weak negative correlation between the load of selected bacterial pathogens, i.e. Vibrio sp. and Photobacterium sp. and the number of endoparasites. In the case of Flavobacterium sp. the opposite was observed, i.e. a weak positive correlation. Of the three recorded pathogenic bacterial genera, Vibrio sp. was commonly found in E. fuscoguttatus from mariculture, and lessly in the vicinity of the net cages and rarely in the fishes from the heavily polluted waters from Jakarta Bay. Flavobacterium sp. showed higher counts in mariculture fish and Photobacteria sp. was the most prominent in fish inside and close to the net cages. PMID:27018789
Feedbacks between community assembly and habitat selection shape variation in local colonization
Kraus, J.M.; Vonesh, J.R.
2010-01-01
1. Non-consumptive effects of predators are increasingly recognized as important drivers of community assembly and structure. Specifically, habitat selection responses to top predators during colonization and oviposition can lead to large differences in aquatic community structure, composition and diversity. 2. These differences among communities due to predators may develop as communities assemble, potentially altering the relative quality of predator vs. predator-free habitats through time. If so, community assembly would be expected to modify the subsequent behavioural responses of colonists to habitats containing top predators. Here, we test this hypothesis by manipulating community assembly and the presence of fish in experimental ponds and measuring their independent and combined effects on patterns of colonization by insects and amphibians. 3. Assembly modified habitat selection of dytscid beetles and hylid frogs by decreasing or even reversing avoidance of pools containing blue-spotted sunfish (Enneacanthus gloriosus). However, not all habitat selection responses to fish depended on assembly history. Hydrophilid beetles and mosquitoes avoided fish while chironomids were attracted to fish pools, regardless of assembly history. 4. Our results show that community assembly causes taxa-dependent feedbacks that can modify avoidance of habitats containing a top predator. Thus, non-consumptive effects of a top predator on community structure change as communities assemble and effects of competitors and other predators combine with the direct effects of top predators to shape colonization. 5. This work reinforces the importance of habitat selection for community assembly in aquatic systems, while illustrating the range of factors that may influence colonization rates and resulting community structure. Directly manipulating communities both during colonization and post-colonization is critical for elucidating how sequential processes interact to shape communities.
Identifying natural flow regimes using fish communities
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Tsai, Wen-Ping; Wu, Tzu-Ching; Chen, Hung-kwai; Herricks, Edwin E.
2011-10-01
SummaryModern water resources management has adopted natural flow regimes as reasonable targets for river restoration and conservation. The characterization of a natural flow regime begins with the development of hydrologic statistics from flow records. However, little guidance exists for defining the period of record needed for regime determination. In Taiwan, the Taiwan Eco-hydrological Indicator System (TEIS), a group of hydrologic statistics selected for fisheries relevance, is being used to evaluate ecological flows. The TEIS consists of a group of hydrologic statistics selected to characterize the relationships between flow and the life history of indigenous species. Using the TEIS and biosurvey data for Taiwan, this paper identifies the length of hydrologic record sufficient for natural flow regime characterization. To define the ecological hydrology of fish communities, this study connected hydrologic statistics to fish communities by using methods to define antecedent conditions that influence existing community composition. A moving average method was applied to TEIS statistics to reflect the effects of antecedent flow condition and a point-biserial correlation method was used to relate fisheries collections with TEIS statistics. The resulting fish species-TEIS (FISH-TEIS) hydrologic statistics matrix takes full advantage of historical flows and fisheries data. The analysis indicates that, in the watersheds analyzed, averaging TEIS statistics for the present year and 3 years prior to the sampling date, termed MA(4), is sufficient to develop a natural flow regime. This result suggests that flow regimes based on hydrologic statistics for the period of record can be replaced by regimes developed for sampled fish communities.
Brightbill, R.A.; Bilger, Michael D.
2001-01-01
The U.S. Army Corps of Engineers, Baltimore District, has been conducting biological surveys of the inflow and outflow streams of Almond Lake since the early 1980's. These surveys are made to identify possible detrimental effects as well as benefits of the reservoir and to better understand the aquatic communities in the vicinity of the lake at the present and over time. The U.S. Army Corps of Engineers and the U.S. Geological Survey jointly conducted a survey of the fish communities upstream and downstream of the lake in Canacadea Creek in September 2000. The fish communities upstream and downstream were compared and any differences or similarities seen in the communities were noted.This study found the fish communities to be in fair condition upstream and good condition downstream of Almond Lake, with Index of Biotic Integrity (IBI) scores of 3.5 and 5.0, respectively. The habitat conditions of both reaches were of suboptimal quality, with a score of 14 upstream and 15 downstream as determined by use of the U.S. Environmental Protection Agency's (USEPA) Rapid Bioassessment Protocols, and are capable of supporting fish communities. The Shannon Index indicates species richness and evenness and was 1.87 upstream and 3.22 downstream of the lake, indicating the upstream reach is severely impacted and the downstream reach appears to be not impacted. The Jaccards Coefficient and the Index of Similarity statistically show these communities are similar with scores of 0.55 and 0.71, respectively. Of the 12 species captured upstream, 11 of those also were captured downstream along with 8 other species for a total of 19 species downstream.
Climate extremes drive changes in functional community structure.
Boucek, Ross E; Rehage, Jennifer S
2014-06-01
The response of communities to climate extremes can be quite variable. Much of this variation has been attributed to differences in community-specific functional trait diversity, as well as community composition. Yet, few if any studies have explicitly tested the response of the functional trait structure of communities following climate extremes (CEs). Recently in South Florida, two independent, but sequential potential CEs took place, a 2010 cold front, followed by a 2011 drought, both of which had profound impacts on a subtropical estuarine fish community. These CEs provided an opportunity to test whether the structure of South Florida fish communities following each extreme was a result of species-specific differences in functional traits. From historical temperature (1927-2012) and freshwater inflows records into the estuary (1955-2012), we determined that the cold front was a statistically extreme disturbance, while the drought was not, but rather a decadal rare disturbance. The two disturbances predictably affected different parts of functional community structure and thus different component species. The cold front virtually eliminated tropical species, including large-bodied snook, mojarra species, nonnative cichlids, and striped mullet, while having little affect on temperate fishes. Likewise, the drought severely impacted freshwater fishes including Florida gar, bowfin, and two centrarchids, with little effect on euryhaline species. Our findings illustrate the ability of this approach to predict and detect both the filtering effects of different types of disturbances and the implications of the resulting changes in community structure. Further, we highlight the value of this approach to developing predictive frameworks for better understanding community responses to global change. © 2014 John Wiley & Sons Ltd.
Influence of fishing activity over the marine debris composition close to coastal jetty.
Farias, Eduardo G G; Preichardt, Paulo R; Dantas, David V
2018-04-23
Worldwide, the marine debris emissions have been provoking impacts in ecosystems, generating massive mortality of different species with commercial interest. In South America, we have a lack of studies to verify the marine debris composition in transitional environments such as adjacent regions of coastal jetties. These are hydraulic engineering constructions used to maintain the navigation channel access between the sea-estuarine interface and are also used by teleost fishes, crustaceans, and mollusks like artificial shelters (reefs), being excellent fishing grounds. Therefore, the present study was devoted to qualitatively evaluate the composition of marine debris in an internal jetty portion of a Laguna Estuarine System (LES) located in South America (Brazil). Six hundred freediving were conducted to collect marine debris in the study region. The in situ campaigns were performed in 2016 during all spring season (sand substrata) in four distinct zones with 26,400 m 2 each one covering almost all adjacent jetty extension, to evaluate possible spatial changes in the marine debris composition. All material obtained was identified, measured, weighed, and ordered in eight groups, with six groups being related to the fishing activity and two groups related to the tourism/community in the study region. So, it was possible to observe possible relations between the marine debris distribution to artisanal and recreational local fishing. After 600 freediving sampling efforts, 2142 marine debris items were obtained, totaling close to 100 kg of solid waste removed from the inner portion of the coastal jetty. Notably, 1752 units (50 kg) of fishing leads were collected being this item the main marine debris residue found in the four sampled areas, corresponding to nearly 50% of the total weight of the collected waste. Ninety-eight percent of marine debris were derived from the local fishing activities, and just 2% were derived from tourism/community. Considering the total contribution related to fishing, 83% of the marine debris were composed by lead (sinkers) adopted by recreational and artisanal fishing. Notably, the catch activity in this region has a close influence over the marine debris composition. Reductions of marine debris emissions derived from the fishing activities have been a global challenge, once this problem is occurring in practically all marine and estuarine environments under the anthropic action. The presence of marine debris changes the local landscape and can provoke serious environmental problems, such as ghost fishing that affects a wide variability of marine mammals, birds, and fishes. Most of marine debris collected came from recreational and artisanal fishing, being the fishing leads the most prominent material, especially in sector 4. This fact is possibly related to the intense mullet fishing using cast nets, usual in this sample area. In the other sectors, there was a great predominance of grapnel fishing leads, widely adopted by recreational fishermen in open water environments. The "fingernails" present in these fishing leads ensure the sinking of the line for a specific location independently of possible flow oscillations of the tidal current and/or currents generated by winds. The massive quantity of fishing leads into the sectors is a dangerous fact. Notably, lead is a heavy, non-biodegradable, and extremely toxic metal that, due to the anthropogenic activities, has been increasing around the world. Future efforts in our study region should evaluate the seasonal marine debris composition to observe possible changes along the different seasons of the year. In this way, it would be possible to infer quantitatively the emission of marine debris derived from the fishing activity, assessing its impacts and enabling the adoption of environmental management strategies. This effort adopted a qualitative analysis, serving to show the current situation of this region that we now know to be vulnerable to the presence of marine debris derived from the fishing activity.
Benazza, Achwak; Selleslagh, Jonathan; Breton, Elsa; Rabhi, Khalef; Cornille, Vincent; Bacha, Mahmoud; Lecuyer, Eric; Amara, Rachid
2015-01-01
The inter-annual variability of the fish and macrocrustacean spring community on an intertidal sandy beach near the Canche estuary (North of France) was studied from 2000 to 2013 based on weekly spring sampling over an 11-year period. Twenty-eight species representing 21 families were collected during the course of the study. The community was dominated by a few abundant species accounting for > 99% of the total species densities. Most individuals caught were young-of-the-year indicating the importance of this ecosystem for juvenile fishes and macrocrustaceans. Although standard qualitative community ecology metrics (species composition, richness, diversity, evenness and similarity) indicated notable stability over the study period, community structure showed a clear change since 2009. Densities of P. platessa, P. microps and A. tobianus decreased significantly since 2009, whereas over the period 2010-2013, the contribution of S. sprattus to total species density increased 4-fold. Co-inertia and generalised linear model analyses identified winter NAO index, water temperature, salinity and suspended particular matter as the major environmental factors explaining these changes. Although the recurrent and dense spring blooms of the Prymnesiophyte Phaeocystis globosa is one of the main potential threats in shallow waters of the eastern English Channel, no negative impact of its temporal change was detected on the fish and macrocrustacean spring community structure. PMID:25617852
Spillover Effects of a Community-Managed Marine Reserve
da Silva, Isabel Marques; Hill, Nick; Shimadzu, Hideyasu; Soares, Amadeu M. V. M.; Dornelas, Maria
2015-01-01
The value of no-take marine reserves as fisheries-management tools is controversial, particularly in high-poverty areas where human populations depend heavily on fish as a source of protein. Spillover, the net export of adult fish, is one mechanism by which no-take marine reserves may have a positive influence on adjacent fisheries. Spillover can contribute to poverty alleviation, although its effect is modulated by the number of fishermen and fishing intensity. In this study, we quantify the effects of a community-managed marine reserve in a high poverty area of Northern Mozambique. For this purpose, underwater visual censuses of reef fish were undertaken at three different times: 3 years before (2003), at the time of establishment (2006) and 6 years after the marine reserve establishment (2012). The survey locations were chosen inside, outside and on the border of the marine reserve. Benthic cover composition was quantified at the same sites in 2006 and 2012. After the reserve establishment, fish sizes were also estimated. Regression tree models show that the distance from the border and the time after reserve establishment were the variables with the strongest effect on fish abundance. The extent and direction of the spillover depends on trophic group and fish size. Poisson Generalized Linear Models show that, prior to the reserve establishment, the survey sites did not differ but, after 6 years, the abundance of all fish inside the reserve has increased and caused spillover of herbivorous fish. Spillover was detected 1km beyond the limit of the reserve for small herbivorous fishes. Six years after the establishment of a community-managed reserve, the fish assemblages have changed dramatically inside the reserve, and spillover is benefitting fish assemblages outside the reserve. PMID:25927235
Richness and diversity of helminth communities in tropical freshwater fishes: Empirical evidence
Choudhury, A.; Dick, T.A.
2000-01-01
Aim: Published information on the richness and diversity of helminth parasite communities in tropical freshwater fishes is reviewed in response to expectations of species-rich parasite communities in tropical regions. Location: Areas covered include the tropics and some subtropical areas. In addition, the north temperate area of the nearctic zone is included for comparison. Methods: Data from 159 communities in 118 species of tropical freshwater fish, summarized from 46 published studies, were used for this review. Parasite community descriptors used in the analyses included component community richness and calculated mean species richness. Data from 130 communities in 47 species of nearctic north temperate freshwater fish were summarized from 31 studies and used for comparison. Results: The component helminth communities of many tropical freshwater fish are species-poor, and considerable proportions of fish from certain parts of the tropics, e.g. West African drainages, are uninfected or lightly infected. Mean helminth species richness was low and equaled or exceeded 2.0 in only 22 of 114 communities. No single group of helminths was identified as a dominant component of the fauna and species composition was variable among and within broader geographical areas. The richest enteric helminth assemblages were found in mochokid and clariid catfish with a mixed carnivorous diet, whereas algal feeders, herbivores and detritivores generally had species-poor gut helminth communities. Comparisons indicated that certain areas in the north temperate region had higher helminth species richness in fishes than areas in the tropics. Main conclusions: Expectations of high species richness in helminth communities of tropical freshwater fishes are not fulfilled by the data. Direct comparisons of infracommunities and component communities in host species across widely separated phylogenetic and geographical lines are inappropriate. Examination of latitudinal differences in richness of monophyletic parasite groups or of compound communities may uncover patterns different from those found in this study. Richness of helminth communities may be ultimately determined not by the number of host species present but by the degree of divergence of host lineages and by their diversification modes. A phylogenetic framework for hosts and parasites will reveal if increased host species richness within host clades, when host speciation is accompanied by habitat or diet specialization, or both, leads to lower helminth diversity in host species by fragmentation of a core helminth fauna characteristic or specific of the larger host clade. This pattern may be analysed in the context of cospeciation and acquisition from other unrelated hosts (host-sharing or host-switching).
NASA Astrophysics Data System (ADS)
Wetz, J. J.; Ajemian, M. J.; Streich, M.; Stunz, G. W.
2016-02-01
Artificial habitat in the northwestern Gulf of Mexico is predominantly comprised of both active and reefed oil and gas platforms. In the last few decades, Texas alone has converted over 140 decommissioned oil and gas platforms into permitted artificial reefs. Despite the predominance of this habitat type, the associated fish communities remain poorly studied and few comparisons with natural habitat have been done. Using remotely operated vehicles in 2012 and 2013, we documented fish assemblages surrounding 15 artificial structures and several natural banks located on the Texas shelf. Artificial sites were variable in depth (30-84 m), number of structures, and vertical relief. Both structure type and relief influenced species richness and community structure at these sites. However, bottom depth was most influential with a shift in community composition and high diversity observed at approximately 60 m depth. In this same region, drowned coralgal reefs (the South Texas Banks) provide natural hard substrate with relief up to 20 m. Comparisons between these natural habitats and artificial reefs with similar depths and relief clearly demonstrate fish community differences, perhaps indicating differences in habitat function. To attain species-specific management goals, reefing programs should carefully consider the ambient environmental conditions (i.e., depth) and proximity of natural habitats, as these will most certainly affect the fish assemblage and characteristics of exploited fisheries species.
Predation and landscape characteristics independently affect reef fish community organization.
Stier, Adrian C; Hanson, Katharine M; Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J
2014-05-01
Trophic island biogeography theory predicts that the effects of predators on prey diversity are context dependent in heterogeneous landscapes. Specifically, models predict that the positive effect of habitat area on prey diversity should decline in the presence of predators, and that predators should modify the partitioning of alpha and beta diversity across patchy landscapes. However, experimental tests of the predicted context dependency in top-down control remain limited. Using a factorial field experiment we quantify the effects of a focal predatory fish species (grouper) and habitat characteristics (patch size, fragmentation) on the partitioning of diversity and assembly of coral reef fish communities. We found independent effects of groupers and patch characteristics on prey communities. Groupers reduced prey abundance by 50% and gamma diversity by 45%, with a disproportionate removal of rare species relative to common species (64% and 36% reduction, respectively; an oddity effect). Further, there was a 77% reduction in beta diversity. Null model analysis demonstrated that groupers increased the importance of stochastic community assembly relative to patches without groupers. With regard to patch size, larger patches contained more fishes, but a doubling of patch size led to a modest (36%) increase in prey abundance. Patch size had no effect on prey diversity; however, fragmented patches had 50% higher species richness and modified species composition relative to unfragmented patches. Our findings suggest two different pathways (i.e., habitat or predator shifts) by which natural and/or anthropogenic processes can drive variation in fish biodiversity and community assembly.
Fish Assemblage Response to a Small Dam Removal in the Eightmile River System, Connecticut, USA
NASA Astrophysics Data System (ADS)
Poulos, Helen M.; Miller, Kate E.; Kraczkowski, Michelle L.; Welchel, Adam W.; Heineman, Ross; Chernoff, Barry
2014-11-01
We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.
Fish assemblage response to a small dam removal in the Eightmile River system, Connecticut, USA.
Poulos, Helen M; Miller, Kate E; Kraczkowski, Michelle L; Welchel, Adam W; Heineman, Ross; Chernoff, Barry
2014-11-01
We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005-2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.
Industrial landfill affects on fish communities at Indiana Dunes National Lakeshore (INDU)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, P.M.; Simon, T.P.
1995-12-31
INDU, an urban park near the third largest metropolitan area in the US, provides access to over two million visitors per year. The Grand Calumet River/Indiana Harbor Ship Canal is the only Area of Concern (AOC) with all 14 designated uses impaired. The Grand Calumet Lagoons are the former mouth of the Grand Calumet River and form part of the western boundary of INDU, adjacent to Gary, IN. An industrial landfill (slag and other industrial waste) forms the westernmost boundary of the lagoon and a dunal pond. A least-impacted lagoon and a pond lying across a dune ridge were comparedmore » to sites adjacent to the landfill. Fish communities censused from twelve sites during the summer of 1994 were analyzed for several community metrics including species richness and composition, trophic structure, and community and individual health. A modified headwater Index of Biotic Integrity (IBI) was utilized to evaluate lacustrine community health. Results include the first record of the Iowa darter (Etheostoma exile) found in northwest Indiana. Examination of the fish community found the least impacted lagoon to contain Erimyzon sucetta, Esox americanus, and Lepomis gulosus. The landfill lagoon lacked these species, with the exception of fewer L. gulosus, while Pimephales notatus was found at all sites in the impacted lake but not at all in the least impacted lagoon. Statistically significant differences in species diversity and IBI can be attributed to landfill proximity. Whole fish analyses of a benthic omnivore (Cyprinus carpio) revealed PAH levels near 1 mg/kg of total PAH in several fish analyzed.« less
Kant, Rajni; Haq, S; Srivastava, H C; Sharma, V P
2013-03-01
Mosquito control with the use of insecticides is faced with the challenges of insecticide resistance in disease vectors, community refusal, their high cost, operational difficulties, and environmental concern. In view of this, integrated vector control strategies with the use of larvivorous fishes such as Guppy (Poecilia reticulata) and Gambusia (G. affinis) as biological control agents were used in controlling mosquito breeding in different types of breeding places such as intradomestic containers, various types of wells, rice-fields, pools, ponds and elsewhere in malaria prone rural areas of central Gujarat. Attempts were also made to demonstrate composite fish culture in unused abandoned village ponds by culturing Guppy along with the food fishes such as Rohu (Labeo rohita), Catla (Catla catla) and Mrigal (Cirrhinus mrigala). Income generated from these ponds through sale of fishes was utilized for mosquito control and village development. The technology was later adopted by the villagers themselves and food fish culture was practised in 23 ponds which generated an income of Rs 1,02,50,992 between 1985 and 2008. The number of villages increased from 13 to 23 in 2008 and there was also gradual increase of income from Rs 3,66,245 in 1985-90 to Rs 55,06,127 in 2002-08 block. It is concluded that larvivorous fishes can be useful tool in controlling mosquito breeding in certain situations and their use along with composite fish culture may also generate income to make the programme self-sustainable.
Fishes associated with mesophotic coral ecosystems in La Parguera, Puerto Rico
NASA Astrophysics Data System (ADS)
Bejarano, I.; Appeldoorn, R. S.; Nemeth, M.
2014-06-01
Fishes associated with mesophotic coral ecosystems (MCEs) of the La Parguera shelf-edge were surveyed between 2007 and 2011 using mixed-gas rebreather diving. Fishes were identified and counted within belt transects and roving surveys at 30, 40, 50, 60 and 70 m depth. Vertical transects from 70 to 30 m depth helped determine depth distribution ranges. One hundred and three species were identified at MCEs (40-70 m), with high abundances and species richness, though both varied greatly among transects. Most species at MCEs were common inhabitants of shallow reefs, but some were restricted to mesophotic depths. An additional 15 species were added to those previously classified as indicator species of mesophotic areas in Puerto Rico. The MCE fish assemblage was distinct from shallow areas (30 m), with taxonomic composition, abundance and the proportion of trophic guilds varying with increasing depth. The dominant trophic guild within MCEs was the zooplanktivores, while herbivores dominated shallow reefs. Both herbivores and zooplanktivores responded strongly, and oppositely, to depth. The few herbivores associated with deep MCEs are small-bodied species. The largest changes within the mesophotic fish community along the depth gradient occurred at 60 m, similar to that reported for algae and corals, and seem to represent both a response to reduced light and variations in herbivory. The presence of commercially important fishes at MCEs, many considered to be threatened by fishing pressure in shallow areas, suggests that MCEs are important for the conservation of these species. This study represents the first quantitative in situ observations and descriptions of fishes inhabiting MCEs at depths of 50-70 m in Puerto Rico and highlights the role of MCEs as valuable habitats for reef fishes. The composition and distribution of the MCEs fish community should be incorporated when planning for the spatial management of coral reef resources.
Rehage, Jennifer S.; Loftus, W.F.
2007-01-01
The connectivity between the fish community of estuarine mangroves and that of freshwater habitats upstream remains poorly understood. In the Florida Everglades, mangrove-lined creeks link freshwater marshes to estuarine habitats downstream and may act as dry-season refuges for freshwater fishes. We examined seasonal dynamics in the fish community of ecotonal creeks in the southwestern region of Everglades National Park, specifically Rookery Branch and the North and Watson rivers. Twelve low-order creeks were sampled via electrofishing, gill nets, and minnow traps during the wet season, transition period, and dry season in 2004-2005. Catches were greater in Rookery Branch than in the North and Watson rivers, particularly during the transition period. Community composition varied seasonally in Rookery Branch, and to a greater extent for the larger species, reflecting a pulse of freshwater taxa into creeks as marshes upstream dried periodically. The pulse was short-lived, a later sample showed substantial decreases in freshwater fish numbers. No evidence of a similar influx was seen in the North and Watson rivers, which drain shorter hydroperiod marshes and exhibit higher salinities. These results suggest that head-water creeks can serve as important dry-season refugia. Increased freshwater flow resulting from Everglades restoration may enhance this connectivity. ?? 2007 Rosenstiel School of Marine and Atmospheric Science of the University of Miami.
Structure of Mesophotic Reef Fish Assemblages in the Northwestern Hawaiian Islands
Kosaki, Randall K.; Wagner, Daniel; Kane, Corinne
2016-01-01
Mesophotic coral ecosystems (MCEs) support diverse communities of marine organisms with changes in community structure occurring along a depth gradient. In recent years, MCEs have gained attention due to their depths that provide protection from natural and anthropogenic stressors and their relative stability over evolutionary time periods, yet ecological structures of fish assemblages in MCEs remain largely un-documented. Here, we investigated composition and trophic structure of reef fish assemblages in the Northwestern Hawaiian Islands (NWHI) along a depth gradient from 1 to 67 m. The structure of reef fish assemblages as a whole showed a clear gradient from shallow to mesophotic depths. Fish assemblages at mesophotic depths had higher total densities than those in shallower waters, and were characterized by relatively high densities of planktivores and invertivores and relatively low densities of herbivores. Fishes that typified assemblages at mesophotic depths included six species that are endemic to the Hawaiian Islands. The present study showed that mesophotic reefs in the NWHI support unique assemblages of fish that are characterized by high endemism and relatively high densities of planktivores. Our findings underscore the ecological importance of these undersurveyed ecosystems and warrant further studies of MCEs. PMID:27383614
Relationships between structural complexity, coral traits, and reef fish assemblages
NASA Astrophysics Data System (ADS)
Darling, Emily S.; Graham, Nicholas A. J.; Januchowski-Hartley, Fraser A.; Nash, Kirsty L.; Pratchett, Morgan S.; Wilson, Shaun K.
2017-06-01
With the ongoing loss of coral cover and the associated flattening of reef architecture, understanding the links between coral habitat and reef fishes is of critical importance. Here, we investigate whether considering coral traits and functional diversity provides new insights into the relationship between structural complexity and reef fish communities, and whether coral traits and community composition can predict structural complexity. Across 157 sites in Seychelles, Maldives, the Chagos Archipelago, and Australia's Great Barrier Reef, we find that structural complexity and reef zone are the strongest and most consistent predictors of reef fish abundance, biomass, species richness, and trophic structure. However, coral traits, diversity, and life histories provided additional predictive power for models of reef fish assemblages, and were key drivers of structural complexity. Our findings highlight that reef complexity relies on living corals—with different traits and life histories—continuing to build carbonate skeletons, and that these nuanced relationships between coral assemblages and habitat complexity can affect the structure of reef fish assemblages. Seascape-level estimates of structural complexity are rapid and cost effective with important implications for the structure and function of fish assemblages, and should be incorporated into monitoring programs.
NASA Astrophysics Data System (ADS)
Sloterdijk, Hans; Brehmer, Patrice; Sadio, Oumar; Müller, Hanno; Döring, Julian; Ekau, Werner
2017-10-01
Mangrove ecosystems have long been considered essential habitats and are commonly viewed and referred to as "nursery areas". They are highly sensitive to climate change, and environmental transformations in these ecosystems are expected. The Sine Saloum estuary is a case of a system affected by global climate change where reduced precipitation and temperature increase have resulted in an inversion of the salinity gradient. Within the estuary, the composition and structure of the larval fish community related to environmental parameters were investigated using neuston and ring trawl nets. Larval fishes were sampled at 16 stations distributed along a salinity and distance-to-the-sea gradient during four field campaigns (November 2013, February, June, and August 2014) covering an annual cycle. This is the first study documenting the spatial and temporal assemblages of fish larvae in an inverse estuary. The total of 41 taxa representing 24 families and 34 genus identified in this study was lower than that of other tropical estuaries. Clupeidae spp. was the dominant taxon, accounting for 28.9% of the total number of fish larvae caught, followed by Gerreidae spp. (21.1%), Hyporamphus picarti (18.8%), Diplodus bellottii (8.9%), Hypleurochilus langi (4.8%), Mugilidae spp. (4.4%), and Gobiidae sp.1 (3.5%). A total of 20 taxa were recorded within the upper estuary region, whereas 29 and 37 taxa were observed in the middle and lower reaches, respectively. While larval fish were captured at all sites and during all seasons, abundances and richness decreased with increasing salinity. Larval fish assemblages also showed a clear vertical structure corresponding to three distinct water strata. Salinity, water temperature, and dissolved oxygen were the variables that best explained the spatial and temporal differences in larval fish assemblages. It is difficult to forecast the future situation for this system but so far, compared to other mangrove estuarine systems, we have observed the loss of freshwater species in favour of species of marine origin. The information provided in the present study is a contribution to the knowledge of tropical biodiversity and modifications of the ichthyoplankton communities in the context of climate change and future green fund action.
Temporal and geographic variation in fish communities of lower Cook Inlet, Alaska
Robards, Martin D.; Piatt, John F.; Kettle, Arthur B.; Abookire, Alisa A.
1999-01-01
Nearshore and shelf fish communities were studied in three areas of lower Cook Inlet, Alaska: the Barren Islands (oceanic and well-mixed waters), Kachemak Bay (mixed oceanic waters with significant freshwater runoff), and Chisik Island (estuarine waters). Fish were sampled with beach seines (n=413 sets) and midwater trawls (n=39 sets). We found that lower Cook Inlet supported a diverse nearshore fish community of at least 52 species. Fifty of these species were caught in Kachemak Bay, 24 at Chisik Island, and 12 at the Barren Islands. Pacific sand lance dominated Barren Islands and Kachemak Bay nearshore habitats, comprising 99% and 71% of total individuals, respectively. The nearshore Chisik Island fish community was not dominated by any one species; instead it exhibited higher diversity. These spatial differences appeared linked to local oceanographic regimes and sediment influx. Analysis of historical data revealed that the nearshore Kachemak Bay fish community changed significantly between 1976 and 1996, showing increased diversity and abundance in several taxa, notably gadids, salmonids, pleuronectids, and sculpins. Decadal differences appeared to be related to large-scale climate changes in the North Pacific. Catches of most taxa peaked in May-August, and were low during other months of the year. Several species were present for only part of the summer. Species composition of seine catches differed significantly between consecutive high and low tides, but not between consecutive sets or years. Midwater trawls took 26 species, 14 of which were present in Kachemak Bay, 19 near Chisik Island, and 7 at the Barren Islands. Community structures in shelf and nearshore waters were similar: diversity was high and abundance low at Chisik Island, whereas a few abundant species dominated at both Kachemak Bay and the Barren Islands. In addition, the low fish abundance near Chisik Island appeared to be related to declining seabird numbers at this colony.
Isari, Stamatina; Pearman, John K; Casas, Laura; Michell, Craig T; Curdia, Joao; Berumen, Michael L; Irigoien, Xabier
2017-01-01
An important aspect of population dynamics for coral reef fishes is the input of new individuals from the pelagic larval pool. However, the high biodiversity and the difficulty of identifying larvae of closely related species represent obstacles to more fully understanding these populations. In this study, we combined morphology and genetic barcoding (Cytochrome Oxidase I gene) to characterize the seasonal patterns of the larval fish community at two sites in close proximity to coral reefs in the central-north Red Sea: one shallower inshore location (50 m depth) and a nearby site located in deeper and more offshore waters (~ 500 m depth). Fish larvae were collected using oblique tows of a 60 cm-bongo net (500 μm mesh size) every month for one year (2013). During the warmer period of the year (June-November), the larval fish stock was comparable between sampling sites. However, during the colder months, abundances were higher in the inshore than in the offshore waters. Taxonomic composition and temporal variation of community structure differed notably between sites, potentially reflecting habitat differences, reproductive patterns of adults, and/or advective processes in the area. Eleven out of a total of 62 recorded families comprised 69-94% of the fish larval community, depending on sampling site and month. Richness of taxa was notably higher in the inshore station compared to the offshore, particularly during the colder period of the year and especially for the gobiids and apogonids. Two mesopelagic taxa (Vinciguerria sp. and Benthosema spp.) comprised an important component of the larval community at the deeper site with only a small and sporadic occurrence in the shallower inshore waters. Our data provide an important baseline reference for the larval fish communities of the central Red Sea, representing the first such study from Saudi Arabian waters.
Pearman, John K.; Casas, Laura; Michell, Craig T.; Curdia, Joao; Berumen, Michael L.; Irigoien, Xabier
2017-01-01
An important aspect of population dynamics for coral reef fishes is the input of new individuals from the pelagic larval pool. However, the high biodiversity and the difficulty of identifying larvae of closely related species represent obstacles to more fully understanding these populations. In this study, we combined morphology and genetic barcoding (Cytochrome Oxidase I gene) to characterize the seasonal patterns of the larval fish community at two sites in close proximity to coral reefs in the central-north Red Sea: one shallower inshore location (50 m depth) and a nearby site located in deeper and more offshore waters (~ 500 m depth). Fish larvae were collected using oblique tows of a 60 cm-bongo net (500 μm mesh size) every month for one year (2013). During the warmer period of the year (June-November), the larval fish stock was comparable between sampling sites. However, during the colder months, abundances were higher in the inshore than in the offshore waters. Taxonomic composition and temporal variation of community structure differed notably between sites, potentially reflecting habitat differences, reproductive patterns of adults, and/or advective processes in the area. Eleven out of a total of 62 recorded families comprised 69–94% of the fish larval community, depending on sampling site and month. Richness of taxa was notably higher in the inshore station compared to the offshore, particularly during the colder period of the year and especially for the gobiids and apogonids. Two mesopelagic taxa (Vinciguerria sp. and Benthosema spp.) comprised an important component of the larval community at the deeper site with only a small and sporadic occurrence in the shallower inshore waters. Our data provide an important baseline reference for the larval fish communities of the central Red Sea, representing the first such study from Saudi Arabian waters. PMID:28771590
Adolphson, Debbie L.; Fazio, David J.; Harris, Mitchell A.
2001-01-01
Data collection for the lower Illinois River Basin (LIRB) National Water-Quality Assessment (NAWQA) program began in 1996. Data on habitat, fish, benthic macroinvertebrates, and sediment were collected at eight stations on six streams in the basin--Illinois River, Panther Creek, Mackinaw River, Indian Creek, Sangamon River, and La Moine River. These streams typically flow through agricultural lands with very low gradients. Substrates typically are clay to gravel with areas of cobble. Banks are high, steep, and sparsely vegetated. Topographic surveys provide illustrations of the geometry that promote understanding of channel geometry and a data set that, in the future, can be used by others to assess stream changes. Suspended-sediment particle size, woody debris, and stream velocity are important to fish and benthic macroinvertebrate communities. Fine particles (silts and clays) were abundant in suspended sediment and stream banks, and fish insectivorous cyprinid community composition increased with decreases in the concentration of these suspended fines. Suckers were prevalent in stream reaches with abundant woody-snag cover, whereas sunfish communities were most abundant in areas with slow water velocities. Hydropsychidae, Chironomidae, and Baetidae were the most abundant benthic macroinvertebrate families collected throughout the region, but stream size and water velocity were important to benthic macroinvertebrate community composition. Tricorythodes mayflies and Elmidae had higher relative abundance at sites in small- and moderate-size drainage basins, and Baetidae density was greatest in reaches with highest water velocity.
Warner, David M.; Claramunt, Randall M.; Schaeffer, Jeffrey S.; Yule, Daniel L.; Hrabik, Tom R.; Peintka, Bernie; Rudstam, Lars G.; Holuszko, Jeffrey D.; O'Brien, Timothy P.
2012-01-01
Because it is not possible to identify species with echosounders alone, trawling is widely used as a method for collecting species and size composition data for allocating acoustic fish density estimates to species or size groups. In the Laurentian Great Lakes, data from midwater trawls are commonly used for such allocations. However, there are no rules for how much midwater trawling effort is required to adequately describe species and size composition of the pelagic fish communities in these lakes, so the balance between acoustic sampling effort and trawling effort has been unguided. We used midwater trawl data collected between 1986 and 2008 in lakes Michigan and Huron and a variety of analytical techniques to develop guidance for appropriate levels of trawl effort. We used multivariate regression trees and re-sampling techniques to i. identify factors that influence species and size composition of the pelagic fish communities in these lakes, ii. identify stratification schemes for the two lakes, iii. determine if there was a relationship between uncertainty in catch composition and the number of tows made, and iv. predict the number of tows required to reach desired uncertainty targets. We found that depth occupied by fish below the surface was the most influential explanatory variable. Catch composition varied between lakes at depths <38.5 m below the surface, but not at depths ≥38.5 m below the surface. Year, latitude, and bottom depth influenced catch composition in the near-surface waters of Lake Michigan, while only year was important for Lake Huron surface waters. There was an inverse relationship between RSE [relative standard error = 100 × (SE/mean)] and the number of tows made for the proportions of the different size and species groups. We found for the fifth (Lake Huron) and sixth (Lake Michigan) largest lakes in the world, 15–35 tows were adequate to achieve target RSEs (15% and 30%) for ubiquitous species, but rarer species required much higher, and at times, impractical effort levels to reach these targets.
Thermal affinity as the dominant factor changing Mediterranean fish abundances.
Givan, Or; Edelist, Dor; Sonin, Oren; Belmaker, Jonathan
2018-01-01
Recent decades have seen profound changes in species abundance and community composition. In the marine environment, the major anthropogenic drivers of change comprise exploitation, invasion by nonindigenous species, and climate change. However, the magnitude of these stressors has been widely debated and we lack empirical estimates of their relative importance. In this study, we focused on Eastern Mediterranean, a region exposed to an invasion of species of Red Sea origin, extreme climate change, and high fishing pressure. We estimated changes in fish abundance using two fish trawl surveys spanning a 20-year period, and correlated these changes with estimated sensitivity of species to the different stressors. We estimated sensitivity to invasion using the trait similarity between indigenous and nonindigenous species; sensitivity to fishing using a published composite index based on the species' life-history; and sensitivity to climate change using species climatic affinity based on occurrence data. Using both a meta-analytical method and random forest analysis, we found that for shallow-water species the most important driver of population size changes is sensitivity to climate change. Species with an affinity to warm climates increased in relative abundance and species with an affinity to cold climates decreased suggesting a strong response to warming local sea temperatures over recent decades. This decrease in the abundance of cold-water-associated species at the trailing "warm" end of their distribution has been rarely documented. Despite the immense biomass of nonindigenous species and the presumed high fishing pressure, these two latter factors seem to have only a minor role in explaining abundance changes. The decline in abundance of indigenous species of cold-water origin indicates a future major restructuring of fish communities in the Mediterranean in response to the ongoing warming, with unknown impacts on ecosystem function. © 2017 John Wiley & Sons Ltd.
Status of pelagic prey fishes in Lake Michigan, 2013
Warner, David M.; Farha, Steven A.; O'Brien, Timothy P.; Ogilvie, Lynn; Claramunt, Randall M.; Hanson, Dale
2014-01-01
Acoustic surveys were conducted in late summer/early fall during the years 1992-1996 and 2001-2013 to estimate pelagic prey fish biomass in Lake Michigan. Midwater trawling during the surveys as well as target strength provided a measure of species and size composition of the fish community for use in scaling acoustic data and providing species-specific abundance estimates. The 2013 survey consisted of 27 acoustic transects (546 km total) and 31 midwater trawl tows. Mean prey fish biomass was 6.1 kg/ha (relative standard error, RSE = 11%) or 29.6 kilotonnes (kt = 1,000 metric tons), which was similar to the estimate in 2012 (31.1 kt) and 23.5% of the long-term (18 years) mean. The numeric density of the 2013 alewife year class was 6% of the time series average and this year-class contributed 4% of total alewife biomass (5.2 kg/ha, RSE = 12%). Alewife ≥age-1 comprised 96% of alewife biomass. In 2013, alewife comprised 86% of total prey fish biomass, while rainbow smelt and bloater were 4 and 10% of total biomass, respectively. Rainbow smelt biomass in 2013 (0.24 kg/ha, RSE = 17%) was essentially identical to the rainbow smelt biomass in 2012 and was 6% of the long term mean. Bloater biomass in 2013 was 0.6 kg/ha, only half the 2012 biomass, and 6% of the long term mean. Mean density of small bloater in 2013 (29 fish/ha, RSE = 29%) was lower than peak values observed in 2007-2009 and was 23% of the time series mean. In 2013, pelagic prey fish biomass in Lake Michigan was similar to Lake Huron, but pelagic community composition differs in the two lakes, with Lake Huron dominated by bloater.
Weiland-Bräuer, Nancy; Neulinger, Sven C.; Pinnow, Nicole; Künzel, Sven; Baines, John F.
2015-01-01
The scyphozoan Aurelia aurita is recognized as a key player in marine ecosystems and a driver of ecosystem change. It is thus intensely studied to address ecological questions, although its associations with microorganisms remain so far undescribed. In the present study, the microbiota associated with A. aurita was visualized with fluorescence in situ hybridization (FISH) analysis, and community structure was analyzed with respect to different life stages, compartments, and populations of A. aurita by 16S rRNA gene amplicon sequencing. We demonstrate that the composition of the A. aurita microbiota is generally highly distinct from the composition of communities present in ambient water. Comparison of microbial communities from different developmental stages reveals evidence for life stage-specific community patterns. Significant restructuring of the microbiota during strobilation from benthic polyp to planktonic life stages is present, arguing for a restructuring during the course of metamorphosis. Furthermore, the microbiota present in different compartments of the adult medusa (exumbrella mucus and gastric cavity) display significant differences, indicating body part-specific colonization. A novel Mycoplasma strain was identified in both compartment-specific microbiota and is most likely present inside the epithelium as indicated by FISH analysis of polyps, indicating potential endosymbiosis. Finally, comparison of polyps of different populations kept under the same controlled laboratory conditions in the same ambient water showed population-specific community patterns, most likely due the genetic background of the host. In conclusion, the presented data indicate that the associated microbiota of A. aurita may play important functional roles, e.g., during the life cycle. PMID:26116680
Viganò, Luigi; Loizeau, J-L; Mandich, A; Mascolo, G
2016-11-01
Recent studies showed that endocrine active compounds (EDs) capable to induce fish gonadal histopathologies, plasma vitellogenin and thyroid disruption, are transported by the River Lambro to the River Po, potentially affecting the fish community of the main Italian river. To assess whether fish relative abundance, composition and health were impaired by the River Lambro, a 3-year survey was undertaken in the main river. Results showed that the tributary supports in the River Po a denser fish community (+43 %), with a higher total biomass (+35 %). The survey also showed niche- and sensitivity-dependent effects, so that three benthopelagic species (bleak, topmouth gudgeon, and bitterling) were, for example, more abundant downstream from the tributary (up to 3.4×), but their sizes were significantly smaller. The present fish community was then compared with that described 30 years before in the same area of the Po River. This comparison highlighted that some fish species have disappeared and many have severely declined. To better evaluate this contrast, a sediment core of the Lambro tributary was analysed for the time trends of natural estrogens (E1, E2, E3), bisphenol A and alkylphenols. The results showed that during the last 50 years the River Lambro has been exposed to high estrogenic activities (16.1 ± 9.3 ng E2 equivalents/g), which inevitably affected also the River Po. In addition, at the time of the previous survey, six species of the main river had skewed sex ratios toward all-female populations, providing evidence that EDs and particularly (xeno)estrogens were already affecting the long-term viability of fish populations. Estrogens thus can be ascribed among the causal factors of fish qualitative and quantitative decline of the River Po, although long-term effects have been likely mitigated by nonconfinement of fish populations and nutrient enrichment.
Land use structures fish assemblages in reservoirs of the Tennessee River
Miranda, Leandro E.; Bies, J. M.; Hann, D. A.
2015-01-01
Inputs of nutrients, sediments and detritus from catchments can promote selected components of reservoir fish assemblages, while hindering others. However, investigations linking these catchment subsidies to fish assemblages have generally focussed on one or a handful of species. Considering this paucity of community-level awareness, we sought to explore the association between land use and fish assemblage composition in reservoirs. To this end, we compared fish assemblages in reservoirs of two sub-basins of the Tennessee River representing differing intensities of agricultural development, and hypothesised that fish assemblage structure indicated by species percentage composition would differ among reservoirs in the two sub-basins. Using multivariate statistical analysis, we documented inter-basin differences in land use, reservoir productivity and fish assemblages, but no differences in reservoir morphometry or water regime. Basins were separated along a gradient of forested and non-forested catchment land cover, which was directly related to total nitrogen, total phosphorous and chlorophyll-a concentrations. Considering the extensive body of knowledge linking land use to aquatic systems, it is reasonable to postulate a hierarchical model in which productivity has direct links to terrestrial inputs, and fish assemblages have direct links to both land use and productivity. We observed a shift from an invertivore-based fish assemblage in forested catchments to a detritivore-based fish assemblage in agricultural catchments that may be a widespread pattern among reservoirs and other aquatic ecosystems.
Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes
NASA Astrophysics Data System (ADS)
Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.
2016-06-01
Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.
The biogeography of the atlantic salmon (Salmo salar) gut microbiome.
Llewellyn, Martin S; McGinnity, Philip; Dionne, Melanie; Letourneau, Justine; Thonier, Florian; Carvalho, Gary R; Creer, Simon; Derome, Nicolas
2016-05-01
Although understood in many vertebrate systems, the natural diversity of host-associated microbiota has been little studied in teleosts. For migratory fishes, successful exploitation of multiple habitats may affect and be affected by the composition of the intestinal microbiome. We collected 96 Salmo salar from across the Atlantic encompassing both freshwater and marine phases. Dramatic differences between environmental and gut bacterial communities were observed. Furthermore, community composition was not significantly impacted by geography. Instead life-cycle stage strongly defined both the diversity and identity of microbial assemblages in the gut, with evidence for community destabilisation in migratory phases. Mycoplasmataceae phylotypes were abundantly recovered in all life-cycle stages. Patterns of Mycoplasmataceae phylotype recruitment to the intestinal microbial community among sites and life-cycle stages support a dual role for deterministic and stochastic processes in defining the composition of the S. salar gut microbiome.
The biogeography of the atlantic salmon (Salmo salar) gut microbiome
Llewellyn, Martin S; McGinnity, Philip; Dionne, Melanie; Letourneau, Justine; Thonier, Florian; Carvalho, Gary R; Creer, Simon; Derome, Nicolas
2016-01-01
Although understood in many vertebrate systems, the natural diversity of host-associated microbiota has been little studied in teleosts. For migratory fishes, successful exploitation of multiple habitats may affect and be affected by the composition of the intestinal microbiome. We collected 96 Salmo salar from across the Atlantic encompassing both freshwater and marine phases. Dramatic differences between environmental and gut bacterial communities were observed. Furthermore, community composition was not significantly impacted by geography. Instead life-cycle stage strongly defined both the diversity and identity of microbial assemblages in the gut, with evidence for community destabilisation in migratory phases. Mycoplasmataceae phylotypes were abundantly recovered in all life-cycle stages. Patterns of Mycoplasmataceae phylotype recruitment to the intestinal microbial community among sites and life-cycle stages support a dual role for deterministic and stochastic processes in defining the composition of the S. salar gut microbiome. PMID:26517698
Wu, Z B; Gatesoupe, F-J; Li, T T; Wang, X H; Zhang, Q Q; Feng, D Y; Feng, Y Q; Chen, H; Li, A H
2018-03-01
Increasing attention has been attracted to intestinal microbiota, due to interactions with nutrition, metabolism and immune defence of the host. Traditional Chinese medicine (TCM) feed additives have been applied in aquaculture to improve fish health, but the interaction with fish gut microbiota is still poorly understood. This study aimed to explore the effect of adding TCM in feed on the intestinal microbiota of gibel carp (Carassius auratus gibelio). Bacterial communities of 16 fish intestinal contents and one water sample were characterized by high-throughput sequencing and analysis of the V4-V5 region of the 16S rRNA gene. The results showed that the composition and structure of the bacterial community were significantly altered by the TCM feeding. Some phyla increased markedly (Proteobacteria, Actinobacteria, Acidobacteria, etc.), while Fusobacteria were significantly reduced. Concurrently, the richness and diversity of the taxonomic units increased, and the microbiota composition of TCM-treated fish was more homogeneous among individuals. At the genus level, the addition of TCM tended to reduce the incidence of potential pathogens (Aeromonas, Acinetobacter and Shewanella), while stimulating the emergence of some potential probiotics (Lactobacillus, Lactococcus, Bacillus and Pseudomonas). These data suggested that the feed additive could regulate the fish intestinal microbiota by reinforcing the microbial balance. This study may provide useful information for further application of TCM for diseases prevention and stress management in aquaculture. © 2017 The Society for Applied Microbiology.
Life histories predict coral community disassembly under multiple stressors.
Darling, Emily S; McClanahan, Timothy R; Côté, Isabelle M
2013-06-01
Climate change is reshaping biological communities against a background of existing human pressure. Evaluating the impacts of multiple stressors on community dynamics can be particularly challenging in species-rich ecosystems, such as coral reefs. Here, we investigate whether life-history strategies and cotolerance to different stressors can predict community responses to fishing and temperature-driven bleaching using a 20-year time series of coral assemblages in Kenya. We found that the initial life-history composition of coral taxa largely determined the impacts of bleaching and coral loss. Prior to the 1998 bleaching event, coral assemblages within no-take marine reserves were composed of three distinct life histories - competitive, stress-tolerant and weedy- and exhibited strong declines following bleaching with limited subsequent recovery. In contrast, fished reefs had lower coral cover, fewer genera and were composed of stress-tolerant and weedy corals that were less affected by bleaching over the long term. Despite these general patterns, we found limited evidence for cotolerance as coral genera and life histories were variable in their sensitivities to fishing and bleaching. Overall, fishing and bleaching have reduced coral diversity and led to altered coral communities of 'survivor' species with stress-tolerant and weedy life histories. Our findings are consistent with expectations that climate change interacting with existing human pressure will result in the loss of coral diversity and critical reef habitat. © 2013 Blackwell Publishing Ltd.
Röske, Kerstin; Sachse, René; Scheerer, Carola; Röske, Isolde
2012-02-01
Sediments contain a huge number and diversity of microorganisms that are important for the flux of material and are pivotal to all major biogeochemical cycles. Sediments of reservoirs are affected by a wide spectrum of allochthous and autochthonous influences providing versatile environments along the flow of water within the reservoir. Here we report on the microbial diversity in sediments of the mesotrophic drinking water reservoir Saidenbach, Germany, featuring a pronounced longitudinal gradient in sediment composition in the reservoir system. Three sampling sites were selected along the gradient, and the microbial communities in two sediment depths were characterized using catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and a bar-coded pyrosequencing approach. Multivariate statistic was used to reveal relationships between sequence diversity and the environmental conditions. The microbial communities were tremendously diverse with a Shannon index of diversity (H') ranging from 6.7 to 7.1. 18,986 sequences could be classified into 37 phyla including candidate divisions, but the full extent of genetic diversity was not captured. While CARD-FISH gave an overview about the community composition, more detailed information was gained by pyrosequencing. Bacteria were more abundant than Archaea. The dominating phylum in all samples was Proteobacteria, especially Betaproteobacteria and Deltaproteobacteria. Furthermore, sequences of Bacteroidetes, Verrucomicrobia, Acidobacteria, Chlorobi, Nitrospira, Spirochaetes, Gammaproteobacteria, Alphaproteobacteria, Chloroflexi, and Gemmatimonadetes were found. The site ammonium concentration, water content and organic matter content revealed to be strongest environmental predictors explaining the observed significant differences in the community composition between sampling sites. Copyright © 2011 Elsevier GmbH. All rights reserved.
Parallel structure among environmental gradients and three trophic levels in a subarctic estuary
Speckman, Suzann G.; Piatt, John F.; Minte-Vera, C. V.; Parrish, Julia K.
2005-01-01
We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong (r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 (r = 0.87) and 1998 (r = 0.82). The correlation was poor (r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin (Mallotus villosus), walleye pollock (Theragra chalcogramma), and arrowtooth flounder (Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Nina year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of "bottom-up control," i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.
Parallel structure among environmental gradients and three trophic levels in a subarctic estuary
NASA Astrophysics Data System (ADS)
Speckman, Suzann G.; Piatt, John F.; Minte-Vera, Carolina V.; Parrish, Julia K.
2005-07-01
We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong ( r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 ( r = 0.87) and 1998 ( r = 0.82). The correlation was poor ( r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin ( Mallotus villosus), walleye pollock ( Theragra chalcogramma), and arrowtooth flounder ( Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Niña year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of “bottom-up control,” i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.
Marti, Elisabet; Huerta, Belinda; Rodríguez-Mozaz, Sara; Barceló, Damià; Marcé, Rafael; Balcázar, Jose Luis
2018-04-01
This study was aimed to determine the abundance of four antibiotic resistance genes (bla TEM , ermB, qnrS and sulI), as well as bacterial community composition associated with the intestinal mucus of wild freshwater fish species collected from the Foix and La Llosa del Cavall reservoirs, which represent ecosystems with high and low anthropogenic disturbance, respectively. Water and sediments from these reservoirs were also collected and analyzed to determine the pollution level by antibiotics. The bla TEM gene was only detected in brown trout and Ebro barbel, which were collected from La Llosa del Cavall reservoir. In contrast, the sulI and qnrS genes were only detected in common carp, which were collected from the Foix reservoir. Although the ermB gene was also detected in common carp, the values were below the limit of quantification. Likewise, water and sediment samples from the Foix reservoir had higher concentrations and more classes of antibiotics than those from La Llosa del Cavall. Pyrosequencing analysis of 16S rRNA genes revealed significant differences in bacterial communities associated with the intestinal mucus of fish species. Therefore, these findings suggest that anthropogenic activities are not only increasing the pollution of aquatic environments, but also contributing to the emergence and spread of antibiotic resistance in organisms that inhabit such environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moore, Jonathan W; Olden, Julian D
2017-05-01
Integrating knowledge of environmental degradation, biodiversity change, and ecosystem processes across large spatial scales remains a key challenge to illuminating the resilience of earth's systems. There is now a growing realization that the manner in which communities will respond to anthropogenic impacts will ultimately control the ecosystem consequences. Here, we examine the response of freshwater fishes and their nutrient excretion - a key ecosystem process that can control aquatic productivity - to human land development across the contiguous United States. By linking a continental-scale dataset of 533 fish species from 8100 stream locations with species functional traits, nutrient excretion, and land remote sensing, we present four key findings. First, we provide the first geographic footprint of nutrient excretion by freshwater fishes across the United States and reveal distinct local- and continental-scale heterogeneity in community excretion rates. Second, fish species exhibited substantial response diversity in their sensitivity to land development; for native species, the more tolerant species were also the species contributing greater ecosystem function in terms of nutrient excretion. Third, by modeling increased land-use change and resultant shifts in fish community composition, land development is estimated to decrease fish nutrient excretion in the majority (63%) of ecoregions. Fourth, the loss of nutrient excretion would be 28% greater if biodiversity loss was random or 84% greater if there were no nonnative species. Thus, ecosystem processes are sensitive to increased anthropogenic degradation but biotic communities provide multiple pathways for resistance and this resistance varies across space. © 2016 John Wiley & Sons Ltd.
DeJager, Nathan R.; Houser, Jeff N.
2016-01-01
Large floodplain rivers have internal structures shaped by directions and rates of water movement. In a previous study, we showed that spatial variation in local current velocities and degrees of hydrological exchange creates a patch-work mosaic of nitrogen and phosphorus concentrations and ratios in the Upper Mississippi River. Here, we used long-term fish and limnological data sets to test the hypothesis that fish communities differ between the previously identified patches defined by high or low nitrogen to phosphorus ratios (TN:TP) and to determine the extent to which select limnological covariates might explain those differences. Species considered as habitat generalists were common in both patch types but were at least 2 times as abundant in low TN:TP patches. Dominance by these species resulted in lower diversity in low TN:TP patches, whereas an increased relative abundance of a number of rheophilic (flow-dependent) species resulted in higher diversity and a more even species distribution in high TN:TP patches. Of the limnological variables considered, the strongest predictor of fish species assemblage and diversity was water flow velocity, indicating that spatial patterns in water-mediated connectivity may act as the main driver of both local nutrient concentrations and fish community composition in these reaches. The coupling among hydrology, biogeochemistry, and biodiversity in these river reaches suggests that landscape-scale restoration projects that manipulate hydrogeomorphic patterns may also modify the spatial mosaic of nutrients and fish communities. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Micronutrient Composition of 35 Food Fishes from India and Their Significance in Human Nutrition.
Mohanty, Bimal P; Sankar, T V; Ganguly, Satabdi; Mahanty, Arabinda; Anandan, R; Chakraborty, Kajal; Paul, B N; Sarma, Debajit; Dayal, J Syama; Mathew, Suseela; Asha, K K; Mitra, Tandrima; Karunakaran, D; Chanda, Soumen; Shahi, Neetu; Das, Puspita; Das, Partha; Akhtar, Md Shahbaz; Vijayagopal, P; Sridhar, N
2016-12-01
The micronutrients (vitamins and minerals) are required in small amounts but are essential for health, development, and growth. Micronutrient deficiencies, which affect over two billion people around the globe, are the leading cause of many ailments including mental retardation, preventable blindness, and death during childbirth. Fish is an important dietary source of micronutrients and plays important role in human nutrition. In the present investigation, micronutrient composition of 35 food fishes (includes both finfishes and shellfishes) was investigated from varying aquatic habitats. Macrominerals (Na, K, Ca, Mg) and trace elements (Fe, Cu, Zn, Mn, Se) were determined by either atomic absorption spectroscopy (AAS) or inductively coupled plasma mass spectrometry (ICP-MS)/atomic emission spectrometry (ICP-AES). Phosphorus content was determined either spectrophotometrically or by ICP-AES. Fat-soluble vitamins (A, D, E, K) were analyzed by high-performance liquid chromatography (HPLC). The analysis showed that, in general, the marine fishes were rich in sodium and potassium; small indigenous fishes (SIFs) in calcium, iron, and manganese; coldwater fishes in selenium; and the brackishwater fishes in phosphorous. The marine fishes Sardinella longiceps and Epinephelus spp. and the SIFs were rich in all fat-soluble vitamins. All these recommendations were made according to the potential contribution (daily value %) of the species to the recommended daily allowance (RDA). Information on the micronutrients generated would enhance the utility of fish in both community and clinical nutrition.
Wang, Zhen-Hua; Wang, Kai; Zhao, Jing; Zhang, Shou-Yu
2011-05-01
To understand the characteristics of fish community structure in sandy beach habitats of island reef water areas, and to evaluate the potential capacity of these habitats in local fish stock maintenance, fishes were monthly collected with multi-mesh trammel nets in 2009 from the subtidal sandy beach habitat off southern Gouqi Island, taking the adjacent rocky reef habitat as the control. alpha and beta species diversity indices, index of relative importance (IRI), relative catch rate, and dominance curve for abundance and biomass (ABC curve) were adopted to compare the fish species composition, diversity, and community pattern between the two habitats, and multivariate statistical analyses such as non-metric multidimensional scaling (nMDS) and cluster were conducted to discuss the fish assemblage patterns. A total of 63 fish species belonging to 11 orders, 38 families, and 56 genera were collected, of which, 46 fish species were appeared in the two habitats. Due to the appearance of more warm water species in sandy bottom, the fishes in subtidal sandy beach habitat showed much higher richness, and the abundance catch rate (ACR) from May to July was higher than that in rocky reef habitat. In most rest months, the ACR in subtidal sandy beach habitat also showed the similar trend. However, the species richness and diversity in spring and summer were significantly lower in subtidal sandy beach habitat than in rocky reef habitat, because of the high species dominance and low evenness in the sandy beach habitat. Japanese tonguefish (Paraplagusia japonica) was the indicator species in the sandy beach habitat, and dominated in early spring, later summer, autumn, and winter when the fishing pressure was not strong. In sandy bottom, a unique community structure was formed and kept in dynamic, due to the nursery use of sandy beach by Japanese anchovy (Engraulis japonicus) from May to July, the gathering of gray mullet (Mugil cephalus) in most months for feeding, and the large quantity appearance of plotosid catfish (Plotosus anguillaris) in early Autumn, which was quite different from the community structure pattern dominated by reef fishes in rocky-algae habitat. The subtidal sandy bottom off Gouqi Island was serving as both nursery and feeding grounds for many fish species, being a suitable habitat for flatfishes. It was concluded that the sandy beaches around Gouqi Island could be a very important habitat for economic fish species, especially as a nursery ground for juvenile fishes, contributing to the fish stock maintenance in specific area.
Smith, Scott A.; Bell, Graham; Bermingham, Eldredge
2004-01-01
Completion of the Panama Canal in 1914 breached the continental divide and set into motion a natural experiment of unprecedented magnitude by bringing previously isolated freshwater fish communities into contact. The construction of a freshwater corridor connecting evolutionarily isolated communities in Pacific and Caribbean watersheds dramatically increased the rate of dispersal, without directly affecting species interactions. Here, we report that a large fraction of species have been able to establish themselves on the other side of the continental divide, whereas no species have become extinct, leading to a local increase in species richness. Our results suggest that communities are not saturated and that competitive exclusion does not occur over the time-scale previously envisioned. Moreover, the results of this unintentional experiment demonstrate that community composition and species richness were regulated by the regional process of dispersal, rather than by local processes such as competition and predation. PMID:15347510
Patterns of Distribution of the Helminth Parasites of Freshwater Fishes of Mexico
Quiroz-Martínez, Benjamín; Salgado-Maldonado, Guillermo
2013-01-01
In order to draw patterns in helminth parasite composition and species richness in Mexican freshwater fishes we analyse a presence-absence matrix representing every species of adult helminth parasites of freshwater fishes from 23 Mexican hydrological basins. We examine the distributional patterns of the helminth parasites with regard to the main hydrological basins of the country, and in doing so we identify areas of high diversity and point out the biotic similarities and differences among drainage basins. Our dataset allows us to evaluate the relationships among drainage basins in terms of helminth diversity. This paper shows that the helminth fauna of freshwater fishes of Mexico can characterise hydrological basins the same way as fish families do, and that the basins of south-eastern Mexico are home to a rich, predominantly Neotropical, helminth fauna whereas the basins of the Mexican Highland Plateau and the Nearctic area of Mexico harbour a less diverse Nearctic fauna, following the same pattern of distribution of their fish host families. The composition of the helminth fauna of each particular basin depends on the structure of the fish community rather than on the limnological characteristics and geographical position of the basin itself. This work shows distance decay of similarity and a clear linkage between host and parasite distributions. PMID:23359347
Patterns of distribution of the helminth parasites of freshwater fishes of Mexico.
Quiroz-Martínez, Benjamín; Salgado-Maldonado, Guillermo
2013-01-01
In order to draw patterns in helminth parasite composition and species richness in Mexican freshwater fishes we analyse a presence-absence matrix representing every species of adult helminth parasites of freshwater fishes from 23 Mexican hydrological basins. We examine the distributional patterns of the helminth parasites with regard to the main hydrological basins of the country, and in doing so we identify areas of high diversity and point out the biotic similarities and differences among drainage basins. Our dataset allows us to evaluate the relationships among drainage basins in terms of helminth diversity. This paper shows that the helminth fauna of freshwater fishes of Mexico can characterise hydrological basins the same way as fish families do, and that the basins of south-eastern Mexico are home to a rich, predominantly Neotropical, helminth fauna whereas the basins of the Mexican Highland Plateau and the Nearctic area of Mexico harbour a less diverse Nearctic fauna, following the same pattern of distribution of their fish host families. The composition of the helminth fauna of each particular basin depends on the structure of the fish community rather than on the limnological characteristics and geographical position of the basin itself. This work shows distance decay of similarity and a clear linkage between host and parasite distributions.
Kock, Dagmar; Schippers, Axel
2008-01-01
The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 109 cells g−1 dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general. PMID:18586975
Kock, Dagmar; Schippers, Axel
2008-08-01
The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 10(9) cells g(-1) dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general.
Enhanced biodiversity beyond marine reserve boundaries: the cup spillith over.
Russ, Garry R; Alcala, Angel C
2011-01-01
Overfishing can have detrimental effects on marine biodiversity and the structure of marine ecosystems. No-take marine reserves (NTMRs) are much advocated as a means of protecting biodiversity and ecosystem structure from overharvest. In contrast to terrestrial protected areas, NTMRs are not only expected to conserve or recover biodiversity and ecosystems within their boundaries, but also to enhance biodiversity beyond their boundaries by exporting species richness and more complex biological communities. Here we show that species richness of large predatory reef fish increased fourfold and 11-fold inside two Philippine no-take marine reserves over 14 and 25 years, respectively. Outside one reserve (Apo) the species richness also increased. This increase beyond the Apo reserve boundary was 78% higher closer to the boundary (200-250 m) than farther from it (250-500 m). The increase in richness beyond the boundary could not be explained by improvements over time in habitat or prey availability. Furthermore, community composition of predatory fish outside but close to (200-250 m) the Apo reserve became very similar to that inside the reserve over time, almost converging with it in multivariate space after 26 years of reserve protection. This is consistent with the suggestion that, as community composition inside Apo reserve increased in complexity, this complexity spilled over the boundary into nearby fished areas. Clearly, the spillover of species richness and community complexity is a direct consequence of the spillover of abundance of multiple species. However, this spillover of species richness and community complexity demonstrates an important benefit of biodiversity and ecosystem export from reserves, and it provides hope that reserves can help to reverse the decline of marine ecosystems and biodiversity.
Ecological and Evolutionary Effects of Stickleback on Community Structure
Des Roches, Simone; Shurin, Jonathan B.; Schluter, Dolph; Harmon, Luke J.
2013-01-01
Species’ ecology and evolution can have strong effects on communities. Both may change concurrently when species colonize a new ecosystem. We know little, however, about the combined effects of ecological and evolutionary change on community structure. We simultaneously examined the effects of top-predator ecology and evolution on freshwater community parameters using recently evolved generalist and specialist ecotypes of three-spine stickleback (Gasterosteus aculeatus). We used a mesocosm experiment to directly examine the effects of ecological (fish presence and density) and evolutionary (phenotypic diversity and specialization) factors on community structure at lower trophic levels. We evaluated zooplankton biomass and composition, periphyton and phytoplankton chlorophyll-a concentration, and net primary production among treatments containing different densities and diversities of stickleback. Our results showed that both ecological and evolutionary differences in the top-predator affect different aspects of community structure and composition. Community structure, specifically the abundance of organisms at each trophic level, was affected by stickleback presence and density, whereas composition of zooplankton was influenced by stickleback diversity and specialization. Primary productivity, in terms of chlorophyll-a concentration and net primary production was affected by ecological but not evolutionary factors. Our results stress the importance of concurrently evaluating both changes in density and phenotypic diversity on the structure and composition of communities. PMID:23573203
Gastrointestinal microbial community changes in Atlantic cod (Gadus morhua) exposed to crude oil.
Bagi, Andrea; Riiser, Even Sannes; Molland, Hilde Steine; Star, Bastiaan; Haverkamp, Thomas H A; Sydnes, Magne Olav; Pampanin, Daniela Maria
2018-04-02
The expansion of offshore oil exploration increases the risk of marine species being exposed to oil pollution in currently pristine areas. The adverse effects of oil exposure through toxic properties of polycyclic aromatic hydrocarbons (PAHs) have been well studied in Atlantic cod (Gadus morhua). Nevertheless, the fate of conjugated metabolites in the intestinal tract and their effect on the diversity of intestinal microbial community in fish is less understood. Here, we investigated the intestinal microbial community composition of Atlantic cod after 28 days of exposure to crude oil (concentration range 0.0-0.1 mg/L). Analysis of PAH metabolites in bile samples confirmed that uptake and biotransformation of oil compounds occurred as a result of the exposure. Various evidence for altered microbial communities was found in fish exposed to high (0.1 mg/L) and medium (0.05 mg/L) concentrations of oil when compared to fish exposed to low oil concentration (0.01 mg/L) or no oil (control). First, altered banding patterns were observed on denaturing gradient gel electrophoresis for samples pooled from each treatment group. Secondly, based on 16S rRNA sequences, higher levels of oil exposure were associated with a loss of overall diversity of the gut microbial communities. Furthermore, 8 operational taxonomic units (OTUs) were found to have significantly different relative abundances in samples from fishes exposed to high and medium oil concentrations when compared to samples from the control group and low oil concentration. Among these, only one OTU, a Deferribacterales, had increased relative abundance in samples from fish exposed to high oil concentration. The results presented herein contribute to a better understanding of the effects of oil contamination on the gut microbial community changes in fish and highlight the importance of further studies into the area. Our findings suggest that increased relative abundance of bacteria belonging to the order Deferribacterales may be indicative of exposure to oil at concentrations higher than 0.05 mg/L.
Avian predator buffers against variability in marine habitats with flexible foraging behavior
Schoen, Sarah K.; Piatt, John F.; Arimitsu, Mayumi L.; Heflin, Brielle; Madison, Erica N.; Drew, Gary S.; Renner, Martin; Rojek, Nora A.; Douglas, David C.; DeGange, Anthony R.
2018-01-01
How well seabirds compensate for variability in prey abundance and composition near their breeding colonies influences their distribution and reproductive success. We used tufted puffins (Fratercula cirrhata) as forage fish samplers to study marine food webs from the western Aleutian Islands (53°N, 173°E) to Kodiak Island (57°N, 153°W), Alaska, during August 2012–2014. Around each colony we obtained data on: environmental characteristics (sea surface temperature and salinity, seafloor depth and slope, tidal range, and chlorophyll-a), relative forage fish biomass (hydroacoustic backscatter), and seabird community composition and density at-sea. On colonies, we collected puffin chick-meals to characterize forage communities and determine meal energy density, and measured chicks to obtain a body condition index. There were distinct environmental gradients from west to east, and environmental variables differed by ecoregions: the (1) Western-Central Aleutians, (2) Eastern Aleutians, and, (3) Alaska Peninsula. Forage fish biomass, species richness, and community composition all differed markedly between ecoregions. Forage biomass was strongly correlated with environmental gradients, and environmental gradients and forage biomass accounted for ~ 50% of the variability in at-sea density of tufted puffins and all seabird taxa combined. Despite the local and regional variability in marine environments and forage, the mean biomass of prey delivered to puffin chicks did not differ significantly between ecoregions, nor did chick condition or puffin density at-sea. We conclude that puffins can adjust their foraging behavior to produce healthy chicks across a wide range of environmental conditions. This extraordinary flexibility enables their overall success and wide distribution across the North Pacific Ocean.
Martins, Patrícia; Cleary, Daniel F R; Pires, Ana C C; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C M
2013-01-01
The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments.
Martins, Patrícia; Cleary, Daniel F. R.; Pires, Ana C. C.; Rodrigues, Ana Maria; Quintino, Victor; Calado, Ricardo; Gomes, Newton C. M.
2013-01-01
The present study combined a DGGE and barcoded 16S rRNA pyrosequencing approach to assess bacterial composition in the water of a recirculating aquaculture system (RAS) with a shallow raceway system (SRS) for turbot (Scophthalmus maximus) and sole (Solea senegalensis). Barcoded pyrosequencing results were also used to determine the potential pathogen load in the RAS studied. Samples were collected from the water supply pipeline (Sup), fish production tanks (Pro), sedimentation filter (Sed), biofilter tank (Bio), and protein skimmer (Ozo; also used as an ozone reaction chamber) of twin RAS operating in parallel (one for each fish species). Our results revealed pronounced differences in bacterial community composition between turbot and sole RAS, suggesting that in the systems studied there is a strong species-specific effect on water bacterial communities. Proteobacteria was the most abundant phylum in the water supply and all RAS compartments. Other important taxonomic groups included the phylum Bacteriodetes. The saltwater supplied displayed a markedly lower richness and appeared to have very little influence on bacterial composition. The following potentially pathogenic species were detected: Photobacterium damselae in turbot (all compartments), Tenacibaculum discolor in turbot and sole (all compartments), Tenacibaculum soleae in turbot (all compartments) and sole (Pro, Sed and Bio), and Serratia marcescens in turbot (Sup, Sed, Bio and Ozo) and sole (only Sed) RAS. Despite the presence of these pathogens, no symptomatic fish were observed. Although we were able to identify potential pathogens, this approach should be employed with caution when monitoring aquaculture systems, as the required phylogenetic resolution for reliable identification of pathogens may not always be possible to achieve when employing 16S rRNA gene fragments. PMID:24278329
Fish population losses from Adirondack Lakes: The role of surface water acidity and acidification
NASA Astrophysics Data System (ADS)
Baker, Joan P.; Warren-Hicks, William J.; Gallagher, James; Christensen, Sigurd W.
1993-04-01
Changes over time in the species composition of fish communities in Adirondack lakes were assessed to determine (1) the approximate numbers offish populations that have been lost and (2) the degree to which fish population losses may have resulted from surface water acidification and acidic deposition. Information on the present-day status offish communities was obtained by the Adirondack Lakes Survey Corporation, which surveyed 1469 Adirondack lakes in 1984-1987 (53% of the total ponded waters in the Adirondack ecological zone). Two hundred and ninety-five of these lakes had been surveyed in 1929-1934 during the first statewide biological survey; 720 had been surveyed in one or more years prior to 1970. Sixteen to 19% of the lakes with adequate historical data appeared to have lost one or more fish populations as a result of acidification. Brook trout and acid-sensitive minnow species had experienced the most widespread effects. Populations of brook trout and acid-sensitive minnows had been lost apparently as a result of acidification from 11% and 19%, respectively, of the lakes with confirmed historical occurrence of these taxa. By contrast, fish species that tend to occur primarily in lower elevation and larger lakes, such as largemouth and smallmouth bass and brown trout, have experienced little to no documented adverse effects. Lakes that were judged to have lost fish populations as a result of acidification had significantly lower; pH and, in most cases, also had higher estimated concentrations of inorganic aluminum and occurred at higher elevations than did lakes with the fish species still present. No other lake characteristics were consistently associated with fish population losses attributed to acidification. The exact numbers and proportions of fish populations affected could not be determined because of limitations on the quantity and quality of historical data. Lakes for which we had adequate historical data to assess long-term trends in fish communities were significantly larger and deeper and have higher pH than do Adirondack lakes in general; thus, fish communities adversely affected by acidification and acidic deposition may be underrepresented in this study.
Influence of landscape structure on reef fish assemblages
Grober-Dunsmore, R.; Frazer, T.K.; Beets, J.P.; Lindberg, W.J.; Zwick, P.; Funicelli, N.A.
2008-01-01
Management of tropical marine environments calls for interdisciplinary studies and innovative methodologies that consider processes occurring over broad spatial scales. We investigated relationships between landscape structure and reef fish assemblage structure in the US Virgin Islands. Measures of landscape structure were transformed into a reduced set of composite indices using principal component analyses (PCA) to synthesize data on the spatial patterning of the landscape structure of the study reefs. However, composite indices (e.g., habitat diversity) were not particularly informative for predicting reef fish assemblage structure. Rather, relationships were interpreted more easily when functional groups of fishes were related to individual habitat features. In particular, multiple reef fish parameters were strongly associated with reef context. Fishes responded to benthic habitat structure at multiple spatial scales, with various groups of fishes each correlated to a unique suite of variables. Accordingly, future experiments should be designed to test functional relationships based on the ecology of the organisms of interest. Our study demonstrates that landscape-scale habitat features influence reef fish communities, illustrating promise in applying a landscape ecology approach to better understand factors that structure coral reef ecosystems. Furthermore, our findings may prove useful in design of spatially-based conservation approaches such as marine protected areas (MPAs), because landscape-scale metrics may serve as proxies for areas with high species diversity and abundance within the coral reef landscape. ?? 2007 Springer Science+Business Media B.V.
Community variability and ecological functioning: 40 years of change in the North Sea benthos.
Clare, D S; Robinson, L A; Frid, C L J
2015-06-01
Using established associations between species traits (life history, morphological and behavioural characteristics) and key ecological functions, we applied biological traits analysis (BTA) to investigate the consequences of 40 years of change in two North Sea benthic communities. Ecological functioning (trait composition) was found to be statistically indistinguishable across periods that differed significantly in taxonomic composition. A temporary alteration to functioning was, however, inferred at both sampling stations; coinciding with the North Sea regime shift of the 1980s. Trait composition recovered after 1 year at the station located inside the grounds of a trawl fishery, whereas the station located outside the main area of fishing activity underwent a six-year period of significantly altered, and temporally unstable, trait composition. A further alteration to functioning was inferred at the fished station, when the population of a newly established species rapidly increased in numbers. The results suggest that density compensation by characteristically similar (redundant) taxa acts to buffer changes to ecological functioning over time, but that functional stability is subject to aperiodic disruption due to substitutions of dissimilar taxa or uncompensated population fluctuations. The rate at which ecological functioning stabilises and recovers appears to be dependent on environmental context; e.g. disturbance regime. Copyright © 2015 Elsevier Ltd. All rights reserved.
Whole gut microbiome composition of damselfish and cardinalfish before and after reef settlement
Parris, Darren J.; Brooker, Rohan M.; Morgan, Michael A.; Dixson, Danielle L.
2016-01-01
The Pomacentridae (damselfish) and Apogonidae (cardinalfish) are among the most common fish families on coral reefs and in the aquarium trade. Members of both families undergo a pelagic larvae phase prior to settlement on the reef, where adults play key roles in benthic habitat structuring and trophic interactions. Fish-associated microbial communities (microbiomes) significantly influence fish health and ecology, yet little is known of how microbiomes change with life stage. We quantified the taxonomic (16S rRNA gene) composition of whole gut microbiomes from ten species of damselfish and two species of cardinalfish from Lizard Island, Australia, focusing specifically on comparisons between pelagic larvae prior to settlement on the reef versus post-settlement juvenile and adult individuals. On average, microbiome phylogenetic diversity increased from pre- to post-settlement, and was unrelated to the microbial composition in the surrounding water column. However, this trend varied among species, suggesting stochasticity in fish microbiome assembly. Pre-settlement fish were enriched with bacteria of the Endozoicomonaceae, Shewanellaceae, and Fusobacteriaceae, whereas settled fish harbored higher abundances of Vibrionaceae and Pasteurellaceae. Several individual operational taxonomic units, including ones related to Vibrio harveyi, Shewanella sp., and uncultured Endozoicomonas bacteria, were shared between both pre and post-settlement stages and may be of central importance in the intestinal niche across development. Richness of the core microbiome shared among pre-settlement fish was comparable to that of settled individuals, suggesting that changes in diversity with adulthood are due to the acquisition or loss of host-specific microbes. These results identify a key transition in microbiome structure across host life stage, suggesting changes in the functional contribution of microbiomes over development in two ecologically dominant reef fish families. PMID:27635360
Whole gut microbiome composition of damselfish and cardinalfish before and after reef settlement.
Parris, Darren J; Brooker, Rohan M; Morgan, Michael A; Dixson, Danielle L; Stewart, Frank J
2016-01-01
The Pomacentridae (damselfish) and Apogonidae (cardinalfish) are among the most common fish families on coral reefs and in the aquarium trade. Members of both families undergo a pelagic larvae phase prior to settlement on the reef, where adults play key roles in benthic habitat structuring and trophic interactions. Fish-associated microbial communities (microbiomes) significantly influence fish health and ecology, yet little is known of how microbiomes change with life stage. We quantified the taxonomic (16S rRNA gene) composition of whole gut microbiomes from ten species of damselfish and two species of cardinalfish from Lizard Island, Australia, focusing specifically on comparisons between pelagic larvae prior to settlement on the reef versus post-settlement juvenile and adult individuals. On average, microbiome phylogenetic diversity increased from pre- to post-settlement, and was unrelated to the microbial composition in the surrounding water column. However, this trend varied among species, suggesting stochasticity in fish microbiome assembly. Pre-settlement fish were enriched with bacteria of the Endozoicomonaceae, Shewanellaceae, and Fusobacteriaceae, whereas settled fish harbored higher abundances of Vibrionaceae and Pasteurellaceae. Several individual operational taxonomic units, including ones related to Vibrio harveyi, Shewanella sp., and uncultured Endozoicomonas bacteria, were shared between both pre and post-settlement stages and may be of central importance in the intestinal niche across development. Richness of the core microbiome shared among pre-settlement fish was comparable to that of settled individuals, suggesting that changes in diversity with adulthood are due to the acquisition or loss of host-specific microbes. These results identify a key transition in microbiome structure across host life stage, suggesting changes in the functional contribution of microbiomes over development in two ecologically dominant reef fish families.
Thomson, Russell J; Hill, Nicole A; Leaper, Rebecca; Ellis, Nick; Pitcher, C Roland; Barrett, Neville S; Edgar, Graham J
2014-03-01
To support coastal planning through improved understanding of patterns of biotic and abiotic surrogacy at broad scales, we used gradient forest modeling (GFM) to analyze and predict spatial patterns of compositional turnover of demersal fishes, macroinvertebrates, and macroalgae on shallow, temperate Australian reefs. Predictive models were first developed using environmental surrogates with estimates of prediction uncertainty, and then the efficacy of the three assemblages as biosurrogates for each other was assessed. Data from underwater visual surveys of subtidal rocky reefs were collected from the southeastern coastline of continental Australia (including South Australia and Victoria) and the northern coastline of Tasmania. These data were combined with 0.01 degree-resolution gridded environmental variables to develop statistical models of compositional turnover (beta diversity) using GFM. GFM extends the machine learning, ensemble tree-based method of random forests (RF), to allow the simultaneous modeling of multiple taxa. The models were used to generate predictions of compositional turnover for each of the three assemblages within unsurveyed areas across the 6600 km of coastline in the region of interest. The most important predictor for all three assemblages was variability in sea surface temperature (measured as standard deviation from measures taken interannually). Spatial predictions of compositional turnover within unsurveyed areas across the region of interest were remarkably congruent across the three taxa. However, the greatest uncertainty in these predictions varied in location among the different assemblages. Pairwise congruency comparisons of observed and predicted turnover among the three assemblages showed that invertebrate and macroalgal biodiversity were most similar, followed by fishes and macroalgae, and lastly fishes and invertebrate biodiversity, suggesting that of the three assemblages, macroalgae would make the best biosurrogate for both invertebrate and fish compositional turnover.
NASA Astrophysics Data System (ADS)
Blaber, S. J. M.; Brewer, D. T.; Salini, J. P.; Kerr, J. D.; Conacher, C.
1992-12-01
The species composition and biomasses of fishes in the tropical seagrasses of Groote Eylandt, northern Australia, were studied in 1989 and 1990. A total of 156 species was recorded. Tall dense seagrass, short seagrass and control (no seagrass) sites in different depths were compared. Shallow (<1 m) sites were dominated by small resident species and juveniles of non-resident species, while deeper waters (to 7 m) were dominated by larger species. Species composition was not significantly different between sites, but species diversity ( H) and evenness ( E) were higher in non-vegetated areas. In slightly deeper water (<2 m) species composition was different between habitats and species diversity was highest in tall seagrass and least in open areas. Most species were more abundant in tall seagrass and least abundant in open areas. Most of the larger fishes, including 11 species of sharks, are piscivores, and most move into shallow sea-grass areas at night, irrespective of tide height. Only five species showed abundance patterns related to tide height and there were no significant seasonal patterns of abundance in any of the communities. The biomasses for all sites and sampling methods were mostly from 1 to 2 g m -2, which is low relative to other inshore tropical areas. The possible causes—the characteristics of adjacent habitats (coral reefs and mangroves) and the role of seagrasses in the life cycle of fishes are discussed. It is suggested that habitat structure is a major determinant of the species composition of fish in tropical seagrass areas, primarily because it affects food availability, both for small residents and juveniles, and for visiting predators.
Mitigating the impact of oil-palm monoculture on freshwater fishes in Southeast Asia.
Giam, Xingli; Hadiaty, Renny K; Tan, Heok Hui; Parenti, Lynne R; Wowor, Daisy; Sauri, Sopian; Chong, Kwek Yan; Yeo, Darren C J; Wilcove, David S
2015-10-01
Anthropogenic land-cover change is driving biodiversity loss worldwide. At the epicenter of this crisis lies Southeast Asia, where biodiversity-rich forests are being converted to oil-palm monocultures. As demand for palm oil increases, there is an urgent need to find strategies that maintain biodiversity in plantations. Previous studies found that retaining forest patches within plantations benefited some terrestrial taxa but not others. However, no study has focused on aquatic taxa such as fishes, despite their importance to human well-being. We assessed the efficacy of forested riparian reserves in conserving freshwater fish biodiversity in oil-palm monoculture by sampling stream fish communities in an oil-palm plantation in Central Kalimantan, Indonesia. Forested riparian reserves maintained preconversion local fish species richness and functional diversity. In contrast, local and total species richness, biomass, and functional diversity declined markedly in streams without riparian reserves. Mechanistically, riparian reserves appeared to increase local species richness by increasing leaf litter cover and maintaining coarse substrate. The loss of fishes specializing in leaf litter and coarse substrate decreased functional diversity and altered community composition in oil-palm plantation streams that lacked riparian reserves. Thus, a land-sharing strategy that incorporates the retention of forested riparian reserves may maintain the ecological integrity of fish communities in oil-palm plantations. We urge policy makers and growers to make retention of riparian reserves in oil-palm plantations standard practice, and we encourage palm-oil purchasers to source only palm oil from plantations that employ this practice. © 2015 Society for Conservation Biology.
Climate constrains lake community and ecosystem responses to introduced predators
Symons, C. C.; Shurin, J. B.
2016-01-01
Human activities have resulted in rising temperatures and the introduction or extirpation of top predators worldwide. Both processes generate cascading impacts throughout food webs and can jeopardize important ecosystem services. We examined the impact of fish stocking on communities and ecosystems in California mountain lakes across an elevation (temperature and dissolved organic carbon) gradient to determine how trophic cascades and ecosystem function vary with climate. Here, we show that the impact of fish on the pelagic consumer-to-producer biomass ratio strengthened at low elevation, while invertebrate community composition and benthic ecosystem rates (periphyton production and litter decomposition) were most influenced by predators at high elevation. A warming climate may therefore alter the stability of lake ecosystems by shifting the strength of top-down control by introduced predators over food web structure and function.
Valesini, F J; Cottingham, A; Hallett, C S; Clarke, K R
2017-05-01
This study examined inter-period changes over two to three decades in the fish fauna of an urbanized estuary experiencing rapid population growth and a drying climate (Swan-Canning Estuary, Western Australia). Responses were compared at the fish community level (species composition; 1978-2009 in the shallows and 1993-2009 in deeper waters) and at the population and individual levels of an estuarine indicator species, black bream Acanthopagrus butcheri (biomass-abundance and per capita mass at age, respectively; 1993-2009). All three levels showed distinct shifts from earlier to later periods, but their patterns, sensitivity and breadth differed. Community composition changed markedly in the shallows of the lower-middle estuary between the late 1970s and all later periods and moderately between more disparate periods from 1995 to 2009. Several species trends could be linked to the increasing salinity of the estuary or declining dissolved oxygen levels in its middle-upper reaches. Community changes were, however, small or insignificant in the shallow and deeper waters of the upper estuary and deeper waters of the middle estuary, where environmental perturbations are often most pronounced. This may reflect the resilience of the limited suite of species that typify those reaches and thus their lack of sensitivity in reflecting longer-term change at the coarser level of mean abundance. One such species, the selected indicator, A. butcheri, did, however, show marked temporal changes at both the population and individual levels. Biomass decreased markedly in deeper waters while increasing in the shallows from earlier to later periods, presumably reflecting an onshore movement of fish, and per capita body mass in the 2+, 3+ and 4+ year classes fell steadily over time. Such changes probably indicate deteriorating habitat quality in the deeper waters. The study outcomes provide support for a multifaceted approach to the biomonitoring of estuaries using fishes and highlight the need for complementary monitoring of relevant stressors to better disentangle cause-effect pathways. © 2017 The Fisheries Society of the British Isles.
A trait-based approach reveals the feeding selectivity of a small endangered Mediterranean fish.
Rodríguez-Lozano, Pablo; Verkaik, Iraima; Maceda-Veiga, Alberto; Monroy, Mario; de Sostoa, Adolf; Rieradevall, Maria; Prat, Narcís
2016-05-01
Functional traits are growing in popularity in modern ecology, but feeding studies remain primarily rooted in a taxonomic-based perspective. However, consumers do not have any reason to select their prey using a taxonomic criterion, and prey assemblages are variable in space and time, which makes taxon-based studies assemblage-specific. To illustrate the benefits of the trait-based approach to assessing food choice, we studied the feeding ecology of the endangered freshwater fish Barbus meridionalis. We hypothesized that B. meridionalis is a selective predator which food choice depends on several prey morphological and behavioral traits, and thus, its top-down pressure may lead to changes in the functional composition of in-stream macroinvertebrate communities. Feeding selectivity was inferred by comparing taxonomic and functional composition (13 traits) between ingested and free-living potential prey using the Jacob's electivity index. Our results showed that the fish diet was influenced by 10 of the 13 traits tested. Barbus meridionalis preferred prey with a potential size of 5-10 mm, with a medium-high drift tendency, and that drift during daylight. Potential prey with no body flexibility, conical shape, concealment traits (presence of nets and/or cases, or patterned coloration), and high aggregation tendency had a low predation risk. Similarly, surface swimmers and interstitial taxa were low vulnerable to predation. Feeding selectivity altered the functional composition of the macroinvertebrate communities. Fish absence favored taxa with weak aggregation tendency, weak flexibility, and a relatively large size (10-20 mm of potential size). Besides, predatory invertebrates may increase in fish absence. In conclusion, our study shows that the incorporation of the trait-based approach in diet studies is a promising avenue to improve our mechanistic understanding of predator-prey interactions and to help predict the ecological outcomes of predator invasions and extinctions.
Ferrari, Belinda C.; Tujula, Niina; Stoner, Kate; Kjelleberg, Staffan
2006-01-01
Advances in the growth of hitherto unculturable soil bacteria have emphasized the requirement for rapid bacterial identification methods. Due to the slow-growing strategy of microcolony-forming soil bacteria, successful fluorescence in situ hybridization (FISH) requires an rRNA enrichment step for visualization. In this study, catalyzed reporter deposition (CARD)-FISH was employed as an alternative method to rRNA enhancement and was found to be superior to conventional FISH for the detection of microcolonies that are cultivated by using the soil substrate membrane system. CARD-FISH enabled real-time identification of oligophilic microcolony-forming soil bacteria without the requirement for enrichment on complex media and the associated shifts in community composition. PMID:16391135
NASA Astrophysics Data System (ADS)
Laffaille, P.; Feunteun, E.; Lefeuvre, J.-C.
2000-10-01
At least 100 fish species are known to be present in the intertidal areas (estuaries, mudflats and salt marshes) of Mont Saint-Michel Bay. These and other comparable shallow marine coastal waters, such as estuaries and lagoons, play a nursery role for many fish species. However, in Europe little attention has been paid to the value of tidal salt marshes for fishes. Between March 1996 and April 1999, 120 tides were sampled in a tidal creek. A total of 31 species were caught. This community was largely dominated by mullets ( Liza ramada represent 87% of the total biomass) and sand gobies ( Pomatoschistus minutus and P. lozanoi represent 82% of the total numbers). These species and also Gasterosteus aculeatus , Syngnathus rostellatus, Dicentrarchus labrax, Mugil spp., Liza aurata and Sprattus sprattus were the most frequent species (>50% of monthly frequency of occurrence). In Europe, salt marshes and their creeks are flooded only during high spring tides. So, fishes only invade this environment during short immersion periods, and no species can be considered as marsh resident. But, the salt marsh was colonized by fish every time the tide reached the creek, and during the short time of flood, dominant fishes fed actively and exploited the high productivity. Nevertheless, this study shows that there is little interannual variation in the fish community and there are three ' seasons ' in the fish fauna of the marsh. Marine straggler and marine estuarine dependent species colonize marshes between spring (recruitment period in the bay) and autumn before returning into deeper adjacent waters. Estuarine fishes are present all year round with maximum abundances in the end of summer. The presence of fishes confirms that this kind of wetland plays an important trophic and nursery role for these species. Differences in densities and stages distribution of these species into Mont Saint-Michel systems (tidal mudflats, estuaries and tidal salt marshes) can reduce the trophic competition.
Casey, Jordan M.; Ainsworth, Tracy D.; Choat, J. Howard; Connolly, Sean R.
2014-01-01
Microbial community structure on coral reefs is strongly influenced by coral–algae interactions; however, the extent to which this influence is mediated by fishes is unknown. By excluding fleshy macroalgae, cultivating palatable filamentous algae and engaging in frequent aggression to protect resources, territorial damselfish (f. Pomacentridae), such as Stegastes, mediate macro-benthic dynamics on coral reefs and may significantly influence microbial communities. To elucidate how Stegastes apicalis and Stegastes nigricans may alter benthic microbial assemblages and coral health, we determined the benthic community composition (epilithic algal matrix and prokaryotes) and coral disease prevalence inside and outside of damselfish territories in the Great Barrier Reef, Australia. 16S rDNA sequencing revealed distinct bacterial communities associated with turf algae and a two to three times greater relative abundance of phylotypes with high sequence similarity to potential coral pathogens inside Stegastes's territories. These potentially pathogenic phylotypes (totalling 30.04% of the community) were found to have high sequence similarity to those amplified from black band disease (BBD) and disease affected corals worldwide. Disease surveys further revealed a significantly higher occurrence of BBD inside S. nigricans's territories. These findings demonstrate the first link between fish behaviour, reservoirs of potential coral disease pathogens and the prevalence of coral disease. PMID:24966320
The Ecology of Seamounts: Structure, Function, and Human Impacts
NASA Astrophysics Data System (ADS)
Clark, Malcolm R.; Rowden, Ashley A.; Schlacher, Thomas; Williams, Alan; Consalvey, Mireille; Stocks, Karen I.; Rogers, Alex D.; O'Hara, Timothy D.; White, Martin; Shank, Timothy M.; Hall-Spencer, Jason M.
2010-01-01
In this review of seamount ecology, we address a number of key scientific issues concerning the structure and function of benthic communities, human impacts, and seamount management and conservation. We consider whether community composition and diversity differ between seamounts and continental slopes, how important dispersal capabilities are in seamount connectivity, what environmental factors drive species composition and diversity, whether seamounts are centers of enhanced biological productivity, and whether they have unique trophic architecture. We discuss how vulnerable seamount communities are to fishing and mining, and how we can balance exploitation of resources and conservation of habitat. Despite considerable advances in recent years, there remain many questions about seamount ecosystems that need closer integration of molecular, oceanographic, and ecological research.
Pollution has led to a decline of benthic invertebrate biodiversity of Narragansett Bay, raising questions about effects on ecosystem functions and services including shellfish production, energy flow to fishes, and biogeochemical cycles. Changes in community composition and taxo...
Tavares-Dias, Marcos; Neves, Ligia R
2017-01-01
The community composition of parasites was characterized in Astronotus ocellatus from a tributary of the Amazon River, northern Brazil. The prevalence was 87.9%, and a total of 526,052 parasites were collected, with a mean of 15,941 parasites per host. Nine taxa of ecto- and endo-parasites were identified, but Ichthyophthirius multifiliis was the dominant species, while Piscinoodinium pillulare, Clinostomum marginatum and Argulus multicolor were the least prevalent parasites. The parasite community was characterized by a low species richness, low diversity and low evenness. Host body size was not found to influence the composition of the parasite community, and there was no significant correlation between abundance of any parasite species and host body size. Papers published concerning the presence of parasites in this host in different hydrographic basins within Brazil indicate that 22 species of parasites are known to infect A. ocellatus, including species of ectoparasites and endoparasites. In Brazil, ectoparasites species, particularly crustaceans, have been found to parasitize A. ocellatus in relatively high numbers. This predominance of ectoparasites is typical of fish of lentic ecosystems. Finally, the presence of different endoparasites taxa suggest that A. ocellatus acts as an intermediate or definitive host.
Nachev, M; Sures, B
2009-04-01
Infection of barbel with 10 species of metazoan parasites including 3 trematodes, 3 acanthocephalans and 4 nematodes was observed in fish collected from 3 localities in the Bulgarian part of the river Danube between summer 2004 and summer 2007. The composition as well as the diversity characteristics of the parasite communities were analysed seasonally and showed a clear correlation with the composition of the invertebrate fauna and water quality. The most prevalent species was the acanthocephalan Pomphorhynchus laevis, which was also the dominant species of the intestinal component communities at all sampling sites. The second most frequent parasite at all Danube localities was Rhabdochona hellichi, which occurred in significantly higher numbers at the less polluted sites. Overall, the diversity of helminth communities increased with decreasing levels of nutrients and pollutants at all sampling sites. Therefore, the composition and diversity of parasite communities may be used to characterize ecosystem health and integrity.
NASA Astrophysics Data System (ADS)
Thorman, Staffan; Wiederholm, Anne-Marie
1984-09-01
A nearshore fish assemblage inhabiting a shallow bay in the southern Bothnian Sea, Sweden, with demanding environmental conditions (c. 5‰; >15°C during 4 months 1980 and 1 month 1981) was studied during a two-year period, in 1980 and 1981. Seasonal distribution patterns, dietary relationships, and growth rates were studied in Pungitius pungitius (L.), Pomatoschistus minutus (Pallas.), Gasterosteus aculeatus (L.), Phoxinus phoxinus (L.), Pomatoschistus microps (Krøyer) and Gobius niger L. The structure of the juvenile populations changed both over seasons and years but the adult populations remained constant. Lower water temperature, fewer individuals, lower and delayed fish growth, and lower interspecific food overlaps were found in 1981 compared to 1980. Few significant correlations were found in both years between the following community parameters: diversity, niche width, food overlap, and the proportion of each species in the fish assemblage. According to these results it is suggested that food competition and resource partitioning were of minor importance for the structuring of the fish community in the present area. Rather, the extreme salinity and the fluctuations in temperature regulated the fish populations. One may conclude that the populations of juveniles were more influenced by short-term changes in the environment than those of the adults.
Reverter, Miriam; Sasal, Pierre; Tapissier-Bontemps, N; Lecchini, D; Suzuki, M
2017-06-01
While recent studies have suggested that fish mucus microbiota play an important role in homeostasis and prevention of infections, very few studies have investigated the bacterial communities of gill mucus. We characterised the gill mucus bacterial communities of four butterflyfish species and although the bacterial diversity of gill mucus varied significantly between species, Shannon diversities were high (H = 3.7-5.7) in all species. Microbiota composition differed between butterflyfishes, with Chaetodon lunulatus and C. ornatissimus having the most similar bacterial communities, which differed significantly from C. vagabundus and C. reticulatus. The core bacterial community of all species consisted of mainly Proteobacteria followed by Actinobacteria and Firmicutes. Chaetodonlunulatus and C. ornatissimus bacterial communities were mostly dominated by Gammaproteobacteria with Vibrio as the most abundant genus. Chaetodonvagabundus and C. reticulatus presented similar abundances of Gammaproteobacteria and Alphaproteobacteria, which were well represented by Acinetobacter and Paracoccus, respectively. In conclusion, our results indicate that different fish species present specific bacterial assemblages. Finally, as mucus layers are nutrient hotspots for heterotrophic bacteria living in oligotrophic environments, such as coral reef waters, the high bacterial diversity found in butterflyfish gill mucus might indicate external fish mucus surfaces act as a reservoir of coral reef bacterial diversity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Johnson, James H.; Chalupnicki, Marc; Abbett, Ross; Diaz, Avriel R; Nack, Christopher C
2017-01-01
Fish feeding ecology has been shown to vary over a 24-h period in terms of the prey consumed and feeding intensity. Consequently, in order to best determine the interspecific feeding associations within a fish community, examination of the diet at multiple times over a 24-h period is often necessary. We examined the diel feeding ecology of three fish species that were numerically dominant in a Lake Ontario embayment during summer. The diet of each of the three species, young-of-year Pumpkinseed Lepomis gibbosus, Golden Shiner Notemigonus crysoleucas, and Brook Silverside Labidesthes sicculus, was distinct with no significant overlap in diet composition occurring within any of the 4-h time intervals. The diet composition of each species suggested that Brook Silverside were feeding at the surface (terrestrial invertebrates and aquatic surface dwelling hemipterans), whereas young-of-year Pumpkinseed (amphipods) and Golden Shiner (tipulids) were feeding on different benthic prey. Differences in feeding periodicity were most pronounced for young-of-year Pumpkinseed. Our findings provide valuable insights on interspecific feeding associations among these three fish species during summer in a Lake Ontario embayment.
Individual diet has sex-dependent effects on vertebrate gut microbiota
Bolnick, Daniel I.; Snowberg, Lisa K.; Hirsch, Philipp E.; Lauber, Christian L.; Org, Elin; Parks, Brian; Lusis, Aldons J.; Knight, Rob; Caporaso, J. Gregory; Svanbäck, Richard
2014-01-01
Vertebrates harbour diverse communities of symbiotic gut microbes. Host diet is known to alter microbiota composition, implying that dietary treatments might alleviate diseases arising from altered microbial composition (‘dysbiosis’). However, it remains unclear whether diet effects are general or depend on host genotype. Here we show that gut microbiota composition depends on interactions between host diet and sex within populations of wild and laboratory fish, laboratory mice and humans. Within each of two natural fish populations (threespine stickleback and Eurasian perch), among-individual diet variation is correlated with individual differences in gut microbiota. However, these diet–microbiota associations are sex dependent. We document similar sex-specific diet–microbiota correlations in humans. Experimental diet manipulations in laboratory stickleback and mice confirmed that diet affects microbiota differently in males versus females. The prevalence of such genotype by environment (sex by diet) interactions implies that therapies to treat dysbiosis might have sex-specific effects. PMID:25072318
Individual diet has sex-dependent effects on vertebrate gut microbiota.
Bolnick, Daniel I; Snowberg, Lisa K; Hirsch, Philipp E; Lauber, Christian L; Org, Elin; Parks, Brian; Lusis, Aldons J; Knight, Rob; Caporaso, J Gregory; Svanbäck, Richard
2014-07-29
Vertebrates harbour diverse communities of symbiotic gut microbes. Host diet is known to alter microbiota composition, implying that dietary treatments might alleviate diseases arising from altered microbial composition ('dysbiosis'). However, it remains unclear whether diet effects are general or depend on host genotype. Here we show that gut microbiota composition depends on interactions between host diet and sex within populations of wild and laboratory fish, laboratory mice and humans. Within each of two natural fish populations (threespine stickleback and Eurasian perch), among-individual diet variation is correlated with individual differences in gut microbiota. However, these diet-microbiota associations are sex dependent. We document similar sex-specific diet-microbiota correlations in humans. Experimental diet manipulations in laboratory stickleback and mice confirmed that diet affects microbiota differently in males versus females. The prevalence of such genotype by environment (sex by diet) interactions implies that therapies to treat dysbiosis might have sex-specific effects.
NASA Astrophysics Data System (ADS)
Xu, Qiang; Guo, Dong; Zhang, Peidong; Zhang, Xiumei; Li, Wentao; Wu, Zhongxin
2016-03-01
Seagrass habitats are structurally complex ecosystems, which support high productivity and biodiversity. In temperate systems the density of seagrass may change seasonally, and this may influence the associated fish and invertebrate community. Little is known about the role of seagrass beds as possible nursery areas for fish and invertebrates in China. To study the functioning of a seagrass habitat in northern China, demersal fish and invertebrates were collected monthly using traps, from February 2009 to January 2010. The density, leaf length and biomass of the dominant seagrass Zostera marina and water temperature were also measured. The study was conducted in a Seagrass Natural Reserve (SNR) on the eastern coast of the Shandong Peninsula, China. A total of 22 fish species and five invertebrate species were recorded over the year. The dominant fish species were Synechogobius ommaturus, Sebastes schlegelii, Pholis fangi, Pagrus major and Hexagrammos otakii and these species accounted for 87% of the total number of fish. The dominant invertebrate species were Charybdis japonica and Octopus variabilis and these accounted for 98% of the total abundance of invertebrates. There was high temporal variation in species composition and abundance. The peak number of fish species occurred in August-October 2009, while the number of individual fish and biomass was highest during November 2009. Invertebrate numbers and biomass was highest in March, April, July and September 2009. Temporal changes in species abundance of fishes and invertebrates corresponded with changes in the shoot density and leaf length of the seagrass, Zostera marina.
Bledsoe, Jacob W; Waldbieser, Geoffrey C; Swanson, Kelly S; Peterson, Brian C; Small, Brian C
2018-01-01
The microbiota of teleost fish has gained a great deal of research attention within the past decade, with experiments suggesting that both host-genetics and environment are strong ecological forces shaping the bacterial assemblages of fish microbiomes. Despite representing great commercial and scientific importance, the catfish within the family Ictaluridae , specifically the blue and channel catfish, have received very little research attention directed toward their gut-associated microbiota using 16S rRNA gene sequencing. Within this study we utilize multiple genetically distinct strains of blue and channel catfish, verified via microsatellite genotyping, to further quantify the role of host-genetics in shaping the bacterial communities in the fish gut, while maintaining environmental and husbandry parameters constant. Comparisons of the gut microbiota among the two catfish species showed no differences in bacterial species richness (observed and Chao1) or overall composition (weighted and unweighted UniFrac) and UniFrac distances showed no correlation with host genetic distances (Rst) according to Mantel tests. The microbiota of environmental samples (diet and water) were found to be significantly more diverse than that of the catfish gut associated samples, suggesting that factors within the host were further regulating the bacterial communities, despite the lack of a clear connection between microbiota composition and host genotype. The catfish gut communities were dominated by the phyla Fusobacteria, Proteobacteria, and Firmicutes; however, differential abundance analysis between the two catfish species using analysis of composition of microbiomes detected two differential genera, Cetobacterium and Clostridium XI . The metagenomic pathway features inferred from our dataset suggests the catfish gut bacterial communities possess pathways beneficial to their host such as those involved in nutrient metabolism and antimicrobial biosynthesis, while also containing pathways involved in virulence factors of pathogens. Testing of the inferred KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways by DESeq2 revealed minor difference in microbiota function, with only two metagenomic pathways detected as differentially abundant between the two catfish species. As the first study to characterize the gut microbiota of blue catfish, our study results have direct implications on future ictalurid catfish research. Additionally, our insight into the intrinsic factors driving microbiota structure has basic implications for the future study of fish gut microbiota.
Bull Trout Forage Investigations in Beulah Reservoir, Oregon - Annual Report for 2006
Rose, Brien P.; Mesa, Mathew G.
2009-01-01
Beulah Reservoir on the north fork of the Malheur River in northeastern Oregon provides irrigation water to nearby farms and ranches and supports an adfluvial population of bull trout (Salvelinus confluentus), which are listed as threatened under the Endangered Species Act. Water management in Beulah Reservoir results in seasonal and annual fluctuations of water volume that may affect forage availability for bull trout. Because no minimum pool requirements currently exist, the reservoir is occasionally reduced to run-of-river levels, which may decimate forage fish populations and ultimately affect bull trout. We sampled fish and aquatic insects in Beulah Reservoir in the spring, before the annual drawdown of 2006, and afterward, in the late fall. We also collected samples 1.5 years after the reservoir was dewatered for three consecutive summers. Overall, the moderate drawdown of 2006 (32 percent of full pool) did not drastically alter the fish community in Beulah Reservoir. We did document, however, decreases in abundance and sizes of chironomids in areas of the reservoir that were frequently dewatered, increased catch rates of fish with gillnets, and decreases in population estimates for smaller fishes after drawdown. In 2006, after the dewaterings of 2002-04, species composition was similar to that prior to the dewaterings, but the size distributions of most species were biased toward small juvenile or subyearling fishes and larger fishes were rare. Our results indicate that repeated reservoir drawdown reduces aquatic insect forage for bull trout and probably affects forage fish populations at least temporarily. The high catch rates of juvenile fishes 1.5 years after consecutive dewaterings suggests good reproductive success for any remaining adult fish, and shows that the fish community in Beulah Reservoir is resilient to such disturbances. There is, however, a period of time after serious drawdowns before significant numbers of juvenile fishes start to appear in the reservoir. Because Beulah Reservoir experiences a wide variety of drawdown scenarios in consecutive years, the forage fish community may never reach a state of equilibrium.
Rodeles, Amaia A.; Galicia, David; Miranda, Rafael
2016-01-01
The study of freshwater fish species biodiversity and community composition is essential for understanding river systems, the effects of human activities on rivers, and the changes these animals face. Conducting this type of research requires quantitative information on fish abundance, ideally with long-term series and fish body measurements. This Data Descriptor presents a collection of 12 datasets containing a total of 146,342 occurrence records of 41 freshwater fish species sampled in 233 localities of various Iberian river basins. The datasets also contain 148,749 measurement records (length and weight) for these fish. Data were collected in different sampling campaigns (from 1992 to 2015). Eleven datasets represent large projects conducted over several years, and another combines small sampling campaigns. The Iberian Peninsula contains high fish biodiversity, with numerous endemic species threatened by various menaces, such as water extraction and invasive species. These data may support the development of large biodiversity conservation studies. PMID:27727236
Rodeles, Amaia A; Galicia, David; Miranda, Rafael
2016-10-11
The study of freshwater fish species biodiversity and community composition is essential for understanding river systems, the effects of human activities on rivers, and the changes these animals face. Conducting this type of research requires quantitative information on fish abundance, ideally with long-term series and fish body measurements. This Data Descriptor presents a collection of 12 datasets containing a total of 146,342 occurrence records of 41 freshwater fish species sampled in 233 localities of various Iberian river basins. The datasets also contain 148,749 measurement records (length and weight) for these fish. Data were collected in different sampling campaigns (from 1992 to 2015). Eleven datasets represent large projects conducted over several years, and another combines small sampling campaigns. The Iberian Peninsula contains high fish biodiversity, with numerous endemic species threatened by various menaces, such as water extraction and invasive species. These data may support the development of large biodiversity conservation studies.
Spatial and temporal variability in surf zone fish assemblages on the coast of northern New Jersey
NASA Astrophysics Data System (ADS)
Wilber, D. H.; Clarke, D. G.; Burlas, M. H.; Ruben, H.; Will, R. J.
2003-02-01
The surf zone fish community along 15 km of northern New Jersey shoreline was sampled every 2 weeks by beach seine in the late summers and early falls of 1995-1999 in conjunction with monitoring of a beach nourishment project. Fifty-seven species representing 30 families were collected during the course of the study. Over 90% of each sampling period's catch was composed of five taxa or less. These taxa included Atlantic and rough silversides, Menidia menidia and Membras martinica, bluefish, Pomatomus saltatrix, and bay and striped anchovies, Anchoa mitchilli and Anchoa hepsetus, with the relative contributions of these taxa varying among years. Both bluefish and anchovy abundances varied by an order of magnitude among years. Size-frequency distributions indicate summer-spawned bluefish recruit to the surf zone habitat as two cohorts in August and October, respectively. Fish abundance and richness were greater at substations closest to rock groins. Taxonomic richness declined along with decreasing water temperature in the fall, but was not correlated with turbidity or tide stage (measured as minutes before or after low tide). The extensive sampling effort undertaken in this study, 2190 seine hauls that captured 295 868 fish, was examined in relation to the number and relative proportions of taxa collected. Species accumulation curves and percent similarity calculations were used to investigate the adequacy of a reduced sampling protocol in characterizing the taxonomic composition of the surf zone fish community. Calculations from eight complete sampling periods (84 seine hauls each) indicate that a reduction in sampling effort by one-half would have yielded on average 75% of the total number of species captured with approximately 85% similarity in relative species composition.
Esselman, P.C.; Freeman, Mary C.; Pringle, C.M.
2006-01-01
Linkages between geology and fish assemblages have been inferred in many regions throughout the world, but no studies have yet investigated whether fish assemblages differ across geologies in Mesoamerica. The goals of our study were to: 1) compare physicochemical conditions and fish-assemblage structure across 2 geologic types in headwaters of the Monkey River Basin, Belize, and 2) describe basin-scale patterns in fish community composition and structure for the benefit of conservation efforts. We censused headwater-pool fishes by direct observation, and assessed habitat size, structure, and water chemistry to compare habitat and fish richness, diversity, evenness, and density between streams in the variably metamorphosed sedimentary geologic type typical of 80% of Belize's Maya Mountains (the Santa Rosa Group), and an anomalous extrusive geologic formation in the same area (the Bladen Volcanic Member). We also collected species-presence data from 20 sites throughout the basin for analyses of compositional patterns from the headwaters to the top of the estuary. Thirty-nine fish species in 21 families were observed. Poeciliids were numerically dominant, making up 39% of individuals captured, followed by characins (25%), and cichlids (20%). Cichlidae was the most species-rich family (7 spp.), followed by Poeciliidae (6 spp.). Habitat size and water chemistry differed strongly between geologic types, but habitat diversity did not. Major fish-assemblage differences also were not obvious between geologies, despite a marked difference in the presence of the aquatic macrophyte, Marathrum oxycarpum (Podostemaceae), which covered 37% of the stream bottom in high-nutrient streams draining the Santa Rosa Group, and did not occur in the low-P streams draining the Bladen Volcanic Member. Correlation analyses suggested that distance from the sea and amount of cover within pools are important to fish-assemblage structure, but that differing abiotic factors may influence assemblage structure within each geologic type. The fauna showed weak compositional zonation into 3 groups (headwaters, coastal plain, and nearshore). Nearly 20% of the fish species collected have migratory life cycles (including Joturus pichardi, Agonostomus monticola, and Gobiomorus dormitor) that use freshwater and marine habitats. Some of these species probably rely on a natural flow regime and longitudinal connectivity for reproduction and dispersal of young, and natural flow regime and longitudinal connectivity are important factors for maintenance of functional linkages between the uplands and the coast in the ridge-to-reef corridor where the Monkey River is located. Therefore, we suggest that the viability of migratory fish populations may be a good biological indicator of upland-to-estuary connectivity important both to fishes and coastal ecosystem function. We recommend follow-up studies to substantiate the relative strengths of relationships between community structure and abiotic factors in contrasting geologies and to examine potential bottom-up responses of stream biota to the higher nutrient levels that were observed in stream waters draining the Santa Rosa Group geologic type.
Climate-driven changes in functional biogeography of Arctic marine fish communities
Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V.; Fossheim, Maria; Aschan, Michaela M.
2017-01-01
Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. PMID:29087943
NASA Astrophysics Data System (ADS)
Myun Park, Joo; Nam Kwak, Seok; Huh, Sung-Hoi; Han, In-Seong
2017-09-01
Dietary niches and food resource partitioning can support the coexistence of many fishes in benthic marine systems, which can lead to the greater abundances of those species that can potentially support their fisheries. Diets and niche overlap among nine demersal fish species were investigated in the southern continental shelf of East/Japan Sea, Korea. Specimens were collected monthly from January to November 2007 on soft bottoms between 40 and 100 m depth using a bottom trawl. A total of 20 prey taxa were found in 1904 stomachs of the nine species. Comparison of the stomach contents among the nine species showed that inter-specific dietary compositions differed significantly. Although all fish species consumed similar types of prey items, their contributions to the diet of different species varied. Among prey taxa, carid shrimps contributed greatly to the diets of Amblychaeturichthys hexanema, Amblychaeturichthys sciistius, Coelorinchus multispinulosus, Lepidotrigla guentheri, and Liparis tanakae, whereas polychaetes and teleosts contributed to the diets of Callionymus lunatus and Lophius litulon, respectively. On the other hand, carid shrimps and teleosts together contributed to the diets of Pseudorhombus pentophthalmus. Non-metric multivariate analysis of the mass contributions of dietary categories for food resources emphasized visually that the dietary compositions of the nine species differed. Although C. multispinulosus, L. guentheri, L. litulon, and L. tanakae showed similar dietary compositions between small and large size classes, ontogenetic diet changes of the remaining six species were evident. Feeding relationships among the nine demersal species were complicated, but inter- and intra-specific differences in dietary composition among the species reduced potential competition for food resources within the fish community in the southern continental shelf of East/Japan Sea, Korea.
Henriquez, V P; Gonzalez, M T; Licandeo, R; Carvajal, J
2011-12-01
The composition of the metazoan parasite fauna of the rock cod Eleginops maclovinus from three locations in southern Chile was compared to assess the local spatial variation of the community component of their parasitic faunas. A total of 13 108 metazoan parasites (5267 endoparasites and 7841 ectoparasites) belonging to 34 taxa were collected from 268 specimens of E. maclovinus between October 2008 and March 2009. The populations and community quantitative descriptors were estimated. Altogether, 97.4% of the fish were infected with at least one parasite taxon. The most prevalent species were Hypoechinorhynchus magellanicus (Acanthocephala), Caligus rogercresseyi, Lepeophtheirus mugiloides, Clavella adunca (Copepoda) and Similascarophis sp. (Nematoda). Five species are new records for this host: Argulus araucanus, Hirudinea gen. sp1., Hirudinea gen. sp2., Benedenia sp. and Camallanidae gen. sp. A linear discriminant analysis (LDA) showed that the metazoan parasite fauna of E. maclovinus varied qualitatively and quantitatively among three locations, with 89.7% of fish being correctly assigned to their respective locations. This suggested that parasites could be a reliable tool to discriminate individual fish from geographically close locations. There was a weak relationship between the parasite fauna and fish size and there were no accumulations of parasites in the host over time, which could be associated with ontogenetic changes of diet associated with habitat use. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Popular media records reveal multi-decadal trends in recreational fishing catch rates.
Thurstan, Ruth H; Game, Edward; Pandolfi, John M
2017-01-01
Despite threats to human wellbeing from ecological degradation, public engagement with this issue remains at low levels. However, studies have shown that crafting messages to resonate with people's personal experiences can enhance engagement. Recreational fishing is one of the principal ways in which people interact with aquatic environments, but long-term data from this perspective are considered rare. We uncovered 852 popular media records of recreational fishing for an Australian estuary across a 140-year period. Using information contained in these articles we analysed the species composition of recreational catches over time and constructed two distinct time series of catch and effort (n fish fisher-1 trip-1; kg fish fisher-1 trip-1) for recreational fishing trips and fishing club competitions (mean n and kg fish caught across all competitors, and n and kg fish caught by the competition winner). Reported species composition remained similar over time. Catch rates reported from recreational fishing trips (1900-1998) displayed a significant decline, averaging 32.5 fish fisher-1 trip-1 prior to 1960, and 18.8 fish fisher-1 trip-1 post-1960. Mean n fish fisher-1 competition-1 (1913-1983) also significantly declined, but best n fish fisher-1 competition-1 (1925-1980) displayed no significant change, averaging 31.2 fish fisher-1 competition-1 over the time series. Mean and best kg fish fisher-1 competition-1 trends also displayed no significant change, averaging 4.2 and 9.9 kg fisher-1 competition-1, respectively. These variable trends suggest that while some fishers experienced diminishing returns in this region over the last few decades, the most skilled inshore fishers were able to maintain their catch rates, highlighting the difficulties inherent in crafting conservation messages that will resonate with all sections of a community. Despite these challenges, this research demonstrates that popular media sources can provide multiple long-term trends at spatial scales, in units and via a recreational experience that many people can relate to.
Poe, T.P.; Hatcher, C.O.; Brown, C.L.; Schloesser, D.W.
1986-01-01
Species composition and richness of fish assemblages in altered and unaltered littoral habitats in Lake St. Clair, Michigan, differed between areas. A percid-cyprinid-cyprinodontid assemblage dominated in the unaltered area, Muscamoot Bay, which has a natural shoreline (with almost no alteration due to dredging or bulkheading), high water quality, and high species richness of aquatic macrophytes. A centrarchid assemblage dominated in the altered area, Belvidere Bay, which has a bulkheaded shoreline, many dredged areas, reduced water quality due to inputs of nutrients from a nearby river, and relatively low species richness of aquatic macrophytes. Habitat factors, species richness and abundance of aquatic macrophytes, had the most influence on fish community structure in both areas. The percid-cyprinid-cyprinodontid assemblage was significantly correlated with six species of macrophytes whereas the centrarchid assemblage was significantly correlated with only four. These patterns suggest that preference for diverse habitats was higher, and tolerance to habitat alteration lower, in percid-cyprinid-cyprinodontid assemblages than in centrarchid assemblages.
NASA Astrophysics Data System (ADS)
Abookire, A. A.; Piatt, J. F.; Robards, M. D.
2000-07-01
Fish were sampled with beach seines and small-meshed beam trawls in nearshore (<1 km) and shallow (<25 m) habitats on the southern coast of Kachemak Bay, Cook Inlet, Alaska, from June to August, 1996-1998. Fish distributions among habitats were analysed for species composition, catch-per-unit-effort (CPUE) and frequency of occurrence. Two oceanographically distinct areas of Kachemak Bay were sampled and compared: the Outer Bay and the Inner Bay. Outer Kachemak Bay is exposed and receives oceanic, upwelled water from the Gulf of Alaska, whereas the Inner Bay is more estuarine. Thermohaline properties of bottom water in the Outer and Inner Bay were essentially the same, whereas the Inner Bay water-column was stratified with warmer, less saline waters near the surface. Distribution and abundance of pelagic schooling fish corresponded with area differences in stratification, temperature and salinity. The Inner Bay supported more species and higher densities of schooling and demersal fish than the Outer Bay. Schooling fish communities sampled by beach seine differed between the Outer and Inner Bays. Juvenile and adult Pacific sand lance ( Ammodytes hexapterus), Pacific herring ( Clupea harengus pallasi), osmerids (Osmeridae) and sculpins (Cottidae) were all more abundant in the Inner Bay. Gadids (Gadidae) were the only schooling fish taxa more abundant in the Outer Bay. Thermohaline characteristics of bottom water were similar throughout Kachemak Bay. Correspondingly, bottom fish communities were similar in all areas. Relative abundances (CPUE) were not significantly different between areas for any of the five demersal fish groups: flatfishes (Pleuronectidae), ronquils (Bathymasteridae), sculpins (Cottidae), gadids (Gadidae) and pricklebacks (Stichaeidae).
Wildhaber, M.L.; Gladish, D.W.; Arab, A.
2011-01-01
Past and present Missouri River management practices have resulted in native fishes being identified as in jeopardy. In 1995, the Missouri River Benthic Fishes Study was initiated to provide improved information on Missouri River fish populations and how alterations might affect them. The study produced a baseline against which to evaluate future changes in Missouri River operating criteria. The objective was to evaluate population structure and habitat use of benthic fishes along the entire mainstem Missouri River, exclusive of reservoirs. Here we use the data from this study to provide a recent-past baseline for on-going Missouri River fish population monitoring programmes along with a more powerful method for analysing data containing large percentages of zero values. This is carried out by describing the distribution and habitat use of 21 species of Missouri River benthic fishes based on catch-per-unit area data from multiple gears. We employ a Bayesian zero-inflated Poisson model expanded to include continuous measures of habitat quality (i.e. substrate composition, depth, velocity, temperature, turbidity and conductivity). Along with presenting the method, we provide a relatively complete picture of the Missouri River benthic fish community and the relationship between their relative population numbers and habitat conditions. We demonstrate that our single model provides all the information that is often obtained by a myriad of analytical techniques. An important advantage of the present approach is reliable inference for patterns of relative abundance using multiple gears without using gear efficiencies.
Abookire, Alisa A.; Piatt, John F.; Robards, Martin D.
2000-01-01
Fish were sampled with beach seines and small-meshed beam trawls in nearshore ( < 1 km) and shallow ( < 25 m) habitats on the southern coast of Kachemak Bay, Cook Inlet, Alaska, from June to August, 1996-1998. Fish distributions among habitats were analysed for species composition, catch-per-unit-effort (CPUE) and frequency of occurrence. Two oceanographically distinct areas of Kachemak Bay were sampled and compared: the Outer Bay and the Inner Bay. Outer Kachemak Bay is exposed and receives oceanic, upwelled water from the Gulf of Alaska, whereas the Inner Bay is more estuarine. Thermohaline properties of bottom water in the Outer and Inner Bay were essentially the same, whereas the Inner Bay water-column was stratified with warmer, less saline waters near the surface. Distribution and abundance of pelagic schooling fish corresponded with area differences in stratification, temperature and salinity. The Inner Bay supported more species and higher densities of schooling and demersal fish than the Outer Bay. Schooling fish communities sampled by beach seine differed between the Outer and Inner Bays. Juvenile and adult Pacific sand lance (Ammodytes hexapterus), Pacific herring (Clupea harengus pallasi), osmerids (Osmeridae) and sculpins (Cottidae) were all more abundant in the Inner Bay. Gadids (Gadidae) were the only schooling fish taxa more abundant in the Outer Bay. Thermohaline characteristics of bottom water were similar throughout Kachemak Bay. Correspondingly, bottom fish communities were similar in all areas. Relative abundances (CPUE) were not significantly different between areas for any of the five demersal fish groups: flatfishes (Pleuronectidae), ronquils (Bathymasteridae), sculpins (Cottidae), gadids (Gadidae) and pricklebacks (Stichaeidae).
Casey, Jordan M; Ainsworth, Tracy D; Choat, J Howard; Connolly, Sean R
2014-08-07
Microbial community structure on coral reefs is strongly influenced by coral-algae interactions; however, the extent to which this influence is mediated by fishes is unknown. By excluding fleshy macroalgae, cultivating palatable filamentous algae and engaging in frequent aggression to protect resources, territorial damselfish (f. Pomacentridae), such as Stegastes, mediate macro-benthic dynamics on coral reefs and may significantly influence microbial communities. To elucidate how Stegastes apicalis and Stegastes nigricans may alter benthic microbial assemblages and coral health, we determined the benthic community composition (epilithic algal matrix and prokaryotes) and coral disease prevalence inside and outside of damselfish territories in the Great Barrier Reef, Australia. 16S rDNA sequencing revealed distinct bacterial communities associated with turf algae and a two to three times greater relative abundance of phylotypes with high sequence similarity to potential coral pathogens inside Stegastes's territories. These potentially pathogenic phylotypes (totalling 30.04% of the community) were found to have high sequence similarity to those amplified from black band disease (BBD) and disease affected corals worldwide. Disease surveys further revealed a significantly higher occurrence of BBD inside S. nigricans's territories. These findings demonstrate the first link between fish behaviour, reservoirs of potential coral disease pathogens and the prevalence of coral disease. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Martinho, Filipe; Nyitrai, Daniel; Crespo, Daniel; Pardal, Miguel A
2015-12-15
Facing a generalized increase in water degradation, several programmes have been implemented for protecting and enhancing the water quality and associated wildlife, which rely on ecological indicators to assess the degree of deviation from a pristine state. Here, single (species number, Shannon-Wiener H', Pielou J') and multi-metric (Estuarine Fish Assessment Index, EFAI) community-based ecological quality measures were evaluated in a temperate estuary over an 8-year period (2005-2012), and established their relationships with an anthropogenic pressure index (API). Single metric indices were highly variable and neither concordant amongst themselves nor with the EFAI. The EFAI was the only index significantly correlated with the API, indicating that higher ecological quality was associated with lower anthropogenic pressure. Pressure scenarios were related with specific fish community composition, as a result of distinct food web complexity and nursery functioning of the estuary. Results were discussed in the scope of the implementation of water protection programmes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wilkins, Laetitia G E; Fumagalli, Luca; Wedekind, Claus
2016-10-01
Recent studies found fish egg-specific bacterial communities that changed over the course of embryogenesis, suggesting an interaction between the developing host and its microbiota. Indeed, single-strain infections demonstrated that the virulence of opportunistic bacteria is influenced by environmental factors and host immune genes. However, the interplay between a fish embryo host and its microbiota has not been studied yet at the community level. To test whether host genetics affects the assemblage of egg-associated bacteria, adult brown trout (Salmo trutta) were sampled from a natural population. Their gametes were used for full-factorial in vitro fertilizations to separate sire from dam effects. In total, 2520 embryos were singly raised under experimental conditions that differently support microbial growth. High-throughput 16S rRNA amplicon sequencing was applied to characterize bacterial communities on milt and fertilized eggs across treatments. Dam and sire identity influenced embryo mortality, time until hatching and composition of egg-associated microbiotas, but no link between bacterial communities on milt and on fertilized eggs could be found. Elevated resources increased embryo mortality and modified bacterial communities with a shift in their putative functional potential. Resource availability did not significantly affect any parental effects on embryo performance. Sire identity affected bacterial diversity that turned out to be a significant predictor of hatching time: embryos associated with high bacterial diversity hatched later. We conclude that both host genetics and the availability of resources define diversity and composition of egg-associated bacterial communities that then affect the life history of their hosts. © 2016 John Wiley & Sons Ltd.
Yamada, Priscilla de Oliveira Fadel; Yamada, Fabio Hideki; da Silva, Reinaldo José; Anjos, Luciano Alves Dos
2017-06-01
The parasite communities of two freshwater catfishes (Auchenipterus osteomystax and Trachelyopterus galeatus) were analyzed during the dry and rainy seasons in a Neotropical floodplain. The nature of river-floodplain systems places specific demands on parasite community structure, due to changes in the host environment. It was therefore hypothesized that flood conditions lead to an increase in the richness and abundance of fish parasites in the rainy season at the mouth of Aguapeí River floodplain. The Auchenipterus osteomystax parasite community was richer (11 vs. eight) in species than T. galeatus, although the latter exhibited a greater parasite burden (F1,108 = 126.99, P<0.0001). During the rainy season both host species demonstrated high levels of parasitism (least squared means ± SE = 1.69 ± 0.05 vs. 1.34 ± 0.05; F1,108 = 21.45, P<0.0001). Differences were found in the composition of the parasite species and the proportion of parasites for each host species and between each seasonal period. Flood conditions during the rainy season caused a change in the composition and structure of the parasitic communities. The results corroborate the hypothesis that floods are one of the most significant influences on shaping the parasite communities of fish in floodplains. Our greatest concern is the reduction these dynamics and effects bring about on local biota and, consequently, in host-parasite interaction. We would therefore like to take this opportunity to warn environmental agencies and hydroelectric companies about the importance of the conservation of the diversity of this location.
How have fisheries affected parasite communities?
Wood, Chelsea L.; Lafferty, Kevin D.
2015-01-01
To understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.
Goldstein, R.M.
1995-01-01
Available data on the ecology of aquatic organisms in the Red River of the North Basin, a study unit of the U.S. Geological Survey's National Water-Quality Assessment program, were collated from numerous sources. Lack of information for invertebrates and algae precluded a general summary of distribution and ecology throughout the basin. Data on fish species distributions in the major streams of the Red River of the North Basin were analyzed based on the drainage area of the stream and the number of ecoregions the stream flowed through. Species richness increased with both drainage area (log drainage area in square kilometers, R2=0.41, p=0.0055) and the number of ecoregions a river flowed through. However, theses two factors are autocorrelated because the larger the drainage, the more likely that the river will flow through more than one ecoregion. A cluster analysis identified five river groups based on similarity of species within the fish community. Analysis of trophic and taxonomic composition provided justification for the cluster groups. There were significant differences (p=0.05) in the trophic composition of the river cluster groups with respect to the number of predator species, omnivore species, benthic insectivore species, and general insectivore species. Although there were no significant differences in the number of species in the bass and sunfish family or the sucker family, the number of species in the minnow family and the darter subfamily were different (p=0.05) among the groups identified by cluster analysis. Data on contaminant concentrations in fish from the Red River of the North indicated that most trace elements and organochlorine compounds present in tissues were not at levels toxic to fish or humans. Minnesota and North Dakota have issued a fish consumption advisory based on levels of mercury and (or) PCBs found in some species.
Lepère, Cécile; Domaizon, Isabelle; Debroas, Didier
2007-09-01
Small eukaryotes (0.2-5 microm) in hyper-eutrophic conditions were described using terminal restriction fragment length polymorphism and cloning-sequencing, and were related to environmental variables both by an experimental approach and by a temporal field study. In situ analysis showed marked temporal variations in the dominant terminal restriction fragments (T-RFs), which were related to environmental variables such as nutrient concentrations and metazooplankton composition. To monitor the responses of the small-eukaryote community to top-down (absence or presence of planktivorous fish) and bottom-up (low or high nitrogen and phosphorus addition) effects, a cross-classified design mesocosm experiment was used. Depending on the type of treatment, we recorded changes in the diversity of T-RFs, as well as modifications in phylogenetic composition. Centroheliozoa and Cryptophyta were found in all types of treatment, whereas Chlorophyta were specific to enclosures receiving high nutrient loadings, and were associated either with LKM11 and 'environmental sequences'. Cercozoa and Fungi were not detected in enclosures receiving high nutrient loadings and fishes. Our results showed that resources and top-down factors are both clearly involved in shaping the structure of small eukaryotes, not only autotrophs but also heterotrophs, via complex interactions and trophic cascades within a microbial loop, notably in response to nutrient loading.
L-Lake macroinvertebrate community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, W.L.
1996-06-01
To characterize the present benthic macroinvertebrate community of L-Lake, Regions 5 and 7 of the reservoir were sampled in September 1995 at the same locations sampled in 1988 and 1989 during the L-Lake monitoring program. The macroinvertebrate community of 1995 is compared to that of 1988 and 1989. The species composition of L-Lake`s macroinvertebrate community has changed considerably since 1988-1989, due primarily to maturation of the reservoir ecosystem. L-Lake contains a reasonably diverse macroinvertebrate community that is capable of supporting higher trophic levels, including a diverse assemblage of fish species. The L-Lake macroinvertebrate community is similar to those of manymore » other southeastern reservoirs, and there is no indication that the macroinvertebrate community is perturbed by chemical or physical stressors.« less
Simonsen, T; Vårtun, A; Lyngmo, V; Nordøy, A
1987-01-01
Coronary heart disease (CHD) mortality was registered in an inland and a coastal community in Northern Norway. Subgroups of healthy males from the communities were investigated further. The daily consumption of fish in the coastal and inland areas was 132.4 g and 55.1 g respectively, and the intake of eicosapentaenoic acid was 0.9 g and 0.25 g. The content of n-3 polyunsaturated fatty acids in platelet phospholipids and primary bleeding time were similar in the two groups. Linoleic acid was lower and saturated fatty acids were higher in phospholipids in men from the coastal area. Collagen-induced platelet aggregation was increased and serum triglyceride concentration was higher in men from the coastal area. CHD mortality during a 10-year period was higher in the coastal area for both sexes. This may be associated with differences in serum triglyceride levels and platelet fatty acid composition. This study indicates that a high consumption of lean fish is not sufficient to induce changes in blood lipids and platelet function associated with low CHD mortality and it does not seem to prevent high CHD mortality.
Schaeffer, Jeff; Rogers, Mark W.; Fielder, David G.; Godby, Neal; Bowen, Anjanette K.; O'Connor, Lisa; Parrish, Josh; Greenwood, Susan; Chong, Stephen; Wright, Greg
2014-01-01
Long-term surveys are useful in understanding trends in connecting channel fish communities; a gill net assessment in the Saint Marys River performed periodically since 1975 is the most comprehensive connecting channels sampling program within the Laurentian Great Lakes. We assessed efficiency of that survey, with intent to inform development of assessments at other connecting channels. We evaluated trends in community composition, effort versus estimates of species richness, ability to detect abundance changes for four species, and effects of subsampling yellow perch catches on size and age-structure metrics. Efficiency analysis revealed low power to detect changes in species abundance, whereas reduced effort could be considered to index species richness. Subsampling simulations indicated that subsampling would have allowed reliable estimates of yellow perch (Perca flavescens) population structure, while greatly reducing the number of fish that were assigned ages. Analyses of statistical power and efficiency of current sampling protocols are useful for managers collecting and using these types of data as well as for the development of new monitoring programs. Our approach provides insight into whether survey goals and objectives were being attained and can help evaluate ability of surveys to answer novel questions that arise as management strategies are refined.
Albuquerque, Maria G E; Carvalho, Gilda; Kragelund, Caroline; Silva, Ana F; Barreto Crespo, Maria T; Reis, Maria A M; Nielsen, Per H
2013-01-01
The microbial community of a fermented molasses-fed sequencing batch reactor (SBR) operated under feast and famine conditions for production of polyhydroxyalkanoates (PHAs) was identified and quantified through a 16 S rRNA gene clone library and fluorescence in situ hybridization (FISH). The microbial enrichment was found to be composed of PHA-storing populations (84% of the microbial community), comprising members of the genera Azoarcus, Thauera and Paracoccus. The dominant PHA-storing populations ensured the high functional stability of the system (characterized by high PHA-storage efficiency, up to 60% PHA content). The fermented molasses contained primarily acetate, propionate, butyrate and valerate. The substrate preferences were determined by microautoradiography-FISH and differences in the substrate-uptake capabilities for the various probe-defined populations were found. The results showed that in the presence of multiple substrates, microbial populations specialized in different substrates were selected, thereby co-existing in the SBR by adapting to different niches. Azoarcus and Thauera, primarily consumed acetate and butyrate, respectively. Paracoccus consumed a broader range of substrates and had a higher cell-specific substrate uptake. The relative species composition and their substrate specialization were reflected in the substrate removal rates of different volatile fatty acids in the SBR reactor. PMID:22810062
Ocean acidification reduces demersal zooplankton that reside in tropical coral reefs
NASA Astrophysics Data System (ADS)
Smith, Joy N.; de'Ath, Glenn; Richter, Claudio; Cornils, Astrid; Hall-Spencer, Jason M.; Fabricius, Katharina E.
2016-12-01
The in situ effects of ocean acidification on zooplankton communities remain largely unexplored. Using natural volcanic CO2 seep sites around tropical coral communities, we show a threefold reduction in the biomass of demersal zooplankton in high-CO2 sites compared with sites with ambient CO2. Differences were consistent across two reefs and three expeditions. Abundances were reduced in most taxonomic groups. There were no regime shifts in zooplankton community composition and no differences in fatty acid composition between CO2 levels, suggesting that ocean acidification affects the food quantity but not the quality for nocturnal plankton feeders. Emergence trap data show that the observed reduction in demersal plankton may be partly attributable to altered habitat. Ocean acidification changes coral community composition from branching to massive bouldering coral species, and our data suggest that bouldering corals represent inferior daytime shelter for demersal zooplankton. Since zooplankton represent a major source of nutrients for corals, fish and other planktivores, this ecological feedback may represent an additional mechanism of how coral reefs will be affected by ocean acidification.
Comparison of burbot populations across adjacent native and introduced ranges
Walters, Annika W.; Mandeville, Elizabeth G.; Saunders, W. Carl; Gerrity, Paul C.; Skorupski, Joseph A.; Underwood, Zachary E.; Gardunio, Eric I.
2017-01-01
Introduced species are a threat to biodiversity. Burbot, Lota lota, a fish native to the Wind River Drainage, Wyoming and a species of conservation concern, have been introduced into the nearby Green River Drainage, Wyoming, where they are having negative effects on native fish species. We compared these native and introduced burbot populations to evaluate potential mechanisms that could be leading to introduction success. We examined genetic ancestry, physical habitat characteristics, community composition, and burbot abundance, relative weight, and size structure between the native and introduced range to elucidate potential differences. The origin of introduced burbot in Flaming Gorge Reservoir is most likely Boysen Reservoir and several nearby river populations in the native Wind River Drainage. Burbot populations did not show consistent differences in abundance, size structure, and relative weight between drainages, though Fontenelle Reservoir, in the introduced drainage, had the largest burbot. There were also limited environmental and community composition differences, though reservoirs in the introduced drainage had lower species richness and a higher percentage of non-native fish species than the reservoir in the native drainage. Burbot introduction in the Green River Drainage is likely an example of reservoir construction creating habitat with suitable environmental conditions to allow a southwards range expansion of this cold-water species. An understanding of the factors driving introduction success can allow better management of species, both in their introduced and native range.
Microbiota of wild-caught Red Snapper Lutjanus campechanus.
Tarnecki, Andrea M; Patterson, William F; Arias, Covadonga R
2016-10-21
The microbiota plays an essential role in host health, particularly through competition with opportunistic pathogens. Changes in total bacterial load and microbiota structure can indicate early stages of disease, and information on the composition of bacterial communities is essential to understanding fish health. Although Red Snapper (Lutjanus campechanus) is an economically important species in recreational fisheries and a primary aquaculture candidate, no information is available on the microbial communities of this species. The aim of this study was to survey the microbiota of apparently healthy, wild-caught Red Snapper from the Gulf of Mexico. Sampled Red Snapper showed no physical signs of disease. Tissues that are either primary entry routes for pathogens (feces, gill) or essential to disease diagnosis (blood) were sampled. Bacteria were enumerated using culture-based techniques and characterized by pyrosequencing. Aerobic counts of feces and gill samples were 10 7 and 10 4 CFU g -1 , respectively. All individuals had positive blood cultures with counts up to 23 CFU g -1 . Gammaproteobacteria dominated the microbiota of all sample types, including the genera Pseudoalteromonas and Photobacterium in feces and Pseudomonas in blood and gill. Gill samples were also dominated by Vibrio while blood samples had high abundances of Nevskia. High variability in microbiota composition was observed between individuals, with percent differences in community composition ranging from 6 to 76 % in feces, 10 to 58 % in gill, and 52 to 64 % in blood. This study provides the first characterization of the microbiota of the economically significant Red Snapper via pyrosequencing. Its role in fish health highlights the importance of understanding microbiota composition for future work on disease prevention using microbial manipulation.
Chávez, R A; González, M T; Oliva, M E; Valdivia, I M
2012-03-01
The aims of the present study were to compare, using multivariate analyses, the degree of similarity of the endoparasite fauna of five fish species belonging to the order Gadiformes: Merluccius gayi, Merluccius australis, Macruronus magellanicus (Gadoidei) and Micromesistius australis and Nezumia pulchella (Macrouroidei), from the southern and central Chilean coast, and to evaluate whether the composition of the endoparasite fauna was determined by phylogenetic or ecological relationships. We employed our database of Merluccius australis, M. magellanicus and Micromesistius australis, which was complemented with published information for M. magellanicus, Merluccius australis, Micromesistius australis, M. gayi and N. pulchella. A higher number of endoparasite species was recorded for Merluccius australis, Micromesistius australis and M. magellanicus, namely Anisakis sp. and Hepatoxylon trichiuri, which is the most prevalent parasite among these hosts. Aporocotyle wilhelmi and Hysterothylacium sp. were detected only in M. gayi, whereas Lepidapedon sp. was found exclusively in N. pulchella. These results suggest that fish ecology rather than host phylogeny was the most important factor for the determination of similarity in parasite composition. This result could be explained by the similar trophic patterns of hosts and by the predominance of generalist larval species among these fish parasite communities.
Pohlon, Elisabeth; Ochoa Fandino, Adriana; Marxsen, Jürgen
2013-01-01
Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany). Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow) for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes, especially after harsh desiccation, followed by loss of the specialized functions of specific groups of bacteria. PMID:24386188
Starks, Elizabeth; Cooper, Ryan; Leavitt, Peter R; Wissel, Björn
2014-04-01
The anticipated impacts of climate change on aquatic biota are difficult to evaluate because of potentially contrasting effects of temperature and hydrology on lake ecosystems, particularly those closed-basin lakes within semiarid regions. To address this shortfall, we quantified decade-scale changes in chemical and biological properties of 20 endorheic lakes in central North America in response to a pronounced transition from a drought to a pluvial period during the early 21st century. Lakes exhibited marked temporal changes in chemical characteristics and formed two discrete clusters corresponding to periods of substantially different effective moisture (as Palmer Drought Severity Index, PDSI). Discriminant function analysis (DFA) explained 90% of variability in fish assemblage composition and showed that fish communities were predicted best by environmental conditions during the arid interval (PDSI <-2). DFA also predicted that lakes could support more fish species during pluvial periods, but their occurrences may be limited by periodic stress due to recurrent droughts and physical barriers to colonization. Zooplankton taxonomic assemblages in fishless lakes were resilient to short-term changes in meteorological conditions, and did not vary between drought and deluge periods. Conversely, zooplankton taxa in fish-populated lakes decreased substantially in biomass during the wet interval, likely due to increased zooplanktivory by fish. The powerful effects of such climatic variability on hydrology and the strong subsequent links to water chemistry and biota indicate that future changes in global climate could result in significant restructuring of aquatic communities. Together these findings suggest that semiarid lakes undergoing temporary climate shifts provide a useful model system for anticipating the effects of global climate change on lake food webs. © 2013 John Wiley & Sons Ltd.
The Gills of Reef Fish Support a Distinct Microbiome Influenced by Host-Specific Factors.
Pratte, Zoe A; Besson, Marc; Hollman, Rebecca D; Stewart, Frank J
2018-05-01
Teleost fish represent the most diverse of the vertebrate groups and play important roles in food webs, as ecosystem engineers, and as vectors for microorganisms. However, the microbial ecology of fishes remains underexplored for most host taxa and for certain niches on the fish body. This is particularly true for the gills, the key sites of respiration and waste exchange in fishes. Here we provide a comprehensive analysis of the gill microbiome. We focus on ecologically diverse taxa from coral reefs around Moorea, sampling the gills and intestines of adults and juveniles representing 15 families. The gill microbiome composition differed significantly from that of the gut for both adults and juveniles, with fish-associated niches having lower alpha diversity values and higher beta diversity values than those for seawater, sediment, and alga-associated microbiomes. Of ∼45,000 operational taxonomic units (OTUs) detected across all samples, 11% and 13% were detected only in the gill and the intestine, respectively. OTUs most enriched in the gill included members of the gammaproteobacterial genus Shewanella and the family Endozoicimonaceae In adult fish, both gill and intestinal microbiomes varied significantly among host species grouped by diet category. Gill and intestinal microbiomes from the same individual were more similar to one another than to gill and intestinal microbiomes from different individuals. These results demonstrate that distinct body sites are jointly influenced by host-specific organizing factors operating at the level of the host individual. The results also identify taxonomic signatures unique to the gill and the intestine, confirming fish-associated niches as distinct reservoirs of marine microbial diversity. IMPORTANCE Fish breathe and excrete waste through their gills. The gills are also potential sites of pathogen invasion and colonization by other microbes. However, we know little about the microbial communities that live on the gill and the factors shaping their diversity. Focusing on ecologically distinct types of coral reef fish, we provide a comprehensive analysis of the fish gill microbiome. By comparison to microbiomes of the gut and the surrounding environment, we identify microbes unique to the gill niche. These microbes may be targets for further studies to determine the contribution of the microbiome to waste exchange or host immunity. We also show that despite exhibiting a unique taxonomic signature, the gill microbiome is influenced by factors that also influence the gut microbiome. These factors include the specific identity of the host individual. These results suggest basic principles describing how association with fishes structures the composition of microbial communities. Copyright © 2018 American Society for Microbiology.
Trawl disturbance on benthic communities: chronic effects and experimental predictions.
Hinz, Hilmar; Prieto, Virginia; Kaiser, Michel J
2009-04-01
Bottom trawling has widespread impacts on benthic communities and habitats. While the direct impacts of trawl disturbances on benthic communities have been extensively studied, the consequences from long-term chronic disturbances are less well understood. The response of benthic macrofauna to chronic otter-trawl disturbance from a Nephrops norvegicus (Norway lobster) fishery was investigated along a gradient of fishing intensity over a muddy fishing ground in the northeastern Irish Sea. Chronic otter trawling had a significant, negative effect on benthic infauna abundance, biomass, and species richness. Benthic epifauna abundance and species richness also showed a significant, negative response, while no such effect was evident for epibenthic biomass. Furthermore, chronic trawl disturbance led to clear changes in community composition of benthic infauna and epifauna. The results presented indicate that otter-trawl impacts are cumulative and can lead to profound changes in benthic communities, which may have far-reaching implications for the integrity of marine food webs. Studies investigating the short-term effects of fishing manipulations previously concluded that otter trawling on muddy substrates had only modest effects on the benthic biota. Hence, the results presented by this study highlight that data from experimental studies can not be readily extrapolated to an ecosystem level and that subtle cumulative effects may only become apparent when fishing disturbances are examined over larger spatial and temporal scales. Furthermore, this study shows that data on chronic effects of bottom trawling on the benthos will be vital in informing the recently advocated move toward an ecosystem approach in fisheries management. As bottom-trawl fisheries are expanding into ever deeper muddy habitats, the results presented here are an important step toward understanding the global ecosystem effects of bottom trawling.
The Modification of an Estuary
NASA Astrophysics Data System (ADS)
Nichols, Frederic H.; Cloern, James E.; Luoma, Samuel N.; Peterson, David H.
1986-02-01
The San Francisco Bay estuary has been rapidly modified by human activity. Diking and filling of most of its wetlands have eliminated habitats for fish and waterfowl; the introduction of exotic species has transformed the composition of its aquatic communities; reduction of freshwater inflow by more than half has changed the dynamics of its plant and animal communities; and wastes have contaminated its sediments and organisms. Continued disposal of toxic wastes, the probable further reduction in freshwater inflow, and the possible synergy between the two provide the potential for further alteration of the estuary's water quality and biotic communities.
The modification of an estuary
Nichols, F.H.; Cloern, J.E.; Luoma, S.N.; Peterson, D.H.
1986-01-01
The San Francisco Bay estuary has been rapidly modified by human activity. Diking and filling of most of its wetlands have eliminated habitats for fish and waterfowl; the introduction of exotic species has transformed the composition of its aquatic communities; reduction of freshwater inflow by more than half has changed the dynamics of its plant and animal communities; and wastes have contaminated its sediments and organisms. Continued disposal of toxic wastes, the probable further reduction in freshwater inflow, and the possible synergy between the two provide the potential for further alteration of the estuary's water quality and biotic communities.
Ríos-Pulgarín, M I; Barletta, M; Mancera-Rodriguez, N J
2016-07-01
The seasonal and interannual changes in the fish, macroinvertebrates and phycoperiphyton assemblages of the Guarinó River were examined in relation to the physical and chemical environmental changes associated with the hydrological cycle and the El Niño-Niña/Southern Oscillation (ENSO) between 2007 and 2010. Four samplings (in dry and rainy seasons) were performed per year. Environmental variables (temperature, pH, conductivity, turbidity, oxygen, total nitrogen, orthophosphate, depth and flow rate) were measured. The temporal patterns of the taxonomic compositions for the three assemblages and the functional composition of fish and macroinvertebrate assemblages with respect to environmental variables were examined through canonical discriminant analysis, multidimensional scaling and multiple correlations. The presence and abundance of fishes, macroinvertebrates and algae species were regulated by environmental variables associated with extreme hydrological events, which derived from the natural torrential regimen of the basin and larger-scale phenomena, such as El Niño and La Niña. Fish abundance and richness were significantly correlated with algal density and pH, the macroinvertebrate density was negatively related to the flow rate and the richness was positively correlated with algal density. The algae richness was positively correlated with pH and negatively correlated with the flow rate and nitrogen. The algal density was positively correlated with pH and temperature and negatively correlated with river flow. The phycoperiphyton assemblage exhibited more direct responses in its density and richness to the hydrological changes (r(2) = 0·743 and 0·800, respectively). In functional terms, the El Niño phenomenon was defined by a greater abundance of omnivorous and insectivorous fishes, as well as filter feeders, scrapers and macroinvertebrate predators. During La Niña, a greater abundance of benthic fishes (both detritivorous and insectivorous) and shredder and collector-gatherer macroinvertebrates was observed. Differentiated responses recorded in the community were based on adaptive strategies for the local hydrological regime that enable fast recovery under conditions such as ENSO phenomena. Composition changes according to adaptations to different hydrological scenarios and the predominance of generalists' trophic guilds and species with plasticity in their habits and their ranges of environmental tolerance were found, supporting the habitat templet model. © 2016 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Netburn, Amanda N.; Koslow, J. Anthony
2018-04-01
With strong horizontal gradients in physical properties, oceanic frontal regions can lead to disproportionately high biological productivity. We examined cross-frontal changes in mesopelagic fish assemblages at three separate frontal systems in the southern California Current Ecosystem (CCE) as part of the CCE Long Term Ecological Research program: the A-Front sampled in October 2008, the C-Front in June/July 2011, and the E-Front in July/August 2012. We analyzed the differential effects of front-associated regions on density and species composition of adult migratory and non-migratory fishes and larvae, and the larval to adult ratio (as a possible index of a population growth potential) for migratory and non-migratory species. The fronts did not have a strong effect on densities of any subset of the mesopelagic fish assemblage. The species composition of the vertical migratory fishes (and their larvae) was typically altered across fronts, with different assemblages present on either side of each front. The migratory assemblages at the fronts themselves were indistinguishable from those at the more productive side of the frontal system. In contrast, the assemblage composition of the non-migratory fishes was indistinguishable between regions across all three of the fronts. The differences between the Northern and Southern assemblages at the A-Front were primarily based on biogeographic provinces, while the assemblages at the E-Front were largely distinguishable by their oceanic or coastal-upwelling zone associations. These results generally confirm those of previous studies on frontal systems in the California Current Ecosystem and elsewhere. The ratio of larvae to adults, a potential index of population growth potential, was altered across two of the fronts for migratory species, elevated on the colder side of the A-Front and the warmer side of the E-Front. This finding suggests that fronts may be regions of enhanced reproduction. The larvae to adult ratio was indistinguishable for non-migratory species at all three frontal systems. The non-migratory component of the community was little influenced by the presence of a front, apparently because the regions of strongest horizontal spatial gradients were too shallow to be experienced directly. We speculate that there was no change in larval community composition and population growth index at the most dynamic frontal system (C-Front) compared to the other fronts surveyed because the frontal feature was short-lived relative to the time scale for population growth of the fish. However, the difference in results of the C-Front may also be due to a change in methodology used in this study. If mesoscale features such as fronts increase in frequency off the California coast in the future as predicted, they have the potential to alter population growth potential and restructure mesopelagic fish assemblages, which are dominated by migratory species.
Richard A. MacKenzie; Nicole Cormier
2012-01-01
Structurally complex mangrove roots are thought to provide foraging habitat, predation refugia, and typhoon protection for resident fish, shrimp, and crabs. The spatially compact nature of Micronesian mangroves results in model ecosystems to test these ideas. Tidal creek nekton assemblages were compared among mangrove forests impacted by Typhoon Sudal and differing in...
Climate-driven changes in functional biogeography of Arctic marine fish communities.
Frainer, André; Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V; Fossheim, Maria; Aschan, Michaela M
2017-11-14
Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. Copyright © 2017 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Cobián-Rojas, Dorka; Schmitter-Soto, Juan J.; Aguilar Betancourt, Consuelo M.; Aguilar-Perera, Alfonso; Ruiz-Zárate, Miguel Á.; González-Sansón, Gaspar; Chevalier Monteagudo, Pedro P.; Herrera Pavón, Roberto; García Rodríguez, Alain; Corrada Wong, Raúl I.; Cabrera Guerra, Delmis; Salvat Torres, Héctor; Perera Valderrama, Susana
2018-04-01
Marine protected areas (MPAs) conserve diversity and abundance of fish communities. According to the biotic resistance hypothesis, communities with higher diversity and abundance should resist invasions better. To test this idea, the presence of lionfish in two Caribbean MPAs was studied: Parque Nacional Guanahacabibes (PNG) in Cuba and Parque Nacional Arrecifes de Xcalak (PNAX) in Mexico. Selection of these MPAs was based on both their different levels of success with enforcement and different abundances of native fish, with a more abundant native fish fauna at PNG. Underwater visual censuses were used to evaluate both the native fish structure and composition and at the same time distribution and abundance of lionfish. The abundance of potential predators on lionfish was also measured to determine possible effects of lionfish on both the abundance and the size of its prey and competitors. Lionfish showed higher abundance and larger size in PNG compared to PNAX, even though its probable competitors and predators were also more abundant and larger in PNG. Prey abundance and size decreased after the invasion. No correlation was detected between potential predators and lionfish, which might indicate natural predation is not substantial. In PNAX, lower abundance of prey, potential competitors and predators can also be attributed to historical overfishing, but this did not provide an advantage to lionfish. Lionfish were less abundant and reached smaller sizes in PNAX compared to PNG. This work confirms the effectiveness of lionfish culling at PNAX, but does not support the biotic resistence hypothesis that native fish might have controlled this invasive species.
Le Croizier, Gaël; Schaal, Gauthier; Gallon, Régis; Fall, Massal; Le Grand, Fabienne; Munaron, Jean-Marie; Rouget, Marie-Laure; Machu, Eric; Le Loc'h, François; Laë, Raymond; De Morais, Luis Tito
2016-12-15
The link between trophic ecology and metal accumulation in marine fish species was investigated through a multi-tracers approach combining fatty acid (FA) and stable isotope (SI) analyses on fish from two contrasted sites on the coast of Senegal, one subjected to anthropogenic metal effluents and another one less impacted. The concentrations of thirteen trace metal elements (As, Cd, Co, Cr, Cu, Fe, Li, Mn, Ni, Pb, Sn, U, and Zn) were measured in fish liver. Individuals from each site were classified into three distinct groups according to their liver FA and muscle SI compositions. Trace element concentrations were tested between groups revealing that bioaccumulation of several metals was clearly dependent on the trophic guild of fish. Furthermore, correlations between individual trophic markers and trace metals gave new insights into the determination of their origin. Fatty acids revealed relationships between the dietary regimes and metal accumulation that were not detected with stable isotopes, possibly due to the trace metal elements analysed in this study. In the region exposed to metallic inputs, the consumption of benthic preys was the main pathway for metal transfer to the fish community while in the unaffected one, pelagic preys represented the main source of metals. Within pelagic sources, metallic transfer to fish depended on phytoplankton taxa on which the food web was based, suggesting that microphytoplankton (i.e., diatoms and dinoflagellates) were a more important source of exposition than nano- and picoplankton. This study confirmed the influence of diet in the metal accumulation of marine fish communities, and proved that FAs are very useful and complementary tools to SIs to link metal accumulation in fish with their trophic ecology. Copyright © 2016 Elsevier B.V. All rights reserved.
Declines in predatory fish promote bloom-forming macroalgae.
Eriksson, Britas Klemens; Ljunggren, Lars; Sandström, Alfred; Johansson, Gustav; Mattila, Johanna; Rubach, Anja; Råberg, Sonja; Snickars, Martin
2009-12-01
In the Baltic Sea, increased dominance of ephemeral and bloom-forming algae is presently attributed to increased nutrient loads. Simultaneously, coastal predatory fish are in strong decline. Using field data from nine areas covering a 700-km coastline, we examined whether formation of macroalgal blooms could be linked to the composition of the fish community. We then tested whether predator or nutrient availability could explain the field patterns in two small-scale field experiments, by comparing joint effects on algal net production from nutrient enrichment with agricultural fertilizer and exclusion of larger predatory fish with cages. We also manipulated the presence of invertebrate grazers. The abundance of piscivorous fish had a strong negative correlation with the large-scale distribution of bloom-forming macroalgae. Areas with depleted top-predator communities displayed massive increases in their prey, small-bodied fish, and high covers of ephemeral algae. Combining the results from the two experiments showed that excluding larger piscivorous fish: (1) increased the abundance of small-bodied predatory fish; (2) changed the size distribution of the dominating grazers, decreasing the smaller gastropod scrapers; and (3) increased the net production of ephemeral macroalgae. Effects of removing top predators and nutrient enrichment were similar and additive, together increasing the abundance of ephemeral algae many times. Predator effects depended on invertebrate grazers; in the absence of invertebrates there were no significant effects of predator exclusion on algal production. Our results provide strong support for regional declines of larger predatory fish in the Baltic Sea promoting algal production by decreasing invertebrate grazer control. This highlights the importance of trophic interactions for ecosystem responses to eutrophication. The view emerges that to achieve management goals for water quality we need to consider the interplay between top-down and bottom-up processes in future ecosystem management of marine resources.
Walsh, Stephen J.; Buttermore, Elissa N.; Burgess, O. Towns; Pine, William E.
2009-01-01
Light traps were used to sample the age-0 year class of fish communities in the Apalachicola River and associated floodplain water bodies of River Styx and Battle Bend, Florida, in 2006-2007. A total of 629 light traps were deployed during the spring and early summer months (341 between March 15 and June 6, 2006; 288 between March 9 and July 3, 2007). For combined years, 13.8 percent of traps were empty and a total of 20,813 age-0 fish were captured representing at least 40 taxa of 29 genera and 16 families. Trap catches were dominated by relatively few species, with the most abundant groups represented by cyprinids, centrarchids, percids, and catostomids. Six taxa accounted for about 80 percent of all fish collected: Micropterus spp. (28.9 percent), Notropis texanus (28.9 percent), Lepomis macrochirus (7.9 percent), Carpiodes cyprinus (6.2 percent), Cyprinidae sp. (4.6 percent), and Minytrema melanops (4.2 percent). Based on chronological appearance in light traps and catch-per-unit effort, including data from previous years of sampling, peak spawning periods for most species occurred between early March and mid-June. A complementary telemetry study of pre-reproductive adults of select target species (Micropterus spp., Lepomis spp., and M. melanops) revealed distinct patterns of habitat use, with some individual fish exclusively utilizing mainstem river habitat or floodplain habitat during spawning and post-spawning periods, and other individuals migrating between habitats. A comparison of light-trap catches between a pre-enhancement, high-water year (2003) and post-enhancement, low-water year (2007) for the oxbow at Battle Bend revealed some difference in community composition, with slightly greater values of diversity and evenness indices in 2007. Two dominant species, Lepomis macrochirus and Micropterus salmoides, were substantially greater in relative abundance among all age-0 fish collected in 2007 in comparison to 2003. Excavation of sediments at the mouth of Battle Bend improved river-floodplain connectivity during low flows such as occurred in 2007 and likely provided greater access and availability of fish spawning and nursery habitats.
Mielczarek, A T; Saunders, A M; Larsen, P; Albertsen, M; Stevenson, M; Nielsen, J L; Nielsen, P H
2013-01-01
Since 2006 more than 50 Danish full-scale wastewater treatment plants with nutrient removal have been investigated in a project called 'The Microbial Database for Danish Activated Sludge Wastewater Treatment Plants with Nutrient Removal (MiDas-DK)'. Comprehensive sets of samples have been collected, analyzed and associated with extensive operational data from the plants. The community composition was analyzed by quantitative fluorescence in situ hybridization (FISH) supported by 16S rRNA amplicon sequencing and deep metagenomics. MiDas-DK has been a powerful tool to study the complex activated sludge ecosystems, and, besides many scientific articles on fundamental issues on mixed communities encompassing nitrifiers, denitrifiers, bacteria involved in P-removal, hydrolysis, fermentation, and foaming, the project has provided results that can be used to optimize the operation of full-scale plants and carry out trouble-shooting. A core microbial community has been defined comprising the majority of microorganisms present in the plants. Time series have been established, providing an overview of temporal variations in the different plants. Interestingly, although most microorganisms were present in all plants, there seemed to be plant-specific factors that controlled the population composition thereby keeping it unique in each plant over time. Statistical analyses of FISH and operational data revealed some correlations, but less than expected. MiDas-DK (www.midasdk.dk) will continue over the next years and we hope the approach can inspire others to make similar projects in other parts of the world to get a more comprehensive understanding of microbial communities in wastewater engineering.
Armstrong, David S.; Richards, Todd A.; Parker, Gene W.
2001-01-01
The relations among stream habitat, fish communities, and hydrologic conditions were investigated in the Ipswich River Basin in northeastern Massachusetts. Data were assessed from 27 sites on the mainstem of the Ipswich River from July to September 1998 and from 10 sites on 5 major tributaries in July and August 1999. Habitat assessments made in 1998 determined that in a year with sustained streamflow for most of the summer, the Ipswich River contains diverse, high-quality aquatic habitat. Channel types are predominantly low gradient glides, pools, and impoundments, with a sandy streambed and a forest or shrub riparian zone. Features that provide fish habitat are located mostly along stream margins; these features include overhanging brush, undercut banks, exposed roots, and woody debris. These habitat features decrease in availability to aquatic communities with declining streamflows and generally become unavailable after streamflows drop to the point where the edge of water recedes from the stream banks.The mainstem and tributaries were sampled to determine fish species composition, relative abundance, and length frequency. Fish sampling indicates that the fish community in the Ipswich River is currently a warm-water fish community dominated by pond-type fish. However, historical temperature data, and survival of stocked trout in the mainstem Ipswich into late summer of 1998, indicate that the Ipswich River potentially could support cold-water fish species if adequate flows are maintained. Dominant fish species sampled in the mainstem Ipswich River were redfin pickerel (Esox americanus), American eel (Anguilla rostrata), and pumpkinseed (Lepomis gibbosus), which together represented 41, 22, and 10 percent, respectively, of 4,745 fish sampled. The fish communities of the mainstem and tributaries contained few fluvial-dependent or fluvial-specialist species (requiring flow), and were dominated by macrohabitat generalists (tolerant of low-flow, warm-water, and ponded conditions). In comparison to a nearby river (Lamprey River, N.H.), and a reference fish community developed for inland New England streams, the Ipswich fish community would be expected to have appreciably higher percentages of fluvial-dependent and fluvial-specialist species were streamflows restored.Four riffle sites on the mainstem of the Ipswich River were identified as critical habitat areas because they are among the first sites to exhibit fish-passage problems or to dry during low flows. A watershed-scale precipitation-runoff model previously developed for the Ipswich River was used to simulate streamflows at these four sites for the period 1961-95 under no withdrawals (for water supply) and 1991 land use to evaluate habitat suitability under conditions that approximate the natural flow conditions. These simulated flows were used to calculate streamflow requirements by the Tennant and New England Aquatic-Base-Flow methods. Stream channels were surveyed at the critical riffle sites, and Water Surface Profile models were used to simulate streamflows and hydraulic characteristics needed for determining streamflow requirements by use of the Wetted-Perimeter and R2Cross methods. Normalized by drainage area to units of cubic feet per second per square mile, these methods yielded the following streamflow requirements: 0.50 cubic feet per second per square mile for the Tennant 30-percent QMA method, 0.42 cubic feet per second per square mile for the wetted-perimeter value necessary to maintain wetted perimeter at three altered riffle sites, 0.42 cubic feet per second per square mile for the R2Cross value required to maintain R2Cross hydraulic criteria at a natural riffle site, and 0.34 cubic feet per second per square mile for the aquatic-base-flow median of monthly mean flows for August for the simulated 1961-95 period under no withdrawals and 1991 land use. The mean streamflow requirement determined from these four methods is 0.42 cubic feet per second per square
Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities.
Clapcott, Joanne E; Goodwin, Eric O; Harding, Jon S
2016-03-01
Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.
Identifying Catchment-Scale Predictors of Coal Mining Impacts on New Zealand Stream Communities
NASA Astrophysics Data System (ADS)
Clapcott, Joanne E.; Goodwin, Eric O.; Harding, Jon S.
2016-03-01
Coal mining activities can have severe and long-term impacts on freshwater ecosystems. At the individual stream scale, these impacts have been well studied; however, few attempts have been made to determine the predictors of mine impacts at a regional scale. We investigated whether catchment-scale measures of mining impacts could be used to predict biological responses. We collated data from multiple studies and analyzed algae, benthic invertebrate, and fish community data from 186 stream sites, including un-mined streams, and those associated with 620 mines on the West Coast of the South Island, New Zealand. Algal, invertebrate, and fish richness responded to mine impacts and were significantly higher in un-mined compared to mine-impacted streams. Changes in community composition toward more acid- and metal-tolerant species were evident for algae and invertebrates, whereas changes in fish communities were significant and driven by a loss of nonmigratory native species. Consistent catchment-scale predictors of mining activities affecting biota included the time post mining (years), mining density (the number of mines upstream per catchment area), and mining intensity (tons of coal production per catchment area). Mining was associated with a decline in stream biodiversity irrespective of catchment size, and recovery was not evident until at least 30 years after mining activities have ceased. These catchment-scale predictors can provide managers and regulators with practical metrics to focus on management and remediation decisions.
Interactive effects of live coral and structural complexity on the recruitment of reef fishes
NASA Astrophysics Data System (ADS)
Coker, D. J.; Graham, N. A. J.; Pratchett, M. S.
2012-12-01
Corals reefs are subjected to multiple disturbances that modify levels of coral cover and structural complexity of the reef matrix, and in turn influence the structure of associated fish communities. With disturbances predicted to increase, insight into how changes in substrate condition will influence the recruitment of many fishes is essential for understanding the recovery of reef fish populations following biological and physical disturbances. While studies have revealed that both live coral cover and structural complexity are important for many fishes, there is a lack of understanding regarding how a combination of these changes will impact the recruitment of fishes. This study used experimentally constructed patch reefs consisting of six different habitat treatments; three levels of live coral cover (high, medium, low) crossed with two levels of structural complexity (high, low), to test the independent and combined effects of live coral cover and structural complexity on the recruitment and recovery of fish communities. The abundance and species diversity of fishes varied significantly among the six habitat treatments, but differences were not clearly associated with either coral cover or structural complexity and varied through time. More striking, however, was a significant difference in the composition of fish assemblages among treatments, due mostly to disproportionate abundance of coral-dwelling fishes on high coral cover, high complexity reefs. Overall, it appears that coral cover had a more important influence than structural complexity, at least for the contrasting levels of structural complexity achieved on experimental patch reefs. Furthermore, we found that live coral cover is important for the recruitment of some non-coral-dependent fishes. This study confirms that live coral cover is critical for the maintenance of high biodiversity on tropical coral reefs, and that sustained and ongoing declines in coral cover will adversely affect recruitment for many different species of reef fishes.
Long, James M.; Starks, Trevor A.; Farling, Tyler; Bastarache, Robert
2016-01-01
inventory of the resident fish communities in these tributaries is lacking. To address these gaps, we surveyed 10 tributaries, from intermittent through third order, for fishes during presumed spawning periods of rainbow trout; we used backpack electrofishing in February and April 2015 and 2016 to determine the composition of the fish assemblages and whether trout were present. Stocked adult trout were found in three tributaries in 2015; wild juvenile rainbow trout were found in Bee Branch in 2015 and in an intermittent tributary of Spillway Creek, just above the “Cold Hole,” in 2016. Fish assemblages were dominated by highland stonerollers (Campostoma spadiceum) in larger, wider systems and by orangebelly darters (Etheostoma radiosum) in smaller, narrower streams. These data fill an information gap in our understanding of small streams in the Ouachita Mountains, and they demonstrate that some streams are suitable for rainbow trout reproduction.
Abookire, Alisa A.; Piatt, John F.
2005-01-01
Forage fishes were sampled with a mid-water trawl in lower Cook Inlet, Alaska, USA, from late July to early August 1996 to 1999. We sampled 3 oceanographically distinct areas of lower Cook Inlet: waters adjacent to Chisik Island, in Kachemak Bay, and near the Barren Islands. In 163 tows using a mid-water trawl, 229437 fishes with fork length <200 mm were captured. More than 39 species were captured in lower Cook Inlet, but Pacific sand lance Ammodytes hexapterus, juvenile Pacific herring Clupea pallasi, and juvenile walleye pollock Theragra chalcogramma comprised 97.5% of the total individuals. Both species richness and species diversity were highest in warm, low-salinity, weakly stratified waters near Chisik Island. Kachemak Bay, which had thermohaline values between those found near Chisik Island and the Barren Islands, had an intermediate value of species richness. Species richness was lowest at the Barren Islands, an exposed region that regularly receives oceanic, upwelled water from the Gulf of Alaska. Non-metric multidimensional scaling (NMDS) was used to compute axes of species composition based on an ordination of pairwise site dissimilarities. Each axis was strongly rank-correlated with unique groups of species and examined separately as a function of environmental parameters (temperature, salinity, depth), area, and year. Oceanographic parameters accounted for 41 and 12% of the variability among forage fishes indicated by Axis 1 and Axis 2, respectively. Axis 1 also captured the spatial variability in the upwelled area of lower Cook Inlet and essentially contrasted the distribution of species among shallow, nearshore (sand lance, herring) and deep, offshore (walleye pollock) habitats. Axis 2 captured the spatial variability in forage fish communities from the north (Chisik Island) to the south (Barren Islands) of lower Cook Inlet and essentially contrasted a highly diverse community dominated by salmonids and osmerids (warmer, less saline) with a fish community dominated by Pacific sand lance (colder, more saline). Axis 3 reflected the negative spatial association of capelin Mallotus villosus and Pacific cod Gadus macrocephalus. Correlations of year with Axes 1 and 3 indicate that from 1996 to 1999 the forage fish community significantly decreased in lipid-poor gadids (walleye pollock and Pacific cod), and significantly increased in lipid-rich species such as Pacific sand lance, Pacific herring, and capelin.
Abookire, Alisa A.; Piatt, John F.
2005-01-01
Forage fishes were sampled with a mid-water trawl in lower Cook Inlet, Alaska, USA, from late July to early August 1996 to 1999. We sampled 3 oceanographically distinct areas of lower Cook Inlet: waters adjacent to Chisik Island, in Kachemak Bay, and near the Barren Islands. In 163 tows using a mid-water trawl, 229 437 fishes with fork length < 200 mm were captured. More than 39 species were captured in lower Cook Inlet, but Pacific sand lance Ammodytes hexapterus, juvenile Pacific herring Clupea pallasi, and juvenile walleye pollock Theragra chalcogramma comprised 97.5% of the total individuals. Both species richness and species diversity were highest in warm, low-salinity, weakly stratified waters near Chisik Island. Kachemak Bay, which had thermohaline values between those found near Chisik Island and the Barren Islands, had an intermediate value of species richness. Species richness was lowest at the Barren Islands, an exposed region that regularly receives oceanic, upwelled water from the Gulf of Alaska. Non-metric multidimensional scaling (NMDS) was used to compute axes of species composition based on an ordination of pairwise site dissimilarities. Each axis was strongly rank-correlated with unique groups of species and examined separately as a function of environmental parameters (temperature, salinity, depth), area, and year. Oce??anographie parameters accounted for 41 and 12% of the variability among forage fishes indicated by Axis 1 and Axis 2, respectively. Axis 1 also captured the spatial variability in the upwelled area of lower Cook Inlet and essentially contrasted the distribution of species among shallow, nearshore (sand lance, herring) and deep, offshore (walleye pollock) habitats. Axis 2 captured the spatial variability in forage fish communities from the north (Chisik Island) to the south (Barren Islands) of lower Cook Inlet and essentially contrasted a highly diverse community dominated by salmonids and osmerids (warmer, less saline) with a fish community dominated by Pacific sand lance (colder, more saline). Axis 3 reflected the negative spatial association of capelin Mallotus villosus and Pacific cod Gadus macrocephalus. Correlations of year with Axes 1 and 3 indicate that from 1996 to 1999 the forage fish community significantly decreased in lipid-poor gadids (walleye pollock and Pacific cod), and significantly increased in lipid-rich species such as Pacific sand lance, Pacific herring, and capelin. ?? Inter-Research 2005.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole
This document is the first annual report for the study titled 'Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River'. Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project ismore » performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program. The goal of the 2007-2009 Tidal Freshwater Monitoring Study is to answer the following questions: In what types of habitats within the tidal freshwater area of the lower Columbia River and estuary (LCRE; Figure 1) are yearling and subyearling salmonids found, when are they present, and under what environmental conditions?1 And, what is the ecological importance2 of shallow (0-5 m) tidal freshwater habitats to the recovery of Upper Columbia River spring Chinook salmon and steelhead and Snake River fall Chinook salmon? Research in 2007 focused mainly on the first question, with fish stock identification data providing some indication of Chinook salmon presence at the variety of habitat types sampled. The objectives and sub-objectives for the 2007 study were as follows: (1) Habitat and Fish Community Characteristics-Provide basic data on habitat and fish community characteristics for yearling and subyearling salmonids at selected sites in the tidal freshwater reach in the vicinity of the Sandy River delta. (1a) Characterize vegetation assemblage percent cover, conventional water quality, substrate composition, and beach slope at each of six sampling sites in various tidal freshwater habitat types. (1b) Determine fish community characteristics, including species composition, abundance, and temporal and spatial distributions. (1c) Estimate the stock of origin for the yearling and subyearling Chinook salmon captured at the sampling sites using genetic analysis. (1d) Statistically assess the relationship between salmonid abundance and habitat parameters, including ancillary variables such as temperature and river stage. (2) Acoustic Telemetry Monitoring-Assess feasibility of applying Juvenile Salmon Acoustic Telemetry System (JSATS) technology to determine migration characteristics from upriver of Bonneville Dam through the study area (vicinity of the Sandy River delta/Washougal River confluence). (2a) Determine species composition, release locations, and distributions of JSATS-tagged fish. (2b) Estimate run timing, residence times, and migration pathways for these fish. Additionally, both objectives serve the purpose of baseline research for a potential tidal rechannelization project on the Sandy River. The U.S. Forest Service, in partnership with the Bonneville Power Administration and the U.S. Army Corps of Engineers, is currently pursuing reconnection of the east (relict) Sandy River channel with the current channel to improve fish and wildlife habitat in the Sandy River delta. Our study design and the location of sampling sites in this reach provide baseline data to evaluate the potential restoration.« less
Chróst, Ryszard J; Adamczewski, Tomasz; Kalinowska, Krystyna; Skowrońska, Agnieszka
2009-01-01
The effects of inorganic nutrients (N, P) enrichment of mesotrophic lake water on changes in bacterial and protistan (heterotrophic nanoflagellates and ciliates) communities compositions were studied in the mesocosm experiment. Phosphorus (PO4(3-)) and nitrogen (NH4+) alone and in combination were added to three types of experimental mesocosms. Mesocosms results suggested that simultaneous addition of P and N stimulated phytoplankton growth and production rates of bacterial biomass its turnover rate. Strong positive correlations between chlorophyll a and bacterial secondary production rates suggested that bacteria were mainly controlled by organic substrates released in course ofphytoplankton photosynthesis. Both nutrients increased distinctly protistan biomass and resulted in the shift in ciliate community composition from algivorous to large omnivorous species. The response of bacterial numbers and biomass to nutrients addition was less evident. However, intensive grazing caused their dynamic changes. Fluorescence in situ hybridization (FISH) revealed only small changes in bacterial taxonomic composition. There was an apparent shift in dominance from Cytophaga-Flavobacterium to the Alphaproteobacteria group in the mesocosm with simultaneous addition of P and N, which positively related to increased abundance of bacterivorous protists. Experiment demonstrated that inorganic N and P nutrients directly influenced the bottom-down control of microbial communities, which had a crucial effect on morphological diversity of bacteria.
The bacterial community composition of the surface microlayer in a high mountain lake.
Hörtnagl, Paul; Pérez, Maria Teresa; Zeder, Michael; Sommaruga, Ruben
2010-09-01
The existence of bacterioneuston in aquatic ecosystems is well established, but little is known about its composition and dynamics, particularly in lakes. The bacterioneuston underlies extreme conditions at the air-water boundary, which may influence its dynamics in a different way compared with the bacterioplankton. In this study, we assessed quantitative changes in major bacterial groups of the surface microlayer (SML) (upper 900 microm) and the underlying water (ULW) (0.2-0.5 m depth) of an alpine lake during two consecutive ice-free seasons. Analysis of the bacterial community composition was done using catalyzed reporter deposition FISH with oligonucleotide probes. In addition, several physicochemical parameters were measured to characterize these two water layers. Dissolved organic carbon was consistently enriched in the SML and the dissolved organic matter pool presented clear signals of photodegradation and photobleaching. The water temperature was generally colder in the SML than in the subsurface. The bacterial community of the SML and the ULW was dominated by Betaproteobacteria and Actinobacteria. The bacterial community composition was associated with different combinations of physicochemical factors in these two layers, but temporal changes showed similar trends in both layers over the two seasons. Our results identify the SML of alpine lakes as a microhabitat where specific bacterial members such as of Betaproteobacteria seem to be efficient colonizers.
Geographic extent and variation of a coral reef trophic cascade.
McClanahan, T R; Muthiga, N A
2016-07-01
Trophic cascades caused by a reduction in predators of sea urchins have been reported in Indian Ocean and Caribbean coral reefs. Previous studies have been constrained by their site-specific nature and limited spatial replication, which has produced site and species-specific understanding that can potentially preclude larger community-organization nuances and generalizations. In this study, we aimed to evaluate the extent and variability of the cascade community in response to fishing across ~23° of latitude and longitude in coral reefs in the southwestern Indian Ocean. The taxonomic composition of predators of sea urchins, the sea urchin community itself, and potential effects of changing grazer abundance on the calcifying benthic organisms were studied in 171 unique coral reef sites. We found that geography and habitat were less important than the predator-prey relationships. There were seven sea urchin community clusters that aligned with a gradient of declining fishable biomass and the abundance of a key predator, the orange-lined triggerfish (Balistapus undulatus). The orange-lined triggerfish dominated where sea urchin numbers and diversity were low but the relative abundance of wrasses and emperors increased where sea urchin numbers were high. Two-thirds of the study sites had high sea urchin biomass (>2,300 kg/ha) and could be dominated by four different sea urchin species, Echinothrix diadema, Diadema savignyi, D. setosum, and Echinometra mathaei, depending on the community of sea urchin predators, geographic location, and water depth. One-third of the sites had low sea urchin biomass and diversity and were typified by high fish biomass, predators of sea urchins, and herbivore abundance, representing lightly fished communities with generally higher cover of calcifying algae. Calcifying algal cover was associated with low urchin abundance where as noncalcifying fleshy algal cover was not clearly associated with herbivore abundance. Fishing of the orange-lined triggerfish, an uncommon, slow-growing by-catch species with little monetary value drives the cascade and other predators appear unable to replace its ecological role in the presence of fishing. This suggests that restrictions on the catch of this species could increase the calcification service of coral reefs on a broad scale. © 2016 by the Ecological Society of America.
Noh, Junsung; Ryu, Jongseong; Lee, Dowon; Khim, Jong Seong
2017-05-15
Artificial reefs (ARs) have long been practiced to manage and enhance fisheries resources worldwide. Here, we aimed to identify relevant indicator species for the specific environmental conditions of ARs by comparing fish diversity against control sites (Conts). We used a combination of non-metric multidimensional scaling and indicator value analysis to identify the indicator species of the specific AR environments. More individuals and species of fish were present in ARs compared to Conts. Water temperature over the seasons was the most important environmental factor associated with the trophic group composition of fish. In particular, macrocarnivores and benthic invertivores/cleaners closely reflected habitat conditions in a consistent manner. Some dominant fish species were detected at all sites, while the indicator species were more predominant under certain environmental conditions. Altogether, ARs should be monitored at regular intervals to optimize management of their health by detecting the community representativeness via indicator species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Popular media records reveal multi-decadal trends in recreational fishing catch rates
Game, Edward; Pandolfi, John M.
2017-01-01
Despite threats to human wellbeing from ecological degradation, public engagement with this issue remains at low levels. However, studies have shown that crafting messages to resonate with people’s personal experiences can enhance engagement. Recreational fishing is one of the principal ways in which people interact with aquatic environments, but long-term data from this perspective are considered rare. We uncovered 852 popular media records of recreational fishing for an Australian estuary across a 140-year period. Using information contained in these articles we analysed the species composition of recreational catches over time and constructed two distinct time series of catch and effort (n fish fisher-1 trip-1; kg fish fisher-1 trip-1) for recreational fishing trips and fishing club competitions (mean n and kg fish caught across all competitors, and n and kg fish caught by the competition winner). Reported species composition remained similar over time. Catch rates reported from recreational fishing trips (1900–1998) displayed a significant decline, averaging 32.5 fish fisher-1 trip-1 prior to 1960, and 18.8 fish fisher-1 trip-1 post-1960. Mean n fish fisher-1 competition-1 (1913–1983) also significantly declined, but best n fish fisher-1 competition-1 (1925–1980) displayed no significant change, averaging 31.2 fish fisher-1 competition-1 over the time series. Mean and best kg fish fisher-1 competition-1 trends also displayed no significant change, averaging 4.2 and 9.9 kg fisher-1 competition-1, respectively. These variable trends suggest that while some fishers experienced diminishing returns in this region over the last few decades, the most skilled inshore fishers were able to maintain their catch rates, highlighting the difficulties inherent in crafting conservation messages that will resonate with all sections of a community. Despite these challenges, this research demonstrates that popular media sources can provide multiple long-term trends at spatial scales, in units and via a recreational experience that many people can relate to. PMID:28777809
Quattrini, A.M.; Ross, Steve W.
2006-01-01
Fish community data are limited from deeper shelf-edge hardbottoms along the southeastern U.S. continental shelf. This lack of data Hampers the design of recently proposed marine protected areas (MPAs) on the outer shelf of the southeastern U.S. During 2001-2004, sampling was conducted (57-25 m) to describe habitats and fish communities within and outside of the North Carolina proposed MPA (p-MPA) using the JOHNSON-SEA-LINK submersible, remotely operated vehicles, otter trawls, and hook and line. Habitats observed included soft substrate or non-hardbottom (NH), a shipwreck ("Snowy Wreck"), low relief hardbottoms (LRH), boulder fields (BF), and high relief ledges (HRL), the latter of which were divided into three mi-crohabitats. Non-metric, multi-dimensional scaling indicated that hardbottom fish assemblages were distinct from NH, and fish assemblages among microhabitats on HRL were different. In total, 152 fish species were documented. Thirty-five species were observed only on NH and 117 were observed or hardbottoms and the Snowy Wreck. Several species of anthiines were the most abundant fishes on most hardbottoms, whereas triglids, synodontids, and Seriola spp. were abundant on NH. Species richness was highest on HRL, and species composition was unique at the Snowy Wreck (238-253 m) and on BF. Future shelf-edge hardbottom research should include more standardized surveys using direct observations. Further, we recommend that the boundaries of the North Carolina p-MPA be redrawn to include more hardbottom habitat. ?? 2006 Rosenstiel School of Marine and Atmospheric Science of the University of Miami.
Jiang, Zhibing; Liao, Yibo; Liu, Jingjing; Shou, Lu; Chen, Quanzhen; Yan, Xiaojun; Zhu, Genhai; Zeng, Jiangning
2013-11-15
Six cruises were conducted in a fish farm adjacent to the Ninghai Power Plant in Xiangshan Bay, East China Sea. Fish farming significantly increased NH4(+), DIP, and TOC concentrations, while it significantly decreased the DO level. These increase/decrease trends were more pronounced in warmer seasons. Although culture practices did not significantly increase phytoplankton density, it drastically enhanced dinoflagellate abundance and domination. Significant differences in species diversity and community composition between the cages and the control area were also observed. Temperature elevation caused by thermal discharge associated with eutrophication resulted in a dominant species shift from diatoms alone to dinoflagellates and diatoms. This is the first report of stress-induced toxic dinoflagellate (Prorocentrum minimum) blooms in winter and the winter-spring transition in this bay. Therefore, the effects of aquaculture activity and power plant construction in such a eutrophic, semi-enclosed bay require further attention. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mackey, Robin; Rees, Cassandra; Wells, Kelly; Pham, Samantha; England, Kent
2013-01-01
The Metal Mining Effluent Regulations (MMER) took effect in 2002 and require most metal mining operations in Canada to complete environmental effects monitoring (EEM) programs. An "effect" under the MMER EEM program is considered any positive or negative statistically significant difference in fish population, fish usability, or benthic invertebrate community EEM-defined endpoints. Two consecutive studies with the same statistically significant differences trigger more intensive monitoring, including the characterization of extent and magnitude and investigation of cause. Standard EEM study designs do not require multiple reference areas or preexposure sampling, thus results and conclusions about mine effects are highly contingent on the selection of a near perfect reference area and are at risk of falsely labeling natural variation as mine related "effects." A case study was completed to characterize the natural variability in EEM-defined endpoints during preexposure or baseline conditions. This involved completing a typical EEM study in future reference and exposure lakes surrounding a proposed uranium (U) mine in northern Saskatchewan, Canada. Moon Lake was sampled as the future exposure area as it is currently proposed to receive effluent from the U mine. Two reference areas were used: Slush Lake for both the fish population and benthic invertebrate community surveys and Lake C as a second reference area for the benthic invertebrate community survey. Moon Lake, Slush Lake, and Lake C are located in the same drainage basin in close proximity to one another. All 3 lakes contained similar water quality, fish communities, aquatic habitat, and a sediment composition largely comprised of fine-textured particles. The fish population survey consisted of a nonlethal northern pike (Esox lucius) and a lethal yellow perch (Perca flavescens) survey. A comparison of the 5 benthic invertebrate community effect endpoints, 4 nonlethal northern pike population effect endpoints, and 10 lethal yellow perch effect endpoints resulted in the observation of several statistically significant differences at the future exposure area relative to the reference area and/or areas. When the data from 2 reference areas assessed for the benthic invertebrate community survey were pooled, no significant differences in effect endpoints were observed. These results demonstrate weaknesses in the definition of an "effect" used by the MMER EEM program and in the use of a single reference area. Determination of the ecological significance of statistical differences identified as part of EEM programs conducted during the operational period should consider preexisting (background) natural variability between reference and exposure areas. Copyright © 2012 SETAC.
Isolating causal pathways between flow and fish in the regulated river hierarchy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.
Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less
Isolating causal pathways between flow and fish in the regulated river hierarchy
McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.; ...
2015-07-07
Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less
ERIC Educational Resources Information Center
Condon, William
2013-01-01
Automated Essay Scoring (AES) has garnered a great deal of attention from the rhetoric and composition/writing studies community since the Educational Testing Service began using e-rater[R] and the "Criterion"[R] Online Writing Evaluation Service as products in scoring writing tests, and most of the responses have been negative. While the…
Structure and diversity of fishes in a freshwater and coastal subtropical lagoon.
Ferreira, N C; Guereschi, R M; Machado, C; Lopes, C A; Nuñer, A P O
2017-04-01
This study examined the fish communities of Peri Lagoon in southern Brazil to aid in the development of an effective management plan because the area is under threat from human activities. Sampling of fish fauna, ichthyoplankton and limnological data were compared between sites, differing by habitat type and characteristics such as depth, substratum composition and vegetation type. Results were significantly related to site, with the highest diversity and abundance recorded at shallow vegetated sites. A total of 14 fish species were recorded throughout the lagoon, with the most abundant being Hyphessobrycon luetkenii. Of the 14 species, half were sampled at their larval stage, suggesting a healthy and protected system. Significantly more larvae and eggs were collected during colder months (autumn to winter) and at sites closer to stream flow, possibly owing to increased food sources and habitat protection. This study highlights the importance of Peri Lagoon as a nursery ground for a wide range of fish species, providing essential information for incorporation into the future protection of fish stocks throughout Brazil. © 2016 The Fisheries Society of the British Isles.
Demersal ichthyofaunal shelf communities from the Dumont d’Urville Sea (East Antarctica)
NASA Astrophysics Data System (ADS)
Causse, Romain; Ozouf-Costaz, Catherine; Koubbi, Philippe; Lamy, Dominique; Eléaume, Marc; Dettaï, Agnès; Duhamel, Guy; Busson, Frédéric; Pruvost, Patrice; Post, Alexandra; Beaman, Robin J.; Riddle, Martin J.
2011-08-01
The RSV Aurora Australis survey allowed the first comprehensive study of the demersal ichthyofaunal environment and of the diversity of the Dumont d’Urville Sea. We observed a high dominance of the Notothenioidei in both the number of species and in integrated abundances. The Nototheniidae was the most abundant family with 44.7% of the total integrated abundance, followed by Bathydraconidae (18.8%). Trematomus eulepidotus was the dominant species with 19.9% of the total individuals catch. Nevertheless, 43 of the 53 species caught could be considered as very rare. The Bathydraconidae was the most diversified family with 11 species caught. The highest integrated abundances of fish were found from 400 to 800 m. Well-structured species communities were observed, with high species richness from 570 to 681 m. The richest zones were located along the basins and along their upper-sides. Statistical analyses indicated large-scale spatial patterns in species composition, with clear differences in fish communities from the continental slopes, the basins and on the shelf. At a finer spatial scale, the current in the George V Basin and iceberg scouring on the banks and their sides tended to create locally heterogeneous small-scale habitats. We suggest that the glacial history and the structured habitats allowed successive colonisations of the seabed by demersal fish.
Recent changes in the marine ecosystems of the northern Adriatic Sea
NASA Astrophysics Data System (ADS)
Giani, Michele; Djakovac, Tamara; Degobbis, Danilo; Cozzi, Stefano; Solidoro, Cosimo; Umani, Serena Fonda
2012-12-01
This review of studies on long term series on river discharges, oceanographic features, plankton, fish and benthic compartments, collected since the 1970s revealed significant changes of mechanisms and trophic structures in the northern Adriatic ecosystems. A gradual increase of eutrophication pressure occurred during the 1970s until the mid 1980s, followed by a reversal of the trend, particularly marked in the 2000s. This trend was ascribed to the combination of a reduction of the anthropogenic impact, mainly due to a substantial decrease of the phosphorus loads, and of climatic modifications, resulting in a decline of atmospheric precipitations and, consequently, of the runoff in the northern Adriatic Sea. Significant decreases of the phytoplankton abundances were observed after the mid 1980s, concurrently with changes in the species composition of the communities, with an evident shift toward smaller cells or organism sizes. Moreover, changes in the zooplankton community were also observed. A decrease of demersal fishes, top predators and small pelagic fishes was ascribed to both overfishing and a demise of eutrophication. Macrozoobenthic communities slowly recovered in the last two decades after the anoxia events of the 1970s and 1980s. An increasing number of non-autochthonous species has been recorded in the last decades moreover the increasing seawater temperature facilitated the spreading of thermophilic species.
NASA Astrophysics Data System (ADS)
Blaber, S. J. M.; Brewer, D. T.; Salini, J. P.
The species composition of the fishes of the inshore zone between a tropical estuary and offshore trawling grounds were studied. The objectives were to investigate the affinities of the fishes with those of adjacent areas, to examine the influence of abiotic factors on species composition, and to assess the role and importance of the zone as a nursery area. The shallow (<5 m) inshore waters south of the Embley estuary were sampled in two wet, two dry and two pre-wet seasons between 1989 and 1993. A total of 7934 fish of 118 species were caught with gill nets (5741 individuals of 95 species) and beach seines (2193 individuals of 45 species). Forty-two of the species caught have not been reported in the adjacent offshore prawn or fish trawling grounds, 32 species have not been found in the nearby Embley estuary, and 15 species were caught only in the inshore zone. The dominant species caught by gill netting in the inshore zone were Scomberoides commersonianus (5.47 g m -1 h -1), Chanos chanos (3.67 g m -1 h -1) and Eleutheronema tetradactylum (3.57 g m -1 h -1). Overall, fish catch rates and biomasses were less than in the adjacent estuary and offshore waters, but greater than in tropical sea-grass localities. The number of species in the inshore zone (118) is less than in the Embley estuary (197), the clear inshore waters of Groote Eylandt in the western Gulf of Carpentaria (156) and in the offshore waters (237), but greater than in the Norman estuary (100). These differences are probably due to habitat diversity. Water turbidity, tidal range, wind and day versus night were the only abiotic factors that correlated with the relative abundances of some species. The inshore zone acts as a nursery for many species and is the first nursery ground for at least 11 species whose adults live mainly offshore. The overall juvenile component of the inshore fauna consists of fishes apparently restricted to the inshore habitat, larger juveniles that have emigrated from the estuary, and fish that occur in all three habitats. The inshore zone is not primarily or solely a transition zone between estuary and offshore. It is a habitat with characteristic juvenile and adult fish communities, but it supports some fish that move between offshore and estuarine habitats. It is also an important spawning area for some species as well as a foraging zone for a number of piscivores.
NASA Astrophysics Data System (ADS)
Kemp, J. O. G.; Froneman, P. W.
2004-11-01
The composition and short-term temporal variation in the ichthyofauna and macrozooplankton entering the temporarily open/closed (TOC) West Kleinemond estuary (33°33'S, 27°02'E) during 7 overtopping events were investigated in June 2003. A total of 84 fish representing 7 taxa from 6 families and 456 macrozooplankton representing at least 16 species was collected from water overtopping the sandbar using a custom-built funnel trap (150 μm mesh). Larvae of estuarine dependant marine species, especially the sparid, Rhabdosargus holubi, which contributed 54% to the total fish catch, dominated the ichthyofauna. Also well represented among the ichthyofauna were Monodactylus falciformis and Mugilidae spp., which together accounted for a further 40% of the total fish catch. Among the macrozooplankton, larvae of Palaemon peringueyi and the mysid Mesopodopsis wooldridgei dominated numerically and by biomass. Numerical analyses using multidimensional scaling (MDS) revealed variability in the overtopping community on a diel scale. It is suggested that recruitment through overtopping is essentially a passive process governed by the physical environment with the composition of the recruiting community being a function of the patchy dynamics of surf zone plankton. Preliminary estimates indicate that an hour-long period of overtopping over spring high tide is capable of introducing between 8000 and 33 500 individuals of R. holubi into the TOC West Kleinemond estuary. The advantages and disadvantages of recruitment using overtopping events as well as impacts on the estuarine foodweb are discussed.
Peterson, Sarah H; Ackerman, Joshua T; Eagles-Smith, Collin A; Herzog, Mark P; Hartman, C Alex
2018-01-01
Predators sample the available prey community when foraging; thus, changes in the environment may be reflected by changes in predator diet and foraging preferences. We examined Forster's tern (Sterna forsteri) prey species over an 11-year period by sampling approximately 10,000 prey fish returned to 17 breeding colonies in south San Francisco Bay, California. We compared the species composition among repeatedly-sampled colonies (≥ 4 years), using both relative species abundance and the composition of total dry mass by species. Overall, the relative abundances of prey species at seven repeatedly-sampled tern colonies were more different than would be expected by chance, with the most notable differences in relative abundance observed between geographically distant colonies. In general, Mississippi silverside (Menidia audens) and topsmelt silverside (Atherinops affinis) comprised 42% of individuals and 40% of dry fish mass over the study period. Three-spined stickleback (Gasterosteus aculeatus) comprised the next largest proportion of prey species by individuals (19%) but not by dry mass (6%). Five additional species each contributed ≥ 4% of total individuals collected over the study period: yellowfin goby (Acanthogobius flavimanus; 10%), longjaw mudsucker (Gillichthys mirabilis; 8%), Pacific herring (Clupea pallasii; 6%), northern anchovy (Engraulis mordax; 4%), and staghorn sculpin (Leptocottus armatus; 4%). At some colonies, the relative abundance and biomass of specific prey species changed over time. In general, the abundance and dry mass of silversides increased, whereas the abundance and dry mass of three-spined stickleback and longjaw mudsucker decreased. As central place foragers, Forster's terns are limited in the distance they forage; thus, changes in the prey species returned to Forster's tern colonies suggest that the relative availability of some fish species in the environment has changed, possibly in response to alteration of the available habitat.
Peterson, Sarah; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark; Hartman, C. Alex
2018-01-01
Predators sample the available prey community when foraging; thus, changes in the environment may be reflected by changes in predator diet and foraging preferences. We examined Forster’s tern (Sterna forsteri) prey species over an 11-year period by sampling approximately 10,000 prey fish returned to 17 breeding colonies in south San Francisco Bay, California. We compared the species composition among repeatedly-sampled colonies (≥ 4 years), using both relative species abundance and the composition of total dry mass by species. Overall, the relative abundances of prey species at seven repeatedly-sampled tern colonies were more different than would be expected by chance, with the most notable differences in relative abundance observed between geographically distant colonies. In general, Mississippi silverside (Menidia audens) and topsmelt silverside (Atherinops affinis) comprised 42% of individuals and 40% of dry fish mass over the study period. Three-spined stickleback (Gasterosteus aculeatus) comprised the next largest proportion of prey species by individuals (19%) but not by dry mass (6%). Five additional species each contributed ≥ 4% of total individuals collected over the study period: yellowfin goby (Acanthogobius flavimanus; 10%), longjaw mudsucker (Gillichthys mirabilis; 8%), Pacific herring (Clupea pallasii; 6%), northern anchovy (Engraulis mordax; 4%), and staghorn sculpin (Leptocottus armatus; 4%). At some colonies, the relative abundance and biomass of specific prey species changed over time. In general, the abundance and dry mass of silversides increased, whereas the abundance and dry mass of three-spined stickleback and longjaw mudsucker decreased. As central place foragers, Forster’s terns are limited in the distance they forage; thus, changes in the prey species returned to Forster’s tern colonies suggest that the relative availability of some fish species in the environment has changed, possibly in response to alteration of the available habitat.
NASA Astrophysics Data System (ADS)
Atma, Y.
2017-03-01
Research on fish bone gelatin has been increased in the last decade. The quality of gelatin depends on its physicochemical properties. Fish bone gelatin from warm-water fishes has a superior amino acid composition than cold-water fishes. The composition of amino acid can determine the strength and stability of gelatin. Thus, it is important to analyze the composition of amino acid as well as proximate composition for potential gelatin material. The warm water fish species used in this study were Grass carp, Pangasius catfish, Catfish, Lizard fish, Tiger-toothed croaker, Pink perch, Red snapper, Brown spotted grouper, and King weakfish. There werre five dominant amino acid in fish bone gelatin including glycine (21.2-36.7%), proline (8.7-11.7%), hydroxyproline (5.3-9.6%), alanine (8.48-12.9%), and glutamic acid (7.23-10.15%). Different warm-water species has some differences in amino acid composition. The proximate composition showed that fishbone gelatin from Pangasius catfish has the highest protein content. The water composition of all fishbone gelatin was well suited to the standard. Meanwhile, based on ash content, only gelatin from gelatin Pangasius catfish met the standard for food industries.
Vargas-Caro, Carolina; Bennett, Michael B.
2014-01-01
The abundance and species richness of the cartilaginous fish community of the continental shelf and slope off central Chile is described, based on fishery-independent trawl tows made in 2006 and 2007. A total of 194,705 specimens comprising 20 species (9 sharks, 10 skates, 1 chimaera) were caught at depths of 100–500 m along a 1,000 km transect between 29.5°S and 39°S. Sample site locations were grouped to represent eight geographical zones within this latitudinal range. Species richness fluctuated from 1 to 6 species per zone. There was no significant latitudinal trend for sharks, but skates showed an increased species richness with latitude. Standardised catch per unit effort (CPUE) increased with increasing depth for sharks, but not for skates, but the observed trend for increasing CPUE with latitude was not significant for either sharks or skates. A change in community composition occurred along the depth gradient with the skates, Psammobatis rudis, Zearaja chilensis and Dipturus trachyderma dominating communities between 100 and 300 m, but small-sized, deep-water dogfishes, such as Centroscyllium spp. dominated the catch between 300 and 500 m. Cluster and ordination analysis identified one widespread assemblage, grouping 58% of sites, and three shallow-water assemblages. Assemblages with low diversity (coldspots) coincided with highly productive fishing grounds for demersal crustaceans and bony fishes. The community distribution suggested that the differences between assemblages may be due to compensatory changes in mesopredator species abundance, as a consequence of continuous and unselective species removal. Distribution patterns and the quantitative assessment of sharks, skates and chimaeras presented here complement extant biogeographic knowledge and further the understanding of deep-water ecosystem dynamics in relation to fishing activity in the south-east Pacific Ocean. PMID:24918036
Bustamante, Carlos; Vargas-Caro, Carolina; Bennett, Michael B
2014-01-01
The abundance and species richness of the cartilaginous fish community of the continental shelf and slope off central Chile is described, based on fishery-independent trawl tows made in 2006 and 2007. A total of 194,705 specimens comprising 20 species (9 sharks, 10 skates, 1 chimaera) were caught at depths of 100-500 m along a 1,000 km transect between 29.5°S and 39°S. Sample site locations were grouped to represent eight geographical zones within this latitudinal range. Species richness fluctuated from 1 to 6 species per zone. There was no significant latitudinal trend for sharks, but skates showed an increased species richness with latitude. Standardised catch per unit effort (CPUE) increased with increasing depth for sharks, but not for skates, but the observed trend for increasing CPUE with latitude was not significant for either sharks or skates. A change in community composition occurred along the depth gradient with the skates, Psammobatis rudis, Zearaja chilensis and Dipturus trachyderma dominating communities between 100 and 300 m, but small-sized, deep-water dogfishes, such as Centroscyllium spp. dominated the catch between 300 and 500 m. Cluster and ordination analysis identified one widespread assemblage, grouping 58% of sites, and three shallow-water assemblages. Assemblages with low diversity (coldspots) coincided with highly productive fishing grounds for demersal crustaceans and bony fishes. The community distribution suggested that the differences between assemblages may be due to compensatory changes in mesopredator species abundance, as a consequence of continuous and unselective species removal. Distribution patterns and the quantitative assessment of sharks, skates and chimaeras presented here complement extant biogeographic knowledge and further the understanding of deep-water ecosystem dynamics in relation to fishing activity in the south-east Pacific Ocean.
Ecosystem regime shifts disrupt trophic structure.
Hempson, Tessa N; Graham, Nicholas A J; MacNeil, M Aaron; Hoey, Andrew S; Wilson, Shaun K
2018-01-01
Regime shifts between alternative stable ecosystem states are becoming commonplace due to the combined effects of local stressors and global climate change. Alternative states are characterized as substantially different in form and function from pre-disturbance states, disrupting the delivery of ecosystem services and functions. On coral reefs, regime shifts are typically characterized by a change in the benthic composition from coral to macroalgal dominance. Such fundamental shifts in the benthos are anticipated to impact associated fish communities that are reliant on the reef for food and shelter, yet there is limited understanding of how regime shifts propagate through the fish community over time, relative to initial or recovery conditions. This study addresses this knowledge gap using long-term data of coral reef regime shifts and recovery on Seychelles reefs following the 1998 mass bleaching event. It shows how trophic structure of the reef fish community becomes increasingly dissimilar between alternative reef ecosystem states (regime-shifted vs. recovering) with time since disturbance. Regime-shifted reefs developed a concave trophic structure, with increased biomass in base trophic levels as herbivorous species benefitted from increased algal resources. Mid trophic level species, including specialists such as corallivores, declined with loss of coral habitat, while biomass was retained in upper trophic levels by large-bodied, generalist invertivores. Recovering reefs also experienced an initial decline in mid trophic level biomass, but moved toward a bottom-heavy pyramid shape, with a wide range of feeding groups (e.g., planktivores, corallivores, omnivores) represented at mid trophic levels. Given the importance of coral reef fishes in maintaining the ecological function of coral reef ecosystems and their associated fisheries, understanding the effects of regime shifts on these communities is essential to inform decisions that enhance ecological resilience and economic sustainability. © 2017 by the Ecological Society of America.
Environmental Drivers of Inter-annual Variability in Beaufort Sea Marine Fish Community Structure
NASA Astrophysics Data System (ADS)
Majewski, A.; Atchison, S.; Eert, J.; Dempsey, M.; MacPhee, S.; Michel, C.; Reist, J.
2016-02-01
The Beaufort Sea is a complex and dynamic system influenced by a wide suite of oceanic and riverine inputs that affect the ecosystem. Interactions within the resulting water masses are largely driven by factors such as precipitation, wind, and ice cover. Thus, the Beaufort Sea environment is highly variable in both space and time, and this variability is reflected in the habitats of biota. Inherent system variability must be factored into baselines designed to detect changes resulting from anthropogenic stressors and natural drivers. Between 2012 and 2014, Fisheries and Oceans Canada conducted the first baseline survey of offshore marine fishes, their habitats, and ecological relationships in the Canadian Beaufort Sea. In 2012, benthic trawling was conducted at 28 stations spanning 20-1000 m depths across shelf and slope habitats, and selected stations were re-sampled in 2013 and 2014. Concurrent sampling of oceanographic parameters and sediment composition was conducted at each station. We examine the stability of marine fish assemblages over a three-year period, and compare results for shelf stations to previous research to develop longer-term perspectives. Oceanographic (e.g., salinity), physical (e.g., depth and sediment grain size) and geographic (e.g., distance from shore) parameters, and proxies for local productivity (i.e., water-column and benthic chlorophyll) are explored as explanatory variables affecting fish community structure among years. Establishing knowledge baselines and understanding variability in the community structure and habitat associations of Beaufort Sea marine fishes will support mitigation and conservation efforts by enhancing our ability to predict, detect and monitor the effects of hydrocarbon development and climate change on this pivotal ecosystem component.
Carballo, M C; Cremonte, F; Navone, G T; Timi, J T
2012-01-01
The aims of this study were to determine the existence of migratory movements and to identify ecological stocks of the silverside Odontesthes smitti along its distribution in the Southern Atlantic Ocean, using metazoan parasites as biological tags. Samples were obtained from San José Gulf (SJ) (42° 25' S; 64° 07' W) and Nuevo Gulf (NG) (42° 47' S; 65° 02' W) in north Patagonia during winter and summer and in waters off Mar del Plata (MDP) (38° 03' S; 57° 32' W), Bonaerense region, during winter. Fifteen parasite species were collected. Multivariate statistical procedures on parasite community data showed strong effect of host size on the structure of parasite assemblages. Taking into account the variations among samples due to host size, the differential structure of parasite communities between SJ and NG suggests that fish inhabiting these localities could belong to different ecological stocks. Fish from MDP and SJ caught in summer showed similar composition in their parasite assemblages, which is congruent with a migratory cycle that implies that fish caught in MDP during winter inhabit SJ during summer. Further evidence of the Patagonian origin of MDP O. smitti is the presence of the digenean Proctotrema bartolii in fish from both regions. Proctotrema bartolii is acquired by O. smitti only in the Magellanic province, where its intermediate host, Darina solenoides, is distributed. The analyses suggest that O. smitti inhabiting north Patagonian gulfs could belong to different ecological stocks and that O. smitti caught in MDP could have come from SJ. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Seagrass Parameter Affect the Fish Assemblages in Karimunjawa Archipelago
NASA Astrophysics Data System (ADS)
Sri Susilo, Endang; Nugroho Sugianto, Denny; Munasik; Nirwani; Adhi Suryono, Chrisna
2018-02-01
Seagrass beds promote high species diversity, abundance and biomass, and become important habitats for some economically important fishes. Plants of seagrasses result in structurally highly complex habitats and offering feeding grounds, shelter from predation as well as nursery areas for diverse fish assemblages. However, research on fish communities in Southeast Asian seagrass bed is rarely conducted. In the present study fish assemblages in seagrass beds with different parameters (cover, diversity and similarity indices, domination) was investigated in the Karimunjawa Islands, Indonesia. The purpose of this study were to assess whether fish assemblages differ concerning on the abundance and the species number. This study was conducted on the seagrass bed on Karimunjawa Islands in Java Sea, particularly in the water of Menjangan Besar and Menjangan Kecil Island. Line-quadrant transect was used to assess seagrass data, while the occurrence and individual number of fish harboured in the selected seagrass bed was counted by using underwater visual census in the stationary point count transects. Seagrass cover in Menjangan Kecil Island (41%) with various canopy included both upper and lower canopy was considerable higher than those in Menjangan Besar Island (5%). Fish diversity, species composition and abundance are considerably different between the two study sites. This study revealed that seagrass density or cover and canopy structure affected the fish abundance and species number harboured.
Balcázar, José L; Lee, Natuschka M; Pintado, José; Planas, Miquel
2010-03-01
Although there are several studies describing bacteria associated with marine fish, the bacterial composition associated with seahorses has not been extensively investigated since these studies have been restricted to the identification of bacterial pathogens. In this study, the phylogenetic affiliation of seahorse-associated bacteria was assessed by 16S rRNA gene sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rRNA analysis. Both methods revealed that Vibrionaceae was the dominant population in Artemia sp. (live prey) and intestinal content of the seahorses, while Rhodobacteraceae was dominant in water samples from the aquaculture system and cutaneous mucus of the seahorses. To our knowledge, this is the first time that bacterial communities associated with healthy seahorses in captivity have been described. Crown Copyright 2010. Published by Elsevier GmbH. All rights reserved.
Ye, Shao-Wen; Li, Zhong-Jie; Cao, Wen-Xuan
2007-07-01
This paper studied the spatial distribution of small fishes in a shallow macrophytic lake, Niushan Lake in spring 2003, and its relations with habitat heterogeneity. Based on the macrophyte cover condition, distance from lake shore and water depth, two representative habitat types in the lake were selected. Habitat A was near the shore with dense submersed macrophyte, while habitat B was far from the shore with sparse submersed macrophyte. Small fishes were sampled quantitatively by block net (180 m2), and their densities within the net area were estimated by multiple mark-recapture or Zippin's removal method. The results showed that there were some differences in species composition, biodiversity measurement, and estimated density of small fishes between the two habitats: 1) the catches in habitat A consisted of 14 small fish species from 5 families, among which, benthopelagic species Rhodeus ocellatus, Paracheilognathus imberbis and Pseudorasbora parva were considered as dominant species, while those in habitat B consisted of 9 small fish species from 3 families, among which, bottom species Rhinogobius giurinus and Micropercops swinhonis were dominant; 2) the Bray-Curtis index between the two small fish communities was 0.222, reflecting their low structure similarity, and no significant difference was observed between their rank/ abundance distributions, both of which belonged to log series distribution; 3) the total density of 9 major species in habitat A was 8.71 ind x m(-2), while that of 5 major species in habitat B was only 3.54 ind x m(-2). The fact that the spatial distribution of the small fishes differed with habitats might be related to their habitat need for escaping predators, feeding, and breeding, and thus, aquatic macrophyte habitat should be of significance in the rational exploitation of small fish resources as well as the conservation of fish resource diversity.
Ray, Brandon R.; Johnson, Matthew W.; Cammarata, Kirk; Smee, Delbert L.
2014-01-01
The objective of this study was to measure the communities associated with different seagrass species to predict how shifts in seagrass species composition may affect associated fauna. In the northwestern Gulf of Mexico, coverage of the historically dominant shoal grass (Halodule wrightii) is decreasing, while coverage of manatee grass (Syringodium filiforme) and turtle grass (Thalassia testudinum) is increasing. We conducted a survey of fishes, crabs, and shrimp in monospecific beds of shoal, manatee, and turtle grass habitats of South Texas, USA to assess how changes in sea grass species composition would affect associated fauna. We measured seagrass parameters including shoot density, above ground biomass, epiphyte type, and epiphyte abundance to investigate relationships between faunal abundance and these seagrass parameters. We observed significant differences in communities among three seagrass species, even though these organisms are highly motile and could easily travel among the different seagrasses. Results showed species specific relationships among several different characteristics of the seagrass community and individual species abundance. More work is needed to discern the drivers of the complex relationships between individual seagrass species and their associated fauna. PMID:25229897
Rebuilding fish communities: the ghost of fisheries past and the virtue of patience.
Collie, Jeremy; Rochet, Marie-Joëlle; Bell, Richard
2013-03-01
The ecosystem approach to management requires the status of individual species to be considered in a community context. We conducted a comparative ecosystem analysis of the Georges Bank and North Sea fish communities to determine the extent to which biological diversity is restored when fishing pressure is reduced. First, fishing mortality estimates were combined to quantify the community-level intensity and selectivity of fishing pressure. Second, standardized bottom-trawl survey data were used to investigate the temporal trends in community metrics. Third, a size-based, multispecies model (LeMans) was simulated to test the response of community metrics to both hypothetical and observed changes in fishing pressure in the two communities. These temperate North Atlantic fish communities have much in common, including a history of overfishing. In recent decades fishing pressure has been reduced, and some species have started to rebuild. The Georges Bank fishery has been more selective, and fishing pressure was reduced sooner. The two communities have similar levels of size diversity and biomass per unit area, but fundamentally different community structure. The North Sea is dominated by smaller species and has lower evenness than Georges Bank. These fundamental differences in community structure are not explained by recent fishing patterns. The multispecies model was able to predict the observed changes in community metrics better on Georges Bank, where rebuilding is more apparent than in the North Sea. Model simulations predicted hysteresis in rebuilding community metrics toward their unfished levels, particularly in the North Sea. Species in the community rebuild at different rates, with smaller prey species outpacing their large predators and overshooting their pre-exploitation abundances. This indirect effect of predator release delays the rebuilding of community structure and biodiversity. Therefore community rebuilding is not just the sum of single-species rebuilding plans. Management strategies that account for interspecific interactions will be needed to restore biodiversity and community structure.
Perceptions about mercury and lead in fish consumed in Lake Albert fishing communities Uganda
Andrew, Tamale; Francis, Ejobi; Charles, Muyanja; Naigaga, Irene; Jesca, Nakavuma; Micheal, Ocaido; Anne, Katuhoire; Deborah, Amulen
2016-01-01
Abstract Fish consumption is a lifestyle in fishing communities influenced by individual and communal perceptions. However, information about individual perceptions about fish consumption in the vulnerable fishing community in a developing country is lacking. Without this study, the benefits of fish consumption in a vulnerable community may not be realized. Data collection was executed using key informant interviews and survey structured questionnaires. The key informants include fisheries, community development, veterinary, community and environmental officers. The household heads were the respondents. The Qualitative data was organized and queried using QSR Nvivo 10 and quantitative data analyzed with SPSS version 22. The perceived benefits of eating fish are health, income, nutrition and manhood. The perceived risks are Stigma and ill health. The factors increasing fish consumption are heedless of fish consumption benefits (p = 0.041) and household size i.e. number of adults more than seven (p = 0.020). Those decreasing are methods of preparation of fish i.e. boiling and frying (p = 0.019 and p = 0.010) and oblivious about organizations dealing with fishing activities (p = 0.029). An awareness campaign is needed to demystify the health benefits and fallacies of fish consumption. The knowledge on individual perceptions associated with fish consumption will increase fish consumption but with fewer risks. PMID:27722182
Dinasquet, Julie; Richert, Inga; Logares, Ramiro; Yager, Patricia; Bertilsson, Stefan; Riemann, Lasse
2017-06-01
The number of icebergs produced from ice-shelf disintegration has increased over the past decade in Antarctica. These drifting icebergs mix the water column, influence stratification and nutrient condition, and can affect local productivity and food web composition. Data on whether icebergs affect bacterioplankton function and composition are scarce, however. We assessed the influence of iceberg drift on bacterial community composition and on their ability to exploit carbon substrates during summer in the coastal Southern Ocean. An elevated bacterial production and a different community composition were observed in iceberg-influenced waters relative to the undisturbed water column nearby. These major differences were confirmed in short-term incubations with bromodeoxyuridine followed by CARD-FISH. Furthermore, one-week bottle incubations amended with inorganic nutrients and carbon substrates (a mix of substrates, glutamine, N-acetylglucosamine, or pyruvate) revealed contrasting capacity of bacterioplankton to utilize specific carbon substrates in the iceberg-influenced waters compared with the undisturbed site. Our study demonstrates that the hydrographical perturbations introduced by a drifting iceberg can affect activity, composition, and substrate utilization capability of marine bacterioplankton. Consequently, in a context of global warming, increased frequency of drifting icebergs in polar regions holds the potential to affect carbon and nutrient biogeochemistry at local and possibly regional scales. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Bartelme, Ryan P.; McLellan, Sandra L.; Newton, Ryan J.
2017-01-01
Recirculating aquaculture systems (RAS) are unique engineered ecosystems that minimize environmental perturbation by reducing nutrient pollution discharge. RAS typically employ a biofilter to control ammonia levels produced as a byproduct of fish protein catabolism. Nitrosomonas (ammonia-oxidizing), Nitrospira, and Nitrobacter (nitrite-oxidizing) species are thought to be the primary nitrifiers present in RAS biofilters. We explored this assertion by characterizing the biofilter bacterial and archaeal community of a commercial scale freshwater RAS that has been in operation for >15 years. We found the biofilter community harbored a diverse array of bacterial taxa (>1000 genus-level taxon assignments) dominated by Chitinophagaceae (~12%) and Acidobacteria (~9%). The bacterial community exhibited significant composition shifts with changes in biofilter depth and in conjunction with operational changes across a fish rearing cycle. Archaea also were abundant, and were comprised solely of a low diversity assemblage of Thaumarchaeota (>95%), thought to be ammonia-oxidizing archaea (AOA) from the presence of AOA ammonia monooxygenase genes. Nitrosomonas were present at all depths and time points. However, their abundance was >3 orders of magnitude less than AOA and exhibited significant depth-time variability not observed for AOA. Phylogenetic analysis of the nitrite oxidoreductase beta subunit (nxrB) gene indicated two distinct Nitrospira populations were present, while Nitrobacter were not detected. Subsequent identification of Nitrospira ammonia monooxygenase alpha subunit genes in conjunction with the phylogenetic placement and quantification of the nxrB genotypes suggests complete ammonia-oxidizing (comammox) and nitrite-oxidizing Nitrospira populations co-exist with relatively equivalent and stable abundances in this system. It appears RAS biofilters harbor complex microbial communities whose composition can be affected directly by typical system operations while supporting multiple ammonia oxidation lifestyles within the nitrifying consortium. PMID:28194147
Jiddawi, Narriman S.; Eklöf, Johan S.
2017-01-01
Marine protected areas (MPAs) have been shown to increase long-term temporal stability of fish communities and enhance ecosystem resilience to anthropogenic disturbance. Yet, the potential ability of MPAs to buffer effects of environmental variability at shorter time scales remains widely unknown. In the tropics, the yearly monsoon cycle is a major natural force affecting marine organisms in tropical regions, and its timing and severity are predicted to change over the coming century, with potentially severe effects on marine organisms, ecosystems and ecosystem services. Here, we assessed the ability of MPAs to buffer effects of monsoon seasonality on seagrass-associated fish communities, using a field survey in two MPAs (no-take zones) and two unprotected (open-access) sites around Zanzibar (Tanzania). We assessed the temporal stability of fish density and community structure within and outside MPAs during three monsoon seasons in 2014–2015, and investigated several possible mechanisms that could regulate temporal stability. Our results show that MPAs did not affect fish density and diversity, but that juvenile fish densities were temporally more stable within MPAs. Second, fish community structure was more stable within MPAs for juvenile and adult fish, but not for subadult fish or the total fish community. Third, the observed effects may be due to a combination of direct and indirect (seagrass-mediated) effects of seasonality and, potentially, fluctuating fishing pressure outside MPAs. In summary, these MPAs may not have the ability to enhance fish density and diversity and to buffer effects of monsoon seasonality on the whole fish community. However, they may increase the temporal stability of certain groups, such as juvenile fish. Consequently, our results question whether MPAs play a general role in the maintenance of biodiversity and ecosystem functioning under changing environmental conditions in tropical seagrass fish communities. PMID:28854231
Bacterioplankton diversity and community composition in the Southern Lagoon of Venice.
Simonato, Francesca; Gómez-Pereira, Paola R; Fuchs, Bernhard M; Amann, Rudolf
2010-04-01
The Lagoon of Venice is a large water basin that exchanges water with the Northern Adriatic Sea through three large inlets. In this study, the 16S rRNA approach was used to investigate the bacterial diversity and community composition within the southern basin of the Lagoon of Venice and at one inlet in October 2007 and June 2008. Comparative sequence analysis of 645 mostly partial 16S rRNA gene sequences indicated high diversity and dominance of Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes at the lagoon as well as at the inlet station, therefore pointing to significant mixing. Many of these sequences were close to the 16S rRNA of marine, often coastal, bacterioplankton, such as the Roseobacter clade, the family Vibrionaceae, and class Flavobacteria. Sequences of Actinobacteria were indicators of a freshwater input. The composition of the bacterioplankton was quantified by catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) with a set of rRNA-targeted oligonucleotide probes. CARD-FISH counts corroborated the dominance of members of the phyla Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. When assessed by a probe set for the quantification of selected clades within Alphaproteobacteria and Gammaproteobacteria, bacterioplankton composition differed between October 2007 and June 2008, and also between the inlet and the lagoon. In particular, members of the readily culturable copiotrophic gammaproteobacterial genera Vibrio, Alteromonas and Pseudoalteromonas were enriched in the southern basin of the Lagoon of Venice. Interestingly, the alphaproteobacterial SAR11 clade and related clusters were also present in high abundances at the inlet and within the lagoon, which was indicative of inflow of water from the open sea.
Peterson, David A.; Clark, Melanie L.; Foster, Katharine; Wright, Peter R.; Boughton, Gregory K.
2010-01-01
Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. The interagency task group developed a monitoring plan and conducted sampling of macroinvertebrate, algal, and fish communities at 47 sites during 2005-08 to document current ecological conditions and determine existing and potential effects of water produced from coalbed natural gas development on biological communities. Macroinvertebrate, algal, and fish community composition varied between drainage basins, among sites within drainage basins, and by year. Macroinvertebrate communities of the main-stem Tongue River were characterized by higher taxa richness and higher abundance of Ephemeroptera, for example, compared to macroinvertebrate communities in plains tributaries of the Tongue River and the main-stem Powder River. Fish communities of the Tongue River were characterized by higher taxa richness and abundance of introduced species compared to the Powder River where native species were dominant. Macroinvertebrate community metric values from sites in the middle reach of the main-stem Powder River, from below Willow Creek to below Crazy Woman Creek, differed from metric values in the upper and lower reaches of the Powder River. Metrics indicative of communitywide differences included measures of taxa richness, relative abundance, feeding mode, and tolerance. Some of the variation in the macroinvertebrate communities could be explained by variation in environmental variables, including physical (turbidity, embeddedness, bed substrate size, and streamflow) and chemical (alkalinity and specific conductance) variables. Of these environmental variables, alkalinity was the best indicator of coalbed natural gas development because of the sodiumbicarbonate signature of the production water. Algal samples from the main-stem Powder River generally confirmed the pattern observed in the macroinvertebrate communities. Algal communities at sites in the middle reach of the Powder River commonly were characterized by dominance by a single taxon and by low biovolume of algae compared to other sites. In contrast to the macroinvertebrate and algal communities, species richness of fish communities was highest in the middle reach of the Powder River. Although a few significant differences in fish metrics were determined along the main-stem Powder River, the differences did not correspond to the pattern observed for the macroinvertebrate and algae communities. Differences in biological communities were noted between years, potentially due to the effects of drought. Macroinvertebrate community metrics, such as Diptera taxa richness, were significantly different in the severe drought year of 2006 from metric values in 2005 and 2007-08. Waterquality data collected during the study indicated that, with few exceptions, water-quality constituents generally did not exceed State or Federal acute and chronic criteria for the protection of aquatic life.
Macroecological analysis of the fish fauna inhabiting Cymodocea nodosa seagrass meadows.
Espino, F; Brito, A; Haroun, R; Tuya, F
2015-10-01
In this study, patterns in the taxonomic richness and composition of the fish fauna inhabiting Cymodocea nodosa seagrass meadows were described across their entire distribution range in the Mediterranean Sea and adjacent Atlantic Ocean. Specifically, the study tested whether there are differences in the composition of fish assemblages between those ecoregions encompassed by the distribution range of C. nodosa, and whether these differences in composition are connected with differences in bioclimatic affinities of the fish faunas. A literature review resulted in a total of 19 studies, containing 22 fish assemblages at 18 locations. The ichthyofauna associated with C. nodosa seagrass meadows comprises 59 families and 188 species. The western Mediterranean (WM) Sea has the highest species richness (87 species). Fish assemblages from the Macaronesia-Canary Islands, the Sahelian Upwelling, South European Atlantic Shelf and the WM differ, in terms of assemblage composition, relative to other ecoregions. In contrast, the composition of the fish fauna from the central and eastern Mediterranean overlaps. There is a significant serial correlation in fish assemblage composition between adjacent ecoregions along the distribution range of C. nodosa. Dissimilarities in assemblage composition are connected with the geographical separation between locations, and the mean minimum annual seawater temperature is the environmental factor that explains most variation in fish assemblage composition. © 2015 The Fisheries Society of the British Isles.
Tummers, Jeroen S; Hudson, Steve; Lucas, Martyn C
2016-11-01
A more holistic approach towards testing longitudinal connectivity restoration is needed in order to establish that intended ecological functions of such restoration are achieved. We illustrate the use of a multi-method scheme to evaluate the effectiveness of 'nature-like' connectivity restoration for stream fish communities in the River Deerness, NE England. Electric-fishing, capture-mark-recapture, PIT telemetry and radio-telemetry were used to measure fish community composition, dispersal, fishway efficiency and upstream migration respectively. For measuring passage and dispersal, our rationale was to evaluate a wide size range of strong swimmers (exemplified by brown trout Salmo trutta) and weak swimmers (exemplified by bullhead Cottus perifretum) in situ in the stream ecosystem. Radio-tracking of adult trout during the spawning migration showed that passage efficiency at each of five connectivity-restored sites was 81.3-100%. Unaltered (experimental control) structures on the migration route had a bottle-neck effect on upstream migration, especially during low flows. However, even during low flows, displaced PIT tagged juvenile trout (total n=153) exhibited a passage efficiency of 70.1-93.1% at two nature-like passes. In mark-recapture experiments juvenile brown trout and bullhead tagged (total n=5303) succeeded in dispersing upstream more often at most structures following obstacle modification, but not at the two control sites, based on a Laplace kernel modelling approach of observed dispersal distance and barrier traverses. Medium-term post-restoration data (2-3years) showed that the fish assemblage remained similar at five of six connectivity-restored sites and two control sites, but at one connectivity-restored headwater site previously inhabited by trout only, three native non-salmonid species colonized. We conclude that stream habitat reconnection should support free movement of a wide range of species and life stages, wherever retention of such obstacles is not needed to manage non-native invasive species. Evaluation of the effectiveness of fish community restoration in degraded streams benefits from a similarly holistic approach. Copyright © 2016 Elsevier B.V. All rights reserved.
K. J. Carim; K. R. Christianson; Kevin McKelvey; W. M. Pate; D. B. Silver; B. M. Johnson; B. T. Galloway; Michael Young; Michael Schwartz
2016-01-01
The spread of Mysis diluviana, a small glacial relict crustacean, outside its native range has led to unintended shifts in the composition of native fish communities throughout western North America. As a result, biologists seek accurate methods of determining the presence of M. diluviana, especially at low densities or during the initial stages of an invasion...
Samuel S. Chan; Margaret David Bailey; Daniel Karnes; Robert Metzger; Walter W., Jr. Kastner
1997-01-01
Riparian plant communities are extremely diverse. Their structure and composition can affect fish and wildlife habitat, while trees and associated vegetation can provide sustainable sources of forest products. Management of riparian vegetation can greatly affect these values. Little information exists however, about the consequences of actively managing riparians to...
Is it appropriate to composite fish samples for mercury trend monitoring and consumption advisories?
Gandhi, Nilima; Bhavsar, Satyendra P; Gewurtz, Sarah B; Drouillard, Ken G; Arhonditsis, George B; Petro, Steve
2016-03-01
Monitoring mercury levels in fish can be costly because variation by space, time, and fish type/size needs to be captured. Here, we explored if compositing fish samples to decrease analytical costs would reduce the effectiveness of the monitoring objectives. Six compositing methods were evaluated by applying them to an existing extensive dataset, and examining their performance in reproducing the fish consumption advisories and temporal trends. The methods resulted in varying amount (average 34-72%) of reductions in samples, but all (except one) reproduced advisories very well (96-97% of the advisories did not change or were one category more restrictive compared to analysis of individual samples). Similarly, the methods performed reasonably well in recreating temporal trends, especially when longer-term and frequent measurements were considered. The results indicate that compositing samples within 5cm fish size bins or retaining the largest/smallest individuals and compositing in-between samples in batches of 5 with decreasing fish size would be the best approaches. Based on the literature, the findings from this study are applicable to fillet, muscle plug and whole fish mercury monitoring studies. The compositing methods may also be suitable for monitoring Persistent Organic Pollutants (POPs) in fish. Overall, compositing fish samples for mercury monitoring could result in a substantial savings (approximately 60% of the analytical cost) and should be considered in fish mercury monitoring, especially in long-term programs or when study cost is a concern. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Submerged oceanic shoals of north Western Australia are a major reservoir of marine biodiversity
NASA Astrophysics Data System (ADS)
Moore, Cordelia; Cappo, Mike; Radford, Ben; Heyward, Andrew
2017-09-01
This paper provides a first assessment of fish communities associated with the submerged oceanic banks and shoals in north-west Australia. Until recently, little was known about these deeper and more inaccessible reefs. The mesophotic coral-reef habitats (20-80 m) were a major reservoir of marine biodiversity, with unique and exceptionally high fish diversity and abundance. Species richness in the study region was 1.4 times, and abundance almost twice, that recorded for similar mesophotic habitats on the Great Barrier Reef in north-east Australia. A review of the published literature revealed that Australia's NW oceanic shoals support the highest fish species richness reported for mesophotic reefs to date. We made regional comparisons of fish community structure (species composition, richness and abundance) and assessed the influence of depth, substrate and location. The presence of consolidated calcareous reef, depth and aspect (a surrogate for exposure) had the greatest influence on species richness. In contrast, aspect and the presence of benthic biota had the greatest influence on fish abundance. Sites most exposed to the prevailing currents (facing north-east) had lowest fish abundance, while highest abundances were recorded on moderately exposed sites (along the north-west and south-east edges). The most abundant species were small ( Pomacentrus coelestis) and large ( Naso hexacanthus) planktivorous fish. Currently, 29.3% of NE Australia mesophotic reefs are within no-take management zones of the Great Barrier Reef. In contrast, just 1.3% of the NW oceanic shoals are designated as no-take areas. The location and extent of mesophotic reefs remain poorly quantified globally. Because these habitats support significant biodiversity and have the potential to act as important refugia, understanding their extent is critical to maintaining coral-reef biodiversity and resilience and supporting sustainable management.
Fish functional traits correlated with environmental variables in a temperate biodiversity hotspot.
Keck, Benjamin P; Marion, Zachary H; Martin, Derek J; Kaufman, Jason C; Harden, Carol P; Schwartz, John S; Strange, Richard J
2014-01-01
The global biodiversity crisis has invigorated the search for generalized patterns in most disciplines within the natural sciences. Studies based on organismal functional traits attempt to broaden implications of results by identifying the response of functional traits, instead of taxonomic units, to environmental variables. Determining the functional trait responses enables more direct comparisons with, or predictions for, communities of different taxonomic composition. The North American freshwater fish fauna is both diverse and increasingly imperiled through human mediated disturbances, including climate change. The Tennessee River, USA, contains one of the most diverse assemblages of freshwater fish in North America and has more imperiled species than other rivers, but there has been no trait-based study of community structure in the system. We identified 211 localities in the upper Tennessee River that were sampled by the Tennessee Valley Authority between 2009 and 2011 and compiled fish functional traits for the observed species and environmental variables for each locality. Using fourth corner analysis, we identified significant correlations between many fish functional traits and environmental variables. Functional traits associated with an opportunistic life history strategy were correlated with localities subject to greater land use disturbance and less flow regulation, while functional traits associated with a periodic life history strategy were correlated with localities subject to regular disturbance and regulated flow. These are patterns observed at the continental scale, highlighting the generalizability of trait-based methods. Contrary to studies that found no community structure differences when considering riparian buffer zones, we found that fish functional traits were correlated with different environmental variables between analyses with buffer zones vs. entire catchment area land cover proportions. Using existing databases and fourth corner analysis, our results support the broad application potential for trait-based methods and indicate trait-based methods can detect environmental filtering by riparian zone land cover.
Fish Functional Traits Correlated with Environmental Variables in a Temperate Biodiversity Hotspot
Keck, Benjamin P.; Marion, Zachary H.; Martin, Derek J.; Kaufman, Jason C.; Harden, Carol P.; Schwartz, John S.; Strange, Richard J.
2014-01-01
The global biodiversity crisis has invigorated the search for generalized patterns in most disciplines within the natural sciences. Studies based on organismal functional traits attempt to broaden implications of results by identifying the response of functional traits, instead of taxonomic units, to environmental variables. Determining the functional trait responses enables more direct comparisons with, or predictions for, communities of different taxonomic composition. The North American freshwater fish fauna is both diverse and increasingly imperiled through human mediated disturbances, including climate change. The Tennessee River, USA, contains one of the most diverse assemblages of freshwater fish in North America and has more imperiled species than other rivers, but there has been no trait-based study of community structure in the system. We identified 211 localities in the upper Tennessee River that were sampled by the Tennessee Valley Authority between 2009 and 2011 and compiled fish functional traits for the observed species and environmental variables for each locality. Using fourth corner analysis, we identified significant correlations between many fish functional traits and environmental variables. Functional traits associated with an opportunistic life history strategy were correlated with localities subject to greater land use disturbance and less flow regulation, while functional traits associated with a periodic life history strategy were correlated with localities subject to regular disturbance and regulated flow. These are patterns observed at the continental scale, highlighting the generalizability of trait-based methods. Contrary to studies that found no community structure differences when considering riparian buffer zones, we found that fish functional traits were correlated with different environmental variables between analyses with buffer zones vs. entire catchment area land cover proportions. Using existing databases and fourth corner analysis, our results support the broad application potential for trait-based methods and indicate trait-based methods can detect environmental filtering by riparian zone land cover. PMID:24676053
Subtle Microbiome Manipulation Using Probiotics Reduces Antibiotic-Associated Mortality in Fish
Schmidt, Victor; Gomez-Chiarri, Marta; Roy, Chelsea; Smith, Katherine
2017-01-01
ABSTRACT Prophylactic antibiotics in the aquaculture and ornamental fish industry are intended to prevent the negative impacts of disease outbreaks. Research in mice and humans suggests that antibiotics may disturb microbiome communities and decrease microbiome-mediated disease resistance, also known as “colonization resistance.” If antibiotics impact fish as they do mice and humans, prophylactic administrations on aquaculture farms may increase downstream disease susceptibility in target hosts, despite short-term pathogen control benefits. We tested the effects of antibiotics on mortality after a pathogen challenge in the Poecilia sphenops black molly and subsequently tested if probiotic inoculations could reverse any antibiotic-induced losses of disease resistance. We found that antibiotic treatment significantly increased fish mortality. We further found that our two candidate probiotic bacterial species, Phaeobacter inhibens S4Sm and Bacillus pumilus RI06-95Sm, were able to colonize black molly microbiomes and reverse the negative impacts of antibiotics. Despite the positive impact on survival, probiotic treatment did not influence overall microbiome community structure or diversity. Our results suggest that subtle manipulations of microbiome composition can have dramatic impacts on host phenotype. The results of this study have implications for how antibiotic-treated microbiomes can be restored and suggest that small-scale additions may be as effective as wholesale transplants. IMPORTANCE Prophylactic antibiotics are widespread in the aquaculture industry and are used where vaccination is impossible or overly expensive. If antibiotics impact fish as they do mice and humans, prophylactic administrations in aquaculture and ornamental fish farms may increase downstream disease susceptibility in target hosts, despite short-term pathogen control benefits. Recent research has suggested that their use exacerbates bacterial outbreaks by creating sterile, nutrient-rich environments for invading pathogens to colonize and could help to explain rising economic costs of bacterial outbreaks in aquaculture. Our findings suggest a long-term cost of prophylactic antibiotic use and demonstrate a probiotic-based solution that does not rely on full microbiome community transplantation. PMID:29124129
Gradients of coastal fish farm effluents and their effect on coral reef microbes.
Garren, Melissa; Smriga, Steven; Azam, Farooq
2008-09-01
Coastal milkfish (Chanos chanos) farming may be a source of organic matter enrichment for coral reefs in Bolinao, Republic of the Philippines. Interactions among microbial communities associated with the water column, corals and milkfish feces can provide insight into the ecosystem's response to enrichment. Samples were collected at sites along a transect that extended from suspended milkfish pens into the coral reef. Water was characterized by steep gradients in the concentrations of dissolved organic carbon (70-160 microM), total dissolved nitrogen (7-40 microM), chlorophyll a (0.25-10 microg l(-1)), particulate matter (106-832 microg l(-1)), bacteria (5 x 10(5)-1 x 10(6) cells ml(-1)) and viruses (1-7 x 10(7) ml(-1)) that correlated with distance from the fish cages. Particle-attached bacteria, which were observed by scanning laser confocal microscopy, increased across the gradient from < 0.1% to 5.6% of total bacteria at the fish pens. Analyses of 16S rRNA genes by denaturing gradient gel electrophoresis and environmental clone libraries revealed distinct microbial communities for each sample type. Coral libraries had the greatest number of phyla represented (range: 6-8) while fish feces contained the lowest number (3). Coral libraries also had the greatest number of 'novel' sequences (defined as < 93% similar to any sequence in the NCBI nt database; 29% compared with 3% and 5% in the feces and seawater libraries respectively). Despite the differences in microbial community composition, some 16S rRNA sequences co-occurred across sample types including Acinetobacter sp. and Ralstonia sp. Such patterns raise the question of whether bacteria might be transported from the fish pens to corals or if microenvironments at the fish pens and on the corals select for the same phylotypes. Understanding the underlying mechanisms of effluent-coral interactions will help predict the ability of coral reef ecosystems to resist and rebound from organic matter enrichment.
Eggleton, M.A.; Ramirez, R.; Hargrave, C.W.; Gido, K.B.; Masoner, J.R.; Schnell, G.D.; Matthews, W.J.
2005-01-01
We sampled larval, juvenile and adult fishes from littoral-zone areas of a large reservoir (Lake Texoma, Oklahoma-Texas) (1) to characterize environmental factors that influenced fish community structure, (2) to examine how consistent fish-environment relationships were through ontogeny (i.e., larval vs. juvenile and adult), and (3) to measure the concordance of larval communities sampled during spring to juvenile and adult communities sampled at the same sites later in the year. Larval, juvenile and adult fish communities were dominated by Atherinidae (mainly inland silverside, Menidia beryllina) and Moronidae (mainly juvenile striped bass, Morone saxatilis) and were consistently structured along a gradient of site exposure to prevailing winds and waves. Larval, juvenile and adult communities along this gradient varied from atherinids and moronids at highly exposed sites to mostly centrarchids (primarily Lepomis and Micropterus spp.) at protected sites. Secondarily, zooplankton densities, water clarity, and land-use characteristics were related to fish community structure. Rank correlation analyses and Mantel tests indicated that the spatial consistency and predictability of fish communities was high as larval fishes sampled during spring were concordant with juvenile and adult fishes sampled at the same sites during summer and fall in terms of abundance, richness, and community structure. We propose that the high predictability and spatial consistency of littoral-zone fishes in Lake Texoma was a function of relatively simple communities (dominated by 1-2 species) that were structured by factors, such as site exposure to winds and waves, that varied little through time. ?? Springer 2005.
Plankton community structure and connectivity in the Kimberley-Browse region of NW Australia
NASA Astrophysics Data System (ADS)
McKinnon, A. D.; Duggan, S.; Holliday, D.; Brinkman, R.
2015-02-01
We describe the zooplankton and ichthyoplankton communities of coastal waters of the Kimberley coast (North West Australia), sampled in macrotidal Camden Sound during both the wet and dry seasons of 2011, and compare these to six other Kimberley embayments during the wet season of 2013. Zooplankton abundance in Camden Sound was 7038 ± 3913 SD ind. m-3 in the wet season and 1892 ± 708 SD ind. m-3 in the dry season, with copepods accounting for 85% by number. In all, 78 species of copepods were recorded, with the families Paracalanidae and Oithonidae dominant. In Camden Sound, 48 families of larval fish occurred, with ichthyoplankton more abundant in the wet season than the dry season (1.16 ± 0.2 ind. m-3 cf 0.76 ± 0.2 ind. m-3). Larval gobiids (Subfamily Gobiinae) were most abundant, with other common families associated with either pelagic or soft-bottom habitats as adults. Multivariate analyses of both copepod and ichthyoplankton communities demonstrated strong seasonal contrasts, although an along-shelf gradient in copepod community composition was apparent along the embayments sampled in 2013. There was little spatial variation in plankton communities within Camden Sound as a result of the large tidal range (up to 11.7 m, with 2.5 m-1 velocities), although gradients in abundance and composition on cross-shelf transects occurred in the more northern embayments that had a lower tidal range, such as Napier Broome Bay. Copepod communities of the Kimberley-Browse region were placed in regional perspective by multivariate analyses of similar data collected in the eastern Indian Ocean at Scott Reef, in the Arafura Sea and on the southern North West (NW) shelf. The plankton communities of the NW shelf form a series of along-shore metacommunities linked by advection, with weaker cross-shelf connectivity. The presence of the larvae of mesopelagic fishes of the family Myctophidae in coastal waters confirms seasonal cross-shelf connectivity.
Fish communities in coastal freshwater ecosystems: the role of the physical and chemical setting.
Arend, Kristin K; Bain, Mark B
2008-12-29
We explored how embayment watershed inputs, morphometry, and hydrology influence fish community structure among eight embayments located along the southeastern shoreline of Lake Ontario, New York, USA. Embayments differed in surface area and depth, varied in their connections to Lake Ontario and their watersheds, and drained watersheds representing a gradient of agricultural to forested land use. We related various physicochemical factors, including total phosphorus load, embayment area, and submerged vegetation, to differences in fish species diversity and community relative abundance, biomass, and size structure both among and within embayments. Yellow perch (Perca flavescens) and centrarchids numerically dominated most embayment fish communities. Biomass was dominated by piscivorous fishes including brown bullhead (Ameiurus nebulosus), bowfin (Amia calva), and northern pike (Esox lucius). Phosphorus loading influenced relative biomass, but not species diversity or relative abundance. Fish relative abundance differed among embayments; within embayments, fish abundance at individual sampling stations increased significantly with submerged vegetative cover. Relative biomass differed among embayments and was positively related to total phophorus loading and embayment area. Fish community size structure, based on size spectra analysis, differed among embayments, with the frequency of smaller-bodied fishes positively related to percent vegetation. The importance of total phosphorus loading and vegetation in structuring fish communities has implications for anthropogenic impacts to embayment fish communities through activities such as farming and residential development, reduction of cultural eutrophication, and shoreline development and maintenance.
Greiner, Michael J.; Lucchesi, David O.; Chipps, Steven R.; Gigliotti, Larry M.
2016-01-01
We surveyed anglers on five community fishing lakes near Brookings, South Dakota to assess angler use and satisfaction. The community lakes attracted younger anglers when compared to statewide and national averages. Overall, satisfaction was generally high (74%) among anglers fishing community lakes. Logistic regression analysis showed that harvest rate, anglers targeting trout, familiarity with the lake, adults fishing with children, and fishing during open water periods were significantly related to angler satisfaction. Angler parties consisting of adults fishing with children were 1.7 times more likely to respond as “satisfied” compared with adults-only angler groups. Fishing opportunities provided by community lakes can enhance participation by younger anglers while simultaneously providing family-oriented recreation (i.e., adults fishing with children) that enhances trip satisfaction.
MacPherson, Eleanor E; Sadalaki, John; Njoloma, Macdonald; Nyongopa, Victoria; Nkhwazi, Lawrence; Mwapasa, Victor; Lalloo, David G; Desmond, Nicola; Seeley, Janet; Theobald, Sally
2012-01-01
Background In Southern Malawi, the fishing industry is highly gendered, with men carrying out the fishing and women processing, drying and selling the fish. Research has shown that individuals living in fishing communities in low-income countries are particularly vulnerable to HIV infection. One of the key drivers of HIV in fishing communities is transactional sex. In the fishing industry this takes the form of “fish-for-sex” networks where female fish traders exchange sex with fishermen for access to or more favourable prices of fish. By controlling the means of production, the power dynamics in these exchanges favour men and can make it more difficult for women to negotiate safe sex. Methods Qualitative methods were used to collect data on gendered drivers of transactional sex in the fishing community and how different groups perceive HIV risk in these transactions. Observation, focus group discussions and semi-structured interviews were undertaken with members of the fishing communities, including men and women directly and indirectly involved in fishing. Results In fishing communities transactional sex was prevalent across a spectrum ranging from gift giving within relationships, to sex for fish exchanges, to sex worker encounters. Power differences between couples in transactional sexual encounters shape individual’s abilities to negotiate condom use (with women being at a particularly disadvantaged negotiating position). The context and motivations for transactional sex varied and was mediated by economic need and social position both of men and women. Female fish traders new to the industry and boat crew members who travelled for work and experienced difficult living conditions often engaged in transactional sex. Conclusions Transactional sex is common in Malawian fishing communities, with women particularly vulnerable in negotiations because of existing gendered power structures. Although knowledge and understanding of the HIV risk associated with transactional sex was common, this did not appear to result in the adoption of risk reduction strategies. This suggests that specially targeted strategies to increase women’s economic empowerment and tackle the structural drivers of women’s HIV risk could be important in fishing communities. PMID:22713352
Consistency of Bottom Fish Communities in the Beaufort Sea Within and Between Years
NASA Astrophysics Data System (ADS)
Norcross, B.; Holladay, B.
2016-02-01
Fish communities in the Arctic may be indicators of change due to climate and oil and gas exploration. An initial benchmark is generally established by sampling a set of sites in multiple years sequentially to estimate interannual variability. Standard practice is to conduct one trawl haul per station. Establishing the annual frequency of sampling and minimum number of hauls per station necessary to detect changes in demersal fish communities is essential to designing a monitoring program. Using small bottom trawls, we assessed interannual variability of bottom fish communities between 2013 and 2014 in the eastern US Beaufort Sea at eight depths 20-1000 m on each of four transects. In 2014, to determine if one haul per station was representative of a site, replicate hauls were made at stations along one transect at the US-Canada border. The similarity among replicate hauls within a single year was excellent, indicating that one haul per station was representative of fish communities. There were distinctly different bottom fish communities on the Beaufort Sea shelf (20-100 m) and slope (200-1000 m). Shelf communities had higher abundances of smaller fishes; whereas slope communities had fewer, but larger, individuals. There was no change in fish abundance between years, but there was interannual variability in the biomass of fish communities on the slope. However, as few fishes were captured at deep stations, the difference between catching and not catching a single large heavy fish affected relative biomass significantly, which may distort the conclusion of interannual variability. Furthermore, these replicate hauls occurred in the eastern Beaufort Sea, which appears to have fewer fish species and in lower abundance than the western Beaufort Sea. The similarity within replicates may not be as striking in a more diverse environment, however this study shows that in this region of the Arctic, it is likely sufficient to forego replicate sampling at a station in one year and season, and sequential years of sampling in that season, when characterizing bottom fish communities within a long-term study of community stability.
Status of pelagic prey fishes in Lake Michigan, 2012
Warner, David M.; O'Brien, Timothy P.; Farha, Steve A.; Claramunt, Randall M.; Hanson, Dale
2012-01-01
Acoustic surveys were conducted in late summer/early fall during the years 1992-1996 and 2001-2012 to estimate pelagic prey fish biomass in Lake Michigan. Midwater trawling during the surveys as well as target strength provided a measure of species and size composition of the fish community for use in scaling acoustic data and providing species-specific abundance estimates. The 2012 survey consisted of 26 acoustic transects (576 km total) and 31 midwater tows. Mean total prey fish biomass was 6.4 kg/ha (relative standard error, RSE = 15%) or 31 kilotonnes (kt = 1,000 metric tons), which was 1.5 times the estimate for 2011 and 22% of the long-term mean. The increase from 2011 resulted from increased biomass of age-0 alewife, age-1 or older alewife, and large bloater. The abundance of the 2012 alewife year class was similar to the average, and this year-class contributed 35% of total alewife biomass (4.9 kg/ha, RSE = 17%), while the 2010 alewife year-class contributed 58%. The 2010 year class made up 89% of age-1 or older alewife biomass. In 2012, alewife comprised 77% of total prey fish biomass, while rainbow smelt and bloater were 4 and 19% of total biomass, respectively. Rainbow smelt biomass in 2012 (0.25 kg/ha, RSE = 17%) was 40% of the rainbow smelt biomass in 2011 and 5% of the long term mean. Bloater biomass was much lower (1.2 kg/ha, RSE = 12%) than in the 1990s, and mean density of small bloater in 2012 (191 fish/ha, RSE = 24%) was lower than peak values observed in 2007-2009. In 2012, pelagic prey fish biomass in Lake Michigan was similar to Lake Superior and Lake Huron. Prey fish biomass remained well below the Fish Community Objectives target of 500-800 kt, and key native species remain absent or rare.
Fishing down nutrients on coral reefs.
Allgeier, Jacob E; Valdivia, Abel; Cox, Courtney; Layman, Craig A
2016-08-16
Fishing is widely considered a leading cause of biodiversity loss in marine environments, but the potential effect on ecosystem processes, such as nutrient fluxes, is less explored. Here, we test how fishing on Caribbean coral reefs influences biodiversity and ecosystem functions provided by the fish community, that is, fish-mediated nutrient capacity. Specifically, we modelled five processes of nutrient storage (in biomass) and supply (via excretion) of nutrients, as well as a measure of their multifunctionality, onto 143 species of coral reef fishes across 110 coral reef fish communities. These communities span a gradient from extreme fishing pressure to protected areas with little to no fishing. We find that in fished sites fish-mediated nutrient capacity is reduced almost 50%, despite no substantial changes in the number of species. Instead, changes in community size and trophic structure were the primary cause of shifts in ecosystem function. These findings suggest that a broader perspective that incorporates predictable impacts of fishing pressure on ecosystem function is imperative for effective coral reef conservation and management.
Effects of fishing and regional species pool on the functional diversity of fish communities.
Martins, Gustavo M; Arenas, Francisco; Neto, Ana I; Jenkins, Stuart R
2012-01-01
The potential population and community level impacts of fishing have received considerable attention, but little is known about how fishing influences communities' functional diversity at regional scales. We examined how estimates of functional diversity differed among 25 regions of variable richness and investigated the functional consequences of removing species targeted by commercial fisheries. Our study shows that fishing leads to substantial losses in functional diversity. The magnitude of such loss was, however, reduced in the more speciose regions. Moreover, the removal of commercially targeted species caused a much larger reduction in functional diversity than expected by random species deletions, which was a consequence of the selective nature of fishing for particular species traits. Results suggest that functional redundancy is spatially variable, that richer biotas provide some degree of insurance against the impact of fishing on communities' functional diversity and that fishing predominantly selects for particular species traits. Understanding how fishing impacts community functional diversity is key to predict its effects for biodiversity as well as ecosystem functioning.
Lévesque, Lucie M; Dubé, Monique G
2007-09-01
Pipeline crossing construction alters river and stream channels, hence may have detrimental effects on aquatic ecosystems. This review examines the effects of crossing construction on fish and fish habitat in rivers and streams, and recommends an approach to monitoring and assessment of impacts associated with these activities. Pipeline crossing construction is shown to not only compromise the integrity of the physical and chemical nature of fish habitat, but also to affect biological habitat (e.g., benthic invertebrates and invertebrate drift), and fish behavior and physiology. Indicators of effect include: water quality (total suspended solids TSS), physical habitat (substrate particle size, channel morphology), benthic invertebrate community structure and drift (abundance, species composition, diversity, standing crop), and fish behavior and physiology (hierarchy, feeding, respiration rate, loss of equilibrium, blood hematocrit and leukocrit levels, heart rate and stroke volume). The Before-After-Control-Impact (BACI) approach, which is often applied in Environmental Effects Monitoring (EEM), is recommended as a basis for impact assessment, as is consideration of site-specific sensitivities, assessment of significance, and cumulative effects.
Fish Ecology and Evolution in the World's Oxygen Minimum Zones and Implications of a Warming Ocean
NASA Astrophysics Data System (ADS)
Gallo, N.; Navarro, E. C.; Yazzie, A. T.; Barry, J. P.; Levin, L. A.
2016-02-01
Predicting how demersal fish communities will respond as hypoxic areas expand with climate change requires an understanding of how existing oxygen gradients influence the abundance, diversity, and trophic ecology of demersal fish communities. A literature review of studies from continental margins with oxygen minimum zones in the Pacific, Atlantic, and Indian Ocean, is combined with new data from research cruises to the Gulf of California and the US West Coast, to examine how hypoxic areas influence the structure and function of demersal fish communities. Oxygen minimum zones (OMZs) are deep-sea environments where organisms experience chronic hypoxic and suboxic conditions and have persisted over much longer timescales than coastal eutrophication-induced hypoxic zones, allowing for the evolution of adaptations to low oxygen conditions. While coastal studies have found that fish are one of the most hypoxia-intolerant groups, representative demersal fish species in the orders Cottiformes, Scorpaeniformes, Pleuronectiformes, Gobiiformes, Perciformes, Lophiiformes, Carcharhiniformes, Ophidiiformes, Myxiniformes, and Gadiformes have evolved to exploit physiologically extreme OMZ environments and are important components of the benthic community. In OMZs, certain fish species are some of the most hypoxia-tolerant members of the megafauna community, present even under extremely low oxygen conditions (< 5 µmol/kg) where most invertebrates are absent, though these communities are typically characterized by single-species dominance. To explore differences in the trophic ecology of these "hypoxia-tolerant" fish communities, stable isotope and gut content analysis are used to compare the Southern California Bight OMZ core fish community to the hypoxia-intolerant upper slope fish community. Results show that fish living in the OMZ core have significantly enriched δ13C and δ15N signatures and feed on different prey items.
Comparison of fishes in nearshore areas of the St. Lawrence River, New York over 35 years
Carlson, Douglas M.; McKenna, James E.
2014-01-01
Fishes of the nearshore waters of the St. Lawrence River provide forage for valuable sport fisheries and are important biological indicators of condition and change. This fish community differs slightly among various reaches of the St. Lawrence River from New York to Quebec (Carlson et al. 2006, Eckert and Hanlon 1977, Kapuscinski 2011, LaViolette et al. 2003, Mandrak et al. 2006, McKenna et al. 2005). Nearshore habitat has been described by McKenna et al. (2012), and others have suggested that there were changes over the last few decades (Clapsadl 1993, Kapuscinski and Farrell 2013). More definitive work needs to be completed on submerged aquatic vegetation habitats. In this paper, changes in the nearshore fish species composition for the New York reach from Cape Vincent to Moses-Saunders Dam are examined through comparison of results from 2009-2010 (McKenna et al. 2012) and 1976 surveys (Eckert and Hanlon 1977).
Hickman, Gary D; Brown, Mary L
2002-06-07
Two multimetric indices have been developed to help address fish community (reservoir fish assemblage index [RFAI]) and individual population quality (sport fishing index [SFI]) in Tennessee River reservoirs. The RFAI, with characteristics similar to the index of biotic integrity (IBI) used in stream fish community determinations, was developed to monitor the existing condition of resident fish communities. The index, which incorporates standardized electrofishing of littoral areas and experimental gill netting for limnetic bottom-dwelling species, has been used to determine residential fish community response to various anthropogenic impacts in southeastern reservoirs. The SFI is a multimetric index designed to address the quality of the fishery for individual resident sport fish species in a particular lake or reservoir[4]. The SFI incorporates measures of fish population aspects and angler catch and pressure estimates. This paper proposes 70% of the maximum RFAI score and 10% above the average SFI score for individual species as "screening" endpoints for balanced indigenous populations (BIP) or adverse environmental impact (AEI). Endpoints for these indices indicate: (1) communities/populations are obviously balanced indigenous populations (BIP) indicating no adverse environmental impact (AEI), or are "screened out"; (2) communities/populations are considered to be potentially impacted; and (3) where the resident fish community/population should be considered adversely impacted. Suggestions are also made concerning how examination of individual metric scores can help determine the source or cause of the impact.
Pervin, Hasina M; Dennis, Paul G; Lim, Hui J; Tyson, Gene W; Batstone, Damien J; Bond, Philip L
2013-12-01
Temperature-phased anaerobic digestion (TPAD) is an emerging technology that facilitates improved performance and pathogen destruction in anaerobic sewage sludge digestion by optimising conditions for 1) hydrolytic and acidogenic organisms in a first-stage/pre-treatment reactor and then 2) methogenic populations in a second stage reactor. Pre-treatment reactors are typically operated at 55-65 °C and as such select for thermophilic bacterial communities. However, details of key microbial populations in hydrolytic communities and links to functionality are very limited. In this study, experimental thermophilic pre-treatment (TP) and control mesophilic pre-treatment (MP) reactors were operated as first-stages of TPAD systems treating activated sludge for 340 days. The TP system was operated sequentially at 50, 60 and 65 °C, while the MP rector was held at 35 °C for the entire period. The composition of microbial communities associated with the MP and TP pre-treatment reactors was characterised weekly using terminal-restriction fragment length polymorphism (T-RFLP) supported by clone library sequencing of 16S rRNA gene amplicons. The outcomes of this approach were confirmed using 454 pyrosequencing of gene amplicons and fluorescence in-situ hybridisation (FISH). TP associated bacterial communities were dominated by populations affiliated to the Firmicutes, Thermotogae, Proteobacteria and Chloroflexi. In particular there was a progression from Thermotogae to Lutispora and Coprothermobacter and diversity decreased as temperature and hydrolysis performance increased. While change in the composition of TP associated bacterial communities was attributable to temperature, that of MP associated bacterial communities was related to the composition of the incoming feed. This study determined processes driving the dynamics of key microbial populations that are correlated with an enhanced hydrolytic functionality of the TPAD system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Brown, L.R.
2000-01-01
Twenty sites in the lower San Joaquin River drainage, California, were sampled from 1993 to 1995 to characterize fish communities and their associations with measures of water quality and habitat quality. The feasibility of developing an Index of Biotic Integrity was assessed by evaluating four fish community metrics, including percentages of native fish, omnivorous fish, fish intolerant of environmental degradation, and fish with external anomalies. Of the thirty-one taxa of fish captured during the study, only 10 taxa were native to the drainage. Multivariate analyses of percentage data identified four site groups characterized by different groups of species. The distributions of fish species were related to specific conductance, gradient, and mean depth; however, specific conductance acted as a surrogate variable for a large group of correlated variables. Two of the fish community metrics - percentage of introduced fish and percentage of intolerant fish - appeared to be responsive to environmental quality but the responses of the other two metrics - percentage of omnivorous fish and percentage of fish with anomalies - were less direct. The conclusion of the study is that fish communities are responsive to environmental conditions, including conditions associated with human-caused disturbances, particularly agriculture and water development. The results suggest that changes in water management and water quality could result in changes in species distributions. Balancing the costs and benefits of such changes poses a considerable challenge to resource managers.
Shift in a Large River Fish Assemblage: Body-Size and Trophic Structure Dynamics
Broadway, Kyle J.; Pyron, Mark; Gammon, James R.; Murry, Brent A.
2015-01-01
As the intensity and speed of environmental change increase at both local and global scales it is imperative that we gain a better understanding of the ecological implications of community shifts. While there has been substantial progress toward understanding the drivers and subsequent responses of community change (e.g. lake trophic state), the ecological impacts of food web changes are far less understood. We analyzed Wabash River fish assemblage data collected from 1974-2008, to evaluate temporal variation in body-size structure and functional group composition. Two parameters derived from annual community size-spectra were our major response variables: (1) the regression slope is an index of ecological efficiency and predator-prey biomass ratios, and (2) spectral elevation (regression midpoint height) is a proxy for food web capacity. We detected a large assemblage shift, over at least a seven year period, defined by dramatic changes in abundance (measured as catch-per-unit-effort) of the dominant functional feeding groups among two time periods; from an assemblage dominated by planktivore-omnivores to benthic invertivores. There was a concurrent increase in ecological efficiency (slopes increased over time) following the shift associated with an increase in large-bodied low trophic level fish. Food web capacity remained relatively stable with no clear temporal trends. Thus, increased ecological efficiency occurred simultaneous to a compensatory response that shifted biomass among functional feeding groups. PMID:25902144
Johnson, Timothy B.; Hoff, Michael H.; Trebitz, Anett S.; Bronte, Charles R.; Corry, Timothy D.; Kitchell, James F.; Lozano, Stephen J.; Mason, Doran M.; Scharold, Jill V.; Schram, Stephen T.; Schreiner, Donald R.
2004-01-01
We assessed abundance, size, and species composition of forage fish and zooplankton communities of western Lake Superior during August 1996 and July 1997. Data were analyzed for three ecoregions (Duluth-Superior, Apostle Islands, and the open lake) differing in bathymetry and limnological and biological patterns. Zooplankton abundance was three times higher in the Duluth-Superior and Apostle Islands regions than in the open lake due to the large numbers of rotifers. Copepods were far more abundant than Cladocera in all ecoregions. Mean zooplankton size was larger in the open lake due to dominance by large calanoid copepods although size of individual taxa was similar among ecoregions. Forage fish abundance and biomass was highest in the Apostle Islands region and lowest in the open lake ecoregion. Lake herring (Coregonus artedi), rainbow smelt (Osmerus mordax) and deepwater ciscoes (Coregonus spp.) comprised over 90% of the abundance and biomass of fishes caught in midwater trawls and recorded with hydroacoustics. Growth and condition of fish was good, suggesting they were not resource limited. Fish and zooplankton assemblages differed among the three ecoregions of western Lake Superior, due to a combination of physical and limnological factors related to bathymetry and landscape position.
Development of a multimetric index for fish assemblages in a cold tailwater in Tennessee
Ivasauskas, Tomas J.; Bettoli, Phillip William
2014-01-01
Tailwaters downstream of hypolimnetic-release hydropeaking dams exhibit a unique combination of stressors that affects the structure and function of resident fish assemblages. We developed a statistically and biologically defensible multimetric index of fish assemblages for the Caney Fork River below Center Hill Dam, Tennessee. Fish assemblages were sampled at five sites using boat-mounted and backpack electrofishing gear from fall 2009 through summer 2011. A multivariate statistical approach was used to select metrics that best reflected the downstream gradients in abiotic variables. Five metrics derived from boat electrofishing samples and four metrics derived from backpack electrofishing samples were selected for incorporation into the index based on their high correlation with environmental data. The nine metrics demonstrated predictable patterns of increase or decrease with increasing distance downstream of the dam. The multimetric index generally exhibited a pattern of increasing scores with increasing distance from the dam, indicating a downstream recovery gradient in fish assemblage composition. The index can be used to monitor anticipated changes in the fish communities of the Caney Fork River when repairs to Center Hill Dam are completed later this decade, resulting in altered dam operations.
Fish communities in coastal freshwater ecosystems: the role of the physical and chemical setting
Arend, Kristin K; Bain, Mark B
2008-01-01
Background We explored how embayment watershed inputs, morphometry, and hydrology influence fish community structure among eight embayments located along the southeastern shoreline of Lake Ontario, New York, USA. Embayments differed in surface area and depth, varied in their connections to Lake Ontario and their watersheds, and drained watersheds representing a gradient of agricultural to forested land use. Results We related various physicochemical factors, including total phosphorus load, embayment area, and submerged vegetation, to differences in fish species diversity and community relative abundance, biomass, and size structure both among and within embayments. Yellow perch (Perca flavescens) and centrarchids numerically dominated most embayment fish communities. Biomass was dominated by piscivorous fishes including brown bullhead (Ameiurus nebulosus), bowfin (Amia calva), and northern pike (Esox lucius). Phosphorus loading influenced relative biomass, but not species diversity or relative abundance. Fish relative abundance differed among embayments; within embayments, fish abundance at individual sampling stations increased significantly with submerged vegetative cover. Relative biomass differed among embayments and was positively related to total phophorus loading and embayment area. Fish community size structure, based on size spectra analysis, differed among embayments, with the frequency of smaller-bodied fishes positively related to percent vegetation. Conclusion The importance of total phosphorus loading and vegetation in structuring fish communities has implications for anthropogenic impacts to embayment fish communities through activities such as farming and residential development, reduction of cultural eutrophication, and shoreline development and maintenance. PMID:19114002
Delgado-Alvarez, C G; Frías-Espericueta, M G; Ruelas-Inzunza, J; Becerra-Álvarez, M J; Osuna-Martínez, C C; Aguilar-Juárez, M; Osuna-López, J I; Escobar-Sánchez, O; Voltolina, D
2017-07-01
Total mercury (Hg) concentrations were determined by atomic absorption spectrophotometry in muscles and liver of composite samples of Mugil cephalus and M. curema collected during November 2013 and in January, April, and July 2014 from the coastal lagoons Altata-Ensenada del Pabellón (AEP), Ceuta (CEU), and Teacapán-Agua Brava (TAG) of Sinaloa State. The mean Hg contents and information on local consumption were used to assess the possible risk caused by fish ingestion. Mean total mercury levels in the muscles ranged from 0.11 to 0.39 μg/g, while the range for liver was 0.12-3.91 μg/g. The mean Hg content of the liver was significantly (p < 0.001) higher than that of the muscles only in samples collected from AEP. Although total Hg levels in the muscles were lower than the official permissible limit, the HQ values for methyl mercury calculated for the younger age classes of one fishing community were >1, indicating a possible risk for some fishing communities of the Mexican Pacific coast.
Effectiveness of seining after electrofishing to characterize stream fish communities
Meador, Michael R.
2012-01-01
The richness and composition of species collected uniquely to electrofishing and subsequent seining efforts were examined at 271 stream sites across the USA by using wadeable electrofishing methods (backpack or barge electrofishing) or boat electrofishing followed by seining. Seining after wadeable electrofishing resulted in the collection of new species at 42% of sites, whereas seining after boat electrofishing resulted in the collection of new species at 87% of sites. Mean percentage of total observed fish species richness that was collected uniquely by seining was 6% (representing one new species, on average) after wadeable electrofishing compared with 18% (four new species, on average) after boat electrofishing. Shannon–Wiener diversity index values were not significantly different between data from combined sampling (electrofishing and seining) and data from wadeable electrofishing (P = 0.490) but were significantly different between boat electrofishing and combined sampling (P = 0.004). Seining efforts after boat electrofishing can provide critical information that allows for a more complete characterization of the fish community. For sampling in wadeable streams, decisions regarding the use of seines should consider the effectiveness of electrofishing at a given site and the use of seines as an alternative primary sampling gear rather than as a supplement to electrofishing.
Mouchet, Maud A; Bouvier, Corinne; Bouvier, Thierry; Troussellier, Marc; Escalas, Arthur; Mouillot, David
2012-03-01
Considering the major involvement of gut microflora in the digestive function of various macro-organisms, bacterial communities inhabiting fish guts may be the main actors of organic matter degradation by fish. Nevertheless, the extent and the sources of variability in the degradation potential of gut bacterial communities are largely overlooked. Using Biolog Ecoplate™ and denaturing gradient gel electrophoresis (DGGE), we explored functional (i.e. the ability to degrade organic matter) and genetic (i.e. identification of DGGE banding patterns) diversity of fish gut bacterial communities, respectively. Gut bacterial communities were extracted from fish species characterized by different diets sampled along a salinity gradient in the Patos-Mirim lagoons complex (Brazil). We found that functional diversity was surprisingly unrelated to genetic diversity of gut bacterial communities. Functional diversity was not affected by the sampling site but by fish species and diet, whereas genetic diversity was significantly influenced by all three factors. Overall, the functional diversity was consistently high across fish individuals and species, suggesting a wide functional niche breadth and a high potential of organic matter degradation. We conclude that fish gut bacterial communities may strongly contribute to nutrient cycling regardless of their genetic diversity and environment. © European Union 2011.
NASA Astrophysics Data System (ADS)
Marliana, S. N.; Bataona, M.; Ihsan, E. N.
2018-03-01
The use of lift net fishing vessels in Cenderawasih Bay National Park (CBNP) along with the increased popularity of CBNP as an ecotourism area is suspected to have an impact on the behavior and population of its whale sharks Rhincodon typus Smith, 1828. The differing frequency of whale shark appearances along the waters of CBNP has been alleged to be related to the distribution of the whale sharks’ food sources, one of which is zooplankton. This preliminary research aimed to investigate the composition of the zooplankton community in CBNP based on distance from the coast and difference in locations, and to use the pattern of zooplankton compositional variation as a basis for indication of the frequency of whale shark appearances. There were clear differences in the composition and diversity of zooplankton communities among sampling stations, but these differences were not strong enough to infer the cause of the different whale shark appearance frequencies in different locations. Nevertheless, the waters of CBNP had an equal availability of zooplankton for whale sharks. With the increasing popularity of whale shark tourism, understanding the species’ feeding habits is critical to the sustainability of both the industry and the enigmatic species on which it depends.
Quantifying the Human Impacts on Papua New Guinea Reef Fish Communities across Space and Time.
Drew, Joshua A; Amatangelo, Kathryn L; Hufbauer, Ruth A
2015-01-01
Describing the drivers of species loss and of community change are important goals in both conservation and ecology. However, it is difficult to determine whether exploited species decline due to direct effects of harvesting or due to other environmental perturbations brought about by proximity to human populations. Here we quantify differences in species richness of coral reef fish communities along a human population gradient in Papua New Guinea to understand the relative impacts of fishing and environmental perturbation. Using data from published species lists we categorize the reef fishes as either fished or non-fished based on their body size and reports from the published literature. Species diversity for both fished and non-fished groups decreases as the size of the local human population increases, and this relationship is stronger in species that are fished. Additionally, comparison of modern and museum collections show that modern reef communities have proportionally fewer fished species relative to 19th century ones. Together these findings show that the reef fish communities of Papua New Guinea experience multiple anthropogenic stressors and that even at low human population levels targeted species experience population declines across both time and space.
A multi-decade time series of kelp forest community structure at San Nicolas Island, California
Lafferty, Kevin D.; Kenner, Michael C.; Estes, James A.; Tinker, M. Tim; Bodkin, James L.; Cowen, Robert K.; Harrold, Christopher; Novak, Mark; Rassweiler, Andrew; Reed, Daniel C.
2013-01-01
San Nicolas Island is surrounded by broad areas of shallow subtidal habitat, characterized by dynamic kelp forest communities that undergo dramatic and abrupt shifts in community composition. Although these reefs are fished, the physical isolation of the island means that they receive less impact from human activities than most reefs in Southern California, making San Nicolas an ideal place to evaluate alternative theories about the dynamics of these communities. Here we present monitoring data from seven sampling stations surrounding the island, including data on fish, invertebrate, and algal abundance. These data are unusual among subtidal monitoring data sets in that they combine relatively frequent sampling (twice per year) with an exceptionally long time series (since 1980). Other outstanding qualities of the data set are the high taxonomic resolution captured and the monitoring of permanent quadrats and swaths where the history of the community structure at specific locations has been recorded through time. Finally, the data span a period that includes two of the strongest ENSO events on record, a major shift in the Pacific decadal oscillation, and the reintroduction of sea otters to the island in 1987 after at least 150 years of absence. These events provide opportunities to evaluate the effects of bottom-up forcing, top-down control, and physical disturbance on shallow rocky reef communities.
Rasheeda, M K; Rangamaran, Vijaya Raghavan; Srinivasan, Senthilkumar; Ramaiah, Sendhil Kumar; Gunasekaran, Rajaprabhu; Jaypal, Santhanakumar; Gopal, Dharani; Ramalingam, Kirubagaran
2017-08-01
The present study was undertaken to evaluate the microbial composition of farmed cobia pompano and milkfish, reared in sea-cages by culture-independent methods. This study would serve as a basis for assessing the general health of fish, identifying the dominant bacterial species present in the gut for future probiotic work and in early detection of potential pathogens. High-throughput sequencing of V3-V4 hyper variable regions of 16S rDNA on Illumina MiSeq platform facilitated unravelling of composite bacterial population. Analysis of 1.3 million quality-filtered sequences revealed high microbial diversity. Characteristic marine fish gut microbes: Vibrio and Photobacterium spp. showed prevalence in cobia and pompano whereas Pelomonas and Fusobacterium spp. dominated the gut of milkfish. Pompano hindgut with 10,537 operational taxonomy units (OTUs) exhibited the highest alpha-diversity index followed by cobia (10,435) and milkfish (2799). Additionally unique and shared OTUs in each gut type were identified. Gammaproteobacteria dominated in cobia and pompano while Betaproteobacteria showed prevalence in milkfish. We obtained 96 shared OTUs among the three species though the numbers of reads were highly variable. These differences in microbiota of farmed fish reared in same environment were presumably due to differences in the gut morphology, physiological behavior and host specificity. Copyright © 2017 Elsevier B.V. All rights reserved.
Huang, Wei; Cheng, Zhiqiang; Lei, Shaonan; Liu, Lanying; Lv, Xin; Chen, Lihua; Wu, Miaohong; Wang, Chao; Tian, Baoyu; Song, Yongkang
2018-05-01
The intestinal tract, which harbours tremendous numbers of bacteria, plays a pivotal role in the digestion and absorption of nutrients. Here, high-throughput sequencing technology was used to determine the community composition and complexity of the intestinal microbiota in cultivated European eels during three stages of their lifecycle, after which the metabolic potentials of their intestinal microbial communities were assessed. The results demonstrated that European eel intestinal microbiota were dominated by bacteria in the phyla Proteobacteria and Fusobacteria. Statistical analyses revealed that the three cultured European eel life stages (elver, yellow eel, and silver eel) shared core microbiota dominated by Aeromonas. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) predictions of metagenome function revealed that the European eel intestinal microbiota might play significant roles in host nutrient metabolism. Biolog AN MicroPlate™ analysis and extracellular enzyme assays of culturable intestinal bacteria showed that the intestinal microbiota have a marked advantage in the metabolism of starch, which is the main carbohydrate component in European eel formulated feed. Understanding the ecology and functions of the intestinal microbiota during different developmental stages will help us improve the effects of fish-based bacteria on the composition and metabolic capacity of nutrients in European eels.
Jardillier, Ludwig; Boucher, Delphine; Personnic, Sébastien; Jacquet, Stéphan; Thénot, Aurélie; Sargos, Denis; Amblard, Christian; Debroas, Didier
2005-08-01
The effect of nutrient resources (N and P enrichment) and of different grazing communities on the prokaryotic community composition (PCC) was investigated in two freshwater ecosystems: Sep reservoir (oligomesotrophic) and lake Aydat (eutrophic). An experimental approach using microcosms was chosen, that allowed control of both predation levels, by size fractionation of predators, and resources, by nutrient amendments. Changes in PCC were monitored by fluorescent in situ hybridization (FISH) and terminal-restriction fragment length polymorphism (T-RFLP). The main mortality agents were (i) heterotrophic nanoflagellates and virus-like particles in Aydat and (ii) cladocerans in Sep. All the nutritional elements assayed (N-NO3, P-PO4 and N-NH4) together with prokaryotic production (PP) always accounted for a significant part of the variations in PCC. Overall, prokaryotic diversity was mainly explained by resources in Sep, by a comparable contribution of resources and mortality factors in lake Aydat and, to a lesser extent, by the combined action of both.
Using dung beetles to evaluate the effects of urbanization on Atlantic Forest biodiversity.
Korasaki, Vanesca; Lopes, José; Gardner Brown, George; Louzada, Julio
2013-06-01
We used dung beetles to evaluate the impact of urbanization on insect biodiversity in three Atlantic Forest fragments in Londrina, Paraná, Brazil. This study provides the first empirical evidence of the impact of urbanization on richness, abundance, composition and guild structure of dung beetle communities from the Brazilian Atlantic Forest. We evaluated the community aspects (abundance, richness, composition and food guilds) of dung beetles in fragments with different degrees of immersion in the urban matrix using pitfall traps with four alternative baits (rotten meat, rotten fish, pig dung and decaying banana). A total of 1 719 individuals were collected, belonging to 29 species from 11 genera and six Scarabaeinae tribes. The most urban-immersed fragment showed a higher species dominance and the beetle community captured on dung presented the greatest evenness. The beetle communities were distinct with respect to the fragments and feeding habits. Except for the dung beetle assemblage in the most urbanized forest fragment, all others exhibited contrasting differences in species composition attracted to each bait type. Our results clearly show that the degree of urbanization affects Atlantic Forest dung beetle communities and that the preservation of forest fragments inside the cities, even small ones, can provide refuges for Scarabaeinae. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.
Astaxanthin dynamics in Baltic Sea mesozooplankton communities
NASA Astrophysics Data System (ADS)
Snoeijs, Pauline; Häubner, Norbert
2014-01-01
The red pigment astaxanthin is a powerful antioxidant, which occurs in eggs and body tissues of crustaceans and fish. It is produced by crustaceans from algal carotenoids. In a two-year field study we assessed natural concentrations and dynamics of astaxanthin in mesozooplankton communities in the brackish Baltic Sea area. Astaxanthin levels varied between 0.37 and 36 ng L- 1. They increased with salinity along the Baltic Sea gradient and were linked to zooplankton biomass and phytoplankton community composition. Astaxanthin concentrations showed typical seasonal patterns and varied from 0.2 to 5.1 ng ind- 1, 0.2 to 3.4 ng (μg C)- 1 and 6 to 100 ng mm- 3. These concentrations were inversely related to water temperature and strongly linked to zooplankton community composition. Communities dominated by the calanoid copepods Temora longicornis, Pseudocalanus acuspes and Eurytemora spp. generally held the highest concentrations. With increasing cladocerans:copepods biomass ratios community astaxanthin concentrations decreased and with higher relative biomass of Acartia spp. the proportion of astaxanthin diesters decreased. Diesters prevailed in the cold season and they are thought to improve the antioxidant protection of storage lipids during winter. Climate change causes higher temperature and lower salinity in the Baltic Sea proper. This modifies zooplankton community composition, but not necessarily into a community with lower concentrations of astaxanthin since T. longicornis (high concentrations) has been reported to increase with higher temperature. However, decreased astaxanthin production in the ecosystem is expected if a basin-wide increase in the cladocerans:copepods biomass ratios would occur with further climate change.
Recent warming leads to a rapid borealization of fish communities in the Arctic
NASA Astrophysics Data System (ADS)
Fossheim, Maria; Primicerio, Raul; Johannesen, Edda; Ingvaldsen, Randi B.; Aschan, Michaela M.; Dolgov, Andrey V.
2015-07-01
Arctic marine ecosystems are warming twice as fast as the global average. As a consequence of warming, many incoming species experience increasing abundances and expanding distribution ranges in the Arctic. The Arctic is expected to have the largest species turnover with regard to invading and locally extinct species, with a modelled invasion intensity of five times the global average. Studies in this region might therefore give valuable insights into community-wide shifts of species driven by climate warming. We found that the recent warming in the Barents Sea has led to a change in spatial distribution of fish communities, with boreal communities expanding northwards at a pace reflecting the local climate velocities. Increased abundance and distribution areas of large, migratory fish predators explain the observed community-wide distributional shifts. These shifts change the ecological interactions experienced by Arctic fish species. The Arctic shelf fish community retracted northwards to deeper areas bordering the deep polar basin. Depth might limit further retraction of some of the fish species in the Arctic shelf community. We conclude that climate warming is inducing structural change over large spatial scales at high latitudes, leading to a borealization of fish communities in the Arctic.
Trophic cascades result in large-scale coralline algae loss through differential grazer effects.
O'Leary, Jennifer K; McClanahan, Timothy R
2010-12-01
Removal of predators can have strong indirect effects on primary producers through trophic cascades. Crustose coralline algae (CCA) are major primary producers worldwide that may be influenced by predator removal through changes in grazer composition and biomass. CCA have been most widely studied in Caribbean and temperate reefs, where cover increases with increasing grazer biomass due to removal of competitive fleshy algae. However, each of these systems has one dominant grazer type, herbivorous fishes or sea urchins, which may not be functionally equivalent. Where fishes and sea urchins co-occur, fishing can result in a phase shift in the grazing community with subsequent effects on CCA and other substrata. Kenyan reefs have herbivorous fishes and sea urchins, providing an opportunity to determine the relative impacts of each grazer type and evaluate potential human-induced trophic cascades. We hypothesized that fish benefit CCA, abundant sea urchins erode CCA, and that fishing indirectly reduces CCA cover by removing sea urchin predators. We used closures and fished reefs as a large-scale, long-term natural experiment to assess how fishing and resultant changes in communities affect CCA abundance. We used a short-term caging experiment to directly test the effects of grazing on CCA. CCA cover declined with increasing fish and sea urchin abundance, but the negative impact of sea urchin grazing was much stronger than that of fishes. Abundant sea urchins reduced the CCA growth rate to almost zero and prevented CCA accumulation. A warming event (El Niño Southern Oscillation, ENSO) occurred during the 18-year study and had a strong but short-term positive effect on CCA cover. However, the effect of the ENSO on CCA was lower in magnitude than the effect of sea urchin grazing. We compare our results with worldwide literature on bioerosion by fishes and sea urchins. Grazer influence depends on whether benefits of fleshy algae removal outweigh costs of grazer-induced bioerosion. However, the cost-benefit ratio for CCA appears to change with grazer type, grazer abundance, and environment. In Kenya, predator removal leads to a trophic cascade that is expected to reduce net calcification of reefs and therefore reduce reef stability, growth, and resilience.
Muñoz, G; Cortés, Y
2009-09-01
The different species of a fish assemblage can, to some extent, be similar in terms of their parasite communities, which can be associated with certain ecological host traits. This study compared the parasite community descriptors between temporal and resident fish species composing an intertidal assemblage from central Chile. Host specificity and similarity indices of parasite communities among the fish species were also considered. A total of 1097 fish representing 14 species were collected during spring and summer of 2 consecutive years. A total spectrum of 40 parasite species was found, of which copepods and trematodes were the commonest. Congeneric fish species had the highest similarities in their parasite communities. Based on a cluster analysis, using only some fish species, no group was distinguished using abundance or prevalence of parasites, because 50% of parasite species had high host specificity and only few of them were shared among fish species. Adult parasites showed high host specificity and were found mainly in resident intertidal fish, whereas the temporal fish had parasites with different degrees of specificity. Consequently, resident intertidal fish were characterized by their own parasite species, meaning that their transmissions might be restricted to the intertidal zone.
Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Leemon, Daniel J.
2010-01-01
Fish Creek, a tributary to the Snake River, is about 25 river kilometers long and is located in Teton County in western Wyoming near the town of Wilson. Public concern about nuisance growths of aquatic plants in Fish Creek have been increasing in recent years. To address this concern, the U.S. Geological Survey conducted a study in cooperation with the Teton Conservation District to characterize the water quality and biological communities in Fish Creek. Water-quality samples were collected for analyses of physical properties and water chemistry (nutrients, nitrate isotopes, and wastewater chemicals) between March 2007 and October 2008 from seven surface-water sites and three groundwater wells. During this same period, aquatic plant and macroinvertebrate samples were collected and habitat characteristics were measured at the surface-water sites. The main objectives of this study were to (1) evaluate nutrient concentrations (that influence biological indicators of eutrophication) and potential sources of nutrients by using stable isotope analysis and other indicator chemicals (such as caffeine and disinfectants) that could provide evidence of anthropogenic sources, such as wastewater or septic tank contamination in Fish Creek and adjacent groundwater, and (2) characterize the algal, macrophyte, and macroinvertebrate communities and habitat of Fish Creek. Nitrate was the dominant species of dissolved nitrogen present in all samples and was the only bioavailable species detected at concentrations greater than the laboratory reporting level in all surface-water samples. Average concentrations of dissolved nitrate in surface water were largest in samples collected from the two sites with seasonal flow near Teton Village and decreased downstream; the smallest concentration was at downstream site A-Wck. Concentrations of dissolved nitrate in groundwater were consistently greater than concentrations in corresponding surface-water sites during the same sampling event. Orthophosphate was the primary dissolved species of phosphorus present in all surface-water and groundwater samples. The average concentration of dissolved orthophosphate in surface water was largest in samples collected from near Teton Village; samples from all other sites had similar average concentrations. Concentrations of dissolved orthophosphate in groundwater also were typically greater than concentrations in corresponding surface-water sites during the same sampling event. The aquatic plant communities in Fish Creek typically were composed of a mixture of macrophytes, macroalgae, microalgae, and moss. The composition of the aquatic plant community in Fish Creek appeared to shift in the downstream direction in 2007. On average, the proportion of macrophytes ranged from about 1 percent at site A-R1U, the most upstream site, to 54 percent of the plant community at site A-R6D, the farthest downstream site sampled during 2007. The downstream increase in macrophytes was accompanied by a downstream decrease in microalgae. The average proportion of microalgae ranged from 80 percent at site A-R1U to 24 percent at site A-R6D. The proportion of the macroalgae Cladophora in the aquatic plant community was relatively high at sites A-Wck and A-R3D in both 2007 and 2008.
Jiddawi, Narriman S; Ohman, Marcus C
2002-12-01
Fishery resources are a vital source of food and make valuable economic contributions to the local communities involved in fishery activities along the 850 km stretch of the Tanzania coastline and numerous islands. Small-scale artisanal fishery accounts for the majority of fish catch produced by more than 43 000 fishermen in the country, mainly operating in shallow waters within the continental shelf, using traditional fishing vessels including small boats, dhows, canoes, outrigger canoes and dinghys. Various fishing techniques are applied using uncomplicated passive fishing gears such as basket traps, fence traps, nets as well as different hook and line techniques. Species composition and size of the fish varies with gear type and location. More than 500 species of fish are utilized for food with reef fishes being the most important category including emperors, snappers, sweetlips, parrotfish, surgeonfish, rabbitfish, groupers and goatfish. Most of the fish products are used for subsistence purposes. However, some are exported. Destructive fishing methods such as drag nets and dynamite fishing pose a serious problem as they destroy important habitats for fish and other organisms, and there is a long-term trend of overharvested fishery resources. However, fishing pressure varies within the country as fishery resources are utilized in a sustainable manner in some areas. For this report more than 340 references about Tanzanian fishery and fish ecology were covered. There are many gaps in terms of information needed for successful fishery management regarding both basic and applied research. Most research results have been presented as grey literature (57%) with limited distribution; only one-fifth were scientific publications in international journals.
Li, Guipu; Sinclair, Andrew J; Li, Duo
2011-03-09
The lipid content and fatty acid composition in the edible meat of twenty-nine species of wild and cultured freshwater and marine fish and shrimps were investigated. Both the lipid content and fatty acid composition of the species were specified due to their unique food habits and trophic levels. Most of the marine fish demonstrated higher lipid content than the freshwater fish, whereas shrimps had the lowest lipid content. All the marine fish and shrimps had much higher total n-3 PUFA than n-6 PUFA, while most of the freshwater fish and shrimps demonstrated much lower total n-3 PUFA than n-6 PUFA. This may be the biggest difference in fatty acid composition between marine and freshwater species. The cultured freshwater fish demonstrated higher percentages of total PUFA, total n-3 PUFA, and EPA + DHA than the wild freshwater fish. Two freshwater fish, including bighead carp and silver carp, are comparable to the marine fish as sources of n-3 PUFA.
Trace elements in oceanic pelagic communities in the western Indian Ocean.
Bodin, Nathalie; Lesperance, Dora; Albert, Rona; Hollanda, Stephanie; Michaud, Philippe; Degroote, Maxime; Churlaud, Carine; Bustamante, Paco
2017-05-01
The mineral composition of target and non-target pelagic fish caught by purse-seiners and longliners in the western-central Indian Ocean was determined. From the 10 essential elements analysed, selenium and zinc showed the highest concentrations in swordfish and blue marlin while Indian mackerel appeared as a good source of copper, iron and chrome. All catch had levels of lead and cadmium, two toxic elements, below the maximum sanitary limits. Although some concerns were raised regarding mercury concentrations in the largest species (wahoo, swordfish and blue marlin), molar ratios of mercury and selenium indicate that all oceanic pelagic fish from the western-central Indian Ocean are safe for human consumption. This study also gives insights on the relationships between the levels of essential and toxic elements in fish muscle and the size, trophic position and diet sources of the studied pelagic species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Context-specific effects of the identity of detrital mixtures on invertebrate communities
Bishop, Melanie J; Kelaher, Brendan P
2013-01-01
Many aquatic ecosystems are sustained by detrital subsidies of leaf litter derived from exogenous sources. Although numerous studies have examined the effects of litter species richness and identity on decomposition processes, it remains unclear how these effects extend to associated invertebrate communities or how these effects vary spatially according to local environmental context. Using field enrichment experiments, we assessed how the species richness, assemblage composition, and supply of detrital litter resources interact to affect benthic communities of three temperate Australian estuarine mudflats. Our experiments utilized eight litter sources that are presently experiencing human-mediated changes in their supply to estuarine mudflats. Contrary to predictions, we did not detect effects of the species richness of detrital mixtures on benthic communities. Macroinvertebrate community structure and, in particular, abundance were, instead, influenced by the assemblage composition of detrital mixtures. At two of the three sites, plots receiving the most labile detrital mix, containing the ephemeral algae Chaetomorpha and Ulva, supported the fewest macroinvertebrates of all the experimental enrichments. The large effect of detrital mix identity on macroinvertebrate communities is of concern given present trends of proliferation of macroalgae at the expense of more refractory seagrasses and marsh grasses. As such environmental degradation continues, it will be important to more fully understand under what environmental contexts such compositional changes in detrital resources will have the most detrimental effects on important prey resources for commercially important fish and wading shorebirds. PMID:24198954
Signatures of the collapse and incipient recovery of an overexploited marine ecosystem
Thompson, Patrick L.; Ball, R. Aaron; Fortin, Marie-Josée; Gouhier, Tarik C.; Link, Heike; Moritz, Charlotte; Nenzen, Hedvig; Stanley, Ryan R. E.; Taranu, Zofia E.; Gonzalez, Andrew; Guichard, Frédéric; Pepin, Pierre
2017-01-01
The Northwest Atlantic cod stocks collapsed in the early 1990s and have yet to recover, despite the subsequent establishment of a continuing fishing moratorium. Efforts to understand the collapse and lack of recovery have so far focused mainly on the dynamics of commercially harvested species. Here, we use data from a 33-year scientific trawl survey to determine to which degree the signatures of the collapse and recovery of the cod are apparent in the spatial and temporal dynamics of the broader groundfish community. Over this 33-year period, the groundfish community experienced four phases of change: (i) a period of rapid, synchronous biomass collapse in most species, (ii) followed by a regime shift in community composition with a concomitant loss of functional diversity, (iii) followed in turn by periods of slow compositional recovery, and (iv) slow biomass growth. Our results demonstrate how a community-wide perspective can reveal new aspects of the dynamics of collapse and recovery unavailable from the analysis of individual species or a combination of a small number of species. Overall, we found evidence that such community-level signals should be useful for designing more effective management strategies to ensure the persistence of exploited marine ecosystems. PMID:28791149
Status and historical changes in the fish community in Erhai Lake
NASA Astrophysics Data System (ADS)
Tang, Jianfeng; Ye, Shaowen; Li, Wei; Liu, Jiashou; Zhang, Tanglin; Guo, Zhiqiang; Zhu, Fengyue; Li, Zhongjie
2013-07-01
Erhai Lake is the second largest freshwater lake on the Yunnan Plateau, Southwest China. In recent decades, a number of exotic fish species have been introduced into the lake and the fish community has changed considerably. We evaluated the status of the fish community based on surveys with multimesh gillnet, trap net, and benthic fyke-net between May 2009 and April 2012. In addition, we evaluated the change in the community using historical data (1952-2010) describing the fish community and fishery harvest. The current fish community is dominated by small-sized fishes, including Pseudorasbora parva, Rhinogobius giurinus, Micropercops swinhonis, Hemiculter leucisculus, and Rhinogobius cliffordpopei. These accounted for 87.7% of the 22 546 total specimens collected. Omnivorous and carnivorous species dominated the community. A canonical correspondence analysis (CCA) plot revealed that the distribution of fishes in the lake is influenced by aquatic plants, water temperature, pH, and season. The abundance of indigenous species has declined sharply, and a majority of endemic species have been extirpated from the lake (a decrease from seven to two species). In contrast, the number of exotic species has increased since the 1960s to a total of 22 at present. The fishery harvest decreased initially following the 1960s, but has since increased due to the introduction of non-native fish and stocking of native fish. The fishery harvest was significantly correlated with total nitrogen, not total phosphorus, during the past 20 years. Based on our results, we discuss recommendations for the restoration and conservation of the fish resources in Erhai Lake.
May, J.T.; Brown, L.R.
2002-01-01
The associations of resident fish communities with environmental variables and stream condition were evaluated at representative sites within the Sacramento River Basin, California between 1996 and 1998 using multivariate ordination techniques and by calculating six fish community metrics. In addition, the results of the current study were compared with recent studies in the San Joaquin River drainage to provide a wider perspective of the condition of resident fish communities in the Central Valley of California as a whole. Within the Sacramento drainage, species distributions were correlated with elevational and substrate size gradients; however, the elevation of a sampling site was correlated with a suite of water-quality and habitat variables that are indicative of land use effects on physiochemical stream parameters. Four fish community metrics - percentage of native fish, percentage of intolerant fish, number of tolerant species, and percentage of fish with external anomalies - were responsive to environmental quality. Comparisons between the current study and recent studies in the San Joaquin River drainage suggested that differences in water-management practices may have significant effects on native species fish community structure. Additionally, the results of the current study suggest that index of biotic integrity-type indices can be developed for the Sacramento River Basin and possibly the entire Central Valley, California. The protection of native fish communities in the Central Valley and other arid environments continues to be a conflict between human needs for water resources and the requirements of aquatic ecosystems; preservation of these ecosystems will require innovative management strategies.
NASA Astrophysics Data System (ADS)
Hepner, M.; Muller-Karger, F. E.; Gittings, S.; Stallings, C.
2016-02-01
The Marine Biodiversity Observation Network (MBON) is a partnership between academic, private, and government researchers seeking to understand how marine biodiversity changes over long periods of time. In this context, a study of the multi-agency Reef Visual Census (RVC) data, collected over twenty years in the Florida Keys National Marine Sanctuary (FKNMS), was analyzed to measure possible changes in reef fish abundances as a result of possible predation by lionfish predation or due to related trophic cascading. Lionfish were first sighted in the FKNMS in January 2009, with abundances and frequency of occurrence increasing three to six fold throughout the sanctuary by 2011. Their high consumption rates of smaller fish, coupled with their rapidly increasing densities may be having a significant effect on coral reef fish communities. The study compares the natural variability in reef fish abundances from 1994-2009 in the FKNMS, 15 years prior to the first lionfish detected in the sanctuary, to changes in reef fish abundances 5 years after the invasion. The MBON project also aims to develop environmental DNA (eDNA) technology for conducting biodiversity assessments. eDNA is an emerging technique that seeks to quantify biodiversity in an area by obtaining genetic material directly from environmental samples (soil, sediment, water, etc.) without any obvious signs of biological source material. All marine organisms shed DNA into their surrounding habitat, leaving a "fingerprint." Similar to forensic science, the DNA can be collected from seawater and analyzed to determine what species were recently present. The MBON team is evaluating whether eDNA can be used to adequately monitor reef fish biodiversity in coral reef ecosystems. We will compare species detected in our samples to the taxonomic composition of reef fish communities at the sample site as recorded over the past twenty years in the Reef Visual Census data.
Status of Pelagic Prey Fishes in Lake Michigan, 2014
Warner, David M.; Farha, Steven A.; Claramunt, Randall M.; Hanson, Dale; O'Brien, Timothy P.
2015-01-01
Acoustic surveys were conducted in late summer/early fall during the years 1992-1996 and 2001-2014 to estimate pelagic prey fish biomass in Lake Michigan. Midwater trawling during the surveys as well as target strength provided a measure of species and size composition of the fish community for use in scaling acoustic data and providing species-specific abundance estimates. The 2014 survey consisted of 27 acoustic transects (603 km total) and 31 midwater trawl tows. Four additional transects were sampled in Green Bay but were not included in lakewide estimates. Mean prey fish biomass was 6.5 kg/ha [31.7 kilotonnes (kt = 1,000 metric tons)], equivalent to 69.9 million pounds, which was similar to the estimate in 2013 (29.6 kt) and 25% of the long-term (19 years) mean. The numeric density of the 2014 alewife year-class was 3% of the time series average and was the lowest observed in the 19 years of sampling. This year-class contributed <1% of total alewife biomass (4.6 kg/ha). Alewife ≥age-1 comprised 99.5% of alewife biomass. Numeric density of alewife in Green Bay was more than three times that of the main lake. In 2014, alewife comprised 71% of total prey fish biomass, while rainbow smelt and bloater were 1% and 28% of total biomass, respectively. Rainbow smelt biomass in 2014 (0.08 kg/ha) was 66% lower than in 2013, 2% of the long-term mean, and lower than in any previous year. Bloater biomass in 2014 was 1.8 kg/ha, nearly three times more than the 2013 biomass, and 20% of the long-term mean. Mean density of small bloater in 2014 (122 fish/ha) was lower than peak values observed in 2007-2009 but was similar to the time series mean (124 fish/ha). In 2014, pelagic prey fish biomass in Lake Michigan was 71% of that in Lake Huron (all basins), where the community is dominated by bloater.
Huang, C-L; Chen, C-C; Lin, C-Y; Liu, W-T
2009-01-01
Two hydrogen-producing continuous flow stirred tank reactors (CSTRs) fed respectively with glucose and sucrose were investigated by polymerase chain reaction-denatured gradient gel electrophoresis (PCR-DGGE) and fluorescent in-situ hybridization (FISH). The substrate was fed in a continuous mode decreased from hydraulic retention time (HRT) 10 hours to 6, 5, 4, 3, and 2 hours. Quantitative fluorescent in-situ hybridization (FISH) observations further demonstrated that two morphotypes of bacteria dominated both microbial communities. One was long rod bacteria which can be targeted either by Chis150 probe designed to hybridize the gram positive low G + C bacteria or the specific oligonucleotide probe Lg10-6. The probe Lg10-6, affiliated with Clostridium pasteurianum, was designed and then checked with other reference organisms. The other type, unknown group, which cannot be detected by Chis150 was curved rod bacteria. Notably, the population ratios of the two predominant groups reflected the different operational performance of the two reactors, such as hydrogen producing rates, substrate turnover rates and metabolites compositions. Therefore, a competition mode of the two dominant bacteria groups was hypothesized. In the study, 16S rRNA-based gene library of hydrogen-producing microbial communities was established. The efficiency of hydrogen yields was correlated with substrates (glucose or sucrose), HRT, metabolites compositions (acetate, propionate, butyrate and ethanol), thermal pre-treatment (seed biomass was heated at 100 degrees C for 45 minutes), and microbial communities in the bioreactor, not sludge sources (municipal sewage sludge, alcohol-processing sludge, or bean-processing sludge). The designed specific oligonucleotide probe Lg10-6 also provides us a useful and fast molecular tool to screen hydrogen-producing microbial communities in the future research.
Species Interactions Drive Fish Biodiversity Loss in a High-CO2 World.
Nagelkerken, Ivan; Goldenberg, Silvan U; Ferreira, Camilo M; Russell, Bayden D; Connell, Sean D
2017-07-24
Accelerating climate change is eroding the functioning and stability of ecosystems by weakening the interactions among species that stabilize biological communities against change [1]. A key challenge to forecasting the future of ecosystems centers on how to extrapolate results from short-term, single-species studies to community-level responses that are mediated by key mechanisms such as competition, resource availability (bottom-up control), and predation (top-down control) [2]. We used CO 2 vents as potential analogs of ocean acidification combined with in situ experiments to test current predictions of fish biodiversity loss and community change due to elevated CO 2 [3] and to elucidate the potential mechanisms that drive such change. We show that high risk-taking behavior and competitive strength, combined with resource enrichment and collapse of predator populations, fostered already common species, enabling them to double their populations under acidified conditions. However, the release of these competitive dominants from predator control led to suppression of less common and subordinate competitors that did not benefit from resource enrichment and reduced predation. As a result, local biodiversity was lost and novel fish community compositions were created under elevated CO 2 . Our study identifies the species interactions most affected by ocean acidification, revealing potential sources of natural selection. We also reveal how diminished predator abundances can have cascading effects on local species diversity, mediated by complex species interactions. Reduced overfishing of predators could therefore act as a key action to stall diversity loss and ecosystem change in a high-CO 2 world. VIDEO ABSTRACT. Copyright © 2017 Elsevier Ltd. All rights reserved.
Caskey, Brian J.; Bunch, Aubrey R.; Shoda, Megan E.; Frey, Jeffrey W.; Selvaratnam, Shivi; Miltner, Robert J.
2013-01-01
Excess nutrients in aquatic ecosystems can lead to shifts in species composition, reduced dissolved oxygen concentrations, fish kills, and toxic algal blooms. In this study, nutrients, periphyton chlorophyll a (CHLa), and invertebrate- and fishcommunity data collected during 2005-9 were analyzed from 318 sites on Indiana rivers and streams. The objective of this study was to determine which invertebrate and fish-taxa attributes best reflect the conditions of streams in Indiana along a gradient of nutrient concentrations by (1) determining statistically and ecologically significant relations among the stressor (total nitrogen, total phosphorus, and periphyton CHLa) and response (invertebrate and fish community) variables; and (2) determining the levels at which invertebrate- and fish-community measures change in response to nutrients or periphyton CHLa. For water samples at the headwater sites, total nitrogen (TN) concentrations ranged from 0.343 to 21.6 milligrams per liter (mg/L) (median 2.12 mg/L), total phosphorus (TP) concentrations ranged from 0.050 to 1.44 mg/L (median 0.093 mg/L), and periphyton CHLa ranged from 0.947 to 629 mg/L (median 69.7 mg/L). At the wadable sites, TN concentrations ranged from 0.340 to 10.0 mg/L (median 2.31 mg/L), TP concentrations ranged from 0.050 to 1.24 mg/L (median 0.110 mg/L), and periphyton CHLa ranged from 0.383 to 719 mg/L (median 44.7 mg/L). Recursive partitioning identified statistically significant low and high breakpoint thresholds on invertebrate and fish measures, which demonstrated the ecological response in enriched conditions. The combined community (invertebrate and fish) mean low and high TN breakpoint thresholds were 1.03 and 2.61 mg/L, respectively. The mean low and high breakpoint thresholds for TP were 0.083 and 0.144 mg/L, respectively. The mean low and high breakpoint thresholds for periphyton CHLa were 20.9 and 98.6 milligrams per square meter (mg/m2), respectively. Additive quantile regression analysis found similar thresholds (TN of 0.656 mg/L, mean TP of 0.118 mg/L, and periphyton CHLa of 27.2 mg/m2) for some stressor variables as determined by the breakpoint analysis. The TN and TP concentrations in this study showed a nutrient gradient that spanned three orders of magnitude. Sites were divided into Low, Medium, and High nutrient groups based on the 10th and 75th percentiles. The invertebrate and fish communities were similar along the nutrient gradient, using an analysis of similarity, demonstrating there was not a species trophic gradient. Within all nutrient groups, invertebrate and fish communities were dominated by nutrient tolerant taxa (algivores, herbivores, and omnivores) that included invertebrates, such as Cheumatopsyche sp., Physella sp., and fish such as Stonerollers (Campostoma spp.) and Bluntnose Minnow (Pimephales notatus). To determine if low nutrient concentrations at some sites were caused by algal uptake and not oligotrophic conditions, sites with low nutrient concentrations (less than 10th percentile for TN or TP) were examined based on the Low (less than or equal to the 10th percentile) and High (greater than the 75th percentile) periphyton CHLa concentrations. Within low nutrient sites, the invertebrate and fish communities were statistically different between Low and High periphyton CHLa categories. The majority of variance between the Low and High periphyton CHLa categories was caused by Cheumatopsyche sp. (caddisfly), Physella sp. (pulmonate snail), and Caenis latipennis (a mayfly) in the invertebrate community; and caused by Stonerollers, Western Blacknose Dace (Rhinichthys atratulus meleagris), and Creek Chub (Semotilus atromaculatus) in the fish community. The dominance of tolerant herbivore and omnivore taxa in the High periphyton CHLa group indicates that low nutrient concentrations are a result of nutrient uptake and increased algal growth. This study highlights the importance of assessing multiple lines of evidence when attempting to identify the trophic condition of a site.
Chirico, Angelica A. D.; McClanahan, Timothy R.; Eklöf, Johan S.
2017-01-01
Government-managed marine protected areas (MPAs) can restore small fish stocks, but have been heavily criticized for excluding resource users and creating conflicts. A promising but less studied alternative are community-managed MPAs, where resource users are more involved in MPA design, implementation and enforcement. Here we evaluated effects of government- and community-managed MPAs on the density, size and biomass of seagrass- and coral reef-associated fish, using field surveys in Kenyan coastal lagoons. We also assessed protection effects on the potential monetary value of fish; a variable that increases non-linearly with fish body mass and is particularly important from a fishery perspective. We found that two recently established community MPAs (< 1 km2 in size, ≤ 5 years of protection) harbored larger fish and greater total fish biomass than two fished (open access) areas, in both seagrass beds and coral reefs. As expected, protection effects were considerably stronger in the older and larger government MPAs. Importantly, across management and habitat types, the protection effect on the potential monetary value of the fish was much stronger than the effects on fish biomass and size (6.7 vs. 2.6 and 1.3 times higher value in community MPAs than in fished areas, respectively). This strong effect on potential value was partly explained by presence of larger (and therefore more valuable) individual fish, and partly by higher densities of high-value taxa (e.g. rabbitfish). In summary, we show that i) small and recently established community-managed MPAs can, just like larger and older government-managed MPAs, play an important role for local conservation of high-value fish, and that ii) these effects are equally strong in coral reefs as in seagrass beds; an important habitat too rarely included in formal management. Consequently, community-managed MPAs could benefit both coral reef and seagrass ecosystems and provide spillover of valuable fish to nearby fisheries. PMID:28806740
Chirico, Angelica A D; McClanahan, Timothy R; Eklöf, Johan S
2017-01-01
Government-managed marine protected areas (MPAs) can restore small fish stocks, but have been heavily criticized for excluding resource users and creating conflicts. A promising but less studied alternative are community-managed MPAs, where resource users are more involved in MPA design, implementation and enforcement. Here we evaluated effects of government- and community-managed MPAs on the density, size and biomass of seagrass- and coral reef-associated fish, using field surveys in Kenyan coastal lagoons. We also assessed protection effects on the potential monetary value of fish; a variable that increases non-linearly with fish body mass and is particularly important from a fishery perspective. We found that two recently established community MPAs (< 1 km2 in size, ≤ 5 years of protection) harbored larger fish and greater total fish biomass than two fished (open access) areas, in both seagrass beds and coral reefs. As expected, protection effects were considerably stronger in the older and larger government MPAs. Importantly, across management and habitat types, the protection effect on the potential monetary value of the fish was much stronger than the effects on fish biomass and size (6.7 vs. 2.6 and 1.3 times higher value in community MPAs than in fished areas, respectively). This strong effect on potential value was partly explained by presence of larger (and therefore more valuable) individual fish, and partly by higher densities of high-value taxa (e.g. rabbitfish). In summary, we show that i) small and recently established community-managed MPAs can, just like larger and older government-managed MPAs, play an important role for local conservation of high-value fish, and that ii) these effects are equally strong in coral reefs as in seagrass beds; an important habitat too rarely included in formal management. Consequently, community-managed MPAs could benefit both coral reef and seagrass ecosystems and provide spillover of valuable fish to nearby fisheries.
Helenius, Laura K; Aymà Padrós, Anna; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena
2015-01-01
Planktivorous fish can exert strong top-down control on zooplankton communities. By incorporating different feeding strategies, from selective particulate feeding to cruising filter feeding, fish species target distinct prey. In this study, we investigated the effects of two species with different feeding strategies, the three-spined stickleback (Gasterosteus aculeatus (L.)) and roach (Rutilus rutilus (L.)), on a low-diversity brackish water zooplankton community using a 16-day mesocosm experiment. The experiment was conducted on a small-bodied spring zooplankton community in high-nutrient conditions, as well as a large-bodied summer community in low-nutrient conditions. Effects were highly dependent on the initial zooplankton community structure and hence seasonal variation. In a small-bodied community with high predation pressure and no dispersal or migration, the selective particulate-feeding stickleback depleted the zooplankton community and decreased its diversity more radically than the cruising filter-feeding roach. Cladocerans rather than copepods were efficiently removed by predation, and their removal caused altered patterns in rotifer abundance. In a large-bodied summer community with initial high taxonomic and functional diversity, predation pressure was lower and resource availability was high for omnivorous crustaceans preying on other zooplankton. In this community, predation maintained diversity, regardless of predator species. During both experimental periods, predation influenced the competitive relationship between the dominant calanoid copepods, and altered species composition and size structure of the zooplankton community. Changes also occurred to an extent at the level of nontarget prey, such as microzooplankton and rotifers, emphasizing the importance of subtle predation effects. We discuss our results in the context of the adaptive foraging mechanism and relate them to the natural littoral community. PMID:26045953
Andradi-Brown, Dominic A; Macaya-Solis, Consuelo; Exton, Dan A; Gress, Erika; Wright, Georgina; Rogers, Alex D
2016-01-01
Fish surveys form the backbone of reef monitoring and management initiatives throughout the tropics, and understanding patterns in biases between techniques is crucial if outputs are to address key objectives optimally. Often biases are not consistent across natural environmental gradients such as depth, leading to uncertainty in interpretation of results. Recently there has been much interest in mesophotic reefs (reefs from 30-150 m depth) as refuge habitats from fishing pressure, leading to many comparisons of reef fish communities over depth gradients. Here we compare fish communities using stereo-video footage recorded via baited remote underwater video (BRUV) and diver-operated video (DOV) systems on shallow and mesophotic reefs in the Mesoamerican Barrier Reef, Caribbean. We show inconsistent responses across families, species and trophic groups between methods across the depth gradient. Fish species and family richness were higher using BRUV at both depth ranges, suggesting that BRUV is more appropriate for recording all components of the fish community. Fish length distributions were not different between methods on shallow reefs, yet BRUV recorded more small fish on mesophotic reefs. However, DOV consistently recorded greater relative fish community biomass of herbivores, suggesting that studies focusing on herbivores should consider using DOV. Our results highlight the importance of considering what component of reef fish community researchers and managers are most interested in surveying when deciding which survey technique to use across natural gradients such as depth.
Macaya-Solis, Consuelo; Exton, Dan A.; Gress, Erika; Wright, Georgina; Rogers, Alex D.
2016-01-01
Fish surveys form the backbone of reef monitoring and management initiatives throughout the tropics, and understanding patterns in biases between techniques is crucial if outputs are to address key objectives optimally. Often biases are not consistent across natural environmental gradients such as depth, leading to uncertainty in interpretation of results. Recently there has been much interest in mesophotic reefs (reefs from 30–150 m depth) as refuge habitats from fishing pressure, leading to many comparisons of reef fish communities over depth gradients. Here we compare fish communities using stereo-video footage recorded via baited remote underwater video (BRUV) and diver-operated video (DOV) systems on shallow and mesophotic reefs in the Mesoamerican Barrier Reef, Caribbean. We show inconsistent responses across families, species and trophic groups between methods across the depth gradient. Fish species and family richness were higher using BRUV at both depth ranges, suggesting that BRUV is more appropriate for recording all components of the fish community. Fish length distributions were not different between methods on shallow reefs, yet BRUV recorded more small fish on mesophotic reefs. However, DOV consistently recorded greater relative fish community biomass of herbivores, suggesting that studies focusing on herbivores should consider using DOV. Our results highlight the importance of considering what component of reef fish community researchers and managers are most interested in surveying when deciding which survey technique to use across natural gradients such as depth. PMID:27959907
Gil Fernández, C; Paulo, D; Serrão, E A; Engelen, A H
2016-03-01
Marine protected areas (MPAs) are a relatively recent fisheries management and conservation tool for conservation of marine ecosystems and serve as experimental grounds to assess trophic cascade effects in areas were fishing is restricted to some extent. A series of descriptive field studies were performed to assess fish and benthic communities between two areas within a newly established MPA in SW Portugal. We characterized benthic macroalgal composition and determined the size, density and biomass of the main benthic predatory and herbivorous fish species as well as the main benthic herbivorous invertebrates to assess indications of top-down control on the phytobenthic assemblages. Fish species were identical inside and outside the MPA, in both cases Sarpa salpa was the most abundant fish herbivore and Diplodus spp. accounted for the great majority of the benthic predators. However, size and biomass of D. spp. were higher inside than outside the MPA. The main herbivorous invertebrate was the sea urchin Paracentrotus lividus, which was smaller and predominantly showing a crevice-dwelling behaviour in the MPA. In addition, P. lividus size frequency distribution showed a unimodal pattern outside and a bimodal pattern inside the MPA. We found significant differences in the algal assemblages between inside and outside the MPA, with higher abundance of turf and foliose algae inside, and articulated calcareous and corticated macrophytes outside the MPA, but no differences in the invasive Asparagopsis spp. The obtained results show differences in predatory fish and benthic community structure, but not in species richness, inside and outside the MPA. We hypothesize these differences lead to variation in species interactions: directly through predation and indirectly via affecting sea urchins behavioural patterns, predators might drive changes in macroalgal assemblages via trophic cascade in the study area. However due to non-biological differences between the two areas it is difficult to suggest that the MPA causes increased biological parameters of targeted species and to assess predatory control and trophic cascade effects in areas where fishing pressure is reduced. It is therefor advisable to design MPAs so that their impacts can be scientifically evaluated in a proper fashion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seemann, Janina; Yingst, Alexandra; Stuart-Smith, Rick D; Edgar, Graham J; Altieri, Andrew H
2018-01-01
Fish communities associated with coral reefs worldwide are threatened by habitat degradation and overexploitation. We assessed coral reefs, mangrove fringes, and seagrass meadows on the Caribbean coast of Panama to explore the influences of their proximity to one another, habitat cover, and environmental characteristics in sustaining biomass, species richness and trophic structure of fish communities in a degraded tropical ecosystem. We found 94% of all fish across all habitat types were of small body size (≤10 cm), with communities dominated by fishes that usually live in habitats of low complexity, such as Pomacentridae (damselfishes) and Gobiidae (gobies). Total fish biomass was very low, with the trend of small fishes from low trophic levels over-represented, and top predators under-represented, relative to coral reefs elsewhere in the Caribbean. For example, herbivorous fishes comprised 27% of total fish biomass in Panama relative to 10% in the wider Caribbean, and the small parrotfish Scarus iseri comprised 72% of the parrotfish biomass. We found evidence that non-coral biogenic habitats support reef-associated fish communities. In particular, the abundance of sponges on a given reef and proximity of mangroves were found to be important positive correlates of reef fish species richness, biomass, abundance and trophic structure. Our study indicates that a diverse fish community can persist on degraded coral reefs, and that the availability and arrangement within the seascape of other habitat-forming organisms, including sponges and mangroves, is critical to the maintenance of functional processes in such ecosystems.
Yingst, Alexandra; Stuart-Smith, Rick D.; Edgar, Graham J.; Altieri, Andrew H.
2018-01-01
Fish communities associated with coral reefs worldwide are threatened by habitat degradation and overexploitation. We assessed coral reefs, mangrove fringes, and seagrass meadows on the Caribbean coast of Panama to explore the influences of their proximity to one another, habitat cover, and environmental characteristics in sustaining biomass, species richness and trophic structure of fish communities in a degraded tropical ecosystem. We found 94% of all fish across all habitat types were of small body size (≤10 cm), with communities dominated by fishes that usually live in habitats of low complexity, such as Pomacentridae (damselfishes) and Gobiidae (gobies). Total fish biomass was very low, with the trend of small fishes from low trophic levels over-represented, and top predators under-represented, relative to coral reefs elsewhere in the Caribbean. For example, herbivorous fishes comprised 27% of total fish biomass in Panama relative to 10% in the wider Caribbean, and the small parrotfish Scarus iseri comprised 72% of the parrotfish biomass. We found evidence that non-coral biogenic habitats support reef-associated fish communities. In particular, the abundance of sponges on a given reef and proximity of mangroves were found to be important positive correlates of reef fish species richness, biomass, abundance and trophic structure. Our study indicates that a diverse fish community can persist on degraded coral reefs, and that the availability and arrangement within the seascape of other habitat-forming organisms, including sponges and mangroves, is critical to the maintenance of functional processes in such ecosystems. PMID:29610704
MacDonald, D.D.; Ingersoll, C.G.; Smorong, D.E.; Lindskoog, R.A.; Sparks, D.W.; Smith, J.R.; Simon, T.P.; Hanacek, M.A.
2002-01-01
This article is the second in a series of three that describes the results of a Natural Resource Damage Assessment (NRDA) conducted in the Grand Calumet River and Indiana Harbor Area of Concern (IHAOC). The assessment area is located in northwest Indiana and was divided into nine reaches to facilitate the assessment. This component of the NRDA was undertaken to determine if fish and wildlife resources have been injured due to exposure to contaminants that are associated with discharges of oil or releases of other hazardous substances. To support this assessment, information was compiled on the chemical composition of sediment and tissues; on the toxicity of whole sediments, pore water, and elutriates to fish; on the status of fish communities; and on fish health. The data on each of these indicators were compared to regionally relevant benchmarks to assess the presence and extent of injury to fish and wildlife resources. The results of this assessment indicate that injury to fish and wildlife resources has occurred throughout the assessment area, with up to five distinct lines of evidence demonstrating injury within the various reaches. Based on the frequency of exceedance of the benchmarks for assessing sediment and tissue chemistry data, total polychlorinated biphenyls is the primary bioaccumulative contaminant of concern in the assessment area. It is important to note, however, that this assessment was restricted by the availability of published bioaccumulation-based sediment quality guidelines, tissue residue guidelines, and other benchmarks of sediment quality conditions. The availability of chemistry data for tissues also restricted this assessment in certain reaches of the assessment area. Furthermore, insufficient information was located to facilitate identification of the substances that are causing or substantially contributing to effects on fish (i.e., sediment toxicity, impaired fish health, or impaired fish community structure). Therefore, substances not included on the list of COCs cannot necessarily be considered to be of low priority with respect to sediment injury (e.g., metals, polycyclic aromatic hydrocarbons, alkanes, alkenes, organochlorine pesticides, phthalates, dioxins, and furans, etc.).
Gorman, O.T.; Moore, S.A.; Carlson, A.J.; Quinlan, H.R.
2008-01-01
We characterized the nearshore habitat and fish community composition of approximately 300 km of shoreline within and adjacent to the major embayments of Isle Royale, Lake Superior. Sampling yielded 17 species, of which 12 were widespread and represented a common element of the Lake Superior fish community, including cisco Coregonus artedi, lake whitefish C. clupeaformis, round whitefish Prosopium cylindraceum, lake trout Salvelinus namaycush, rainbow smelt Osmerus mordax, lake chub Couesius plumbeus, longnose sucker Catostomus catostomus, white sucker C. commersonii, trout-perch Percopsis omiscomaycus, ninespine stickleback Pungitius pungitius, burbot Lota lota, and slimy sculpin Cottus cognatus. The presence of brook trout S. fontinalis in an embayment was associated with the common species of the Isle Royale nearshore fish community, particularly cisco, longnose sucker, and round whitefish. However, brook trout were present in only five embayments and were common only in Tobin Harbor. Most Isle Royale embayments had broadly overlapping ranges of nearshore habitats. Within embayments, fish were distributed along a habitat gradient from less-protected rocky habitat near the mouth to highly protected habitat with mixed and finer substrates at the head. Embayments with brook trout had greater mean protection from the open lake, greater variation in depth, greater mean cover, and higher mean frequencies of large substrates (cobble, boulder, and bedrock). Within those embayments, brook trout were associated with habitat patches with higher mean frequencies of small substrates (particularly sand and coarse gravel). Within Tobin Harbor, brook trout were associated with midembayment habitat and species assemblages, especially those locations with a mixture of sand, gravel, and cobble substrates, an absence of bedrock, and the presence of round whitefish, white sucker, and trout-perch. Comparison of embayments with the model, Tobin Harbor, showed that six embayments without brook trout had very similar arrays of habitat. However, four embayments with brook trout had relatively different arrays of habitat from Tobin Harbor. These results suggest that there is potential for further recovery of brook trout populations across Isle Royale nearshore habitats. ?? Copyright by the American Fisheries Society 2008.
Cultural and health implications of fish advisories in a Native American community
Hoover, Elizabeth
2014-01-01
Introduction Fish advisories are issued in an effort to protect human health from exposure to contaminants, but Native American communities may suffer unintended health, social, and cultural consequences as a result of warnings against eating local fish. This paper focuses on the Mohawk community of Akwesasne, which lies downstream from a Superfund site, and explores how fish advisories have impacted fish consumption and health. Methods 65 Akwesasne community members were interviewed between March 2008 and April 2009. Interviews were semi-structured, lasted from 30–90 minutes and consisted of open-ended questions about the impacts of environmental contamination on the community. Detailed field notes were also maintained during extensive visits between 2007–2011. Interviews were transcribed, and these transcripts as well as the field notes were analyzed in NVivo 8.0. This research received approval from the Akwesasne Task Force on the Environment Research Advisory Committee, as well as the Brown University Institutional Review Board. Results Three-quarters of the 50 Akwesasne Mohawks interviewed have ceased or significantly curtailed their local fish consumption due to the issuance of fish advisories or witnessing or hearing about deformities on fish. Many of these respondents have turned to outside sources of fish, from other communities or from grocery stores. This change in fish consumption concerns many residents because cultural and social connections developed around fishing are being lost and because fish has been replaced with high-fat high-carb processed foods, which has led to other health complications. One-quarter of the 50 interviewees still eat local fish, but these are generally middle-aged or older residents; fish consumption no longer occurs in the multi-generational social context it once did. Conclusions Human health in Native American communities such as Akwesasne is intimately tied to the health of the environment. Fish advisories should not be used as an institutional control to protect humans from exposure to contaminants; if Akwesasne are to achieve optimal health, the contaminated environment has to be remediated to a level that supports clean, edible fish. PMID:25243106
Using Environmental DNA to Census Marine Fishes in a Large Mesocosm
Kelly, Ryan P.; Port, Jesse A.; Yamahara, Kevan M.; Crowder, Larry B.
2014-01-01
The ocean is a soup of its resident species' genetic material, cast off in the forms of metabolic waste, shed skin cells, or damaged tissue. Sampling this environmental DNA (eDNA) is a potentially powerful means of assessing whole biological communities, a significant advance over the manual methods of environmental sampling that have historically dominated marine ecology and related fields. Here, we estimate the vertebrate fauna in a 4.5-million-liter mesocosm aquarium tank at the Monterey Bay Aquarium of known species composition by sequencing the eDNA from its constituent seawater. We find that it is generally possible to detect mitochondrial DNA of bony fishes sufficient to identify organisms to taxonomic family- or genus-level using a 106 bp fragment of the 12S ribosomal gene. Within bony fishes, we observe a low false-negative detection rate, although we did not detect the cartilaginous fishes or sea turtles present with this fragment. We find that the rank abundance of recovered eDNA sequences correlates with the abundance of corresponding species' biomass in the mesocosm, but the data in hand do not allow us to develop a quantitative relationship between biomass and eDNA abundance. Finally, we find a low false-positive rate for detection of exogenous eDNA, and we were able to diagnose non-native species' tissue in the food used to maintain the mesocosm, underscoring the sensitivity of eDNA as a technique for community-level ecological surveys. We conclude that eDNA has substantial potential to become a core tool for environmental monitoring, but that a variety of challenges remain before reliable quantitative assessments of ecological communities in the field become possible. PMID:24454960
The offshore benthic fish community
Lantry, Brian F.; Lantry, Jana R.; Weidel, Brian C.; Walsh, Maureen; Hoyle, James A.; Schaner, Teodore; Neave, Fraser B.; Keir, Michael
2014-01-01
The offshore benthic fish community will be composed of self-sustaining native fishes characterized by lake trout as the top predator, a population expansion of lake whitefish from northeastern waters to other areas of the lake, and rehabilitated native prey fishes.
Modeling the impact of hydromorphological alterations by dams and channelization on fish habitat.
NASA Astrophysics Data System (ADS)
Parasiewicz, Piotr; Suska, Katarzyna
2017-04-01
As a consequence of introduction of Water Framework Directive it has been discovered that hydromorphological pressures are one of the main causes of impact on aquatic fauna. However, the impact may vary depending on river type and fish community. To test this hypothesis, we modelled alterations of fish habitat on 6 river sections across Poland using MesoHABSIM approach. The original models of habitat for Target Fish Community were based on repeated field surveys in reference river sections, classified into four fish-ecological classes. Introducing to the models three hydromorphological modification types (damming, channelization and dredging) changed persistent habitat availability for the fish community. The change was measured with Habitat Stress Days Alteration index. Overall the modifications caused increase of habitat stress days, but impact varied depending on season, hydromorphologic river type and expected fish community.
Spatial and temporal repeatability in parasite community structure of tropical fish hosts.
Vidal-Martínez, V M; Poulin, R
2003-10-01
An assessment is made of the repeatability of parasite community structure in space for a marine fish, and in space and time for a freshwater fish from south-eastern Mexico. The marine fish species was the red grouper, Epinephelus morio (collected from 9 localities), and the freshwater species was the cichlid, Cichlasoma urophthalmus (collected from 6 localities: including monthly at 2 localities for 1 year, and bimonthly at 1 locality in 1990 and 1999). Pairwise interspecific associations and analyses of nested patterns in the distributions of parasite species among hosts were used in both fish species, with comparisons over time made only with the cichlid. Positive interspecific associations, and nested patterns were noted in some localities for both fish species, and/or at some sampling times for the cichlid fish. However, non-random patterns in the structure of parasite communities in these 2 host species only were observed sporadically. When present, nestedness in both fish species was apparently linked with a positive association between total infection intensities and fish size. Additionally, adjacent localities were more likely to display similar parasite community structure than distant ones. This preliminary result suggests that distance between localities is an important determinant of predictability in parasite community structure.
Howarth, Leigh M; Pickup, Sarah E; Evans, Lowri E; Cross, Tim J; Hawkins, Julie P; Roberts, Callum M; Stewart, Bryce D
2015-06-01
Despite recent efforts to increase the global coverage of marine protected areas (MPAs), studies investigating the effectiveness of marine protected areas within temperate waters remain scarce. Furthermore, out of the few studies published on MPAs in temperate waters, the majority focus on specific ecological or fishery components rather than investigating the ecosystem as a whole. This study therefore investigated the dynamics of both benthic communities and fish populations within a recently established, fully protected marine reserve in Lamlash Bay, Isle of Arran, United Kingdom, over a four year period. A combination of photo and diver surveys revealed live maerl (Phymatolithon calcareum), macroalgae, sponges, hydroids, feather stars and eyelash worms (Myxicola infundibulum) to be significantly more abundant within the marine reserve than on surrounding fishing grounds. Likewise, the overall composition of epifaunal communities in and outside the reserve was significantly different. Both results are consistent with the hypothesis that protecting areas from fishing can encourage seafloor habitats to recover. In addition, the greater abundance of complex habitats within the reserve appeared to providing nursery habitat for juvenile cod (Gadus morhua) and scallops (Pecten maximus and Aequipecten opercularis). In contrast, there was little difference in the abundance of mobile benthic fauna, such as crabs and starfish, between the reserve and outside. Similarly, the use of baited underwater video cameras revealed no difference in the abundance and size of fish between the reserve and outside. Limited recovery of these ecosystem components may be due to the relatively small size (2.67 km(2)) and young age of the reserve (<5 years), both of which might have limited the extent of any benefits afforded to mobile fauna and fish communities. Overall, this study provides evidence that fully protected marine reserves can encourage seafloor habitats to recover, which in turn, can create a number of benefits that flow back to other species, including those of commercial importance. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jaramillo-Torres, Alexander; Kortner, Trond M.; Merrifield, Daniel L.; Tinsley, John; Bakke, Anne Marie; Krogdahl, Åshild
2016-01-01
ABSTRACT The present study aimed to investigate whether alternative dietary protein sources modulate the microbial communities in the distal intestine (DI) of Atlantic salmon, and whether alterations in microbiota profiles are reflected in modifications in host intestinal function and health status. A 48-day feeding trial was conducted, in which groups of fish received one of five diets: a reference diet in which fishmeal (diet FM) was the only protein source and four experimental diets with commercially relevant compositions containing alternative ingredients as partial replacements of fishmeal, i.e., poultry meal (diet PM), a mix of soybean meal and wheat gluten (diet SBMWG), a mix of soy protein concentrate and poultry meal (diet SPCPM), and guar meal and wheat gluten (diet GMWG). Samples were taken of DI digesta and mucosa for microbial profiling using high-throughput sequencing and from DI whole tissue for immunohistochemistry and expression profiling of marker genes for gut health. Regardless of diet, there were significant differences between the microbial populations in the digesta and the mucosa in the salmon DI. Microbial richness was higher in the digesta than the mucosa. The digesta-associated bacterial communities were more affected by the diet than the mucosa-associated microbiota. Interestingly, both legume-based diets (SBMWG and GMWG) presented high relative abundance of lactic acid bacteria in addition to alteration in the expression of a salmon gene related to cell proliferation (pcna). It was, however, not possible to ascertain the cause-effect relationship between changes in bacterial communities and the host's intestinal responses to the diets. IMPORTANCE The intestine of cultivated Atlantic salmon shows symptoms of compromised function, which are most likely caused by imbalances related to the use of new feed ingredients. Intestinal microbiota profiling may become in the future a valuable endpoint measurement in order to assess fish intestinal health status and effects of diet. The present study aimed to gain information about whether alternative dietary protein sources modulate the microbial communities in the Atlantic salmon intestine and whether alterations in microbiota profiles are reflected in alterations in host intestinal function and health status. We demonstrate here that there are substantial differences between the intestinal digesta and mucosa in the presence and abundance of bacteria. The digesta-associated microbiota showed clear dependence on the diet composition, whereas mucosa-associated microbiota appeared to be less affected by diet composition. Most important, the study identified bacterial groups associated with diet-induced gut dysfunction that may be utilized as microbial markers of gut health status in fish. PMID:27986728
Connectivity, fish communities, and human impacts: An integrated river systems perspective
The role of connectivity between aquatic habitats in sustaining productive and healthy fish communities has become a key conservation concern. Changes in connectivity due to anthropogenic impacts can alter fish communities and put particular species at risk. In order to underst...
Yamada, Ami; Bemrah, Nawel; Veyrand, Bruno; Pollono, Charles; Merlo, Mathilde; Desvignes, Virginie; Sirot, Véronique; Oseredczuk, Marine; Marchand, Philippe; Cariou, Ronan; Antignac, Jean-Phillippe; Le Bizec, Bruno; Leblanc, Jean-Charles
2014-07-30
In this study, French marine and freshwater fish perfluoroalkyl acid (PFAA) contamination are presented along with their fatty acid (FA) composition to provide further elements for a risk/benefit balance of fish consumption to be assessed. The 29 most consumed marine fish species were collected in four metropolitan French coastal areas in 2004 to constitute composite samples. Geographical differences in terms of consumed species and contamination level were taken into account. Three hundred and eighty-seven composite samples corresponding to 16 freshwater fish species collected between 2008 and 2010 in the six major French rivers or their tributaries were selected among the French national agency for water and aquatic environments freshwater fish sample library. The raw edible parts were analyzed for FA composition and PFAA contamination. Results show that freshwater fishes are more contaminated by PFAAs than marine fishes and do not share the same contamination profile. Freshwater fish contamination is mostly driven by perfluorooctane sulfonate (PFOS) (75%), whereas marine fish contamination is split between perfluorooctanoic acid (PFOA) (24%), PFOS (20%), perfluorohexanoic acid (PFHxA) (15%), perfluoropentanoic acid (PFHpA) (11%), and perfluorobutanoic acid (PFBA) (11%). Common carp, pike-perch, European perch, thicklip grey mullet, and common roach presented the most unfavorable balance profile due to their high level of PFAAs and low level of n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). These data could be used, if needed, in an updated opinion on fish consumption that takes into account PFAA contamination.
Proximate composition, amino acid and fatty acid composition of fish maws.
Wen, Jing; Zeng, Ling; Xu, Youhou; Sun, Yulin; Chen, Ziming; Fan, Sigang
2016-01-01
Fish maws are commonly recommended and consumed in Asia over many centuries because it is believed to have some traditional medical properties. This study highlights and provides new information on the proximate composition, amino acid and fatty acid composition of fish maws of Cynoscion acoupa, Congresox talabonoides and Sciades proops. The results indicated that fish maws were excellent protein sources and low in fat content. The proteins in fish maws were rich in functional amino acids (FAAs) and the ratio of FAAs and total amino acids in fish maws ranged from 0.68 to 0.69. Among species, croaker C. acoupa contained the most polyunsaturated fatty acids, arachidonic acid, docosahexaenoic acid and eicosapntemacnioc acid, showing the lowest value of index of atherogenicity and index of thrombogenicity, showing the highest value of hypocholesterolemic/hypercholesterolemic ratio, which is the most desirable.
NASA Astrophysics Data System (ADS)
Henderson, Peter A.
2017-09-01
Changes in temporal and spatial composition of the British inshore North Sea fish community are reviewed. Sampling from the cooling water filter screens of power stations bordering the North Sea commenced in the early 1960s. To date, a total of 112 marine fish species have been recorded, a high proportion of the total inshore fish species complement of shallow North Sea British waters. The unrecorded top predators, such as large sharks, swordfish and tuna are not regularly observed in waters < 20 m deep. The greatest species number (92) is reported from fully marine waters in East Anglia. A group of 18 ubiquitous, high abundance, taxa form a core inshore community throughout the region in both estuarine and marine waters. They show a high level of concordance in relative abundance along the British east coast from the 1970s to the present. A second group of 20 species are abundant, but more restricted in habitat. Where they do occur, this group are usually always present and form together with the ubiquitous taxa the local core community. The third group of 67 species, are never abundant and are restricted in occurrence both spatially and temporally. Total species richness declines between 50 and 56°N, probably because high summer temperatures allow the southern North Sea to support summer migrants entering via the English Channel. Since the 1960s there has been a notable recovery in fish diversity and abundance in large industrialised estuaries such as the Thames and the Firth of Forth. Linked to spawning and nursery habitat gain, smelt, Osmerus eperlangus, and bass, Dicentrarchus labrax, have greatly increased in abundance. There is no evidence for a decline in species richness since the 1970s. However, elasmobranch species number has declined while two species Raja clavata and Scyliorhinus canicula have remained abundant and one, Mustelus asterias, has increased in abundance. It is argued that overexploitation and habitat destruction remain, as they have been for the last 300 years, the most serious threats to the health of North Sea inshore fish communities. There are no clear signs that climate change is causing species loss, although it may be influencing relative species abundance as species at the southern edge of their range such as the viviparous blenny, Zoarces viviparous, have declined in the southern British North Sea. Power station water temperature records do not show a warming trend, in some estuarine locations temperature has declined with reduced thermal pollution; the temperature record cannot explain the observed major changes in fish relative abundance observed since the 1970s.
Reecht, Y; Rochet, M-J; Trenkel, V M; Jennings, S; Pinnegar, J K
2013-08-01
An ecomorphological method was developed, with a focus on predation functions, to define functional groups in the Celtic Sea fish community. Eleven functional traits, measured for 930 individuals from 33 species, led to 11 functional groups. Membership of functional groups was linked to body size and taxonomy. For seven species, there were ontogenetic changes in group membership. When diet composition, expressed as the proportions of different prey types recorded in stomachs, was compared among functional groups, morphology-based predictions accounted for 28-56% of the interindividual variance in prey type. This was larger than the 12-24% of variance that could be explained solely on the basis of body size. © 2013 The Fisheries Society of the British Isles.
Burger, Joanna; Gochfeld, Michael; Fote, Tom
2013-03-01
Individuals who fish and eat self-caught fish make decisions about where to fish, the type to eat, and the quantity to eat. Federal and state agencies often issue consumption advisories for some fish with high mercury (Hg) concentrations, but seldom provide either the actual metal levels to the general public, or identify the fish that have low contaminant levels. Community participatory research is of growing importance in defining, studying, and resolving complex exposure and risk issues, and this paper is at the intersection of traditional stakeholder approaches and community-based participatory research. The objective of this paper is to describe the process whereby stakeholders (fishers), were involved in directing and refining research questions to address their particular informational needs about mercury levels in fish, potential risks, and methods to maintain health, by balancing the risks and benefits of fish consumption. A range of stakeholders, mainly individual fishers, fishing organizations, and other scientists, were involved at nearly every stage. Community participants influenced many aspects of the design and implementation of the research, in the determination of which fish species to sample, in the collection of the samples, and in the final analyses and synthesis, as well as the communication of results and implications of the research through their fishing club publications, talks and gatherings. By involving the most interested and affected communities, the data and conclusions are relevant to their needs because the fish examined were those they ate and wanted information about, and directly address concerns about the risk from consuming self-caught fish. Although mercury levels in fish presumed to be high in mercury are known, little information was available to the fishermen on mercury levels in fish that were low and thus provided little risk to their families. While community participatory research is more time-consuming and expensive than traditional scientific research, both the process and results are better scientifically in terms of community relevance.
Burger, Joanna; Gochfeld, Michael; Fote, Tom
2015-01-01
Individuals who fish and eat self-caught fish make decisions about where to fish, the type to eat, and the quantity to eat. Federal and state agencies often issue consumption advisories for some fish with high mercury (Hg) concentrations, but seldom provide either the actual metal levels to the general public, or identify the fish that have low contaminant levels. Community participatory research is of growing importance in defining, studying, and resolving complex exposure and risk issues, and this paper is at the intersection of traditional stakeholder approaches and community-based participatory research. The objective of this paper is to describe the process whereby stakeholders (fishers), were involved in directing and refining research questions to address their particular informational needs about mercury levels in fish, potential risks, and methods to maintain health, by balancing the risks and benefits of fish consumption. A range of stakeholders, mainly individual fishers, fishing organizations, and other scientists, were involved at nearly every stage. Community participants influenced many aspects of the design and implementation of the research, in the determination of which fish species to sample, in the collection of the samples, and in the final analyses and synthesis, as well as the communication of results and implications of the research through their fishing club publications, talks and gatherings. By involving the most interested and affected communities, the data and conclusions are relevant to their needs because the fish examined were those they ate and wanted information about, and directly address concerns about the risk from consuming self-caught fish. Although mercury levels in fish presumed to be high in mercury are known, little information was available to the fishermen on mercury levels in fish that were low and thus provided little risk to their families. While community participatory research is more time-consuming and expensive than traditional scientific research, both the process and results are better scientifically I in terms of community relevance. PMID:23413085
Summer Fish Communities in Northern Gulf of Mexico Estuaries: Indices of Ecological Condition
We used fish community data from trawl samples in >100 estuaries, bayous, and coastal lagoons of the Louisianan Biogeographic Province (Gulf of Mexico) to develop indicators of ecological condition. One data set, from which we derived reference values for fish community indicator...
Timi, Juan T
2007-06-01
The use of parasites as biological tags in population studies of marine fish in the south-western Atlantic has proved to be a successful tool for discriminating stocks for all species to which it has been applied, namely: Scomber japonicus, Engraulis anchoita, Merluccius hubbsi and Cynoscion guatucupa, the latter studied on a broader geographic scale, including samples from Uruguayan and Brazilian waters. The distribution patterns of marine parasites are determined mainly by temperature-salinity profiles and by their association with specific masses of water. Analyses of distribution patterns of some parasite species in relation to gradients in environmental (oceanographic) conditions showed that latitudinal gradients in parasite distribution are common in the study area, and are probably directly related to water temperature. Indeed, temperature, which is a good predictor of latitudinal gradients of richness and diversity of species, shows a latitudinal pattern in south-western Atlantic coasts, decreasing southwards, due to the influence of subtropical and subantarctic marine currents flowing along the edge of the continental slope. This pattern also determines the distribution of zooplankton, with a characteristic specific composition in different water masses. The gradient in the distribution of parasites determines differential compositions of their communities at different latitudes, which makes possible the identification of different stocks of their fish hosts. Other features of the host-parasite systems contributing to the success of the parasitological method are: (1) parasites identified as good biological tags (i.e. anisakids) are widely distributed in the local fauna; (2) many of these species show low specificity and use paratenic hosts; and (3) the structure of parasite communities are, to a certain degree, predictable in time and space.
Perez, Christina R.; Bonar, Scott A.; Amberg, Jon J.; Ladell, Bridget; Rees, Christopher B.; Stewart, William T.; Gill, Curtis J.; Cantrell, Chris; Robinson, Anthony
2017-01-01
Recently, methods involving examination of environmental DNA (eDNA) have shown promise for characterizing fish species presence and distribution in waterbodies. We evaluated the use of eDNA for standard fish monitoring surveys in a large reservoir. Specifically, we compared the presence, relative abundance, biomass, and relative percent composition of Largemouth Bass Micropterus salmoides and Gizzard Shad Dorosoma cepedianum measured through eDNA methods and established American Fisheries Society standard sampling methods for Theodore Roosevelt Lake, Arizona. Catches at electrofishing and gillnetting sites were compared with eDNA water samples at sites, within spatial strata, and over the entire reservoir. Gizzard Shad were detected at a higher percentage of sites with eDNA methods than with boat electrofishing in both spring and fall. In contrast, spring and fall gillnetting detected Gizzard Shad at more sites than eDNA. Boat electrofishing and gillnetting detected Largemouth Bass at more sites than eDNA; the exception was fall gillnetting, for which the number of sites of Largemouth Bass detection was equal to that for eDNA. We observed no relationship between relative abundance and biomass of Largemouth Bass and Gizzard Shad measured by established methods and eDNA copies at individual sites or lake sections. Reservoirwide catch composition for Largemouth Bass and Gizzard Shad (numbers and total weight [g] of fish) as determined through a combination of gear types (boat electrofishing plus gillnetting) was similar to the proportion of total eDNA copies from each species in spring and fall field sampling. However, no similarity existed between proportions of fish caught via spring and fall boat electrofishing and the proportion of total eDNA copies from each species. Our study suggests that eDNA field sampling protocols, filtration, DNA extraction, primer design, and DNA sequencing methods need further refinement and testing before incorporation into standard fish sampling surveys.
South Atlantic Bight Synoptic Offshore Observational Network
1999-09-30
GOAL The long term goal is to evaluate underwater television for providing fishery managers real-time visual data on reef fish communities which will... overfishing , that a complete moratorium on fishing for this species has been suggested by the South Atlantic Fishery Management Council. There is a...our understanding of fish community dynamics. Also, SC DNR fishery scientists are conducting research on fish communities of artificial reef that are
Regime Shift in an Exploited Fish Community Related to Natural Climate Oscillations.
Auber, Arnaud; Travers-Trolet, Morgane; Villanueva, Maria Ching; Ernande, Bruno
2015-01-01
Identifying the various drivers of marine ecosystem regime shifts and disentangling their respective influence are critical tasks for understanding biodiversity dynamics and properly managing exploited living resources such as marine fish communities. Unfortunately, the mechanisms and forcing factors underlying regime shifts in marine fish communities are still largely unknown although climate forcing and anthropogenic pressures such as fishing have been suggested as key determinants. Based on a 24-year-long time-series of scientific surveys monitoring 55 fish and cephalopods species, we report here a rapid and persistent structural change in the exploited fish community of the eastern English Channel from strong to moderate dominance of small-bodied forage fish species with low temperature preferendum that occurred in the mid-1990s. This shift was related to a concomitant warming of the North Atlantic Ocean as attested by a switch of the Atlantic Multidecadal Oscillation from a cold to a warm phase. Interestingly, observed changes in the fish community structure were opposite to those classically induced by exploitation as larger fish species of higher trophic level increased in abundance. Despite not playing a direct role in the regime shift, fishing still appeared as a forcing factor affecting community structure. Moreover, although related to climate, the regime shift may have been facilitated by strong historic exploitation that certainly primed the system by favoring the large dominance of small-bodied fish species that are particularly sensitive to climatic variations. These results emphasize that particular attention should be paid to multidecadal natural climate variability and its interactions with both fishing and climate warming when aiming at sustainable exploitation and ecosystem conservation.
Chang, Larry W; Grabowski, Mary K; Ssekubugu, Robert; Nalugoda, Fred; Kigozi, Godfrey; Nantume, Betty; Lessler, Justin; Moore, Sean M; Quinn, Thomas C; Reynolds, Steven J; Gray, Ronald H; Serwadda, David; Wawer, Maria J
2016-01-01
Summary Background Understanding the extent to which HIV burden differs across communities and the drivers of local disparities is critical for an effective and targeted HIV response. We assessed community-level variations in HIV prevalence, risk factors, and treatment and prevention service uptake in Rakai, Uganda. Methods The Rakai Community Cohort Study (RCCS) is an open, population-based cohort surveying persons aged 15–49 in 40 communities. Participants are HIV tested and interviewed to obtain sociodemographic, behavioral, and health information. RCCS data from August 2011 to May 2013 were used to classify communities as agrarian (n=27), trading (n=9), or lakeside fishing sites (n=4). HIV prevalence was mapped using Bayesian methods, and variability across and within community classifications was characterized. Differences in HIV risk factors and uptake of antiretroviral therapy and male circumcision between community types were assessed. Findings 17,119 individuals were included; 9215 (54%) were female. 9931 participants resided in agrarian, 3318 in trading, and 3870 in fishing communities. There was large variation in HIV prevalence, ranging from 9% to 43% across communities. Fishing communities had a higher median HIV prevalence (41%, range: 37–43%) compared to trading (17%, range: 11–22%) and agrarian communities (14%, range: 9–26%); ART and male circumcision coverage were significantly lower in fishing communities. Self-reported risk behaviors were significantly higher in men compared to women and in fishing communities compared to other community types. Interpretation There is substantial heterogeneity in HIV prevalence, risk factors, and service uptake across communities within one region of Uganda. These findings underscore the need for local surveillance and have important implications for the design of targeted HIV responses. In particular, the extremely high HIV burden and risk behaviors, and low use of combination HIV prevention in fishing communities make these areas a priority for intervention. PMID:27470029
Developing fish trophic interaction indicators of climate change for the Great Lakes
Kraus, Richard T.; Knight, Carey T.; Gorman, Ann Marie; Kocovsky, Patrick M.; Weidel, Brian C.; Rogers, Mark W.
2016-01-01
This project addressed regional climate change effects on aquatic food webs in the Great Lakes. We sought insights by examining Lake Erie as a representative system with a high level of anthropogenic impacts, strong nutrient gradients, seasonal hypoxia, and spatial overlap of cold- and cool-water fish guilds. In Lake Erie and in large embayments throughout the Great Lakes basin, this situation is a concern for fishery managers, as climate change may exacerbate hypoxia and reduce habitat volume for some species. We examined fish community composition, fine-scale distribution, prey availability, diets, and biochemical tracers for dominant fishes from study areas with medium-high nutrient levels (mesotrophic, Fairport study area), and low nutrient levels (oligotrophic, Erie study area). This multi-year database (2011-2013) provides the ability to contrast years with wide variation in rainfall, winter ice-cover, and thermal stratification. In addition, multiple indicators of dietary and distributional responses to environmental variability will allow resource managers to select the most informative approach for addressing specific climate change questions. Our results support the incorporation of some relatively simple and cost-efficient approaches into existing agency monitoring programs to track the near-term condition status of fish and fish community composition by functional groupings. Other metrics appear better suited for understanding longer-term changes, and may take more resources to implement on an ongoing basis. Although we hypothesized that dietary overlap and similarity in selected species would be sharply different during thermal stratification and hypoxic episodes, we found little evidence of this. Instead, to our surprise, this study found that fish tended to aggregate at the edges of hypoxia, highlighting potential spatial changes in catch efficiency of the fishery. This work has had several positive impacts on a wide range of resource management and stakeholder activities, most notably in Lake Erie. The results were instrumental in the development of an interim decision rule for dealing with data collected during hypoxic events to improve stock assessment of Yellow Perch. In addition, novel findings from this study regarding spatial and temporal variability in hypoxia have aided US-Environmental Protection Agency in the development of a modified sampling protocol to more accurately quantify the central basin hypoxic zone, and this directly addressed a goal of the Great Lakes Water Quality Agreement of 2012 to reduce the extent and severity of hypoxia. Finally, the study areas developed in this project formed the basis for food web sampling in the 2014 bi-national Coordinated Science and Monitoring Initiative work in Lake Erie.
2011-01-01
Background With the increased use of ploidy manipulation in aquaculture and fisheries management this investigation aimed to determine whether triploidy influences culturable intestinal microbiota composition and bacterial drug resistance in Atlantic salmon (Salmo salar). The results could provide answers to some of the physiological differences observed between triploid and diploid fish, especially in terms of fish health. Results No ploidy effect was observed in the bacterial species isolated, however, triploids were found to contain a significant increase in total gut microbiota levels, with increases in Pseudomonas spp., Pectobacterium carotovorum, Psychrobacter spp., Bacillus spp., and Vibrio spp., (12, 42, 9, 10, and 11% more bacteria in triploids than diploids, respectively), whereas a decrease in Carnobacterium spp., within triploids compared to diploids was close to significant (8% more bacteria in diploids). With the exception of gentamicin, where no bacterial resistance was observed, bacterial isolates originating from triploid hosts displayed increased resistance to antibacterials, three of which were significant (tetracycline, trimethoprim, and sulphonamide). Conclusion Results indicate that triploidy influences both the community and drug resistance of culturable intestinal microbiota in juvenile salmon. These results demonstrate differences that are likely to contribute to the health of triploid fish and have important ramifications on the use of antibacterial drugs within aquaculture. PMID:22094054
Gelcich, Stefan; Fernández, Miriam; Godoy, Natalio; Canepa, Antonio; Prado, Luis; Castilla, Juan Carlos
2012-12-01
Territorial user rights for fisheries have been advocated as a way to achieve sustainable resource management. However, few researchers have empirically assessed their potential as ancillary marine conservation instruments by comparing them to no-take marine protected areas. In kelp (Lessonia trabeculata) forests of central Chile, we compared species richness, density, and biomass of macroinvertebrates and reef fishes among territorial-user-right areas with low-level and high-level enforcement, no-take marine protected areas, and open-access areas in 42 100-m subtidal transects. We also assessed structural complexity of the kelp forest and substratum composition. Multivariate randomized permutation tests indicated macroinvertebrate and reef fish communities associated with the different access regimes differed significantly. Substratum composition and structural complexity of kelp forest did not differ among access regimes. Univariate analyses showed species richness, biomass, and density of macroinvertebrates and reef fishes were greater in highly enforced territorial-user-right areas and no-take marine protected areas than in open-access areas. Densities of macroinvertebrates and reef fishes of economic importance were not significantly different between highly enforced territorial-user-right and no-take marine protected areas. Densities of economically important macroinvertebrates in areas with low-level enforcement were significantly lower than those in areas with high-level enforcement and no-take marine protected areas but were significantly higher than in areas with open access. Territorial-user-right areas could be important ancillary conservation instruments if they are well enforced. ©2012 Society for Conservation Biology.
Dencker, Tim Spaanheden; Pecuchet, Laurene; Beukhof, Esther; Richardson, Katherine; Payne, Mark R; Lindegren, Martin
2017-01-01
Biodiversity is a multifaceted concept, yet most biodiversity studies have taken a taxonomic approach, implying that all species are equally important. However, species do not contribute equally to ecosystem processes and differ markedly in their responses to changing environments. This recognition has led to the exploration of other components of biodiversity, notably the diversity of ecologically important traits. Recent studies taking into account both taxonomic and trait diversity have revealed that the two biodiversity components may exhibit pronounced temporal and spatial differences. These apparent incongruences indicate that the two components may respond differently to environmental drivers and that changes in one component might not affect the other. Such incongruences may provide insight into the structuring of communities through community assembly processes, and the resilience of ecosystems to change. Here we examine temporal and spatial patterns and drivers of multiple marine biodiversity indicators using the North Sea fish community as a case study. Based on long-term spatially resolved survey data on fish species occurrences and biomasses from 1983 to 2014 and an extensive trait dataset we: (i) investigate temporal and spatial incongruences between taxonomy and trait-based indicators of both richness and evenness; (ii) examine the underlying environmental drivers and, (iii) interpret the results in the context of assembly rules acting on community composition. Our study shows that taxonomy and trait-based biodiversity indicators differ in time and space and that these differences are correlated to natural and anthropogenic drivers, notably temperature, depth and substrate richness. Our findings show that trait-based biodiversity indicators add information regarding community composition and ecosystem structure compared to and in conjunction with taxonomy-based indicators. These results emphasize the importance of examining and monitoring multiple indicators of biodiversity in ecological studies as well as for conservation and ecosystem-based management purposes.
Pecuchet, Laurene; Beukhof, Esther; Richardson, Katherine; Payne, Mark R.; Lindegren, Martin
2017-01-01
Biodiversity is a multifaceted concept, yet most biodiversity studies have taken a taxonomic approach, implying that all species are equally important. However, species do not contribute equally to ecosystem processes and differ markedly in their responses to changing environments. This recognition has led to the exploration of other components of biodiversity, notably the diversity of ecologically important traits. Recent studies taking into account both taxonomic and trait diversity have revealed that the two biodiversity components may exhibit pronounced temporal and spatial differences. These apparent incongruences indicate that the two components may respond differently to environmental drivers and that changes in one component might not affect the other. Such incongruences may provide insight into the structuring of communities through community assembly processes, and the resilience of ecosystems to change. Here we examine temporal and spatial patterns and drivers of multiple marine biodiversity indicators using the North Sea fish community as a case study. Based on long-term spatially resolved survey data on fish species occurrences and biomasses from 1983 to 2014 and an extensive trait dataset we: (i) investigate temporal and spatial incongruences between taxonomy and trait-based indicators of both richness and evenness; (ii) examine the underlying environmental drivers and, (iii) interpret the results in the context of assembly rules acting on community composition. Our study shows that taxonomy and trait-based biodiversity indicators differ in time and space and that these differences are correlated to natural and anthropogenic drivers, notably temperature, depth and substrate richness. Our findings show that trait-based biodiversity indicators add information regarding community composition and ecosystem structure compared to and in conjunction with taxonomy-based indicators. These results emphasize the importance of examining and monitoring multiple indicators of biodiversity in ecological studies as well as for conservation and ecosystem-based management purposes. PMID:29253876
Sargassum-associated mobile fauna communities in the Caribbean, Gulf of Mexico, and Sargasso Sea
NASA Astrophysics Data System (ADS)
Martin, L.; Schell, J. M.; Goodwin, D.; Biggs, D.; Siuda, A. N.
2016-02-01
Sargassum natans and S. fluitans are entirely pelagic, offering a pseudo-benthic structural habitat for an associated community of mobile fauna. In turn, the mobile fauna community supports foraging seabirds, fish, and turtles. Recent satellite observations suggest Sargassum in the Sargasso Sea is seeded annually from the Gulf of Mexico. Furthermore, the Caribbean is in the midst of a Sargassum inundation that appears disconnected in origin from the Sargasso Sea and Gulf of Mexico. Sargassum and fauna were collected via dip net during spring and summer 2015 from the Gulf of Mexico, Sargasso Sea and Eastern Caribbean to study the impacts that region, aggregation pattern (isolated clump, windrow, mat), and Sargassum variety morphology have on mobile fauna community composition. Sargassum from all three regions shared five common (frequency >10%) species: flatworm spp., Portunus sayi, Litiopa melanostoma, Leander tenuicornis, and Latreutes fucorum). The Gulf presented the most unique species (9 unique / 16 total) followed by the Sargasso Sea (5 unique / 12 total) and the Caribbean (1 unique / 6 total). The majority of species unique to the Gulf of Mexico were juvenile fish while those in the Caribbean and Sargasso Sea were benthic-like species residing on the Sargassum itself. Differences in the morphological forms of Sargassum had a marked effect on fauna diversity and abundance. In all three regions, fewer individuals and species were found on the broad-leafed, less compact S. natans VIII than on the denser S. natans I and S. fluitans III. This study identifies the differences in macrofauna abundance and diversity between varieties of Sargassum and highlights the potential for dramatic community changes that could result from largescale Sargassum blooms and species shifts. Any shift in these keystone communities could result in negative cascading effects on seabirds, economically important fish populations, and juvenile turtles which use the seaweed as a nursery habitat.
NASA Astrophysics Data System (ADS)
Silva-Júnior, C. A. B.; Mérigot, B.; Lucena-Frédou, F.; Ferreira, B. P.; Coxey, M. S.; Rezende, S. M.; Frédou, T.
2017-11-01
Environmental changes and human activities may have strong impacts on biodiversity and ecosystem functioning. While biodiversity is traditionally based on species richness and composition, there is a growing concern to take into account functional diversity to assess and manage species communities. In spite of their economic importance, functional diversity quantified by a traits-based approach is still poorly documented in tropical estuaries. In this study, the functional diversity of fishes was investigated within four estuaries in Pernambuco state, northeast of Brazil. These areas are subject to different levels of human impact (e.g. mangrove deforestation, shrimp farming, fishing etc.) and environmental conditions. Fishes were collected during 34 scientific surveys. A total of 122 species were identified and 12 functional traits were quantified describing two main functions: food acquisition and locomotion. Fish abundance and functional dissimilarities data were combined into a multivariate analysis, the Double Principal Coordinate Analysis, to identify the functional typology of fish assemblages according to the estuary. Results showed that Itapissuma, the largest estuary with a wider mangrove forest area, differs from the other three estuaries, showing higher mean values per samples of species richness S and quadratic entropy Q. Similarly, it presented a different functional typology (the first two axes of the DPCoA account for 68.7% of total inertia, while those of a traditional PCA based solely on species abundances provided only 17.4%). Conversely, Suape, Sirinhaém, and to a lower extent Rio Formoso, showed more similarity in their diversity. This result was attributed to their predominantly marine influenced hydrological features, and similar levels of species abundances and in morphological traits. Overall, this study, combining diversity indices and a recent multivariate analysis to access species contribution to functional typology, allows to deepen diversity assessment by providing additional information regarding the functional pattern of fish assemblages.
Status of pelagic prey fishes and pelagic macroinvertebrates in Lake Michigan, 2008
Warner, David M.; Claramunt, Randall M.; Holuszko, Jeffrey D.; Desorcie, Timothy J.
2009-01-01
Acoustic surveys were conducted in late summer/early fall during the years 1992-1996 and 2001-2008 to estimate pelagic prey fish biomass in Lake Michigan. Midwater trawling during the surveys provided a measure of species and size composition of the fish community for use in scaling acoustic data and providing species-specific abundance estimates. In 2005, we began sampling Mysis diluviana during the survey. The 2008 survey provided data from 24 acoustic transects (734 km), 33 midwater tows, and 39 mysid tows. Mean total prey fish biomass was 15.3 kg/ha (relative standard error, RSE = 7.6%) or ~82 kilotonnes (kt, 1,000 metric tons), which was 1.9 times higher than the estimate for 2007 but 78% lower than the long-term mean. The increase from 2007 was because of increased biomass of age-1 and age-3 alewife. The 2008 alewife year-class contributed ~12% of total alewife biomass (11.0 kg/ha, RSE = 9.0%), while the 2007 and 2005 alewife year-classes contributed ~33% and 35%, respectively. In 2008, alewife comprised 72% of total biomass, while rainbow smelt and bloater were 11 and 17% of total biomass, respectively. Rainbow smelt biomass in 2008 (1.6 kg/ha, RSE = 10.6%) was identical to the biomass in 2007 (1.6 kg/ha). Bloater biomass was again much lower (2.6 kg/ha, RSE = 15.2%) than in the 1990s, but mean density of small bloater in 2008 (534 fish/ha, RSE = 10.9) was the highest observed in any acoustic survey on record. Prey fish biomass remained well below the Fish Community Objectives target of 500-800 kt and only alewife and small bloater are above or near long-term mean biomass levels. Mysis diluviana remains relatively abundant. Mean density ranged from 185 ind./m2 (RSE = 6.8%) in 2005 to 112 ind./m2 (RSE = 5.1%) in 2007, but there was not a statistically significant difference among years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Erika C.; Gido, Keith B.; Bello, Nora
Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwatermore » prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources across habitat types and locations within a reach can therefore be influenced by the taxonomic and functional composition of fishes in small prairie streams. Thus, disturbances that alter diversity of these systems might have unexpected ecosystem-level consequences.« less
Martin, Erika C.; Gido, Keith B.; Bello, Nora; ...
2016-04-06
Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwatermore » prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources across habitat types and locations within a reach can therefore be influenced by the taxonomic and functional composition of fishes in small prairie streams. Thus, disturbances that alter diversity of these systems might have unexpected ecosystem-level consequences.« less
NASA Astrophysics Data System (ADS)
Kholis, N.; Patria, M. P.; Soedjiarti, T.
2017-07-01
Research of composition and diversity of fish species in seagrass bed ecosystem at Muara Binuangeun, Lebak, Banten, had been conducted in May and November 2015. Catch per Unit of Effort (CPUE) was used as a method with push net and boat net as fishing gear. Fishing was conducted during low tide. Collected samples were preserved with 10 % Formalin Solution and then being identified in the laboratory. In total, 286 fishes were collected from 17 families and 38 species. Moolgarda sp. was the most relative abundant species (17,13 %) and Istiblennius edentulus was a fish species with the highest relative frequency. Diversity index value of seagrass bed ecosystem was 2,973. Different sampling time showed the different composition of fish, in an example of Arothron immaculatus.
Species succession and sustainability of the Great Lakes fish community
Eshenroder, Randy L.; Burnham-Curtis, Mary K.; Taylor, William W.; Ferreri, C. Paola
1999-01-01
This article concentrates on the sustainability of the offshore pelagic and deepwater fish communities that were historically dominated by lake trout (Salvelinus namaycush). The causes of alteration in these fish communities (i.e., overfishing, introductions, and cultural eutrophication) were identified by Loftus and Regier (1972). Here we look at the ecology of these altered communities in relation to sustainability and discuss the need for restoration.
Schloesser, J.T.; Paukert, Craig P.; Doyle, W.J.; Hill, T.; Steffensen, K.D.; Travnichek, Vincent H.
2012-01-01
Large rivers throughout the world have been modified by using dike structures to divert water flows to deepwater habitats to maintain navigation channels. These modifications have been implicated in the decline in habitat diversity and native fishes. However, dike structures have been modified in the Missouri River USA to increase habitat diversity to aid in the recovery of native fishes. We compared species occupancy and fish community composition at natural sandbars and at notched and un-notched rock dikes along the lower Missouri River to determine if notching dikes increases species diversity or occupancy of native fishes. Fish were collected using gill nets, trammel nets, otter trawls, and mini fyke nets throughout the lower 1212 river km of the Missouri River USA from 2003 to 2006. Few differences in species richness and diversity were evident among engineered dike structures and natural sandbars. Notching a dike structure had no effect on proportional abundance of fluvial dependents, fluvial specialists, and macrohabitat generalists. Occupancy at notched dikes increased for two species but did not differ for 17 other species (81%). Our results suggest that dike structures may provide suitable habitats for fluvial species compared with channel sand bars, but dike notching did not increase abundance or occupancy of most Missouri River fishes. Published in 2011 by John Wiley & Sons, Ltd.
Fish community dynamics following dam removal in a fragmented agricultural stream
Kornis, Matthew; Weidel, Brian C.; Powers, Stephens; Diebel, Matthew W.; Cline, Timpthy; Fox, Justin; Kitchell, James F.
2014-01-01
Habitat fragmentation impedes dispersal of aquatic fauna, and barrier removal is increasingly used to increase stream network connectivity and facilitate fish dispersal. Improved understanding of fish community response to barrier removal is needed, especially in fragmented agricultural streams where numerous antiquated dams are likely destined for removal. We examined post-removal responses in two distinct fish communities formerly separated by a small aging mill dam. The dam was removed midway through the 6 year study, enabling passage for downstream fishes affiliated with a connected reservoir into previously inaccessible habitat, thus creating the potential for taxonomic homogenization between upstream and downstream communities. Both communities changed substantially post-removal. Two previously excluded species (white sucker, yellow perch) established substantial populations upstream of the former dam, contributing to a doubling of total fish biomass. Meanwhile, numerical density of pre-existing upstream fishes declined. Downstream, largemouth bass density was inversely correlated with prey fish density throughout the study, while post-removal declines in bluegill density coincided with cooler water temperature and increased suspended and benthic fine sediment. Upstream and downstream fish communities became more similar post-removal, represented by a shift in Bray-Curtis index from 14 to 41 % similarity. Our findings emphasize that barrier removal in highly fragmented stream networks can facilitate the unintended and possibly undesirable spread of species into headwater streams, including dispersal of species from remaining reservoirs. We suggest that knowledge of dispersal patterns for key piscivore and competitor species in both the target system and neighboring systems may help predict community outcomes following barrier removal.
Effectiveness of terrestrial protected areas for conservation of lake fish communities.
Chu, Cindy; Ellis, Lucy; de Kerckhove, Derrick T
2018-06-01
Freshwater protected areas are rare even though freshwater ecosystems are among the most imperiled in the world. Conservation actions within terrestrial protected areas (TPAs) such as development or resource extraction regulations may spill over to benefit freshwater ecosystems within their boundaries. Using data from 175 lakes across Ontario, Canada, we compared common indicators of fish-assemblage status (i.e., species richness, Shannon diversity index, catch per unit effort, and normalized-length size spectrum slopes) to evaluate whether TPAs benefit lake fish assemblages. Nearest neighbor cluster analysis was used to generate pairs of lakes: inside versus outside, inside versus bordering, and bordering versus outside TPAs based on lake characteristics. The diversity and abundance indicators did not differ significantly across comparisons, but normalized-length size spectrum slopes (NLSS) were significantly steeper in lakes outside parks. The latter indicated assemblage differences (greater abundances of small-bodied species) and less-efficient energy transfer through the trophic levels of assemblages outside parks. Although not significantly different, pollution- and turbidity-tolerant species were more abundant outside parks, whereas 3 of the 4 pollution-intolerant species were more abundant within parks. Twenty-one percent of the difference in slopes was related to higher total dissolved solids concentrations and angling pressure. Our results support the hypothesis that TPAs benefit lake fish assemblages and suggest that NLSS slopes are informative indicators for aquatic protected area evaluations because they represent compositional and functional aspects of communities. © 2017 Society for Conservation Biology.
1985-06-01
necessary for complete control. The third weed group includes purslane , spotted spurge and knotweed. These weeds may be controlled with dicamba. [j 4...of marsh communities varies with salinity gradients fron brackish to fresh waters. Hideaway Pond has a completely fresh water marsh (no tidal...or pocket marshes convolute the shoreline of Tetotum Flats along Upper Machodoc Creek. Species composition varies with salinity and those pockets
Spietz, Rachel L; Williams, Cheryl M; Rocap, Gabrielle; Horner-Devine, M Claire
2015-01-01
Pelagic ecosystems can become depleted of dissolved oxygen as a result of both natural processes and anthropogenic effects. As dissolved oxygen concentration decreases, energy shifts from macrofauna to microorganisms, which persist in these hypoxic zones. Oxygen-limited regions are rapidly expanding globally; however, patterns of microbial communities associated with dissolved oxygen gradients are not yet well understood. To assess the effects of decreasing dissolved oxygen on bacteria, we examined shifts in bacterial community structure over space and time in Hood Canal, Washington, USA-a glacial fjord-like water body that experiences seasonal low dissolved oxygen levels known to be detrimental to fish and other marine organisms. We found a strong negative association between bacterial richness and dissolved oxygen. Bacterial community composition across all samples was also strongly associated with the dissolved oxygen gradient, and significant changes in bacterial community composition occurred at a dissolved oxygen concentration between 5.18 and 7.12 mg O2 L(-1). This threshold value of dissolved oxygen is higher than classic definitions of hypoxia (<2.0 mg O2 L(-1)), suggesting that changes in bacterial communities may precede the detrimental effects on ecologically and economically important macrofauna. Furthermore, bacterial taxa responsible for driving whole community changes across the oxygen gradient are commonly detected in other oxygen-stressed ecosystems, suggesting that the patterns we uncovered in Hood Canal may be relevant in other low oxygen ecosystems.
mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling.
Scott, Finlay; Blanchard, Julia L; Andersen, Ken H
2014-10-01
Size spectrum ecological models are representations of a community of individuals which grow and change trophic level. A key emergent feature of these models is the size spectrum; the total abundance of all individuals that scales negatively with size. The models we focus on are designed to capture fish community dynamics useful for assessing the community impacts of fishing.We present mizer , an R package for implementing dynamic size spectrum ecological models of an entire aquatic community subject to fishing. Multiple fishing gears can be defined and fishing mortality can change through time making it possible to simulate a range of exploitation strategies and management options. mizer implements three versions of the size spectrum modelling framework: the community model, where individuals are only characterized by their size; the trait-based model, where individuals are further characterized by their asymptotic size; and the multispecies model where additional trait differences are resolved.A range of plot, community indicator and summary methods are available to inspect the results of the simulations.
Homogeneity of coral reef communities across 8 degrees of latitude in the Saudi Arabian Red Sea.
Roberts, May B; Jones, Geoffrey P; McCormick, Mark I; Munday, Philip L; Neale, Stephen; Thorrold, Simon; Robitzch, Vanessa S N; Berumen, Michael L
2016-04-30
Coral reef communities between 26.8 °N and 18.6 °N latitude in the Saudi Arabian Red Sea were surveyed to provide baseline data and an assessment of fine-scale biogeography of communities in this region. Forty reefs along 1100 km of coastline were surveyed using depth-stratified visual transects of fish and benthic communities. Fish abundance and benthic cover data were analyzed using multivariate approaches to investigate whether coral reef communities differed with latitude. A total of 215 fish species and 90 benthic categories were recorded on the surveys. There were no significant differences among locations in fish abundance, species richness, or among several diversity indices. Despite known environmental gradients within the Red Sea, the communities remained surprisingly similar. The communities do, however, exhibit subtle changes across this span of reefs that likely reflect the constrained distributions of several species of reef fish and benthic fauna. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fytilis, N.; Lamb, R.; Kerans, B.; Stevens, L.; Rizzo, D. M.
2011-12-01
Fish diseases are often caused by waterborne parasites, making them ideal systems for modeling the non-linear relationships between disease dynamics, stream dwelling oligochaete communities and geochemical features. Myxobolus cerebralis, the causative agent of whirling disease in salmonid fishes, has been a major contributor to the loss of wild rainbow trout populations in numerous streams within the Intermountain West. The parasite alternates between an invertebrate and vertebrate host, being transmitted between the sediment feeding worm Tubifex tubifex (T.tubifex) and salmonid fishes. Worm community biodiversity and abundance are influenced by biogeochemical features and have been linked to disease severity in fish. The worm (T.tubifex) lives in communities with 3-4 other types of worms in stream sediments. Unfortunately, taxonomic identification of oligochaetes is largely dependent on morphological characteristics of sexually mature adults. We have collected and identified ~700 worms from eight sites using molecular genetic probes and a taxonomic key. Additionally, ~1700 worms were identified using only molecular genetic probes. To facilitate distinguishing among tubificids, we developed two multiplex molecular genetic probe-based quantitative polymerase reaction (qPCR) assays to assess tubificid communities in the study area. Similar qPCR techniques specific for M.cerebralis used to determine if individual worms were infected with the parasite. We show how simple Bayesian analysis of the qPCR data can predict the worm community structure and reveal relationships between biodiversity of host communities and host-parasite dynamics. To our knowledge, this is the first study that combines molecular data of both the host and the parasite to examine the effects of host community structure on the transmission of a parasite. Our work can be extended to examine the links between worm community structure and biogeochemical features using molecular genetics and Bayesian statistics to assist in identifying new nonlinear relationships and suggest new subsets of input parameters. Future work includes the development of a new complex systems tool capable of assimilating biological DNA sequence data and biogeochemical features using artificial neural networks and Bayesian analysis. The methodologies developed here helped mine the relationships between biodiversity of host communities and host-parasite dynamics. The results from our study will be useful to managers and researchers for assessing the risk of whirling disease in drainages where tubificid community composition data are needed. This collaboration between modelers, field ecologists and geneticists will prove useful in modeling efforts and will enable more effective, high-volume hypothesis generation. The ability to characterize areas of high whirling disease risk is essential for improving our understanding of the dynamics of M.cerebralis such that appropriate management strategies can be implemented.
Southern marl prairies conceptual ecological model
Davis, S.M.; Loftus, W.F.; Gaiser, E.E.; Huffman, A.E.
2005-01-01
About 190,000 ha of higher-elevation marl prairies flank either side of Shark River Slough in the southern Everglades. Water levels typically drop below the ground surface each year in this landscape. Consequently, peat soil accretion is inhibited, and substrates consist either of calcitic marl produced by algal periphyton mats or exposed limestone bedrock. The southern marl prairies support complex mosaics of wet prairie, sawgrass sawgrass (Cladium jamaicense), tree islands, and tropical hammock communities and a high diversity of plant species. However, relatively short hydroperiods and annual dry downs provide stressful conditions for aquatic fauna, affecting survival in the dry season when surface water is absent. Here, we present a conceptual ecological model developed for this landscape through scientific concensus, use of empirical data, and modeling. The two major societal drivers affecting the southern marl prairies are water management practices and agricultural and urban development. These drivers lead to five groups of ecosystem stressors: loss of spatial extent and connectivity, shortened hydroperiod and increased drought severity, extended hydroperiod and drying pattern reversals, introduction and spread of non-native trees, and introduction and spread of non-native fishes. Major ecological attributes include periphyton mats, plant species diversity and community mosaic, Cape Sable seaside sparrow (Ammodramus maritimus mirabilis), marsh fishes and associated aquatic fauna prey base, American alligator (Alligator mississippiensis), and wading bird early dry season foraging. Water management and development are hypothesized to have a negative effect on the ecological attributes of the southern marl prairies in the following ways. Periphyton mats have decreased in cover in areas where hydroperiod has been significantly reduced and changed in community composition due to inverse responses to increased nutrient availability. Plant species diversity and community mosaics have changed due to shifting gradients to more terrestrial or more aquatic communities, displacement of native communities by non-natives, expansion of woody plants, high-intensity dry season fires, tree-island burnout, and reduced microtopography resulting from alligator population decline. Cape Sable seaside sparrow populations are threatened by nest destruction resulting from extended hydroperiods, drying pattern reversals, and high intensity dry season fires, as well as by the expansion of woody plants into graminoid wetland habitats. Populations of marsh fishes and associated aquatic fauna that constitute the aquatic prey base for higher vertebrates have decreased in density and changed in species composition and size structure due to loss of wetland spatial extent, shortened hydroperiod, increased drought severity, loss of aquatic drought refugia in solution holes and alligator holes, and spread of exotic fishes. American alligator populations have declined in the Rocky Glades, and alligator holes have filled with sediment, as a result of shortened hydroperiod and increased drought severity. Habitat options for wading birds to forage during the early dry season and during unusually wet years have been reduced due to loss of spatial extent and shortened hydroperiod.
Navarrete, P; Espejo, R T; Romero, J
2009-04-01
Dominant bacterial microbiota of the gut of juvenile farmed Atlantic salmon was investigated using a combination of molecular approaches. Bacterial community composition from the stomach, the pyloric caeca, and the intestine was assessed by extracting DNA directly from each gut compartment. Temporal temperature gradient gel electrophoresis (TTGE) analysis of 16S ribosomal DNA (rDNA) amplicons showed very similar bacterial compositions throughout the digestive tract. Band sequencing revealed a narrow diversity of species with a dominance of Pseudomonas in the three compartments. However, cloning revealed more diversity among the Pseudomonas sequences. To confirm these results, we analyzed the bacterial community by amplifying the variable 16S-23S rDNA intergenic spacer region (ITS). Similar ITS profiles were observed among gastrointestinal compartments of salmon, confirming the TTGE results. Moreover, the dominant ITS band at 650 bp, identified as Pseudomonas, was observed in the ITS profile from fish collected in two seasons (July 2003 and 2004). In contrast, aerobic culture analysis revealed Shewanella spp. as the most prevalent isolate. This discrepancy was resolved by evaluating 16S rDNA and ITS polymerase chain reaction amplification efficiency from both Shewanella and Pseudomonas isolates. Very similar efficiencies were observed in the two bacteria. Hence, this discrepancy may be explained by preferential cultivation of Shewanella spp. under the experimental conditions. Also, we included analyses of pelleted feed and the water influent to explore environmental influences on the bacterial composition of the gut microbiota. Overall, these results indicate a homogeneous composition of the bacterial community composition along the gastrointestinal tract of reared juvenile salmon. This community is mainly composed of Pseudomonas spp., which could be derived from water influent and may be selectively associated with salmon in this hatchery.
NASA Astrophysics Data System (ADS)
Fernandez-Jover, Damian; Martinez-Rubio, Laura; Sanchez-Jerez, Pablo; Bayle-Sempere, Just T.; Lopez Jimenez, Jose Angel; Martínez Lopez, Francisco Javier; Bjørn, Pål-Arne; Uglem, Ingebrigt; Dempster, Tim
2011-03-01
Aquaculture of carnivorous fish species in sea-cages typically uses artificial feeds, with a proportion of these feeds lost to the surrounding environment. This lost resource may provide a trophic subsidy to wild fish in the vicinity of fish farms, yet the physiological consequences of the consumption of waste feed by wild fish remain unclear. In two regions in Norway with intensive aquaculture, we tested whether wild saithe ( Pollachius virens) and Atlantic cod ( Gadus morhua) associated with fish farms (F assoc), where waste feed is readily available, had modified diets, condition and fatty acid (FA) compositions in their muscle and liver tissues compared to fish unassociated (UA) with farms. Stomach content analyses revealed that both cod and saithe consumed waste feed in the vicinity of farms (6-96% of their diet was composed of food pellets). This translated into elevated body and liver condition compared to fish caught distant from farms for cod at both locations and elevated body condition for saithe at one of the locations. As a consequence of a modified diet, we detected significantly increased concentrations of terrestrial-derived fatty acids (FAs) such as linoleic (18:2ω6) and oleic (18:1ω9) acids and decreased concentrations of DHA (22:6ω3) in the muscle and/or liver of F assoc cod and saithe when compared with UA fish. In addition, the ω3:ω6 ratio clearly differed between F assoc and UA fish. Linear discriminant analysis (LDA) correctly classified 97% of fish into F assoc or UA origin for both cod and saithe based on the FA composition of liver tissues, and 89% of cod and 86% of saithe into F assoc or UA origin based on the FA composition of muscle. Thus, LDA appears a useful tool for detecting the influence of fish farms on the FA composition of wild fish. Ready availability of waste feed with high protein and fat content provides a clear trophic subsidy to wild fish in coastal waters, yet whether the accompanying side-effect of altered fatty acid compositions affects physiological performance or reproductive potential requires further research.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
... population of an Alaska community with a fish processing plant can increase significantly during peak... workforce in a company galley, the interactions between seasonal processing workers and permanent residents of the community, and the history of the fish processing facility in the community. This type of...
Invasive lionfish harbor a different external bacterial community than native Bahamian fishes
NASA Astrophysics Data System (ADS)
Stevens, J. L.; Olson, J. B.
2013-12-01
The introduction and subsequent spread of lionfish into the Atlantic Ocean and Caribbean Sea has become a worldwide conservation issue. These highly successful invaders may also be capable of introducing non-native microorganisms to the invaded regions. This study compared the bacterial communities associated with lionfish external tissue to those of native Bahamian fishes and ambient water. Terminal restriction fragment length polymorphism analyses demonstrated that lionfish bacterial communities were significantly different than those associated with three native Bahamian fishes. Additionally, all fishes harbored distinct bacterial communities from the ambient bacterioplankton. Analysis of bacterial clone libraries from invasive lionfish and native squirrelfish indicated that lionfish communities were more diverse than those associated with squirrelfish, yet did not contain known fish pathogens. Using microscopy and molecular genetic approaches, lionfish eggs were examined for the presence of bacteria to evaluate the capacity for vertical transmission. Eggs removed from the ovaries of gravid females were free of bacteria, suggesting that lionfish likely acquire bacteria from the environment. This study was the first examination of bacterial communities associated with the invasive lionfish and indicated that they support different communities of environmentally derived bacteria than Caribbean reef fishes.
Knight, Rodney R.; Gregory, M. Brian; Wales, Amy K.
2008-01-01
Analysis of hydrologic time series and fish community data across the Tennessee River Valley identified three hydrologic metrics essential to habitat suitability and food availability for insectivorous fish communities in streams of the Tennessee River Valley: constancy (flow stability or temporal invariance), frequency of moderate flooding (frequency of habitat disturbance), and rate of streamflow recession. Initial datasets included 1100 fish community sites and 300 streamgages. Reduction of these datasets to sites with coexisting data yielded 33 sites with streamflow and fish community data for analysis. Identification of critical hydrologic metrics was completed using a multivariate correlation procedure that maximizes the rank correlation between the hydrologic metrics and fish community resemblance matrices. Quantile regression was used to define thresholds of potential ranges of insectivore scores for given values of the hydrologic metrics. Increased values of constancy and insectivore scores were positively correlated. Constancy of streamflow maintains wetted perimeter, which is important for providing habitat for fish spawning and increased surface area for invertebrate colonization and reproduction. Site scores for insectivorous fish increased as the frequency of moderate flooding (3 times the median annual streamflow) decreased, suggesting that insectivorous fish communities respond positively to less frequent disturbance and a more stable habitat. Increased streamflow recession rates were associated with decreased insectivore scores. Increased streamflow recession can strand fish in pools and other areas that are disconnected from flowing water and remove invertebrates as food sources that were suspended during high-streamflow events.
Prokaryotic community composition in alkaline-fermented skate (Raja pulchra).
Jang, Gwang Il; Kim, Gahee; Hwang, Chung Yeon; Cho, Byung Cheol
2017-02-01
Prokaryotes were extracted from skates and fermented skates purchased from fish markets and a local manufacturer in South Korea. The prokaryotic community composition of skates and fermented skates was investigated using 16S rRNA pyrosequencing. The ranges for pH and salinity of the grinded tissue extract from fermented skates were 8.4-8.9 and 1.6-6.6%, respectively. Urea and ammonia concentrations were markedly low and high, respectively, in fermented skates compared to skates. Species richness was increased in fermented skates compared to skates. Dominant and predominant bacterial groups present in the fermented skates belonged to the phylum Firmicutes, whereas those in skates belonged to Gammaproteobacteria. The major taxa found in Firmicutes were Atopostipes (Carnobacteriaceae, Lactobacillales) and/or Tissierella (Tissierellaceae, Tissierellales). A combination of RT-PCR and pyrosequencing for active bacterial composition showed that the dominant taxa i.e., Atopostipes and Tissierella, were active in fermented skate. Those dominant taxa are possibly marine lactic acid bacteria. Marine bacteria of the taxa Lactobacillales and/or Clostridia seem to be important in alkaline fermentation of skates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rigg, David K.; Wacksman, Mitch N.; Iannuzzi, Jacqueline; ...
2014-12-18
For this research, extensive site-specific biological and environmental data were collected to support an evaluation of risks to the fish community in Watts Bar Reservoir from residual ash from the December 2008 Tennessee Valley Authority (TVA) Kingston ash release. This paper describes the approach used and results of the risk assessment for the fish community, which consists of multiple measurement endpoints (measures of exposure and effects) for fish. The lines of evidence included 1) comparing postspill annual fish community assessments with nearby prespill data and data from other TVA reservoirs, 2) evaluating possible effects of exposures of fish eggs andmore » larval fish to ash in controlled laboratory toxicity tests, 3) evaluating reproductive competence of field-exposed fish, 4) assessing individual fish health through physical examination, histopathology, and blood chemistry, 5) comparing fish tissue concentrations with literature-based critical body residues, and 6) comparing concentrations of ash-related contaminants in surface waters with US Environmental Protection Agency's (USEPA) Ambient Water Quality Standards for Fish and Aquatic Life. These measurement endpoints were treated as independent lines of evidence that were integrated into an overall weight-of-evidence estimate of risk to the fish community. Collectively, the data and analysis presented here indicate that ash and ash-related constituents pose negligible risks to the fish communities in Watts Bar Reservoir. This conclusion contradicts the predictions by some researchers immediately following the ash release of devastating effects on the aquatic ecology of Watts Bar Reservoir. The information presented in this article reaffirms the wisdom of carefully evaluating the evidence before predicting probable ecological effects of a major event such as the TVA Kingston ash release. Lastly, this study demonstrates that a thorough and detailed investigation using multiple measurement endpoints is needed to properly evaluate ecological effects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigg, David K.; Wacksman, Mitch N.; Iannuzzi, Jacqueline
For this research, extensive site-specific biological and environmental data were collected to support an evaluation of risks to the fish community in Watts Bar Reservoir from residual ash from the December 2008 Tennessee Valley Authority (TVA) Kingston ash release. This paper describes the approach used and results of the risk assessment for the fish community, which consists of multiple measurement endpoints (measures of exposure and effects) for fish. The lines of evidence included 1) comparing postspill annual fish community assessments with nearby prespill data and data from other TVA reservoirs, 2) evaluating possible effects of exposures of fish eggs andmore » larval fish to ash in controlled laboratory toxicity tests, 3) evaluating reproductive competence of field-exposed fish, 4) assessing individual fish health through physical examination, histopathology, and blood chemistry, 5) comparing fish tissue concentrations with literature-based critical body residues, and 6) comparing concentrations of ash-related contaminants in surface waters with US Environmental Protection Agency's (USEPA) Ambient Water Quality Standards for Fish and Aquatic Life. These measurement endpoints were treated as independent lines of evidence that were integrated into an overall weight-of-evidence estimate of risk to the fish community. Collectively, the data and analysis presented here indicate that ash and ash-related constituents pose negligible risks to the fish communities in Watts Bar Reservoir. This conclusion contradicts the predictions by some researchers immediately following the ash release of devastating effects on the aquatic ecology of Watts Bar Reservoir. The information presented in this article reaffirms the wisdom of carefully evaluating the evidence before predicting probable ecological effects of a major event such as the TVA Kingston ash release. Lastly, this study demonstrates that a thorough and detailed investigation using multiple measurement endpoints is needed to properly evaluate ecological effects.« less
Fish community structure and dynamics in a coastal hypersaline lagoon: Rio Lagartos, Yucatan, Mexico
NASA Astrophysics Data System (ADS)
Vega-Cendejas, Ma. Eugenia; Hernández de Santillana, Mireya
2004-06-01
Rio Lagartos, a tropical coastal lagoon in northern Yucatan Peninsula of Mexico, is characterized by high salinity during most of the year (55 psu annual average). Even though the area has been designated as a wetland of international importance because of its great biodiversity, fish species composition and distribution are unknown. To determine whether the salinity gradient was influencing fish assemblages or not, fish populations were sampled seasonally by seine and trawl from 1992 to 1993 and bimonthly during 1997. We identified 81 fish species, eight of which accounted for 53.1% considering the Importance Value Index ( Floridichthys polyommus, Sphoeroides testudineus, Eucinostomus argenteus, Eucinostomus gula, Fundulus majalis, Strongylura notata, Cyprinodon artifrons and Elops saurus). Species richness and density declined from the mouth to the inner zone where extreme salinity conditions are prominent (>80) and competitive interactions decreased. However, in Coloradas basin (53 average sanity) and in the inlet of the lagoon, the highest fish density and number of species were observed. Greater habitat heterogeneity and fish immigration were considered as the best explanation. Multivariate analysis found three zones distinguished by fish occurrence, abundance and distribution. Ichthyofaunal spatial differences were attributed to selective recruitment from the Gulf of Mexico due to salinity gradient and to changing climatic periods. Estuarine and euryhaline marine species are abundant, with estuarine dependent ones entering the system according to environmental preferences. This knowledge will contribute to the management of the Special Biosphere Reserve through baseline data to evaluate environmental and anthropogenic changes.
Thiele, Stefan; Fuchs, Bernhard M.; Amann, Rudolf
2014-01-01
Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter. PMID:25527538
Movement and Harvest of Fish in Lake Saint Clair, Saint Clair River, and Detroit River
1985-01-01
a creel survey of the angling fishery , a trap net survey, and a tagging study of the adult fish community . The study area encompassed all of...River does not support a winter walleye fishery (C. Baker, ODNR, personal communication ). Yellow perch,-Yellow perch, like walleyes, are considered best...two basic forms: affecting the adult fish community directly, or interfering with the winter angling fishery . The fish community might be affected
Invasional meltdown in northern lakes: Common carp invasion ...
Disturbances can lead to nonrandom changes in community composition due to interactions between the disturbance and the characteristics of species found in the community or available to colonize, producing both winners and losers of disturbance. When the disturbance is a biological invasion, it has been proposed that other nonnative species may be facilitated, producing positive feedbacks that drive an “invasional meltdown.” We investigated this phenomenon in Minnesota, where 100+ years of Cyprinus carpio (common carp) invasion have fundamentally altered the condition of many lakes. Common carp disturb macrophytes through foraging and bioturbation that causes nutrient loading and low water clarity. We evaluated effects of common carp on lake plant communities and tested whether carp were associated with increased occurrence of nonnative plant species. We hypothesized that there would be strong shifts in plant community composition associated with carp invasion and that plant species would be differentially sensitive to carp, with nonnative plant species more likely to be tolerant. We tested these hypotheses using vegetation, fish, and environmental data collected from 913 lakes over 20 years (1993–2012). This work describes an analysis of the effects of carp invasion on aquatic plant communities in glacial lakes. The results will provide a historical perspective on ecosystem effects of this invasive species that will inform management of aquatic plants, c
Trophic links and nutritional condition of fish early life stages in a temperate estuary.
Primo, Ana Lígia; Correia, Catarina; Marques, Sónia Cotrim; Martinho, Filipe; Leandro, Sérgio; Pardal, Miguel
2018-02-01
The physiological and nutritional condition of fish larvae affect their survival and thus, the success of estuaries as nursery areas. Fatty acid composition has been useful to determine fish nutritional condition, as well as trophic relationships in marine organisms. The present study analyses the fatty acid (FA) composition of fish larvae during spring and summer in the Mondego estuary, Portugal. FA composition, trophic markers (FATM) and fish nutritional condition was analysed for Gobiidae and Sardina pilchardus larvae and the relationships with the local environment evaluated. Results showed that both taxa differed mainly in the stearic acid (C18:0) and eicosapentaenoic acid (EPA) content, with important amounts in Gobiidae and S. pilchardus, respectively. Gobiidae larvae presenting high nutritional condition and omnivore FATM. Fatty acid composition seems to be related with their natural habitat selection and food availability, while fish larvae nutritional condition also showed a strong link with the water temperature and presence of potential predators. This study suggests that FA composition can be a useful tool in assessing planktonic trophic relationships and in identifying species natural habitat. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Dobal-Amador, Vladimir; Nieto-Cid, Mar; Guerrero-Feijoo, Elisa; Hernando-Morales, Victor; Teira, Eva; Varela-Rozados, Marta M.
2016-08-01
The processes mediated by microbial planktonic communities occur along the entire water column, yet the microbial activity and composition have been studied mainly in surface waters. This research examined the vertical variation in bacterial abundance, activity and community composition and structure from surface down to 5000 m depth following a longitudinal transect off the Galician coast (NW Iberian margin, from 43°N, 9°W to 43°N, 15°W). Community activity and composition changed with depth. The leucine incorporation rates decreased from the euphotic layer to the bathypelagic waters by three orders of magnitude, whereas prokaryotic abundance decreased only by one order of magnitude. The relative abundance of SAR11 and Alteromonas, determined by catalyzed reported deposition fluorescence in situ hybridization (CARD-FISH), decreased with depth. Meanwhile, the contribution of SAR 202 and SAR324 was significantly higher in the deeper layers (i.e. NEADW, North East Atlantic Deep Water and LDW, Lower Deep Water) than in the euphotic zone. Bacterial community structure, assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA), was depth-specific. A distance based linear model (DistLM) revealed that the variability found in bacterial community structure was mainly explained by temperature nitrate, phosphate, dissolved organic matter (DOM) fluorescence, prokaryotic abundance, leucine incorporation and to a lesser extent salinity, oxygen, CDOM absorbance and dissolved organic carbon concentration. Our results displayed a bacterial community structure shaped not only by depth-related physicochemical features but also by DOM quality, indicating that different prokaryotic taxa have the potential to metabolize particular DOM sources.
NASA Astrophysics Data System (ADS)
Plass-Johnson, Jeremiah G.; Heiden, Jasmin P.; Abu, Nur; Lukman, Muhammad; Teichberg, Mirta
2016-03-01
The composition of coral reef benthic communities is strongly affected by variation in water quality and consumer abundance and composition. This is particularly evident in highly populated coastal regions where humans depend on coral reef resources and where terrestrial run-off can change the chemical composition of the water. We tested the effects of grazing pressure and ambient water conditions along an established eutrophication gradient on the recruitment and successional development of benthic communities of the Spermonde Archipelago, Indonesia, through caging experiments with settlement tiles. Within 1 month, benthic community composition of the closest reef to land, near the city of Makassar, was significantly different from other sites further offshore, driven primarily by differences in recruitment of invertebrates or turf algae. In contrast to other caging experiments, consumer exclusion had no effect after 3 months, suggesting that larger, mobile consumers had little effect on the benthic communities of these reefs at all sites. Despite conditions that usually favour macroalgal development, this group was rarely observed on recruitment tiles even after 4 months of consumer exclusion. Furthermore, tiles from both the caged and open treatments retained high proportions of open space indicating the possible role of small-sized or non-fish consumers that were not excluded from the experiment. These results indicate that, unlike many other studies, benthic consumers in the Spermonde Archipelago had little effect on the recruitment and early succession of the reef habitat and that unexamined biota such as mesograzers may be significant in degraded systems.
Vertical distribution, diversity and assemblages of mesopelagic fishes in the western Mediterranean
NASA Astrophysics Data System (ADS)
Olivar, M. P.; Bernal, A.; Molí, B.; Peña, M.; Balbín, R.; Castellón, A.; Miquel, J.; Massutí, E.
2012-04-01
The mesopelagic fish community of the western Mediterranean was studied during two cruises carried out in December 2009 and July 2010 in the shelf and slope zones around the Balearic Islands. Much of what was previously known about this deep water group of fishes in the Mediterranean Sea came from studies performed using planktonic and small midwater nets. This study was the first attempt to use large pelagic trawls and small nets combined with information about the main sound scattering layers to analyse mesopelagic fish composition, diversity and species assemblages. This community is characterised by a relatively low diversity compared to other oceanic regions of the world, with Myctophiformes and Stomiiformes being the main contributors. Bathymetry and the level of the water column were the most important factors structuring the investigated fish assemblages, and similar vertical patterns were observed for the different species collected during the two study periods. A shelf assemblage composed of a few species of myctophids, with Notoscopelus elongatus being the main contributor, was distinguished. The slope assemblage included both Myctophiformes and Stomiiformes that showed differences in their day-night main location along the water column. In terms of species behaviour, two important groups were detected. The first was non-migrant or weakly migrant species, with the paradigmatic example being the gonostomatid Cyclothone braueri, which occurred at a depth of 400-600 m; this species is partly responsible for the permanent acoustic (38 kHz) response at this depth. The second group, near-surface migrants at night, was represented by most of the juvenile and adult myctophids, exemplified by Ceratoscopelus maderensis, with the exception of just a few of the largest size classes of some species, such as Lampanyctus crocodilus and N. elongatus that remain near the bottom.
Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.
Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C
2008-08-27
Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.
Brown trout and food web interactions in a Minnesota stream
Zimmerman, J.K.H.; Vondracek, B.
2007-01-01
1. We examined indirect, community-level interactions in a stream that contained non-native brown trout (Salmo trutta Linnaeus), native brook trout (Salvelinus fontinalis Mitchill) and native slimy sculpin (Cottus cognatus Richardson). Our objectives were to examine benthic invertebrate composition and prey selection of fishes (measured by total invertebrate dry mass, dry mass of individual invertebrate taxa and relative proportion of invertebrate taxa in the benthos and diet) among treatments (no fish, juvenile brook trout alone, juvenile brown trout alone, sculpin with brook trout and sculpin with brown trout). 2. We assigned treatments to 1 m2 enclosures/exclosures placed in riffles in Valley Creek, Minnesota, and conducted six experimental trials. We used three designs of fish densities (addition of trout to a constant number of sculpin with unequal numbers of trout and sculpin; addition of trout to a constant number of sculpin with equal numbers of trout and sculpin; and replacement of half the sculpin with an equal number of trout) to investigate the relative strength of interspecific versus intraspecific interactions. 3. Presence of fish (all three species, alone or in combined-species treatments) was not associated with changes in total dry mass of benthic invertebrates or shifts in relative abundance of benthic invertebrate taxa, regardless of fish density design. 4. Brook trout and sculpin diets did not change when each species was alone compared with treatments of both species together. Likewise, we did not find evidence for shifts in brown trout or sculpin diets when each species was alone or together. 5. We suggest that native brook trout and non-native brown trout fill similar niches in Valley Creek. We did not find evidence that either species had an effect on stream communities, potentially due to high invertebrate productivity in Valley Creek. ?? 2007 Blackwell Publishing Ltd.
Fish trophic level and the similarity of non-specific larval parasite assemblages.
Timi, J T; Rossin, M A; Alarcos, A J; Braicovich, P E; Cantatore, D M P; Lanfranchi, A L
2011-03-01
Whereas the effect of parasites on food webs is increasingly recognised and has been extensively measured and modelled, the effect of food webs on the structure of parasite assemblages has not been quantified in a similar way. Here, we apply the concept of decay in community similarity with increasing distance, previously used for parasites in geographical, phylogenetic and ontogenetic contexts, to differences in the trophic level (TL) based on diet composition of fishes. It is proposed as an accurate quantitative method to measure rates of assemblage change as a function of host feeding habits and is applied, to our knowledge for the first time, across host species in marine waters. We focused on a suite of 15 species of trophically-transmitted and non-specific larval helminths across 16 fish species (1783 specimens, six orders, 14 families) with different sizes and TLs, gathered from the same ecosystem. Not all host species harboured the same number and types of parasites, reflecting the differences in their ecological characteristics. Using differences in TL and body length as measurements of size and trophic distances, we found that similarity at both infracommunity and component community levels showed a very clear decay pattern, based on parasite abundance and relative abundance, with increasing distance in TL, but was not related to changes in fish size, with TL thus emerging as the main explanatory factor for similarity of parasite assemblages. Furthermore, the relationships between host TL and assemblage similarity allowed identification of fishes for which the TL was under- or over-estimated and prediction of the TL of host species based on parasite data alone. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Surveys of fish community status were conducted in summer 1987 in 49 lakes in Subregion 20, the Upper Peninsula of Michigan, as part of Phase II of the Eastern Lake Survey. Lake selection involved a variable probability sampling design. Fish communities were surveyed using gill n...
Surveys of fish community status were conducted in summer 1987 in 49 lakes in Subregion 20, the Upper Peninsula of Michigan, as part of Phase II of the Eastern Lake Survey. Lake selection involved a variable probability sampling design. Fish communities were surveyed using gill n...
Background/Question/Methods What species of fish might someone find in a local stream? How might that community change as a result of changes to characteristics of the stream and its watershed? PiSCES is a browser-based toolkit developed to predict a fish community for any NHD-Pl...
ERIC Educational Resources Information Center
Petersen, Carolyn
2007-01-01
This paper looks at access to adult education and vocational education and training (VET) provision in fishing communities in the Western Cape, South Africa. Fishing communities are being disadvantaged due to geographical and socio-political marginalisation, and the predominance of informal sector employment in the context of worldwide marine…
Carter, L.F.
1997-01-01
Fish communities at 10 sites in the Rio Grande Basin were sampled during low-flow periods between 1993 and 1995 as part of the U.S. Geological Survey National Water-Quality Assessment Program. The ecology of fish communities is one of several lines of evidence used to characterize water-quality conditions. This report describes the fish communities at selected sites in the Rio Grande Basin and relates the structure of these fish communities to the physical and chemical characteristics of the streams. Twenty-nine species of fish representing 10 families were identified in 25 samples collected during this study. Species richness ranged from 1 to 13. Cluster analysis of the 25 samples collected during this study delineated four groups of sites that were based on the similarity of the fish communities. The first two groups were individual sites with low species richness. The third group contained the most samples, and the fourth group consisted of samples from the Rio Grande at Isleta, New Mexico, and the Rio Grande at El Paso, Texas. The shift in community structure of samples from group 3 to group 4 reflects changes from predominantly coldwater fishes to warmwater fishes. Four metrics of biotic integrity (percentages of introduced individuals, omnivores, tolerant individuals, and anomalies) were used in this study to provide a broad overview of the community structure. The relative percentages of introduced species at the Rio Grande near Del Norte, Colorado; Saguache Creek near Saguache, Colorado; Rio Grande below Taos Junction Bridge, near Taos, New Mexico; and Rio Grande at Isleta are indicative of biological stress on the communities at these sites. The dominance of omnivores in samples from the Rio Grande below Taos Junction Bridge, near Taos; Rio Chama near Chamita, New Mexico; Rio Grande at Isleta; and Rio Grande at El Paso is an indication of environmental stress at these sites. In 1995, tolerant species accounted for the entire fish community at the Rio Grande at Isleta. In all samples the occurrence of anomalies was less than 2 percent of the individuals, with the exception of the sample from the Rio Grande at Isleta. On the basis of the relative percentages of introduced individuals, omnivores, tolerant individuals, and anomalies, the biotic integrity at the Rio Grande at Isleta appears to be the most impaired of all sites and shows indications of potential chemical and physical perturbations. Fish communities from three reaches at the Santa Fe River above Cochiti Lake, New Mexico, and the Rio Grande at Isleta were sampled in 1995 to assess small-scale spatial patterns in the structure of fish communities. The spatial pattern at these sites might be associated with natural variability of the fish communities or with the presence of habitat features such as pools. The total number of individuals and relative abundance in a sample varied at sites sampled yearly during this study. All sites, with the exception of the Rio Grande near Del Norte, had a decline in total number of individuals in a sample. The temporal decline in the total number of individuals at these site might be associated with the natural variability within the fish communities.
Stallings, Christopher D
2009-01-01
Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable.
Stallings, Christopher D.
2009-01-01
Background Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Methodology/Principal Findings Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Conclusions/Significance Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable. PMID:19421312
Status and future of Lake Huron fish communities
Ebener, M.P.; Johnson, J.E.; Reid, D.M.; Payne, N.P.; Argyle, R.L.; Wright, G.M.; Krueger, K.; Baker, J.P.; Morse, T.; Weise, J.; Munawar, M.; Edsall, T.; Leach, J.
1995-01-01
In 1993, fishery management agencies with jurisdiction over Lake Huron fish populations developed draft fish community objectives in response to the Joint Strategic Plan for Management of Great Lakes Fisheries. The Joint Strategic Plan charged the Great Lakes Fishery Commission sponsored Lake Huron Committee to define objectives for what the fish community of Lake Huron should look like in the future, and to develop means for measuring progress toward the objectives. The overall management objective for Lake Huron is to 'over the next two decades restore an ecologically balanced fish community dominated by top predators and consisting largely of self-sustaining, indigenous and naturalized species and capable of sustaining annual harvests of 8.9 million kg'. This paper represents the first attempt at consolidating current biological information from different management agencies on a lake-wide basis for the purpose of assessing the current status and dynamics of Lake Huron fishes.
Swarzenski, Christopher M.; Mize, Scott V.; Thompson, Bruce A.; Peterson, Gary W.
2004-01-01
Fish and aquatic invertebrate communities in waterways of the Barataria Preserve of Jean Lafitte National Historical Park and Preserve, Louisiana, were surveyed from 1999 to 2000. An inventory of fish in the Barataria Preserve was established, and concentrations of selected organochlorine pesticides, polychlorinated biphenyls, and trace elements; iron; and manganese in fish tissue for selected species were determined. The fish and aquatic invertebrate sampling completed for this study indicated that abundant and diverse communities are present in the Barataria Preserve. Thirty-two species of fish were identified in the Barataria Preserve during this survey. The total number of species identified in a single sampling ranged from 20 to 26. Most of the fish sampled are designated as intermediate in their tolerance to poor water quality. Three species of fish designated as tolerant (common carp, Cyprinus carpio; golden shiner, Notemigonus crysoleucas; and yellow bullhead, Ameiurus natalis), and one as intolerant (lake chubsucker, Erymizon sucetta), were identified. In November 1999, the average total weight of all fish collected by boat-mounted electroshocker from a single site was about 35,000 grams; in May and July 1999, the average total weight was between 9,000 and 10,000 grams. The contribution of spotted gar (Lepisosteus oculatus) to the total weight of the fish averaged between 38 and 41 percent among the three sample periods. Members of the sunfish family (Centrarchidae) contributed between 18 and 28 percent of the total weight. For each sampling period, 60 to 83 percent of the total weight from the sunfish family was contributed by bluegill (Lepomis macrochirus) and largemouth bass (Micropterus salmoides). Aquatic invertebrates were sampled at three sites. Most aquatic invertebrates identified were freshwater species, but some were brackish-water and marine species. About 234,000 organisms were identified and enumerated from the richest-targeted habitat (RTH, floating rafts of aquatic plants). Individuals from 84 genera belonging to 51 families were identified. Diptera (true flies) was the most diverse group. Malacostraca (crustaceans), especially Amphipoda (scuds and sideswimmers), were the most abundant (36 percent). Total abundance and taxa richness of aquatic invertebrates were comparable during the March and July sampling in 1999, but were lower in samples collected from the same habitat at all three sites in April 2000. About 106 individuals were identified and enumerated from the depositional-targeted habitat (DTH, bottom material). Individuals from 7 genera belonging to 9 families were identified. Diptera was the most diverse group, and Annelida, especially tubificid worms, were the most abundant organisms identified (52 percent). Total abundance and composition of aquatic invertebrate communities differed between RTH and DTH at all three sites in April 2000. Organic compounds in whole fish, and trace elements, iron, and manganese in fillets, were analyzed in bowfin (Amia calva), bluegill (Lepomis macrochirus), largemouth bass (Micropterus salmoides), and common carp (Cyprinus carpio). Organic compounds were not detected. Mercury was detected in fillets of all four species. Highest concentrations of mercury were detected in fillets from bowfin and largemouth bass. Mercury concentrations increased with increasing weight in the three predatory fish species (bowfin, bluegill, and largemouth bass), but were much lower, relative to weight, in the omnivore, common carp. Chromium concentrations were detected in tissue of the two larger fish, bowfin and common carp. Cadmium and lead were not detected in any samples. Mercury concentrations for larger predatory fish caught in Preserve waterways may be a concern if the fish are frequently consumed by humans. The process of mercury accumulation appears to be natural, and not related to a local source problem. Mercury concentrations in comparable fish tissue at
Modelling malaria control by introduction of larvivorous fish.
Lou, Yijun; Zhao, Xiao-Qiang
2011-10-01
Malaria creates serious health and economic problems which call for integrated management strategies to disrupt interactions among mosquitoes, the parasite and humans. In order to reduce the intensity of malaria transmission, malaria vector control may be implemented to protect individuals against infective mosquito bites. As a sustainable larval control method, the use of larvivorous fish is promoted in some circumstances. To evaluate the potential impacts of this biological control measure on malaria transmission, we propose and investigate a mathematical model describing the linked dynamics between the host-vector interaction and the predator-prey interaction. The model, which consists of five ordinary differential equations, is rigorously analysed via theories and methods of dynamical systems. We derive four biologically plausible and insightful quantities (reproduction numbers) that completely determine the community composition. Our results suggest that the introduction of larvivorous fish can, in principle, have important consequences for malaria dynamics, but also indicate that this would require strong predators on larval mosquitoes. Integrated strategies of malaria control are analysed to demonstrate the biological application of our developed theory.
Austin, J.E.; Keough, J.R.; Pyle, W.H.
2007-01-01
Grazing and burning are commonly applied practices that can impact the diversity and biomass of wetland plant communities. We evaluated the vegetative response of wetlands and adjacent upland grasslands to four treatment regimes (continuous idle, fall prescribed burning followed by idle, annual fall cattle grazing, and rotation of summer grazing and idle) commonly used by the U.S. Fish and Wildlife Service. Our study area was Grays Lake, a large, montane wetland in southeastern Idaho that is bordered by extensive wet meadows. We identified seven plant cover types, representing the transition from dry meadow to deep wetland habitats: mixed deep marsh, spikerush slough, Baltic rush (Juncus balticus), moist meadow, alkali, mesic meadow, and dry meadow. We compared changes in community composition and total aboveground biomass of each plant cover type between 1998, when all units had been idled for three years, and 1999 (1 yr post-treatment) and 2000 (2 yr post-treatment). Analysis using non-metric multidimensional scaling indicated that compositional changes varied among cover types, treatments, and years following treatment. Treatment-related changes in community composition were greatest in mixed deep marsh, Baltic rush, and mesic meadow. In mixed deep marsh and Baltic rush, grazing and associated trampling contributed to changes in the plant community toward more open water and aquatic species and lower dominance of Baltic rush; grazing and trampling also seemed to contribute to increased cover in mesic meadow. Changing hydrological conditions, from multiple years of high water to increasing drought, was an important factor influencing community composition and may have interacted with management treatments. Biomass differed among treatments and between years within cover types. In the wettest cover types, fall burning and grazing rotation treatments had greater negative impact on biomass than the idle treatment, but in drier cover types, summer grazing stimulated biomass production. Our results illustrate the spatial and temporal complexity of the transition between dry meadow and wetland habitats, and variable interactions among plant communities, treatments, and annual wetland conditions. ?? 2007, The Society of Wetland Scientists.
NASA Astrophysics Data System (ADS)
Razak, A.
2018-04-01
This research has been carried out 2015. Bilih fish today need conservation and attention for sustainability. Habitat this fish is treated by human activities in Lake Singkarak, West Sumatera and Lake Toba in North Sumatera. The objectives of the research are describes morphometry of the body and relation with lens of eyes. The methods of the reasearch for measure all parts of surface body fish according www.fishbase.org. For measure and chemical composition of lens of eyes Bilih Fish (M. padangensis) are according Razak (2005). T he result of the research are indicated the size of morphology body Bilih Fish from Lake Toba and from Lake Singkarak is diffrent. Furthermore, diameter of lens is trend linier follow the growth of the body Bilih Fish from Lake Singkarak and Lake Toba. The chemical composition of lens of eyes Bilih Fish from Lake Singkarak contains Sulfur until 73.77% per 100 ppm, another substances like Calcium, Silicone, Magnesium, Phosporus 4.09%-4.83% per 100 ppm. The chemical composition of lens of eyes Bilih Fish from Lake Toba contains Sulfur only 50.08% per 100 ppm, another substances like Kalium, Calcium, Silicone, Magnesium, Phosporus 1.09%-10.43% per 100 ppm. Kalium substance only found in lens of eyes Bilih Fish from Lake Toba. As conclusion, morphometry body Bilih Fish from Lake Toba is bigger better than Bilih Fish from Lake Singkarak and chemical composition lens of eyes Bilih Fish from Lake Toba is influenced by environmental waters factors.
Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R
2014-02-01
Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery.
Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities
Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R
2014-01-01
Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery. PMID:24634720
Surface water connectivity drives richness and composition of Arctic lake fish assemblages
Laske, Sarah M.; Haynes, Trevor B.; Rosenberger, Amanda E.; Koch, Joshua C.; Wipfli, Mark S.; Whitman, Matthew; Zimmerman, Christian E.
2016-01-01
This work provides useful baseline information on the processes that drive the relations between patch connectivity and fish species richness and assemblage composition. The environmental processes that organise fish assemblages in Arctic lakes are likely to change in a warming climate.
Albert, Joelle A; Beare, Doug; Schwarz, Anne-Maree; Albert, Simon; Warren, Regon; Teri, James; Siota, Faye; Andrew, Neil L
2014-01-01
Fish aggregating devices, or FADs, are used widely in developing countries to concentrate pelagic fish, making them easier to catch. Nearshore FADs anchored close to the coast allow access for rural communities, but despite their popularity among policy makers, there is a dearth of empirical analysis of their contributions to the supply of fish and to fisheries management. In this paper we demonstrate that nearshore FADs increased the supply of fish to four communities in Solomon Islands. Estimated total annual fish catch ranged from 4300 to 12,000 kg across the study villages, with nearshore FADs contributing up to 45% of the catch. While it is clear that FADs increased the supply of fish, FAD catch rates were not consistently higher than other fishing grounds. Villages with limited access to diverse or productive fishing grounds seemingly utilized FADs to better effect. Villagers believed FADs increased household income and nutrition, as well as providing a source of fish for community events. FADs were also perceived to increase intra-household conflict and reduce fishers' participation in community activities. FADs need to be placed within a broader rural development context and treated as another component in the diversified livelihoods of rural people; as with other livelihood options they bring trade-offs and risks.
Albert, Joelle A.; Beare, Doug; Schwarz, Anne-Maree; Albert, Simon; Warren, Regon; Teri, James; Siota, Faye; Andrew, Neil L.
2014-01-01
Fish aggregating devices, or FADs, are used widely in developing countries to concentrate pelagic fish, making them easier to catch. Nearshore FADs anchored close to the coast allow access for rural communities, but despite their popularity among policy makers, there is a dearth of empirical analysis of their contributions to the supply of fish and to fisheries management. In this paper we demonstrate that nearshore FADs increased the supply of fish to four communities in Solomon Islands. Estimated total annual fish catch ranged from 4300 to 12 000 kg across the study villages, with nearshore FADs contributing up to 45% of the catch. While it is clear that FADs increased the supply of fish, FAD catch rates were not consistently higher than other fishing grounds. Villages with limited access to diverse or productive fishing grounds seemingly utilized FADs to better effect. Villagers believed FADs increased household income and nutrition, as well as providing a source of fish for community events. FADs were also perceived to increase intra-household conflict and reduce fishers' participation in community activities. FADs need to be placed within a broader rural development context and treated as another component in the diversified livelihoods of rural people; as with other livelihood options they bring trade-offs and risks. PMID:25513808
Richness patterns in the parasite communities of exotic poeciliid fishes.
Dove, A D
2000-06-01
Three species of poeciliids (Gambusia holbrooki, Xiphophorus helleri and X. maculatus) and 15 species of ecologically similar native freshwater fishes (mainly eleotrids, ambassids, melanotaeniids and retropinnids) were examined for parasite richness to investigate parasite flux, qualitative differences, quantitative differences and the structuring factors in parasite communities in the 2 fish types in Queensland, Australia. Theory suggests that poeciliids would harbour depauperate parasite communities. Results supported this hypothesis; poeciliids harboured more species-poor parasite infracommunities and regional faunas than natives (P < 0.0001), despite greater sampling effort for the former. Cluster analysis of presence/absence data for poeciliids and the 6 most-sampled native fishes revealed that parasite communities of the 2 fish groups are qualitatively distinct; the proportion of parasite species with complex life-cycles was lower in poeciliids than in native species, and Myxosporea, Microspora, Coccidia and parasitic Crustacea were all absent from poeciliids. Limited exchange of parasite species has occurred between natives and poeciliids. Logistic ordinal regression analysis revealed that fish origin (exotic or native), environmental disturbance and host sex were all significant determinants of parasite community richness (P < 0.05). Theoretical modelling suggests that poeciliids are at a competitive advantage over native fishes because of their lack of parasites.
Lanfranchi, A L; Rossin, M A; Timi, J T
2009-12-01
The structure and composition of parasite communities of Mullus argentinae were analysed under two alternative hypotheses in a sample of 75 specimens caught off Mar del Plata, Argentina (38 degrees 27'S, 57 degrees 90'W). The first, based on the dominance of trophically transmitted larval parasites of low host-specificity among fish species in the region, predicts that infracommunities will be random subsets of regionally available species. The second, based on previous studies on other mullids, predicts that infracommunities will be dominated by adult digeneans. The parasite fauna of goatfishes was mainly composed of endoparasites, with metacercariae of Prosorhynchus australis accounting for most individual parasites and greatly affecting infracommunity descriptors. Its importance was reinforced by the low number of trophically transmitted larval parasites. Both hypotheses were refuted; parasite communities were not dominated either by trophically transmitted larval parasites of low host-specificity or by adult digeneans. Prosorhynchus australis was the only species displaying any degree of phylogenetic specificity. Therefore, the influence of phylogenetic factors seems to exceed that of ecological ones in determining the observed structure of infracommunities. However, it is precisely host ecology that allows P. australis to become the determinant of infracommunity structure by constraining the acquisition of other parasites. Studies aiming to determine the relative importance of evolutionary and ecological processes as structuring forces of parasite communities should take into account not only the identity and specificity of their component parasites, but also their availability in the compound community.
Ruppert, Jonathan L W; Docherty, Cassandra; Neufeld, Kenton; Hamilton, Kyle; MacPherson, Laura; Poesch, Mark S
2017-10-01
Prussian carp ( Carassius gibelio ) are one of the most noxious non-native species in Eurasia. Recently, Prussian carp, a non-native freshwater fish species, were genetically confirmed in Alberta, Canada and have been rapidly expanding their range in North America since establishment. Given their rapid range expansion, there is an increasing need to determine how Prussian carp may impact native species. We assessed the severity of the Prussian carp invasion by (i) determining their impact on fish communities, (ii) assessing their impact on benthic invertebrate communities, (iii) evaluating if Prussian carp alter abiotic conditions, and (iv) identifying where we find higher abundances of Prussian carp. When Prussian carp were established, we found significant changes to the fish community. Correspondingly, the degree of impact to benthic invertebrate communities was related to the stage of invasion (none, early or recent), where changes in fish communities were significantly concordant with changes in benthic invertebrate communities. Finally, we found that higher abundances of Prussian carp were significantly associated with lower abundances of a majority of native fish species. Altogether, using three lines of evidence, we determine that Prussian carp can have wide-ranging impacts on freshwater ecosystems in North America, pressing the need for management intervention.
Ruppert, Jonathan L. W.; Docherty, Cassandra; Neufeld, Kenton; Hamilton, Kyle; MacPherson, Laura
2017-01-01
Prussian carp (Carassius gibelio) are one of the most noxious non-native species in Eurasia. Recently, Prussian carp, a non-native freshwater fish species, were genetically confirmed in Alberta, Canada and have been rapidly expanding their range in North America since establishment. Given their rapid range expansion, there is an increasing need to determine how Prussian carp may impact native species. We assessed the severity of the Prussian carp invasion by (i) determining their impact on fish communities, (ii) assessing their impact on benthic invertebrate communities, (iii) evaluating if Prussian carp alter abiotic conditions, and (iv) identifying where we find higher abundances of Prussian carp. When Prussian carp were established, we found significant changes to the fish community. Correspondingly, the degree of impact to benthic invertebrate communities was related to the stage of invasion (none, early or recent), where changes in fish communities were significantly concordant with changes in benthic invertebrate communities. Finally, we found that higher abundances of Prussian carp were significantly associated with lower abundances of a majority of native fish species. Altogether, using three lines of evidence, we determine that Prussian carp can have wide-ranging impacts on freshwater ecosystems in North America, pressing the need for management intervention. PMID:29134062
A history of human impacts on the Lake Erie fish community
Reutter, Jeffrey M.; Hartman, Wilbur L.; Downhower, J.F.
1988-01-01
The fisheries scientist working in the island region of Lake Erie has access to an extremely large and diverse freshwater fish community. It is the intention of this essay to discuss briefly that community and the impacts of human activities to provide future students and researchers with both current and historical information. Human settlements and development within the basin are discussed, followed by a description of the major stresses on the community, the impacts of those stresses, and the resulting or present-day fish community.
ERIC Educational Resources Information Center
Cauthen, Cramer R.
Despite Stanley Fish's assertion that the interpretive communities basic to his theory of literary and legal interpretation are "engines of change," it seems clear that in Fish's conception of change, "plus ca change, c'est plus la meme chose." In particular, Fish denies that the legal profession can achieve the more…
Yule, Daniel L.; Adams, Jean V.; Hrabik, Thomas R.; Vinson, Mark R.; Woiak, Zebadiah; Ahrenstroff, Tyler D.
2013-01-01
Acoustic methods are used to estimate the density of pelagic fish in large lakes with results of midwater trawling used to assign species composition. Apportionment in lakes having mixed species can be challenging because only a small fraction of the water sampled acoustically is sampled with trawl gear. Here we describe a new method where single echo detections (SEDs) are assigned to species based on classification tree models developed from catch data that separate species based on fish size and the spatial habitats they occupy. During the summer of 2011, we conducted a spatially-balanced lake-wide acoustic and midwater trawl survey of Lake Superior. A total of 51 sites in four bathymetric depth strata (0–30 m, 30–100 m, 100–200 m, and >200 m) were sampled. We developed classification tree models for each stratum and found fish length was the most important variable for separating species. To apply these trees to the acoustic data, we needed to identify a target strength to length (TS-to-L) relationship appropriate for all abundant Lake Superior pelagic species. We tested performance of 7 general (i.e., multi-species) relationships derived from three published studies. The best-performing relationship was identified by comparing predicted and observed catch compositions using a second independent Lake Superior data set. Once identified, the relationship was used to predict lengths of SEDs from the lake-wide survey, and the classification tree models were used to assign each SED to a species. Exotic rainbow smelt (Osmerus mordax) were the most common species at bathymetric depths 100 m (384 million; 6.0 kt). Cisco (Coregonus artedi) were widely distributed over all strata with their population estimated at 182 million (44 kt). The apportionment method we describe should be transferable to other large lakes provided fish are not tightly aggregated, and an appropriate TS-to-L relationship for abundant pelagic fish species can be determined.
Herbivory drives large-scale spatial variation in reef fish trophic interactions
Longo, Guilherme O; Ferreira, Carlos Eduardo L; Floeter, Sergio R
2014-01-01
Trophic interactions play a critical role in the structure and function of ecosystems. Given the widespread loss of biodiversity due to anthropogenic activities, understanding how trophic interactions respond to natural gradients (e.g., abiotic conditions, species richness) through large-scale comparisons can provide a broader understanding of their importance in changing ecosystems and support informed conservation actions. We explored large-scale variation in reef fish trophic interactions, encompassing tropical and subtropical reefs with different abiotic conditions and trophic structure of reef fish community. Reef fish feeding pressure on the benthos was determined combining bite rates on the substrate and the individual biomass per unit of time and area, using video recordings in three sites between latitudes 17°S and 27°S on the Brazilian Coast. Total feeding pressure decreased 10-fold and the composition of functional groups and species shifted from the northern to the southernmost sites. Both patterns were driven by the decline in the feeding pressure of roving herbivores, particularly scrapers, while the feeding pressure of invertebrate feeders and omnivores remained similar. The differential contribution to the feeding pressure across trophic categories, with roving herbivores being more important in the northernmost and southeastern reefs, determined changes in the intensity and composition of fish feeding pressure on the benthos among sites. It also determined the distribution of trophic interactions across different trophic categories, altering the evenness of interactions. Feeding pressure was more evenly distributed at the southernmost than in the southeastern and northernmost sites, where it was dominated by few herbivores. Species and functional groups that performed higher feeding pressure than predicted by their biomass were identified as critical for their potential to remove benthic biomass. Fishing pressure unlikely drove the large-scale pattern; however, it affected the contribution of some groups on a local scale (e.g., large-bodied parrotfish) highlighting the need to incorporate critical functions into conservation strategies. PMID:25512851
Azlan, Azrina; Nasir, Nurul Nadiah Mohamad; Shamsudin, Norashikin; Rahman, Hejar Abdul; Khoo, Hock Eng; Razman, Muhammad Rizal
2015-07-21
Exposure to PCDD/PCDF (dioxin and furan) through consumption of fish and shellfish is closely related to the occurrence of skin diseases, such as chloracne and hyperpigmentation. This study aimed to determine the exposure of PCDD/PCDF and its congeners in fish and shellfish obtained from different regions of the Straits of Malacca among the fishing community. The risk of fish and shellfish consumption and exposure to PCDD/PCDF among fishermen living in coastal areas of the Straits were evaluated based on a cross-sectional study involving face to face interviews, blood pressure and anthropometric measurements, and administration of food frequency questionnaires (FFQ). Skin examination was done by a dermatologist after the interview session. Determination of 17 congeners of PCDD/PCDF in 48 composite samples of fish and shellfish was performed based on HRGC/HRMS analysis. The total PCDD/PCDF in the seafood samples ranged from 0.12 to 1.24 pg WHO-TEQ/g fresh weight (4.6-21.8 pg WHO-TEQ/g fat). No significant difference found for the concentrations of PCDD/PCDF between the same types of seafood samples obtained from the three different regions. The concentrations of the most potent congener, 2,3,7,8-TCDD in the seafood samples ranged from 0.01 to 0.11 pg WHO-TEQ/g FW (1.9 pg WHO-TEQ/g fat). A positive moderate correlation was found between the fat contents and concentrations of PCDD/PCDF determined in the seafood samples. The total PCDD/PCDF in all seafood samples were below the 1 pg WHO-TEQ/g fresh weight, with the exception of grey eel-catfish. The respondents had consumed fish and shellfish with the amounts ranging between 2.02 g and 44.06 g per person per day. The total PCDD/PCDF exposures through consumption of fish and shellfish among the respondents were between 0.01 and 0.16 pg WHO-TEQ/kg BW/day. With regard to the two PCDD/PCDF-related skin diseases, no chloracne case was found among the respondents, but 2.2% of the respondents were diagnosed to have hyperpigmentation. Intake of a moderate amount of fish and shellfish from the area is safe and does not pose a risk for skin diseases. An over-consumption of seafood from the potentially polluted area of the Straits should be monitored in future.