Fish consumption by children in Canada: Review of evidence, challenges and future goals
Wine, Osnat; Osornio-Vargas, Alvaro R; Buka, Irena S
2012-01-01
Fish consumption is of great importance to children’s health and is essential for neurodevelopment, which begins in pregnancy and continues throughout early childhood and into adolescence. However, fish consumption presents conflicting health outcomes associated with its nutritional benefits and its adverse contaminant risks, because both avoiding fish as well as the consumption of contaminated fish can potentially harm children. This may be challenging to communicate. The present review was performed to assess the current knowledge and recommendations around ‘smart’ fish-consumption decisions. Health Canada advises, as well as other advisories and guides, that fish should be consumed for its health benefits, while also informing consumers, especially women and children, to limit certain fish consumption. The current literature must attempt to handle the challenges inherent in communicating the dilemmas of children’s fish consumption. Incorporation of new knowledge translation strategies are proposed as a means to raise the level of knowledge about optimal fish consumption practices. PMID:23633896
The objective of the present study is to review current knowledge regarding the bioaccumulation potential of IOCs, with a focus on the availability of empirical data for fish. Aspects of the bioaccumulation potential of IOCs in fish that can be characterized relatively well inclu...
Ethnoichthyology of the indigenous Truká people, Northeast Brazil.
Santos, Carlos Alberto Batista; Alves, Rômulo Romeu Nóbrega
2016-01-06
Historically, fishing is an important activity for riverine communities established along the São Francisco River, including indigenous communities. In the present study, we researched fishing activities in two villages of the Truká ethnic group, both located in the State of Pernambuco along the sub-middle section of the São Francisco River, Northeast Brazil. We recorded the richness and uses of the fished species and the ecological knowledge on these species, the fishing techniques employed and the perception of the indigenous people regarding current environmental impacts on the São Francisco River that influence local fishing. The information was obtained through interviews with 33 Truká fishers (27 men and six women), including 17 interviewees from Central Village (Cabrobó) and 16 from Tapera Village (Orocó). Using five fishing techniques, the interviewees caught 25 fish species, including 21 native and four exotic species. All species are used as food, and two species are used in traditional Truká medicine. The interviewees revealed that fishing currently has less importance in their subsistence. They indicated that this situation is occurring because of several factors, such as the introduction of exotic species, pollution and urbanization, that have impacted the São Francisco River, resulting in a decline of fishing resources. Nevertheless, we found that the indigenous people who are still fishing have a broad knowledge of the habitat and ecology of the target fishing. Although fishing is declining in importance among the Truká, we found that the individuals who are still practicing this activity have a broad knowledge about the habitat and ecology of the target species and apply that knowledge to fishing methods. Knowledge about the ecology of the species and the environmental impacts that have affected them can support basic research on local fish populations and research investigating the environmental impacts, resource management and sustainable exploitation of fisheries resources.
Current ecological understanding of fungal-like pathogens of fish: what lies beneath?
Gozlan, Rodolphe E.; Marshall, Wyth L.; Lilje, Osu; Jessop, Casey N.; Gleason, Frank H.; Andreou, Demetra
2014-01-01
Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected, along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity. PMID:24600442
Key issues concerning environmental enrichment for laboratory-held fish species.
Williams, T D; Readman, G D; Owen, S F
2009-04-01
An improved knowledge and understanding of the fundamental biological requirements is needed for many of the species of fish held in captivity and, without this knowledge it is difficult to determine the optimal conditions for laboratory culture. The aim of this paper is to review the key issues concerning environmental enrichment for laboratory-held fish species and identify where improvements are required. It provides background information on environmental enrichment, describes enrichment techniques currently used in aquatic ecotoxicology studies, identifies potential restrictions in their use and discusses why more detailed and species-specific guidance is needed.
Water transport and functional dynamics of aquaporins in osmoregulatory organs of fishes.
Madsen, Steffen S; Engelund, Morten B; Cutler, Christopher P
2015-08-01
Aquaporins play distinct roles for water transport in fishes as they do in mammals-both at the cellular, organ, and organismal levels. However, with over 32,000 known species of fishes inhabiting almost every aquatic environment, from tidal pools, small mountain streams, to the oceans and extreme salty desert lakes, the challenge to obtain consensus as well as specific knowledge about aquaporin physiology in these vertebrate clades is overwhelming. Because the integumental surfaces of these animals are in intimate contact with the surrounding milieu, passive water loss and uptake represent two of the major osmoregulatory challenges that need compensation. However, neither obligatory nor regulatory water transport nor their mechanisms have been elucidated to the same degree as, for example, ion transport in fishes. Currently fewer than 60 papers address fish aquaporins. Most of these papers identify "what is present" and describe tissue expression patterns in various teleosts. The agnathans, chondrichthyans, and functionality of fish aquaporins generally have received little attention. This review emphasizes the functional physiology of aquaporins in fishes, focusing on transepithelial water transport in osmoregulatory organs in euryhaline species - primarily teleosts, but covering other taxonomic groups as well. Most current knowledge comes from teleosts, and there is a strong need for related information on older fish clades. Our survey aims to stimulate new, original research in this area and to bring together new collaborations across disciplines. © 2015 Marine Biological Laboratory.
The future of fish passage science, engineering, and practice
Silva, Ana T.; Lucas, Martyn C.; Castro-Santos, Theodore R.; Katopodis, Christos; Baumgartner, Lee J.; Thiem, Jason D.; Aarestrup, Kim; Pompeu, Paulo S.; O'Brien, Gordon C.; Braun, Douglas C.; Burnett, Nicholas J.; Zhu, David Z.; Fjeldstad, Hans-Petter; Forseth, Torbjorn; Rajarathnam, Nallamuthu; Williams, John G.; Cooke, Steven J.
2018-01-01
Much effort has been devoted to developing, constructing and refining fish passage facilities to enable target species to pass barriers on fluvial systems, and yet, fishway science, engineering and practice remain imperfect. In this review, 17 experts from different fish passage research fields (i.e., biology, ecology, physiology, ecohydraulics, engineering) and from different continents (i.e., North and South America, Europe, Africa, Australia) identified knowledge gaps and provided a roadmap for research priorities and technical developments. Once dominated by an engineering‐focused approach, fishway science today involves a wide range of disciplines from fish behaviour to socioeconomics to complex modelling of passage prioritization options in river networks. River barrier impacts on fish migration and dispersal are currently better understood than historically, but basic ecological knowledge underpinning the need for effective fish passage in many regions of the world, including in biodiversity hotspots (e.g., equatorial Africa, South‐East Asia), remains largely unknown. Designing efficient fishways, with minimal passage delay and post‐passage impacts, requires adaptive management and continued innovation. While the use of fishways in river restoration demands a transition towards fish passage at the community scale, advances in selective fishways are also needed to manage invasive fish colonization. Because of the erroneous view in some literature and communities of practice that fish passage is largely a proven technology, improved international collaboration, information sharing, method standardization and multidisciplinary training are needed. Further development of regional expertise is needed in South America, Asia and Africa where hydropower dams are currently being planned and constructed.
William S. Platts
1981-01-01
This paper documents current knowledge on interactions of livestock and fish habitat. Included are discussions of incompatibility and compatibility between livestock grazing and fisheries, present management guidelines, information needed for problem solving, information available for problem solving, and future research needs.
Fish Ontology framework for taxonomy-based fish recognition
Ali, Najib M.; Khan, Haris A.; Then, Amy Y-Hui; Ving Ching, Chong; Gaur, Manas
2017-01-01
Life science ontologies play an important role in Semantic Web. Given the diversity in fish species and the associated wealth of information, it is imperative to develop an ontology capable of linking and integrating this information in an automated fashion. As such, we introduce the Fish Ontology (FO), an automated classification architecture of existing fish taxa which provides taxonomic information on unknown fish based on metadata restrictions. It is designed to support knowledge discovery, provide semantic annotation of fish and fisheries resources, data integration, and information retrieval. Automated classification for unknown specimens is a unique feature that currently does not appear to exist in other known ontologies. Examples of automated classification for major groups of fish are demonstrated, showing the inferred information by introducing several restrictions at the species or specimen level. The current version of FO has 1,830 classes, includes widely used fisheries terminology, and models major aspects of fish taxonomy, grouping, and character. With more than 30,000 known fish species globally, the FO will be an indispensable tool for fish scientists and other interested users. PMID:28929028
Parasites of freshwater fishes in North America: why so neglected?
Scholz, Tomáš; Choudhury, Anindo
2014-02-01
Fish parasitology has a long tradition in North America and numerous parasitologists have contributed considerably to the current knowledge of the diversity and biology of protistan and metazoan parasites of freshwater fishes. The Journal of Parasitology has been essential in disseminating this knowledge and remains a significant contributor to our understanding of fish parasites in North America as well as more broadly at the international level. However, with a few exceptions, the importance of fish parasites has decreased during the last decades, which is reflected in the considerable decline of funding and corresponding decrease of attention paid to these parasites in Canada and the United States of America. After the 'golden age' in the second half of the 20th Century, fish parasitology in Canada and the United States went in a new direction, driven by technology and a shift in priorities. In contrast, fish parasitology in Mexico has undergone rapid development since the early 1990s, partly due to extensive international collaboration and governmental funding. A critical review of the current data on the parasites of freshwater fishes in North America has revealed considerable gaps in the knowledge of their species composition, host specificity, life cycles, evolution, phylogeography, and relationships with their fish hosts. As to the key question, "Why so neglected?" this is probably because: (1) fish parasites are not in the forefront due to their lesser economic importance; (2) there is little funding for this kind of research, especially if a practical application is not immediately apparent; and (3) of shifting interests and a shortage of key personalities to train a new generation (they switched to marine habitats or other fields). Some of the opportunities for future research are outlined, such as climate change and cryptic species diversity. A significant problem challenging future research seems to be the loss of trained and experienced fish parasitologists. This has 2 major ramifications: the loss of expertise in identifying organisms that other biologists (e.g., ecologists, molecular biologists, evolutionists) work with, and an incomplete comprehension of ecosystem structure and function in the face of climate change, emerging diseases, and loss of biodiversity.
A Probabilistic Model for Hydrokinetic Turbine Collision Risks: Exploring Impacts on Fish
Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker
2015-01-01
A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals. PMID:25730314
A probabilistic model for hydrokinetic turbine collision risks: exploring impacts on fish.
Hammar, Linus; Eggertsen, Linda; Andersson, Sandra; Ehnberg, Jimmy; Arvidsson, Rickard; Gullström, Martin; Molander, Sverker
2015-01-01
A variety of hydrokinetic turbines are currently under development for power generation in rivers, tidal straits and ocean currents. Because some of these turbines are large, with rapidly moving rotor blades, the risk of collision with aquatic animals has been brought to attention. The behavior and fate of animals that approach such large hydrokinetic turbines have not yet been monitored at any detail. In this paper, we conduct a synthesis of the current knowledge and understanding of hydrokinetic turbine collision risks. The outcome is a generic fault tree based probabilistic model suitable for estimating population-level ecological risks. New video-based data on fish behavior in strong currents are provided and models describing fish avoidance behaviors are presented. The findings indicate low risk for small-sized fish. However, at large turbines (≥5 m), bigger fish seem to have high probability of collision, mostly because rotor detection and avoidance is difficult in low visibility. Risks can therefore be substantial for vulnerable populations of large-sized fish, which thrive in strong currents. The suggested collision risk model can be applied to different turbine designs and at a variety of locations as basis for case-specific risk assessments. The structure of the model facilitates successive model validation, refinement and application to other organism groups such as marine mammals.
Bizuayehu, Teshome Tilahun; Babiak, Igor
2014-01-01
MicroRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts. PMID:25053657
The coastal fishes and fisheries of the Socotra Archipelago, Yemen.
Zajonz, Uwe; Lavergne, Edouard; Klaus, Rebecca; Krupp, Friedhelm; Aideed, Moteah Sheikh; Saeed, Fouad Naseeb
2016-04-30
The Socotra Archipelago is situated in the Gulf of Aden where tropical and "pseudo-temperate" conditions combine to create a unique marine ecosystem. The diversity, ecology, productivity and fisheries of the coastal fish assemblages are still relatively understudied and no update of the scientific knowledge existed. The islands support unique coastal and coral-associated fish assemblages in spite of the limited biogenic reef frameworks. Fish diversity is the highest among comparable Arabian eco-regions, and fish biomass productivity high too by Indian Ocean standards. The production of the once traditionally-managed small-scale fishery is severely declining and whether it is sustainable nowadays is extremely doubtful. At a time when Yemen is torn apart by a severe political and humanitarian crisis it is timely to review and update the current state of knowledge for scientists and managers, and thereby ease access to existing information, facilitating follow-on studies and evidence-based conservation and fisheries management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fishes and aquatic habitats of the Orinoco River Basin: diversity and conservation.
Lasso, C A; Machado-Allison, A; Taphorn, D C
2016-07-01
About 1000 freshwater fishes have been found so far in the Orinoco River Basin of Venezuela and Colombia. This high ichthyological diversity reflects the wide range of landscapes and aquatic ecosystems included in the basin. Mountain streams descend from the high Andes to become rapid-flowing foothill rivers that burst out upon vast savannah flatlands where they slowly make their way to the sea. These white-water rivers are heavily laden with sediments from the geologically young Andes. Because their sediment deposits have formed the richest soils of the basin, they have attracted the highest density of human populations, along with the greatest levels of deforestation, wildfires, agricultural biocides and fertilizers, sewage and all the other impacts associated with urban centres, agriculture and cattle ranching. In the southern portion of the basin, human populations are much smaller, where often the only inhabitants are indigenous peoples. The ancient rocks and sands of the Guiana Shield yield clear and black water streams of very different quality. Here, sediment loads are miniscule, pH is very acid and fish biomass is only a fraction of that observed in the rich Andean tributaries to the north. For each region of the basin, the current state of knowledge about fish diversity is assessed, fish sampling density evaluated, the presence of endemic species and economically important species (for human consumption or ornamental purposes) described and gaps in knowledge are pointed out. Current trends in the fishery for human consumption are analysed, noting that stocks of many species are in steep decline, and that current fishing practices are not sustainable. Finally, the major impacts and threats faced by the fishes and aquatic ecosystems of the Orinoco River Basin are summarized, and the creation of bi-national commissions to promote standardized fishing laws in both countries is recommended. © 2016 The Fisheries Society of the British Isles.
Reprint of "fish immunity to scuticociliate parasites".
Piazzon, María Carla; Leiro, José; Lamas, Jesús
2014-04-01
Some species of scuticociliates (Ciliophora) behave as facultative parasites and produce severe mortalities in cultured fish. Pathogenic scuticociliates can cause surface lesions and can also penetrate inside the body, where they feed on tissue and proliferate in the blood and most internal organs, killing the host in a few days. In this review, we describe the current knowledge on the protective role of fish cellular and humoral immune responses against these parasites. Immune humoral factors, especially complement, are of particular importance in defending fish against these ciliates. However, knowledge about how the fish immune system responds to scuticociliates is scant, and the cellular and molecular events that occur during the response are not known. We also describe the possible mechanisms used by scuticociliates to avoid or resist the defensive reaction of the host. For example, the release of proteases can help parasites enter fish tissues and impair the fish cellular and humoral responses. Several vaccine formulations containing scuticociliates have induced a good antibody response and protection in fish immunized and challenged with homologous strains of particular species. However, protection was not achieved in fish immunized and challenged with heterologous strains, and the antigens involved in protection and the antigenic differences between heterologous strains have not yet been determined. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fish immunity to scuticociliate parasites.
Piazzon, María Carla; Leiro, José; Lamas, Jesús
2013-10-01
Some species of scuticociliates (Ciliophora) behave as facultative parasites and produce severe mortalities in cultured fish. Pathogenic scuticociliates can cause surface lesions and can also penetrate inside the body, where they feed on tissue and proliferate in the blood and most internal organs, killing the host in a few days. In this review, we describe the current knowledge on the protective role of fish cellular and humoral immune responses against these parasites. Immune humoral factors, especially complement, are of particular importance in defending fish against these ciliates. However, knowledge about how the fish immune system responds to scuticociliates is scant, and the cellular and molecular events that occur during the response are not known. We also describe the possible mechanisms used by scuticociliates to avoid or resist the defensive reaction of the host. For example, the release of proteases can help parasites enter fish tissues and impair the fish cellular and humoral responses. Several vaccine formulations containing scuticociliates have induced a good antibody response and protection in fish immunized and challenged with homologous strains of particular species. However, protection was not achieved in fish immunized and challenged with heterologous strains, and the antigens involved in protection and the antigenic differences between heterologous strains have not yet been determined. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Neuroendocrine Regulation of Food Intake in Fish: A Review of Current Knowledge
Volkoff, Helene
2016-01-01
Fish are the most diversified group of vertebrates and, although progress has been made in the past years, only relatively few fish species have been examined to date, with regards to the endocrine regulation of feeding in fish. In fish, as in mammals, feeding behavior is ultimately regulated by central effectors within feeding centers of the brain, which receive and process information from endocrine signals from both brain and peripheral tissues. Although basic endocrine mechanisms regulating feeding appear to be conserved among vertebrates, major physiological differences between fish and mammals and the diversity of fish, in particular in regard to feeding habits, digestive tract anatomy and physiology, suggest the existence of fish- and species-specific regulating mechanisms. This review provides an overview of hormones known to regulate food intake in fish, emphasizing on major hormones and the main fish groups studied to date. PMID:27965528
Pathogen bacteria adhesion to skin mucus of fishes.
Benhamed, Said; Guardiola, Francisco A; Mars, Mohammed; Esteban, María Ángeles
2014-06-25
Fish are always in intimate contact with their environment; therefore they are permanently exposed to very vary external hazards (e.g. aerobic and anaerobic bacteria, viruses, parasites, pollutants). To fight off pathogenic microorganisms, the epidermis and its secretion, the mucus acts as a barrier between the fish and the environment. Fish are surrounded by a continuous layer of mucus which is the first physical, chemical and biological barrier from infection and the first site of interaction between fish's skin cells and pathogens. The mucus composition is very complex and includes numerous antibacterial factors secreted by fish's skin cells, such as immunoglobulins, agglutinins, lectins, lysins and lysozymes. These factors have a very important role to discriminate between pathogenic and commensal microorganisms and to protect fish from invading pathogens. Furthermore, the skin mucus represents an important portal of entry of pathogens since it induces the development of biofilms, and represents a favorable microenvironment for bacteria, the main disease agents for fish. The purpose of this review is to summarize the current knowledge of the interaction between bacteria and fish skin mucus, the adhesion mechanisms of pathogens and the major factors influencing pathogen adhesion to mucus. The better knowledge of the interaction between fish and their environment could inspire other new perspectives to study as well as to exploit the mucus properties for different purposes. Copyright © 2014 Elsevier B.V. All rights reserved.
Fish stranding in freshwater systems: sources, consequences, and mitigation.
Nagrodski, Alexander; Raby, Graham D; Hasler, Caleb T; Taylor, Mark K; Cooke, Steven J
2012-07-30
Fish can become stranded when water levels decrease, often rapidly, as a result of anthropogenic (e.g., canal drawdown, hydropeaking, vessel wakes) and natural (e.g., floods, drought, winter ice dynamics) events. We summarize existing research on stranding of fish in freshwater, discuss the sources, consequences, and mitigation options for stranding, and report current knowledge gaps. Our literature review revealed that ∼65.5% of relevant peer-reviewed articles were found to focus on stranding associated with hydropower operations and irrigation projects. In fact, anthropogenic sources of fish stranding represented 81.8% of available literature compared to only 19.9% attributed to natural fish stranding events. While fish mortality as a result of stranding is well documented, our analysis revealed that little is known about the sublethal and long-term consequences of stranding on growth and population dynamics. Furthermore, the contribution of stranding to annual mortality rates is poorly understood as are the potential ecosystem-scale impacts. Mitigation strategies available to deal with stranding include fish salvage, ramping rate limitations, and physical habitat works (e.g., to contour substrate to minimize stranding). However, a greater knowledge of the factors that cause fish stranding would promote the development and refinement of mitigation strategies that are economically and ecologically sustainable. Copyright © 2012 Elsevier Ltd. All rights reserved.
Parasites of marine, freshwater and farmed fishes of Portugal: a review.
Eiras, Jorge da Costa
2016-01-01
An extensive literature review is made of the parasites in marine and freshwater fish in mainland Portugal, the Portuguese archipelagos of the Azores and Madeira, as well as in farmed fish. The host(s) of each parasite species, its location in the host, site of capture of the host, whenever possible, and all the available bibliographic references are described. The economic importance of some parasites and the zoonotic relevance of some parasitic forms are discussed. A general overview of the data is provided, and some research lines are suggested in order to increase and complement the current body of knowledge about the parasites of fish from Portugal.
The Influence of Fisher Knowledge on the Susceptibility of Reef Fish Aggregations to Fishing
Robinson, Jan; Cinner, Joshua E.; Graham, Nicholas A. J.
2014-01-01
Reef fishes that exhibit predictable aggregating behaviour are often considered vulnerable to overexploitation. However, fisher knowledge of this behaviour is often heterogeneous and, coupled with socioeconomic factors that constrain demand for or access to aggregated fish, will influence susceptibility to fishing. At two case study locations in Papua New Guinea, Ahus and Karkar islands, we conducted interview-based surveys to examine how local context influenced heterogeneity in knowledge of fish aggregations. We then explored the role of fisher knowledge in conferring susceptibility to fishing relative to socioeconomic drivers of fishing effort. Local heterogeneity in knowledge of aggregating behaviour differed between our case studies. At Ahus, variable access rights among fishers and genders to the main habitats were sources of heterogeneity in knowledge. By contrast, knowledge was more homogenous at Karkar and the sole source of variation was gear type. Differences between locations in the susceptibility of aggregations to fishing depended primarily on socioeconomic drivers of fishing effort rather than catchability. While Ahus fishers were knowledgeable of fish aggregations and used more selective gears, Karkar fishers were less constrained by tenure in their access to aggregation habitat. However, fishing effort was greater at Ahus and likely related to high dependency on fishing, greater access to provincial capital markets than Karkar and a weakening of customary management. Moreover, highly efficient fishing techniques have emerged at Ahus to exploit the non-reproductive aggregating behaviour of target species. Understanding how knowledge is structured within fishing communities and its relation to socioeconomic drivers of fishing effort is important if customary practices for conservation, such as tambu areas, are to be supported. The findings of this study call for a holistic approach to assessing the risks posed to reef fish aggregations by fishing, grounded in the principals of fisheries science and emerging social-ecological thinking. PMID:24646910
The influence of fisher knowledge on the susceptibility of reef fish aggregations to fishing.
Robinson, Jan; Cinner, Joshua E; Graham, Nicholas A J
2014-01-01
Reef fishes that exhibit predictable aggregating behaviour are often considered vulnerable to overexploitation. However, fisher knowledge of this behaviour is often heterogeneous and, coupled with socioeconomic factors that constrain demand for or access to aggregated fish, will influence susceptibility to fishing. At two case study locations in Papua New Guinea, Ahus and Karkar islands, we conducted interview-based surveys to examine how local context influenced heterogeneity in knowledge of fish aggregations. We then explored the role of fisher knowledge in conferring susceptibility to fishing relative to socioeconomic drivers of fishing effort. Local heterogeneity in knowledge of aggregating behaviour differed between our case studies. At Ahus, variable access rights among fishers and genders to the main habitats were sources of heterogeneity in knowledge. By contrast, knowledge was more homogenous at Karkar and the sole source of variation was gear type. Differences between locations in the susceptibility of aggregations to fishing depended primarily on socioeconomic drivers of fishing effort rather than catchability. While Ahus fishers were knowledgeable of fish aggregations and used more selective gears, Karkar fishers were less constrained by tenure in their access to aggregation habitat. However, fishing effort was greater at Ahus and likely related to high dependency on fishing, greater access to provincial capital markets than Karkar and a weakening of customary management. Moreover, highly efficient fishing techniques have emerged at Ahus to exploit the non-reproductive aggregating behaviour of target species. Understanding how knowledge is structured within fishing communities and its relation to socioeconomic drivers of fishing effort is important if customary practices for conservation, such as tambu areas, are to be supported. The findings of this study call for a holistic approach to assessing the risks posed to reef fish aggregations by fishing, grounded in the principals of fisheries science and emerging social-ecological thinking.
Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.
Smith, Michael E; Monroe, J David
2016-01-01
Sensory hair cells are the mechanotransductive receptors that detect gravity, sound, and vibration in all vertebrates. Damage to these sensitive receptors often results in deficits in vestibular function and hearing. There are currently two main reasons for studying the process of hair cell loss in fishes. First, fishes, like other non-mammalian vertebrates, have the ability to regenerate hair cells that have been damaged or lost via exposure to ototoxic chemicals or acoustic overstimulation. Thus, they are used as a biomedical model to understand the process of hair cell death and regeneration and find therapeutics that treat or prevent human hearing loss. Secondly, scientists and governmental natural resource managers are concerned about the potential effects of intense anthropogenic sounds on aquatic organisms, including fishes. Dr. Arthur N. Popper and his students, postdocs and research associates have performed pioneering experiments in both of these lines of fish hearing research. This review will discuss the current knowledge regarding the causes and consequences of both lateral line and inner ear hair cell damage in teleost fishes.
The role of fish in a globally changing food system
Lynch, Abigail J.; MacMillan, J. Randy
2017-01-01
Though humans have been fishing for food since they first created tools to hunt, modern food systems are predominately terrestrial focused and fish are frequently overlooked. Yet, within the global food system, fish play an important role in meeting current and future food needs. Capture fisheries are the last large-scale “wild” food, and aquaculture is the fastest growing food production sector in the world. Currently, capture fisheries and aquaculture provide 4.3 billion people with at least 15% of their animal protein. In addition to providing protein and calories, fish are important sources of critical vitamins and vital nutrients that are difficult to acquire through other food sources. As the climate changes, human populations will continue to grow, cultural tastes will evolve, and fish populations will respond. Sustainable fisheries and aquaculture are poised to fill demand for food not met by terrestrial food systems. Climate change and other global changes will increase, decrease, or modify many wild fish populations and aquaculture systems. Understanding the knowledge gaps around these implications for global change on fish production is critical. Applied research and adaptive management techniques can assist with the necessary evolution of sustainable food systems to include a stronger emphasis on fish and other aquatic organisms.
Matching Fishers’ Knowledge and Landing Data to Overcome Data Missing in Small-Scale Fisheries
Damasio, Ludmila de Melo Alves; Lopes, Priscila F. M.; Guariento, Rafael D.; Carvalho, Adriana R.
2015-01-01
Background In small-scale fishery, information provided by fishers has been useful to complement current and past lack of knowledge on species and environment. Methodology Through interviews, 82 fishers from the largest fishing communities on the north and south borders of a Brazilian northeastern coastal state provided estimates of the catch per unit effort (CPUE) and rank of species abundance of their main target fishes for three time points: current year (2013 at the time of the research), 10, and 20 years past. This information was contrasted to other available data sources: scientific sampling of fish landing (2013), governmental statistics (2003), and information provided by expert fishers (1993), respectively. Principal Findings Fishers were more accurate when reporting information about their maximum CPUE for 2013, but except for three species, which they estimated accurately, fishers overestimated their mean CPUE per species. Fishers were also accurate at establishing ranks of abundance of their main target species for all periods. Fishers' beliefs that fish abundance has not changed over the last 10 years (2003–2013) were corroborated by governmental and scientific landing data. Conclusions The comparison between official and formal landing records and fishers' perceptions revealed that fishers are accurate when reporting maximum CPUE, but not when reporting mean CPUE. Moreover, fishers are less precise the less common a species is in their catches, suggesting that they could provide better information for management purposes on their current target species. PMID:26176538
Bally-Cuif, Laure; Kelsh, Robert; Beis, Dimitris; Mione, Marina; Panula, Pertti; Figueras, Antonio; Gothilf, Yoav; Brösamle, Christian; Geisler, Robert; Knedlitschek, Gudrun
2012-01-01
Abstract Small fresh water fishes such as the zebrafish (Danio rerio) have become important model organisms for biomedical research. They currently represent the best vertebrate embryo models in which it is possible to derive quantitative data on gene expression, signaling events, and cell behavior in real time in the living animal. Relevant phenotypes in fish mutants are similar to those of other vertebrate models and human diseases. They can be analyzed in great detail and much faster than in mammals. In recent years, approximately 2500 genetically distinct fish lines have been generated by European research groups alone. Their potential, including their possible use by industry, is far from being exploited. To promote zebrafish research in Europe, EuFishBioMed was founded and won support by the EU COST programme (http://www.cost.esf.org/). The main objective of EuFishBioMed is to establish a platform of knowledge exchange for research on small fish models with a strong focus on widening its biomedical applications and an integration of European research efforts and resources. EuFishBioMed currently lists more than 300 member laboratories in Europe, offers funding for short-term laboratory visits, organizes and co-sponsors meetings and workshops, and has successfully lobbied for the establishment of a European Zebrafish Resource Centre. To maintain this network in the future, beyond the funding period of the COST Action, we are currently establishing the European Society for Fish Models in Biology and Medicine. PMID:22537014
Microbiological spoilage of fish and fish products.
Gram, L; Huss, H H
1996-11-01
Spoilage of fresh and lightly preserved fish products is caused by microbial action. This paper reviews the current knowledge in terms of the microbiology of fish and fish products with particular emphasis on identification of specific spoilage bacteria and the qualitative and quantitative biochemical indicators of spoilage. Shewanella putrefaciens and Pseudomonas spp. are the specific spoilage bacteria of iced fresh fish regardless of the origin of the fish. Modified atmosphere stored marine fish from temperate waters are spoiled by the CO2 resistant Photobacterium phosphoreum whereas Gram-positive bacteria are likely spoilers of CO2 packed fish from fresh or tropical waters. Fish products with high salt contents may spoil due to growth of halophilic bacteria (salted fish) or growth of anaerobic bacteria and yeasts (barrel salted fish). Whilst the spoilage of fresh and highly salted fish is well understood, much less is known about spoilage of lightly preserved fish products. It is concluded that the spoilage is probably caused by lactic acid bacteria, certain psychotrophic Enterobacteriaceae and/or Photobacterium phosphoreum. However, more work is needed in this area.
Fish biodiversity and conservation in South America.
Reis, R E; Albert, J S; Di Dario, F; Mincarone, M M; Petry, P; Rocha, L A
2016-07-01
The freshwater and marine fish faunas of South America are the most diverse on Earth, with current species richness estimates standing above 9100 species. In addition, over the last decade at least 100 species were described every year. There are currently about 5160 freshwater fish species, and the estimate for the freshwater fish fauna alone points to a final diversity between 8000 and 9000 species. South America also has c. 4000 species of marine fishes. The mega-diverse fish faunas of South America evolved over a period of >100 million years, with most lineages tracing origins to Gondwana and the adjacent Tethys Sea. This high diversity was in part maintained by escaping the mass extinctions and biotic turnovers associated with Cenozoic climate cooling, the formation of boreal and temperate zones at high latitudes and aridification in many places at equatorial latitudes. The fresh waters of the continent are divided into 13 basin complexes, large basins consolidated as a single unit plus historically connected adjacent coastal drainages, and smaller coastal basins grouped together on the basis of biogeographic criteria. Species diversity, endemism, noteworthy groups and state of knowledge of each basin complex are described. Marine habitats around South America, both coastal and oceanic, are also described in terms of fish diversity, endemism and state of knowledge. Because of extensive land use changes, hydroelectric damming, water divergence for irrigation, urbanization, sedimentation and overfishing 4-10% of all fish species in South America face some degree of extinction risk, mainly due to habitat loss and degradation. These figures suggest that the conservation status of South American freshwater fish faunas is better than in most other regions of the world, but the marine fishes are as threatened as elsewhere. Conserving the remarkable aquatic habitats and fishes of South America is a growing challenge in face of the rapid anthropogenic changes of the 21st century, and deserves attention from conservationists and policy makers. © 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.
[Advances in the study of neuroendocrinological regulation of kisspeptin in fish reproduction].
Zhuo, Qi
2013-10-01
Kisspeptin, a key factor in the neuroendocrinological regulation of animal reproduction, is a peptide product encoded by kiss genes, which act as the natural ligand of GPR54. Over the last decade, multiple functional molecular forms of kisspeptin have been found in vertebrate species. In fish, the major molecular structural form is kisspeptin-10. The kisspeptin/GPR54 system has multiple important functions in reproduction. This review provides an overview of our current knowledge on kisspeptin and its role in regulating fish reproductive, including the distribution and location of kisspeptin neurons in the brain, the molecular polymorphism of fish kisspeptin, functional diversity, the molecular mechanism of fish reproductive regulation, and the molecular evolution of kisspeptin as well as the co-regulation of fish reproduction by kisspeptin and other functional molecules. Perspectives on the future of kisspeptin regulation in fish reproduction are also highlighted.
Dayan, Tamar; Goren, Menachem; Nadel, Dani; Hershkovitz, Israel
2018-01-01
Analysis of ca. 17,000 fish remains recovered from the late Upper Paleolithic/early Epi-Paleolithic (LGM; 23,000 BP) waterlogged site of Ohalo II (Rift Valley, Israel) provides new insights into the role of wetland habitats and the fish inhabiting them during the evolution of economic strategies prior to the agricultural evolution. Of the current 19 native fish species in Lake Kinneret (Sea of Galilee), eight species were identified at Ohalo II, belonging to two freshwater families: Cyprinidae (carps) and Cichlidae (St. Peter fish). Employing a large set of quantitative and qualitative criteria (NISP, species richness, diversity, skeletal element representation, fragmentation, color, spatial distribution, etc.), we demonstrate that the inhabitants of Ohalo II used their knowledge of the breeding behavior of different species of fish, for year-round intensive exploitation. PMID:29912923
Zohar, Irit; Dayan, Tamar; Goren, Menachem; Nadel, Dani; Hershkovitz, Israel
2018-01-01
Analysis of ca. 17,000 fish remains recovered from the late Upper Paleolithic/early Epi-Paleolithic (LGM; 23,000 BP) waterlogged site of Ohalo II (Rift Valley, Israel) provides new insights into the role of wetland habitats and the fish inhabiting them during the evolution of economic strategies prior to the agricultural evolution. Of the current 19 native fish species in Lake Kinneret (Sea of Galilee), eight species were identified at Ohalo II, belonging to two freshwater families: Cyprinidae (carps) and Cichlidae (St. Peter fish). Employing a large set of quantitative and qualitative criteria (NISP, species richness, diversity, skeletal element representation, fragmentation, color, spatial distribution, etc.), we demonstrate that the inhabitants of Ohalo II used their knowledge of the breeding behavior of different species of fish, for year-round intensive exploitation.
Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics
Howell, W. Mike
2018-01-01
To understand the cytogenomic evolution of vertebrates, we must first unravel the complex genomes of fishes, which were the first vertebrates to evolve and were ancestors to all other vertebrates. We must not forget the immense time span during which the fish genomes had to evolve. Fish cytogenomics is endowed with unique features which offer irreplaceable insights into the evolution of the vertebrate genome. Due to the general DNA base compositional homogeneity of fish genomes, fish cytogenomics is largely based on mapping DNA repeats that still represent serious obstacles in genome sequencing and assembling, even in model species. Localization of repeats on chromosomes of hundreds of fish species and populations originating from diversified environments have revealed the biological importance of this genomic fraction. Ribosomal genes (rDNA) belong to the most informative repeats and in fish, they are subject to a more relaxed regulation than in higher vertebrates. This can result in formation of a literal ‘rDNAome’ consisting of more than 20,000 copies with their high proportion employed in extra-coding functions. Because rDNA has high rates of transcription and recombination, it contributes to genome diversification and can form reproductive barrier. Our overall knowledge of fish cytogenomics grows rapidly by a continuously increasing number of fish genomes sequenced and by use of novel sequencing methods improving genome assembly. The recently revealed exceptional compositional heterogeneity in an ancient fish lineage (gars) sheds new light on the compositional genome evolution in vertebrates generally. We highlight the power of synergy of cytogenetics and genomics in fish cytogenomics, its potential to understand the complexity of genome evolution in vertebrates, which is also linked to clinical applications and the chromosomal backgrounds of speciation. We also summarize the current knowledge on fish cytogenomics and outline its main future avenues. PMID:29443947
Stimming, Madlen; Mesch, Christina M; Kersting, Mathilde; Libuda, Lars
2015-10-01
Fish and rapeseed oil are major sources of omega-3 polyunsaturated fatty acids (n-3 PUFA) in complementary food, but little is known about current consumption in Germany. We conducted a nationwide consumer survey to assess the consumption habits of fish and rapeseed oil and their determining factors in 985 mother-child dyads in Germany. One-fourth of infants ate fish as often as recommended, i.e. at least once per week. Half of the mothers stated that they mainly used rapeseed oil for self-prepared and/or commercial vegetable-potato-meat meals. In contrast, mothers more frequently met recommendations for fish consumption (41 %), but used rapeseed oil (34 %) less often for their own nutrition. Maternal eating behaviour was the most important predictor for both of these n-3 PUFA rich foods in infants' nutrition. In contrast to infants' fish consumption, rapeseed oil intake in infancy was found to be influenced by some further factors, i.e. mothers' social class and omega-3 knowledge, which were also key determinants of mothers' own fish and rapeseed oil consumption. To promote fish with complementary feeding, programs should focus on families whose mothers rarely eat fish. Nutritional campaigns to improve omega-3 knowledge-especially focusing on lower social classes-could be effective in increasing rapeseed oil consumption, although these programs should be combined with environmental improvements as it has been already started through the use of rapeseed oil in commercial baby jars.
Verde, Cinzia; Giordano, Daniela; di Prisco, Guido
2008-01-01
In the Antarctic, fishes of dominant suborder Notothenioidei have evolved in a unique thermal scenario. Phylogenetically related taxa of the suborder live in a wide range of latitudes, in Antarctic, sub-Antarctic and temperate oceans. Consequently, they offer a remarkable opportunity to study the physiological and biochemical characters gained and, conversely, lost during their evolutionary history. The evolutionary perspective has also been pursued by comparative studies of some features of the heme protein devoted to O(2) transport in fish living in the other polar region, the Arctic. The two polar regions differ by age and isolation. Fish living in each habitat have undergone regional constraints and fit into different evolutionary histories. The aim of this contribution is to survey the current knowledge of molecular structure, functional features, phylogeny and adaptations of the haemoglobins of fish thriving in the Antarctic, sub-Antarctic and Arctic regions (with some excursions in the temperate latitudes), in search of insights into the convergent processes evolved in response to cooling. Current climate change may disturb adaptation, calling for strategies aimed at neutralising threats to biodiversity.
O'Gorman, Robert; Stewart, Thomas J.; Taylor, William W.; Ferreri, C. Paola
1999-01-01
This article chronicles the ascent, dominance, and decline of the alewife (Alosa pseudoharengus) in the Great Lakes and tracks the gradual accumulation of knowledge on the fish's effect on the aquatic community. Changes in management strategies for alewife are followed, and the current management dilemma is framed in light of the alewife's effect on inidigenous fishes and the changing biota and trophic status of the Great Lakes.
Heavy metals in marine fish meat and consumer health: a review.
Bosch, Adina C; O'Neill, Bernadette; Sigge, Gunnar O; Kerwath, Sven E; Hoffman, Louwrens C
2016-01-15
The numerous health benefits provided by fish consumption may be compromised by the presence of toxic metals and metalloids such as lead, cadmium, arsenic and mercury, which can have harmful effects on the human body if consumed in toxic quantities. The monitoring of metal concentrations in fish meat is therefore important to ensure compliance with food safety regulations and consequent consumer protection. The toxicity of these metals may be dependent on their chemical forms, which requires metal speciation processes for direct measurement of toxic metal species or the identification of prediction models in order to determine toxic metal forms from measured total metal concentrations. This review addresses various shortcomings in current knowledge and research on the accumulation of metal contaminants in commercially consumed marine fish globally and particularly in South Africa, affecting both the fishing industry as well as fish consumers. © 2015 Society of Chemical Industry.
Gap analysis on the biology of Mediterranean marine fishes
Dimarchopoulou, Donna; Stergiou, Konstantinos I.
2017-01-01
We estimated the current level of knowledge concerning several biological characteristics of the Mediterranean marine fishes by carrying out a gap analysis based on information extracted from the literature, aiming to identify research trends and future needs in the field of Mediterranean fish biology that can be used in stock assessments, ecosystem modeling and fisheries management. Based on the datasets that emerged from the literature review, there is no information on any biological characteristic for 43% (n = 310) of the Mediterranean fish species, whereas for an additional 15% (n = 109) of them there is information about just one characteristic. The gap between current and desired knowledge (defined here as having information on most biological characteristics for at least half of the Mediterranean marine fishes) is smaller in length-weight relationships, which have been studied for 43% of the species, followed by spawning (39%), diet (29%), growth (25%), maturity (24%), lifespan (19%) and fecundity (17%). The gap is larger in natural mortality for which information is very scarce (8%). European hake (Merluccius merluccius), red mullet (Mullus barbatus), annular seabream (Diplodus annularis), common pandora (Pagellus erythrinus), European anchovy (Engraulis encrasicolus), European pilchard (Sardina pilchardus) and bogue (Boops boops) were the most studied species, while sharks and rays were among the least studied ones. Only 25 species were fully studied, i.e. there was available information on all their biological characteristics. The knowledge gaps per characteristic varied among the western, central and eastern Mediterranean subregions. The number of available records per species was positively related to total landings, while no relationship emerged with its maximum reported length, trophic level and commercial value. Future research priorities that should be focused on less studied species (e.g. sharks and rays) and mortality/fecundity instead of length-weight relationships, as well as the economy of scientific sampling (using the entire catch to acquire data on as many biological characteristics as possible) are discussed. PMID:28407022
Gap analysis on the biology of Mediterranean marine fishes.
Dimarchopoulou, Donna; Stergiou, Konstantinos I; Tsikliras, Athanassios C
2017-01-01
We estimated the current level of knowledge concerning several biological characteristics of the Mediterranean marine fishes by carrying out a gap analysis based on information extracted from the literature, aiming to identify research trends and future needs in the field of Mediterranean fish biology that can be used in stock assessments, ecosystem modeling and fisheries management. Based on the datasets that emerged from the literature review, there is no information on any biological characteristic for 43% (n = 310) of the Mediterranean fish species, whereas for an additional 15% (n = 109) of them there is information about just one characteristic. The gap between current and desired knowledge (defined here as having information on most biological characteristics for at least half of the Mediterranean marine fishes) is smaller in length-weight relationships, which have been studied for 43% of the species, followed by spawning (39%), diet (29%), growth (25%), maturity (24%), lifespan (19%) and fecundity (17%). The gap is larger in natural mortality for which information is very scarce (8%). European hake (Merluccius merluccius), red mullet (Mullus barbatus), annular seabream (Diplodus annularis), common pandora (Pagellus erythrinus), European anchovy (Engraulis encrasicolus), European pilchard (Sardina pilchardus) and bogue (Boops boops) were the most studied species, while sharks and rays were among the least studied ones. Only 25 species were fully studied, i.e. there was available information on all their biological characteristics. The knowledge gaps per characteristic varied among the western, central and eastern Mediterranean subregions. The number of available records per species was positively related to total landings, while no relationship emerged with its maximum reported length, trophic level and commercial value. Future research priorities that should be focused on less studied species (e.g. sharks and rays) and mortality/fecundity instead of length-weight relationships, as well as the economy of scientific sampling (using the entire catch to acquire data on as many biological characteristics as possible) are discussed.
Aigo, Juana; Ladio, Ana
2016-12-07
Understanding how people interpret environmental change and develop practices in response to such change is essential to comprehend human resource use. In the cosmology of the American indigenous peoples, as among the Mapuche people, freshwater systems are considered a living entity, where animals have an enormous role to play in the universe of meaning. However, human adaptive responses to freshwater system dynamics are scarcely examined. In this work a survey is carried out in three Mapuche communities of Argentine Patagonia to assess their traditional knowledge of the fishes and other non-human living beings that inhabit lakes and rivers. Both material and symbolic aspects are included, as are the differences in knowledge and use of the fishes between past and present times. Our methods were based on a quali-quantitative fieldwork approach. In-depth interviews were carried out with 36 individuals from three rural Mapuche populations in Neuquén province (Patagonia, Argentina). Free listing was used for inquiring about fish knowledge and use. Fishes were identified scientifically and ethnotaxonomically. In-depth analysis of the discourses was conducted, documenting the recognition, perception, and cultural significance of fluvial environments and their inhabitants. Quantitative survey results were analyzed with categorical statistical methods. The body of knowledge of the communities studied reflects the socio-environmental changes experienced by Patagonian freshwater bodies. According to local perception, non-human beings live in these water bodies, guarding the environment, and they should not be disturbed. At present, five different fish species are identified, three of which are exotic, having been introduced at the beginning of the 20th century by the white man. These exotic trout (Oncorhynchus mykiss and Salvelinus fontinalis) are considered ill omens, indicators of the white man's presence, and therefore their appearance presages negative events for the families. In addition, we found that Mapuche people differentiate fish species mainly by morphological, organoleptic and ecological attributes. Current consumption of fish by Mapuche communities is sporadic, in accordance with bibliography and ancient tales. Several fishing tools are used, including modern elements. Our data enable us to characterise dynamic traditional knowledge in these communities, which is flexible in nature and adaptable to new situations, demonstrated by the incorporation not only of new species but also new fishing tools. It also seems that new significances become absorbed in synchrony with the advance or arrival of exotic and invasive species. For the Mapuche, the presence of the white man heralded by exotic trouts speaks of how a recent event, such as the introduction of the salmonids, is already incorporated into Mapuche symbolism. Mapuche traditional knowledge and cosmovision on the use of fish and waters, a vision which promotes respect and the avoidance of actions that could disturb the beings (animals and sacred or mythological characters) that inhabit and take care of them should be fostered as part of management plans of regional natural resources. This paper contributes to the broader literature on freshwater resource management by providing empirical evidence of the critical role of local perceptions in promoting the sustainable management of natural resources.
Eide, Arne
2017-12-01
Climate change is expected to influence spatial and temporal distributions of fish stocks. The aim of this paper is to compare climate change impact on a fishery with other factors impacting the performance of fishing fleets. The fishery in question is the Northeast Arctic cod fishery, a well-documented fishery where data on spatial and temporal distributions are available. A cellular automata model is developed for the purpose of mimicking possible distributional patterns and different management alternatives are studied under varying assumptions on the fleets' fishing aptitude. Fisheries management and fishing aptitude, also including technological development and local knowledge, turn out to have the greatest impact on the spatial distribution of the fishing effort, when comparing the IPCC's SRES A1B scenario with repeated sequences of the current environmental situation over a period of 45 years. In both cases, the highest profits in the simulation period of 45 years are obtained at low exploitation levels and moderate fishing aptitude.
Behavioural syndromes in fishes: a review with implications for ecology and fisheries management.
Conrad, J L; Weinersmith, K L; Brodin, T; Saltz, J B; Sih, A
2011-02-01
This review examines the contribution of research on fishes to the growing field of behavioural syndromes. Current knowledge of behavioural syndromes in fishes is reviewed with respect to five main axes of animal personality: (1) shyness-boldness, (2) exploration-avoidance, (3) activity, (4) aggressiveness and (5) sociability. Compared with other taxa, research on fishes has played a leading role in describing the shy-bold personality axis and has made innovative contributions to the study of the sociability dimension by incorporating social network theory. Fishes are virtually the only major taxon in which behavioural correlations have been compared between populations. This research has guided the field in examining how variation in selection regime may shape personality. Recent research on fishes has also made important strides in understanding genetic and neuroendocrine bases for behavioural syndromes using approaches involving artificial selection, genetic mapping, candidate gene and functional genomics. This work has illustrated consistent individual variation in highly complex neuroendocrine and gene expression pathways. In contrast, relatively little work on fishes has examined the ontogenetic stability of behavioural syndromes or their fitness consequences. Finally, adopting a behavioural syndrome framework in fisheries management issues including artificial propagation, habitat restoration and invasive species, may promote restoration success. Few studies, however, have examined the ecological relevance of behavioural syndromes in the field. Knowledge of how behavioural syndromes play out in the wild will be crucial to incorporating such a framework into management practices. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
The social, economic, and environmental importance of inland fish and fisheries
Lynch, Abigail J.; Cooke, Steven J.; Deines, Andrew M.; Bower, Shannon D.; Bunnell, David B.; Cowx, Ian G.; Nguyen, Vivian M.; Nohner, Joel K.; Phouthavong, Kaviphone; Riley, Betsy; Rogers, Mark W.; Taylor, William W.; Woelmer, Whitney; Youn, So-Jung; Beard, T. Douglas
2016-01-01
Though reported capture fisheries are dominated by marine production, inland fish and fisheries make substantial contributions to meeting the challenges faced by individuals, society, and the environment in a changing global landscape. Inland capture fisheries and aquaculture contribute over 40% to the world’s reported finfish production from less than 0.01% of the total volume of water on earth. These fisheries provide food for billions and livelihoods for millions of people worldwide. Herein, using supporting evidence from the literature, we review 10 reasons why inland fish and fisheries are important to the individual (food security, economic security, empowerment), to society (cultural services, recreational services, human health and well-being, knowledge transfer and capacity building), and to the environment (ecosystem function and biodiversity, as aquatic “canaries”, the “green food” movement). However, the current limitations to valuing the services provided by inland fish and fisheries make comparison with other water resource users extremely difficult. This list can serve to demonstrate the importance of inland fish and fisheries, a necessary first step to better incorporating them into agriculture, land-use, and water resource planning, where they are currently often underappreciated or ignored.
Stallings, Christopher D
2009-01-01
Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable.
Stallings, Christopher D.
2009-01-01
Background Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. Methodology/Principal Findings Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. Conclusions/Significance Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable. PMID:19421312
Biotechnology applied to fish reproduction: tools for conservation.
de Siqueira-Silva, Diógenes Henrique; Saito, Taiju; Dos Santos-Silva, Amanda Pereira; da Silva Costa, Raphael; Psenicka, Martin; Yasui, George Shigueki
2018-04-29
This review discusses the new biotechnological tools that are arising and promising for conservation and enhancement of fish production, mainly regarding the endangered and the most economically important species. Two main techniques, in particular, are available to avoid extinction of endangered fish species and to improve the production of commercial species. Germ cell transplantation technology includes a number of approaches that have been studied, such as the transplantation of embryo-to-embryo blastomere, embryo-to-embryo differentiated PGC, larvae to larvae and embryo differentiated PGC, transplantation of spermatogonia from adult to larvae or between adults, and oogonia transplantation. However, the success of germ cell transplantation relies on the prior sterilization of fish, which can be performed at different stages of fish species development by means of several protocols that have been tested in order to achieve the best approach to produce a sterile fish. Among them, fish hybridization and triploidization, germline gene knockdown, hyperthermia, and chemical treatment deserve attention based on important results achieved thus far. This review currently used technologies and knowledge about surrogate technology and fish sterilization, discussing the stronger and the weaker points of each approach.
A review of parasite studies of commercially important marine fishes in sub-Saharan Africa.
Reed, Cecile C
2015-01-01
Scattered records of parasitic species infecting commercially important marine fishes in sub-Saharan Africa are known from just a few countries where concerted efforts have been made by local parasitologists (e.g. Senegal, Nigeria, South Africa). Most of these consist of taxonomic records or general surveys of parasite faunas associated with marine hosts, which may or may not have been of commercial value. Little to no multi-disciplinary research is conducted in most parts of sub-Saharan Africa and hence parasitological data are not commonly used to advise fisheries management procedures. This review summarizes current knowledge on all parasitological research associated with commercially important marine fish species in sub-Saharan Africa.
Herdt-Losavio, Michele L; Lin, Shao; Chen, Ming; Luo, Ming; Tang, Jianzhong; Hwang, Syni-An
2014-07-01
We examined generational differences in fish consumption and knowledge of benefits/warnings of fish consumption among parents and children. This cross-sectional study gathered self-administered questionnaire data, including demographics, fish consumption behavior (including specific fish species) and knowledge of fish consumption warnings and benefits. Fish were later grouped into four categories by potential mercury contamination. Descriptive statistics were conducted for all variables comparing all adults and children. Benefit/risk knowledge variables were also descriptively analyzed among parent-child pairs only. Multivariate Poisson regression was conducted on pairs to assess risk factors for children eating higher mercury fish. 421 adults and 207 children (171 adult-child pairs) participated (family response rate: 71%). Slightly more adults (97.6%) ate fish in the last year than children (92.3%); however, there was no difference between consumption of fish by category of potential mercury contamination. Both adults (44%) and children (45%) ate high-mercury fish. In 71% of parent-child pairs, both the parent and the child knew of benefits of consuming fish; only 31% knew of warnings. Parental consumption of high or moderately-high-mercury fish was related to the child's consumption of fish in the same category. Parents and children need additional education to make better choices about fish consumption. Education should target the family and include specifics about benefits and risks.
Moyle, Peter B; Kiernan, Joseph D; Crain, Patrick K; Quiñones, Rebecca M
2013-01-01
Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1) current status of each species (baseline vulnerability to extinction) and (2) likely future impacts of climate change (vulnerability to extinction). Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California's native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (<22°C) are particularly likely to go extinct. In contrast, most alien fishes will thrive, with some species increasing in abundance and range. However, a few alien species will likewise be negatively affected through loss of aquatic habitats during severe droughts and physiologically stressful conditions present in most waterways during summer. Our method has high utility for predicting vulnerability to climate change of diverse fish species. It should be useful for setting conservation priorities in many different regions.
Moyle, Peter B.; Kiernan, Joseph D.; Crain, Patrick K.; Quiñones, Rebecca M.
2013-01-01
Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1) current status of each species (baseline vulnerability to extinction) and (2) likely future impacts of climate change (vulnerability to extinction). Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California’s native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (<22°C) are particularly likely to go extinct. In contrast, most alien fishes will thrive, with some species increasing in abundance and range. However, a few alien species will likewise be negatively affected through loss of aquatic habitats during severe droughts and physiologically stressful conditions present in most waterways during summer. Our method has high utility for predicting vulnerability to climate change of diverse fish species. It should be useful for setting conservation priorities in many different regions. PMID:23717503
Cyprinid Herpesvirus 3: An Archetype of Fish Alloherpesviruses.
Boutier, Maxime; Ronsmans, Maygane; Rakus, Krzysztof; Jazowiecka-Rakus, Joanna; Vancsok, Catherine; Morvan, Léa; Peñaranda, Ma Michelle D; Stone, David M; Way, Keith; van Beurden, Steven J; Davison, Andrew J; Vanderplasschen, Alain
2015-01-01
The order Herpesvirales encompasses viruses that share structural, genetic, and biological properties. However, members of this order infect hosts ranging from molluscs to humans. It is currently divided into three phylogenetically related families. The Alloherpesviridae family contains viruses infecting fish and amphibians. There are 12 alloherpesviruses described to date, 10 of which infect fish. Over the last decade, cyprinid herpesvirus 3 (CyHV-3) infecting common and koi carp has emerged as the archetype of fish alloherpesviruses. Since its first description in the late 1990s, this virus has induced important economic losses in common and koi carp worldwide. It has also had negative environmental implications by affecting wild carp populations. These negative impacts and the importance of the host species have stimulated studies aimed at developing diagnostic and prophylactic tools. Unexpectedly, the data generated by these applied studies have stimulated interest in CyHV-3 as a model for fundamental research. This review intends to provide a complete overview of the knowledge currently available on CyHV-3. © 2015 Elsevier Inc. All rights reserved.
Martins, Ana Paula Barbosa; Feitosa, Leonardo Manir; Lessa, Rosangela Paula; Almeida, Zafira Silva; Heupel, Michelle; Silva, Wagner Macedo; Tchaicka, Ligia; Nunes, Jorge Luiz Silva
2018-01-01
Increasing fishing effort has caused declines in shark populations worldwide. Understanding biological and ecological characteristics of sharks is essential to effectively implement management measures, but to fully understand drivers of fishing pressure social factors must be considered through multidisciplinary and integrated approaches. The present study aimed to use fisher and trader knowledge to describe the shark catch and product supply chain in Northeastern Brazil, and evaluate perceptions regarding the regional conservation status of shark species. Non-systematic observations and structured individual interviews were conducted with experienced fishers and traders. The demand and economic value of shark fins has reportedly decreased over the last 10 years while the shark meat trade has increased slightly, including a small increase in the average price per kilogram of meat. Several threatened shark species were reportedly often captured off shore and traded at local markets. This reported and observed harvest breaches current Brazilian environmental laws. Fishing communities are aware of population declines of several shark species, but rarely take action to avoid capture of sharks. The continuing capture of sharks is mainly due to a lack of knowledge of environmental laws, lack of enforcement by responsible authorities, and difficulties encountered by fishers in finding alternative income streams. National and regional conservation measures are immediately required to reduce overfishing on shark populations in Northeastern Brazil. Social and economic improvements for poor fishing communities must also be implemented to achieve sustainable fisheries.
Almeida, Zafira Silva; Heupel, Michelle; Silva, Wagner Macedo; Tchaicka, Ligia
2018-01-01
Increasing fishing effort has caused declines in shark populations worldwide. Understanding biological and ecological characteristics of sharks is essential to effectively implement management measures, but to fully understand drivers of fishing pressure social factors must be considered through multidisciplinary and integrated approaches. The present study aimed to use fisher and trader knowledge to describe the shark catch and product supply chain in Northeastern Brazil, and evaluate perceptions regarding the regional conservation status of shark species. Non-systematic observations and structured individual interviews were conducted with experienced fishers and traders. The demand and economic value of shark fins has reportedly decreased over the last 10 years while the shark meat trade has increased slightly, including a small increase in the average price per kilogram of meat. Several threatened shark species were reportedly often captured off shore and traded at local markets. This reported and observed harvest breaches current Brazilian environmental laws. Fishing communities are aware of population declines of several shark species, but rarely take action to avoid capture of sharks. The continuing capture of sharks is mainly due to a lack of knowledge of environmental laws, lack of enforcement by responsible authorities, and difficulties encountered by fishers in finding alternative income streams. National and regional conservation measures are immediately required to reduce overfishing on shark populations in Northeastern Brazil. Social and economic improvements for poor fishing communities must also be implemented to achieve sustainable fisheries. PMID:29534100
Ocean-wide tracking of pelagic sharks reveals extent of overlap with longline fishing hotspots.
Queiroz, Nuno; Humphries, Nicolas E; Mucientes, Gonzalo; Hammerschlag, Neil; Lima, Fernando P; Scales, Kylie L; Miller, Peter I; Sousa, Lara L; Seabra, Rui; Sims, David W
2016-02-09
Overfishing is arguably the greatest ecological threat facing the oceans, yet catches of many highly migratory fishes including oceanic sharks remain largely unregulated with poor monitoring and data reporting. Oceanic shark conservation is hampered by basic knowledge gaps about where sharks aggregate across population ranges and precisely where they overlap with fishers. Using satellite tracking data from six shark species across the North Atlantic, we show that pelagic sharks occupy predictable habitat hotspots of high space use. Movement modeling showed sharks preferred habitats characterized by strong sea surface-temperature gradients (fronts) over other available habitats. However, simultaneous Global Positioning System (GPS) tracking of the entire Spanish and Portuguese longline-vessel fishing fleets show an 80% overlap of fished areas with hotspots, potentially increasing shark susceptibility to fishing exploitation. Regions of high overlap between oceanic tagged sharks and longliners included the North Atlantic Current/Labrador Current convergence zone and the Mid-Atlantic Ridge southwest of the Azores. In these main regions, and subareas within them, shark/vessel co-occurrence was spatially and temporally persistent between years, highlighting how broadly the fishing exploitation efficiently "tracks" oceanic sharks within their space-use hotspots year-round. Given this intense focus of longliners on shark hotspots, our study argues the need for international catch limits for pelagic sharks and identifies a future role of combining fine-scale fish and vessel telemetry to inform the ocean-scale management of fisheries.
Ocean-wide tracking of pelagic sharks reveals extent of overlap with longline fishing hotspots
Queiroz, Nuno; Humphries, Nicolas E.; Hammerschlag, Neil; Miller, Peter I.; Sousa, Lara L.; Seabra, Rui; Sims, David W.
2016-01-01
Overfishing is arguably the greatest ecological threat facing the oceans, yet catches of many highly migratory fishes including oceanic sharks remain largely unregulated with poor monitoring and data reporting. Oceanic shark conservation is hampered by basic knowledge gaps about where sharks aggregate across population ranges and precisely where they overlap with fishers. Using satellite tracking data from six shark species across the North Atlantic, we show that pelagic sharks occupy predictable habitat hotspots of high space use. Movement modeling showed sharks preferred habitats characterized by strong sea surface-temperature gradients (fronts) over other available habitats. However, simultaneous Global Positioning System (GPS) tracking of the entire Spanish and Portuguese longline-vessel fishing fleets show an 80% overlap of fished areas with hotspots, potentially increasing shark susceptibility to fishing exploitation. Regions of high overlap between oceanic tagged sharks and longliners included the North Atlantic Current/Labrador Current convergence zone and the Mid-Atlantic Ridge southwest of the Azores. In these main regions, and subareas within them, shark/vessel co-occurrence was spatially and temporally persistent between years, highlighting how broadly the fishing exploitation efficiently “tracks” oceanic sharks within their space-use hotspots year-round. Given this intense focus of longliners on shark hotspots, our study argues the need for international catch limits for pelagic sharks and identifies a future role of combining fine-scale fish and vessel telemetry to inform the ocean-scale management of fisheries. PMID:26811467
Mucosal immunity and probiotics in fish.
Lazado, Carlo C; Caipang, Christopher Marlowe A
2014-07-01
Teleost mucosal immunity has become the subject of unprecedented research studies in recent years because of its diversity and defining characteristics. Its immune repertoire is governed by the mucosa-associated lymphoid tissues (MALT) which are divided into gut-associated lymphoid tissues (GALT), skin-associated lymphoid tissues (SALT), and gill-associated lymphoid tissues (GIALT). The direct contact with its immediate environment makes the mucosal surfaces of fish susceptible to a wide variety of pathogens. The inherent immunocompetent cells and factors in the mucosal surfaces together with the commensal microbiota have pivotal role against pathogens. Immunomodulation is a popular prophylactic strategy in teleost and probiotics possess this beneficial feature. Most of the studies on the immunomodulatory properties of probiotics in fish mainly discussed their impacts on systemic immunity. In contrast, few of these studies discussed the immunomodulatory features of probiotics in mucosal surfaces and are concentrated on the influences in the gut. Significant attention should be devoted in understanding the relationship of mucosal immunity and probiotics as the present knowledge is limited and are mostly based on extrapolations of studies in humans and terrestrial vertebrates. In the course of the advancement of mucosal immunity and probiotics, new perspectives in probiotics research, e.g., probiogenomics have emerged. This review affirms the relevance of probiotics in the mucosal immunity of fish by revisiting and bridging the current knowledge on teleost mucosal immunity, mucosal microbiota and immunomodulation of mucosal surfaces by probiotics. Expanding the knowledge of immunomodulatory properties of probiotics especially on mucosal immunity is essential in advancing the use of probiotics as a sustainable and viable strategy for successful fish husbandry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Garseth, Å H; Fritsvold, C; Svendsen, J C; Bang Jensen, B; Mikalsen, A B
2018-01-01
Cardiomyopathy syndrome (CMS) is a severe cardiac disease affecting Atlantic salmon Salmo salar L. The disease was first recognized in farmed Atlantic salmon in Norway in 1985 and subsequently in farmed salmon in the Faroe Islands, Scotland and Ireland. CMS has also been described in wild Atlantic salmon in Norway. The demonstration of CMS as a transmissible disease in 2009, and the subsequent detection and initial characterization of piscine myocarditis virus (PMCV) in 2010 and 2011 were significant discoveries that gave new impetus to the CMS research. In Norway, CMS usually causes mortality in large salmon in ongrowing and broodfish farms, resulting in reduced fish welfare, significant management-related challenges and substantial economic losses. The disease thus has a significant impact on the Atlantic salmon farming industry. There is a need to gain further basic knowledge about the virus, the disease and its epidemiology, but also applied knowledge from the industry to enable the generation and implementation of effective prevention and control measures. This review summarizes the currently available, scientific information on CMS and PMCV with special focus on epidemiology and factors influencing the development of CMS. © 2017 The Authors. Journal of Fish Diseases Published by John Wiley & Sons Ltd.
Ocean acidification erodes crucial auditory behaviour in a marine fish.
Simpson, Stephen D; Munday, Philip L; Wittenrich, Matthew L; Manassa, Rachel; Dixson, Danielle L; Gagliano, Monica; Yan, Hong Y
2011-12-23
Ocean acidification is predicted to affect marine ecosystems in many ways, including modification of fish behaviour. Previous studies have identified effects of CO(2)-enriched conditions on the sensory behaviour of fishes, including the loss of natural responses to odours resulting in ecologically deleterious decisions. Many fishes also rely on hearing for orientation, habitat selection, predator avoidance and communication. We used an auditory choice chamber to study the influence of CO(2)-enriched conditions on directional responses of juvenile clownfish (Amphiprion percula) to daytime reef noise. Rearing and test conditions were based on Intergovernmental Panel on Climate Change predictions for the twenty-first century: current-day ambient, 600, 700 and 900 µatm pCO(2). Juveniles from ambient CO(2)-conditions significantly avoided the reef noise, as expected, but this behaviour was absent in juveniles from CO(2)-enriched conditions. This study provides, to our knowledge, the first evidence that ocean acidification affects the auditory response of fishes, with potentially detrimental impacts on early survival.
Lower lethal temperatures for nonnative freshwater fishes in Everglades National Park, Florida
Schofield, Pam; Kline, Jeffrey L.
2018-01-01
Temperature is an important factor that shapes biogeography and species composition. In southern Florida, the tolerance of nonnative freshwater fishes to low temperatures is a critical factor in delineating their geographic spread. In this study, we provide empirical information on experimentally derived low-temperature tolerance limits of Banded Cichlid Heros severus and Spotfin Spiny Eel Macrognathus siamensis, two nonnative Everglades fishes that were lacking data, and African Jewelfish Hemichromis letourneuxi and Mayan Cichlid Cichlasoma urophthalmus, species for which previous results were derived from studies with small sample sizes. We also provide a literature review summarizing the current state of knowledge of low-temperature tolerances for all 17 nonnative freshwater fishes that have been found in Everglades National Park. Mean lower lethal temperature tolerances ranged from 4°C (Orinoco Sailfin Catfish Pterygoplichthys multiradiatus) to 16.1°C (Butterfly Peacock Bass Cichla ocellaris). These low-temperature limits may inform the understanding of the ecological role or influence of nonnative fishes and may lead to potential management opportunities and applications.
Ocean acidification erodes crucial auditory behaviour in a marine fish
Simpson, Stephen D.; Munday, Philip L.; Wittenrich, Matthew L.; Manassa, Rachel; Dixson, Danielle L.; Gagliano, Monica; Yan, Hong Y.
2011-01-01
Ocean acidification is predicted to affect marine ecosystems in many ways, including modification of fish behaviour. Previous studies have identified effects of CO2-enriched conditions on the sensory behaviour of fishes, including the loss of natural responses to odours resulting in ecologically deleterious decisions. Many fishes also rely on hearing for orientation, habitat selection, predator avoidance and communication. We used an auditory choice chamber to study the influence of CO2-enriched conditions on directional responses of juvenile clownfish (Amphiprion percula) to daytime reef noise. Rearing and test conditions were based on Intergovernmental Panel on Climate Change predictions for the twenty-first century: current-day ambient, 600, 700 and 900 µatm pCO2. Juveniles from ambient CO2-conditions significantly avoided the reef noise, as expected, but this behaviour was absent in juveniles from CO2-enriched conditions. This study provides, to our knowledge, the first evidence that ocean acidification affects the auditory response of fishes, with potentially detrimental impacts on early survival. PMID:21632617
Current knowledge on the melatonin system in teleost fish.
Falcón, J; Migaud, H; Muñoz-Cueto, J A; Carrillo, M
2010-02-01
Melatonin is a much conserved feature in vertebrates that plays a central role in the entrainment of daily and annual physiological rhythms. Investigations aiming at understanding how melatonin mediates the effects of photoperiod on crucial functions and behaviors have been very active in the last decades, particularly in mammals. In fish a clear-cut picture is still missing. Here we review the available data on (i) the sites of melatonin production in fish, (ii) the mechanisms that control its daily and annual rhythms of production and (iii) the characterization of its different receptor subtypes, their location and regulation. The in vivo and in vitro data on melatonin effects on crucial neuroendocrine regulations, including reproduction, growth, feeding and behavioral responses, are also reviewed. Finally we discuss how manipulation of the photic cues impact on fish circannual clock and annual cycle of reproduction, and how this can be used for aquaculture purposes. Copyright 2009 Elsevier Inc. All rights reserved.
Fishing Into the MicroRNA Transcriptome
Herkenhoff, Marcos E.; Oliveira, Arthur C.; Nachtigall, Pedro G.; Costa, Juliana M.; Campos, Vinicius F.; Hilsdorf, Alexandre W. S.; Pinhal, Danillo
2018-01-01
In the last decade, several studies have been focused on revealing the microRNA (miRNA) repertoire and determining their functions in farm animals such as poultry, pigs, cattle, and fish. These small non-protein coding RNA molecules (18–25 nucleotides) are capable of controlling gene expression by binding to messenger RNA (mRNA) targets, thus interfering in the final protein output. MiRNAs have been recognized as the main regulators of biological features of economic interest, including body growth, muscle development, fat deposition, and immunology, among other highly valuable traits, in aquatic livestock. Currently, the miRNA repertoire of some farmed fish species has been identified and characterized, bringing insights about miRNA functions, and novel perspectives for improving health and productivity. In this review, we summarize the current advances in miRNA research by examining available data on Neotropical and other key species exploited by fisheries and in aquaculture worldwide and discuss how future studies on Neotropical fish could benefit from this knowledge. We also make a horizontal comparison of major results and discuss forefront strategies for miRNA manipulation in aquaculture focusing on forward-looking ideas for forthcoming research. PMID:29616080
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Richard S.; Eppard, M. B.; Murchie, Karen J.
The intracoelomic surgical implantation of electronic tags (including radio and acoustic telemetry transmitters, passive integrated transponders and archival biologgers) is frequently used for conducting studies on fish. Electronic tagging studies provide information on the spatial ecology, behavior and survival of fish in marine and freshwater systems. However, any surgical procedure, particularly one where a laparotomy is performed and the coelomic cavity is opened, has the potential to alter the survival, behavior or condition of the animal which can impair welfare and introduce bias. Given that management, regulatory and conservation decisions are based on the assumption that fish implanted with electronicmore » tags have similar fates and behavior relative to untagged conspecifics, it is critical to ensure that best surgical practices are being used. Also, the current lack of standardized surgical procedures and reporting of specific methodological details precludes cross-study and cross-year analyses which would further progress the field of fisheries science. This compilation of papers seeks to identify the best practices for the entire intracoelomic tagging procedure including pre- and post-operative care, anesthesia, wound closure, and use of antibiotics. Although there is a particular focus on salmonid smolts given the large body of literature available on that group, other life-stages and species of fish are discussed where there is sufficient knowledge. Additional papers explore the role of the veterinarian in fish surgeries, the need for minimal standards in the training of fish surgeons, providing a call for more complete and transparent procedures, and identifying trends in procedures and research needs. Collectively, this body of knowledge should help to improve data quality (including comparability and repeatability), enhance management and conservation strategies, and maintain the welfare status of tagged fish.« less
Rouse Campbell, Kym; Dickey, Richard J; Sexton, Richard; Burger, Joanna
2002-11-01
Catching and eating fish is usually viewed as a fun, healthy and safe activity. However, with continuing increases in fish consumption advisories due to the contamination of our environment, anglers have to decide whether or not to eat the fish they catch. The Clinch River arm of Watts Bar Reservoir is under a fish consumption advisory because of elevated PCB concentrations in striped bass (Morone saxatilis), catfish (Ictalurus spp.) and sauger (Stizostedion canadense) due in part from contaminants released from the US Department of Energy's (USDOE's) Oak Ridge Reservation (ORR) in East Tennessee. To obtain information about the demographics, fishing behavior, knowledge, fish consumption and risk perception of anglers, a survey was conducted of 202 people actively fishing either on land or by boat along the Clinch River arm of Watts Bar Reservoir adjacent to the ORR from Melton Hill Dam to the Poplar Creek confluence or on Poplar Creek within ORR boundaries from mid-March to early November 2001. Even though 81% of people interviewed knew about the fish consumption advisories for the study area, 48% of them thought the fish were safe to eat, while 38% ate the fish that they caught from the study area. Approximately 36% of anglers who had knowledge of the fish consumption warnings ate fish from the study area. Providing confirmation that people fish for many reasons, 35% of anglers interviewed did not eat fish at all. The majority of anglers interviewed knew about the fish consumption advisories because of the signs posted throughout the study area. However, few people knew the correct fish advisories. Significantly fewer blacks had knowledge of the fish consumption warnings than whites. Information resulting from this study could be used to design a program with the objective of reaching the people who may be most at risk from eating fish caught from the Clinch River arm of Watts Bar Reservoir.
Awareness and knowledge of methylmercury in fish in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lando, Amy M., E-mail: amy.lando@fda.hhs.gov; Zhang, Yuanting
In the 1970s several states in the Great Lakes region became concerned about mercury contamination in lakes and rivers and were the first to issue local fish consumption advisories. In 2001, the Food and Drug Administration (FDA) advised pregnant women, nursing mothers, young children, and women who may become pregnant not to consume shark, swordfish, king mackerel, and tilefish and recommended that these women not exceed 12 ounces of other fish per week. In 2004, FDA reissued this advice jointly with the U.S. Environmental Protection Agency (EPA) and modified it slightly to provide information about consumption of canned tuna andmore » more details about consumption of recreationally caught fish. Though several studies have examined consumers' awareness of the joint FDA and EPA advisory as well as different state advisories, few used representative data. We examined the changes in awareness and knowledge of mercury as a problem in fish using the pooled nationally representative 2001 and 2006 Food Safety Surveys (FSS) with sample sizes of 4482 in 2001 and 2275 in 2006. Our results indicated an increase in consumers' awareness of mercury as a problem in fish (69% in 2001 to 80% in 2006, p<.001). In our regression models, we found that in both years, parents having children less than 5 years of age were more aware of mercury in fish and knowledgeable about the information contained in the national advisories about mercury in fish (p<.01) than other adults. In both 2001 and 2006, women of childbearing age (aged 18-45) were less aware and knowledgeable about this information than other women. However, women of all age groups had larger gains in awareness and knowledge than their male counterparts during this time. Participants' race, education, income, region, fish preparation experiences, having a foodborne illness in the past year, and risk perceptions about the safety of food were significant predictors of their awareness and knowledge. - Research highlights: {yields} We examined changes in awareness and knowledge of mercury as a problem in fish. {yields} Data are from the 2001 and 2006 Food Safety Surveys (FSS). {yields} Consumers' awareness of mercury as a problem in fish increased from 2001 to 2006. {yields} Demographics were significant predictors of awareness and knowledge.« less
Raw fish consumption in liver fluke endemic areas in rural southern Laos.
Xayaseng, Vilavanh; Phongluxa, Khampheng; van Eeuwijk, Peter; Akkhavong, Kongsap; Odermatt, Peter
2013-08-01
Consumption of raw or insufficiently cooked fish is a major public health concern in Southeast Asia, and in Lao People's Democratic Republic (Lao PDR), in particular. We aimed to assess the knowledge, attitudes, perceptions and practices of villagers in liver fluke endemic areas related to raw fish preparation, consumption and its health consequences. In February 2010, eight focus group discussions (FGDs, 35 men and 37 women total) and direct observations were conducted in four randomly selected villages in Saravane District, Saravane Province (Lao PDR). FGDs distilled the knowledge, attitudes, perceptions and practices of adult community members on raw fish preparation, consumption and its consequences for health. Conversations were transcribed from notes and tape-recorders. MaxQDA software was used for content analysis. Knowledge regarding the health effects of raw fish consumption was heterogeneous. Some participants did not associate liver fluke infection with any ill health, while others linked it to digestive problems. Participants also associated vegetables and tree leave consumption with liver fluke infection. The majority of FGD participants considered fish flesh that had been prepared with weaver ant extract to be safe for consumption. Visual appearance, taste, smell and personal preference were given as reasons for consuming raw fish dishes. Moreover, participants considered it a traditional way of food preparation, practiced for generations in Laos. Ten different fish dishes that use raw or fermented fish were identified. All FGD participants reported consuming dishes with raw fish. This study reveals a low degree of knowledge among local people on the health risks related to frequent consumption of raw or insufficiently cooked fish. Fish dishes were considered to be 'well-prepared' (that is, 'cooked') even though the fish had not been heated. In future, successful health education campaigns will have to address the specific knowledge, attitudes, perceptions and practices of the concerned population. Copyright © 2013 Elsevier B.V. All rights reserved.
Risks and benefits of consumption of Great Lakes fish.
Turyk, Mary E; Bhavsar, Satyendra P; Bowerman, William; Boysen, Eric; Clark, Milton; Diamond, Miriam; Mergler, Donna; Pantazopoulos, Peter; Schantz, Susan; Carpenter, David O
2012-01-01
Beneficial effects of fish consumption on early cognitive development and cardiovascular health have been attributed to the omega-3 fatty acids in fish and fish oils, but toxic chemicals in fish may adversely affect these health outcomes. Risk-benefit assessments of fish consumption have frequently focused on methylmercury and omega-3 fatty acids, not persistent pollutants such as polychlorinated biphenyls, and none have evaluated Great Lakes fish consumption. The risks and benefits of fish consumption have been established primarily for marine fish. Here, we examine whether sufficient data are available to evaluate the risks and benefits of eating freshwater fish from the Great Lakes. We used a scoping review to integrate information from multiple state, provincial, and federal agency sources regarding the contaminants and omega-3 fatty acids in Great Lakes fish and fish consumers, consumption rates and fish consumption advisories, and health effects of contaminants and omega-3 fatty acids. Great Lakes fish contain persistent contaminants--many of which have documented adverse health effects--that accumulate in humans consuming them. In contrast, data are sparse on omega-3 fatty acids in the fish and their consumers. Moreover, few studies have documented the social and cultural benefits of Great Lakes fish consumption, particularly for subsistence fishers and native communities. At this time, federal and state/provincial governments provide fish consumption advisories based solely on risk. Our knowledge of Great Lakes fish has critical gaps, particularly regarding the benefits of consumption. A risk-benefit analysis requires more information than is currently available on the concentration of omega-3 fatty acids in Great Lakes fish and their absorption by fish eaters in addition to more information on the social, cultural, and health consequences of changes in the amount of fish consumed.
Risks and Benefits of Consumption of Great Lakes Fish
Bhavsar, Satyendra P.; Bowerman, William; Boysen, Eric; Clark, Milton; Diamond, Miriam; Mergler, Donna; Pantazopoulos, Peter; Schantz, Susan; Carpenter, David O.
2011-01-01
Background: Beneficial effects of fish consumption on early cognitive development and cardiovascular health have been attributed to the omega-3 fatty acids in fish and fish oils, but toxic chemicals in fish may adversely affect these health outcomes. Risk–benefit assessments of fish consumption have frequently focused on methylmercury and omega-3 fatty acids, not persistent pollutants such as polychlorinated biphenyls, and none have evaluated Great Lakes fish consumption. Objectives: The risks and benefits of fish consumption have been established primarily for marine fish. Here, we examine whether sufficient data are available to evaluate the risks and benefits of eating freshwater fish from the Great Lakes. Methods: We used a scoping review to integrate information from multiple state, provincial, and federal agency sources regarding the contaminants and omega-3 fatty acids in Great Lakes fish and fish consumers, consumption rates and fish consumption advisories, and health effects of contaminants and omega-3 fatty acids. Data synthesis: Great Lakes fish contain persistent contaminants—many of which have documented adverse health effects —that accumulate in humans consuming them. In contrast, data are sparse on omega-3 fatty acids in the fish and their consumers. Moreover, few studies have documented the social and cultural benefits of Great Lakes fish consumption, particularly for subsistence fishers and native communities. At this time, federal and state/provincial governments provide fish consumption advisories based solely on risk. Conclusions: Our knowledge of Great Lakes fish has critical gaps, particularly regarding the benefits of consumption. A risk–benefit analysis requires more information than is currently available on the concentration of omega-3 fatty acids in Great Lakes fish and their absorption by fish eaters in addition to more information on the social, cultural, and health consequences of changes in the amount of fish consumed. PMID:21947562
Gill, A B; Bartlett, M; Thomsen, F
2012-07-01
The considerable extent of construction and operation of marine renewable energy developments (MRED) within U.K. and adjacent waters will lead, among other things, to the emission of electromagnetic fields (EMF) and subsea sounds into the marine environment. Migratory fishes that respond to natural environmental cues, such as the Earth's geomagnetic field or underwater sounds, move through the same waters that the MRED occupy, thereby raising the question of whether there are any effects of MRED on migratory fishes. Diadromous species, such as the Salmonidae and Anguillidae, which undertake large-scale migrations through coastal and offshore waters, are already significantly affected by other human activities leading to national and international conservation efforts to manage any existing threats and to minimize future concerns, including the potential effect of MRED. Here, the current state of knowledge with regard to the potential for diadromous fishes of U.K. conservation importance to be affected by MRED is reviewed. The information on which to base the review was found to be limited with respect to all aspects of these fishes' migratory behaviour and activity, especially with regards to MRED deployment, making it difficult to establish cause and effect relationships. The main findings, however, were that diadromous species can use the Earth's magnetic field for orientation and direction finding during migrations. Juveniles of anadromous brown trout (sea trout) Salmo trutta and close relatives of S. trutta respond to both the Earth's magnetic field and artificial magnetic fields. Current knowledge suggests that EMFs from subsea cables may interact with migrating Anguilla sp. (and possibly other diadromous fishes) if their movement routes take them over the cables, particularly in shallow water (<20 m). The only known effect is a temporary change in swimming direction. Whether this will represent a biologically significant effect, for example delayed migration, cannot yet be determined. Diadromous fishes are likely to encounter EMFs from subsea cables either during the adult movement phases of life or their early life stages during migration within shallow, coastal waters adjacent to natal rivers. The underwater sound from MRED devices has not been fully characterized to determine its acoustic properties and propagation through the coastal waters. MRED that require pile driving during construction appear to be the most relevant to consider. In the absence of a clear understanding of their response to underwater sound, the specific effects on migratory species of conservation concern remain very difficult to determine in relation to MRED. Based on the studies reviewed, it is suggested that fishes that receive high intensity sound in close proximity to construction may be physiologically affected to some degree, whereas those at farther distances, potentially up to several km, may exhibit behaviour responses; the effect of which is unknown and will be dependent on the properties of the received sound and receptor characteristics and condition. Whether there are behavioural effects on the fishes during operation is unknown but any change to the environment and subsequent response by the fishes would need to be considered over the lifetime of the MRED. It is not yet possible to determine if effects relating to sound exposure are biologically significant. The current assumptions of limited effects are built on an incomplete understanding of how the species move around their environment and interact with natural and anthropogenic EMFs and subsea sound. A number of important knowledge gaps exist, principally whether migratory fish species on the whole respond to the EMF and the sound associated with MRED. Future research should address the principal gaps before assuming that any effect on diadromous species results in a biological effect. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Deborah M. Finch
2005-01-01
This report is volume 2 of a two-volume ecological assessment of grassland ecosystems in the Southwestern United States. Broad-scale assessments are syntheses of current scientific knowledge, including a description of uncertainties and assumptions, to provide a characterization and comprehensive description of ecological, social, and economic components within an...
Fish consumption and advisory awareness among older Wisconsin fishermen.
Imm, Pamela; Anderson, Henry A; Schrank, Candy; Knobeloch, Lynda
2013-06-01
The provision of fish consumption advice issued by the Wisconsin Department of Health Services (DHS) and Department of Natural Resources (DNR) has evolved over the past 40 years. In 2010, DHS received a US Environmental Protection Agency Great Lakes Restoration Initiative (GLRI) grant to evaluate existing advisory approaches, identify gaps, and adapt current communication approaches. Previous research conducted by DHS found that older, male anglers eat more sport fish and have higher body burdens of persistent contaminants found in fish than other groups. As part of the GLRI, Wisconsin DHS and DNR aimed to engage this subpopulation and improve communication by using an Internet-based survey to collect information about fishing habits, consumption, and advisory awareness. At the end of the survey, participants were provided with answers to advisory questions and links to relevant online information. From fall 2011 through spring 2012, 827 men aged 50 and older completed this survey. Nearly all fishermen were aware of the existence of consumption advisories. Although awareness was high, penetration of traditional outreach materials was low with fewer than 35% having seen any of the pamphlets featured in the survey. Knowledge of the advisories was significantly higher among residents of counties along Lakes Michigan and Superior and among more frequent sport fish consumers. Men who were aware of these advisories were significantly more likely to have modified their consumption behavior. Wisconsin's experience suggests general awareness among older male anglers. Participation in the online survey and responses to sources of advisory information supports the need to expand the current outreach program to reach and inform the fish-consuming public.
"Shark is the man!": ethnoknowledge of Brazil's South Bahia fishermen regarding shark behaviors.
Barbosa-Filho, Márcio Luiz Vargas; Schiavetti, Alexandre; Alarcon, Daniela Trigueirinho; Costa-Neto, Eraldo Medeiros
2014-07-03
Fishermen's knowledge is a source of indispensable information in decision-making processes related to efforts to stimulate the management and conservation of fishing resources, especially in developing countries. This study analyzed the knowledge of fishermen from three municipal areas of Bahia in northeast Brazil regarding the behavior repertoire of sharks and the possible influence that these perceptions may have on the inclination to preserve these animals. This is a pioneering study on the ethnobiological aspects of elasmobranchs in Brazil. Open, semi-structured interviews with shark fishing specialists were conducted between September 2011 and October 2012. The interviews addressed the fishermen's profile, fishing techniques and knowledge about sharks, focusing on the behaviours exhibited by sharks. The data were analysed with quantitative approach and conducted with the use of descriptive statistical techniques. Sixty-five fishermen were interviewed. They descend from the rafting subculture of Brazil's northeast, which has historically been disregarded by public policies addressing the management and conservation of fishing resources. The fishing fleet involved in shark fishing includes rafts, fishing boats and lobster boats equipped with fishing lines, gillnets, longlines and "esperas". The informers classified sharks' behaviour repertoire into 19 ethological categories, related especially to feeding, reproduction, and social and migratory behaviours. Because they identify sharks as predators, the detailed recognition of the behaviours exhibited is crucial both for an efficient catch and to avoid accidents. Therefore, this knowledge is doubly adaptive as it contributes to safer, more lucrative fishing. A feeling of respect for sharks predominates, since informers recognize the ecological role of these animals in marine ecosystems, attributing them the status of leader (or "the man") in the sea. This work demonstrates the complexity and robustness of artisanal fishermen's ichthyological knowledge of sharks. Therefore, we suggest that such knowledge should be considered to develop public policies for the control of the fishing activity, as well as to develop and consolidate the National Action Plan for the Conservation of Shark and Ray Species (PAN - Tubarões e Raias).
Cooke, Steven J.; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Powers, Michael H.; Doka, Susan E.; Dettmers, John M.; Crook, David A; Lucas, Martyn C.; Holbrook, Christopher; Krueger, Charles C.
2016-01-01
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.
Cooke, Steven J; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Power, Michael; Doka, Susan E; Dettmers, John M; Crook, David A; Lucas, Martyn C; Holbrook, Christopher M; Krueger, Charles C
2016-04-01
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.
Annotated checklist of fish cestodes from South America
Alves, Philippe V.; de Chambrier, Alain; Scholz, Tomáš; Luque, José L.
2017-01-01
Abstract An exhaustive literature search supplemented by a critical examination of records made it possible to present an annotated checklist of tapeworms (Cestoda) that, as adults or larvae (metacestodes), parasitize freshwater, brackish water and marine fishes, i.e. cartilaginous and bony fishes, in South America. The current knowledge of their species diversity, host associations and geographical distribution is reviewed. Taxonomic problems are discussed based on a critical evaluation of the literature and information on DNA sequences of individual taxa is provided to facilitate future taxonomic and phylogenetic studies. As expected, the current knowledge is quite uneven regarding the number of taxa and host-associations reported from the principal river basins and marine ecoregions. These differences may not only reflect the actual cestode richness but may also be due to the research effort that has been devoted to unravelling the diversity of these endoparasitic helminths in individual countries. A total of 297 valid species, 61 taxa identified to the generic level, in addition to unidentified cestodes, were recorded from 401 species of fish hosts. Among the recognized cestode orders, 13 have been recorded in South America, with the Onchoproteocephalidea displaying the highest species richness, representing c. 50% of all species diversity. The majority of records include teleost fish hosts (79%) that harbour larval and adult stages of cestodes, whereas stingrays (Myliobatiformes) exhibit the highest proportion of records (39%) among the elasmobranch hosts. Fish cestodes are ubiquitous in South America, being mostly recorded from the Warm Temperate Southeastern Pacific (WTSP; 31%) for marine hosts and the Amazon River basin (45%) for freshwater ones. The following problems were detected during the compilation of literary data: (i) unreliability of many records; (ii) poor taxonomic resolution, i.e. identification made only to the genus or even family level; (iii) doubtful host identification; and (iv) the absence of voucher specimens that would enable us to verify identification. It is thus strongly recommended to always deposit representative specimens in any type of studies, including faunal surveys and ecological studies. An analysis of the proportion of three basic types of studies, i.e. surveys, taxonomic and ecological papers, has shown a considerable increase of ecological studies over the last decade. PMID:28331385
Annotated checklist of fish cestodes from South America.
Alves, Philippe V; de Chambrier, Alain; Scholz, Tomáš; Luque, José L
2017-01-01
An exhaustive literature search supplemented by a critical examination of records made it possible to present an annotated checklist of tapeworms (Cestoda) that, as adults or larvae (metacestodes), parasitize freshwater, brackish water and marine fishes, i.e. cartilaginous and bony fishes, in South America. The current knowledge of their species diversity, host associations and geographical distribution is reviewed. Taxonomic problems are discussed based on a critical evaluation of the literature and information on DNA sequences of individual taxa is provided to facilitate future taxonomic and phylogenetic studies. As expected, the current knowledge is quite uneven regarding the number of taxa and host-associations reported from the principal river basins and marine ecoregions. These differences may not only reflect the actual cestode richness but may also be due to the research effort that has been devoted to unravelling the diversity of these endoparasitic helminths in individual countries. A total of 297 valid species, 61 taxa identified to the generic level, in addition to unidentified cestodes, were recorded from 401 species of fish hosts. Among the recognized cestode orders, 13 have been recorded in South America, with the Onchoproteocephalidea displaying the highest species richness, representing c. 50% of all species diversity. The majority of records include teleost fish hosts (79%) that harbour larval and adult stages of cestodes, whereas stingrays (Myliobatiformes) exhibit the highest proportion of records (39%) among the elasmobranch hosts. Fish cestodes are ubiquitous in South America, being mostly recorded from the Warm Temperate Southeastern Pacific (WTSP; 31%) for marine hosts and the Amazon River basin (45%) for freshwater ones. The following problems were detected during the compilation of literary data: (i) unreliability of many records; (ii) poor taxonomic resolution, i.e. identification made only to the genus or even family level; (iii) doubtful host identification; and (iv) the absence of voucher specimens that would enable us to verify identification. It is thus strongly recommended to always deposit representative specimens in any type of studies, including faunal surveys and ecological studies. An analysis of the proportion of three basic types of studies, i.e. surveys, taxonomic and ecological papers, has shown a considerable increase of ecological studies over the last decade.
Brown, R.S.; Eppard, M.B.; Murchie, K.J.; Nielsen, J.L.; Cooke, S.J.
2011-01-01
The intracoelomic surgical implantation of electronic tags (including radio and acoustic telemetry transmitters, passive integrated transponders and archival biologgers) is frequently used for conducting studies on fish. Electronic tagging studies provide information on the spatial ecology, behavior and survival of fish in marine and freshwater systems. However, any surgical procedure, particularly one where a laparotomy is performed and the coelomic cavity is opened, has the potential to alter the survival, behavior or condition of the animal which can impair welfare and introduce bias. Given that management, regulatory and conservation decisions are based on the assumption that fish implanted with electronic tags have similar fates and behavior relative to untagged conspecifics, it is critical to ensure that best surgical practices are being used. Also, the current lack of standardized surgical procedures and reporting of specific methodological details precludes cross-study and cross-year analyses which would further progress the field of fisheries science. This compilation of papers seeks to identify the best practices for the entire intracoelomic tagging procedure including pre- and post-operative care, anesthesia, wound closure, and use of antibiotics. Although there is a particular focus on salmonid smolts given the large body of literature available on that group, other life-stages and species of fish are discussed where there is sufficient knowledge. Additional papers explore the role of the veterinarian in fish surgeries, the need for minimal standards in the training of fish surgeons, providing a call for more complete and transparent procedures, and identifying trends in procedures and research needs. Collectively, this body of knowledge should help to improve data quality (including comparability and repeatability), enhance management and conservation strategies, and maintain the welfare status of tagged fish. ?? 2010 Springer Science+Business Media B.V.
Fishing in urban New Jersey: Ethnicity affects information sources, perception and compliance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, J.; Pflugh, K.K.; Lurig, L.
1999-04-01
Recreational and subsistence angling are important aspects of urban culture for much of North American where people are concentrated near the coasts or major rivers. Yet there are fish and shellfish advisories for many estuaries, rivers, and lakes, and these are not always heeded. This paper examines fishing behavior, sources of information, perceptions, and compliance with fishing advisories as a function of ethnicity for people fishing in the Newark Bay Complex of the New York-New Jersey Harbor. The authors test the null hypothesis that there were no ethnic differences in sources of information, perceptions of the safety of fish consumption,more » and compliance with advisories. There were ethnic differences in consumption rates, sources of information about fishing, knowledge about the safety of the fish, awareness of fishing advisories or of the correct advisories, and knowledge about risks for increased cancer and to unborn and young children. In general, the knowledge base was much lower for Hispanics, was intermediate for blacks, and was greatest for whites. When presented with a statement about the potential risks from eating fish, there were no differences in their willingness to stop eating fish or to encourage pregnant women to stop. These results indicate a willingness to comply with advisories regardless of ethnicity, but a vast difference in the base knowledge necessary to make an informed risk decisions about the safety of fish and shellfish. Although the overall median income level of the population was in the $25,000--34,999 income category, for Hispanics it was on the border between $15,000--24,999 and $25,000--34,999.« less
Pope, Kevin L.; Hamel, Martin J.; Pegg, Mark A.; Spurgeon, Jonathan J.
2016-01-01
Age information derived from calcified structures is commonly used to estimate recruitment, growth, and mortality for fish populations. Validation of daily or annual marks on age structures is often assumed, presumably due to a lack of general knowledge concerning the status of age validation studies. Therefore, the current status of freshwater fish age validation studies was summarized to show where additional effort is needed, and increase the accessibility of validation studies to researchers. In total, 1351 original peer-reviewed articles were reviewed from freshwater systems that studied age in fish. Periodicity and age validation studies were found for 88 freshwater species comprising 21 fish families. The number of age validation studies has increased over the last 30 years following previous calls for more research; however, few species have validated structures spanning all life stages. In addition, few fishes of conservation concern have validated ageing structures. A prioritization framework, using a combination of eight characteristics, is offered to direct future age validation studies and close the validation information gap. Additional study, using the offered prioritization framework, and increased availability of published studies that incorporate uncertainty when presenting research results dealing with age information are needed.
Steroids in teleost fishes: A functional point of view.
Tokarz, Janina; Möller, Gabriele; Hrabě de Angelis, Martin; Adamski, Jerzy
2015-11-01
Steroid hormones are involved in the regulation of a variety of processes like embryonic development, sex differentiation, metabolism, immune responses, circadian rhythms, stress response, and reproduction in vertebrates. Teleost fishes and humans show a remarkable conservation in many developmental and physiological aspects, including the endocrine system in general and the steroid hormone related processes in particular. This review provides an overview of the current knowledge about steroid hormone biosynthesis and the steroid hormone receptors in teleost fishes and compares the findings to the human system. The impact of the duplicated genome in teleost fishes on steroid hormone biosynthesis and perception is addressed. Additionally, important processes in fish physiology regulated by steroid hormones, which are most dissimilar to humans, are described. We also give a short overview on the influence of anthropogenic endocrine disrupting compounds on steroid hormone signaling and the resulting adverse physiological effects for teleost fishes. By this approach, we show that the steroidogenesis, hormone receptors, and function of the steroid hormones are reasonably well understood when summarizing the available data of all teleost species analyzed to date. However, on the level of a single species or a certain fish-specific aspect of physiology, further research is needed. Copyright © 2015 Elsevier Inc. All rights reserved.
“Shark is the man!”: ethnoknowledge of Brazil’s South Bahia fishermen regarding shark behaviors
2014-01-01
Background Fishermen’s knowledge is a source of indispensable information in decision-making processes related to efforts to stimulate the management and conservation of fishing resources, especially in developing countries. This study analyzed the knowledge of fishermen from three municipal areas of Bahia in northeast Brazil regarding the behavior repertoire of sharks and the possible influence that these perceptions may have on the inclination to preserve these animals. This is a pioneering study on the ethnobiological aspects of elasmobranchs in Brazil. Methods Open, semi-structured interviews with shark fishing specialists were conducted between September 2011 and October 2012. The interviews addressed the fishermen’s profile, fishing techniques and knowledge about sharks, focusing on the behaviours exhibited by sharks. The data were analysed with quantitative approach and conducted with the use of descriptive statistical techniques. Results Sixty-five fishermen were interviewed. They descend from the rafting subculture of Brazil’s northeast, which has historically been disregarded by public policies addressing the management and conservation of fishing resources. The fishing fleet involved in shark fishing includes rafts, fishing boats and lobster boats equipped with fishing lines, gillnets, longlines and “esperas”. The informers classified sharks’ behaviour repertoire into 19 ethological categories, related especially to feeding, reproduction, and social and migratory behaviours. Because they identify sharks as predators, the detailed recognition of the behaviours exhibited is crucial both for an efficient catch and to avoid accidents. Therefore, this knowledge is doubly adaptive as it contributes to safer, more lucrative fishing. A feeling of respect for sharks predominates, since informers recognize the ecological role of these animals in marine ecosystems, attributing them the status of leader (or “the man”) in the sea. Conclusions This work demonstrates the complexity and robustness of artisanal fishermen’s ichthyological knowledge of sharks. Therefore, we suggest that such knowledge should be considered to develop public policies for the control of the fishing activity, as well as to develop and consolidate the National Action Plan for the Conservation of Shark and Ray Species (PAN - Tubarões e Raias). PMID:24994466
NASA Astrophysics Data System (ADS)
Brochier, Timothée; Auger, Pierre-Amaël; Pecquerie, Laure; Machu, Eric; Capet, Xavier; Thiaw, Modou; Mbaye, Baye Cheikh; Braham, Cheikh-Baye; Ettahiri, Omar; Charouki, Najib; Sène, Ousseynou Ndaw; Werner, Francisco; Brehmer, Patrice
2018-05-01
Small pelagic fish (SPF) species are heavily exploited in eastern boundary upwelling systems (EBUS) as their transformation products are increasingly used in the world's food chain. Management relies on regular monitoring, but there is a lack of robust theories for the emergence of the populations' traits and their evolution in highly variable environments. This work aims to address existing knowledge gaps by combining physical and biogeochemical modelling with an individual life-cycle based model applied to round sardinella (Sardinella aurita) off northwest Africa, a key species for regional food security. Our approach focused on the processes responsible for seasonal migrations, spatio-temporal size-structure, and interannual biomass fluctuations. Emergence of preferred habitat resulted from interactions between natal homing behavior and environmental variability that impacts early life stages. Exploration of the environment by the fishes was determined by swimming capabilities, mesoscale to regional habitat structure, and horizontal currents. Fish spatio-temporal abundance variability emerged from a complex combination of distinct life-history traits. An alongshore gradient in fish size distributions is reported and validated by in situ measurements. New insights into population structure are provided, within an area where the species is abundant year-round (Mauritania) and with latitudinal migrations of variable (300-1200 km) amplitude. Interannual biomass fluctuations were linked to modulations of fish recruitment over the Sahara Bank driven by variability in alongshore current intensity. The identified processes constitute an analytical framework that can be implemented in other EBUS and used to explore impacts of regional climate change on SPF.
NASA Astrophysics Data System (ADS)
Latifah, E.; Imanullah, M. N.
2018-03-01
One of the objectives of fisheries management is to reach long-term sustainable benefits of the fish stocks while reducing the risk of severe or irreversible damage to the marine ecosystem. Achieving this objective needs, the good scientific knowledge and understanding on fisheries management including scientific data and information on the fish stock, fishing catch, distribution, migration, the proportion of mature fish, the mortality rate, reproduction as well as the knowledge on the impact of fishing on dependent and associated species and other species belonging to the same ecosystem, and further the impact of climate change and climate variability on the fish stocks and marine ecosystem. Lack of this scientific knowledge may lead to high levels of uncertainty. The precautionary principle is one of the basic environmental principles needed in overcoming this problem. An essence of this principle is that, in facing the serious risk as a result of the limited scientific knowledge or the absence of complete evidence of harm, it should not prevent the precautionary measures in minimizing risks and protecting the fish stocks and ecosystem. This study aims to examine how the precautionary principle in fisheries management be formulated into the international legal framework, especially under the climate change framework.
Comprehension of Fish Consumption Guidelines Among Older Male Anglers in Wisconsin.
Christensen, Krista Y; Raymond, Michelle R; Thompson, Brooke A; Schrank, Candy S; Williams, Meghan C W; Anderson, Henry A
2016-02-01
Although awareness of Wisconsin's fish consumption guidelines is high among older male anglers, little is known about comprehension of guideline content, and many anglers have levels of contaminants high enough to be associated with adverse health outcomes. The Environmental Protection Agency Great Lakes Restoration Initiative supported evaluation and revision of Wisconsin's fish consumption guideline program, using a web based survey of male Wisconsin anglers over the age of 50. A total of 3740 men completed the online survey; the median age of respondents was 62 years, and nearly all had lived and fished in Wisconsin for over 10 years. Comprehension of guideline content was relatively high, although two knowledge gaps were identified, one relating to mercury exposures and fish preparation, and the other to polychlorinated biphenyl content of certain fish species. The fishing regulations booklet distributed with annual fishing licenses and warning signs posted at fishing locations were commonly reported sources of guideline information in Wisconsin. Residents of coastal counties and consumers of Great Lakes fish were more likely to report guideline knowledge and behavior changes reflective of guideline knowledge, when compared to inland residents and those not consuming Great Lakes fish, respectively. In general, Wisconsin's consumption guidelines do not appear to discourage men from eating the fish they catch; rather, the most common behavioral changes included modifying the species eaten or the water body source of their meals. Continued efforts to educate anglers about the risks and benefits of fish consumption are needed.
Fish Consumption Patterns and Mercury Advisory Knowledge Among Fishers in the Haw River Basin.
Johnston, Jill E; Hoffman, Kate; Wing, Steve; Lowman, Amy
2016-01-01
Fish consumption has numerous health benefits, with fish providing a source of protein as well as omega-3 fatty acids. However, some fish also contain contaminants that can impair human health. In North Carolina, the Department of Health and Human Services has issued fish consumption advisories due to methylmercury contamination in fish. Little is known about local fishers' consumption patterns and advisory adherence in North Carolina. We surveyed a consecutive sample of 50 fishers (74.6% positive response rate) who reported eating fish caught from the Haw River Basin or Jordan Lake. They provided information on demographic characteristics, species caught, and the frequency of local fish consumption. Additionally, fishers provided information on their knowledge of fish consumption advisories and the impact of those advisories on their fishing and fish consumption patterns. The majority of participants were male (n = 44) and reported living in central North Carolina. Catfish, crappie, sunfish, and large-mouth bass were consumed more frequently than other species of fish. Of the fishers surveyed, 8 reported eating more than 1 fish meal high in mercury per week, which exceeds the North Carolina advisory recommendation. Most participants (n = 32) had no knowledge of local fish advisories, and only 4 fishers reported that advisories impacted their fishing practices. We sampled 50 fishers at 11 locations. There is no enumeration of the dynamic population of fishers and no way to assess the representativeness of this sample. Additional outreach is needed to make local fishers aware of fish consumption advisories and the potential health impacts of eating high-mercury fish, which may also contain other persistent and bioaccumulative toxins. ©2016 by the North Carolina Institute of Medicine and The Duke Endowment. All rights reserved.
Fish Consumption Patterns and Mercury Advisory Knowledge Among Fishers in the Haw River Basin
Johnston, Jill E.; Hoffman, Kate; Wing, Steve; Lowman, Amy
2016-01-01
BACKGROUND Fish consumption has numerous health benefits, with fish providing a source of protein as well as omega-3 fatty acids. However, some fish also contain contaminants that can impair human health. In North Carolina, the Department of Health and Human Services has issued fish consumption advisories due to methylmercury contamination in fish. Little is known about local fishers’ consumption patterns and advisory adherence in North Carolina. METHODS We surveyed a consecutive sample of 50 fishers (74.6% positive response rate) who reported eating fish caught from the Haw River Basin or Jordan Lake. They provided information on demographic characteristics, species caught, and the frequency of local fish consumption. Additionally, fishers provided information on their knowledge of fish consumption advisories and the impact of those advisories on their fishing and fish consumption patterns. RESULTS The majority of participants were male (n = 44) and reported living in central North Carolina. Catfish, crappie, sunfish, and large-mouth bass were consumed more frequently than other species of fish. Of the fishers surveyed, 8 reported eating more than 1 fish meal high in mercury per week, which exceeds the North Carolina advisory recommendation. Most participants (n = 32) had no knowledge of local fish advisories, and only 4 fishers reported that advisories impacted their fishing practices. LIMITATIONS We sampled 50 fishers at 11 locations. There is no enumeration of the dynamic population of fishers and no way to assess the representativeness of this sample. CONCLUSIONS Additional outreach is needed to make local fishers aware of fish consumption advisories and the potential health impacts of eating high-mercury fish, which may also contain other persistent and bioaccumulative toxins. PMID:26763238
Mathematics Funds of Knowledge: "Sotmaute" and "Sermaute" Fish in a Torres Strait Islander Community
ERIC Educational Resources Information Center
Ewing, Bronwyn
2012-01-01
The purpose of this article is to describe a project with one Torres Strait Islander Community. It provides some insights into parents' funds of knowledge that are mathematical in nature, such as sorting shells and giving fish. The idea of funds of knowledge is based on the premise that people are competent and have knowledge that has been…
Incorporating uncertainty in watershed management decision-making: A mercury TMDL case study
Labiosa, W.; Leckie, J.; Shachter, R.; Freyberg, D.; Rytuba, J.; ,
2005-01-01
Water quality impairment due to high mercury fish tissue concentrations and high mercury aqueous concentrations is a widespread problem in several sub-watersheds that are major sources of mercury to the San Francisco Bay. Several mercury Total Maximum Daily Load regulations are currently being developed to address this problem. Decisions about control strategies are being made despite very large uncertainties about current mercury loading behavior, relationships between total mercury loading and methyl mercury formation, and relationships between potential controls and mercury fish tissue levels. To deal with the issues of very large uncertainties, data limitations, knowledge gaps, and very limited State agency resources, this work proposes a decision analytical alternative for mercury TMDL decision support. The proposed probabilistic decision model is Bayesian in nature and is fully compatible with a "learning while doing" adaptive management approach. Strategy evaluation, sensitivity analysis, and information collection prioritization are examples of analyses that can be performed using this approach.
Serrasalmidae — Piranhas and Pacus
Nico, Leo; Jegu, Michel; Andrade, Marcelo C
2017-01-01
The family Serrasalmidae is a morphologically and ecologically diverse group of South American freshwater fishes consisting of 16 genera and about 91 valid species. This chapter is a summary of the current state of knowledge on serrasalmid taxonomy, species richness, and ecology, and provides an identification key to the genera and references to relevant literature for species-level identifications. Included is information on native and non-native populations.
Kuparinen, Anna; Kuikka, Sakari; Merilä, Juha
2009-05-01
The study of fisheries-induced evolution is a research field which is becoming recognized both as an important and interesting problem in applied evolution, as well as a practical management problem in fisheries. Much of the research in fisheries-induced evolution has focussed on quantifying and proving that an evolutionary response has taken place, but less effort has been invested on the actual processes and traits underlying capture of a fish by a fishing gear. This knowledge is not only needed to understand possible phenotypic selection associated to fishing but also to help to device sustainable fisheries and management strategies. Here, we draw attention to the existing knowledge about selectivity of fishing gears and outline the ways in which this information could be utilized in the context of fisheries-induced evolution. To these ends, we will introduce a mathematical framework commonly applied to quantify fishing gear selectivity, illustrate the link between gear selectivity and the change in the distribution of phenotypes induced by fishing, review what is known about selectivity of commonly used fishing gears, and discuss how this knowledge could be applied to improve attempts to predict evolutionary impacts of fishing.
Fish intelligence, sentience and ethics.
Brown, Culum
2015-01-01
Fish are one of the most highly utilised vertebrate taxa by humans; they are harvested from wild stocks as part of global fishing industries, grown under intensive aquaculture conditions, are the most common pet and are widely used for scientific research. But fish are seldom afforded the same level of compassion or welfare as warm-blooded vertebrates. Part of the problem is the large gap between people's perception of fish intelligence and the scientific reality. This is an important issue because public perception guides government policy. The perception of an animal's intelligence often drives our decision whether or not to include them in our moral circle. From a welfare perspective, most researchers would suggest that if an animal is sentient, then it can most likely suffer and should therefore be offered some form of formal protection. There has been a debate about fish welfare for decades which centres on the question of whether they are sentient or conscious. The implications for affording the same level of protection to fish as other vertebrates are great, not least because of fishing-related industries. Here, I review the current state of knowledge of fish cognition starting with their sensory perception and moving on to cognition. The review reveals that fish perception and cognitive abilities often match or exceed other vertebrates. A review of the evidence for pain perception strongly suggests that fish experience pain in a manner similar to the rest of the vertebrates. Although scientists cannot provide a definitive answer on the level of consciousness for any non-human vertebrate, the extensive evidence of fish behavioural and cognitive sophistication and pain perception suggests that best practice would be to lend fish the same level of protection as any other vertebrate.
Liu, Ming; McCann, Molly; Lewis-Michl, Elizabeth; Hwang, Syni-An
2018-06-01
Refugees from Burma who consume fish caught from local waterbodies have increased risk of exposure to environmental contaminants. We used respondent driven sampling (RDS) to sample this hard-to-reach population for the first Biomonitoring of Great Lakes Populations program. In the current study, we examined the interview data and assessed the effectiveness of RDS to sample the unique population. In 2013, we used RDS to sample 205 Burmese refugees and immigrants residing in Buffalo, New York who consumed fish caught from Great Lakes waters. RDS-adjusted population estimates of sociodemographic characteristics, residential history, fish consumption related behaviors, and awareness of fish advisories were obtained. We also examined sample homophily and equilibrium to assess how well the RDS assumptions were met in the study. Our sample was diverse with respect to sex, age, years residing in Buffalo, years lived in a refugee camp, education, employment, and fish consumption behaviors, and each of these variables reached equilibrium by the end of recruitment. Burmese refugees in Buffalo consumed Great Lakes fish throughout the year; a majority of them consumed the fish more than two times per week during summer, and about one third ate local fish more than once per week in winter. An estimated 60% of Burmese refugees in Buffalo had heard about local fish advisories. RDS has the potential to be an effective methodology for sampling refugees and immigrants in conducting biomonitoring and environmental exposure assessment. Due to high fish consumption and limited awareness and knowledge of fish advisories, some refugee and immigrant populations are more susceptible to environmental contaminants. Increased awareness on local fish advisories is needed among these populations. Published by Elsevier GmbH.
[Fish intake and risk of prostate cancer].
Dybkowska, Ewa; Świderski, Franciszek; Waszkiewicz-Robak, Bożena
2014-10-17
The aim of the study was to present the current state of knowledge concerning the relationship between the consumption of fish as materials rich in long chain polyunsaturated fatty acids (LC PUFA) omega-3, and the risk of prostate cancer. Many scientific reports confirm the health benefits from the consumption of fish and protective properties of LC PUFA omega-3 in relation to prostate cancer. However, there are reports that indicate a relationship of the high consumption of PUFA with the risk of prostate cancer. The way of processing and preservation of the fish, and other factors not included in previous studies, could have some importance in the etiology of this disease. High susceptibility of PUFA to oxidation changes and the technological fish processing (smoking, high-temperature cooking methods) contribute to the formation of many compounds, such as polycyclic aromatic hydrocarbons and heterocyclic amines - which may influence the formation of cancers - including prostate cancer. It is necessary to ensure an adequate amount of LC PUFA omega-3 in the diet through the consumption of proper quality fish and fish oils. Particular attention should be paid to the high susceptibility of PUFA to the oxidative processes, and the method of processing, preservation and storage of fish. Also pollution from the environment can significantly reduce the impact of health benefits of PUFA and fish, and even be the cause of cancers, including prostate cancer. Further research in this area should be more targeted to assess the impact of nutritional factors for the development of such tumors.
Fish T cells: recent advances through genomics
Laing, Kerry J.; Hansen, John D.
2011-01-01
This brief review is intended to provide a concise overview of the current literature concerning T cells, advances in identifying distinct T cell functional subsets, and in distinguishing effector cells from memory cells. We compare and contrast a wealth of recent progress made in T cell immunology of teleost, elasmobranch, and agnathan fish, to knowledge derived from mammalian T cell studies. From genome studies, fish clearly have most components associated with T cell function and we can speculate on the presence of putative T cell subsets, and the ability to detect their differentiation to form memory cells. Some recombinant proteins for T cell associated cytokines and antibodies for T cell surface receptors have been generated that will facilitate studying the functional roles of teleost T cells during immune responses. Although there is still a long way to go, major advances have occurred in recent years for investigating T cell responses, thus phenotypic and functional characterization is on the near horizon.
The use of traditional Hawaiian knowledge in the contemporary management of marine resources
Poepoe, Kelson K.; Bartram, Paul K.; Friedlander, Alan M.
2003-01-01
It is traditional for Hawaiians to "consult nature" so that fishing is practiced at times and places, and with gear that causes minimum disruption of natural biological and ecological processes. The Ho'olehua Hawaiian Homestead continues this tradition in and around Mo'omomi Bay on the northwest coast of the island of Moloka'i. This community relies heavily on inshore marine resources for subsistence and consequently, has an intimate knowledge of these resources. The shared knowledge, beliefs, and values of the community are culturally channeled to promote proper fishing behavior. This informal system brings more knowledge, experience, and moral commitment to fishery conservation than more centralized government management. Community-based management in the Mo'omomi area involves observational processes and problem-solving strategies for the purpose of conservation. The system is not articulated in the manner of Western science, but relies instead on mental models. These models foster a practical understanding of local inshore resource dynamics by the fishing community and, thus, lend credibility to unwritten standards for fishing conduct. The "code of conduct" is concerned with how people fish rather than how much they catch.
The chemical disinfection of trout ponds
Fish, F.F.
1933-01-01
The need for knowledge concerning the prevention and control of fish diseases has never been greater than it is in this present era of economy when two fish must be raised in the same water which once supported but one. Fish pathologists have contributed a great deal to our knowledge of fish diseases, but there is still much to be learned, particularly concerning better methods of preventing and eliminating diseases among our trout. In this era of circular pools and raceways, our disease elimination is way back in the early days of standard troughs.
Kumar, Neeraj; Gupta, Subodh; Chandan, Nitish Kumar; Aklakur, Md.; Pal, Asim Kumar; Jadhao, Sanjay Balkrishna
2014-01-01
The decline of freshwater fish biodiversity corroborates the trends of unsustainable pesticide usage and increase of disease incidence in the last few decades. Little is known about the role of nonlethal exposure to pesticide, which is not uncommon, and concurrent infection of opportunistic pathogens in species decline. Moreover, preventative measures based on current knowledge of stress biology and an emerging role for epigenetic (especially methylation) dysregulation in toxicity in fish are lacking. We herein report the protective role of lipotropes/methyl donors (like choline, betaine and lecithin) in eliciting primary (endocrine), secondary (cellular and hemato-immunological and histoarchitectural changes) and tertiary (whole animal) stress responses including mortality (50%) in pesticide-exposed (nonlethal dose) and pathogen-challenged fish. The relative survival with betaine and lecithin was 10 and 20 percent higher. This proof of cause-and-effect relation and physiological basis under simulated controlled conditions indicate that sustained stress even due to nonlethal exposure to single pollutant enhances pathogenic infectivity in already nutritionally-stressed fish, which may be a driver for freshwater aquatic species decline in nature. Dietary lipotropes can be used as one of the tools in resurrecting the aquatic species decline. PMID:24690771
Investigation of sensory profiles and hedonic drivers of emerging aquaculture fish species.
Alexi, Niki; Byrne, Derek V; Nanou, Evangelia; Grigorakis, Kriton
2018-02-01
The aquaculture sector needs to increase the diversity fish species and their processed products to cover rising consumer demands. Candidates for this diversification have been identified to be meagre, greater amberjack, pikeperch and wreckfish. Yet scientific knowledge on their sensory profiles and consumer hedonic responses is scarce. The aim of the current study was to investigate these aspects, since they are essential for product development and market targeting. Species exhibited different sensory profiles with the exception of the odor/flavor profiles of meagre and greater amberjack, which were similar. Texture was more important than odor/flavor in explaining interspecies differences. Yet the hedonic responses were equally related to texture and odor/flavor. None of the species received negative hedonic scores. Both positive and negative hedonic drivers were identified within the odor/flavor and texture modalities. The distinct profiles of meagre, greater amberjack, pikeperch and wreckfish make these fish species valuable first materials for new product development and for covering markets with different sensory preferences. Differences in fish texture are more easily perceivable, yet small variations in fish odor/flavor can have a great impact on consumers' hedonic responses. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Case studies of spinal deformities in ornamental koi, Cyprinus carpio L.
Chin, H N; Loh, R; Hong, Y C; Gibson-Kueh, S
2017-01-01
This is a study of vertebral deformities in ornamental koi based on computed radiography and skeletons cleaned by dermestid beetles (Dermestes maculatus). All koi developed gradual onset of swimming abnormalities as adults. Extensive intervertebral osteophyte formation correlated with age of fish and was associated with hindquarter paresis in one koi. Vertebral compression and fusion were the most common spinal deformities occurring at multiple sites, similar to findings in other farmed fish. Site-specific spinal deformities were thought to develop due to differences in swimming behaviour and rates of vertebral growth. One koi had offspring with spinal deformities. Spinal deformities are significant problems in both European and Australian food fish hatcheries. The heritability of vertebral deformities in farmed fish is reportedly low unless there is concurrent poor husbandry or nutritional deficiencies. The specific aetiologies for vertebral deformities in koi in this study could not be ascertained. Current knowledge on spinal deformities in the better studied European food fish species suggests multifactorial aetiologies. Future research should include prospective longitudinal studies of larger numbers of koi from hatch and consideration of all potential risk factors such as husbandry, nutrition, temperature, photoperiod and genetics. © 2016 John Wiley & Sons Ltd.
Kumar, Neeraj; Gupta, Subodh; Chandan, Nitish Kumar; Aklakur, Md; Pal, Asim Kumar; Jadhao, Sanjay Balkrishna
2014-01-01
The decline of freshwater fish biodiversity corroborates the trends of unsustainable pesticide usage and increase of disease incidence in the last few decades. Little is known about the role of nonlethal exposure to pesticide, which is not uncommon, and concurrent infection of opportunistic pathogens in species decline. Moreover, preventative measures based on current knowledge of stress biology and an emerging role for epigenetic (especially methylation) dysregulation in toxicity in fish are lacking. We herein report the protective role of lipotropes/methyl donors (like choline, betaine and lecithin) in eliciting primary (endocrine), secondary (cellular and hemato-immunological and histoarchitectural changes) and tertiary (whole animal) stress responses including mortality (50%) in pesticide-exposed (nonlethal dose) and pathogen-challenged fish. The relative survival with betaine and lecithin was 10 and 20 percent higher. This proof of cause-and-effect relation and physiological basis under simulated controlled conditions indicate that sustained stress even due to nonlethal exposure to single pollutant enhances pathogenic infectivity in already nutritionally-stressed fish, which may be a driver for freshwater aquatic species decline in nature. Dietary lipotropes can be used as one of the tools in resurrecting the aquatic species decline.
Global synthesis of the documented and projected effects of climate change on inland fishes
Myers, Bonnie; Lynch, Abigail; Bunnell, David; Chu, Cindy; Falke, Jeffrey A.; Kovach, Ryan; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Paukert, Craig P.
2017-01-01
Although climate change is an important factor affecting inland fishes globally, a comprehensive review of how climate change has impacted and will continue to impact inland fishes worldwide does not currently exist. We conducted an extensive, systematic primary literature review to identify English-language, peer-reviewed journal publications with projected and documented examples of climate change impacts on inland fishes globally. Since the mid-1980s, scientists have projected the effects of climate change on inland fishes, and more recently, documentation of climate change impacts on inland fishes has increased. Of the thousands of title and abstracts reviewed, we selected 624 publications for a full text review: 63 of these publications documented an effect of climate change on inland fishes, while 116 publications projected inland fishes’ response to future climate change. Documented and projected impacts of climate change varied, but several trends emerged including differences between documented and projected impacts of climate change on salmonid abundance (P = 0.0002). Salmonid abundance decreased in 89.5% of documented effects compared to 35.7% of projected effects, where variable effects were more commonly reported (64.3%). Studies focused on responses of salmonids (61% of total) to climate change in North America and Europe, highlighting major gaps in the literature for taxonomic groups and geographic focus. Elucidating global patterns and identifying knowledge gaps of climate change effects on inland fishes will help managers better anticipate local changes in fish populations and assemblages, resulting in better development of management plans, particularly in systems with little information on climate change effects on fish.
Fishers' knowledge about fish trophic interactions in the southeastern Brazilian coast.
Ramires, Milena; Clauzet, Mariana; Barrella, Walter; Rotundo, Matheus M; Silvano, Renato Am; Begossi, Alpina
2015-03-05
Data derived from studies of fishers' local ecological knowledge (LEK) can be invaluable to the proposal of new studies and more appropriate management strategies. This study analyzed the fisher's LEK about trophic relationships of fishes in the southeastern Brazilian coast, comparing fishers' LEK with scientific knowledge to provide new hypotheses. The initial contacts with fishers were made through informal visits in their residences, to explain the research goals, meet fishers and their families, check the number of resident fishers and ask for fishers' consent to participate in the research. After this initial contact, fishers were selected to be included in the interviews through the technique of snowball sampling. The fishers indicated by others who attended the criteria to be included in the research were interviewed by using a semi-structured standard questionnaire. There were interviewed 26 artisanal fishers from three communities of the Ilhabela: Jabaquara, Fome and Serraria. The interviewed fishers showed a detailed knowledge about the trophic interactions of the studied coastal fishes, as fishers mentioned 17 food items for these fishes and six fish and three mammals as fish predators. The most mentioned food items were small fish, shrimps and crabs, while the most mentioned predators were large reef fishes. Fishers also mentioned some predators, such as sea otters, that have not been reported by the biological literature and are poorly known. The LEK of the studied fishers showed a high degree of concordance with the scientific literature regarding fish diet. This study evidenced the value of fishers' LEK to improve fisheries research and management, as well as the needy to increase the collaboration among managers, biologists and fishers.
Liedtke, Theresa; Gibson, Caroline; Lowry, Dayv; Fagergren, Duane
2013-01-01
Locally and globally, there is growing recognition of the critical roles that herring, smelt, sand lance, eulachon, and other forage fishes play in marine ecosystems. Scientific and resource management entities throughout the Salish Sea, agree that extensive information gaps exist, both in basic biological knowledge and parameters critical to fishery management. Communication and collaboration among researchers also is inadequate. Building on the interest and enthusiasm generated by recent forage fish workshops and symposia around the region, the 2012 Research Symposium on the Conservation and Ecology of Marine Forage Fishes was designed to elucidate practical recommendations for science and policy needs and actions, and spur further collaboration in support for the precautionary management of forage fish. This dynamic and productive event was a joint venture of the Northwest Straits Commission Forage Fish Program, U.S. Geological Survey (USGS), Washington Department of Fish and Wildlife (WDFW), and The Puget Sound Partnership. The symposium was held on September 12–14, 2012, at the University of Washington, Friday Harbor Laboratories campus. Sixty scientists, graduate students, and fisheries policy experts convened; showcasing ongoing research, conservation, and management efforts targeting forage fish from regional and national perspectives. The primary objectives of this event were to: (1) review current research and management related to marine forage fish species; and (2) identify priority science and policy needs and actions for Washington, British Columbia, and the entire West Coast. Given the diversity of knowledge, interests, and disciplines surrounding forage fish on both sides of the international border, the organizing committee made a concerted effort to contact many additional experts who, although unable to attend, provided valuable insights and ideas to the symposium structure and discussions. The value of the symposium format was highlighted in the closing remarks delivered by Joseph Gaydos, SeaDoc Society and Chair of the Puget Sound Science Panel. Dr. Gaydos’ presentation referenced the 2011 paper by Murray Rudd in the journal Conservation Biology, “How research-prioritization exercises affect conservation policy.” The paper points out that policy makers and funding agencies are more likely to gain a full understanding of issues when they are presented with research findings from an aligned research program. That is, compared to unaligned research strategies, where work is not based on identified research priorities.
ERIC Educational Resources Information Center
Koupal, Keith; Krasny, Marianne
2003-01-01
The effect of a 1-week sportfishing and environmental curriculum on participants' (aged 9-14) knowledge of fishing and biology/ecology, awareness of ethical behavior, and attitudes was assessed with 127 completed pre-/post-surveys. The program developed fishing and biology/ecology knowledge, but did not affect ethical behavior awareness or…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, Steven J.; Wagner, Glenn N.; Brown, Richard S.
2011-01-01
Training is a fundamental part of all scientific and technical disciplines. This is particularly true for all types of surgeons. For surgical procedures, a number of skills are necessary to reduce mistakes. Trainees must learn an extensive yet standardized set of problem-solving and technical skills to handle challenges as they arise. There are currently no guidelines or consistent training methods for those intending to implant electronic tags in fish; this is surprising, considering documented cases of negative consequences of fish surgeries and information from studies having empirically tested fish surgical techniques. Learning how to do fish surgery once is insufficientmore » for ensuring the maintenance or improvement of surgical skill. Assessment of surgical skills is rarely incorporated into training, and is needed. Evaluation provides useful feedback that guides future learning, fosters habits of self-reflection and self-remediation, and promotes access to advanced training. Veterinary professionals should be involved in aspects of training to monitor basic surgical principles. We identified attributes related to knowledge, understanding, and skill that surgeons must demonstrate prior to performing fish surgery including a “hands-on” assessment using live fish. Included is a summary of common problems encountered by fish surgeons. We conclude by presenting core competencies that should be required as well as outlining a 3-day curriculum for training surgeons to conduct intracoelomic implantation of electronic tags. This curriculum could be offered through professional fisheries societies as professional development courses.« less
Perspectives: Gene Expression in Fisheries Management
Nielsen, Jennifer L.; Pavey, Scott A.
2010-01-01
Functional genes and gene expression have been connected to physiological traits linked to effective production and broodstock selection in aquaculture, selective implications of commercial fish harvest, and adaptive changes reflected in non-commercial fish populations subject to human disturbance and climate change. Gene mapping using single nucleotide polymorphisms (SNPs) to identify functional genes, gene expression (analogue microarrays and real-time PCR), and digital sequencing technologies looking at RNA transcripts present new concepts and opportunities in support of effective and sustainable fisheries. Genomic tools have been rapidly growing in aquaculture research addressing aspects of fish health, toxicology, and early development. Genomic technologies linking effects in functional genes involved in growth, maturation and life history development have been tied to selection resulting from harvest practices. Incorporating new and ever-increasing knowledge of fish genomes is opening a different perspective on local adaptation that will prove invaluable in wild fish conservation and management. Conservation of fish stocks is rapidly incorporating research on critical adaptive responses directed at the effects of human disturbance and climate change through gene expression studies. Genomic studies of fish populations can be generally grouped into three broad categories: 1) evolutionary genomics and biodiversity; 2) adaptive physiological responses to a changing environment; and 3) adaptive behavioral genomics and life history diversity. We review current genomic research in fisheries focusing on those that use microarrays to explore differences in gene expression among phenotypes and within or across populations, information that is critically important to the conservation of fish and their relationship to humans.
Autonomic control of circulation in fish: a comparative view.
Sandblom, Erik; Axelsson, Michael
2011-11-16
The autonomic nervous system has a central role in the control and co-ordination of the cardiovascular system in all vertebrates. In fish, which represent the largest and most diverse vertebrate group, the autonomic control of the circulation displays a vast variation with a number of interesting deviations from the typical vertebrate pattern. This diversity ranges from virtually no known nervous control of the circulation in hagfish, to a fully developed dual control from both cholinergic and adrenergic nerves in teleost, much resembling the situation found in other vertebrate groups. This review summarizes current knowledge on the role of the autonomic nervous system in the control of the cardiovascular system in fish. We set out by providing an overview of the general trends and patterns in the major fish groups, and then a summary of how the autonomic nervous control is involved in normal daily activities such as barostatic control of blood pressure, as well as adjustments of the cardiovascular system during feeding and environmental hypoxia. Copyright © 2011 Elsevier B.V. All rights reserved.
Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes
Mora, Camilo; Aburto-Oropeza, Octavio; Ayala Bocos, Arturo; Ayotte, Paula M.; Banks, Stuart; Bauman, Andrew G.; Beger, Maria; Bessudo, Sandra; Booth, David J.; Brokovich, Eran; Brooks, Andrew; Chabanet, Pascale; Cinner, Joshua E.; Cortés, Jorge; Cruz-Motta, Juan J.; Cupul Magaña, Amilcar; DeMartini, Edward E.; Edgar, Graham J.; Feary, David A.; Ferse, Sebastian C. A.; Friedlander, Alan M.; Gaston, Kevin J.; Gough, Charlotte; Graham, Nicholas A. J.; Green, Alison; Guzman, Hector; Hardt, Marah; Kulbicki, Michel; Letourneur, Yves; López Pérez, Andres; Loreau, Michel; Loya, Yossi; Martinez, Camilo; Mascareñas-Osorio, Ismael; Morove, Tau; Nadon, Marc-Olivier; Nakamura, Yohei; Paredes, Gustavo; Polunin, Nicholas V. C.; Pratchett, Morgan S.; Reyes Bonilla, Héctor; Rivera, Fernando; Sala, Enric; Sandin, Stuart A.; Soler, German; Stuart-Smith, Rick; Tessier, Emmanuel; Tittensor, Derek P.; Tupper, Mark; Usseglio, Paolo; Vigliola, Laurent; Wantiez, Laurent; Williams, Ivor; Wilson, Shaun K.; Zapata, Fernando A.
2011-01-01
Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas. PMID:21483714
Siar, Susana V
2003-05-01
The coastal zone is a place of intense activity where resources, users, and resource-use practices interact. This case study of small-scale fisheries in Honda Bay, Palawan, Philippines shows that resources, space, and gender are intertwined. The study was conducted between June 1997 and July 1998. The data were gathered using free listing, pile sort, ranking, resource mapping, and key informant interviews. The results showed that women's knowledge about fishery resources and their fishing activities are associated with the intertidal zone whereas men's knowledge is associated with coral reefs. In classifying fishery resources, appearance is the main consideration for women whereas a combination of appearance, habitat, and type of fishing gear is the consideration used by men. Market price is very important because of its dependence on the demand of the export market as well as the local market. Women dominate the buying of fishery products. Many women market their husband's catch, process fish, or gather shells and sea cucumber for sale. Among the fishing households, type of fishing gear provides an indication of socioeconomic standing. This paper concludes that access to resources is shaped by gender and age. The differences in resource knowledge possessed by men and women lead to differential access to fishery resources. In addition, the differences in socioeconomic status also influence resource access. The socialization of children into fishing reinforces the gender division of labor and space in the coastal zone.
Pinto, Márcia Freire; Mourão, José da Silva; Alves, Rômulo Romeu Nóbrega
2013-03-08
Artisanal fishery is one of the most important economic activities for human populations living in coastal areas. The traditional knowledge that fishermen have of fishes is of utmost importance for the establishment of conservation strategies for many species. This study aimed to analyse the knowledge of and utilization of fishes by the artisanal fishermen in a fishing community on the coast of Ceará State (Northeast Brazil). In 2011, a number of semi-structured interviews were performed with fishermen with more than 20 years of fishery experience. The interviews were about fisheries (collecting spots, artefacts, etc.) and fish use. The fishes cited by the fishermen were identified scientifically and ethnotaxonomically. Considered masters of fishery, they cited 162 vernacular names of fishes, which corresponded to 290 different species, also including other animals such as dolphins, porpoises, whales and manatees. The criteria for the classification of the fishes were well known and utilised by the fishermen, and they were based on morphology, behaviour, habitat and the importance of commercial and fishing activities. Four hierarchical categories were identified in their classification system: kingdom, life-form, generic and specific. The fish nomenclature created by the fishermen was mostly composed of generic and monotypic names. The main uses of fish were for food and commercial purposes. The results stress the richness and complexity of the knowledge of the artisanal fishermen of Redonda Beach, and they provide support for the possibility of future studies and for the development of management plans and the management of wildlife resources.
2013-01-01
Background Artisanal fishery is one of the most important economic activities for human populations living in coastal areas. The traditional knowledge that fishermen have of fishes is of utmost importance for the establishment of conservation strategies for many species. This study aimed to analyse the knowledge of and utilization of fishes by the artisanal fishermen in a fishing community on the coast of Ceará State (Northeast Brazil). Methods In 2011, a number of semi-structured interviews were performed with fishermen with more than 20 years of fishery experience. The interviews were about fisheries (collecting spots, artefacts, etc.) and fish use. The fishes cited by the fishermen were identified scientifically and ethnotaxonomically. Results Considered masters of fishery, they cited 162 vernacular names of fishes, which corresponded to 290 different species, also including other animals such as dolphins, porpoises, whales and manatees. The criteria for the classification of the fishes were well known and utilised by the fishermen, and they were based on morphology, behaviour, habitat and the importance of commercial and fishing activities. Four hierarchical categories were identified in their classification system: kingdom, life-form, generic and specific. The fish nomenclature created by the fishermen was mostly composed of generic and monotypic names. The main uses of fish were for food and commercial purposes. Conclusions The results stress the richness and complexity of the knowledge of the artisanal fishermen of Redonda Beach, and they provide support for the possibility of future studies and for the development of management plans and the management of wildlife resources. PMID:23497491
Assessing consumer awareness about mercury in fish.
Ratnapradipa, Dhitinut; Quilliam, Daniela; Wier, Lauren M; Migliore, Beverly; Dundulis, William
2009-12-01
The study discussed in this article was conducted to determine if a retail-based educational campaign would be an effective tool to inform consumers about mercury in fish. In 2005, the Rhode Island (RI) Department of Health, in conjunction with the RI Food Dealers Association, conducted surveys in eight supermarkets to assess consumers' knowledge and awareness of mercury in fish. A presurvey was administered to 523 respondents as they prepared to exit the store June 17-19. During the week of July 11-17, a "Fish Week" educational program was conducted. An identical postsurvey to evaluate the effectiveness of "Fish Week" was administered to 556 customers exiting participating supermarkets on July 21-24. A significant (p < .05) increase occurred in the number of respondents who identified brochures as an information source about mercury in fish. Small, but significant, decreases in awareness and knowledge about mercury in fish issues, however, were unexpected findings that were likely due to factors discussed.
Biological and communication skills needed for introduced fish biologists
Bonar, Scott A.
2016-01-01
What skills and knowledge will a new graduate seeking employment need to work with introduced fishes? Clearly, success in introduced species management—similar to other disciplines in fisheries—requires a mixture of scientific and communication skills. However, specific abilities especially important to a biologist who manages introduced fishes should be highlighted. Unlike most other management strategies, stocking an introduced species can result in unintended and irreversible impacts, so particular care must be employed when stocking is considered. Furthermore, fish populations in areas outside of the introduced species management area might also be affected, usually negatively, if the introduced fish escapes. Therefore, rock-solid knowledge of basic aquatic ecology, including risk management; fish taxonomy (so the wrong fish species is not mistakenly stocked!); familiarity with human values of both the time and the place (which requires communication skills); and a strong understanding of human history are all important.
Renz, Adina J.; Meyer, Axel; Kuraku, Shigehiro
2013-01-01
Cartilaginous fishes, divided into Holocephali (chimaeras) and Elasmoblanchii (sharks, rays and skates), occupy a key phylogenetic position among extant vertebrates in reconstructing their evolutionary processes. Their accurate evolutionary time scale is indispensable for better understanding of the relationship between phenotypic and molecular evolution of cartilaginous fishes. However, our current knowledge on the time scale of cartilaginous fish evolution largely relies on estimates using mitochondrial DNA sequences. In this study, making the best use of the still partial, but large-scale sequencing data of cartilaginous fish species, we estimate the divergence times between the major cartilaginous fish lineages employing nuclear genes. By rigorous orthology assessment based on available genomic and transcriptomic sequence resources for cartilaginous fishes, we selected 20 protein-coding genes in the nuclear genome, spanning 2973 amino acid residues. Our analysis based on the Bayesian inference resulted in the mean divergence time of 421 Ma, the late Silurian, for the Holocephali-Elasmobranchii split, and 306 Ma, the late Carboniferous, for the split between sharks and rays/skates. By applying these results and other documented divergence times, we measured the relative evolutionary rate of the Hox A cluster sequences in the cartilaginous fish lineages, which resulted in a lower substitution rate with a factor of at least 2.4 in comparison to tetrapod lineages. The obtained time scale enables mapping phenotypic and molecular changes in a quantitative framework. It is of great interest to corroborate the less derived nature of cartilaginous fish at the molecular level as a genome-wide phenomenon. PMID:23825540
Renz, Adina J; Meyer, Axel; Kuraku, Shigehiro
2013-01-01
Cartilaginous fishes, divided into Holocephali (chimaeras) and Elasmoblanchii (sharks, rays and skates), occupy a key phylogenetic position among extant vertebrates in reconstructing their evolutionary processes. Their accurate evolutionary time scale is indispensable for better understanding of the relationship between phenotypic and molecular evolution of cartilaginous fishes. However, our current knowledge on the time scale of cartilaginous fish evolution largely relies on estimates using mitochondrial DNA sequences. In this study, making the best use of the still partial, but large-scale sequencing data of cartilaginous fish species, we estimate the divergence times between the major cartilaginous fish lineages employing nuclear genes. By rigorous orthology assessment based on available genomic and transcriptomic sequence resources for cartilaginous fishes, we selected 20 protein-coding genes in the nuclear genome, spanning 2973 amino acid residues. Our analysis based on the Bayesian inference resulted in the mean divergence time of 421 Ma, the late Silurian, for the Holocephali-Elasmobranchii split, and 306 Ma, the late Carboniferous, for the split between sharks and rays/skates. By applying these results and other documented divergence times, we measured the relative evolutionary rate of the Hox A cluster sequences in the cartilaginous fish lineages, which resulted in a lower substitution rate with a factor of at least 2.4 in comparison to tetrapod lineages. The obtained time scale enables mapping phenotypic and molecular changes in a quantitative framework. It is of great interest to corroborate the less derived nature of cartilaginous fish at the molecular level as a genome-wide phenomenon.
Fishers' knowledge on the coast of Brazil.
Begossi, Alpina; Salivonchyk, Svetlana; Lopes, Priscila F M; Silvano, Renato A M
2016-06-01
Although fishers' knowledge has been recently considered into management programmes, there is still the need to establish a better understanding of fishers' perceptions and cognition. Fishers can provide novel information on the biology and ecology of species, which can potentially be used in the management of fisheries. The knowledge fishers have and how they classify nature is empirically based. It is common, for example, to observe that fishers' taxonomy is often represented by the generic level, one of the hierarchical categories of folk classification that is somewhat analogous to the Linnean genus, as it groups organisms of a higher rank than the folk species.In this study we compiled the knowledge fishers have on local fish, such as their folk names, diet and habitat. Five coastal communities widely distributed along the Brazilian coast were studied: two from the northeast (Porto Sauípe and Itacimirim, in Bahia State, n of interviewees = 34), two from the southeast (Itaipu at Niterói and Copacabana at Rio de Janeiro, Rio de Janeiro State, n = 35) and one from the south coast (Pântano do Sul, in Santa Catarina State, n = 23). Fish pictures were randomly ordered and the same order was presented to all interviewees (n = 92), when they were then asked about the species name and classification and its habitat and diet preferences. Fishers make clusters of fish species, usually hierarchically; fishers of the coast of Brazil use mostly primary lexemes (generic names) to name fish; and fishers did not differentiate between scientific species, since the same folk generic name included two different scientific species. Fishers provide information on species to which there is scarce or no information on diet and habitat, such as Rhinobatos percellens (chola guitarfish, arraia viola or cação viola), Sphoeroides dorsalis (marbled puffer, baiacu), Mycteroperca acutirostris (comb grouper, badejo) and Dasyatis guttata (longnose stingray, arraia, arraia manteiga). fishers' knowledge on fish diet and fish habitat can be strategic to management, since their knowledge concentrates on the fishery target species, which are the ones under higher fishing pressure. Besides, fishers showed to have knowledge on species still poorly known to science.
Villeneuve, Daniel; Volz, David C; Embry, Michelle R; Ankley, Gerald T; Belanger, Scott E; Léonard, Marc; Schirmer, Kristin; Tanguay, Robert; Truong, Lisa; Wehmas, Leah
2014-01-01
The fish early-life stage (FELS) test (Organisation for Economic Co-operation and Development [OECD] test guideline 210) is the primary test used internationally to estimate chronic fish toxicity in support of ecological risk assessments and chemical management programs. As part of an ongoing effort to develop efficient and cost-effective alternatives to the FELS test, there is a need to identify and describe potential adverse outcome pathways (AOPs) relevant to FELS toxicity. To support this endeavor, the authors outline and illustrate an overall strategy for the discovery and annotation of FELS AOPs. Key events represented by major developmental landmarks were organized into a preliminary conceptual model of fish development. Using swim bladder inflation as an example, a weight-of-evidence–based approach was used to support linkage of key molecular initiating events to adverse phenotypic outcomes and reduced young-of-year survival. Based on an iterative approach, the feasibility of using key events as the foundation for expanding a network of plausible linkages and AOP knowledge was explored and, in the process, important knowledge gaps were identified. Given the scope and scale of the task, prioritization of AOP development was recommended and key research objectives were defined relative to factors such as current animal-use restrictions in the European Union and increased demands for fish toxicity data in chemical management programs globally. The example and strategy described are intended to guide collective efforts to define FELS-related AOPs and develop resource-efficient predictive assays that address the toxicological domain of the OECD 210 test. Environ Toxicol Chem 2014;33:158–169. © 2013 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited. PMID:24115264
Freshwater fishes of Patagonia: conservation and fisheries.
Cussac, V E; Habit, E; Ciancio, J; Battini, M A; Riva Rossi, C; Barriga, J P; Baigún, C; Crichigno, S
2016-07-01
The absence of much literature on the Patagonian fish fauna in comparison with that of the neotropics, has previously been blamed on its poor species diversity. Knowledge of the fishes of Patagonia, however, rose sharply at the beginning of the present century, allowing for an understanding of the complex biogeographical history that has led to the present diversity and distribution patterns. There are several new and potential threats to biodiversity and conservation of Patagonian fishes, such as the introduction of exotic species, damming, climate change and changes geared to safeguard economic interests, often acting synergistically. A great amount of new information is now available and the aim of the present review is to articulate this knowledge in a comprehensive way in order to aid in the development of tools to face the increasing challenges posed by environmental change and human activity. Knowledge about fishes of Patagonia has grown at the same time as human actions, and presence. © 2016 The Fisheries Society of the British Isles.
Novel methodologies in marine fish larval nutrition.
Conceição, Luis E C; Aragão, Cláudia; Richard, Nadège; Engrola, Sofia; Gavaia, Paulo; Mira, Sara; Dias, Jorge
2010-03-01
Major gaps in knowledge on fish larval nutritional requirements still remain. Small larval size, and difficulties in acceptance of inert microdiets, makes progress slow and cumbersome. This lack of knowledge in fish larval nutritional requirements is one of the causes of high mortalities and quality problems commonly observed in marine larviculture. In recent years, several novel methodologies have contributed to significant progress in fish larval nutrition. Others are emerging and are likely to bring further insight into larval nutritional physiology and requirements. This paper reviews a range of new tools and some examples of their present use, as well as potential future applications in the study of fish larvae nutrition. Tube-feeding and incorporation into Artemia of (14)C-amino acids and lipids allowed studying Artemia intake, digestion and absorption and utilisation of these nutrients. Diet selection by fish larvae has been studied with diets containing different natural stable isotope signatures or diets where different rare metal oxides were added. Mechanistic modelling has been used as a tool to integrate existing knowledge and reveal gaps, and also to better understand results obtained in tracer studies. Population genomics may assist in assessing genotype effects on nutritional requirements, by using progeny testing in fish reared in the same tanks, and also in identifying QTLs for larval stages. Functional genomics and proteomics enable the study of gene and protein expression under various dietary conditions, and thereby identify the metabolic pathways which are affected by a given nutrient. Promising results were obtained using the metabolic programming concept in early life to facilitate utilisation of certain nutrients at later stages. All together, these methodologies have made decisive contributions, and are expected to do even more in the near future, to build a knowledge basis for development of optimised diets and feeding regimes for different species of larval fish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prado, Paula S.; Pinheiro, Ana Paula B.; Bazzoli, Nilo
2014-05-01
Field studies evaluating the effects of endocrine disruption chemicals (EDCs) on the fish reproduction are scarce worldwide. The goal of this study was to assess hepatic levels of vitellogenin (Vtg), zona radiata proteins (Zrp) and insulin-like growth factors (IGF-I and IGF-II), and relating them to reproductive endpoints in a wild fish population habiting a reservoir that receive domestic sewage, agricultural and industrial residues. Adult fish Astyanax fasciatus were sampled during the reproductive season in five sites from the Furnas Reservoir, Grande River, and Paraguay–Paraná basin. As a control to field data, fish were experimentally exposed via dietary intake, to oestradiolmore » benzoate (OB) for 7 days. Fish from site with little anthropogenic interference showed hepatic levels of Vtg, Zrp and IGF-I and IGF-II similar to those from the non-treated experimental group. In sites located immediately downstream from the municipal wastewater discharges, the water total oestrogen was >120 ng/l, and male fish displayed increased Vtg and Zrp and decreased IGF-I levels similar to OB treated fish. In females, levels of Vtg, Zrp, IGF-I and IGF-II suggest an impairment of final oocyte maturation and spawning, as also detected by frequency of over-ripening, follicular atresia and fecundity. At the sites that receive agricultural and industrial residues, the water total oestrogen was <50 ng/l and females showed decreased Zrp and increased IGF-II levels associated to reduced diameter of vitellogenic follicles, indicating an inhibition of oocyte growth. Overall, the current study reports oestrogenic contamination impairing the reproduction of a wild fish from a hydroeletric reservoir and, the data contribute to improving the current knowledge on relationship between hepatic Vtg, Zrp and IGF-I and IGF-II, and reproductive endpoints in a teleost fish. In addition, our data point out novel reproductive biomarkers (IGF-I, IGF-II and over-ripening) to assessing xenoestrogenic contamination in freshwater ecosystems. - Highlights: • We point out novel reproductive biomarkers to assess xenoestrogenic contamination. • Field captured fish showed altered hepatic Vtg and Zrp. • Hepatic IGF-I and II levels were associated to reproductive disturbances. • Over-ripening is a better xenoestrogen biomarker than follicular atresia.« less
LePrevost, Catherine E.; Gray, Kathleen M.; Hernández-Pelletier, Mercedes; Bouma, Brennan D.; Arellano, Consuelo; Cope, W. Gregory
2013-01-01
Fish consumption has established benefits, including the promotion of cardiovascular health and pre- and neonatal brain and eye development, but local freshwater fish may be a source of contaminants that are especially harmful to fetuses and young children, such as the neurotoxic and developmentally toxic methylmercury and polychlorinated biphenyls. Fish consumption advisories may be issued by state health departments to limit human exposure to these and other toxicants. This study examined the efficacy of a sign designed by the North Carolina Division of Public Health that was posted along a reservoir (Badin Lake) in central North Carolina, USA, for increasing anglers’ awareness of a fish consumption advisory, with a special focus on anglers who share their catch with women and children. In this study, 109 anglers were interviewed about their awareness of fish consumption advisories in general and their knowledge of the Badin Lake fish advisory in particular. Shore anglers were significantly less likely to be aware of the term “fish consumption advisory” and of the specific advisory for Badin Lake than boat anglers. Although a significant increase in knowledge of the specific fish consumption advisory was found for the entire sample of study participants after the sign intervention, a commensurate increase in knowledge was not found for a subsample of anglers who reported sharing their catch with women and children. Study findings underscore differences in fish consumption advisory awareness among subpopulations. Specifically, the study revealed the importance of characterizing the communication needs of shore anglers and anglers who share their catch with sensitive subpopulations (e.g., women and children) for the creation of more targeted communications of fish consumption advisories. PMID:23629591
Dahruddin, Hadi; Hutama, Aditya; Busson, Frédéric; Sauri, Sopian; Hanner, Robert; Keith, Philippe; Hadiaty, Renny; Hubert, Nicolas
2017-03-01
Among the 899 species of freshwater fishes reported from Sundaland biodiversity hotspot, nearly 50% are endemics. The functional integrity of aquatic ecosystems is currently jeopardized by human activities, and landscape conversion led to the decline of fish populations in several part of Sundaland, particularly in Java. The inventory of the Javanese ichthyofauna has been discontinuous, and the taxonomic knowledge is scattered in the literature. This study provides a DNA barcode reference library for the inland fishes of Java and Bali with the aim to streamline the inventory of fishes in this part of Sundaland. Owing to the lack of available checklist for estimating the taxonomic coverage of this study, a checklist was compiled based on online catalogues. A total of 95 sites were visited, and a library including 1046 DNA barcodes for 159 species was assembled. Nearest neighbour distance was 28-fold higher than maximum intraspecific distance on average, and a DNA barcoding gap was observed. The list of species with DNA barcodes displayed large discrepancies with the checklist compiled here as only 36% (i.e. 77 species) and 60% (i.e. 24 species) of the known species were sampled in Java and Bali, respectively. This result was contrasted by a high number of new occurrences and the ceiling of the accumulation curves for both species and genera. These results highlight the poor taxonomic knowledge of this ichthyofauna, and the apparent discrepancy between present and historical occurrence data is to be attributed to species extirpations, synonymy and misidentifications in previous studies. © 2016 John Wiley & Sons Ltd.
Seafood Allergy, Toxicity, and Intolerance: A Review.
Prester, Ljerka
2016-01-01
Seafood allergies have been increasing their presence in the last 2 decades. Allergic reactions to seafood can range from mild urticarial and oral allergy syndrome to life-threatening anaphylactic reactions. Ingestion of seafood infested with Anisakis larvae can cause a disease known as anisakiasis with symptoms similar to true seafood allergy. Furthermore, some adverse reactions to seafood including histamine fish poisoning (HFP), and intolerance to histamine can trigger clinical symptoms, which, although nonallergic in origin, are similar to true immunoglobulin E (IgE)-mediated allergic reactions. Because seafood allergy usually remains a lifelong food allergy, this review focuses on the current knowledge on fish and shellfish allergens and emphasizes the importance of differentiating seafood allergy from other allergy-like reactions (anisakiasis, HFP, and intolerance to histamine). Key teaching points: • Fish and shellfish are potent allergens that can provoke serious IgE antibody-mediated adverse reactions in sensitive individuals. • Sensitization to seafood allergens can be achieved by ingestion, inhalation, or skin contact. • Shellfish major allergen, tropomyosin, shares significant homology to arthropods (dust mites and cockroaches). • Accidental exposures to seafood products cross-contaminated with fish or shellfish allergens (hidden allergens) during processing may present a health risk for sensitive individuals. • Allergens of fish parasite A. simplex present common hidden allergens in seafood, particularly in raw and undercooked home-made fish dishes. • Symptoms caused by HFP, histamine intolerance, and anisakiasis are similar to true seafood allergy.
Bertaco, Vinicius A; Ferrer, Juliano; Carvalho, Fernando R; Malabarba, Luiz R
2016-07-18
We herein analyse the history of the description of the freshwater fish fauna from three drainages in one of the most densely collected areas of Brazil, and possibly of South America, the Rio Grande do Sul State, southern Brazil. An updated inventory of the freshwater fish species from rio Uruguay (partial) in Brazil, Laguna dos Patos (complete) and rio Tramandaí basins (complete) is presented. We found the number of new species described in these drainages increased nearly 56% since 1981, reaching a total of 422 species, but even now 10% of this number still corresponds to undescribed species. This rate of species description suggests that previous estimates of the Neotropical fish fauna are low, and we predict a final number of Neotropical fishes larger than the largest prediction estimate (8,000 species), after other regions of South and Central Americas become densely sampled. We discuss and attempt to demonstrate that species diversity knowledge is historically and strictly related to collecting efforts. We also demonstrate that the ecoregions in eastern South America with the highest density of species per area correspond to the areas more densely sampled in collections, and this may represent a bias in such kinds of analyses. This uneven sampling in Brazilian regions is apparently associated with the uneven distribution of Zoological research centers in different regions of the country. Small-sized species represents an important source of new species, along with little explored regions or little explored habitats, sometimes associated with restricted range species, and species complexes that need revisionary work. In contrast to other Neotropical regions, Atheriniformes are relatively diverse, sharing the fifth place in species richness with Gymnotiformes, and there is a remarkably high number of species of Rivulidae. Eight species are endemic to the rio Tramandaí drainage, 68 to the Laguna dos Patos system, and 78 to the rio Uruguay drainage. Almost 10% of the freshwater fish species are "Critically Endangered", "Endangered" or "Vulnerable" according to the IUCN criteria, with Rivulidae as the family with the largest number of threatened species.
Cuadrado, Angeles; Golczyk, Hieronim; Jouve, Nicolás
2009-01-01
We report a new technique-nondenaturing FISH (ND-FISH)-for the rapid detection of plant telomeres without the need for prior denaturation of the chromosomes. In its development, two modified, synthetic oligonucleotides, 21 nt in length, fluorescently labelled at their 5' and 3' ends and complementary to either the cytidine-rich (C(3)TA(3)) or guanosine-rich (T(3)AG(3)) telomeric DNA strands, were used as probes. The high binding affinity of these probes and the short hybridization time required allows the visualization of plant telomeres in less than an hour. In tests, both probes gave strong signals visualized as double spots at both chromosome ends; this was true of both the mitotic and meiotic chromosomes of barley, wheat, rye, maize, Brachypodium distachyon and Rhoeo spathacea. They were also able to detect telomere motifs at certain intercalary sites in the chromosomes of R. spathacea. To investigate the nature of the target structures detected, the chromosomes were treated with RNase A and single strand-specific nuclease S1 before ND-FISH experiments. Signal formation was resistant to standard enzymatic treatment, but sensitive when much higher enzyme concentrations were used. The results are discussed in relation to current knowledge of telomere structure.
The serotonergic system in fish.
Lillesaar, Christina
2011-07-01
Neurons using serotonin (5-HT) as neurotransmitter and/or modulator have been identified in the central nervous system in representatives from all vertebrate clades, including jawless, cartilaginous and ray-finned fishes. The aim of this review is to summarize our current knowledge about the anatomical organization of the central serotonergic system in fishes. Furthermore, selected key functions of 5-HT will be described. The main focus will be the adult brain of teleosts, in particular zebrafish, which is increasingly used as a model organism. It is used to answer not only genetic and developmental biology questions, but also issues concerning physiology, behavior and the underlying neuronal networks. The many evolutionary conserved features of zebrafish combined with the ever increasing number of genetic tools and its practical advantages promise great possibilities to increase our understanding of the serotonergic system. Further, comparative studies including several vertebrate species will provide us with interesting insights into the evolution of this important neurotransmitter system. Copyright © 2011 Elsevier B.V. All rights reserved.
Jordan, Laura K.; Mandelman, John W.; McComb, D. Michelle; Fordham, Sonja V.; Carlson, John K.; Werner, Timothy B.
2013-01-01
Incidental capture, or bycatch, in fisheries represents a substantial threat to the sustainability of elasmobranch populations worldwide. Consequently, researchers are increasingly investigating elasmobranch bycatch reduction methods, including some focused on these species' sensory capabilities, particularly their electrosensory systems. To guide this research, we review current knowledge of elasmobranch sensory biology and feeding ecology with respect to fishing gear interactions and include examples of bycatch reduction methods used for elasmobranchs as well as other taxonomic groups. We discuss potential elasmobranch bycatch reduction strategies for various fishing gear types based on the morphological, physiological, and behavioural characteristics of species within this diverse group. In select examples, we indicate how an understanding of the physiology and sensory biology of vulnerable, bycatch-prone, non-target elasmobranch species can help in the identification of promising options for bycatch reduction. We encourage collaboration among researchers studying bycatch reduction across taxa to provide better understanding of the broad effects of bycatch reduction methods. PMID:27293586
Hansen, Amy C.; Kock, Tobias J.; Hansen, Gabriel S.
2017-08-07
The U.S. Army Corps of Engineers (USACE) operates the Willamette Valley Project (Project) in northwestern Oregon, which includes a series of dams, reservoirs, revetments, and fish hatcheries. Project dams were constructed during the 1950s and 1960s on rivers that supported populations of spring Chinook salmon (Oncorhynchus tshawytscha), winter steelhead (O. mykiss), and other anadromous fish species in the Willamette River Basin. These dams, and the reservoirs they created, negatively affected anadromous fish populations. Efforts are currently underway to improve passage conditions within the Project and enhance populations of anadromous fish species. Research on downstream fish passage within the Project has occurred since 1960 and these efforts are documented in numerous reports and publications. These studies are important resources to managers in the Project, so the USACE requested a synthesis of existing literature that could serve as a resource for future decision-making processes. In 2016, the U.S. Geological Survey conducted an extensive literature review on downstream fish passage studies within the Project. We identified 116 documents that described studies conducted during 1960–2016. Each of these documents were obtained, reviewed, and organized by their content to describe the state-of-knowledge within four subbasins in the Project, which include the North Santiam, South Santiam, McKenzie, and Middle Fork Willamette Rivers. In this document, we summarize key findings from various studies on downstream fish passage in the Willamette Project. Readers are advised to review specific reports of interest to insure that study methods, results, and additional considerations are fully understood.
Capra, Hervé; Plichard, Laura; Bergé, Julien; Pella, Hervé; Ovidio, Michaël; McNeil, Eric; Lamouroux, Nicolas
2017-02-01
Modeling individual fish habitat selection in highly variable environments such as hydropeaking rivers is required for guiding efficient management decisions. We analyzed fish microhabitat selection in the heterogeneous hydraulic and thermal conditions (modeled in two-dimensions) of a reach of the large hydropeaking Rhône River locally warmed by the cooling system of a nuclear power plant. We used modern fixed acoustic telemetry techniques to survey 18 fish individuals (five barbels, six catfishes, seven chubs) signaling their position every 3s over a three-month period. Fish habitat selection depended on combinations of current microhabitat hydraulics (e.g. velocity, depth), past microhabitat hydraulics (e.g. dewatering risk or maximum velocities during the past 15days) and to a lesser extent substrate and temperature. Mixed-effects habitat selection models indicated that individual effects were often stronger than specific effects. In the Rhône, fish individuals appear to memorize spatial and temporal environmental changes and to adopt a "least constraining" habitat selection. Avoiding fast-flowing midstream habitats, fish generally live along the banks in areas where the dewatering risk is high. When discharge decreases, however, they select higher velocities but avoid both dewatering areas and very fast-flowing midstream habitats. Although consistent with the available knowledge on static fish habitat selection, our quantitative results demonstrate temporal variations in habitat selection, depending on individual behavior and environmental history. Their generality could be further tested using comparative experiments in different environmental configurations. Copyright © 2016 Elsevier B.V. All rights reserved.
Akirins in sea lice: first steps towards a deeper understanding.
Carpio, Yamila; García, Claudia; Pons, Tirso; Haussmann, Denise; Rodríguez-Ramos, Tania; Basabe, Liliana; Acosta, Jannel; Estrada, Mario Pablo
2013-10-01
Sea lice (Copepoda, Caligidae) are the most widely distributed marine pathogens in the salmon industry. Vaccination could be an environmentally friendly alternative for sea lice control; however, research on the development of such vaccines is still at an early stage of development. Recent results have suggested that subolesin/akirin/my32 are good candidate antigens for the control of arthropod infestations, including sea lice, but background knowledge about these genes in crustaceans is limited. Herein, we characterize the my32 gene/protein from two important sea lice species, Caligus rogercresseyi and Lepeophtheirus salmonis, based on cDNA sequence isolation, phylogenetic relationships, three dimensional structure prediction and expression analysis. The results show that these genes/proteins have the main characteristics of akirins from invertebrates. In addition, immunization with purified recombinant my32 from L. salmonis elicited a specific antibody response in mice and fish. These results provide an improvement to our current knowledge about my32 proteins and their potential use as vaccine candidates against sea lice in fish. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claisse, Jeremy T.; Pondella, Daniel J.; Williams, Chelsea M.
Marine and hydrokinetic energy (MHK) and offshore wind devices are being developed and deployed in U.S. and international waters. Electric current flowing through subsea transmission cables associated with these devices will generate electromagnetic fields (EMF), which may interact with, and potentially impact, marine fishes. Some marine fishes can detect electric and/or magnetic fields and use them to navigate, orientate, and sense prey, mates and predators. Over the past five years there have been multiple comprehensive reviews and studies evaluating the potential vulnerability of marine fishes to EMF produced by MHK devices. Most documented effects involve sub-lethal behavioral responses of individualmore » fish when in close proximity to EMF (e.g., fish being repelled by or attracted to fields). These reviews reach conclusions that the current state of research on this topic is still in its infancy and evaluations of potential impacts are associated with great uncertainty. A variety of MHK technologies are likely to be considered for deployment offshore of the Hawaiian Islands, and there is a need to be able to better predict and assess potential associated environmental impacts. The goal of this study was to provide a complementary piece to these previous reviews (e.g., Normandeau et al. 2011) by focusing on marine fish species in the Hawaii region. We compiled the relevant available information, then prioritized fish species as candidates for various paths of future research. To address this, we first developed a list of Hawaii Region Focal Species, which included fishes that are more likely to be sensitive to EMF. We then compiled species-specific information available in the literature on their sensitivity to EMF, as well as life history, movement and habitat use information that could inform an analysis of their likelihood of encountering EMF from subsea cables associated with MHK devices. Studies have only documented EMF sensitivity in 11 of the marine fish species in this region. There was also relatively little detailed information on fish movement and habitat use patterns for most of the focal species. Our last objective was to develop recommendations for research needs to close the important knowledge gaps. We describe species-independent baseline research that primarily consists of in situ quantification of EMF generated by MHK devices and undersea cables that can occur as pilot and commercial scale MHK devices are deployed in Hawaii. Then we propose a simple approach for prioritizing Hawaii Region Focal Species (ranked relative to each other) as candidates in multiple related research paths. The prioritization approach incorporates EMF sensitivity information with the likelihood of interacting with EMF generated undersea transmission cables associated with MHK devices. Finally, we discuss the types of research needed to help fill gaps in the scientific knowledge base for this region. These involve studies to better define species-specific EMF sensitivity thresholds under various environmental conditions, studies of life history, movement and habitat use patterns to improve our understanding of the likelihood and frequency fishes may be in the vicinity of EMF generated by subsea transmission cables, and studies of the potential for related population, community or ecosystem impacts. Many of these studies can and should occur opportunistically as pilot and commercial scale MHK devices are deployed in Hawaii.« less
Assessing the bioaccumulation potential of ionizable organic ...
The objective of the present study is to review current knowledge regarding the bioaccumulation potential of IOCs, with a focus on the availability of empirical data for fish. Aspects of the bioaccumulation potential of IOCs in fish that can be characterized relatively well include the pH-dependence of gill uptake and elimination, uptake in the gut, and sorption to phospholipids (membrane-water partitioning). Key challenges include the lack of empirical data for biotransformation and binding in plasma. Fish possess a diverse array of proteins which may transport IOCs across cell membranes. Except in a few cases, however, the significance of this transport for uptake and accumulation of environmental contaminants is unknown. Two case studies are presented. The first describes modeled effects of pH and biotransformation on bioconcentration of organic acids and bases, while the second employs an updated model to investigate factors responsible for accumulation of perfluoroalkylated acids (PFAA). The PFAA case study is notable insofar as it illustrates the likely importance of membrane transporters in the kidney and highlights the potential value of read across approaches. Recognizing the current need to perform bioaccumulation hazard assessments and ecological and exposure risk assessment for IOCs, we provide a tiered strategy that progresses (as needed) from conservative assumptions (models and associated data) to more sophisticated models requiring chemical-speci
Manzan, Maíra Fontes; Lopes, Priscila F M
2015-01-01
Fishers' local ecological knowledge (LEK) is an additional tool to obtain information about cetaceans, regarding their local particularities, fishing interactions, and behavior. However, this knowledge could vary in depth of detail according to the level of interaction that fishers have with a specific species. This study investigated differences in small-scale fishers' LEK regarding the estuarine dolphin (Sotalia guianensis) in three Brazilian northeast coastal communities where fishing is practiced in estuarine lagoons and/or coastal waters and where dolphin-watching tourism varies from incipient to important. The fishers (N = 116) were asked about general characteristics of S. guianensis and their interactions with this dolphin during fishing activities. Compared to lagoon fishers, coastal fishers showed greater knowledge about the species but had more negative interactions with the dolphin during fishing activities. Coastal fishing not only offered the opportunity for fishers to observe a wider variety of the dolphin's behavior, but also implied direct contact with the dolphins, as they are bycaught in coastal gillnets. Besides complementing information that could be used for the management of cetaceans, this study shows that the type of environment most used by fishers also affects the accuracy of the information they provide. When designing studies to gather information on species and/or populations with the support of fishers, special consideration should be given to local particularities such as gear and habitats used within the fishing community.
Filling the gap: Using fishers' knowledge to map the extent and intensity of fishing activity.
Szostek, Claire L; Murray, Lee G; Bell, Ewen; Kaiser, Michel J
2017-08-01
Knowledge of the extent and intensity of fishing activities is critical to inform management in relation to fishing impacts on marine conservation features. Such information can also provide insight into the potential socio-economic impacts of closures (or other restrictions) of fishing grounds that could occur through the future designation of Marine Conservation Zones (MCZs). We assessed the accuracy and validity of fishing effort data (spatial extent and relative effort) obtained from Fishers' Local Knowledge (LK) data compared to that derived from Vessel Monitoring System (VMS) data for a high-value shellfish fishery, the king scallop (Pecten maximus L.) dredge fishery in the English Channel. The spatial distribution of fishing effort from LK significantly correlated with VMS data and the correlation increased with increasing grid cell resolution. Using a larger grid cell size for data aggregation increases the estimation of the total area of seabed impacted by the fishery. In the absence of historical VMS data for vessels ≤15 m LOA (Length Overall), LK data for the inshore fleet provided important insights into the relative effort of the inshore (<6 NM from land) king scallop fishing fleet in the English Channel. The LK data provided a good representation of the spatial extent of inshore fishing activity, whereas representation of the offshore fishery was more precautionary in terms of defining total impact. Significantly, the data highlighted frequently fished areas of particular importance to the inshore fleet. In the absence of independent sources of geospatial information, the use of LK can inform the development of marine planning in relation to both sustainable fishing and conservation objectives, and has application in both developed and developing countries where VMS technology is not utilised in fisheries management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Holub, Bruce; Mutch, David M; Pierce, Grant N; Rodriguez-Leyva, Delfin; Aliani, Michel; Innis, Sheila; Yan, William; Lamarche, Benoit; Couture, Patrick; Ma, David W L
2014-07-01
The science of lipid research continues to rapidly evolve and change. New knowledge enhances our understanding and perspectives on the role of lipids in health and nutrition. However, new knowledge also challenges currently held opinions. The following are the proceedings of the 2013 Canadian Nutrition Society Conference on the Advances in Dietary Fats and Nutrition. Content experts presented state-of-the-art information regarding our understanding of fish oil and plant-based n-3 polyunsaturated fatty acids, nutrigenomics, pediatrics, regulatory affairs, and trans fats. These important contributions aim to provide clarity on the latest advances and opinions regarding the role of different types of fats in health.
Text-based discovery in biomedicine: the architecture of the DAD-system.
Weeber, M; Klein, H; Aronson, A R; Mork, J G; de Jong-van den Berg, L T; Vos, R
2000-01-01
Current scientific research takes place in highly specialized contexts with poor communication between disciplines as a likely consequence. Knowledge from one discipline may be useful for the other without researchers knowing it. As scientific publications are a condensation of this knowledge, literature-based discovery tools may help the individual scientist to explore new useful domains. We report on the development of the DAD-system, a concept-based Natural Language Processing system for PubMed citations that provides the biomedical researcher such a tool. We describe the general architecture and illustrate its operation by a simulation of a well-known text-based discovery: The favorable effects of fish oil on patients suffering from Raynaud's disease [1].
Pereira, Patrícia; Puga, Sónia; Cardoso, Vera; Pinto-Ribeiro, Filipa; Raimundo, Joana; Barata, Marisa; Pousão-Ferreira, Pedro; Pacheco, Mário; Almeida, Armando
2016-01-01
The current study contributes to fill the knowledge gap on the neurotoxicity of inorganic mercury (iHg) in fish through the implementation of a combined evaluation of brain morphometric alterations (volume and total number of neurons plus glial cells in specific regions of the brain) and swimming behavior (endpoints related with the motor activity and mood/anxiety-like status). White seabream (Diplodus sargus) was exposed to realistic levels of iHg in water (2μgL(-1)) during 7 (E7) and 14 days (E14). After that, fish were allowed to recover for 28 days (PE28) in order to evaluate brain regeneration and reversibility of behavioral syndromes. A significant reduction in the number of cells in hypothalamus, optic tectum and cerebellum was found at E7, accompanied by relevant changes on swimming behavior. Moreover, the decrease in the number of neurons and glia in the molecular layer of the cerebellum was followed by a contraction of its volume. This is the first time that a deficit on the number of cells is reported in fish brain after iHg exposure. Interestingly, a recovery of hypothalamus and cerebellum occurred at E14, as evidenced by the identical number of cells found in exposed and control fish, and volume of cerebellum, which might be associated with an adaptive phenomenon. After 28 days post-exposure, the optic tectum continued to show a decrease in the number of cells, pointing out a higher vulnerability of this region. These morphometric alterations coincided with numerous changes on swimming behavior, related both with fish motor function and mood/anxiety-like status. Overall, current data pointed out the iHg potential to induce brain morphometric alterations, emphasizing a long-lasting neurobehavioral hazard. Copyright © 2015 Elsevier B.V. All rights reserved.
Luque, J L; Pereira, F B; Alves, P V; Oliva, M E; Timi, J T
2017-03-01
The South American subcontinent supports one of the world's most diverse and commercially very important ichthyofauna. In this context, the study of South American fish parasites is of increased relevance in understanding their key roles in ecosystems, regulating the abundance or density of host populations, stabilizing food webs and structuring host communities. It is hard to estimate the number of fish parasites in South America. The number of fish species studied for parasites is still low (less than 10%), although the total number of host-parasite associations (HPAs) found in the present study was 3971. Monogeneans, with 835 species (1123 HPAs, 28.5%), and trematodes, with 662 species (1127 HPAs, 30.9%), are the more diverse groups. Data gathered from the literature are useful to roughly estimate species richness of helminths from South American fish, even though there are some associated problems: the reliability of information depends on accurate species identification; the lack of knowledge about life cycles; the increasing number of discoveries of cryptic species and the geographically biased number of studies. Therefore, the closest true estimations of species diversity and distribution will rely on further studies combining both molecular and morphological approaches with ecological data such as host specificity, geographical distribution and life-cycle data. Research on biodiversity of fish parasites in South America is influenced by problems such as funding, taxonomic impediments and dispersion of research groups. Increasing collaboration, interchange and research networks in the context of globalization will enable a promising future for fish parasitology in South America.
NASA Astrophysics Data System (ADS)
Jackson-Ricketts, J.; Hines, E.; Ruiz-Cooley, R. I.; Costa, D. P.
2016-02-01
The Irrawaddy dolphin is a coastal and freshwater cetacean patchily distributed from eastern India to West Papua, Indonesia. Little is known about its ecology, limiting capacity for successful conservation. As recently as 2008, the IUCN altered its listing from Data Deficient to Vulnerable. We present a study design to obtain five key features of imperiled species ecology that we believe can be widely applied: current knowledge, abundance, diet, habitat, and potential interaction with humans. Current knowledge was determined with a literature review and discussion with experts. Between 2008 and 2014, we collected sightings, environment, and human use data along zig-zag transect lines. Distance 6 software was employed to estimate abundance from sightings and a hurdle model was performed to investigate relationships between dolphins and the environment. We determined the relative density of types of human use within the study area (e.g. consumptive such as fishing and non-consumptive such as recreation), assessed the relationship between human use and environment, and examined the overlap of dolphin habitat with human high-use areas. We studied diet and foraging history using stable isotopes of carbon and nitrogen in skin (n=22) and teeth (n=27) of stranded dolphins and muscle samples of cephalopods (2 species), crustaceans (2 species), and fish (8 species). Data from soft tissues was used to investigate the proportional contribution of each prey type to diet using a Bayesian mixing model, while we examined growth layer groups in teeth to assess ontogenetic diet variation using protected analysis of variance. This study is the first such comprehensive study on this species and contributes to general knowledge about the species, provides information that is relevant to conservation, and can serve as a template for future studies on little-known, threatened species.
Fish Oncology: Diseases, Diagnostics, and Therapeutics.
Vergneau-Grosset, Claire; Nadeau, Marie-Eve; Groff, Joseph M
2017-01-01
The scientific literature contains a wealth of information concerning spontaneous fish neoplasms, although ornamental fish oncology is still in its infancy. The occurrence of fish neoplasms has often been associated with oncogenic viruses and environmental insults, making them useful markers for environmental contaminants. The use of fish, including zebrafish, as models of human carcinogenesis has been developed and knowledge gained from these models may also be applied to ornamental fish, although more studies are required. This review summarizes information available about fish oncology pertaining to veterinary clinicians. Copyright © 2016 Elsevier Inc. All rights reserved.
Airborne lidar detection and mapping of invasive lake trout in Yellowstone Lake.
Roddewig, Michael R; Churnside, James H; Hauer, F Richard; Williams, Jacob; Bigelow, Patricia E; Koel, Todd M; Shaw, Joseph A
2018-05-20
The use of airborne lidar to survey fisheries has not yet been extensively applied in freshwater environments. In this study, we investigated the applicability of this technology to identify invasive lake trout (Salvelinus namaycush) in Yellowstone Lake, Yellowstone National Park, USA. Results of experimental trials conducted in 2004 and in 2015-16 provided lidar data that identified groups of fish coherent with current knowledge and models of lake trout spawning sites, and one identified site was later confirmed to have lake trout.
Burger, Joanna; Gochfeld, Michael
2014-01-01
Studies of fish consumption often focus on awareness of and adherence to advisories, how much fish people eat, and contaminant levels in those fish. This paper examines knowledge and accuracy of risks and benefits of fish consumption among fishers and other recreationists in the New York Bight, indicative of whether they could make sound dietary decisions. While most respondents knew about health risks (70%) and benefits (94%) of consuming fish, far fewer could name specific risks and benefits. Less than 25% of respondents mentioned mercury and less than 15% mentioned that pregnant women and children were at risk. Far fewer people mentioned polychlorinated biphenyls (PCBs). Nearly 70% said it was healthy to eat fish, and 45% were aware that fish were rich in healthful oils. Despite the lack of details about what specific risks and benefits of fish, well over a third did not feel they needed more information. Other respondents had basic questions, but did not pose specific questions about the fish they caught or ate that would have clarified their individual risk-balancing decisions. Knowledge of which fish were high in contaminants did not match the mercury or PCB levels in those fish. There was a disconnect between the information base about specific risks and benefits of fish consumption, levels of mercury and PCBs in fish, and the respondent’s desire for more information. These data indicate that respondents did not have enough accurate information about contaminants in fish to make informed risk-balancing decisions. PMID:19193369
Mamun, Abdullah-Al
2010-05-01
Worldwide there is a declining trend in natural fish catch (FAO, The state of world fisheries and aquaculture. http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/007/y5600e/y5600e00.htm , 2002) and Bangladesh is no exception. The vast inland fisheries of Bangladesh have been declining over the years, largely a result of human alteration of the aquatic habitats arising from human interventions in the floodplain systems such as the establishment of water control structures which favor agricultural production but reduce fish habitats. It can be assumed that conventional management measures are not adequate to conserve natural fisheries and exploring alternative knowledge systems to complement existing management is warranted. This paper focuses on local ecological knowledge and several other local practices held by fishers engaging directly with floodplain ecosystems. These knowledge systems and practices may be valuable tools for understanding ecosystems processes and related changes and developing local level responses to avert negative consequences of such changes. This may help in devising alternatives to ecosystem management and the conservation of floodplain fish habitats of Bangladesh and elsewhere in the world. This study was conducted in a natural depression (locally called beel) and its surrounding floodplain system located in north central Bangladesh which has become highly degraded. The results of the study indicate that the fishers and local users of the floodplain ecosystems are rich in local ecological knowledge concerning the hydrology of the floodplains and small lakes, the habitat preferences of fish, the role of agricultural crops on fish habitats, and the impact of habitat human interventions in aquatic ecosystems. Given the apparent inadequacy of the present management regime, this article argues for an inclusion of local knowledge and practices into habitat management as a more holistic approach to floodplain habitat restoration and conservation that encourages multi-level cooperation and which builds on diversified knowledge systems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
..., Shareholders Alliance, and would involve as many as 30 vessel owners associated with that organization... improve the scientific knowledge of red snapper and other reef fish taken from state and Federal waters of the Gulf and to use that knowledge to support fishery management decisions. The EFP, if approved...
Stress and sex: does cortisol mediate sex change in fish?
Goikoetxea, Alexander; Todd, Erica V; Gemmell, Neil J
2017-12-01
Cortisol is the main glucocorticoid (GC) in fish and the hormone most directly associated with stress. Recent research suggests that this hormone may act as a key factor linking social environmental stimuli and the onset of sex change by initiating a shift in steroidogenesis from estrogens to androgens. For many teleost fish, sex change occurs as a usual part of the life cycle. Changing sex is known to enhance the lifetime reproductive success of these fish and the modifications involved (behavioral, gonadal and morphological) are well studied. However, the exact mechanism behind the transduction of the environmental signals into the molecular cascade that underlies this singular process remains largely unknown. We here synthesize current knowledge regarding the role of cortisol in teleost sex change with a focus on two well-described transformations: temperature-induced masculinization and socially regulated sex change. Three non-mutually exclusive pathways are considered when describing the potential role of cortisol in mediating teleost sex change: cross-talk between GC and androgen pathways, inhibition of aromatase expression and upregulation of amh (the gene encoding anti-Müllerian hormone). We anticipate that understanding the role of cortisol in the initial stages of sex change will further improve our understanding of sex determination and differentiation across vertebrates, and may lead to new tools to control fish sex ratios in aquaculture. © 2017 Society for Reproduction and Fertility.
Cioffi, Marcelo de Bello; Bertollo, Luiz Antonio Carlos; Villa, Mateo Andres; de Oliveira, Ezequiel Aguiar; Tanomtong, Alongklod; Yano, Cassia Fernanda; Supiwong, Weerayuth; Chaveerach, Arunrat
2015-01-01
Channid fishes, commonly referred to as "snakeheads", are currently very important in Asian fishery and aquaculture due to the substantial decline in natural populations because of overexploitation. A large degree of chromosomal variation has been found in this family, mainly through the use of conventional cytogenetic investigations. In this study, we analyzed the karyotype structure and the distribution of 7 repetitive DNA sequences in several Channa species from different Thailand river basins. The aim of this study was to investigate the chromosomal differentiation among species and populations to improve upon the knowledge of its biodiversity and evolutionary history. Rearrangements, such as pericentric inversions, fusions and polyploidization, appear to be important events during the karyotypic evolution of this genus, resulting in the chromosomal diversity observed among the distinct species and even among populations of the same species. In addition, such variability is also increased by the genomic dynamism of repetitive elements, particularly by the differential distribution and accumulation of rDNA sequences on chromosomes. This marked diversity is likely linked to the lifestyle of the snakehead fishes and their population fragmentation, as already identified for other fish species. The karyotypic features highlight the biodiversity of the channid fishes and justify a taxonomic revision of the genus Channa, as well as of the Channidae family as a whole, as some nominal species may actually constitute species complexes.
NASA Astrophysics Data System (ADS)
Jovanovic, Boris
2011-12-01
Nanoparticles have the potential to cause adverse effects on the fish health, but the understanding of the underlying mechanisms is limited. Major task of this dissertation was to connect gaps in current knowledge with a comprehensive sequence of molecular, cellular and organismal responses toward environmentally relevant concentrations of engineered nanoparticles (titanium dioxide -- TiO2 and hydroxylated fullerenes), outlining the interaction with the innate immune system of fish. The research was divided into following steps: 1) create cDNA libraries for the species of fathead minnow (Pimephales promelas); 2) evaluate whether, and how can nanoparticles modulate neutrophil function in P. promelas; 3) determine the changes in expression of standard biomarker genes as a result of nanoparticle treatment; 4) expose the P. promelas to nanoparticles and appraise their survival rate in a bacterial challenge study; 5) assess the impact of nanoparticles on neuro-immunological interface during the early embryogenesis of zebrafish (Danio rerio). It was hypothesized that engineered nanoparticles can cause measurable changes in fish transcriptome, immune response, and disease resistance. The results of this dissertation are: 1) application of environmentally relevant concentration of nanoparticles changed function of fish neutrophils; 2) fish exposed to nano-TiO2 had significantly increased expression of interleukin 11, macrophage stimulating factor 1, and neutrophil cytosolic factor 2, while expression of interleukin 11 and myeloperoxidase was significantly increased and expression of elastase 2 was significantly decreased in fish exposed to hydroxylated fullerenes; 3) exposure to environmental estimated concentration of nano-TiO2 significantly increased fish mortality during Aeromonas hydrophila challenge. Analysis of nano-TiO 2 distribution in fish organism outlined that the nano-TiO2 is concentrating in the fish kidney and spleen; 4) during the early embryogenesis of D. rerio exposure to nanoparticles caused shifts in gene regulation response patterns. Significant effects on gene regulation were observed on genes involved in circadian rhythm, kinase activity, vesicular transport and immune response.
NASA Astrophysics Data System (ADS)
Trenkel, V. M.; Huse, G.; MacKenzie, B. R.; Alvarez, P.; Arrizabalaga, H.; Castonguay, M.; Goñi, N.; Grégoire, F.; Hátún, H.; Jansen, T.; Jacobsen, J. A.; Lehodey, P.; Lutcavage, M.; Mariani, P.; Melvin, G. D.; Neilson, J. D.; Nøttestad, L.; Óskarsson, G. J.; Payne, M. R.; Richardson, D. E.; Senina, I.; Speirs, D. C.
2014-12-01
This paper reviews the current knowledge on the ecology of widely distributed pelagic fish stocks in the North Atlantic basin with emphasis on their role in the food web and the factors determining their relationship with the environment. We consider herring (Clupea harengus), mackerel (Scomber scombrus), capelin (Mallotus villosus), blue whiting (Micromesistius poutassou), and horse mackerel (Trachurus trachurus), which have distributions extending beyond the continental shelf and predominantly occur on both sides of the North Atlantic. We also include albacore (Thunnus alalunga), bluefin tuna (Thunnus thynnus), swordfish (Xiphias gladius), and blue marlin (Makaira nigricans), which, by contrast, show large-scale migrations at the basin scale. We focus on the links between life history processes and the environment, horizontal and vertical distribution, spatial structure and trophic role. Many of these species carry out extensive migrations from spawning grounds to nursery and feeding areas. Large oceanographic features such as the North Atlantic subpolar gyre play an important role in determining spatial distributions and driving variations in stock size. Given the large biomasses of especially the smaller species considered here, these stocks can exert significant top-down pressures on the food web and are important in supporting higher trophic levels. The review reveals commonalities and differences between the ecology of widely distributed pelagic fish in the NE and NW Atlantic basins, identifies knowledge gaps and modelling needs that the EURO-BASIN project attempts to address.
The development of physiologically based toxicokinetic (PBTK) models for hydrophobic chemicals in fish requires: 1) an understanding of chemical efflux at fish gills; 2) knowledge of the factors that limit chemical exchange between blood and tissues; and, 3) a mechanistic descrip...
Braga, Heitor O; Azeiteiro, Ulisses M; Oliveira, Henrique M F; Pardal, Miguel A
2017-05-05
European sardines are an important fishing resource in the North Atlantic. Recognized for its great commercial and economic value in southern Europe, this resource currently has low stock indices. From this perspective, fishers' local ecological knowledge (LEK) is appreciated as an auxiliary tool in the management of sardines in this region. Our goal is to evaluate the LEK and attitudes towards the conservation of Sardina pilchardus in the typical fishing village of Peniche, Portugal. From June to September 2016, we carried out 87 semi-structured interviews. The four main points of the interviews were interviewee profile, fishing structure, fishermen's LEK and attitudes towards sardine conservation. The interviews were qualitatively and quantitatively analyzed using a 3-point Likert scale. An LEK index and an attitude index were generated. Comparison analyses and correlations were made between the indices and variables of the interviewee profile and the fishing structure. The mean LEK index was 0.55 and was classified as moderate. The attitudes index in relation to conservation was 0.76 and was classified as positive. This index had a positive and significant correlation with the LEK index and a significant negative correlation with the fishermen's age. When the LEK index was compared with the educational level, significant differences were observed only between class A and class C. The result showed that the differences in the attitudes index were statistically significant when the three educational classes were compared. The fishermen of Peniche in Portugal present moderate informal knowledge about the biology and ecology of sardines. Attitudes towards conservation were predominantly positive. Fishermen with greater LEK, with a higher educational level and at a younger age presented more positive attitudes in relation to environmental conservation issues in the present case of the sardine population. The LEK is not necessarily related to the educational level of the fishermen. We suggest environmental education programs for the communities that depend on this resource. The use of LEK and fishermen's perceptions can help in the management of the European sardine fishery in Portugal.
Navas, José M; Segner, Helmut
2006-10-25
Concern over possible adverse effects of endocrine-disrupting compounds on fish has caused the development of appropriate testing methods. In vitro screening assays may provide initial information on endocrine activities of a test compound and thereby may direct and optimize subsequent testing. Induction of vitellogenin (VTG) is used as a biomarker of exposure of fish to estrogen-active substances. Since VTG induction can be measured not only in vivo but also in fish hepatocytes in vitro, the use of VTG induction response in isolated fish liver cells has been suggested as in vitro screen for identifying estrogenic-active substances. The main advantages of the hepatocyte VTG assay are considered its ability to detect effects of estrogenic metabolites, since hepatocytes in vitro remain metabolically competent, and its ability to detect both estrogenic and anti-estrogenic effects. In this article, we critically review the current knowledge on the VTG response of cultured fish hepatocytes to (anti)estrogenic substances. In particular, we discuss the sensitivity, specificity, and variability of the VTG hepatocyte assay. In addition, we review the available data on culture factors influencing basal and induced VTG production, the response to natural and synthetic estrogens as well as to xenoestrogens, the detection of indirect estrogens, and the sources of assay variability. The VTG induction in cultured fish hepatocytes is clearly influenced by culture conditions (medium composition, temperature, etc.) and culture system (hepatocyte monolayers, aggregates, liver slices, etc.). The currently available database on estrogen-mediated VTG induction in cultured teleost hepatocytes is too small to support conclusive statements on whether there exist systematic differences of the VTG response between in vitro culture systems, VTG analytical methods or fish species. The VTG hepatocyte assay detects sensitively natural and synthetic estrogens, whereas the response to xenoestrogens appears to be more variable. The detection of weak estrogens can be critical due to the overshadow with cytotoxic concentrations. Moreover, the VTG hepatocyte assay is able to detect antiestrogens as well as indirect estrogens, i.e substances which require metabolic activation to induce an estrogenic response. Nevertheless, more chemicals need to be analysed to corroborate this statement. It will be necessary to establish standardized protocols to minimize assay variability, and to develop a set of pass-fail criteria as well as cut-offs for designating positive and negative responses.
The Meta-Ontology Model of the Fishdisease Diagnostic Knowledge Based on Owl
NASA Astrophysics Data System (ADS)
Shi, Yongchang; Gao, Wen; Hu, Liang; Fu, Zetian
For improving available and reusable of knowledge in fish disease diagnosis (FDD) domain and facilitating knowledge acquisition, an ontology model of FDD knowledge was developed based on owl according to FDD knowledge model. It includes terminology of terms in FDD knowledge and hierarchies of their class.
Trophic interactions between native and introduced fish species in a littoral fish community.
Monroy, M; Maceda-Veiga, A; Caiola, N; De Sostoa, A
2014-11-01
The trophic interactions between 15 native and two introduced fish species, silverside Odontesthes bonariensis and rainbow trout Oncorhynchus mykiss, collected in a major fishery area at Lake Titicaca were explored by integrating traditional ecological knowledge and stable-isotope analyses (SIA). SIA suggested the existence of six trophic groups in this fish community based on δ(13)C and δ(15)N signatures. This was supported by ecological evidence illustrating marked spatial segregation between groups, but a similar trophic level for most of the native groups. Based on Bayesian ellipse analyses, niche overlap appeared to occur between small O. bonariensis (<90 mm) and benthopelagic native species (31.6%), and between the native pelagic killifish Orestias ispi and large O. bonariensis (39%) or O. mykiss (19.7%). In addition, Bayesian mixing models suggested that O. ispi and epipelagic species are likely to be the main prey items for the two introduced fish species. This study reveals a trophic link between native and introduced fish species, and demonstrates the utility of combining both SIA and traditional ecological knowledge to understand trophic relationships between fish species with similar feeding habits. © 2014 The Fisheries Society of the British Isles.
Code of Federal Regulations, 2012 CFR
2012-10-01
... exclude any deadloss, test fishing, fishing conducted under an experimental, exploratory, or scientific..., education, exploratory, or experimental permit, or under the Western Alaska CDQ Program. (iv) Documentation... information is true, correct, and complete to the best of his/her knowledge and belief. If the application is...
Code of Federal Regulations, 2014 CFR
2014-10-01
... exclude any deadloss, test fishing, fishing conducted under an experimental, exploratory, or scientific..., education, exploratory, or experimental permit, or under the Western Alaska CDQ Program. (iv) Documentation... information is true, correct, and complete to the best of his/her knowledge and belief. If the application is...
Code of Federal Regulations, 2011 CFR
2011-10-01
... exclude any deadloss, test fishing, fishing conducted under an experimental, exploratory, or scientific..., education, exploratory, or experimental permit, or under the Western Alaska CDQ Program. (iv) Documentation... information is true, correct, and complete to the best of his/her knowledge and belief. If the application is...
Code of Federal Regulations, 2013 CFR
2013-10-01
... exclude any deadloss, test fishing, fishing conducted under an experimental, exploratory, or scientific..., education, exploratory, or experimental permit, or under the Western Alaska CDQ Program. (iv) Documentation... information is true, correct, and complete to the best of his/her knowledge and belief. If the application is...
Aquatic Resources Education Curriculum.
ERIC Educational Resources Information Center
Pfeiffer, C. Boyd; Sosin, Mark
Fishing is one of the oldest and most popular outdoor activities. Like most activities, fishing requires basic knowledge and skill for success. The Aquatic Resources Education Curriculum is designed to assist beginning anglers in learning the basic concepts of how, when, and where to fish as well as what tackle to use. The manual is designed to be…
Swimming and other activities: applied aspects of fish swimming performance
Castro-Santos, Theodore R.; Farrell, A.P.
2011-01-01
Human activities such as hydropower development, water withdrawals, and commercial fisheries often put fish species at risk. Engineered solutions designed to protect species or their life stages are frequently based on assumptions about swimming performance and behaviors. In many cases, however, the appropriate data to support these designs are either unavailable or misapplied. This article provides an overview of the state of knowledge of fish swimming performance – where the data come from and how they are applied – identifying both gaps in knowledge and common errors in application, with guidance on how to avoid repeating mistakes, as well as suggestions for further study.
Chemokines in teleost fish species.
Alejo, Alí; Tafalla, Carolina
2011-12-01
Chemokines are chemoattractant cytokines defined by the presence of four conserved cysteine residues which in mammals can be divided into four subfamilies depending on the arrangement of the first two conserved cysteines in their sequence: CXC (α), CC (β), C and CX(3)C classes. Evolutionarily, fish can be considered as an intermediate step between species which possess only innate immunity (invertebrates) and species with a fully developed acquired immune network such as mammals. Therefore, the functionality of their different immune cell types and molecules is sometimes also intermediate between innate and acquired responses. The first chemokine gene identified in a teleost was a rainbow trout (Oncorhynchus mykiss) chemokine designated as CK1 in 1998. Since then, many different chemokine genes have been identified in several fish species, but their role in homeostasis and immune response remains largely unknown. Extensive genomic duplication events and the fact that chemokines evolve more quickly than other immune genes, make it very difficult to establish true orthologues between fish and mammalian chemokines that would help us with the ascription of immune roles. In this review, we describe the current state of knowledge of chemokine biology in teleost fish, focusing mainly on which genes have been identified so far and highlighting the most important aspects of their expression regulation, due to the great lack of functional information available for them. As the number of chemokine genes begins to close down for some teleost species, there is an important need for functional assays that may elucidate the role of each of these molecules within the fish immune response. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sulak, Kenneth J.; Parauka, F; Slack, W. Todd; Ruth, T; Randall, Michael T.; Luke, K; Mette, M. F; Price, M. E
2016-01-01
The Gulf Sturgeon, Acipenser oxyrinchus desotoi, is an anadromous species of Acipenseridae and native to North America. It currently inhabits and spawns in the upper reaches of seven natal rivers along the northern coast of the Gulf of Mexico from the Suwannee River, Florida, to the Pearl River, Louisiana, during spring to autumn. Next to the Alligator Gar (Atractosteus spatula), the Gulf Sturgeon is currently the largest fish species occurring in U.S. Gulf Coast rivers, attaining a length of 2.35 m and weights exceeding 135 kg, but historically attained a substantially larger size. Historically, the spawning populations existed in additional rivers from which the species has been wholly or nearly extirpated, such as the Mobile and Ochlockonee rivers, and possibly the Rio Grande River. Most Gulf Sturgeon populations were decimated by unrestricted commercial fishing between 1895–1910. Subsequently most populations remained unrecovered or extirpated due to continued harvest until the 1970s–1980s, and the construction of dams blocking access to ancestral upriver spawning grounds. Late 20th Century harvest bans and net bans enacted by the several Gulf Coast states have stabilized several populations and enabled the Suwannee River population to rebound substantially and naturally. Hatchery supplementation has not been necessary in this regard to date. Sturgeon are resilient and adaptable fishes with a geological history of 150 million years. Research undertaken since the 1970s has addressed many aspects of Gulf Sturgeon life history, reproduction, migration, population biology, habitat requirements, and other aspects of species biology. However, many knowledge gaps remain, prominently including the life history of early developmental stages in the first year of life. Natural population recovery is evident for the Suwannee River population, but seems promising as well for at least four other populations. The Pascagoula and Pearl River populations face a challenging future due a combination of natural and anthropogenic factors. These two populations, and perhaps the Escambia River population, are particularly vulnerable to periodic mass mortality due to major stochastic events including hurricanes, flooding, hypoxia, and toxic spills. The present manuscript provides a comprehensive synthesis of knowledge regarding the Gulf Sturgeon at the organismal and population levels, identifying knowledge gaps as priorities for future research. Topics not treated in the present synthesis include morphology, internal biology, physiology, and endocrinology. Topics only briefly treated include parasites and diseases, contaminants, and sturgeon aquaculture.
Madsen, Nina A H; Aarsæther, Karl G; Herrmann, Bent
2017-01-01
Demersal Seining is an active fishing method applying two long seine ropes and a seine net. Demersal seining relies on fish responding to the seine rope as it moves during the fishing process. The seine ropes and net are deployed in a specific pattern encircling an area on the seabed. In some variants of demersal seining the haul-in procedure includes a towing phase where the fishing vessel moves forward before starting to winch in the seine ropes. The initial seine rope encircled area, the gradual change in it during the haul-in process and the fish's reaction to the moving seine ropes play an important role in the catch performance of demersal seine fishing. The current study investigates this subject by applying computer simulation models for demersal seine fishing. The demersal seine fishing is dynamic in nature and therefore a dynamic model, SeineSolver is applied for simulating the physical behaviour of the seine ropes during the fishing process. Information about the seine rope behaviour is used as input to another simulation tool, SeineFish that predicts the catch performance of the demersal seine fishing process. SeineFish implements a simple model for how fish at the seabed reacts to an approaching seine rope. Here, the SeineSolver and SeineFish tools are applied to investigate catching performance for a Norwegian demersal seine fishery targeting cod (Gadus morhua) in the coastal zone. The effect of seine rope layout pattern and the duration of the towing phase are investigated. Among the four different layout patterns investigated, the square layout pattern was predicted to perform best; catching 69%-86% more fish than would be obtained with the rectangular layout pattern. Inclusion of a towing phase in the fishing process was found to increase the catch performance for all layout patterns. For the square layout pattern, inclusion of a towing phase of 15 or 35 minutes increased the catch performance by respectively 37% and 48% compared to fishing without a towing phase. These results highlights the importance of the selected seine rope layout pattern and the duration of the towing phase when fishermen try to maximize the catch performance of their fishery. To our knowledge this is the first time the combination of models for the physical behaviour of seine ropes and for fish behaviour in response to seine rope movements have been applied to predict catch performance for demersal seining.
Madsen, Nina A. H.; Aarsæther, Karl G.; Herrmann, Bent
2017-01-01
Demersal Seining is an active fishing method applying two long seine ropes and a seine net. Demersal seining relies on fish responding to the seine rope as it moves during the fishing process. The seine ropes and net are deployed in a specific pattern encircling an area on the seabed. In some variants of demersal seining the haul-in procedure includes a towing phase where the fishing vessel moves forward before starting to winch in the seine ropes. The initial seine rope encircled area, the gradual change in it during the haul-in process and the fish's reaction to the moving seine ropes play an important role in the catch performance of demersal seine fishing. The current study investigates this subject by applying computer simulation models for demersal seine fishing. The demersal seine fishing is dynamic in nature and therefore a dynamic model, SeineSolver is applied for simulating the physical behaviour of the seine ropes during the fishing process. Information about the seine rope behaviour is used as input to another simulation tool, SeineFish that predicts the catch performance of the demersal seine fishing process. SeineFish implements a simple model for how fish at the seabed reacts to an approaching seine rope. Here, the SeineSolver and SeineFish tools are applied to investigate catching performance for a Norwegian demersal seine fishery targeting cod (Gadus morhua) in the coastal zone. The effect of seine rope layout pattern and the duration of the towing phase are investigated. Among the four different layout patterns investigated, the square layout pattern was predicted to perform best; catching 69%-86% more fish than would be obtained with the rectangular layout pattern. Inclusion of a towing phase in the fishing process was found to increase the catch performance for all layout patterns. For the square layout pattern, inclusion of a towing phase of 15 or 35 minutes increased the catch performance by respectively 37% and 48% compared to fishing without a towing phase. These results highlights the importance of the selected seine rope layout pattern and the duration of the towing phase when fishermen try to maximize the catch performance of their fishery. To our knowledge this is the first time the combination of models for the physical behaviour of seine ropes and for fish behaviour in response to seine rope movements have been applied to predict catch performance for demersal seining. PMID:28771583
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S
2012-03-01
There is considerable interest in the development of marine and hydrokinetic energy projects in rivers, estuaries, and coastal ocean waters of the United States. Hydrokinetic (HK) technologies convert the energy of moving water in river or tidal currents into electricity, without the impacts of dams and impoundments associated with conventional hydropower or the extraction and combustion of fossil fuels. The Federal Energy Regulatory Commission (FERC) maintains a database that displays the geographical distribution of proposed HK projects in inland and tidal waters (FERC 2012). As of March 2012, 77 preliminary permits had been issued to private developers to study HKmore » projects in inland waters, the development of which would total over 8,000 MW. Most of these projects are proposed for the lower Mississippi River. In addition, the issuance of another 27 preliminary permits for HK projects in inland waters, and 3 preliminary permits for HK tidal projects (totaling over 3,100 MW) were under consideration by FERC. Although numerous HK designs are under development (see DOE 2009 for a description of the technologies and their potential environmental effects), the most commonly proposed current-based projects entail arrays of rotating devices, much like submerged wind turbines, that are positioned in the high-velocity (high energy) river channels. The many diverse HK designs imply a diversity of environmental impacts, but a potential impact common to most is the risk for blade strike to aquatic organisms. In conventional hydropower generation, research on fish passage through reaction turbines at low-head dams suggested that strike and mortality for small fish could be low. As a consequence of the large surface area to mass ratio of small fish, the drag forces in the boundary layer flow at the surface of a rotor blade may pull small fish around the leading edge of a rotor blade without making physical contact (Turnpenny 1998, Turnpenny et al. 2000). Although there is concern that small, fragile fish early life stages may be unable to avoid being struck by the blades of hydrokinetic turbines, we found no empirical data in the published literature that document survival of earliest life-stage fish in passage by rotor blades. In addition to blade strike, research on passage of fish through conventional hydropower turbines suggested that fish mortalities from passage through the rotor swept area could also occur due to shear stresses and pressure chances in the water column (Cada et al. 1997, Turnpenny 1998). However, for most of the proposed HK turbine designs the rotors are projected to operate a lower RPM (revolutions per minute) than observed from conventional reaction turbines; the associated shear stress and pressure changes are expected to be lower and pose a smaller threat to fish survival (DOE 2009). Only a limited number of studies have been conducted to examine the risk of blade strike from hydrokinetic technologies to fish (Turnpenny et al. 1992, Normandeau et al. 2009, Seitz et al. 2011, EPRI 2011); the survival of drifting or weakly swimming fish (especially early life stages) that encounter rotor blades from hydrokinetic (HK) devices is currently unknown. Our study addressed this knowledge gap by testing how fish larvae and juveniles encountered different blade profiles of hydrokinetic devices and how such encounters influenced survivorship. We carried out a laboratory study designed to improve our understanding of how fish larvae and juvenile fish may be affected by encounters with rotor blades from HK turbines in the water column of river and ocean currents. (For convenience, these early life stages will be referred to as young of the year, YOY). The experiments developed information needed to quantify the risk (both probability and consequences) of rotor-blade strike to YOY fish. In particular, this study attempted to determine whether YOY drifting in a high-velocity flow directly in the path of the blade leading edge will make contact with the rotor blade or will bypass the blade while entrained in the boundary layer of water flowing over the blade surface. The study quantified both immediate and delayed mortalities (observed immediately, 3 hours, and 24 hours after encountering the blade) among freshwater YOY fish resulting from contact with the blade or turbulent flows in the wake of the blade.« less
The control of the upstream movement of fish with pulsated direct current
McLain, Alberton L.
1957-01-01
In the Silver River, 78,648 fish comprising 21 species were taken from the trap of the direct-current diversion device. The total kill of fish moving upstream, including 289 sea lampreys, was 1,016, or 1.3 percent. This river had presented a serious problem in the operation of an alternating-current control device during previous seasons. In 1955, 85.5 percent of three important species of fish were killed at the control structure. During 1956, this mortality was reduced to 8.1 percent by the operation of the direct-current equipment.
The three modern faces of mercury.
Clarkson, Thomas W
2002-01-01
The three modern "faces" of mercury are our perceptions of risk from the exposure of billions of people to methyl mercury in fish, mercury vapor from amalgam tooth fillings, and ethyl mercury in the form of thimerosal added as an antiseptic to widely used vaccines. In this article I review human exposure to and the toxicology of each of these three species of mercury. Mechanisms of action are discussed where possible. Key gaps in our current knowledge are identified from the points of view both of risk assessment and of mechanisms of action. PMID:11834460
Comparative risk analysis of dioxins in fish and fine particles from heavy-duty vehicles.
Leino, Olli; Tainio, Marko; Tuomisto, Jouni T
2008-02-01
Dioxins and airborne fine particles are both environmental health problems that have been the subject of active public debate. Knowledge on fine particles has increased substantially during the last 10 years, and even the current, lowered levels in the Europe and in the United States appear to be a major public health problem. On the other hand, dioxins are ubiquitous persistent contaminants, some being carcinogens at high doses, and therefore of great concern. Our aim was to (a) quantitatively analyze the two pollutant health risks and (b) study the changes in risk in view of the current and forthcoming EU legislations on pollutants. We performed a comparative risk assessment for both pollutants in the Helsinki metropolitan area (Finland) and estimated the health effects with several scenarios. For primary fine particles: a comparison between the present emission situation for heavy-duty vehicles and the new fine particle emission standards set by the EU. For dioxins: an EU directive that regulates commercial fishing of Baltic salmon and herring that exceed the dioxin concentration limit set for fish meat, and a derogation (= exemption) from the directive for these two species. Both of these two decisions are very topical issues and this study estimates the expected changes in health effects due to these regulations. It was found that the estimated fine particle risk clearly outweighed the estimated dioxin risk. A substantial improvement to public health could be achieved by initiating reductions in emission standards; about 30 avoided premature deaths annually in the study area. In addition, the benefits of fish consumption due to omega-3 exposure were notably higher than the potential dioxin cancer risk. Both regulations were instigated as ways of promoting public health.
Habitat loss and gain: Influence on habitat attractiveness for estuarine fish communities
NASA Astrophysics Data System (ADS)
Amorim, Eva; Ramos, Sandra; Elliott, Michael; Franco, Anita; Bordalo, Adriano A.
2017-10-01
Habitat structure and complexity influence the structuring and functioning of fish communities. Habitat changes are one of the main pressures affecting estuarine systems worldwide, yet the degree and rate of change and its impact on fish communities is still poorly understood. In order to quantify historical modifications in habitat structure, an ecohydrological classification system using physiotopes, i.e. units with homogenous abiotic characteristics, was developed for the lower Lima estuary (NW Portugal). Field data, aerial imagery, historical maps and interpolation methods were used to map input variables, including bathymetry, substratum (hard/soft), sediment composition, hydrodynamics (current velocity) and vegetation coverage. Physiotopes were then mapped for the years of 1933 and 2013 and the areas lost and gained over the 80 years were quantified. The implications of changes for the benthic and demersal fish communities using the lower estuary were estimated using the attractiveness to those communities of each physiotope, while considering the main estuarine habitat functions for fish, namely spawning, nursery, feeding and refuge areas and migratory routes. The lower estuary was highly affected due to urbanisation and development and, following a port/harbour expansion, its boundary moved seaward causing an increase in total area. Modifications led to the loss of most of its sandy and saltmarsh intertidal physiotopes, which were replaced by deeper subtidal physiotopes. The most attractive physiotopes for fish (defined as the way in which they supported the fish ecological features) decreased in area while less attractive ones increased, producing an overall lower attractiveness of the studied area in 2013 compared to 1933. The implications of habitat alterations for the fish using the estuary include potential changes in the nursery carrying capacity and the functioning of the fish community. The study also highlighted the poor knowledge of the impacts of habitat changes on fish due to coastal development and urbanisation and emphasises that ecosystem management and conservation will benefit from a wider understanding of habitat functional roles and habitat changes influencing the functioning and structure of the fish communities.
Noujaim, Jonathan; Jones, Robin L; Swansbury, John; Gonzalez, David; Benson, Charlotte; Judson, Ian; Fisher, Cyril; Thway, Khin
2017-01-01
Background: EWSR1 rearrangements were first identified in Ewing sarcoma, but the spectrum of EWSR1-rearranged neoplasms now includes many soft tissue tumour subtypes including desmoplastic small round cell tumour (DSRCT), myxoid liposarcoma (MLPS), extraskeletal myxoid chondrosarcoma (EMC), angiomatoid fibrous histiocytoma (AFH), clear cell sarcoma (CCS) and myoepithelial neoplasms. We analysed the spectrum of EWSR1-rearranged soft tissue neoplasms at our tertiary sarcoma centre, by assessing ancillary molecular diagnostic modalities identifying EWSR1-rearranged tumours and reviewing the results in light of our current knowledge of these and other Ewing sarcoma-like neoplasms. Methods: We retrospectively analysed all specimens tested for EWSR1 rearrangements by fluorescence in situ hybridisation (FISH) and/or reverse transcription–PCR (RT–PCR) over a 7-year period. Results: There was a total of 772 specimens. FISH was performed more often than RT–PCR (n=753, 97.5% vs n=445, 57.6%). In total, 210 (27.9%) specimens were FISH-positive for EWSR1 rearrangement compared to 111 (14.4%) that showed EWSR1 fusion transcripts with RT–PCR. Failure rates for FISH and RT–PCR were 2.5% and 18.0%. Of 109 round cell tumours with pathology consistent with Ewing sarcoma, 15 (13.8 %) cases were FISH-positive without an identifiable EWSR1 fusion transcript, 4 (3.7%) were FISH-negative but RT–PCR positive and 4 (3.7%) were negative for both. FISH positivity for DSRCT, MLPS, EMC, AFH and CCS was 86.3%, 4.3%, 58.5%, 60.0% and 87.9%, respectively. A positive FISH result led to diagnostic change in 40 (19.0%) EWSR1-rearranged cases. 13 FISH-positive cases remained unclassifiable. Conclusions: FISH is more sensitive for identifying EWSR1 rearrangements than RT–PCR. However, there can be significant morphologic and immunohistochemical overlap between groups of EWSR1-rearranged neoplasms, with important prognostic and therapeutic implications. FISH and RT–PCR should be used as complementary modalities in diagnosing EWSR1-rearranged neoplasms, but as tumour groups harbouring EWSR1 rearrangements are increasingly characterised and because given translocations involving EWSR1 and its partner genes are not always specific for tumour types, it is critical that these are evaluated by specialist soft tissue surgical pathologists noting the morphologic and immunohistochemical context. As RT–PCR using commercial primers is limited to only the most prevalent EWSR1 fusion transcripts, the incorporation of high-throughput sequencing technologies into the standard diagnostic repertoire to assess for multiple molecular abnormalities of soft tissue tumours in parallel (including detection of newly characterised Ewing sarcoma-like tumours) might be the most effective and efficient means of ancillary diagnosis in future. PMID:28141799
River Continuity Restoration and Diadromous Fishes: Much More than an Ecological Issue.
Drouineau, H; Carter, C; Rambonilaza, M; Beaufaron, G; Bouleau, G; Gassiat, A; Lambert, P; le Floch, S; Tétard, S; de Oliveira, E
2018-04-01
Ecosystem fragmentation is a serious threat to biodiversity and one of the main challenges in ecosystem restoration. River continuity restoration (RCR) has often targeted diadromous fishes, a group of species supporting strong cultural and economic values and especially sensitive to river fragmentation. Yet it has frequently produced mixed results and diadromous fishes remain at very low levels of abundance. Against this background, this paper presents the main challenges for defining, evaluating and achieving effective RCR. We first identify challenges specific to disciplines. In ecology, there is a need to develop quantitative and mechanistic models to support decision making, accounting for both direct and indirect impacts of river obstacles and working at the river catchment scale. In a context of dwindling abundances and reduced market value, cultural services provided by diadromous fishes are becoming increasingly prominent. Methods for carrying out economic quantification of non-market values of diadromous fishes become ever more urgent. Given current challenges for rivers to meet all needs sustainably, conflicts arise over the legitimate use of water resources for human purposes. Concepts and methods from political science and geography are needed to develop understandings on how the political work of public authorities and stakeholders can influence the legitimacy of restoration projects. Finally, the most exciting challenge is to combine disciplinary outcomes to achieve a multidisciplinary approach to RCR. Accordingly, the co-construction of intermediary objects and diagrams of flows of knowledge among disciplines can be first steps towards new frameworks supporting restoration design and planning.
Debusschere, Elisabeth; De Coensel, Bert; Bajek, Aline; Botteldooren, Dick; Hostens, Kris; Vanaverbeke, Jan; Vandendriessche, Sofie; Van Ginderdeuren, Karl; Vincx, Magda; Degraer, Steven
2014-01-01
Impact assessments of offshore wind farm installations and operations on the marine fauna are performed in many countries. Yet, only limited quantitative data on the physiological impact of impulsive sounds on (juvenile) fishes during pile driving of offshore wind farm foundations are available. Our current knowledge on fish injury and mortality due to pile driving is mainly based on laboratory experiments, in which high-intensity pile driving sounds are generated inside acoustic chambers. To validate these lab results, an in situ field experiment was carried out on board of a pile driving vessel. Juvenile European sea bass (Dicentrarchus labrax) of 68 and 115 days post hatching were exposed to pile-driving sounds as close as 45 m from the actual pile driving activity. Fish were exposed to strikes with a sound exposure level between 181 and 188 dB re 1 µPa2.s. The number of strikes ranged from 1739 to 3067, resulting in a cumulative sound exposure level between 215 and 222 dB re 1 µPa2.s. Control treatments consisted of fish not exposed to pile driving sounds. No differences in immediate mortality were found between exposed and control fish groups. Also no differences were noted in the delayed mortality up to 14 days after exposure between both groups. Our in situ experiments largely confirm the mortality results of the lab experiments found in other studies. PMID:25275508
Ichthyofauna of Ceará-Mirim River basin, Rio Grande do Norte State, northeastern Brazil
da Costa, Nathalia Kaluana Rodrigues; de Paiva, Roney Emanuel Costa; da Silva, Márcio Joaquim; Ramos, Telton Pedro Anselmo; Lima, Sergio Maia Queiroz
2017-01-01
Abstract Ichthyological studies in coastal basins of the Mid-Northeastern Caatinga ecoregion were first conducted in the early 20th century, including collections from the Ceará-Mirim River basin, in northeastern Brazil. Besides a few systematics and ecological studies, the knowledge on fishes from this watershed is still considered partial and restricted to the freshwater portion. Thus, the objective of this paper was to conduct a comprehensive ichthyological survey of the entire Ceará-Mirim River basin, from the headwaters to the estuarine area. Fish surveys were conducted from 2011 to 2016 using varied fishing gear, resulting in the record of 63 native species (24 freshwater, 15 estuarine, and 24 marine species) and two introduced species. Four species are putatively endemic to the ecoregion, and 48 consist of new records for the basin. According to the Brazilian’s threatened fish list, three species are currently classified as ‘vulnerable’ (Megalops atlanticus, Hippocampus reidi and Mycteroperca bonaci), four as ‘near threatened’ (Kryptolebias hermaphroditus, Dormitator maculatus, Lutjanus sygnagris and L. jocu) and three as ‘data deficient’ (Cheirodon jaguaribensis, Mugil curema and Sphoeroides testudineus). The Ceará-Mirim River basin does not have any protected areas and has been suffering multiple anthropogenic impacts, however the "Centro Tecnológico de Aquicultura" (Aquaculture Technological Center) of the Universidade Federal do Rio Grande do Norte (CTA/UFRN) at the lower portion of the basin may help in the conservation of the estuarine and estuarine fish species. PMID:29302231
River Continuity Restoration and Diadromous Fishes: Much More than an Ecological Issue
NASA Astrophysics Data System (ADS)
Drouineau, H.; Carter, C.; Rambonilaza, M.; Beaufaron, G.; Bouleau, G.; Gassiat, A.; Lambert, P.; le Floch, S.; Tétard, S.; de Oliveira, E.
2018-04-01
Ecosystem fragmentation is a serious threat to biodiversity and one of the main challenges in ecosystem restoration. River continuity restoration (RCR) has often targeted diadromous fishes, a group of species supporting strong cultural and economic values and especially sensitive to river fragmentation. Yet it has frequently produced mixed results and diadromous fishes remain at very low levels of abundance. Against this background, this paper presents the main challenges for defining, evaluating and achieving effective RCR. We first identify challenges specific to disciplines. In ecology, there is a need to develop quantitative and mechanistic models to support decision making, accounting for both direct and indirect impacts of river obstacles and working at the river catchment scale. In a context of dwindling abundances and reduced market value, cultural services provided by diadromous fishes are becoming increasingly prominent. Methods for carrying out economic quantification of non-market values of diadromous fishes become ever more urgent. Given current challenges for rivers to meet all needs sustainably, conflicts arise over the legitimate use of water resources for human purposes. Concepts and methods from political science and geography are needed to develop understandings on how the political work of public authorities and stakeholders can influence the legitimacy of restoration projects. Finally, the most exciting challenge is to combine disciplinary outcomes to achieve a multidisciplinary approach to RCR. Accordingly, the co-construction of intermediary objects and diagrams of flows of knowledge among disciplines can be first steps towards new frameworks supporting restoration design and planning.
A knowledge platform to inform on the effects of trawling on benthic communities
NASA Astrophysics Data System (ADS)
Muntadas, Alba; Lample, Michel; Demestre, Montserrat; Ballé-Béganton, Johanna; de Juan, Silvia; Maynou, Francesc; Bailly, Denis
2018-02-01
For a successful implementation of an Ecosystem Approach to Fisheries (EAF) management, it is necessary that all stakeholders involved in fisheries management are aware of the implications of fishing impacts on ecosystems and agree with the adopted measures to mitigate these impacts. In this context, there is a need for tools to share knowledge on the ecosystem effects of fisheries among these stakeholders. When managing bottom trawl fisheries under an EAF framework, one of the main concerns is the direct and indirect consequences of trawling impacts on benthic ecosystems. We developed a platform using the ExtendSim® software with a user-friendly interface that combines a simulation model based on existing knowledge, data collection and representation of predicted trawling impacts on the seabed. The platform aims to be a deliberation support tool for fisheries' stakeholders and, simultaneously, raise public awareness of the need for good benthic community knowledge to appropriately inform EAF management plans. The simulation procedure assumes that trawling affects benthic communities with an intensity that depends on the level of fishing effort exerted on benthic communities and on the habitat characteristics (i.e. sediment grain size). Data to build the simulation comes from epifaunal samples from 18 study sites located in Mediterranean continental shelves subjected to different levels of fishing effort. In this work, we present the simulation outputs of a 50% fishing effort increase (and decrease) in four of the study sites which cover different habitats and different levels of fishing effort. We discuss the platform strengths and weaknesses and potential future developments.
Landslides through the fish-eye lens.
Sally Duncan
1998-01-01
This issue examines research the Station has been conducting on how catastrophic disturbances affect fish habitat. Whereas our February issue discussed the physical dynamics of a flood on a landscape, here we expand to major disturbances in general while narrowing in a fish habitat still at a landscape scale.Our work in this area is unfolding new knowledge...
Hallwass, Gustavo; Lopes, Priscila F; Juras, Anastácio A; Silvano, Renato A M
2013-03-01
The long-term impacts of large hydroelectric dams on small-scale fisheries in tropical rivers are poorly known. A promising way to investigate such impacts is to compare and integrate the local ecological knowledge (LEK) of resource users with biological data for the same region. We analyzed the accuracy of fishers' LEK to investigate fisheries dynamics and environmental changes in the Lower Tocantins River (Brazilian Amazon) downstream from a large dam. We estimated fishers' LEK through interviews with 300 fishers in nine villages and collected data on 601 fish landings in five of these villages, 22 years after the dam's establishment (2006-2008). We compared these two databases with each other and with data on fish landings from before the dam's establishment (1981) gathered from the literature. The data obtained based on the fishers' LEK (interviews) and from fisheries agreed regarding the primary fish species caught, the most commonly used type of fishing gear (gill nets) and even the most often used gill net mesh sizes but disagreed regarding seasonal fish abundance. According to the interviewed fishers, the primary environmental changes that occurred after the impoundment were an overall decrease in fish abundance, an increase in the abundance of some fish species and, possibly, the local extinction of a commercial fish species (Semaprochilodus brama). These changes were corroborated by comparing fish landings sampled before and 22 years after the impoundment, which indicated changes in the composition of fish landings and a decrease in the total annual fish production. Our results reinforce the hypothesis that large dams may adversely affect small-scale fisheries downstream and establish a feasible approach for applying fishers' LEK to fisheries management, especially in regions with a low research capacity.
Using local ecological knowledge to monitor threatened Mekong megafauna in Lao PDR
Phommachak, Amphone; Vannachomchan, Kongseng; Guegan, Francois
2017-01-01
Pressures on freshwater biodiversity in Southeast Asia are accelerating yet the status and conservation needs of many of the region’s threatened fish species are unclear. This impacts the ability to implement conservation activities and to understand the effects of infrastructure developments and other hydrological changes. We used Local Ecological Knowledge from fishing communities on the Mekong River in the Siphandone waterscape, Lao PDR to estimate mean and mode last capture dates of eight rare or culturally significant fish species in order to provide conservation monitoring baselines. One hundred and twenty fishermen, from six villages, were interviewed. All eight species had been captured, by at least one of the interviewees, within the waterscape within the past year. However the mean and mode last capture dates varied between the species. Larger species, and those with higher Red List threat status, were caught less recently than smaller species of less conservation concern. The status of the Critically Endangered Pangasius sanitwongsei (mean last capture date 116.4 months) is particularly worrying suggesting severe population decline although cultural issues may have caused this species to have been under-reported. This highlights that studies making use of Local Ecological Knowledge need to understand the cultural background and context from which data is collected. Nevertheless we recommend our approach, of stratified random interviews to establish mean last capture dates, may be an effective methodology for monitoring freshwater fish species of conservation concern within artisanal fisheries. If fishing effort remains relatively constant, or if changes in fishing effort are accounted for, differences over time in mean last capture dates are likely to represent changes in the status of species. We plan to repeat our interview surveys within the waterscape as part of a long-term fish-monitoring program. PMID:28820901
Using local ecological knowledge to monitor threatened Mekong megafauna in Lao PDR.
Gray, Thomas N E; Phommachak, Amphone; Vannachomchan, Kongseng; Guegan, Francois
2017-01-01
Pressures on freshwater biodiversity in Southeast Asia are accelerating yet the status and conservation needs of many of the region's threatened fish species are unclear. This impacts the ability to implement conservation activities and to understand the effects of infrastructure developments and other hydrological changes. We used Local Ecological Knowledge from fishing communities on the Mekong River in the Siphandone waterscape, Lao PDR to estimate mean and mode last capture dates of eight rare or culturally significant fish species in order to provide conservation monitoring baselines. One hundred and twenty fishermen, from six villages, were interviewed. All eight species had been captured, by at least one of the interviewees, within the waterscape within the past year. However the mean and mode last capture dates varied between the species. Larger species, and those with higher Red List threat status, were caught less recently than smaller species of less conservation concern. The status of the Critically Endangered Pangasius sanitwongsei (mean last capture date 116.4 months) is particularly worrying suggesting severe population decline although cultural issues may have caused this species to have been under-reported. This highlights that studies making use of Local Ecological Knowledge need to understand the cultural background and context from which data is collected. Nevertheless we recommend our approach, of stratified random interviews to establish mean last capture dates, may be an effective methodology for monitoring freshwater fish species of conservation concern within artisanal fisheries. If fishing effort remains relatively constant, or if changes in fishing effort are accounted for, differences over time in mean last capture dates are likely to represent changes in the status of species. We plan to repeat our interview surveys within the waterscape as part of a long-term fish-monitoring program.
Mateo, Silvia; Vidal, Francesca; Coll, Lluc; Veiga, Anna; Boada, Montserrat
2017-09-01
This study aims to increase the knowledge about monopronucleated ICSI-derived blastocysts, analyzing trophectoderm biopsies by aCGH and FISH to evaluate their chromosome constitution. Fifteen monopronucleated ICSI-derived blastocysts were studied. Double trophectoderm biopsy was performed and analyzed by FISH and aCGH. The blastocysts were classified according to chromosome constitution. Disagreements between the two techniques were assessed. Results obtained after FISH and aCGH analyses showed the following: 20% (3/15) and 60% (9/15) diploid females, respectively; 26.7% (4/15) and 26.7% (4/15) diploid males, respectively; and 53.3% (8/15) and 13.3% (2/15) mosaics, respectively. No mosaic male embryos were found using FISH or aCGH. There were disagreements in 40% (6/15) of the cases due to the higher detection of mosaicism by FISH compared to aCGH. The combination of FISH and aCGH has been shown to be a suitable approach to increase the knowledge about monopronucleated ICSI-derived embryos. FISH analysis of blastocysts derived from monopronucleated ICSI zygotes enabled us to conclude that aCGH underestimates haploidy. Some diploid embryos diagnosed by aCGH are in fact mosaic. In cases where these embryos would be used for reproductive purposes, extra analysis of parental genome origin is recommended.
Dijkstra, S C; Neter, J E; Brouwer, I A; Huisman, M; Visser, M
2014-11-01
In this study we investigated (the degree of) misperception of adherence to the fruit, vegetable and fish guidelines in older Dutch adults and examined to what extent misperception is associated with socio-economic position (SEP) and other demographic, lifestyle and nutrition-related characteristics. The sample included 1057 community dwelling adults, aged 55-85 years, who participated in the Longitudinal Aging Study Amsterdam. Respondents completed a lifestyle questionnaire which included a food frequency questionnaire to calculate fruit, vegetable and fish intake. After current dietary guidelines were explained, respondents were asked to indicate whether they believed they adhered to the fruit, vegetable and fish guidelines. Characteristics potentially associated with misperception included level of income and education, lifestyle factors, nutritional knowledge, as well as attitude, social support and self-efficacy toward healthy eating. In the total sample, 69.1% of the older adults reported to adhere to the fruit guideline, 77.5% to the vegetable guideline, and 36.4% to the fish guideline. Based on the calculated intake data, 82.6% adhered to the fruit guideline, 65.5% to the vegetable guideline and 33.8% to the fish guideline. Overestimation of adherence was most common for the vegetable guideline (18.7%). Multivariate analysis, adjusted for level of income as well as for attitude and self-efficacy toward healthy eating, showed that lower educated respondents were more likely to overestimate their adherence to the vegetable guideline (relative index of inequality (RII): 2.97 (95% CI: 1.47-6.01)). Overestimation rates for fish (3.4%) and fruit (2.3%) were lower and not associated with any of the characteristics. This study showed that overestimation in older adults was common for adherence to the vegetable guideline and especially in those with a lower education level, but not for adherence to the fruit and fish guideline. Copyright © 2014 Elsevier Ltd. All rights reserved.
Morin, Ewen; Gatti, Clémence; Bambridge, Tamatoa; Chinain, Mireille
2016-12-01
Ciguatera Fish Poisoning (CFP) is a non-bacterial seafood poisoning well characterized in the remote archipelagos of French Polynesia, yet poorly documented in the Society archipelago, most notably on Moorea, the second most populated island in French Polynesia, which counts a high proportion of fishermen fishing on a regular basis. To address this knowledge gap, a holistic study of the ciguatera issue was conducted on Moorea. First, ciguatera risk was analysed in terms of incidence rate, fish species most commonly involved and risk stratification in Moorea lagoon based on 2007-2013 epidemiological data. A mean incidence rate of 8 cases per 10,000 inhabitants for the study period and an average under-reporting rate of 54% were found. Taking into account hospitalization and medication fees, and loss of productive days, the health-related costs due to CFP were estimated to be USD $1613 and $749 for each reported and unreported case, respectively, with an overall cost of USD $241,847 for the study period. Comparison of the present status of CFP on Moorea with a risk map established in the late 1970's showed that the spatial distribution of the risk has stayed relatively stable in time, with the north shore of the island remaining the most prone to ciguatera. Evaluation of the current knowledge on CFP among different populations groups, i.e. fishermen, residents and visitors, was also conducted through direct and indirect interviews. About half of the fishermen interviewed were actually able to identify risky fishing areas. While, overall, the CFP risk perception in the fishing community of Moorea seemed accurate, although not scientifically complete, it was sufficient for the safe practice of their fishing activities. This may be due in part to adaptive responses adopted by 36% of the fishermen interviewed, such as the avoidance of either high-risk fishing sites or toxic species. At the residents and visitors' level, the study points out a striking lack of awareness of the CFP issue among visitors, as compared to local residents. Indeed, less than 25% of Moorea visitors vs. an average of 98% in residents were aware of CFP or of its presence on the island. Interestingly, evaluation of the fish consumption preferences showed that 70% of visitors do not consume lagoon fish during their stay, not for fear of CFP, but mainly due to the lack of availability of these species in recreational facilities or because they have nutritional preference for pelagic fish. This lack of awareness, along with the report by several CFP patients of the consumption of fish species yet banned for sale, stress the need for improved communication efforts on this critical issue among both residents and visitors on Moorea. The implementation of a public outreach strategy is proposed, based on both existing information networks and low-cost communication actions through information displays at various strategic locations, e.g. Tahiti-Faa'a international airport, the ferry boat station, recreational facilities, as well as the major trading points on Moorea Island. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Flowers, Alice B.
2010-01-01
In 2005, state fish and wildlife agency wanted to examine how one of its conservation education programs was providing science-based understanding and outdoor experiences by evaluating students' knowledge, skills, attitudes and intended behavioral outcomes related to fish, fishing and aquatic habitats in Montana. A key factor in this study was the…
Establishment and Usability Evaluation of an Interactive AR Learning System on Conservation of Fish
ERIC Educational Resources Information Center
Lin, Hao-Chiang Koong; Hsieh, Min-Chai; Wang, Cheng-Hung; Sie, Zong-Yuan; Chang, Shei-Hsi
2011-01-01
In this study, we develop an interactive AR Learning System based on Augmented Reality and interactive touch-screen. The learning content knowledge is about conservation of fish in Taiwan. The system combines the game by the concept of AR book which allows children to learn about the importance of conservation of fish. A mechanism is designed to…
Derrick, Corliss G; Miller, Jacqueline S A; Andrews, Jeannette M
2008-01-01
To determine the effectiveness of a community-partnered risk communication intervention tailored for subsistence anglers in a public housing community. A one group, pretest, posttest design was used to test the effectiveness of the intervention in a sample (n=23, age range 18-75 years, 100% African American) of subsistence anglers residing in a public housing community in close proximity to a Superfund clean-up site. Face-to-face surveys were conducted at baseline and 3 months post the intervention to assess changes in knowledge and behaviors. A socioculturally appropriate risk communication intervention was developed, implemented, and evaluated in the targeted community. The risk communication included an interactive power point presentation, visual demonstration by a role model, and distribution of low literacy written materials, followed by a booster mailing of materials 1 month past the initial intervention. Evaluation measures included survey instruments on knowledge and self-reported fishing behaviors. Participants showed improved knowledge and behavior change related to trimming fish, consumption by pregnant women and children, and consumption of large fish. The sociocultured tailored risk communication intervention demonstrated promising outcomes in this community and should be evaluated in a larger population of subsistence anglers.
Lima, Mauro Sergio Pinheiro; Oliveira, Jorge Eduardo Lins; de Nóbrega, Marcelo Francisco; Lopes, Priscila Fabiana Macedo
2017-06-01
Acquiring fast and accurate information on ecological patterns of fishery resources is a basic first step for their management. However, some countries may lack the technical and/or the financial means to undergo traditional scientific samplings to get such information; therefore affordable and reliable alternatives need to be sought. We compared two different approaches to identify occurrence patterns and catch for three main fish species caught with bottom-set gillnets used by artisanal fishers from northeast Brazil: (1) scientific on-board record data of small-scale fleet (n = 72 trips), and (2) interviews with small-scale fishers on Local Ecological Knowledge (LEK) (n = 32 interviews). We correlated (Pearson correlations) the months cited by fishers (LEK) as belonging to the rainy or to the dry season with observed periods of higher and lower precipitation (SK). The presence of the three main fish species at different depths was compared between LEK and SK by Spearman correlations. Spearman correlations were also used to compare the depths of greatest abundance (with the highest Capture per Unit Effort - CPUE) of these species; the CPUEs were descendly ordered. Both methods provided similar and complementary bathymetric patterns of species occurrence and catch. The largest catches occured in deeper areas, which also happened to be less intensively fished. The preference for fishing in shallower and less productive areas was mostly due to environmental factors, such as weaker currents and less drifting algae at such depths. Both on-board and interview methods were accurate and brought complementary information, even though fishers provided faster data when compared to scientific on-board observations. When time and funding are not limited, integrative approaches such as the one presented here are likely the best option to obtain information, otherwise fishers' LEK could be a better choice for when a compromise between speed, reliability and cost needs to be reached.
Estimating fish exploitation and aquatic habitat loss across diffuse inland recreational fisheries.
de Kerckhove, Derrick Tupper; Minns, Charles Kenneth; Chu, Cindy
2015-01-01
The current state of many freshwater fish stocks worldwide is largely unknown but suspected to be vulnerable to exploitation from recreational fisheries and habitat degradation. Both these factors, combined with complex ecological dynamics and the diffuse nature of inland fisheries could lead to an invisible collapse: the drastic decline in fish stocks without great public or management awareness. In this study we provide a method to address the pervasive knowledge gaps in regional rates of exploitation and habitat degradation, and demonstrate its use in one of North America's largest and most diffuse recreational freshwater fisheries (Ontario, Canada). We estimated that (1) fish stocks were highly exploited and in apparent danger of collapse in management zones close to large population centres, and (2) fish habitat was under a low but constant threat of degradation at rates comparable to deforestation in Ontario and throughout Canada. These findings confirm some commonly held, but difficult to quantify, beliefs in inland fisheries management but also provide some further insights including (1) large anthropogenic projects greater than one hectare could contribute much more to fish habitat loss on an area basis than the cumulative effect of smaller projects within one year, (2) hooking mortality from catch-and-release fisheries is likely a greater source of mortality than the harvest itself, and (3) in most northern management zones over 50% of the fisheries resources are not yet accessible to anglers. While this model primarily provides a framework to prioritize management decisions and further targeted stock assessments, we note that our regional estimates of fisheries productivity and exploitation were similar to broadscale monitoring efforts by the Province of Ontario. We discuss the policy implications from our results and extending the model to other jurisdictions and countries.
Lloyd, Jessica C.; Masko, Elizabeth M.; Wu, Chenwei; Keenan, Melissa M.; Pilla, Danielle M.; Aronson, William J.; Chi, Jen-Tsan A.; Freedland, Stephen J.
2013-01-01
Background Previous mouse studies suggest that decreasing dietary fat content can slow prostate cancer (PCa) growth. To our knowledge, no study has yet compared the effect of multiple different fats on PCa progression. We sought to systematically compare the effect of fish oil, olive oil, corn oil, and animal fat on PCa progression. Methods A total of 96 male SCID mice were injected with LAPC-4 human PCa cells. Two weeks following injection, mice were randomized to a fish oil, olive oil, corn oil, or animal fat-based Western diet (35% kcals from fat). Animals were euthanized when tumors reached 1,000mm3. Serum was collected at sacrifice and assayed for PSA, insulin, IGF-1, IGFBP-3, and PGE-2 levels. Tumors were also assayed for PGE-2 and COX-2 levels and global gene expression analyzed using Affymetrix microarrays. Results Mice weights and tumor volumes were equivalent across groups at randomization. Overall, fish oil consumption was associated with improved survival, relative to other dietary groups (p=0.014). On gene expression analyses, the fish oil group had decreased signal in pathways related to mitochondrial physiology and insulin synthesis/secretion. Conclusions In this xenograft model, we found that consuming a diet in which fish oil was the only fat source slowed tumor growth and improved survival, compared to mice consuming diets composed of olive oil, corn oil, or animal fat. While prior studies showed that the amount of fat is important for PCa growth, the current study suggests that type of dietary fat consumed may also be important. PMID:23877027
Estimating Fish Exploitation and Aquatic Habitat Loss across Diffuse Inland Recreational Fisheries
de Kerckhove, Derrick Tupper; Minns, Charles Kenneth; Chu, Cindy
2015-01-01
The current state of many freshwater fish stocks worldwide is largely unknown but suspected to be vulnerable to exploitation from recreational fisheries and habitat degradation. Both these factors, combined with complex ecological dynamics and the diffuse nature of inland fisheries could lead to an invisible collapse: the drastic decline in fish stocks without great public or management awareness. In this study we provide a method to address the pervasive knowledge gaps in regional rates of exploitation and habitat degradation, and demonstrate its use in one of North America’s largest and most diffuse recreational freshwater fisheries (Ontario, Canada). We estimated that 1) fish stocks were highly exploited and in apparent danger of collapse in management zones close to large population centres, and 2) fish habitat was under a low but constant threat of degradation at rates comparable to deforestation in Ontario and throughout Canada. These findings confirm some commonly held, but difficult to quantify, beliefs in inland fisheries management but also provide some further insights including 1) large anthropogenic projects greater than one hectare could contribute much more to fish habitat loss on an area basis than the cumulative effect of smaller projects within one year, 2) hooking mortality from catch-and-release fisheries is likely a greater source of mortality than the harvest itself, and 3) in most northern management zones over 50% of the fisheries resources are not yet accessible to anglers. While this model primarily provides a framework to prioritize management decisions and further targeted stock assessments, we note that our regional estimates of fisheries productivity and exploitation were similar to broadscale monitoring efforts by the Province of Ontario. We discuss the policy implications from our results and extending the model to other jurisdictions and countries. PMID:25875790
Tao, Lin; Wu, Jiang-Ping; Zhi, Hui; Zhang, Ying; Ren, Zi-He; Luo, Xiao-Jun; Mai, Bi-Xian
2016-07-01
While the flame retardant chemical, tetrabromobisphenol-A (TBBP-A), has been frequently detected in the environment, knowledge regarding its species-specific bioaccumulation and trophic transfer is limited, especially in the highly contaminated sites. In this study, the components of an aquatic food web, including two invertebrates, two prey fish, and one predator fish, collected from a natural pond at an electronic waste (e-waste) recycling site in South China were analyzed for TBBP-A, using liquid chromatography-tandem mass spectrometry. The aquatic species had TBBP-A concentrations ranging from 350 to 1970 pg/g wet weight, with higher concentrations in the invertebrates relative to the fish species. Field-determined bioaccumulation factors of TBBP-A in the two aquatic invertebrates were nearly or greater than 5000, suggesting that TBBP-A is highly bioaccumulative in the two species. The lipid-normalized concentrations of TBBP-A in the aquatic species were negatively correlated with the trophic levels determined from stable nitrogen isotope (δ(15)N) (r = -0.82, p = 0.09), indicating that this compound experienced trophic dilution in the current food web.
Marramà, Giuseppe; Carnevale, Giorgio; Engelbrecht, Andrea; Claeson, Kerin M.; Zorzin, Roberto; Fornasiero, Mariagabriella; Kriwet, Jürgen
2018-01-01
Here, we review and discuss the records and taxonomy of the Ypresian (Eocene) chondrichthyans from the famous Bolca Konservat-Lagerstätte in northeastern Italy. Despite the outstanding diversity and the numerous studies focusing on the actinopterygian faunas from Pesciara and Monte Postale, the current knowledge about the systematics, taxonomy and phylogenetic relationships of the cartilaginous fishes from these Eocene sites remains elusive and largely inadequate. The celebrated Eocene Bolca Lagerstätte has yielded several exquisitely preserved articulated remains of chondrichthyan fishes in which delicate structures and soft tissues are preserved, as well as isolated teeth. The cartilaginous fish assemblage of Bolca comprises at least 17 species-level taxa belonging to 10 families in 6 orders, including selachians (Carcharhiniformes, Lamniformes), batoids (Torpediniformes, Myliobatiformes, Rajiformes) and holocephalans (Chimaeriformes). The occurrence of holocephalans represented by an isolated fin-spine of the chimeroid Ischyodus in the Bolca assemblage is reported here for the first time and represents the first record of chimeroids in the Eocene of Italy and also southern Europe. The Bolca chondrichthyan assemblage is remarkably different from those of other contemporaneous Boreal or Tethyan deposits, suggesting that its taxonomic composition is largely influenced by the palaeoenvironmental context. However, this synoptic review also highlights the importance of detailed revisions of all chondrichthyan remains from the Bolca Konservat-Lagerstätten.
Monitoring and managing microbes in aquaculture - Towards a sustainable industry.
Bentzon-Tilia, Mikkel; Sonnenschein, Eva C; Gram, Lone
2016-09-01
Microorganisms are of great importance to aquaculture where they occur naturally, and can be added artificially, fulfilling different roles. They recycle nutrients, degrade organic matter and, occasionally, they infect and kill the fish, their larvae or the live feed. Also, some microorganisms may protect fish and larvae against disease. Hence, monitoring and manipulating the microbial communities in aquaculture environments hold great potential; both in terms of assessing and improving water quality, but also in terms of controlling the development of microbial infections. Using microbial communities to monitor water quality and to efficiently carry out ecosystem services within the aquaculture systems may only be a few years away. Initially, however, we need to thoroughly understand the microbiomes of both healthy and diseased aquaculture systems, and we need to determine how to successfully manipulate and engineer these microbiomes. Similarly, we can reduce the need to apply antibiotics in aquaculture through manipulation of the microbiome, i.e. by the use of probiotic bacteria. Recent studies have demonstrated that fish pathogenic bacteria in live feed can be controlled by probiotics and that mortality of infected fish larvae can be reduced significantly by probiotic bacteria. However, the successful management of the aquaculture microbiota is currently hampered by our lack of knowledge of relevant microbial interactions and the overall ecology of these systems. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Marramà, Giuseppe; Carnevale, Giorgio; Engelbrecht, Andrea; Claeson, Kerin M; Zorzin, Roberto; Fornasiero, Mariagabriella; Kriwet, Jürgen
2018-01-01
Here, we review and discuss the records and taxonomy of the Ypresian (Eocene) chondrichthyans from the famous Bolca Konservat-Lagerstätte in northeastern Italy. Despite the outstanding diversity and the numerous studies focusing on the actinopterygian faunas from Pesciara and Monte Postale, the current knowledge about the systematics, taxonomy and phylogenetic relationships of the cartilaginous fishes from these Eocene sites remains elusive and largely inadequate. The celebrated Eocene Bolca Lagerstätte has yielded several exquisitely preserved articulated remains of chondrichthyan fishes in which delicate structures and soft tissues are preserved, as well as isolated teeth. The cartilaginous fish assemblage of Bolca comprises at least 17 species-level taxa belonging to 10 families in 6 orders, including selachians (Carcharhiniformes, Lamniformes), batoids (Torpediniformes, Myliobatiformes, Rajiformes) and holocephalans (Chimaeriformes). The occurrence of holocephalans represented by an isolated fin-spine of the chimeroid Ischyodus in the Bolca assemblage is reported here for the first time and represents the first record of chimeroids in the Eocene of Italy and also southern Europe. The Bolca chondrichthyan assemblage is remarkably different from those of other contemporaneous Boreal or Tethyan deposits, suggesting that its taxonomic composition is largely influenced by the palaeoenvironmental context. However, this synoptic review also highlights the importance of detailed revisions of all chondrichthyan remains from the Bolca Konservat-Lagerstätten.
Barko, V.A.; Herzog, D.P.
2003-01-01
We analyzed fish abundance and environmental data collected over nine years from six side channels of the unimpounded upper Mississippi River between river km 46.7 and 128.7. A partial canonical correspondence analysis revealed differences in fish assemblages and environmental factors correlated with the six side channels. Fishes correlated with open side channels represented large river species tolerant of current and/or turbidity. Fishes correlated with closed side channels represented assemblages preferring either moderate to low turbidity/current or pools.
Pieniak, Zuzanna; Verbeke, Wim; Perez-Cueto, Federico; Brunsø, Karen; De Henauw, Stefaan
2008-01-01
Background The purpose of this study was to explore the cross-cultural differences in the frequency of fish intake and in motivations for fish consumption between people from households with (CVD+) or without (CVD-) medical history of cardiovascular disease, using data obtained in five European countries. Methods A cross-sectional consumer survey was carried out in November-December 2004 with representative household samples from Belgium, the Netherlands, Denmark, Poland and Spain. The sample consisted of 4,786 respondents, aged 18–84 and who were responsible for food purchasing and cooking in the household. Results Individuals from households in the CVD+ group consumed fish more frequently in Belgium and in Denmark as compared to those in the CVD- group. The consumption of fatty fish, which is the main sources of omega-3 PUFA associated with prevention of cardiovascular diseases, was on the same level for the two CVD groups in the majority of the countries, except in Belgium where CVD+ subjects reported to eat fatty fish significantly more frequently than CVD- subjects. All respondents perceived fish as a very healthy and nutritious food product. Only Danish consumers reported a higher subjective and objective knowledge related to nutrition issues about fish. In the other countries, objective knowledge about fish was on a low level, similar for CVD+ as for CVD- subjects, despite a higher claimed use of medical information sources about fish among CVD+ subjects. Conclusion Although a number of differences between CVD- and CVD+ subjects with respect to their frequency of fish intake are uncovered, the findings suggest that fish consumption traditions and habits – rather than a medical history of CVD – account for large differences between the countries, particularly in fatty fish consumption. This study exemplifies the need for nutrition education and more effective communication about fish, not only to the people facing chronic diseases, but also to the broader public. European consumers are convinced that eating fish is healthy, but particular emphasis should be made on communicating benefits especially from fatty fish consumption. PMID:18783593
Burger, J; Johnson, B B; Shukla, S; Gochfeld, M
2003-04-01
The impacts of fish consumption advisories on recreational and subsistence fishing, particularly in fresh waters, have been examined extensively. By contrast, little attention has focused on organized recreational fishing, such as from party and charter boats, and particularly for salt water fish. We interviewed 93 New Jersey boat captains to determine their knowledge about fish consumption advisories, and whether, in their opinion, clients knew of fish consumption advisories, and whether they thought advisories had an effect on recreational fishing and their businesses. Advisories were ranked by captains as a moderate influence on the success of their business, less so than number of fish caught, strength of the economy, overfishing by commercial boats, and management regulations. Only one boat captain had not heard warnings about eating fish, but what captains said they had heard was mixed in its accuracy and completeness. Clients expect captains to know about fish, and about half of boat captains said clients had asked about the safety of eating fish. Captains who felt advisories were affecting their businesses tended to fish for species without high levels of mercury (except for bluefish) or PCBs, the primary contaminants of concern for state advisories and federal advice. However, these captains worked closer to areas (e.g., Raritan Bay complex and New York Harbor) subject to advisories than did other captains, and were more prone to say that management regulations (e.g., fish size, creel limits, seasons) and marketing and advertising by the industry or state were strong influences on the success of their seasons. Comparing captains who thought advisories had some or great effect (60%) versus those reporting "no effect" (40%), there was no difference in the mean percentage of trips targeting high mercury species such as swordfish and shark. Many captains said they would or might post advisories, but 42% of the boat captains said they would not post consumption warnings if the state provided them. The significant portion (at least 15%) of saltwater fishing supported by these businesses suggests that these captains are an important conduit for future risk communication.
Begossi, Alpina; Salyvonchyk, Svetlana; Nora, Vinicius; Lopes, Priscila F; Silvano, Renato A M
2012-06-27
This study intends to give recommendations to the management of Paraty fishery in Brazil through an interplay of local and scientific knowledge. In particular, the objectives are the following: 1) to describe the Paraty fishery; 2) to compare the fishermen's local ecological knowledge with recorded fish landings and previous studies in Paraty; 3) to combine the data on local fishing and on local/Caiçara livelihoods with the SES (social-ecological systems) Model. The methods include a systematic survey of fishing in Tarituba and Praia Grande, which are located in the northern end and the central part of the Paraty municipality, respectively. For four days each month, systematic data on catches at landing points were collected, as well as macroscopic gonad analysis data for the fishes Centropomus parallelus and C. undecimalis (snook, robalo), Epinephelus marginatus (grouper, garoupa), Scomberomorus cavalla (King mackerel, cavala), and Lutjanus synagris (Lane snapper, vermelho). Spring and summer are important seasons during which some species reproduce, and the integration of fishing periods for some target species could assist in fishing management through the use of closed seasons. Fishermen could obtain complementary earnings from tourism and from the "defeso system" (closed season including a salary payment) to conserve fishing stocks. The SES model facilitates an understanding of the historical context of fishing, its economic importance for local livelihoods, the constraints from conservation measures that affect fishermen, and the management processes that already exist, such as the defeso. If used to integrate fishing with complementary activities (tourism), such a system could improve the responsibility of fishermen regarding the conservation of fish stocks.
2012-01-01
This study intends to give recommendations to the management of Paraty fishery in Brazil through an interplay of local and scientific knowledge. In particular, the objectives are the following: 1) to describe the Paraty fishery; 2) to compare the fishermen’s local ecological knowledge with recorded fish landings and previous studies in Paraty; 3) to combine the data on local fishing and on local/Caiçara livelihoods with the SES (social-ecological systems) Model. The methods include a systematic survey of fishing in Tarituba and Praia Grande, which are located in the northern end and the central part of the Paraty municipality, respectively. For four days each month, systematic data on catches at landing points were collected, as well as macroscopic gonad analysis data for the fishes Centropomus parallelus and C. undecimalis (snook, robalo), Epinephelus marginatus (grouper, garoupa), Scomberomorus cavalla (King mackerel, cavala), and Lutjanus synagris (Lane snapper, vermelho). Spring and summer are important seasons during which some species reproduce, and the integration of fishing periods for some target species could assist in fishing management through the use of closed seasons. Fishermen could obtain complementary earnings from tourism and from the “defeso system” (closed season including a salary payment) to conserve fishing stocks. The SES model facilitates an understanding of the historical context of fishing, its economic importance for local livelihoods, the constraints from conservation measures that affect fishermen, and the management processes that already exist, such as the defeso. If used to integrate fishing with complementary activities (tourism), such a system could improve the responsibility of fishermen regarding the conservation of fish stocks. PMID:22738073
A review of the biology, fisheries and conservation of the whale shark Rhincodon typus.
Rowat, D; Brooks, K S
2012-04-01
Although the whale shark Rhincodon typus is the largest extant fish, it was not described until 1828 and by 1986 there were only 320 records of this species. Since then, growth in tourism and marine recreation globally has lead to a significant increase in the number of sightings and several areas with annual occurrences have been identified, spurring a surge of research on the species. Simultaneously, there was a great expansion in targeted R. typus fisheries to supply the Asian restaurant trade, as well as a largely un-quantified by-catch of the species in purse-seine tuna fisheries. Currently R. typus is listed by the IUCN as vulnerable, due mainly to the effects of targeted fishing in two areas. Photo-identification has shown that R. typus form seasonal size and sex segregated feeding aggregations and that a large proportion of fish in these aggregations are philopatric in the broadest sense, tending to return to, or remain near, a particular site. Somewhat conversely, satellite tracking studies have shown that fish from these aggregations can migrate at ocean-basin scales and genetic studies have, to date, found little graphic differentiation globally. Conservation approaches are now informed by observational and environmental studies that have provided insight into the feeding habits of the species and its preferred habitats. Notwithstanding these advances, there remain notable gaps in the knowledge of this species particularly with respect to the life history of neonates and adults who are not found in the feeding aggregations. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
ERIC Educational Resources Information Center
Ceci, Lynn
1990-01-01
Examines the historical bases for the story of Squanto's introduction of fish fertilizer to the Pilgrims at Plymouth (Massachusetts). Presents new evidence from an ethnohistoric, anthropological, and archaeological perspective that challenges Indian fish fertilizer use, suggesting that Squanto conveyed knowledge of the practice from one group of…
Isolated contact urticaria caused by immunoglobulin E-mediated fish allergy.
Onesimo, Roberta; Giorgio, Valentina; Pill, Stefania; Monaco, Serena; Sopo, Stefano Miceli
2012-01-01
Fish is a common cause of food allergy. The reactions usually occur after its ingestion. In most immunoglobulin E-mediated reactions, the allergens are gastroresistant and heat-stable proteins of low molecularweight (parvalbumin). On the other hand, isolated contact urticaria following the handling of raw fish but without symptoms after its ingestion was found among cooks and professional fish handlers. In these cases, the fish allergens are gastrosensitive and thermolabile, as demonstrated by the decrease in the diameter of the wheal in the skin-prick test using cooked fish. To the best of our knowledge isolated fish contact urticaria in children has not been previously reported. We analyze the features of three pediatric cases of contact urticaria from cod (one of them was sensitized to parvalbumin), with tolerance after ingestion of this fish on oral food challenge.
50 CFR 300.25 - Eastern Pacific fisheries management.
Code of Federal Regulations, 2011 CFR
2011-10-01
... release all sharks, billfishes, rays, mahimahi (dorado), and other non-tuna fish species, except those...(a) of this title, that the current trip type is shallow-setting, may not be used to fish in the... this title, that the current trip type is shallow-setting, is used to fish in the Pacific Ocean using...
50 CFR 300.25 - Eastern Pacific fisheries management.
Code of Federal Regulations, 2010 CFR
2010-10-01
... release all sharks, billfishes, rays, mahimahi (dorado), and other non-tuna fish species, except those...(a) of this title, that the current trip type is shallow-setting, may not be used to fish in the... this title, that the current trip type is shallow-setting, is used to fish in the Pacific Ocean using...
Leino, O; Karjalainen, A K; Tuomisto, J T
2013-04-01
Fish contains both beneficial substances e.g. docosahexaenoic acids but also harmful compounds e.g. methylmercury. Importantly, the health effects caused by these two substances can be evaluated in one common end point, intelligence quotient (IQ), providing a more transparent analysis. We estimated health effects of maternal fish consumption on child's central nervous system by creating a model with three alternative maternal fish consumption scenarios (lean fish, fatty fish, and current fish consumption). Additionally, we analyzed impacts of both regular fish consumption and extreme fish consumption habits. At the individual level, the simulated net effects were small, encompassing a range of one IQ point in all scenarios. Fatty fish consumption, however, clearly generated a beneficial net IQ effect, and lean fish consumption evoked an adverse net IQ effect. In view of the current fish consumption pattern of Finnish mothers the benefits and risks seem to more or less compensate each other. This study clearly shows the significance of which fish species are consumed during pregnancy and lactation, and the results can be generalized to apply to typical western population fish consumption habits. Copyright © 2011 Elsevier Ltd. All rights reserved.
Roux, Frédérique Le; Wegner, K. Mathias; Baker-Austin, Craig; Vezzulli, Luigi; Osorio, Carlos R.; Amaro, Carmen; Ritchie, Jennifer M.; Defoirdt, Tom; Destoumieux-Garzón, Delphine; Blokesch, Melanie; Mazel, Didier; Jacq, Annick; Cava, Felipe; Gram, Lone; Wendling, Carolin C.; Strauch, Eckhard; Kirschner, Alexander; Huehn, Stephan
2015-01-01
Global change has caused a worldwide increase in reports of Vibrio-associated diseases with ecosystem-wide impacts on humans and marine animals. In Europe, higher prevalence of human infections followed regional climatic trends with outbreaks occurring during episodes of unusually warm weather. Similar patterns were also observed in Vibrio-associated diseases affecting marine organisms such as fish, bivalves and corals. Basic knowledge is still lacking on the ecology and evolutionary biology of these bacteria as well as on their virulence mechanisms. Current limitations in experimental systems to study infection and the lack of diagnostic tools still prevent a better understanding of Vibrio emergence. A major challenge is to foster cooperation between fundamental and applied research in order to investigate the consequences of pathogen emergence in natural Vibrio populations and answer federative questions that meet societal needs. Here we report the proceedings of the first European workshop dedicated to these specific goals of the Vibrio research community by connecting current knowledge to societal issues related to ocean health and food security. PMID:26322036
Eddy, Tyler D.; Gardner, Jonathan P. A.; Pérez-Matus, Alejandro
2010-01-01
Over-exploited fisheries are a common feature of the modern world and a range of solutions including area closures (marine reserves; MRs), effort reduction, gear changes, ecosystem-based management, incentives and co-management have been suggested as techniques to rebuild over-fished populations. Historic accounts of lobster (Jasus frontalis) on the Chilean Juan Fernández Archipelago indicate a high abundance at all depths (intertidal to approximately 165 m), but presently lobsters are found almost exclusively in deeper regions of their natural distribution. Fishers' ecological knowledge (FEK) tells a story of serial depletion in lobster abundance at fishing grounds located closest to the fishing port with an associated decline in catch per unit effort (CPUE) throughout recent history. We have re-constructed baselines of lobster biomass throughout human history on the archipelago using historic data, the fishery catch record and FEK to permit examination of the potential effects of MRs, effort reduction and co-management (stewardship of catch) to restore stocks. We employed a bioeconomic model using FEK, fishery catch and effort data, underwater survey information, predicted population growth and response to MR protection (no-take) to explore different management strategies and their trade-offs to restore stocks and improve catches. Our findings indicate that increased stewardship of catch coupled with 30% area closure (MR) provides the best option to reconstruct historic baselines. Based on model predictions, continued exploitation under the current management scheme is highly influenced by annual fluctuations and unsustainable. We propose a community-based co-management program to implement a MR in order to rebuild the lobster population while also providing conservation protection for marine species endemic to the Archipelago. PMID:21079761
NASA Astrophysics Data System (ADS)
Elfitasari, T.; Nugroho, R. A.; Nugroho, A. P.
2018-04-01
Internet is now widely used by people all over the world, including small scale fisheries communities such as fish farmers. Many applications are being created including social media Facebook which are used by small scale fish farmers (SSFF) for its ease and convenience. The objective of this research is to identify the impact of aquaculture community group (ACG) in social media Facebook towards the improvement of aquaculture knowledge and financial condition of small scale fish farmers in Central Java. This research used quantitative approach where questionnaires were distributed into two groups: SSFF who are member of ACG in social media Facebook and who are not. Sampling technique used random sampling, used 60 samples of SSFF in Central Java. Data obtained were tested using the test statistic Independent t-test using SPSS v.20. Result showed a significant effect of group who are member of ACG in social media Facebook and those who are not, towards the aquaculture knowledge (t count -7.424 and sig 0.000) and financial improvement (t -3.775 and sig 0.000). The results of the average value of the SSFF who are ACG member in Facebook are also higher than farmers who are not.
ERIC Educational Resources Information Center
Stowell, G.H.
1982-01-01
Presents background material to help British high school students study the economics of the fishing industry. Students apply their knowledge of cost and revenue theory to a case study of a European Economic Community fisheries dispute which raises questions about government intervention in international resource allocation issues. (AM)
Model for Predicting Passage of Invasive Fish Species Through Culverts
NASA Astrophysics Data System (ADS)
Neary, V.
2010-12-01
Conservation efforts to promote or inhibit fish passage include the application of simple fish passage models to determine whether an open channel flow allows passage of a given fish species. Derivations of simple fish passage models for uniform and nonuniform flow conditions are presented. For uniform flow conditions, a model equation is developed that predicts the mean-current velocity threshold in a fishway, or velocity barrier, which causes exhaustion at a given maximum distance of ascent. The derivation of a simple expression for this exhaustion-threshold (ET) passage model is presented using kinematic principles coupled with fatigue curves for threatened and endangered fish species. Mean current velocities at or above the threshold predict failure to pass. Mean current velocities below the threshold predict successful passage. The model is therefore intuitive and easily applied to predict passage or exclusion. The ET model’s simplicity comes with limitations, however, including its application only to uniform flow, which is rarely found in the field. This limitation is addressed by deriving a model that accounts for nonuniform conditions, including backwater profiles and drawdown curves. Comparison of these models with experimental data from volitional swimming studies of fish indicates reasonable performance, but limitations are still present due to the difficulty in predicting fish behavior and passage strategies that can vary among individuals and different fish species.
Hydrokinetic Turbine Effects on Fish Swimming Behaviour
Hammar, Linus; Andersson, Sandra; Eggertsen, Linda; Haglund, Johan; Gullström, Martin; Ehnberg, Jimmy; Molander, Sverker
2013-01-01
Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms-1. The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts. PMID:24358334
Hydrokinetic turbine effects on fish swimming behaviour.
Hammar, Linus; Andersson, Sandra; Eggertsen, Linda; Haglund, Johan; Gullström, Martin; Ehnberg, Jimmy; Molander, Sverker
2013-01-01
Hydrokinetic turbines, targeting the kinetic energy of fast-flowing currents, are under development with some turbines already deployed at ocean sites around the world. It remains virtually unknown as to how these technologies affect fish, and rotor collisions have been postulated as a major concern. In this study the effects of a vertical axis hydrokinetic rotor with rotational speeds up to 70 rpm were tested on the swimming patterns of naturally occurring fish in a subtropical tidal channel. Fish movements were recorded with and without the rotor in place. Results showed that no fish collided with the rotor and only a few specimens passed through rotor blades. Overall, fish reduced their movements through the area when the rotor was present. This deterrent effect on fish increased with current speed. Fish that passed the rotor avoided the near-field, about 0.3 m from the rotor for benthic reef fish. Large predatory fish were particularly cautious of the rotor and never moved closer than 1.7 m in current speeds above 0.6 ms(-1). The effects of the rotor differed among taxa and feeding guilds and it is suggested that fish boldness and body shape influenced responses. In conclusion, the tested hydrokinetic turbine rotor proved non-hazardous to fish during the investigated conditions. However, the results indicate that arrays comprising multiple turbines may restrict fish movements, particularly for large species, with possible effects on habitat connectivity if migration routes are exploited. Arrays of the investigated turbine type and comparable systems should therefore be designed with gaps of several metres width to allow large fish to pass through. In combination with further research the insights from this study can be used for guiding the design of hydrokinetic turbine arrays where needed, so preventing ecological impacts.
Cole, Ellen; Keller, Reuben P; Garbach, Kelly
2016-12-15
Aquatic invasive species (AIS) pose major conservation challenges in freshwater ecosystems. In response, conservation organizations invest considerable resources in outreach to encourage AIS prevention behaviors among recreational boaters. Despite this, remarkably little is known about whether these efforts catalyze significant changes in boaters' perceptions, or whether they cause changes in behaviors that reduce AIS risk. We interviewed managers at the 14 Illinois organizations active in AIS outreach to determine regional priorities for, and investment in, AIS outreach. The results show a network of collaboration that reinforces a limited set of conservation messages. Next, we surveyed 515 recreational boaters to evaluate access to outreach, knowledge of AIS, and consistency of prevention behavior. Boater recognition of prevention slogans and knowledge of AIS and AIS prevention behavior was similar across Illinois regions despite large regional differences in investment in outreach. Most boaters (94%) report never intentionally moving organisms among waterbodies. Fewer reported that they Always perform recommended actions to reduce risk of AIS spread on their boat interior (68%), boat exterior (63%), or fishing tackle (47%). Recognition of prevention slogans and the number of AIS recognized were significantly, positively, associated with Always performing AIS prevention behavior on the vectors of the boat exterior, and fishing tackle, respectively. Our results suggest that increasing knowledge may be a necessary condition for higher adoption of AIS prevention behaviors, but that this alone may not be sufficient. Instead, efforts targeted at boaters who do not currently practice the recommended actions are likely to be necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.
Seeing in the deep-sea: visual adaptations in lanternfishes.
de Busserolles, Fanny; Marshall, N Justin
2017-04-05
Ecological and behavioural constraints play a major role in shaping the visual system of different organisms. In the mesopelagic zone of the deep- sea, between 200 and 1000 m, very low intensities of downwelling light remain, creating one of the dimmest habitats in the world. This ambient light is, however, enhanced by a multitude of bioluminescent signals emitted by its inhabitants, but these are generally dim and intermittent. As a result, the visual system of mesopelagic organisms has been pushed to its sensitivity limits in order to function in this extreme environment. This review covers the current body of knowledge on the visual system of one of the most abundant and intensely studied groups of mesopelagic fishes: the lanternfish (Myctophidae). We discuss how the plasticity, performance and novelty of its visual adaptations, compared with other deep-sea fishes, might have contributed to the diversity and abundance of this family.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).
Seeing in the deep-sea: visual adaptations in lanternfishes
2017-01-01
Ecological and behavioural constraints play a major role in shaping the visual system of different organisms. In the mesopelagic zone of the deep- sea, between 200 and 1000 m, very low intensities of downwelling light remain, creating one of the dimmest habitats in the world. This ambient light is, however, enhanced by a multitude of bioluminescent signals emitted by its inhabitants, but these are generally dim and intermittent. As a result, the visual system of mesopelagic organisms has been pushed to its sensitivity limits in order to function in this extreme environment. This review covers the current body of knowledge on the visual system of one of the most abundant and intensely studied groups of mesopelagic fishes: the lanternfish (Myctophidae). We discuss how the plasticity, performance and novelty of its visual adaptations, compared with other deep-sea fishes, might have contributed to the diversity and abundance of this family. This article is part of the themed issue ‘Vision in dim light’. PMID:28193815
NASA Astrophysics Data System (ADS)
Del Raye, G.; Weng, K.
2012-12-01
An urgent challenge facing global marine fisheries is the zoning and implementation of marine protected areas (MPAs). Effective zoning of MPAs requires detailed knowledge of the movement patterns and habitat usage of the species to be protected, yet this information is deficient for many coral reef fishes. We use new detailed acoustic tracking and habitat usage data for a ubiquitous coral reef predator - Caranx melampygus - to understand how well existing MPAs protect this highly fished stock. Surprisingly, our data show that as little as 12% of the MPAs existing within the distribution of C. melampygus are large enough to encompass the movement range of even a single adult individual, suggesting that the establishment of larger coral reef MPAs will be crucial for the sustainable harvesting of this species. These results underscore the urgency of obtaining tracking data for other important coral reef species to better understand the impact of current and planned MPAs on their fisheries.
Resolution of fish allergy: a case report.
Solensky, Roland
2003-10-01
Fish allergy is one of the most common food allergies, and it is believed to be lifelong. There are no published reports, to my knowledge, of resolution of fish allergy. To report a case of resolution of IgE-mediated fish allergy. The patient was a 68-year-old man with a history of fish-induced anaphylaxis who had previously undergone prick-puncture skin testing to several fish species. Additional skin testing was performed in October 2002. Subsequently, he underwent an open challenge with halibut. The patient's previous skin tests showed him to have strongly positive reactions to several fish species. However, testing performed in October 2002 produced negative results to a number of fish species. In addition, he tolerated an open challenge with halibut. In the ensuing 8 months, he has regularly ingested salmon, cod, and halibut without experiencing any allergic reactions. This case illustrates that fish allergy is not invariably lifelong. Hence, allergists should consider reevaluating the allergy status of adults with a history of fish hypersensitivity.
Culvert roughness elements for native Utah fish passage : phase II.
DOT National Transportation Integrated Search
2012-04-01
Native fishes have become an increasingly important concern when designing fish passable culverts. Many operational culverts constrict waterways which increase velocities and prevent upstream passage of small fish species. The current method to ensur...
The economics of fishing the high seas.
Sala, Enric; Mayorga, Juan; Costello, Christopher; Kroodsma, David; Palomares, Maria L D; Pauly, Daniel; Sumaila, U Rashid; Zeller, Dirk
2018-06-01
While the ecological impacts of fishing the waters beyond national jurisdiction (the "high seas") have been widely studied, the economic rationale is more difficult to ascertain because of scarce data on the costs and revenues of the fleets that fish there. Newly compiled satellite data and machine learning now allow us to track individual fishing vessels on the high seas in near real time. These technological advances help us quantify high-seas fishing effort, costs, and benefits, and assess whether, where, and when high-seas fishing makes economic sense. We characterize the global high-seas fishing fleet and report the economic benefits of fishing the high seas globally, nationally, and at the scale of individual fleets. Our results suggest that fishing at the current scale is enabled by large government subsidies, without which as much as 54% of the present high-seas fishing grounds would be unprofitable at current fishing rates. The patterns of fishing profitability vary widely between countries, types of fishing, and distance to port. Deep-sea bottom trawling often produces net economic benefits only thanks to subsidies, and much fishing by the world's largest fishing fleets would largely be unprofitable without subsidies and low labor costs. These results support recent calls for subsidy and fishery management reforms on the high seas.
The economics of fishing the high seas
Mayorga, Juan; Costello, Christopher; Pauly, Daniel
2018-01-01
While the ecological impacts of fishing the waters beyond national jurisdiction (the “high seas”) have been widely studied, the economic rationale is more difficult to ascertain because of scarce data on the costs and revenues of the fleets that fish there. Newly compiled satellite data and machine learning now allow us to track individual fishing vessels on the high seas in near real time. These technological advances help us quantify high-seas fishing effort, costs, and benefits, and assess whether, where, and when high-seas fishing makes economic sense. We characterize the global high-seas fishing fleet and report the economic benefits of fishing the high seas globally, nationally, and at the scale of individual fleets. Our results suggest that fishing at the current scale is enabled by large government subsidies, without which as much as 54% of the present high-seas fishing grounds would be unprofitable at current fishing rates. The patterns of fishing profitability vary widely between countries, types of fishing, and distance to port. Deep-sea bottom trawling often produces net economic benefits only thanks to subsidies, and much fishing by the world’s largest fishing fleets would largely be unprofitable without subsidies and low labor costs. These results support recent calls for subsidy and fishery management reforms on the high seas. PMID:29881780
Genetic considerations for mollusk production in aquaculture: current state of knowledge
Astorga, Marcela P.
2014-01-01
In 2012, world mollusk production in aquaculture reached a volume of 15,171,000 tons, representing 23% of total aquaculture production and positioning mollusks as the second most important category of aquaculture products (fishes are the first). Clams and oysters are the mollusk species with the highest production levels, followed in descending order by mussels, scallops, and abalones. In view of the increasing importance attached to genetic information on aquaculture, which can help with good maintenance and thus the sustainability of production, the present work offers a review of the state of knowledge on genetic and genomic information about mollusks produced in aquaculture. The analysis was applied to mollusks which are of importance for aquaculture, with emphasis on the 5 species with the highest production levels. According to FAO, these are: Japanese clam Ruditapes philippinarum; Pacific oyster Crassostrea gigas; Chilean mussel Mytilus chilensis; Blood clam Anadara granosa and Chinese clam Sinonovacula constricta. To date, the genomes of 5 species of mollusks have been sequenced, only one of which, Crassostrea gigas, coincides with the species with the greatest production in aquaculture. Another important species whose genome has been sequenced is Mytilus galloprovincialis, which is the second most important mussel in aquaculture production, after M. chilensis. Few genetic improvement programs have been reported in comparison with the number reported in fish species. The most commonly investigated species are oysters, with at least 5 genetic improvement programs reported, followed by abalones with 2 programs and mussels with one. The results of this work will establish the current situation with respect to the genetics of mollusks which are of importance for aquaculture production, in order to assist future decisions to ensure the sustainability of these resources. PMID:25540651
NASA Astrophysics Data System (ADS)
Turner, R. A.; Cakacaka, A.; Graham, N. A. J.; Polunin, N. V. C.; Pratchett, M. S.; Stead, S. M.; Wilson, S. K.
2007-12-01
Degraded coral reef ecosystems yield limited goods and services, which is expected to have significant socio-economic impacts on isolated tropical island communities with strong reliance on coral reefs. This study investigates socio-economic changes, specifically in fresh fish consumption and fishing activities, associated with environmental degradation at five fishing grounds ( qoliqoli) in the Lau Islands (Fiji). Semi-structured interviews with fishers and senior household members revealed that the importance of fishing was low relative to other occupations, and consumption of fresh fish has declined over the last decade. Reduced fishing and choice of fresh fish is largely attributable to an increased need to derive income as well as new income-generating opportunities. A possible consequence of reduced reliance on marine resources was limited awareness of recent environmental degradation caused by climate-induced coral bleaching and outbreaks of coral-feeding crown-of-thorns starfish. Limited use and reduced awareness of the local marine environment in the short term may erode social memory and local ecological knowledge, reducing opportunities to fall back on marine resources. This may also compromise long-term economic and social stability. Conversely, low reliance on marine resources may confer greater flexibility to adapt to future ecological change in the marine environment. Importantly, changes in fish consumption and exploitation of marine resources were linked to socio-economic factors rather than a consequence of recent degradation of marine environments. Greater knowledge of the dynamics driving change in marine resource use is necessary to understand how societies respond to ecological and socio-economic change, and to identify opportunities for adaptive sustainable ecosystem management.
Microplastics ingestion by a common tropical freshwater fishing resource.
Silva-Cavalcanti, Jacqueline Santos; Silva, José Diego B; França, Elton José de; Araújo, Maria Christina Barbosa de; Gusmão, Felipe
2017-02-01
Microplastics pollution is widespread in marine ecosystems and a major threat to biodiversity. Nevertheless, our knowledge of the impacts of microplastics in freshwater environments and biota is still very limited. The interaction of microplastics with freshwater organisms and the risks associated with the human consumption of organisms that ingested microplastics remain major knowledge gaps. In this study, we assessed the ingestion of microplastics by Hoplosternum littorale, a common freshwater fish heavily consumed by humans in semi-arid regions of South America. We assessed the abundance and diversity of both plastic debris and other food items found in the gut of fishes caught by local fishermen. We observed that 83% of the fish had plastic debris inside the gut, the highest frequency reported for a fish species so far. Most of the plastic debris (88.6%) recovered from the guts of fish were microplastics (<5 mm), fibres being the most frequent type (46.6%). We observed that fish consumed more microplastics at the urbanized sections of the river, and that the ingestion of microplastics was negatively correlated with the diversity of other food items in the gut of individual fish. Nevertheless, microplastics ingestion appears to have a limited impact on H. littorale, and the consequences of human consumption of this fish were not assessed. Our results suggest freshwater biota are vulnerable to microplastics pollution and that urbanization is a major factor contributing to the pollution of freshwater environments with microplastics. We suggest the gut content of fish could be used as a tool for the qualitative assessment of microplastics pollution in freshwater ecosystems. Further research is needed to determine the processes responsible for the high incidence of microplastics ingestion by H. littorale, and to evaluate the risk posed to humans by the consumption of freshwater fish that ingested microplastics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Learning Ecosystem Complexity: A Study on Small-Scale Fishers' Ecological Knowledge Generation
ERIC Educational Resources Information Center
Garavito-Bermúdez, Diana
2018-01-01
Small-scale fisheries are learning contexts of importance for generating, transferring and updating ecological knowledge of natural environments through everyday work practices. The rich knowledge fishers have of local ecosystems is the result of the intimate relationship fishing communities have had with their natural environments across…
NASA Astrophysics Data System (ADS)
Chiaverano, L.; Robinson, K. L.; Ruzicka, J.; Quiñones, J.; Tam, J.; Acha, M.; Graham, W. M.; Brodeur, R.; Decker, M. B.; Hernandez, F., Jr.; Leaf, R.; Mianzan, H.; Uye, S. I.
2016-02-01
Increases in the frequency of jellyfish mass occurrences in a number of coastal areas around the globe have intensified concerns that some ecosystems are becoming "jellyfish-dominated". Gelatinous planktivores not only compete with forage fish for food, but also feed on fish eggs and larvae. When jellyfish abundance is high, the fraction of the energy and the efficiency at which it is transferred upwards in the food web are reduced compared with times when fish are dominant. Hence, ecosystems supporting major forage fish fisheries are the most likely to experience fish-to-jellyfish shifts due to the harvest pressure on mid-trophic planktivores. Although forage fish-jellyfish replacement cycles have been detected in recent decades in some productive, coastal ecosystems (e.g. Gulf of Mexico, Northern California Current), jellyfish are typically not included in ecosystem-based fisheries management (EBFM) production models. Here we explored the roles of jellyfish and forage fish as trophic energy transfer pathways to higher trophic levels in the Northern Humboldt Current (NHC) ecosystem, one of the most productive ecosystems in the world. A trophic network model with 33 functional groups was developed using ECOPATH and transformed to an end-to-end model using ECOTRAN techniques to map food web energy flows. Predicted, relative changes in functional group productivity were analyzed in simulations with varying forage fish consumption rates, jellyfish consumption rates, and forage fish harvest rates in a suite of static, alternative-energy-demand scenarios. Our modeling efforts will not only improve EBFM of forage fish and their predators in the NHC ecosystem, but also increase our understanding of trophic interactions between forage fish and large jellyfish, an important, but overlooked component in most ecosystem models to date.
There is evidence that exposure to endocrine disrupting chemicals (EDCs) during early life stages can alter sex differentiation in fishes. Fathead minnows (Pimephales promelas) are commonly used as a model fish species in endocrine disruption studies. However, limited knowledge...
REGIONAL-SCALE FISH ECOLOGY IN NORTHEASTERN USA LAKES USING A PROBABILITY-BASED SURVEY DESIGN
Historically, most fish ecology has been done at local scales. As these data accumulate, the need to set this knowledge into landscape, regional, and historical context grows. There are important broad-scale issues (e.g., non-point source pollution, biodiversity loss, alien spe...
Greater knowledge of biotransformation rates for ionizable organic compounds (IOCs) in fish is required to properly assess the bioaccumulation potential of many environmentally relevant contaminants. In this study we measured in vitro hepatic clearance rates for 50 IOCs using a p...
DISTRIBUTION AND EXTENT OF NON-NATIVE FISH IN WESTERN STREAMS AND RIVERS
Introduced species can produce a variety of impacts on native assemblages and ecosystems. Reliable knowledge about the extent of non-native species should be a useful tool for effective management of fisheries and aquatic ecosystems. It is well known that many non-native fish s...
Methods for assessing fish populations
Kevin L. Pope; Steve E. Lochmann; Michael K. Young
2010-01-01
Fisheries managers are likely to assess fish populations at some point during the fisheries management process. Managers that follow the fisheries management process (see Chapter 5) might find their knowledge base insufficient during the steps of problem identification or management action and must assess a population before appropriate actions can be taken. Managers...
Haigh, Rowan; Ianson, Debby; Holt, Carrie A.; Neate, Holly E.; Edwards, Andrew M.
2015-01-01
As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2–3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty. PMID:25671596
Haigh, Rowan; Ianson, Debby; Holt, Carrie A; Neate, Holly E; Edwards, Andrew M
2015-01-01
As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2-3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty.
Kellner, M; Porseryd, T; Porsch-Hällström, I; Borg, B; Roufidou, C; Olsén, K H
2018-01-01
Selective Serotonin re-uptake inhibitors (SSRIs) are a class of psychotropic drugs used to treat depression in both adolescents and pregnant or breast-feeding mothers as well as in the general population. Recent research on rodents points to long-lasting behavioural effects of pre- and perinatal exposure to SSRIs which last into adulthood. In fish however, studies on effects of developmental exposure to SSRIs appears to be non-existent. In order to study effects of developmental SSRI exposure in fish, three-spine sticklebacks were exposed to 1.5 µg/l of the SSRI citalopram in the ambient water for 30 days, starting two days post-fertilisation. After approximately 100 days of remediation in clean water the fish were put through an extensive battery of behavioural tests. Feeding behaviour was tested as the number of bites against a piece of food and found to be increased in the exposed fish. Aggression levels were measured as the number of bites against a mirror image during 10 min and was also found to be significantly increased in the exposed fish. Novel tank behaviour and locomotor activity was tested in an aquarium that had a horizontal line drawn half-way between the bottom and the surface. Neither the latency to the first transition to the upper half, nor the number of transitions or the total time spent in the upper half was affected by treatment. Locomotor activity was significantly reduced in the exposed fish. The light/dark preference was tested in an aquarium where the bottom and walls were black on one side and white on the other. The number of transitions to the white side was significantly reduced in the exposed fish but there was no effect on the latency to the first transition or the total time spent in the white half. The results in the current study indicate that developmental SSRI exposure causes long-lasting behavioural effects in fish and contribute to the existing knowledge about SSRIs as environmental pollutants.
Issues of Fish Consumption for Cardiovascular Disease Risk Reduction
Raatz, Susan K.; Silverstein, Jeffrey T.; Jahns, Lisa; Picklo, Matthew J.
2013-01-01
Increasing fish consumption is recommended for intake of omega-3 (n-3) fatty acids and to confer benefits for the risk reduction of cardiovascular disease (CVD). Most Americans are not achieving intake levels that comply with current recommendations. It is the goal of this review to provide an overview of the issues affecting this shortfall of intake. Herein we describe the relationship between fish intake and CVD risk reduction as well as the other nutritional contributions of fish to the diet. Currently recommended intake levels are described and estimates of fish consumption at a food disappearance and individual level are reported. Risk and benefit factors influencing the choice to consume fish are outlined. The multiple factors influencing fish availability from global capture and aquaculture are described as are other pertinent issues of fish nutrition, production, sustainability, and consumption patterns. This review highlights some of the work that needs to be carried out to meet the demand for fish and to positively affect intake levels to meet fish intake recommendations for CVD risk reduction. PMID:23538940
Exposure of unionid mussels to electric current: Assessing risks associated with electrofishing
Holliman, F.M.; Kwak, T.J.; Cope, W.G.; Levine, Jay F.
2007-01-01
Electric current is routinely applied in freshwater for scientific sampling of fish populations (i.e., electrofishing). Freshwater mussels (families Margaritiferidae and Unionidae) are distributed worldwide, but their recent declines in diversity and abundance constitute an imperilment of global significance. Freshwater mussels are not targeted for capture by electrofishing, and any exposure to electric current is unintentional. The effects of electric shock are not fully understood for mussels but could disrupt vital physiological processes and represent an additional threat to their survival. In a controlled laboratory environment, we examined the consequences of exposure to two typical electrofishing currents, 60-Hz pulsed DC and 60-Hz AC, for the survival of adult and early life stages of three unionid species; we included fish as a quality control measure. The outcomes suggest that electrical exposure associated with typical electrofishing poses little direct risk to freshwater mussels. That is, adult mussel survival and righting behaviors (indicators of sublethal stress) were not adversely affected by electrical exposure. Glochidia (larvae that attach to and become parasites on fish gills or fins) showed minimal immediate reduction in viability after exposure. Metamorphosis from glochidia to free-living juvenile mussels was not impaired after electric current simulated capture-prone behaviors (stunning) in infested host fish. In addition, the short-term survival of juvenile mussels was not adversely influenced by exposure to electric current. Any minimal risk to imperiled mussels must be weighed at the population level against the benefits gained by using the gear for scientific sampling of fish in the same waters. However, scientists sampling fish by electrofishing should be aware of mussel reproductive periods and processes in order to minimize the harmful effects to host fish, especially in areas where mussel conservation is a concern. ?? Copyright by the American Fisheries Society 2007.
Marramà, Giuseppe; Carnevale, Giorgio
2018-01-01
Fishes of the family Clupeidae are extremely abundant in the Eocene fossiliferous limestone of Monte Bolca representing the most common group from this celebrated locality. A new clupeid from the Pesciara site, Eoalosa janvieri gen. et sp. nov., is described. The new taxon exhibits a unique combination of characters supporting its recognition as a new genus and species of clupeid fish that is tentatively placed in the subfamily Alosinae. The description of this new taxon improves our knowledge of the diversity of clupeoid fishes in the Eocene of Monte Bolca.
Almstrand, Robert; Persson, Frank; Daims, Holger; Ekenberg, Maria; Christensson, Magnus; Wilén, Britt-Marie; Sörensson, Fred; Hermansson, Malte
2014-01-01
Moving bed biofilm reactors (MBBRs) are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox) processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB) and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH) to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers. PMID:24481066
A review on the Scorpaena plumieri fish venom and its bioactive compounds.
Campos, Fabiana V; Menezes, Thiago N; Malacarne, Pedro F; Costa, Fábio L S; Naumann, Gustavo B; Gomes, Helena L; Figueiredo, Suely G
2016-01-01
The most poisonous fish species found along the Brazilian coast is the spotted scorpionfish Scorpaena plumieri . Though hardly ever life-threatening to humans, envenomation by S. plumieri can be quite hazardous, provoking extreme pain and imposing significant socioeconomic costs, as the victims may require days to weeks to recover from their injuries. In this review we will walk the reader through the biological features that distinguish this species as well as the current epidemiological knowledge related to the envenomation and its consequences. But above all, we will discuss the challenges involved in the biochemical characterization of the S. plumieri venom and its compounds, focusing then on the successful isolation and pharmacological analysis of some of the bioactive molecules responsible for the effects observed upon envenomation as well as on experimental models. Despite the achievement of considerable progress, much remains to be done, particularly in relation to the non-proteinaceous components of the venom. Therefore, further studies are necessary in order to provide a more complete picture of the venom's chemical composition and physiological effects. Given that fish venoms remain considerably less studied when compared to terrestrial venoms, the exploration of their full potential opens a myriad of possibilities for the development of new drug leads and tools for elucidating the complex physiological processes.
Assessment of management options in marine fisheries by qualitative modelling techniques.
Eisenack, K; Kropp, J
2001-01-01
An effective management of the rapidly dwindling marine fish resources is of great ecological, economic and social importance for the future. An over-development of commercial fisheries has brought about a multitude of negative environmental impacts, such as an accelerated exploitation of stocks or a decrease of marine biodiversity, and furthermore, a profound structural change in fish industry. However, the main reason for the non-prosperous rationing of marine resources is the lack of knowledge about certain processes as well as the non-availability of adequate steering instruments. This paper addresses the lack of conceptualization in the case of uncertain knowledge. It proposes a model approach which can be used for weak but improved decision support under the premise of vague knowledge. The usage of qualitative differential equations illustrates general patterns of overcapitalization of fishing fleets. The extension of traditional model approaches by integration of additional socio-economic phenomena in this context supplies deeper insights in the dynamics of a coupled economic and ecological system. The approach provides a set of characteristic system behaviours which can be fruitfully used for the development of future management tasks.
Nolte, Tom M; Ragas, Ad M J
2017-03-22
Many organic chemicals are ionizable by nature. After use and release into the environment, various fate processes determine their concentrations, and hence exposure to aquatic organisms. In the absence of suitable data, such fate processes can be estimated using Quantitative Structure-Property Relationships (QSPRs). In this review we compiled available QSPRs from the open literature and assessed their applicability towards ionizable organic chemicals. Using quantitative and qualitative criteria we selected the 'best' QSPRs for sorption, (a)biotic degradation, and bioconcentration. The results indicate that many suitable QSPRs exist, but some critical knowledge gaps remain. Specifically, future focus should be directed towards the development of QSPR models for biodegradation in wastewater and sediment systems, direct photolysis and reaction with singlet oxygen, as well as additional reactive intermediates. Adequate QSPRs for bioconcentration in fish exist, but more accurate assessments can be achieved using pharmacologically based toxicokinetic (PBTK) models. No adequate QSPRs exist for bioconcentration in non-fish species. Due to the high variability of chemical and biological species as well as environmental conditions in QSPR datasets, accurate predictions for specific systems and inter-dataset conversions are problematic, for which standardization is needed. For all QSPR endpoints, additional data requirements involve supplementing the current chemical space covered and accurately characterizing the test systems used.
Effects of climatic changes on anisakid nematodes in polar regions
NASA Astrophysics Data System (ADS)
Rokicki, Jerzy
2009-11-01
Anisakid nematodes are common in Antarctic, sub-Antarctic, and Arctic areas. Current distributional knowledge of anisakids in the polar regions is reviewed. Climatic variables influence the occurrence and abundance of anisakids, directly influencing their free-living larval stages and also indirectly influencing their predominantly invertebrate (but also vertebrate) hosts. As these parasites can also be pathogenic for humans, the paucity of information available is a source of additional hazard. As fish are a major human dietary component in Arctic and Antarctic areas, and are often eaten without heat processing, a high risk of infection by anisakid larvae might be expected. The present level of knowledge, particularly relating to anisakid larval stages present in fishes, is far from satisfactory. Preliminary molecular studies have revealed the presence of species complexes. Contemporary climate warming is modifying the marine environment and may result in an extension of time during which anisakid eggs can persist and hatch, and of the time period during which newly hatched larvae remain viable. As a result there may be an increase in the extent of anisakid distribution. Continued warming will modify the composition of the parasitic nematode fauna of marine animals, due to changes in feeding habits, as the warming of the sea and any localised reduction in salinity (from freshwater runoff) can be expected to bring about changes in the species composition of pelagic and benthic invertebrates.
An Assessment of Food Safety Needs of Restaurants in Owerri, Imo State, Nigeria
Onyeneho, Sylvester N.; Hedberg, Craig W.
2013-01-01
One hundred and forty five head chefs and catering managers of restaurants in Owerri, Nigeria were surveyed to establish their knowledge of food safety hazards and control measures. Face-to-face interviews were conducted and data collected on their knowledge of risk perception, food handling practices, temperature control, foodborne pathogens, and personal hygiene. Ninety-two percent reported that they clean and sanitize food equipment and contact surfaces while 37% engaged in cross-contamination practices. Forty-nine percent reported that they would allow a sick person to handle food. Only 70% reported that they always washed their hands while 6% said that they continued cooking after cracking raw eggs. All respondents said that they washed their hands after handling raw meat, chicken or fish. About 35% lacked knowledge of ideal refrigeration temperature while 6% could not adjust refrigerator temperature. Only 40%, 28%, and 21% had knowledge of Salmonella, E. coli, and Hepatitis A, respectively while 8% and 3% had knowledge of Listeria and Vibrio respectively, as pathogens. Open markets and private bore holes supplied most of their foods and water, respectively. Pearson’s Correlation Coefficient analysis revealed almost perfect linear relationship between education and knowledge of pathogens (r = 0.999), cooking school attendance and food safety knowledge (r = 0.992), and class of restaurant and food safety knowledge (r = 0.878). The lack of current knowledge of food safety among restaurant staff highlights increased risk associated with fast foods and restaurants in Owerri. PMID:23917815
DNA barcoding of Cuban freshwater fishes: evidence for cryptic species and taxonomic conflicts.
Lara, Ariagna; Ponce de León, José Luis; Rodríguez, Rodet; Casane, Didier; Côté, Guillaume; Bernatchez, Louis; García-Machado, Erik
2010-05-01
Despite ongoing efforts to protect species and ecosystems in Cuba, habitat degradation, overuse and introduction of alien species have posed serious challenges to native freshwater fish species. In spite of the accumulated knowledge on the systematics of this freshwater ichthyofauna, recent results suggested that we are far from having a complete picture of the Cuban freshwater fish diversity. It is estimated that 40% of freshwater Cuban fish are endemic; however, this number may be even higher. Partial sequences (652 bp) of the mitochondrial gene COI (cytochrome c oxidase subunit I) were used to barcode 126 individuals, representing 27 taxonomically recognized species in 17 genera and 10 families. Analysis was based on Kimura 2-parameter genetic distances, and for four genera a character-based analysis (population aggregation analysis) was also used. The mean conspecific, congeneric and confamiliar genetic distances were 0.6%, 9.1% and 20.2% respectively. Molecular species identification was in concordance with current taxonomical classification in 96.4% of cases, and based on the neighbour-joining trees, in all but one instance, members of a given genera clustered within the same clade. Within the genus Gambusia, genetic divergence analysis suggests that there may be at least four cryptic species. In contrast, low genetic divergence and a lack of diagnostic sites suggest that Rivulus insulaepinorum may be conspecific with Rivulus cylindraceus. Distance and character-based analysis were completely concordant, suggesting that they complement species identification. Overall, the results evidenced the usefulness of the DNA barcodes for cataloguing Cuban freshwater fish species and for identifying those groups that deserve further taxonomic attention. © 2009 Blackwell Publishing Ltd.
Castillo-Briceño, P; Aguila-Martínez, S; Liarte, S; García Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A
2013-01-01
Current knowledge on the sensitivity of marine fish to androgenic environmental chemicals is limited, despite the growing interest in the effects of endocrine disrupting chemicals. To study in vivo the effects of testosterone (T) on the fish immune response, we used a microencapsulation implant technique, the in situ forming microparticle system, containing 1 mg T/kg body weight (T-ISM), in adult specimens of gilthead seabream (Sparus aurata L.), a species of great economic interest. We demonstrated that implants themselves (without T) have no significant effect on most of the parameters measured. In T-ISM implanted fish, T serum levels reached supraphysiological concentrations accompanied by a slight increase in 11-ketotestosterone and 17β-estradiol levels 21 days post-implantation (dpi). Liver and head-kidney samples were processed 7 and 21 dpi to assess T-ISM effect on (i) the mRNA expression of genes involved in the metabolism of steroid hormones and in the immune response, and (ii) phagocyte activities. The expression profile of cytokines, chemokines and immune receptors was altered in T-ISM implanted animals that showed an early pro-inflammatory tendency, and then, a mixed pro-/anti-inflammatory activation during longer exposure. Furthermore, the enhancement of phagocytic activity and the production of reactive oxygen species by leukocytes 21 dpi in T-ISM implanted specimens suggest fine modulation of the innate immune response by T. Taken together, these data demonstrate for the first time the feasibility of using ISM implants in an aquatic species, and provide new data on the role played by T on the immune response in fish. Copyright © 2012 Elsevier Inc. All rights reserved.
Baka, Maria; Verheyen, Davy; Cornette, Nicolas; Vercruyssen, Stijn; Van Impe, Jan F
2017-01-02
The limited knowledge concerning the influence of food (micro)structure on microbial dynamics decreases the accuracy of the developed predictive models, as most studies have mainly been based on experimental data obtained in liquid microbiological media or in/on real foods. The use of model systems has a great potential when studying this complex factor. Apart from the variability in (micro)structural properties, model systems vary in compositional aspects, as a consequence of their (micro)structural variation. In this study, different experimental food model systems, with compositional and physicochemical properties similar to fish patés, are developed to study the influence of food (micro)structure on microbial dynamics. The microbiological safety of fish products is of major importance given the numerous cases of salmonellosis and infections attributed to staphylococcus toxins. The model systems understudy represent food (micro)structures of liquids, aqueous gels, emulsions and gelled emulsions. The growth/inactivation dynamics and a modelling approach of combined growth and inactivation of Salmonella Typhimurium and Staphylococcus aureus, related to fish products, are investigated in/on these model systems at temperatures relevant to fish products' common storage (4°C) and to abuse storage temperatures (8 and 12°C). ComBase (http://www.combase.cc/) predictions compared with the maximum specific growth rate (μ max ) values estimated by the Baranyi and Roberts model in the current study indicated that the (micro)structure influences the microbial dynamics. Overall, ComBase overestimated microbial growth at the same pH, a w and storage temperature. Finally, the storage temperature had also an influence on how much each model system affected the microbial dynamics. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Lin, Yinwei
2018-06-01
A three-dimensional modeling of fish school performed by a modified Adomian decomposition method (ADM) discretized by the finite difference method is proposed. To our knowledge, few studies of the fish school are documented due to expensive cost of numerical computing and tedious three-dimensional data analysis. Here, we propose a simple model replied on the Adomian decomposition method to estimate the efficiency of energy saving of the flow motion of the fish school. First, the analytic solutions of Navier-Stokes equations are used for numerical validation. The influences of the distance between the side-by-side two fishes are studied on the energy efficiency of the fish school. In addition, the complete error analysis for this method is presented.
Mclean, Elizabeth L; Forrester, Graham E
2018-04-01
We tested whether fishers' local ecological knowledge (LEK) of two fish life-history parameters, size at maturity (SAM) at maximum body size (MS), was comparable to scientific estimates (SEK) of the same parameters, and whether LEK influenced fishers' perceptions of sustainability. Local ecological knowledge was documented for 82 fishers from a small-scale fishery in Samaná Bay, Dominican Republic, whereas SEK was compiled from the scientific literature. Size at maturity estimates derived from LEK and SEK overlapped for most of the 15 commonly harvested species (10 of 15). In contrast, fishers' maximum size estimates were usually lower than (eight species), or overlapped with (five species) scientific estimates. Fishers' size-based estimates of catch composition indicate greater potential for overfishing than estimates based on SEK. Fishers' estimates of size at capture relative to size at maturity suggest routine inclusion of juveniles in the catch (9 of 15 species), and fishers' estimates suggest that harvested fish are substantially smaller than maximum body size for most species (11 of 15 species). Scientific estimates also suggest that harvested fish are generally smaller than maximum body size (13 of 15), but suggest that the catch is dominated by adults for most species (9 of 15 species), and that juveniles are present in the catch for fewer species (6 of 15). Most Samaná fishers characterized the current state of their fishery as poor (73%) and as having changed for the worse over the past 20 yr (60%). Fishers stated that concern about overfishing, catching small fish, and catching immature fish contributed to these perceptions, indicating a possible influence of catch-size composition on their perceptions. Future work should test this link more explicitly because we found no evidence that the minority of fishers with more positive perceptions of their fishery reported systematically different estimates of catch-size composition than those with the more negative majority view. Although fishers' and scientific estimates of size at maturity and maximum size parameters sometimes differed, the fact that fishers make routine quantitative assessments of maturity and body size suggests potential for future collaborative monitoring efforts to generate estimates usable by scientists and meaningful to fishers. © 2017 by the Ecological Society of America.
May, J.T.; Brown, L.R.
2002-01-01
The associations of resident fish communities with environmental variables and stream condition were evaluated at representative sites within the Sacramento River Basin, California between 1996 and 1998 using multivariate ordination techniques and by calculating six fish community metrics. In addition, the results of the current study were compared with recent studies in the San Joaquin River drainage to provide a wider perspective of the condition of resident fish communities in the Central Valley of California as a whole. Within the Sacramento drainage, species distributions were correlated with elevational and substrate size gradients; however, the elevation of a sampling site was correlated with a suite of water-quality and habitat variables that are indicative of land use effects on physiochemical stream parameters. Four fish community metrics - percentage of native fish, percentage of intolerant fish, number of tolerant species, and percentage of fish with external anomalies - were responsive to environmental quality. Comparisons between the current study and recent studies in the San Joaquin River drainage suggested that differences in water-management practices may have significant effects on native species fish community structure. Additionally, the results of the current study suggest that index of biotic integrity-type indices can be developed for the Sacramento River Basin and possibly the entire Central Valley, California. The protection of native fish communities in the Central Valley and other arid environments continues to be a conflict between human needs for water resources and the requirements of aquatic ecosystems; preservation of these ecosystems will require innovative management strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grippo, Mark A.; Shen, Haixue; Zydlewski, Gayle
There is significant interest in the interaction of aquatic organisms with current-based marine and hydrokinetic (MHK) technologies. Determining the potential impacts of MHK devices on fish behavior is critical to addressing the environmental concerns that could act as barriers to the permitting and deployment of MHK devices. To address these concerns, we use field monitoring and fish behavior models to characterize the behavioral responses of fish to MHK turbines and infer potential stimuli that may have elicited the observed behavioral changes.
Marcus, Susan M.
2010-01-01
In the late 1800s, John Wesley Powell, the second director of the U.S. Geological Survey (USGS), followed his interest in the tribes of the Great Basin and Colorado Plateau and studied their cultures, languages, and surroundings. From that early time, the USGS has recognized the importance of Native knowledge and living in harmony with nature as complements to the USGS mission to better understand the Earth. Combining traditional ecological knowledge with empirical studies allows the USGS and Native American governments, organizations, and people to increase their mutual understanding and respect for this land. The USGS is the earth and natural science bureau within the U.S. Department of the Interior (DOI) and is not responsible for regulations or land management. Climate change is a major current issue affecting Native lives and traditions throughout the United States. Climate projections for the coming century indicate an increasing probability for more frequent and more severe droughts in the Southwest, including the Navajo Nation. Erosion has claimed Native homes in Alaska. Fish have become inedible due to diseases that turn their flesh mushy. Native people who rely on or who are culturally sustained by hunting, fishing, and using local plants are living with climate change now. The traditional knowledge of Native peoples enriches and confirms the work of USGS scientists. The results are truly synergistic-greater than the sum of their parts. Traditional ecological knowledge is respected and increasingly used in USGS studies-when the holders of that knowledge choose to share it. The USGS respects the rights of Native people to maintain their patrimony of traditional ecological knowledge. The USGS studies can help Tribes, Native organizations, and natural resource professionals manage Native lands and resources with the best available unbiased data and information that can be added to their traditional knowledge. Wise Native leaders have noted that traditional ecological knowledge includes the connections between Earth and her denizens. From this perspective, it is the connections among these ?relatives? that needs to be nurtured. This perspective on nature is finding new adherents among Natives and non-Natives as understanding of climate change and other environmental conditions deepens. Although this report uses the term ?resources,? the USGS, through its interdisciplinary research, acknowledges the interconnectedness of the Earth and the things that live upon it.
Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.
Lyons, J.; Stewart, J.S.; Mitro, M.
2010-01-01
Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56.0-93.5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1?? C and water 0.8?? C), moderate warming (air 3?? C and water 2.4?? C) and major warming (air 5?? C and water 4?? C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. ?? 2010 The Authors. Journal of Fish Biology ?? 2010 The Fisheries Society of the British Isles.
Large mesopelagic fishes biomass and trophic efficiency in the open ocean.
Irigoien, Xabier; Klevjer, T A; Røstad, A; Martinez, U; Boyra, G; Acuña, J L; Bode, A; Echevarria, F; Gonzalez-Gordillo, J I; Hernandez-Leon, S; Agusti, S; Aksnes, D L; Duarte, C M; Kaartvedt, S
2014-01-01
With a current estimate of ~1,000 million tons, mesopelagic fishes likely dominate the world total fishes biomass. However, recent acoustic observations show that mesopelagic fishes biomass could be significantly larger than the current estimate. Here we combine modelling and a sensitivity analysis of the acoustic observations from the Malaspina 2010 Circumnavigation Expedition to show that the previous estimate needs to be revised to at least one order of magnitude higher. We show that there is a close relationship between the open ocean fishes biomass and primary production, and that the energy transfer efficiency from phytoplankton to mesopelagic fishes in the open ocean is higher than what is typically assumed. Our results indicate that the role of mesopelagic fishes in oceanic ecosystems and global ocean biogeochemical cycles needs to be revised as they may be respiring ~10% of the primary production in deep waters.
Large mesopelagic fishes biomass and trophic efficiency in the open ocean
Irigoien, Xabier; Klevjer, T. A.; Røstad, A.; Martinez, U.; Boyra, G.; Acuña, J. L.; Bode, A.; Echevarria, F.; Gonzalez-Gordillo, J. I.; Hernandez-Leon, S.; Agusti, S.; Aksnes, D. L.; Duarte, C. M.; Kaartvedt, S.
2014-01-01
With a current estimate of ~1,000 million tons, mesopelagic fishes likely dominate the world total fishes biomass. However, recent acoustic observations show that mesopelagic fishes biomass could be significantly larger than the current estimate. Here we combine modelling and a sensitivity analysis of the acoustic observations from the Malaspina 2010 Circumnavigation Expedition to show that the previous estimate needs to be revised to at least one order of magnitude higher. We show that there is a close relationship between the open ocean fishes biomass and primary production, and that the energy transfer efficiency from phytoplankton to mesopelagic fishes in the open ocean is higher than what is typically assumed. Our results indicate that the role of mesopelagic fishes in oceanic ecosystems and global ocean biogeochemical cycles needs to be revised as they may be respiring ~10% of the primary production in deep waters. PMID:24509953
Learning about Skeletons and Other Organ Systems of Vertebrate Animals.
ERIC Educational Resources Information Center
Tunnicliffe, Sue Dale; Reiss, Michael
1999-01-01
Describes students' (n=175) understandings of the structure of animal (including human) skeletons and the internal organs found in them. Finds that older students have a better knowledge of animals' internal anatomies, although knowledge of human internal structure is significantly better than knowledge of rat, bird, and fish internal structure.…
Does the social capital in networks of “fish and fire” scientists and managers suggest learning?
A. Paige Fischer; Ken Vance-Borland; Kelly M. Burnett; Susan Hummel; Janean H. Creighton; Sherri L. Johnson; Lorien Jasny
2014-01-01
Patterns of social interaction influence how knowledge is generated, communicated, and applied. Theories of social capital and organizational learning suggest that interactions within disciplinary or functional groups foster communication of knowledge, whereas interactions across groups foster generation of new knowledge. We used social network analysis to examine...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Thomas J.; Popper, Arthur N.
1997-06-01
A workshop on ``Use of Sound for Fish Protection at Power-Production and Water-Control Facilities`` was held in Portland, Oregon on December 12--13, 1995. This workshop convened a 22-member panel of international experts from universities, industry, and government to share knowledge, questions, and ideas about using sound for fish guidance. Discussions involved in a broad range of indigenous migratory and resident fish species and fish-protection issues in river systems, with particular focus on the Columbia River Basin. Because the use of sound behavioral barriers for fish is very much in its infancy, the workshop was designed to address the many questionsmore » being asked by fishery managers and researchers about the feasibility and potential benefits of using sound to augment physical barriers for fish protection in the Columbia River system.« less
78 FR 37397 - Small Business Size Standards: Agriculture, Forestry, Fishing and Hunting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-20
... Small Business Size Standards: Agriculture, Forestry, Fishing and Hunting AGENCY: U.S. Small Business... (NAICS) Sector 11, Agriculture, Forestry, Fishing and Hunting, and retaining the current standards for...-industries (``exceptions'') in NAICS Sector 11, Agriculture, Forestry, Fishing and Hunting, to determine...
78 FR 20092 - Proposed Information Collection; Comment Request; Fish and Seafood Promotion
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... Collection; Comment Request; Fish and Seafood Promotion AGENCY: National Oceanic and Atmospheric... for extension of a currently approved information collection. Under the authority of the Fish and...-produced fish products. The information collection requirements can be broadly divided into two categories...
The California Wildlife/Fish Habitat Relationship System
William E. Grenfell; Hal Salwasser; William F. Laudenslayer
1982-01-01
The California Wildlife/Fish Habitat Relationships (WFHR) System is an ongoing effort to apply our knowledge of wildlife habitat requirements to identify and explain the consequences of proposed land use activities, particularly those activities that affect vegetation. The U.S. Forest Service initiated the WFHR program in California in 1976 and has developed it for all...
Current knowledge of the roles of ghrelin in regulating food intake and energy balance in birds.
Kaiya, Hiroyuki; Furuse, Mitsuhiro; Miyazato, Mikiya; Kangawa, Kenji
2009-09-01
A decade has passed since the peptide hormone ghrelin was first discovered in rat stomach. During this period, ghrelin has been identified not only in other mammals but also in fish, amphibians, reptiles and birds, and its physiological functions have been widely investigated. Avian ghrelin was first identified in chickens in 2002 and to date, the amino acid sequences of six different avian ghrelin peptides have been reported. In mammals, ghrelin is the only known gut-derived hormone to stimulate food intake when administered centrally or peripherally. In studies on chickens and quail, however, ghrelin inhibits food intake when injected centrally, while the effects on feeding behavior elicited by ghrelin injected peripherally are equivocal. This review summarizes what is currently known about the regulation of food intake and energy balance by ghrelin in birds.
The interaction between water currents and salmon swimming behaviour in sea cages.
Johansson, David; Laursen, Frida; Fernö, Anders; Fosseidengen, Jan Erik; Klebert, Pascal; Stien, Lars Helge; Vågseth, Tone; Oppedal, Frode
2014-01-01
Positioning of sea cages at sites with high water current velocities expose the fish to a largely unknown environmental challenge. In this study we observed the swimming behaviour of Atlantic salmon (Salmo salar L.) at a commercial farm with tidal currents altering between low, moderate and high velocities. At high current velocities the salmon switched from the traditional circular polarized group structure, seen at low and moderate current velocities, to a group structure where all fish kept stations at fixed positions swimming against the current. This type of group behaviour has not been described in sea cages previously. The structural changes could be explained by a preferred swimming speed of salmon spatially restricted in a cage in combination with a behavioural plasticity of the fish.
2012-05-15
P. Cotel, "Three-dimensional structure and avoidance behavior of anchovy and common sardine schools in central southern Chile ," ICES J. Mar. Sei. 61...the most abundant species of schooling fish off the West Coast Therefore, sardines are the best candidates to be clutter targets. In preparation for...fish and to interpret the results, pertinent characteristics of the major fish species in the region must be known. The best source of that knowledge
Wood, Anna C. L.; Rowden, Ashley A.; Compton, Tanya J.; Gordon, Dennis P.; Probert, P. Keith
2013-01-01
Frame-building bryozoans occasionally occur in sufficient densities in New Zealand waters to generate habitat for other macrofauna. The environmental conditions necessary for bryozoans to generate such habitat, and the distributions of these species, are poorly known. Bryozoan-generated habitats are vulnerable to bottom fishing, so knowledge of species’ distributions is essential for management purposes. To better understand these distributions, presence records were collated and mapped, and habitat suitability models were generated (Maxent, 1 km2 grid) for the 11 most common habitat-forming bryozoan species: Arachnopusia unicornis , Cellaria immersa , Cellaria tenuirostris , Celleporariaagglutinans , Celleporinagrandis , Cinctipora elegans , Diaperoecia purpurascens , Galeopsis porcellanicus , Hippomenella vellicata , Hornerafoliacea , and Smittoideamaunganuiensis . The models confirmed known areas of habitat, and indicated other areas as potentially suitable. Water depth, vertical water mixing, tidal currents, and water temperature were useful for describing the distribution of the bryozoan species at broad scales. Areas predicted as suitable for multiple species were identified, and these ‘hotspots’ were compared to fishing effort data. This showed a potential conflict between fishing and the conservation of bryozoan-generated habitat. Fishing impacts are known from some sites, but damage to large areas of habitat-forming bryozoans is likely to have occurred throughout the study area. In the present study, spatial error associated with the use of historic records and the coarse native resolution of the environmental variables limited both the resolution at which the models could be interpreted and our understanding of the ecological requirements of the study species. However, these models show species distribution modelling has potential to further our understanding of habitat-forming bryozoan ecology and distribution. Importantly, comparisons between hotspots of suitable habitat and the distribution of bottom fishing in the study area highlight the need for management measures designed to mitigate the impact of seafloor disturbance on bryozoan-generated habitat in New Zealand waters. PMID:24086460
Wood, Anna C L; Rowden, Ashley A; Compton, Tanya J; Gordon, Dennis P; Probert, P Keith
2013-01-01
Frame-building bryozoans occasionally occur in sufficient densities in New Zealand waters to generate habitat for other macrofauna. The environmental conditions necessary for bryozoans to generate such habitat, and the distributions of these species, are poorly known. Bryozoan-generated habitats are vulnerable to bottom fishing, so knowledge of species' distributions is essential for management purposes. To better understand these distributions, presence records were collated and mapped, and habitat suitability models were generated (Maxent, 1 km(2) grid) for the 11 most common habitat-forming bryozoan species: Arachnopusia unicornis, Cellaria immersa, Cellaria tenuirostris, Celleporaria agglutinans, Celleporina grandis, Cinctipora elegans, Diaperoecia purpurascens, Galeopsis porcellanicus, Hippomenella vellicata, Hornera foliacea, and Smittoidea maunganuiensis. The models confirmed known areas of habitat, and indicated other areas as potentially suitable. Water depth, vertical water mixing, tidal currents, and water temperature were useful for describing the distribution of the bryozoan species at broad scales. Areas predicted as suitable for multiple species were identified, and these 'hotspots' were compared to fishing effort data. This showed a potential conflict between fishing and the conservation of bryozoan-generated habitat. Fishing impacts are known from some sites, but damage to large areas of habitat-forming bryozoans is likely to have occurred throughout the study area. In the present study, spatial error associated with the use of historic records and the coarse native resolution of the environmental variables limited both the resolution at which the models could be interpreted and our understanding of the ecological requirements of the study species. However, these models show species distribution modelling has potential to further our understanding of habitat-forming bryozoan ecology and distribution. Importantly, comparisons between hotspots of suitable habitat and the distribution of bottom fishing in the study area highlight the need for management measures designed to mitigate the impact of seafloor disturbance on bryozoan-generated habitat in New Zealand waters.
Current status of non-native fish species in the St. Louis River estuary
The fish community of the St. Louis River estuary is well characterized, thanks to fishery assessment and invasive species early detection monitoring by federal, state, and tribal agencies. This sampling includes long-standing adult/juvenile fish surveys, larval fish surveys beg...
A possible cause of sunburn in fish
1958-01-01
A LESION DESCRIBED AS A GRAY ΡATCH GENERALLY LOCATED ΑΝΤΕRIOR TO THE DORSAL FIN has been associated with high mortality of fish on numerous occasions in production hatcheries throughout the United States. This lesion has been called "sunburn" or "backpeel." No bacteria or other pathogens have been found in fish with these symptoms. For example, at a Montana hatchery in April 1956, mortality of 10 to 15 percent occurred daily and this lesion was the only syndrome found. On occasion, shade has prevented this condition and even restored affected fish to an apparent normal condition; thus there has seemed to be a correlation between sunshine and the condition in fish. To our knowledge, this has been the only therapy attempted.
NASA Astrophysics Data System (ADS)
Sawayama, Shuhei; Nurdin, Nurjannah; Akbar AS, Muhammad; Sakamoto, Shingo X.; Komatsu, Teruhisa
2015-06-01
Coral reef ecosystems worldwide are now being harmed by various stresses accompanying the degradation of fish habitats and thus knowledge of fish-habitat relationships is urgently required. Because conventional research methods were not practical for this purpose due to the lack of a geospatial perspective, we attempted to develop a research method integrating visual fish observation with a seabed habitat map and to expand knowledge to a two-dimensional scale. WorldView-2 satellite imagery of Spermonde Archipelago, Indonesia obtained in September 2012 was analyzed and classified into four typical substrates: live coral, dead coral, seagrass and sand. Overall classification accuracy of this map was 81.3% and considered precise enough for subsequent analyses. Three sub-areas (CC: continuous coral reef, BC: boundary of coral reef and FC: few live coral zone) around reef slopes were extracted from the map. Visual transect surveys for several fish species were conducted within each sub-area in June 2013. As a result, Mean density (Ind. / 300 m2) of Chaetodon octofasciatus, known as an obligate feeder of corals, was significantly higher at BC than at the others (p < 0.05), implying that this species' density is strongly influenced by spatial configuration of its habitat, like the "edge effect." This indicates that future conservation procedures for coral reef fishes should consider not only coral cover but also its spatial configuration. The present study also indicates that the introduction of a geospatial perspective derived from remote sensing has great potential to progress conventional ecological studies on coral reef fishes.
NASA Astrophysics Data System (ADS)
Bojórquez-Tapia, L. A.
2015-12-01
Continual engagement is an approach that emphasizes of uninterrupted interaction with the stakeholders with the purpose of fully integrating their knowledge into policymaking process. It focuses on the creation of hybrid scientific-local knowledge highly relevant to community and policy makers needs, while balancing the power asymmetries among stakeholders. Hence, it presupposes a capacity for a continuous revision and adjustment of the analyses that support the policymaking process. While continual engagement implies a capacity for enabling an effective communication, translation and mediation of knowledge among the diverse stakeholders, experts and policymakers, it also means keeping a close eye out for how knowledge evolves and how new data and information is introduced along a policymaking process. Through a case study, the loggerhead sea turtle (Caretta caretta) fishing bycatch in Mexico, a geographical information system-multicriteria modeling (GIS-MCDA) approach is presented to address the challenges of implementing continual engagement in conflict resolution processes. The GIS-MCDA combined the analytical hierarchy process (AHP) and compromise programming (CP) to generate consensus regarding the spatial pattern of conflicts. The AHP was fundamental for synthesizing the different sources of knowledge into a geospatial model. In particular, the AHP enabled the assess the salience, legitimacy, and credibility of the information produced for all involved. Results enabled the development of specific policies based upon an assessment of the risk of the loggerhead population to different levels of fishing bycatch, and the needs of the fishing communities in the region.
Sawada, H
1995-10-01
This study aimed at descriptive understanding of traditional methods involved in locating fishing points and navigating to them in the sea, and investigate associated cognitive activities. Participant observations and interviews were conducted for more than 30 fishermen who employed hand-line or long-line fishing methods near Toyoshima Island, Hiroshima Prefecture. The main findings were: (1) Fishermen readily perceived environmental cues when locating fishing points, which enabled them to navigate to a correct point on the sea. (2) Their memory of fishing points was not verbal, but visual, directly tied to the cue perception, and was constantly renewed during fishing activities. (3) They grasped configurations of various natural conditions (e.g., swiftness of the tide, surface structure of the sea bottom) through tactile information from the fishing line, and comprehended their surroundings with accumulated knowledge and inductive inferences. And (4) their cognitive processes of perception, memory, and understanding were functionally coordinated in the series of fishing work.
Research in thermal biology: Burning questions for coldwater stream fishes
McCullough, D.A.; Bartholow, J.M.; Jager, H.I.; Beschta, R.L.; Cheslak, E.F.; Deas, M.L.; Ebersole, J.L.; Foott, J.S.; Johnson, S.L.; Marine, K.R.; Mesa, M.G.; Petersen, J.H.; Souchon, Y.; Tiffan, K.F.; Wurtsbaugh, W.A.
2009-01-01
With the increasing appreciation of global warming impacts on ecological systems, in addition to the myriad of land management effects on water quality, the number of literature citations dealing with the effects of water temperature on freshwater fish has escalated in the past decade. Given the many biological scales at which water temperature effects have been studied, and the growing need to integrate knowledge from multiple disciplines of thermal biology to fully protect beneficial uses, we held that a survey of the most promising recent developments and an expression of some of the remaining unanswered questions with significant management implications would best be approached collectively by a diverse research community. We have identified five specific topic areas of renewed research where new techniques and critical thought could benefit coldwater stream fishes (particularly salmonids): molecular, organism, population/species, community and ecosystem, and policy issues in water quality. Our hope is that information gained through examination of recent research fronts linking knowledge at various scales will prove useful in managing water quality at a basin level to protect fish populations and whole ecosystems. Standards of the past were based largely on incipient lethal and optimum growth rate temperatures for fish species, while future standards should consider all integrated thermal impacts to the organism and ecosystem. ?? Taylor and Francis Group, LLC.
Research in thermal biology: Burning questions for coldwater stream fishes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCullough, Dr. Dale; Bartholow, Dr. John; Jager, Yetta
2009-01-01
With the increasing appreciation of global warming impacts on ecological systems in addition to the myriad of land management effects on water quality, the number of literature citations dealing with the effects of water temperature on freshwater fish has escalated in the past decade. Given the many biological scales at which water temperature effects have been studied and the growing need to integrate knowledge from multiple disciplines of thermal biology to fully protect beneficial uses, we held that a survey of the most promising recent developments and an expression of some of the remaining unanswered questions with significant management implicationsmore » would best be approached collectively by a diverse research community. We have identified five specific topic areas of renewed research where new techniques and critical thought could benefit coldwater stream fishes (particularly salmonids): molecular, organism, population/species, community and ecosystem, and policy issues in water quality. Our hope is that information gained through examination of recent research fronts linking knowledge at various scales will prove useful in managing water quality at a basin level to protect fish populations and whole ecosystems. Standards of the past were based largely on incipient lethal and optimum growth rate temperatures for fish species, while future standards should consider all integrated thermal impacts to the organism and ecosystem.« less
Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, U.S.A.
Stewart, Jana S.; Lyons, John D.; Matt Mitro,
2010-01-01
Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0–93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin.
Electric fish as natural models for technical sensor systems
NASA Astrophysics Data System (ADS)
von der Emde, Gerhard; Bousack, Herbert; Huck, Christina; Mayekar, Kavita; Pabst, Michael; Zhang, Yi
2009-05-01
Instead of vision, many animals use alternative senses for object detection. Weakly electric fish employ "active electrolocation", during which they discharge an electric organ emitting electrical current pulses (electric organ discharges, EOD). Local EODs are sensed by electroreceptors in the fish's skin, which respond to changes of the signal caused by nearby objects. Fish can gain information about attributes of an object, such as size, shape, distance, and complex impedance. When close to the fish, each object projects an 'electric image' onto the fish's skin. In order to get information about an object, the fish has to analyze the object's electric image by sampling its voltage distribution with the electroreceptors. We now know a great deal about the mechanisms the fish use to gain information about objects in their environment. Inspired by the remarkable capabilities of weakly electric fish in detecting and recognizing objects with their electric sense, we are designing technical sensor systems that can solve similar sensing problems. We applied the principles of active electrolocation to devices that produce electrical current pulses in water and simultaneously sense local current densities. Depending on the specific task, sensors can be designed which detect an object, localize it in space, determine its distance, and measure certain object properties such as material properties, thickness, or material faults. We present first experiments and FEM simulations on the optimal sensor arrangement regarding the sensor requirements e. g. localization of objects or distance measurements. Different methods of the sensor read-out and signal processing are compared.
77 FR 63294 - Endangered and Threatened Species; Take of Anadromous Fish
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-16
... and Threatened Species; Take of Anadromous Fish AGENCY: National Marine Fisheries Service (NMFS... Klallam Tribe and the Washington Department of Fish and Wildlife have submitted five Hatchery and Genetic... programs are currently operating, and all five hatchery programs raise fish native to the Elwha River basin...
Waterborne aripiprazole blunts the stress response in zebrafish
NASA Astrophysics Data System (ADS)
Barcellos, Heloísa Helena De Alcantara; Kalichak, Fabiana; da Rosa, João Gabriel Santos; Oliveira, Thiago Acosta; Koakoski, Gessi; Idalencio, Renan; de Abreu, Murilo Sander; Giacomini, Ana Cristina Varrone; Fagundes, Michele; Variani, Cristiane; Rossini, Mainara; Piato, Angelo L.; Barcellos, Leonardo José Gil
2016-11-01
Here we provide, at least to our knowledge, the first evidence that aripiprazole (APPZ) in the water blunts the stress response of exposed fish in a concentration ten times lower than the concentration detected in the environment. Although the mechanism of APPZ in the neuroendocrine axis is not yet determined, our results highlight that the presence of APPZ residues in the environment may interfere with the stress responses in fish. Since an adequate stress response is crucial to restore fish homeostasis after stressors, fish with impaired stress response may have trouble to cope with natural and/or imposed stressors with consequences to their welfare and survival.
The distribution of seabirds and fish in relation to ocean currents in the southeastern Chukchi Sea
Piatt, John F.; Wells, John L.; MacCharles, Andrea; Fadely, Brian S.; Montevecchi, W.A.; Gaston, A.J.
1991-01-01
In late August 1988, we studied the distribution of seabirds in the southeastern Chukchi Sea, particularly in waters near a major seabird colony at Cape Thompson. Foraging areas were characterized using hydrographic data obtained from hydroacoustic surveys for fish. Murres (Uria spp.) and Black-legged Kitttiwakes Rissa tridactyla breeding at Cape Thompson fed mostly on Arctic cod, which are known from previous studies to be the most abundant pelagic fish in the region. Our hydroacoustic surveys revealed that pelagic fish were distributed widely, but densities were estimated to be low (e.g., 0.1-10 g∙m-3) throughout the study area and a few schools were recorded. Large feeding flocks of murres and kittiwakes were observed over fish schools with densities estimated to exceed 15 g∙m-3. Fish densities were higher in shallow Alaska Coastal Current waters than offshore in Bering Sea waters, and most piscivorous seabirds foraged in coastal waters. Poor kittiwake breeding success and a low frequency of fish in murre and kittiwake stomachs in late August suggested that fish densities were marginal for sustaining breeding seabirds at that time. Planktivorous Least Auklets Aethia pusilla and Parakeet Auklets Cyclorrhynchus psittacula foraged almost exclusively in Bering Sea waters. Short-tailed Shearwaters Puffinus tenuirostris and Tufted Puffins Fratercula cirrhata foraged in transitional waters at the front between Coastal and Bering Sea currents.
NASA Astrophysics Data System (ADS)
Amorim, Eva; Ramos, Sandra; Elliott, Michael; Bordalo, Adriano A.
2016-01-01
Connectivity between coastal spawning grounds and estuarine nurseries is a critical step in the life cycle of many fish species. Larval immigration and transport-associated physical-biological processes are determinants of recruitment success to nursery areas. The recruitment of the European flounder, Platichthys flesus, to estuarine nurseries located at the southern edge of the species distribution range, has been usually investigated during its juvenile stages, while estuarine recruitment during the earlier planktonic life stage remains largely unstudied. The present study investigated the patterns of flounder larval recruitment and the influence of environmental factors on the immigration of the early life stages to the Lima estuary (NW Portugal), integrating data on fish larvae and post-settlement individuals (< 50 mm length), collected over 7 years. Late-stage larvae arrived at the estuary between February and July and peak abundances were observed in April. Post-settlement individuals (< 50 mm) occurred later between April and October, whereas newly-settled ones (< 20 mm) were found only in May and June. Variables associated with the spawning, survival and growth of larvae in the ocean (sea surface temperature, chlorophyll a and inland hydrological variables) were the major drivers of flounder occurrence in the estuarine nursery. Although the adjacent coastal area is characterized by a current system with strong seasonality and mesoscale variability, we did not identify any influence of variables related with physical processes (currents and upwelling) on the occurrence of early life stages in the estuary. A wider knowledge on the influence of the coastal circulation variability and its associated effects upon ocean-estuarine connectivity is required to improve our understanding of the population dynamics of marine spawning fish that use estuarine nurseries.
Epley, Kimberly E.; Urban, Jason M.; Ikenaga, Takanori; Ono, Fumihito
2008-01-01
The contraction of skeletal muscle is dependent upon synaptic transmission through acetylcholine receptors (AChRs) at the neuromuscular junction (NMJ). The lack of an AChR subunit causes a fetal akinesia in humans, leading to death in the first trimester and characteristic features of Fetal Akinesia Deformation Sequences (FADS). A corresponding null mutation of the δ-subunit in zebrafish (sofa potato; sop−/−) leads to the death of embryos around 5 days post-fertilization (dpf). In sop−/− mutants, we expressed modified δ-subunits, with one (δ1YFP) or two yellow fluorescent protein (δ2YFP) molecules fused at the intracellular loop, under the control of an α-actin promoter. AChRs containing these fusion proteins are fluorescent, assemble on the plasma membrane, make clusters under motor neuron endings, and generate synaptic current. We screened for germ-line transmission of the transgene and established a line of sop−/− fish stably expressing the δ2YFP. These δ2YFP/sop−/− embryos can mount escape behavior close to that of their wild type siblings. Synaptic currents in these embryos had a smaller amplitude, slower rise time, and slower decay when compared to wild type fish. Remarkably, these embryos grow to adulthood and display complex behaviors such as feeding and breeding. To the best of our knowledge, this is the first case of a mutant animal corresponding to first trimester lethality in human that has been rescued by a transgene and survived to adulthood. In the rescued fish, a foreign promoter drove the transgene expression and the NMJ had altered synaptic strength. The survival of the transgenic animal delineates requirements for gene therapies of NMJ. PMID:19052214
Global diversity of fish parasitic isopod crustaceans of the family Cymothoidae
Smit, Nico J.; Bruce, Niel L.; Hadfield, Kerry A.
2014-01-01
Of the 95 known families of Isopoda only a few are parasitic namely, Bopyridae, Cryptoniscidae, Cymothoidae, Dajidae, Entoniscidae, Gnathiidae and Tridentellidae. Representatives from the family Cymothoidae are obligate parasites of both marine and freshwater fishes and there are currently 40 recognised cymothoid genera worldwide. These isopods are large (>6 mm) parasites, thus easy to observe and collect, yet many aspects of their biodiversity and biology are still unknown. They are widely distributed around the world and occur in many different habitats, but mostly in shallow waters in tropical or subtropical areas. A number of adaptations to an obligatory parasitic existence have been observed, such as the body shape, which is influenced by the attachment site on the host. Cymothoids generally have a long, slender body tapering towards the ends and the efficient contour of the body offers minimum resistance to the water flow and can withstand the forces of this particular habitat. Other adaptations to this lifestyle include small sensory antennae and eyes; a very heavily thickened and calcified cuticle for protection; and sharply curved hooks on the ends of the pereopods which allows these parasites to attach to the host. Most cymothoids are highly site and host specific. Some of these parasitic cymothoids have been reported to parasitise the same host fish species for over 100 years, showing this species specificity. The site of attachment on the host (gills, mouth, external surfaces or inside the host flesh) can also be genus or species specific. This paper aims to provide a summary of our current knowledge of cymothoid biodiversity and will highlight their history of discovery, morphology, relationships and classification, taxonomic diversity and ecology. PMID:25180163
Concurrent assessment of fish and habitat in warmwater streams in Wyoming
Quist, M.C.; Hubert, W.A.; Rahel, F.J.
2006-01-01
Fisheries research and management in North America have focused largely on sport fishes, but native non-game fishes have attracted increased attention due to their declines. The Warmwater Stream Assessment (WSA) was developed to evaluate simultaneously both fish and habitat in Wyoming streams by a process that includes three major components: (1) stream-reach selection and accumulation of existing information, (2) fish and habitat sampling and (3) summarisation and evaluation of fish and habitat information. Fish are sampled by electric fishing or seining and habitat is measured at reach and channel-unit (i.e. pool, run, riffle, side channel, or backwater) scales. Fish and habitat data are subsequently summarised using a data-matrix approach. Hierarchical decision trees are used to assess critical habitat requirements for each fish species expected or found in the reach. Combined measurements of available habitat and the ecology of individual species contribute to the evaluation of the observed fish assemblage. The WSA incorporates knowledge of the fish assemblage and habitat features to enable inferences of factors likely influencing both the fish assemblage and their habitat. The WSA was developed for warmwater streams in Wyoming, but its philosophy, process and conceptual basis may be applied to environmental assessments in other geographical areas. ?? 2006 Blackwell Publishing Ltd.
van Denderen, P. Daniel; van Kooten, Tobias; Rijnsdorp, Adriaan D.
2013-01-01
Bottom trawls are a globally used fishing gear that physically disturb the seabed and kill non-target organisms, including those that are food for the targeted fish species. There are indications that ensuing changes to the benthic invertebrate community may increase the availability of food and promote growth and even fisheries yield of target fish species. If and how this occurs is the subject of ongoing debate, with evidence both in favour and against. We model the effects of trawling on a simple ecosystem of benthivorous fish and two food populations (benthos), susceptible and resistant to trawling. We show that the ecosystem response to trawling depends on whether the abundance of benthos is top-down or bottom-up controlled. Fishing may result in higher fish abundance, higher (maximum sustainable) yield and increased persistence of fish when the benthos which is the best-quality fish food is also more resistant to trawling. These positive effects occur in bottom-up controlled systems and systems with limited impact of fish feeding on benthos, resembling bottom-up control. Fishing leads to lower yields and fish persistence in all configurations where susceptible benthos are more profitable prey. Our results highlight the importance of mechanistic ecosystem knowledge as a requirement for successful management. PMID:24004941
Overview on the effects of parasites on fish health
Iwanowicz, D.D.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.
2011-01-01
It is believed by many that parasites are only as important as the fish they infect. Parasites are ubiquitous, primarily surviving in a dynamic equilibrium with their host(s) and they are often overlooked in fish health assessments. Changes in the environment, both anthropogenic and environmental, can alter the parasite/host equilibrium and cause disease or mortality in fish. Therefore it is imperative that we have knowledge of both parasites and parasitic communities within a given population. When fish kills occur, it can often be associated with changes in parasite density and community composition. Often the damage associated with these fish is relative to the rate of infestation with the parasite; a fish that is lightly infected will show few signs of the parasite, while a heavily infected fish may become physiologically impaired and even die. Parasites can cause mechanical damage (fusion of gill lamellae, tissue replacement), physiological damage (cell proliferation, immunomodulation, detrimental behavioral responses, altered growth) and reproductive damage. As parasitism is the most common lifestyle on the planet, understanding its role in the environment may help researchers understand changes in a given fish population or stream ecosystem.
Pérez-del-Olmo, Ana; Georgieva, Simona; Pula, Héctor J; Kostadinova, Aneta
2014-11-12
Recent molecular studies have revealed high species diversity of Diplostomum in central and northern Europe. However, our knowledge of the distribution of Diplostomum spp. in the southern distributional range in Europe of the snail intermediate hosts (Lymnaea stagnalis and Radix spp.) is rather limited. This study aims to fill this gap in our knowledge using molecular and morphological evidence. Nineteen fish species and six fish-eating bird species were sampled opportunistically in three regions (Catalonia, Extremadura and Aragon) in Spain. All isolates of Diplostomum spp. were characterised morphologically and molecularly. Partial sequences of the barcode region of the cox1 mitochondrial gene and complete sequences of the ribosomal ITS1-5.8S-ITS2 gene cluster were used for molecular identification of the isolates. Integrated morphological and molecular analyses demonstrated the presence of three species among the larval and adult isolates of Diplostomum spp. sampled in Spain: Diplostomum spathaceum (in fish and birds), D. pseudospathaceum (in birds) and Diplostomum sp. (in fish) referred to as Clade Q sensu Georgieva et al. (Int J Parasitol, 43:57-72, 2013). We detected ten cox1 haplotypes among the isolates of D. spathaceum with only one haplotype shared with adult isolates from central and northern Europe. No specific geographic pattern of the distribution of the novel haplotypes was found. This first molecular exploration of the diversity of Diplostomum spp. in southern Europe indicates much lower species richness compared with the northern regions of Europe.
Darius, H T; Drescher, O; Ponton, D; Pawlowiez, R; Laurent, D; Dewailly, E; Chinain, M
2013-01-01
Ciguatera fish poisoning is a seafood intoxication commonly afflicting island communities in the Pacific. These populations, which are strongly dependent on fish resources, have developed over centuries various strategies to decrease the risk of intoxication, including the use of folk tests to detect ciguateric fish. This study aims to evaluate the effectiveness of two folk tests commonly used in Raivavae Island (Australes, French Polynesia): the rigor mortis test (RMT) and the bleeding test (BT). A total of 107 fish were collected in Raivavae Lagoon, among which 80 were tested by five testers using the RMT versus 107 tested by four testers using BT. First, the performance between testers was compared. Second, the efficiency of these tests was compared with toxicity data obtained via the receptor binding assay (RBA) by assessing various parameter's values such as sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV). Comparisons of outcomes between folk tests and RBA analyses were considered: tests used separately or in a parallel versus the series approach by each tester. The overall efficiency of the RMT and BT tests was also evaluated when the judgments of all testers were "pooled". The results demonstrate that efficiencies varied between testers with one showing the best scores in detecting toxic fish: 55% with RMT and 69.2% with BT. BT gave the best results in detecting toxic fish as compared with RMT, giving also better agreement between testers. If high NPV and Se values were to be privileged, the data also suggest that the best way to limit cases of intoxication would be to use RMT and BT tests in a parallel approach. The use of traditional knowledge and a good knowledge of risky versus healthy fishing areas may help reduce the risk of intoxication among communities where ciguatera fish poisoning is highly prevalent.
Study of the cross-reactivity of fish allergens based on a questionnaire and blood testing.
Kobayashi, Yukihiro; Huge, Jiletu; Imamura, Shintaro; Hamada-Sato, Naoko
2016-07-01
Parvalbumin and collagen have been identified as cross-reactive allergens for fish allergies. Although doctors realize that various fish elicit allergies, the targets of food allergen labeling laws were only mackerels and salmons in Japan and mackerels in South Korea. This study aimed to reveal the causative species for fish allergy via questionnaires and blood tests. Questionnaire research was conducted in Japan via the internet concerning allergies for fish-allergic patients or their family members. Next, IgE reactivities and cross-reactivities of 26 fish species were analyzed using sera obtained from 16 Japanese patients who were allergic to fish parvalbumin or collagen by enzyme-linked immunosorbent assay (ELISA) and inhibition ELISA. Questionnaire research revealed that 88% patients cannot eat mackerel and salmon in addition to other fish. In addition, 85% respondents were not satisfied with the current food allergen labeling law. In ELISA analyses, we clarified that pooled serum obtained from patients with fish parvalbumin-specific allergies exhibited IgE reactivity to the extracts of most fish species, and pooled serum obtained from patients with fish collagen-specific allergies displayed IgE reactivity to the extracts of all types of fish. Inhibition ELISA experiments revealed cross-reactivities of parvalbumin or collagen to extracts from all fish tested. Most patients with fish allergies displayed allergic symptoms following the intake of various fish species. In addition, fish parvalbumin and collagen were causative factors of fish allergy and were highly cross-reactive fish panallergens. Therefore, current laws should be revised in Japan and South Korea. Copyright © 2016 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.
Perceptions about mercury and lead in fish consumed in Lake Albert fishing communities Uganda
Andrew, Tamale; Francis, Ejobi; Charles, Muyanja; Naigaga, Irene; Jesca, Nakavuma; Micheal, Ocaido; Anne, Katuhoire; Deborah, Amulen
2016-01-01
Abstract Fish consumption is a lifestyle in fishing communities influenced by individual and communal perceptions. However, information about individual perceptions about fish consumption in the vulnerable fishing community in a developing country is lacking. Without this study, the benefits of fish consumption in a vulnerable community may not be realized. Data collection was executed using key informant interviews and survey structured questionnaires. The key informants include fisheries, community development, veterinary, community and environmental officers. The household heads were the respondents. The Qualitative data was organized and queried using QSR Nvivo 10 and quantitative data analyzed with SPSS version 22. The perceived benefits of eating fish are health, income, nutrition and manhood. The perceived risks are Stigma and ill health. The factors increasing fish consumption are heedless of fish consumption benefits (p = 0.041) and household size i.e. number of adults more than seven (p = 0.020). Those decreasing are methods of preparation of fish i.e. boiling and frying (p = 0.019 and p = 0.010) and oblivious about organizations dealing with fishing activities (p = 0.029). An awareness campaign is needed to demystify the health benefits and fallacies of fish consumption. The knowledge on individual perceptions associated with fish consumption will increase fish consumption but with fewer risks. PMID:27722182
NOAA Photo Library - Historical Fisheries Collection
purpose of this study was to capture the state of the American fisheries at that time and to use the knowledge gained as a base line for future studies. Goode admirably succeeded in this, but at the same time of economic value at that time and also illustrated the state of fishing vessels, fishing gear
Habitat use by larval fishes in a temperate South African surf zone
NASA Astrophysics Data System (ADS)
Watt-Pringle, Peter; Strydom, Nadine A.
2003-12-01
Larval fishes were sampled in the Kwaaihoek surf zone on the south east coast of South Africa. On six occasions between February and May 2002, larval fishes were collected in two habitat types identified in the inner surf zone using a modified beach-seine net. The surf zone habitats were classified as either sheltered trough areas or adjacent exposed surf areas. Temperature, depth and current measurements were taken at all sites. Trough habitats consisted of a depression in surf topography characterised by reduced current velocities and greater average depth than adjacent surf areas. In total, 325 larval fishes were collected. Of these, 229 were collected in trough and 96 in surf habitats. At least 22 families and 37 species were represented in the catch. Dominant families were the Mugilidae, Sparidae, Atherinidae, and Engraulidae. Dominant species included Liza tricuspidens and Liza richardsonii (Mugilidae), Rhabdosargus holubi and Sarpa salpa (Sparidae), Atherina breviceps (Atherinidae) and Engraulis japonicus (Engraulide). Mean CPUE of postflexion larvae of estuary-dependent species was significantly greater in trough areas. The proportion of postflexion larval fishes in trough habitat was significantly greater than that of preflexion stages, a result that was not apparent in surf habitat sampled. CPUE of postflexion larvae of estuary-dependent fishes was negatively correlated with current magnitude and positively correlated with habitat depth. Mean body length of larval fishes was significantly greater in trough than in surf habitats. These results provide evidence that the CPUE of postflexion larvae of estuary-dependent fishes is higher in trough habitat in the surf zone and this may be indicative of active habitat selection for areas of reduced current velocity/wave action. The implications of this behaviour for estuarine recruitment processes are discussed.
NASA Astrophysics Data System (ADS)
Collareta, Alberto; Landini, Walter; Lambert, Olivier; Post, Klaas; Tinelli, Chiara; Di Celma, Claudio; Panetta, Daniele; Tripodi, Maria; Salvadori, Piero A.; Caramella, Davide; Marchi, Damiano; Urbina, Mario; Bianucci, Giovanni
2015-12-01
Instead of teeth, modern mysticetes bear hair-fringed keratinous baleen plates that permit various bulk-filtering predation techniques (from subsurface skimming to lateral benthic suction and engulfment) devoted to various target prey (from small invertebrates to schooling fish). Current knowledge about the feeding ecology of extant cetaceans is revealed by stomach content analyses and observations of behavior. Unfortunately, no fossil stomach contents of ancient mysticetes have been described so far; the investigation of the diet of fossil baleen whales, including the Neogene family Cetotheriidae, remains thus largely speculative. We report on an aggregate of fossil fish remains found within a mysticete skeleton belonging to an undescribed late Miocene (Tortonian) cetotheriid from the Pisco Formation (Peru). Micro-computed tomography allowed us to interpret it as the fossilized content of the forestomach of the host whale and to identify the prey as belonging to the extant clupeiform genus Sardinops. Our discovery represents the first direct evidence of piscivory in an ancient edentulous mysticete. Since among modern mysticetes only Balaenopteridae are known to ordinarily consume fish, this fossil record may indicate that part of the cetotheriids experimented some degree of balaenopterid-like engulfment feeding. Moreover, this report corresponds to one of the geologically oldest records of Sardinops worldwide, occurring near the Tortonian peak of oceanic primary productivity and cooling phase. Therefore, our discovery evokes a link between the rise of Cetotheriidae; the setup of modern coastal upwelling systems; and the radiation of epipelagic, small-sized, schooling clupeiform fish in such highly productive environments.
Collareta, Alberto; Landini, Walter; Lambert, Olivier; Post, Klaas; Tinelli, Chiara; Di Celma, Claudio; Panetta, Daniele; Tripodi, Maria; Salvadori, Piero A; Caramella, Davide; Marchi, Damiano; Urbina, Mario; Bianucci, Giovanni
2015-12-01
Instead of teeth, modern mysticetes bear hair-fringed keratinous baleen plates that permit various bulk-filtering predation techniques (from subsurface skimming to lateral benthic suction and engulfment) devoted to various target prey (from small invertebrates to schooling fish). Current knowledge about the feeding ecology of extant cetaceans is revealed by stomach content analyses and observations of behavior. Unfortunately, no fossil stomach contents of ancient mysticetes have been described so far; the investigation of the diet of fossil baleen whales, including the Neogene family Cetotheriidae, remains thus largely speculative. We report on an aggregate of fossil fish remains found within a mysticete skeleton belonging to an undescribed late Miocene (Tortonian) cetotheriid from the Pisco Formation (Peru). Micro-computed tomography allowed us to interpret it as the fossilized content of the forestomach of the host whale and to identify the prey as belonging to the extant clupeiform genus Sardinops. Our discovery represents the first direct evidence of piscivory in an ancient edentulous mysticete. Since among modern mysticetes only Balaenopteridae are known to ordinarily consume fish, this fossil record may indicate that part of the cetotheriids experimented some degree of balaenopterid-like engulfment feeding. Moreover, this report corresponds to one of the geologically oldest records of Sardinops worldwide, occurring near the Tortonian peak of oceanic primary productivity and cooling phase. Therefore, our discovery evokes a link between the rise of Cetotheriidae; the setup of modern coastal upwelling systems; and the radiation of epipelagic, small-sized, schooling clupeiform fish in such highly productive environments.
Palaeolake isolation and biogeographical process of freshwater fishes in the Yellow River.
Kang, Bin; Huang, Xiaoxia; Wu, Yunfei
2017-01-01
The Yellow River, one of the very few in the Earth, originated from many dispersive palaeolakes. Taking this unique advantage, we examined the roles of palaeolake isolation vs. geological processes vs. climate in determining current fish biogeographic pattern. We reviewed available data on fish species and their geographical distribution in the river, as well as palaeolake development, geological and climatic parameters. The 138 fish species recorded in the river could be divided into 8 biogeographic regions, corresponding to the distribution of palaeolakes and respective endemic species. Through variation partitioning analysis, palaeolake isolation was the most influential factor explaining 43.6% of the total variance on the current fish distribution. The Quaternary Ice Age produced a transitional distribution for fishes from the glacier to warm water, especially for the subfamily Schizothoracinae, which showed various degrees of specialisation along altitudes. We suggested that fish biogeography in the Yellow river was basically shaped by palaeolake isolation, and further carved under serials of geologic events and contemporary climate change.
Palaeolake isolation and biogeographical process of freshwater fishes in the Yellow River
Wu, Yunfei
2017-01-01
The Yellow River, one of the very few in the Earth, originated from many dispersive palaeolakes. Taking this unique advantage, we examined the roles of palaeolake isolation vs. geological processes vs. climate in determining current fish biogeographic pattern. We reviewed available data on fish species and their geographical distribution in the river, as well as palaeolake development, geological and climatic parameters. The 138 fish species recorded in the river could be divided into 8 biogeographic regions, corresponding to the distribution of palaeolakes and respective endemic species. Through variation partitioning analysis, palaeolake isolation was the most influential factor explaining 43.6% of the total variance on the current fish distribution. The Quaternary Ice Age produced a transitional distribution for fishes from the glacier to warm water, especially for the subfamily Schizothoracinae, which showed various degrees of specialisation along altitudes. We suggested that fish biogeography in the Yellow river was basically shaped by palaeolake isolation, and further carved under serials of geologic events and contemporary climate change. PMID:28406965
Copper sulfate toxicity to various fish: role of alkalinity/hardness
USDA-ARS?s Scientific Manuscript database
Copper sulfate has been used in fisheries since the 1890’s. This compound is currently used to control parasites (mainly Ich) on fish and fungus (Saprolegnia) on fish eggs, and has also been used in the past to control columnaris on fish, although antibiotics are the common treatment now. In our l...
Influence of alkalinity and hardness on copper sulfate toxicity to various fish
USDA-ARS?s Scientific Manuscript database
Copper sulfate treatments are currently used to control parasites (mainly Ich) on fish and fungus (Saprolegnia) on fish eggs. This compound has also been used in the past to control columnaris on fish, although antibiotics are the common treatment now. In our lab’s efforts to gain an FDA-approval ...
Impact of communication on consumers' food choices.
Verbeke, Wim
2008-08-01
Consumers' food choices and dietary behaviour can be markedly affected by communication and information. Whether the provided information is processed by the receiver, and thus becomes likely to be effective, depends on numerous factors. The role of selected determinants such as uncertainty, knowledge, involvement, health-related motives and trust, as well as message content variables, are discussed in the present paper based on previous empirical studies. The different studies indicate that: uncertainty about meat quality and safety does not automatically result in more active information search; subjective knowledge about fish is a better predictor of fish consumption than objective knowledge; high subjective knowledge about functional foods as a result of a low trusted information source such as mass media advertising leads to a lower probability of adopting these foods in the diet. Also, evidence of the stronger impact of negative news as compared with messages promoting positive outcomes of food choices is discussed. Finally, three audience-segmentation studies based on consumers' involvement with fresh meat, individuals' health-related-motive orientations and their use of and trust in fish information sources are presented. A clear message from these studies is that communication and information provision strategies targeted to a specific audience's needs, interests or motives stand a higher likelihood of being attended to and processed by the receiving audience, and therefore also stand a higher chance of yielding their envisaged impact in terms of food choice and dietary behaviour.
Oral vaccination of fish: Lessons from humans and veterinary species.
Embregts, Carmen W E; Forlenza, Maria
2016-11-01
The limited number of oral vaccines currently approved for use in humans and veterinary species clearly illustrates that development of efficacious and safe oral vaccines has been a challenge not only for fish immunologists. The insufficient efficacy of oral vaccines is partly due to antigen breakdown in the harsh gastric environment, but also to the high tolerogenic gut environment and to inadequate vaccine design. In this review we discuss current approaches used to develop oral vaccines for mass vaccination of farmed fish species. Furthermore, using various examples from the human and veterinary vaccine development, we propose additional approaches to fish vaccine design also considering recent advances in fish mucosal immunology and novel molecular tools. Finally, we discuss the pros and cons of using the zebrafish as a pre-screening animal model to potentially speed up vaccine design and testing for aquaculture fish species. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Yang, Huiping; Tiersch, Terrence R.
2009-01-01
Aquarium fishes are becoming increasingly important because of their value in biomedical research and the ornamental fish trade, and because many have become threatened or endangered in the wild. This review summarizes the current status of sperm cryopreservation in three fishes widely used in biomedical research: zebrafish, medaka, and live-bearing fishes of the genus Xiphophorus, and will focus on the needs and opportunities for future research and application of cryopreservation in aquarium fish. First, we summarize the basic biological characteristics regarding natural habitat, testis structure, spermatogenesis, sperm morphology, and sperm physiology. Second, we compare protocol development of sperm cryopreservation. Third, we emphasize the importance of artificial fertilization in sperm cryopreservation to evaluate the viability of thawed sperm. We conclude with a look to future research directions for sperm cryopreservation and the application of this technique in aquarium species. PMID:18691673
Use of sand wave habitats by silver hake
Auster, P.J.; Lindholm, J.; Schaub, S.; Funnell, G.; Kaufman, L.S.; Valentine, P.C.
2003-01-01
Silver hake Merluccius bilinearis are common members of fish communities in sand wave habitats on Georges Bank and on Stellwagen Bank in the Gulf of Maine. Observations of fish size v. sand wave period showed that silver hake are not randomly distributed within sand wave landscapes. Regression analyses showed a significant positive relationship between sand wave period and fish length. Correlation coefficients, however, were low, suggesting other interactions with sand wave morphology, the range of current velocities, and available prey may also influence their distribution. Direct contact with sand wave habitats varied over diel periods, with more fish resting on the seafloor during daytime than at night. Social foraging, in the form of polarized groups of fish swimming in linear formations during crepuscular and daytime periods, was also observed. Sand wave habitats may provide shelter from current flows and mediate fish-prey interactions. ?? 2003 The Fisheries Society of the British Isles.
Conflict in the Currents: The Cross-boundary Consequences of Larval Dispersal
NASA Astrophysics Data System (ADS)
Rising, J. A.; Ramesh, N.; Dookie, D.
2016-02-01
As commercial fish populations decline in many regions, the increasing demand for ocean resources can create conflicts along international boundaries. Because fish stock ranges do not respect political boundaries, neighboring countries can impact each other through the management of the stocks within their exclusive economic zones. By combining spawning and larvae information from the FishBase database with current velocities from ocean reanalyses using a particle tracking scheme, we construct a measure of the cross-boundary diffusion of fish larvae for 40 major exploited species. These flows represent important connections both for fish populations and for fisheries and the people who depend on them, but these connections rely on fisheries management in the 'source' countries. We then use socioeconomic data on the national importance of these fish to identify hotspots for potential conflict. Finally, we consider how ranges will shift under climate change, and the social impacts of these shifts.
Status and future of Lake Huron fish communities
Ebener, M.P.; Johnson, J.E.; Reid, D.M.; Payne, N.P.; Argyle, R.L.; Wright, G.M.; Krueger, K.; Baker, J.P.; Morse, T.; Weise, J.; Munawar, M.; Edsall, T.; Leach, J.
1995-01-01
In 1993, fishery management agencies with jurisdiction over Lake Huron fish populations developed draft fish community objectives in response to the Joint Strategic Plan for Management of Great Lakes Fisheries. The Joint Strategic Plan charged the Great Lakes Fishery Commission sponsored Lake Huron Committee to define objectives for what the fish community of Lake Huron should look like in the future, and to develop means for measuring progress toward the objectives. The overall management objective for Lake Huron is to 'over the next two decades restore an ecologically balanced fish community dominated by top predators and consisting largely of self-sustaining, indigenous and naturalized species and capable of sustaining annual harvests of 8.9 million kg'. This paper represents the first attempt at consolidating current biological information from different management agencies on a lake-wide basis for the purpose of assessing the current status and dynamics of Lake Huron fishes.
Ethnobiology of snappers (Lutjanidae): target species and suggestions for management.
Begossi, Alpina; Salivonchyk, Svetlana V; Araujo, Luciana G; Andreoli, Tainá B; Clauzet, Mariana; Martinelli, Claudia M; Ferreira, Allan G I; Oliveira, Luiz E C; Silvano, Renato A M
2011-03-16
In this study, we sought to investigate the biology (diet and reproduction) and ethnobiology (fishers knowledge and fishing spots used to catch snappers) of five species of snappers (Lutjanidae), including Lutjanus analis, Lutjanus synagris, Lutjanus vivanus, Ocyurus chrysurus, and Romboplites saliens at five sites along the northeast (Riacho Doce, Maceió in Alagoas State, and Porto do Sauípe, Entre Rios at Bahia State) and the southeast (SE) Brazilian coast (Paraty and Rio de Janeiro cities at Rio de Janeiro State, and Bertioga, at São Paulo State.).We collected 288 snappers and interviewed 86 fishermen. The stomach contents of each fish were examined and macroscopic gonad analysis was performed. Snappers are very important for the fisheries of NE Brazil, and our results indicated that some populations, such as mutton snapper (L. analis) and lane snapper (L. synagris), are being caught when they are too young, at early juvenile stages.Local knowledge has been shown to be a powerful tool for determining appropriate policies regarding management of target species, and artisanal fishermen can be included in management processes. Other suggestions for managing the fisheries are discussed, including proposals that could provide motivation for artisanal fishermen to participate in programs to conserve resources, such as co-management approaches that utilize local knowledge, the establishment of fishing seasons, and compensation of fishermen, through 'payment for environmental services'. These suggestions may enhance the participation of local artisanal fishermen in moving to a more realistic and less top-down management approach of the fish population.
Fish Allergens at a Glance: Variable Allergenicity of Parvalbumins, the Major Fish Allergens
Kuehn, Annette; Swoboda, Ines; Arumugam, Karthik; Hilger, Christiane; Hentges, François
2014-01-01
Fish is a common trigger of severe, food-allergic reactions. Only a limited number of proteins induce specific IgE-mediated immune reactions. The major fish allergens are the parvalbumins. They are members of the calcium-binding EF-hand protein family characterized by a conserved protein structure. They represent highly cross-reactive allergens for patients with specific IgE to conserved epitopes. These patients might experience clinical reactions with various fish species. On the other hand, some individuals have IgE antibodies directed against unique, species-specific parvalbumin epitopes, and these patients show clinical symptoms only with certain fish species. Furthermore, different parvalbumin isoforms and isoallergens are present in the same fish and might display variable allergenicity. This was shown for salmon homologs, where only a single parvalbumin (beta-1) isoform was identified as allergen in specific patients. In addition to the parvalbumins, several other fish proteins, enolases, aldolases, and fish gelatin, seem to be important allergens. New clinical and molecular insights advanced the knowledge and understanding of fish allergy in the last years. These findings were useful for the advancement of the IgE-based diagnosis and also for the management of fish allergies consisting of advice and treatment of fish-allergic patients. PMID:24795722
Predicted effects of climate warming on the distribution of 50 stream fishes in Wisconsin, USA.
Lyons, J; Stewart, J S; Mitro, M
2010-11-01
Summer air and stream water temperatures are expected to rise in the state of Wisconsin, U.S.A., over the next 50 years. To assess potential climate warming effects on stream fishes, predictive models were developed for 50 common fish species using classification-tree analysis of 69 environmental variables in a geographic information system. Model accuracy was 56·0-93·5% in validation tests. Models were applied to all 86 898 km of stream in the state under four different climate scenarios: current conditions, limited climate warming (summer air temperatures increase 1° C and water 0·8° C), moderate warming (air 3° C and water 2·4° C) and major warming (air 5° C and water 4° C). With climate warming, 23 fishes were predicted to decline in distribution (three to extirpation under the major warming scenario), 23 to increase and four to have no change. Overall, declining species lost substantially more stream length than increasing species gained. All three cold-water and 16 cool-water fishes and four of 31 warm-water fishes were predicted to decline, four warm-water fishes to remain the same and 23 warm-water fishes to increase in distribution. Species changes were predicted to be most dramatic in small streams in northern Wisconsin that currently have cold to cool summer water temperatures and are dominated by cold-water and cool-water fishes, and least in larger and warmer streams and rivers in southern Wisconsin that are currently dominated by warm-water fishes. Results of this study suggest that even small increases in summer air and water temperatures owing to climate warming will have major effects on the distribution of stream fishes in Wisconsin. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.
Numerical modelling of organic waste dispersion from fjord located fish farms
NASA Astrophysics Data System (ADS)
Ali, Alfatih; Thiem, Øyvind; Berntsen, Jarle
2011-07-01
In this study, a three-dimensional particle tracking model coupled to a terrain following ocean model is used to investigate the dispersion and the deposition of fish farm particulate matter (uneaten food and fish faeces) on the seabed due to tidal currents. The particle tracking model uses the computed local flow field for advection of the particles and random movement to simulate the turbulent diffusion. Each particle is given a settling velocity which may be drawn from a probability distribution according to settling velocity measurements of faecal and feed pellets. The results show that the maximum concentration of organic waste for fast sinking particles is found under the fish cage and continue monotonically decreasing away from the cage area. The maximum can split into two maximum peaks located at both sides of the centre of the fish cage area in the current direction. This process depends on the sinking time (time needed for a particle to settle at the bottom), the tidal velocity and the fish cage size. If the sinking time is close to a multiple of the tidal period, the maximum concentration point will be under the fish cage irrespective of the tide strength. This is due to the nature of the tidal current first propagating the particles away and then bringing them back when the tide reverses. Increasing the cage size increases the likelihood for a maximum waste accumulation beneath the fish farm, and larger farms usually means larger biomasses which can make the local pollution even more severe. The model is validated by using an analytical model which uses an exact harmonic representation of the tidal current, and the results show an excellent agreement. This study shows that the coupled ocean and particle model can be used in more realistic applications to help estimating the local environmental impact due to fish farms.
O'Connell, M. T.; Uzee O'Connell, A.M.; Williams, J.D.
2005-01-01
Accurate knowledge of an organism's distribution is necessary for conserving species with small or isolated populations. A perceived rarity may only reflect inadequate sampling effort and suggest the need for more research. We used a recently developed method to evaluate the distribution of a rare fish species, the blackmouth shiner Notropis melanostomus Bortone 1989 (Cyprinidae), which occurs in disjunct populations in Mississippi and Florida. Until 1995, N. melanostomus had been collected from only three localities in Mississippi, but in 1995, eight new localities were discovered. We analyzed museum records of fish collections from Mississippi, Florida, and Alabama to compare sampling effort before and after 1995. Results supported our predictions that 1) pre-1995 data would indicate inadequate sampling effort in Mississippi, 2) additional post-1995 sampling improved confidence in the currently known Mississippi distribution, and 3) there has not been enough sampling to accurately represent the actual distribution of N. melanostomus in Florida and across its entire known range. This last prediction was confirmed with the recent (2003) discovery of the first N. melanostomus in Alabama.
Alternative Sources of Omega-3 Fats: Can We Find a Sustainable Substitute for Fish?
Lenihan-Geels, Georgia; Bishop, Karen S.; Ferguson, Lynnette R.
2013-01-01
Increasing demand for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) containing fish oils is putting pressure on fish species and numbers. Fisheries provide fish for human consumption, supplement production and fish feeds and are currently supplying fish at a maximum historical rate, suggesting mass-scale fishing is no longer sustainable. However, the health properties of EPA and DHA long-chain (LC) omega-3 polyunsaturated fatty acids (PUFA) demonstrate the necessity for these oils in our diets. EPA and DHA from fish oils show favourable effects in inflammatory bowel disease, some cancers and cardiovascular complications. The high prevalence of these diseases worldwide indicates the requirement for alternative sources of LC-PUFA. Strategies have included plant-based fish diets, although this may compromise the health benefits associated with fish oils. Alternatively, stearidonic acid, the product of α-linolenic acid desaturation, may act as an EPA-enhancing fatty acid. Additionally, algae oils may be a promising omega-3 PUFA source for the future. Algae are beneficial for multiple industries, offering a source of biodiesel and livestock feeds. However, further research is required to develop efficient and sustainable LC-PUFA production from algae. This paper summarises the recent research for developing prospective substitutes for omega-3 PUFA and the current limitations that are faced. PMID:23598439
Alternative sources of omega-3 fats: can we find a sustainable substitute for fish?
Lenihan-Geels, Georgia; Bishop, Karen S; Ferguson, Lynnette R
2013-04-18
Increasing demand for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) containing fish oils is putting pressure on fish species and numbers. Fisheries provide fish for human consumption, supplement production and fish feeds and are currently supplying fish at a maximum historical rate, suggesting mass-scale fishing is no longer sustainable. However, the health properties of EPA and DHA long-chain (LC) omega-3 polyunsaturated fatty acids (PUFA) demonstrate the necessity for these oils in our diets. EPA and DHA from fish oils show favourable effects in inflammatory bowel disease, some cancers and cardiovascular complications. The high prevalence of these diseases worldwide indicates the requirement for alternative sources of LC-PUFA. Strategies have included plant-based fish diets, although this may compromise the health benefits associated with fish oils. Alternatively, stearidonic acid, the product of α-linolenic acid desaturation, may act as an EPA-enhancing fatty acid. Additionally, algae oils may be a promising omega-3 PUFA source for the future. Algae are beneficial for multiple industries, offering a source of biodiesel and livestock feeds. However, further research is required to develop efficient and sustainable LC-PUFA production from algae. This paper summarises the recent research for developing prospective substitutes for omega-3 PUFA and the current limitations that are faced.
Amino Acid compositions of 27 food fishes and their importance in clinical nutrition.
Mohanty, Bimal; Mahanty, Arabinda; Ganguly, Satabdi; Sankar, T V; Chakraborty, Kajal; Rangasamy, Anandan; Paul, Baidyanath; Sarma, Debajit; Mathew, Suseela; Asha, Kurukkan Kunnath; Behera, Bijay; Aftabuddin, Md; Debnath, Dipesh; Vijayagopal, P; Sridhar, N; Akhtar, M S; Sahi, Neetu; Mitra, Tandrima; Banerjee, Sudeshna; Paria, Prasenjit; Das, Debajeet; Das, Pushpita; Vijayan, K K; Laxmanan, P T; Sharma, A P
2014-01-01
Proteins and amino acids are important biomolecules which regulate key metabolic pathways and serve as precursors for synthesis of biologically important substances; moreover, amino acids are building blocks of proteins. Fish is an important dietary source of quality animal proteins and amino acids and play important role in human nutrition. In the present investigation, crude protein content and amino acid compositions of important food fishes from different habitats have been studied. Crude protein content was determined by Kjeldahl method and amino acid composition was analyzed by high performance liquid chromatography and information on 27 food fishes was generated. The analysis showed that the cold water species are rich in lysine and aspartic acid, marine fishes in leucine, small indigenous fishes in histidine, and the carps and catfishes in glutamic acid and glycine. The enriched nutrition knowledge base would enhance the utility of fish as a source of quality animal proteins and amino acids and aid in their inclusion in dietary counseling and patient guidance for specific nutritional needs.
Amino Acid Compositions of 27 Food Fishes and Their Importance in Clinical Nutrition
Mahanty, Arabinda; Sankar, T. V.; Chakraborty, Kajal; Rangasamy, Anandan; Paul, Baidyanath; Sarma, Debajit; Mathew, Suseela; Asha, Kurukkan Kunnath; Behera, Bijay; Aftabuddin, Md.; Debnath, Dipesh; Vijayagopal, P.; Sridhar, N.; Akhtar, M. S.; Sahi, Neetu; Mitra, Tandrima; Banerjee, Sudeshna; Das, Debajeet; Das, Pushpita; Vijayan, K. K.; Laxmanan, P. T.; Sharma, A. P.
2014-01-01
Proteins and amino acids are important biomolecules which regulate key metabolic pathways and serve as precursors for synthesis of biologically important substances; moreover, amino acids are building blocks of proteins. Fish is an important dietary source of quality animal proteins and amino acids and play important role in human nutrition. In the present investigation, crude protein content and amino acid compositions of important food fishes from different habitats have been studied. Crude protein content was determined by Kjeldahl method and amino acid composition was analyzed by high performance liquid chromatography and information on 27 food fishes was generated. The analysis showed that the cold water species are rich in lysine and aspartic acid, marine fishes in leucine, small indigenous fishes in histidine, and the carps and catfishes in glutamic acid and glycine. The enriched nutrition knowledge base would enhance the utility of fish as a source of quality animal proteins and amino acids and aid in their inclusion in dietary counseling and patient guidance for specific nutritional needs. PMID:25379285
Fuentes, Eduardo N; Zuloaga, Rodrigo; Almarza, Oscar; Mendez, Katterinne; Valdés, Juan Antonio; Molina, Alfredo; Pulgar, Jose
2017-12-01
Growth is one of the main biological processes in aquatic organisms that is affected by environmental fluctuations such as upwelling (characterized by food-rich waters). In fish, growth is directly related with skeletal muscle increase; which represents the largest tissue of body mass. However, the effects of upwelling on growth, at the physiological and molecular level, are unknown. This study used Girella laevifrons (one of the most abundant intertidal fish in Eastern South Pacific) as a biological model, considering animals from upwelling (U) and non-upwelling (NU) areas. Here, we evaluated the effect of nutritional composition and food availability on growth performance and expression of key growth-related genes (insulin-kike growth factor 1 (igf1) and myosin heavy-chain (myhc)) and atrophy-related genes (muscle ring-finger 1 (murf1), F-box only protein 32 (atrogin-1) and BCL2/adenovirus E1B 19kDa-interacting protein 3 (bnip3)). We reported that, among zones, U fish displayed higher growth performance in response to nutritional composition, specifically between protein- and fiber-rich diets (~1g). We also found in NU fish that atrophy-related genes were upregulated with fiber-rich diet and during fasting (~2-fold at minimum respect U). In conclusion, our results suggest that the growth potential of upwelling fish may be a consequence of differential muscle gene expression. Our data provide a preliminary approach contributing on how upwelling influence fish growth at the physiological and molecular levels. Future studies are required to gain further knowledge about molecular differences between U and NU animals, as well as the possible applications of this knowledge in the aquaculture industry. Copyright © 2017 Elsevier Inc. All rights reserved.
Conservation physiology of marine fishes: state of the art and prospects for policy.
McKenzie, David J; Axelsson, Michael; Chabot, Denis; Claireaux, Guy; Cooke, Steven J; Corner, Richard A; De Boeck, Gudrun; Domenici, Paolo; Guerreiro, Pedro M; Hamer, Bojan; Jørgensen, Christian; Killen, Shaun S; Lefevre, Sjannie; Marras, Stefano; Michaelidis, Basile; Nilsson, Göran E; Peck, Myron A; Perez-Ruzafa, Angel; Rijnsdorp, Adriaan D; Shiels, Holly A; Steffensen, John F; Svendsen, Jon C; Svendsen, Morten B S; Teal, Lorna R; van der Meer, Jaap; Wang, Tobias; Wilson, Jonathan M; Wilson, Rod W; Metcalfe, Julian D
2016-01-01
The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could be a crucial component of species' resilience to global change. Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more applicable to management and decision-making. There are various potential avenues for information flow, in the shorter term directly through biomarker studies and in the longer term by collaborating with modellers and fishery biologists.
Metrics for assessing freshwater fish in Narragansett Bay
Freshwater fish are ecologically important in stream ecosystems, and they provide significant value to humans. Historically, the streams and rivers of southern New England supported moderately diverse and abundant assemblages of native fishes. Currently, these habitats are impact...
Electron Cyclotron Radiation, Related Power Loss, and Passive Current Drive in Tokamaks: A Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fidone, Ignazio; Giruzzi, Gerardo; Granata, Giovanni
2001-01-15
A critical review on emission of weakly damped, high-harmonics electron cyclotron radiation, the related synchrotron power loss, and passive current drive in tokamaks with a fish-scale first wall is presented. First, the properties of overlapping harmonics are discussed using general analytical formulas and numerical applications. Next, the radiation power loss and efficiency of passive current drive in tokamak reactors are derived for the asymmetric fish-scale first wall. The radiation power loss is determined by the direction-averaged reflection coefficient {sigma}{sub 0} and the passive current drive by the differential reflectivity {delta}{sigma}/(1 - {sigma}{sub 0}). Finally, the problem of experimental investigations ofmore » the high harmonics radiation spectra, of {sigma}{sub 0} and {delta}{sigma}/(1 - {sigma}{sub 0}) in existing and next-step tokamaks, is discussed. Accurate measurements of the radiation spectra and the fish-scale reflectivity can be performed at arbitrary electron temperature using a partial fish-scale structure located near the tokamak equatorial plane.« less
Schneider, D W
2000-12-01
Stephen Forbes's "The Lake as a Microcosm" is one of the founding documents of the science of ecology in the United States. By tracing the connections between scientists and local fishermen underlying the research on floodplain lakes presented in "The Lake as a Microcosm," this essay shows how the birth of ecology was tied to local knowledge and the local politics of environmental transformation. Forbes and the other scientists of the Illinois Natural History Survey relied on fishermen for manual labor, expertise in catching fish, and knowledge of the natural history of the fishes. As Forbes and his colleagues worked in close contact with fishermen, they also adopted many of their political concerns over the privatization of the floodplain and became politically active in supporting their interests. The close connection between scientists and local knowledge forced the ecologists to reframe the boundaries of ecology as objective or political, pure or applied, local or scientific.
NASA Astrophysics Data System (ADS)
Sixiang, Chen; Daopin, Chen; Ming, Zhang; Xiao, Huang; Jian, He; Zhijie, He
2017-05-01
Aimed at the actual situation of fish death in fish ponds near the power transmission line towers after the thunderstorm happened in Guangdong Province in China, this paper studied the influence of the ground current on fish in the pond. Firstly, This paper studied the current density of the fish without protection. On this basis, paper studied the horizontal pole with full-shielded, the vertical pole with half-shielded, the horizontal pole with extension three kinds of protective measures and effects. Finally an effective protection scheme was put forward according to the engineering practice. The results can provide some engineering guidance and quantitative basis for the design and modification of grounding devices when the tower is adjacent to the fish ponds in southern China.
Forecasted range shifts of arid-land fishes in response to climate change
Whitney, James E.; Whittier, Joanna B.; Paukert, Craig P.; Olden, Julian D.; Strecker, Angela L.
2017-01-01
Climate change is poised to alter the distributional limits, center, and size of many species. Traits may influence different aspects of range shifts, with trophic generality facilitating shifts at the leading edge, and greater thermal tolerance limiting contractions at the trailing edge. The generality of relationships between traits and range shifts remains ambiguous however, especially for imperiled fishes residing in xeric riverscapes. Our objectives were to quantify contemporary fish distributions in the Lower Colorado River Basin, forecast climate change by 2085 using two general circulation models, and quantify shifts in the limits, center, and size of fish elevational ranges according to fish traits. We examined relationships among traits and range shift metrics either singly using univariate linear modeling or combined with multivariate redundancy analysis. We found that trophic and dispersal traits were associated with shifts at the leading and trailing edges, respectively, although projected range shifts were largely unexplained by traits. As expected, piscivores and omnivores with broader diets shifted upslope most at the leading edge while more specialized invertivores exhibited minimal changes. Fishes that were more mobile shifted upslope most at the trailing edge, defying predictions. No traits explained changes in range center or size. Finally, current preference explained multivariate range shifts, as fishes with faster current preferences exhibited smaller multivariate changes. Although range shifts were largely unexplained by traits, more specialized invertivorous fishes with lower dispersal propensity or greater current preference may require the greatest conservation efforts because of their limited capacity to shift ranges under climate change.
Studying the Evolution of the Vertebrate Circadian Clock: The Power of Fish as Comparative Models.
Foulkes, N S; Whitmore, D; Vallone, D; Bertolucci, C
2016-01-01
The utility of any model species cannot be judged solely in terms of the tools and approaches it provides for genetic analysis. A fundamental consideration is also how its biology has been shaped by the environment and the ecological niche which it occupies. By comparing different species occupying very different habitats we can learn how molecular and cellular mechanisms change during evolution in order to optimally adapt to their environment. Such knowledge is as important as understanding how these mechanisms work. This is illustrated by the use of fish models for studying the function and evolution of the circadian clock. In this review we outline our current understanding of how fish clocks sense and respond to light and explain how this differs fundamentally from the situation with mammalian clocks. In addition, we present results from comparative studies involving two species of blind cavefish, Astyanax mexicanus and Phreatichthys andruzzii. This work reveals the consequences of evolution in perpetual darkness for the circadian clock and its regulation by light as well as for other mechanisms such as DNA repair, sleep, and metabolism which directly or indirectly are affected by regular exposure to sunlight. Major differences in the cave habitats inhabited by these two cavefish species have a clear impact on shaping the molecular and cellular adaptations to life in complete darkness. Copyright © 2016 Elsevier Inc. All rights reserved.
Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.
Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F
2016-09-01
Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. Copyright © 2016 Elsevier GmbH. All rights reserved.
Synthetic musk compounds have been found in surface water, fish tissues, and human breast milk. Current techniques for separating these compounds from fish tissues require tedious sample clean-upprocedures A simple method for the deterrnination of these compounds in fish tissues ...
ERIC Educational Resources Information Center
Craig, Heather
2007-01-01
Fishing industries around the world are currently undergoing a process of industrialization and commercialization. A similar story is unfolding in many fishing communities: large-scale industrial fishers who possess enormous capital and advanced technologies are threatening the lives of small-scale fisherfolk. The fishing industry in Lake Victoria…
NASA Astrophysics Data System (ADS)
Gray, Benjamin P.; Norcross, Brenda L.; Beaudreau, Anne H.; Blanchard, Arny L.; Seitz, Andrew C.
2017-01-01
Arctic staghorn sculpin (Gymnocanthus tricuspis) and shorthorn sculpin (Myoxocephalus scorpius) belong to Cottidae, the second most abundant fish family in the western Arctic. Although considered important in food webs, little is known about their food habits throughout this region. To address this knowledge gap, we examined and compared the diets of 515 Arctic staghorn sculpin and 422 shorthorn sculpin using stomachs collected over three summers in the northeastern Chukchi Sea (2010-2012) and one summer in the western Beaufort Sea (2011). We used permutational multivariate analysis of variance (PERMANOVA) and non-metric multidimensional scaling (nMDS) to compare sculpin diets between regions and selected size classes. Differences in mouth morphologies and predator size versus prey size relationships were examined using regression techniques. Arctic staghorn sculpin and shorthorn sculpin diet compositions differed greatly throughout the Chukchi and Beaufort Seas. Regardless of body size, the smaller-mouthed Arctic staghorn sculpin consumed mostly benthic amphipods and polychaetes, whereas the larger-mouthed shorthorn sculpin shifted from a diet composed of benthic and pelagic macroinvertebrates as smaller individuals to shrimps and fish prey as larger individuals. Within shared habitats, the sculpins appear to partition prey, either by taxa or size, in a manner that suggests no substantial overlap occurs between species. This study increases knowledge of sculpin feeding ecology in the western Arctic and offers regional, quantitative diet information that could support current and future food web modeling efforts.
Cytotoxicity assays with fish cells as an alternative to the acute lethality test with fish.
Segner, Helmut
2004-10-01
In ecotoxicology, in vitro assays with fish cells are currently applied for mechanistic studies, bioanalytical purposes and toxicity screening. This paper discusses the potential of cytotoxicity assays with fish cells to reduce, refine or replace acute lethality tests using fish. Basal cytotoxicity data obtained with fish cell lines or fish primary cell cultures show a reasonable to good correlation with lethality data from acute toxicity tests, with the exception of compounds that exert a specific mode of toxic action. Basal cytotoxicity data from fish cell lines also correlate well with cytotoxicity data from mammalian cell lines. However, both the piscine and mammalian in vitro assays are clearly less sensitive than the fish test. Therefore, in vivo LC50 values (concentrations of the test compounds that are lethal to 50% of the fish in the experiment within 96 hours) currently cannot be predicted from in vitro values. This in vitro-in vivo difference in sensitivity appears to be true for both fish cell lines and mammalian cell lines. Given the good in vitro-in vivo correlation in toxicity ranking, together with the clear-cut difference in sensitivity, the role of cytotoxicity assays in a tiered alternative testing strategy could be in priority setting in relation to toxic hazard and in the toxicity classification of chemicals and environmental samples.
Obtaining environmental measures to facilitate vertebrate habitat modeling
Karl, J.W.; Wright, N.M.; Heglund, P.J.; Scott, J.M.
1999-01-01
Published literature generally lacks habitat information needed to adequately model the habitats of most wildlife species at large scales (>1:100,000). We searched in primary and secondary literature for occurrence of several potentially useful habitat measures for 20 species of interest to the Idaho Department of Fish and Game. We found adequate information for modeling only the habitats of certain game species and species of special interest. We suggest that many more researchers could collect simple habitat information regarding vegetation composition and structure, topographic features, soils, temperature, and distance to special landscape features such that current research expenses would not be increased significantly. We recommend that habitat data be consistently reported in peer-reviewed literature or deposited into a central data repository. This will not only help fill the gaps in our current knowledge of wildlife but also place it in a format that is readily accessible by the scientific community.
Management of multiple myeloma in resource-constrained settings.
Kumar, Lalit; Kumar Sahoo, Ranjit
2016-12-01
The prognosis of patients with multiple myeloma (MM) has improved significantly in the past two decades. This is attributed to use of novel agents for induction, high-dose chemotherapy and autologous stem cell transplantation (ASCT), maintenance therapy, and improved supportive care. Currently, evidence-based management guidelines/recommendations developed by International societies/groups are being followed partially in low-resource settings. Lack of quality diagnostics (eg, cytogenetics/fluorescence in situ hybridization (FISH), serum free light chains), novel therapeutics, and trained manpower, and limited financial resources are key challanges. An optimal utilization of available resources with continued educational activities of treating physicians focused on improving knowledge in the management of such patients may be a way forward to improve the outcome of myeloma patients in these countries. Our current approach to the management of this disease is presented here through a discussion of clinical vignettes. Copyright © 2016 Elsevier Inc. All rights reserved.
Thermal habitat restricts patterns of occurrence in multiple life-stages of a headwater fish
Mischa P. Turschwell; Stephen R. Balcombe; E. Ashley Steel; Fran Sheldon; Erin E. Peterson
2017-01-01
Our lack of knowledge on the spatiotemporal drivers of the distribution of many freshwater fishes, particularly as they differ among life-history stages, is a challenge to conservation of these species. We used 2-stage hurdle models to investigate drivers of occurrence and abundance of locally threatened adult and juvenile Northern River Blackfish in the upper...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-16
... into the observer and catch accounting systems. The applicant proposes to begin EFP fishing on April 1... experience and knowledge of the Amendment 80 catch accounting system. The AKSC would be limited to no more... end, bin, or conveyance system prior to being observed and counted by an at-sea observer; and...
Inhibition of the cardiac inward rectifier potassium currents by KB-R7943.
Abramochkin, Denis V; Alekseeva, Eugenia I; Vornanen, Matti
2013-09-01
KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium-calcium exchanger (NCX) with potential experimental and therapeutic use. However, KB-R7943 is shown to be a potent blocker of several ion currents including inward and delayed rectifier K(+) currents of cardiomyocytes. To further characterize KB-R7943 as a blocker of the cardiac inward rectifiers we compared KB-R7943 sensitivity of the background inward rectifier (IK1) and the carbacholine-induced inward rectifier (IKACh) currents in mammalian (Rattus norvegicus; rat) and fish (Carassius carassius; crucian carp) cardiac myocytes. The basal IK1 of ventricular myocytes was blocked with apparent IC50-values of 4.6×10(-6) M and 3.5×10(-6) M for rat and fish, respectively. IKACh was almost an order of magnitude more sensitive to KB-R7943 than IK1 with IC50-values of 6.2×10(-7) M for rat and 2.5×10(-7) M for fish. The fish cardiac NCX current was half-maximally blocked at the concentration of 1.9-3×10(-6) M in both forward and reversed mode of operation. Thus, the sensitivity of three cardiac currents to KB-R7943 block increases in the order IK1~INCX
Schroeder, Susan A; Fulton, David C; Altena, Eric; Baird, Heather; Dieterman, Douglas; Jennings, Martin
2018-05-23
Resource managers benefit from knowledge of angler support for fisheries management strategies. Factors including angler values (protection, utilitarian, and dominance), involvement (attraction, centrality, social, identity affirmation, and expression), catch-related motivations (catching some, many, and big fish, and keeping fish), satisfaction, agency trust, and demographics may relate to fisheries management preferences. Using results from a mail survey of Minnesota resident anglers, we explored how these factors were related to budget support for fish stocking relative to habitat protection/restoration. Results suggest that values, angler involvement, catch orientation, satisfaction, total and recent years fishing, age, and education influence relative support for stocking versus habitat protection/restoration. Utilitarian values, angling centrality, an orientation to catch many fish, satisfaction with the number of fish caught, number of recent years fishing, and age positively related to support for stocking over habitat management, while protection values, attraction to angling, total years fishing, and education level were negatively related to relative support for stocking.
Yanong, Roy P E; Francis-Floyd, Ruth; Curtis, Eric; Klinger, Ruth Ellen; Cichra, Mary E; Berzins, Ilze K
2002-05-01
Three varieties of a popular African cichlid aquarium species, Pseudotropheus zebra, from 2 tropical fish farms in east central Florida were submitted for diagnostic evaluation because of the development of multifocal green lesions. The percentage of infected fish in these populations varied from 5 to 60%. Fish were otherwise clinically normal. Microscopic examination of fresh and fixed lesions confirmed algal dermatitis, with light invasion of several internal organs in each group. A different alga was identified from each farm. Fish from farm A were infected with Chlorochytrium spp, whereas fish from farm B were infected with Scenedesmus spp. Because of the numbers of fish involved, bath treatments to remove the algae from affected fish from farm B were attempted, with different dosages of several common algaecides including copper sulfate pentahydrate, diuron, and sodium chloride. However, none of these treatments were successful, possibly because of the location of the algae under the scales and within the dermis, and also because of the sequestering effect of the granulomatous response. To our knowledge, this is the first report of algal dermatitis in ornamental cichlids, as well as the first report of Scenedesmus spp infection in any fish.
Degradation rate of praziquantel and fenbendazole in rainbow trout following oral administration.
Soukupova-Markova, Zdenka; Doubkova, Veronika; Marsalek, Petr; Svobodova, Zdenka; Papezikova, Ivana; Lang, Stepan; Navratil, Stanislav; Palikova, Miroslava
2015-01-01
The aim of this study was to evaluate and compare the rate of degradation and elimination of praziquantel and fenbendazole antiparasitics following oral administration to salmonids. In addition, we determine whether the length of the legal withdrawal period is sufficient for complete elimination of antiparasitic residue from the body. The use of these drugs in fish is currently considered off-label and data on degradation are not available for rainbow trout. The model species for this experiment was the rainbow trout (Oncorhynchus mykiss) and praziquantel and fenbendazole were chosen for experimental therapy. Both drugs were administered into the gastrointestinal tract using a stomach tube. Concentrations of fenbendazole and praziquantel were established through high performance liquid chromatography-tandem mass spectrometry. Our results show that concentrations of praziquantel and fenbendazole reach their maximum in the body within 24 hours of administration, with concentrations dropping sharply over the following 24 hours. With one exception, when trace amounts of both substances were found in blood plasma, the drugs were completely degraded and eliminated from the body by the end of the experiment (corresponding to 497.6 degree days). Praziquantel and fenbendazole both show a high rate of degradation and elimination from fish. As both substances were eliminated from the body within the required withdrawal period (i.e. within 500 degree days) they can be safely used based on current knowledge of their therapeutic effect for treating helminth infections.
USDA-ARS?s Scientific Manuscript database
The Alaska fisheries industry harvests over 2 million metric tons of wild fish annually, and after processing, over 1 million metric tons of fish byproducts are produced. This presentation will discuss current utilization of products made from fish byproducts in Alaska, and opportunities for enhanci...
The Blue Öresund Bridge of Knowledge
NASA Astrophysics Data System (ADS)
Hellström, Åsa; Palmgren, Michael
2017-04-01
The Blue Öresund Bridge of Knowledge (BÖBK) is a unique project between Malmö, Sweden and Copenhagen, Denmark around The Sound. BÖBK aims to educate the next generation to become active citizens who take part in creating a sustainable marine future. It is important that future generations are capable of responding to challenges generated in society. Through practical, creative and innovative learning programs we are working on giving the school children, and their teachers, the insight, skills and commitment needed to take on the fight for a clean environment, bright future and blue waters. Thirty years ago, the Sound was a dead, eutrophic and polluted sea. With joint efforts for those environmental issues and with greater understanding of our sea, from both countries, the water in The Sound has improved, fish stocks increased, and the seabed is healthy. Despite one of Europe's largest constructions works, The Öresund Bridge. The Sound is a unique ocean with strong currents and with varying salinity. Which means a rich, varied biological life. In BÖBK, which is a unique three-year project between the two municipalities, Malmö and Copenhagen and actors like Malmö Museum, Malmö Aquarium, SEA-U Marine Science Center in Sweden and The Blue Planet, Öresund Environmental School in Denmark, we work hands-on with students and teachers from the two schools, in Malmö and Copenhagen. The aim of the project is that the students, who are 13-15 years old, get a deeper understanding of our marine environment, The Sound, through its ecosystem services, and what human influence can do. Students also practice their action competence regarding own actions and lifestyle choices based on this knowledge. Students learn more about history, marine science and the biodiversity of The Sound. But also, how important fisheries have been in the region since the Middle Ages. Marine food has a prominent position in the project where students are taught to fish their own fish in a sustainable way, cook the catch of fish and algae and then the students together eating the food. Students will also examine how blue biomass from the sea (mussels and algae) can be used to produce biogas fuel for the city buses. In parallel with the curriculum, the project also has elements of language development, both in Swedish and Danish. Together we also work for The Sound to become a biosphere area within the UNESCO's Man and the Biosphere Programme and with the support of the new marine science center, which will open later this fall, we build greater knowledge and skills of citizens around the Sound. BÖBK is build on the Öresund region's thoughts of becoming a metropolitan region in the future. Keywords: biodiversity, ecosystem services. education, involvement, sustainable future, youth, citizenship, collaboration, language development, ocean literacy, outdoor learning/education, place based learning, challenge based learning.
Hydrologic and water-quality rehabilitation of environments for suitable fish habitat
NASA Astrophysics Data System (ADS)
Zhao, C. S.; Yang, S. T.; Xiang, H.; Liu, C. M.; Zhang, H. T.; Yang, Z. L.; Zhang, Y.; Sun, Y.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.
2015-11-01
Aquatic ecological rehabilitation is attracting increasing public and research attention, but without knowledge of the responses of aquatic species to their habitats the success of habitat restoration is uncertain. Thus efficient study of species response to habitat, through which to prioritize the habitat factors influencing aquatic ecosystems, is highly important. However many current models have too high requirement for assemblage information and have great bias in results due to consideration of only the species' attribute of presence/absence, abundance or biomass, thus hindering the wider utility of these models. This paper, using fish as a case, presents a framework for identification of high-priority habitat factors based on the responses of aquatic species to their habitats, using presence/absence, abundance and biomass data. This framework consists of four newly developed sub-models aiming to determine weightings for the evaluation of species' contributions to their communities, to quantitatively calculate an integrated habitat suitability index for multi-species based on habitat factors, to assess the suitable probability of habitat factors and to assess the rehabilitation priority of habitat factors. The framework closely links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. Breakpoint identification techniques based on curvature in cumulated dominance along with a newly developed weighting calculation model based on theory of mass systems were used to help identify the dominant fish, based on which the presence and abundance of multiple fish were normalized to estimate the integrated habitat suitability index along gradients of various factors, based on their variation with principal habitat factors. Then, the appropriate probability of every principal habitat factor was estimated and graded, and the priority of habitat factors for rehabilitation was determined. Application of the model to Jinan City, a pilot city for the construction of a civilized and ecological city in China, proved effective, revealing that carbonate is the poorest habitat factor and has the highest priority for ecological rehabilitation. This was tested using two methods: alternative priority models and a dataset of all habitat factors in place of only the principal habitat factors. We also found that hydrological factors have higher priority than the water quality factors at the levels of both the whole city and its subordinate eco-regions and therefore that hydrological factors deserve special attention in the future ecosystem rehabilitation. Further, the current habitat state makes nearly half of the habitats in Jinan City undesirable for fish communities, largely due to long-term agricultural practices. Spatially, rivers in the mountainous region south of Jinan city and adjacent to the urban area and rivers in the agricultural region north of the city should be emphasized in future habitat rehabilitation. All of these findings have substantial ramifications for the rehabilitation of aquatic ecosystems in Jinan City as a reference for river ecological remediation in rivers with scarce ecological data worldwide.
NASA Astrophysics Data System (ADS)
Otero, Olga; Joordens, Josephine; Dettai, Agnès; Christ, Leemans; Pinton, Aurélie
2016-04-01
We assume that basin boundaries constitute barriers to dispersal for freshwater fish and as a consequence that basin geomorphology and connectivity, and its changes through time, can be reconstructed thanks to fish evolutionary history. Firstly, this primary intuitive hypothesis is supported by patterns of fish distribution in the different basins and sub-basins of modern Africa, at both a specific and a generic level, and in certain cases at a family level. This is illustrated by the fact that hydrographical basin boundaries are reflected in the ichthyological provinces as defined and used by ichthyologists for a long time. Moreover, we show that at a continental scale, the hierarchical fish distribution patterns fit with main geological and climatic events according to their depth in time and amplitude [1]. Secondly, we further tested this hypothesis in several ways: (1) through the phylogeographical study of the catfish genus Synodontis [2], chosen because of its modern distribution and its rich fossil record, and (2) through the examination of the fossil record and systematics of the African lungfish Protopterus [3], of the catfish Calarius and of an extinct acanthomorph fish called Semlikiichthys [4,5]. We were then able to correlate these fish histories with quaternary climate change and with geological events throughout the Tertiary in Africa. Our conclusions are also corroborated by existing fish phylogenies that overlap with our region of interest, and elsewhere. While in the last years an increasing number of molecular phylogenetical studies support correlation between fish evolution and basin history at shallow time scales, our studies (and a few other studies) also demonstrate the relevance of fish evolution to work at deeper time and larger geological scales, depending on the taxon distribution and age. Moreover, we plead for the inclusion of fossils when available. Indeed, for extant taxa they are useful to calibrate molecular clocks but also to reveal ancient distributions. The further we are going back in time the more they will constitute most of or the whole relevant sample. Our results also suggest that information on the (paleo)ecology of the fish provides useful data notably to qualify the aquatic systems that have prevailed at the time of connection between basins. So, changes in basin geomorphology constrain fish evolution, and thus we are able to reconstruct and date these changes thanks to fish evolution studies. Since it is widely agreed that the identification of corridors and barriers is critical to understand faunal exchange, we are convinced that for each case study, we can identify the fish (either fossil or extant) that will provide a relevant "geomorphological model". To validate this approach, our current project aims to identify the exchange corridor that may have intermittently existed between the Chad and Turkana basins during the last 3 million years [6]. These corridors may have constituted possible pathways for interbasinal exchange of large mammals at a key time period of Australopithecine evolution. We will end our presentation with preliminary results concerning phylogeography of the extant catfish Synodontis schall, one of our three model species. [1] Pinton A., Otero O. in progress - How much do fish distribution depend on drainage system history? the case study of continental Africa. [2] Pinton A., Agnèse J.F., Paugy D., Otero O. 2013 - A large-scale phylogeny of Synodontis (Mochokidae, Siluriformes) reveals the influence of geological events on continental diversity during the Cenozoic. Molecular Phylogenetics and Evolution, 66 (2013): 1027-1040. [3] Otero O. 2011 - Current knowledge and new assumptions on the evolutionary history of the African lungfish, Protopterus, based on a review of its fossil record. Fish & Fisheries, 2011(12): 235-255. [4] Otero O., Pinton A., Mackaye H.T., Likius A., Vignaud P., Brunet M. 2009 - Fishes and palaeogeography of the African drainage basins: relationships between Chad and neighbouring basins throughout the Mio-Pliocene. Palaeobiogeography, Palaeoclimatology, Palaeoecology, 274 (2009): 134-139. [5] Argyriou T., Otero O., Pavlakis P., Boaz N.T. 2012 - Description and paleobiogeographical implications of new Semlikiichthys (Teleostei, Perciformes) fish material from the Late Miocene deposits of Sahabi, Libya. Geobios, 45(2012): 429-436. [6] Joordens J (Pi) - Coastal origins? A biogeographical model for mominin evolution and dispersal in Africa between 5 and 2.5 million years ago.
Mercury concentration in the muscle of seven fish species from Chagan Lake, Northeast China.
Zhu, Lilu; Yan, Baixing; Wang, Lixia; Pan, Xiaofeng
2012-03-01
Chagan Lake is located downstream of the Second Songhua River basin in Northeast China. It is one of the top ten inland freshwater lakes, and an important aquatic farm in China. The lake has been receiving large amounts (currently at 1.5 × 10(8) m(3)/a) of water from the river since 1984. This would pose a threat to the aquatic system of the lake because the river was seriously polluted with mercury in 1970s-1980s. The current study is the first to report the total mercury concentrations in fish found in the lake. Mercury concentrations in seven fish species collected from the lake in January 2009 were determined. The related human health risk from fish consumption was also assessed. The average concentration of mercury in the fish was 18.8 μg/kg of wet weight, ranging from 4.5 to 37.6 μg/kg of wet weight. A large difference in the mercury concentrations among the fish species was found. The mercury concentration was found to be higher in carnivorous species and lower in omnivorous and herbivorous species. This demonstrates greater mercury bioaccumulation in fish species at higher trophic levels. Mercury concentrations in fish showed significant positive correlations with age, length, and weight. No significant relationship was found between mercury concentrations in fish and the habitat preferences. Mercury concentrations in fish from the lake were within the limits of the international and national standards of China established for mercury. According to the reference doses established by the United States Environmental Protection Agency, the maximum safe consuming quantity considering all the fish was 297.3 g/day/person, which was more than five times as much as the current quantity (50 g/day/person) consumed by the local residents. This investigation indicates that the historical pollution of the Second Songhua River has not caused mercury bioaccumulation in fish muscle tissue of Chagan Lake. The present consumption of fish from the lake in the local area does not pose a threat to human health.
Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean
NASA Astrophysics Data System (ADS)
Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.
2017-05-01
Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8-24.4 °C) and dissolved oxygen (2.2-9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish biogeography.
Demersal fish assemblages on seamounts and other rugged features in the northeastern Caribbean
Quattrini, Andrea M.; Demopoulos, Amanda W. J.; Singer, Randal; Roa-Varon, Adela; Chaytor, Jason D.
2017-01-01
Recent investigations of demersal fish communities in deepwater (>50 m) habitats have considerably increased our knowledge of the factors that influence the assemblage structure of fishes across mesophotic to deep-sea depths. While different habitat types influence deepwater fish distribution, whether different types of rugged seafloor features provide functionally equivalent habitat for fishes is poorly understood. In the northeastern Caribbean, different types of rugged features (e.g., seamounts, banks, canyons) punctuate insular margins, and thus create a remarkable setting in which to compare demersal fish communities across various features. Concurrently, several water masses are vertically layered in the water column, creating strong stratification layers corresponding to specific abiotic conditions. In this study, we examined differences among fish assemblages across different features (e.g., seamount, canyon, bank/ridge) and water masses at depths ranging from 98 to 4060 m in the northeastern Caribbean. We conducted 26 remotely operated vehicle dives across 18 sites, identifying 156 species of which 42% of had not been previously recorded from particular depths or localities in the region. While rarefaction curves indicated fewer species at seamounts than at other features in the NE Caribbean, assemblage structure was similar among the different types of features. Thus, similar to seamount studies in other regions, seamounts in the Anegada Passage do not harbor distinct communities from other types of rugged features. Species assemblages, however, differed among depths, with zonation generally corresponding to water mass boundaries in the region. High species turnover occurred at depths <1200 m, and may be driven by changes in water mass characteristics including temperature (4.8–24.4 °C) and dissolved oxygen (2.2–9.5 mg per l). Our study suggests the importance of water masses in influencing community structure of benthic fauna, while considerably adding to the knowledge of mesophotic and deep-sea fish biogeography.
Code of Federal Regulations, 2011 CFR
2011-10-01
...; survey results; stock status; current estimates of fishing mortality and overfishing levels; social and... survey data or, if sea sampling data are unavailable, length frequency information from trawl surveys... effort, survey results, stock status, current estimates of fishing mortality, and any other relevant...
DEVELOPMENT OF STANDARDIZED LARGE RIVER BIOASSESSMENT PROTOCOLS (LR-BP) FOR FISH ASSEMBLAGES
We conducted research comparing several methods currently in use for the bioassessment and monitoring of fish and benthic macroinvertebrate assemblages for large rivers. Fish data demonstrate that electrofishing 1000 m of shoreline is sufficient for bioassessments on boatable ri...
Huque, Roksana; Munshi, M. Kamruzzaman; Khatun, Afifa; Islam, Mahfuza; Hossain, Afzal; Hossain, Arzina; Akter, Shirin; Kabir, Jamiul; Nahar Jolly, Yeasmin; Islam, Ashraful
2014-01-01
Trace metals concentration and proximate composition of raw and boiled silver pomfret (Pampus argenteus) from coastal area and retail market were determined to gain the knowledge of the risk and benefits associated with indiscriminate consumption of marine fishes. The effects of cooking (boiling) on trace metal and proximate composition of silver pomfret fish were also investigated. Trace element results were determined by the Energy Dispersive X-ray Fluorescence (EDXRF) Spectrometer wherein fish samples from both areas exceeded the standard limits set by FAO/WHO for manganese, lead, cadmiumm and chromium and boiling has no significant effects on these three metal concentrations. Long-term intake of these contaminated fish samples can pose a health risk to humans who consume them. PMID:26904650
Threatened fish and fishers along the Brazilian Atlantic Forest Coast.
Begossi, Alpina; Salivonchyk, Svetlana; Hallwass, Gustavo; Hanazaki, Natalia; Lopes, Priscila F M; Silvano, Renato A M
2017-12-01
Small-scale fisheries of the Brazilian Atlantic Forest Coast (BAFC) depend on fish resources for food and income. Thus, if the catch diminishes or if fish species that are a target for fishers are overexploited or impacted, this could affect fishers' livelihoods. The exclusion of threatened fish species from the catch is believed to be a threat to small-scale fisheries, which is likely to be the case along the BAFC. Many fish species are currently listed as threatened or vulnerable, whereas there is not enough biological information available to determine the status of the majority of the other species. Failure to protect the BAFC biodiversity might negatively impact fishers' income and the regional economy of local small-scale fisheries. We collected data from 1986 to 2009 through 347 interviews and 24-h food recall surveys at seven southeastern coastal sites of the Atlantic Forest. We show that important species of consumed fish are currently threatened: of the 65 species mentioned by fishers as the most consumed fishes, 33% are decreasing and 54% have an unknown status. Thus, biological and ecological data for BAFC marine species are urgently needed, along with co-management, to promote fish conservation.
Fish oil lipid emulsions and immune response: what clinicians need to know.
Waitzberg, Dan Linetzky; Torrinhas, Raquel Susana
2009-01-01
Current evidence indicates that omega-3 polyunsaturated fatty acids (PUFAs), particularly eicosapentaenoic acid and docosahexaenoic acid found in fish oil, can prevent the development of inflammatory diseases by affecting different steps of the immune response. The capacity of omega-3 PUFAs to modulate synthesis of eicosanoids, activity of nuclear receptor and nuclear transcription factors, and production of resolvins may also mitigate inflammatory processes already present. Parenteral infusion of omega-3 PUFAs is advantageous, particularly in severely ill patients, because the fatty acids are rapidly incorporated by cells. In addition, when fatty acids are given parenterally, there are no losses from digestion and absorption as there are with enteral infusion. Recently, lipid emulsions enriched with omega-3 fish oil have been introduced as a component of parenteral nutrition. Currently, there is one lipid emulsion that contains only fish oil; it is infused together with conventionally used lipid emulsions. Other commercially available lipid emulsions contain fish oil in a fat mixture; one contains 10% fish oil and another 15% fish oil. Relevant experimental and clinical data from studies evaluating fish oil lipid emulsions are discussed in the present review. Administration of fish oil lipid emulsion, when compared with soybean oil lipid emulsion (rich in omega-6 PUFA), decreases the length of hospital and intensive care unit stay in surgical patients.
Fish, mercury, selenium and cardiovascular risk: current evidence and unanswered questions.
Mozaffarian, Dariush
2009-06-01
Controversy has arisen among the public and in the media regarding the health effects of fish intake in adults. Substantial evidence indicates that fish consumption reduces coronary heart disease mortality, the leading cause of death in developed and most developing nations. Conversely, concerns have grown regarding potential effects of exposure to mercury found in some fish. Seafood species are also rich in selenium, an essential trace element that may protect against both cardiovascular disease and toxic effects of mercury. Such protective effects would have direct implications for recommendations regarding optimal selenium intake and for assessing the potential impact of mercury exposure from fish intake in different populations. Because fish consumption appears to have important health benefits in adults, elucidating the relationships between fish intake, mercury and selenium exposure, and health risk is of considerable scientific and public health relevance. The evidence for health effects of fish consumption in adults is reviewed, focusing on the strength and consistency of evidence and relative magnitudes of effects of omega-3 fatty acids, mercury, and selenium. Given the preponderance of evidence, the focus is on cardiovascular effects, but other potential health effects, as well as potential effects of polychlorinated biphenyls and dioxins in fish, are also briefly reviewed. The relevant current unanswered questions and directions of further research are summarized.
A qualitative study of fish consumption during pregnancy123
Bloomingdale, Arienne; Guthrie, Lauren B; Price, Sarah; Wright, Robert O; Platek, Deborah; Haines, Jess; Oken, Emily
2010-01-01
Background: Many pregnant women in the United States do not consume enough docosahexaenoic acid (DHA)—an essential nutrient found in fish. Apparently conflicting findings that fish consumption is beneficial for the developing fetus, yet potentially toxic because of mercury contamination, have created uncertainty about the appropriate fish-consumption advice to provide to pregnant women. Objective: Our objective was to determine knowledge, behaviors, and received advice regarding fish consumption among pregnant women who are infrequent consumers of fish. Design: In 2009–2010 we conducted 5 focus groups with 22 pregnant women from the Boston area who ate <2 fish servings/wk. We analyzed transcripts by using immersion-crystallization. Results: Many women knew that fish might contain mercury, a neurotoxin, and had received advice to limit fish intake. Fewer women knew that fish contains DHA or what the function of DHA is. None of the women had received advice to eat fish, and most had not received information about which fish types contain more DHA or less mercury. Because of advice to limit fish intake, as well as a lack of information about which fish types they should be eating, many of the women said that they would rather avoid fish than possibly harm themselves or their infants. The participants thought that a physician's advice to eat fish and a readily available reference regarding which fish are safe to consume during pregnancy would likely have encouraged them to eat more fish. Conclusion: Pregnant women might be willing to eat more fish if this were advised by their obstetricians or if they had an accessible reference regarding which types are safe. PMID:20844071
Molecular basis and drug sensitivity of the delayed rectifier (IKr) in the fish heart.
Hassinen, Minna; Haverinen, Jaakko; Vornanen, Matti
2015-01-01
Fishes are increasingly used as models for human cardiac diseases, creating a need for a better understanding of the molecular basis of fish cardiac ion currents. To this end we cloned KCNH6 channel of the crucian carp (Carassius carassius) that produces the rapid component of the delayed rectifier K(+) current (IKr), the main repolarising current of the fish heart. KCNH6 (ccErg2) was the main isoform of the Kv11 potassium channel family with relative transcript levels of 98.9% and 99.6% in crucian carp atrium and ventricle, respectively. KCNH2 (ccErg1), an orthologue to human cardiac Erg (Herg) channel, was only slightly expressed in the crucian carp heart. The native atrial IKr and the cloned ccErg2 were inhibited by similar concentrations of verapamil, terfenadine and KB-R7943 (P>0.05), while the atrial IKr was about an order of magnitude more sensitive to E-4031 than ccErg2 (P<0.05) suggesting that some accessory β-subunits may be involved. Sensitivity of the crucian carp atrial IKr to E-4031, terfenadine and KB-R7943 was similar to what has been reported for the Herg channel. In contrast, the sensitivity of the crucian carp IKr to verapamil was approximately 30 times higher than the previously reported values for the Herg current. In conclusion, the cardiac IKr is produced by non-orthologous gene products in fish (Erg2) and mammalian hearts (Erg1) and some marked differences exist in drug sensitivity between fish and mammalian Erg1/2 which need to be taken into account when using fish heart as a model for human heart. Copyright © 2015 Elsevier Inc. All rights reserved.
The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs.
Brandl, Simon J; Goatley, Christopher H R; Bellwood, David R; Tornabene, Luke
2018-05-07
Teleost fishes are the most diverse group of vertebrates on Earth. On tropical coral reefs, their species richness exceeds 6000 species; one tenth of total vertebrate biodiversity. A large proportion of this diversity is composed of cryptobenthic reef fishes (CRFs): bottom-dwelling, morphologically or behaviourally cryptic species typically less than 50 mm in length. Yet, despite their diversity and abundance, these fishes are both poorly defined and understood. Herein we provide a new quantitative definition and synthesise current knowledge on the diversity, distribution and life history of CRFs. First, we use size distributions within families to define 17 core CRF families as characterised by the high prevalence (>10%) of small-bodied species (<50 mm). This stands in strong contrast to 42 families of large reef fishes, in which virtually no small-bodied species have evolved. We posit that small body size has allowed CRFs to diversify at extremely high rates, primarily by allowing for fine partitioning of microhabitats and facilitation of allopatric reproductive isolation; yet, we are far from understanding and documenting the biodiversity of CRFs. Using rates of description since 1758, we predict that approximately 30 new species of cryptobenthic species will be described per year until 2050 (approximately twice the annual rate compared to large fishes). Furthermore, we predict that by the year 2031, more than half of the described coral reef fish biodiversity will consist of CRFs. These fishes are the 'hidden half' of vertebrate biodiversity on coral reefs. Notably, global geographic coverage and spatial resolution of quantitative data on CRF communities is uniformly poor, which further emphasises the remarkable reservoir of biodiversity that is yet to be discovered. Although small body size may have enabled extensive diversification within CRF families, small size also comes with a suite of ecological challenges that affect fishes' capacities to feed, survive and reproduce; we identify a range of life-history adaptations that have enabled CRFs to overcome these limitations. In turn, these adaptations bestow a unique socio-ecological role on CRFs, which includes a key role in coral reef trophodynamics by cycling trophic energy provided by microscopic prey to larger consumers. Although small in body size, the ecology and evolutionary history of CRFs may make them a critical component of coral-reef food webs; yet our review also shows that these fishes are highly susceptible to a variety of anthropogenic disturbances. Understanding the consequences of these changes for CRFs and coral reef ecosystems will require us to shed more light on this frequently overlooked but highly diverse and abundant guild of coral reef fishes. © 2018 Cambridge Philosophical Society.
A Fish Consumption Survey of the Shoshone-Bannock Tribes
This report culminates two years of work—preceded by years of discussion—to characterize the current and heritage fish consumption rates and fishing-related activities of the Shoshone-Bannock Tribes. The report contains three volumes in one document. Volume I is concerned with h...
Multi-scale temporal patterns in fish presence in a high-velocity tidal channel
Viehman, Haley A.
2017-01-01
The natural variation of fish presence in high-velocity tidal channels is not well understood. A better understanding of fish use of these areas would aid in predicting fish interactions with marine hydrokinetic (MHK) devices, the effects of which are uncertain but of high concern. To characterize the patterns in fish presence at a tidal energy site in Cobscook Bay, Maine, we examined two years of hydroacoustic data continuously collected at the proposed depth of an MHK turbine with a bottom-mounted, side-looking echosounder. The maximum number of fish counted per hour ranged from hundreds in the early spring to over 1,000 in the fall. Counts varied greatly with tidal and diel cycles in a seasonally changing relationship, likely linked to the seasonally changing fish community of the bay. In the winter and spring, higher hourly counts were generally confined to ebb tides and low slack tides near sunrise and sunset. In summer and fall of each year, the highest fish counts shifted to night and occurred during ebb, low slack, and flood tides. Fish counts were not linked to current speed, and did not decrease as current speed increased, contrary to observations at other tidal power sites. As fish counts may be proportional to the encounter rate of fish with an MHK turbine at the same depth, highly variable counts indicate that the risk to fish is similarly variable. The links between fish presence and environmental cycles at this site will likely be present at other locations with similar environmental forcing, making these observations useful in predicting potential fish interactions at tidal energy sites worldwide. PMID:28493894
Multi-scale temporal patterns in fish presence in a high-velocity tidal channel.
Viehman, Haley A; Zydlewski, Gayle Barbin
2017-01-01
The natural variation of fish presence in high-velocity tidal channels is not well understood. A better understanding of fish use of these areas would aid in predicting fish interactions with marine hydrokinetic (MHK) devices, the effects of which are uncertain but of high concern. To characterize the patterns in fish presence at a tidal energy site in Cobscook Bay, Maine, we examined two years of hydroacoustic data continuously collected at the proposed depth of an MHK turbine with a bottom-mounted, side-looking echosounder. The maximum number of fish counted per hour ranged from hundreds in the early spring to over 1,000 in the fall. Counts varied greatly with tidal and diel cycles in a seasonally changing relationship, likely linked to the seasonally changing fish community of the bay. In the winter and spring, higher hourly counts were generally confined to ebb tides and low slack tides near sunrise and sunset. In summer and fall of each year, the highest fish counts shifted to night and occurred during ebb, low slack, and flood tides. Fish counts were not linked to current speed, and did not decrease as current speed increased, contrary to observations at other tidal power sites. As fish counts may be proportional to the encounter rate of fish with an MHK turbine at the same depth, highly variable counts indicate that the risk to fish is similarly variable. The links between fish presence and environmental cycles at this site will likely be present at other locations with similar environmental forcing, making these observations useful in predicting potential fish interactions at tidal energy sites worldwide.
Multi-scale temporal patterns in fish presence in a high-velocity tidal channel
Viehman, Haley A.; Zydlewski, Gayle Barbin; Hewitt, Judi
2017-05-11
The natural variation of fish presence in high-velocity tidal channels is not well understood. A better understanding of fish use of these areas would aid in predicting fish interactions with marine hydrokinetic (MHK) devices, the effects of which are uncertain but of high concern. To characterize the patterns in fish presence at a tidal energy site in Cobscook Bay, Maine, we examined two years of hydroacoustic data continuously collected at the proposed depth of an MHK turbine with a bottom-mounted, side-looking echosounder. The maximum number of fish counted per hour ranged from hundreds in the early spring to over 1,000more » in the fall. Counts varied greatly with tidal and diel cycles in a seasonally changing relationship, likely linked to the seasonally changing fish community of the bay. In the winter and spring, higher hourly counts were generally confined to ebb tides and low slack tides near sunrise and sunset. In summer and fall of each year, the highest fish counts shifted to night and occurred during ebb, low slack, and flood tides. Fish counts were not linked to current speed, and did not decrease as current speed increased, contrary to observations at other tidal power sites. As fish counts may be proportional to the encounter rate of fish with an MHK turbine at the same depth, highly variable counts indicate that the risk to fish is similarly variable. The links between fish presence and environmental cycles at this site will likely be present at other locations with similar environmental forcing, making these observations useful in predicting potential fish interactions at tidal energy sites worldwide.« less
Multi-scale temporal patterns in fish presence in a high-velocity tidal channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viehman, Haley A.; Zydlewski, Gayle Barbin; Hewitt, Judi
The natural variation of fish presence in high-velocity tidal channels is not well understood. A better understanding of fish use of these areas would aid in predicting fish interactions with marine hydrokinetic (MHK) devices, the effects of which are uncertain but of high concern. To characterize the patterns in fish presence at a tidal energy site in Cobscook Bay, Maine, we examined two years of hydroacoustic data continuously collected at the proposed depth of an MHK turbine with a bottom-mounted, side-looking echosounder. The maximum number of fish counted per hour ranged from hundreds in the early spring to over 1,000more » in the fall. Counts varied greatly with tidal and diel cycles in a seasonally changing relationship, likely linked to the seasonally changing fish community of the bay. In the winter and spring, higher hourly counts were generally confined to ebb tides and low slack tides near sunrise and sunset. In summer and fall of each year, the highest fish counts shifted to night and occurred during ebb, low slack, and flood tides. Fish counts were not linked to current speed, and did not decrease as current speed increased, contrary to observations at other tidal power sites. As fish counts may be proportional to the encounter rate of fish with an MHK turbine at the same depth, highly variable counts indicate that the risk to fish is similarly variable. The links between fish presence and environmental cycles at this site will likely be present at other locations with similar environmental forcing, making these observations useful in predicting potential fish interactions at tidal energy sites worldwide.« less
Watkins, Carson J.; Stevens, Bryan S.; Quist, Michael C.; Shepard, Bradley B.; Ireland, Susan C.
2015-01-01
The lower Kootenai River, Idaho, was sampled during the summers of 2012 and 2013 to evaluate its fish assemblage structure at seven sites within main- and side-channel habitats where large-scale habitat rehabilitation was undertaken. Understanding the current patterns of fish assemblage structure and their relationships with habitat is important for evaluating the effects of past and future rehabilitation projects on the river. Species-specific habitat associations were modeled, and the variables that best explained the occurrence and relative abundance of fish were identified in order to guide future habitat rehabilitation so that it benefits native species. The results indicated that the side-channel habitats supported higher species richness than the main-channel habitats and that nonnative fishes were closely associated with newly rehabilitated habitats. This research provides valuable insight on the current fish assemblages in the Kootenai River and the assemblage-level responses that may occur as a result of future rehabilitation activities.
Uses and Doses of Local Anesthetics in Fish, Amphibians, and Reptiles.
Chatigny, Frederic; Kamunde, Collins; Creighton, Catherine M; Stevens, E Don
2017-05-01
Local anesthetics are an integral part of routine pain management in mammals, yet their use is relatively limited in fish, amphibians and reptiles. These animals frequently undergo potentially painful surgical procedures and therefore could possibly benefit from those drugs. Some recommendations are currently available in the literature concerning analgesic use in these animals. However the pharmacological properties, safety and often efficacy of local anesthetic drugs have not been investigated yet in fish, amphibians, or reptiles. This review compiled current information concerning the use of those agents in fish, reptiles and amphibians to help clinicians make an informed decision as to which dose and drug to use. The resulting literature search showed that the literature concerning use of local analgesics in fish and amphibians is very limited while the literature for reptiles is more extensive. We found few experimental studies evaluating the efficacy of local anesthetics. Further studies would provide additional information for developing guidelines to improve the welfare of fish, amphibians and reptiles.
Uses and Doses of Local Anesthetics in Fish, Amphibians, and Reptiles
Chatigny, Frederic; Kamunde, Collins; Creighton, Catherine M; Stevens, E Don
2017-01-01
Local anesthetics are an integral part of routine pain management in mammals, yet their use is relatively limited in fish, amphibians and reptiles. These animals frequently undergo potentially painful surgical procedures and therefore could possibly benefit from those drugs. Some recommendations are currently available in the literature concerning analgesic use in these animals. However the pharmacological properties, safety and often efficacy of local anesthetic drugs have not been investigated yet in fish, amphibians, or reptiles. This review compiled current information concerning the use of those agents in fish, reptiles and amphibians to help clinicians make an informed decision as to which dose and drug to use. The resulting literature search showed that the literature concerning use of local analgesics in fish and amphibians is very limited while the literature for reptiles is more extensive. We found few experimental studies evaluating the efficacy of local anesthetics. Further studies would provide additional information for developing guidelines to improve the welfare of fish, amphibians and reptiles. PMID:28535859
Zytoon, Mohamed A; Basahel, Abdulrahman M
2017-02-24
Although marine fishing is one of the most hazardous occupations, research on the occupational safety and health (OSH) conditions aboard marine fishing vessels is scarce. For instance, little is known about the working conditions of vulnerable groups such as young and aging fishermen. The objective of the current paper is to study the OSH conditions of young and aging fishermen compared to middle-aged fishermen in the small- and medium-size (SM) marine fishing sector. A cross-sectional study was designed, and 686 fishermen working aboard SM fishing vessels were interviewed to collect information about their safety and health. The associations of physical and psychosocial work conditions with safety and health outcomes, e.g., injuries, illnesses and job satisfaction, are presented. The results of the current study can be utilized in the design of effective accident prevention and OSH training programs for the three age groups and in the regulation of working conditions aboard fishing vessels.
Zytoon, Mohamed A.; Basahel, Abdulrahman M.
2017-01-01
Although marine fishing is one of the most hazardous occupations, research on the occupational safety and health (OSH) conditions aboard marine fishing vessels is scarce. For instance, little is known about the working conditions of vulnerable groups such as young and aging fishermen. The objective of the current paper is to study the OSH conditions of young and aging fishermen compared to middle-aged fishermen in the small- and medium-size (SM) marine fishing sector. A cross-sectional study was designed, and 686 fishermen working aboard SM fishing vessels were interviewed to collect information about their safety and health. The associations of physical and psychosocial work conditions with safety and health outcomes, e.g., injuries, illnesses and job satisfaction, are presented. The results of the current study can be utilized in the design of effective accident prevention and OSH training programs for the three age groups and in the regulation of working conditions aboard fishing vessels. PMID:28245578
Knowledge of the trophic structure of biota in aquatic sites offers potential for the construction of models to allow the prediction of contaminant bioaccumulation. Measurements of trophic position have been conducted using stable-nitrogen isotope ratios ( 15N) measured in fish m...
FISHing for bacteria in food--a promising tool for the reliable detection of pathogenic bacteria?
Rohde, Alexander; Hammerl, Jens Andre; Appel, Bernd; Dieckmann, Ralf; Al Dahouk, Sascha
2015-04-01
Foodborne pathogens cause millions of infections every year and are responsible for considerable economic losses worldwide. The current gold standard for the detection of bacterial pathogens in food is still the conventional cultivation following standardized and generally accepted protocols. However, these methods are time-consuming and do not provide fast information about food contaminations and thus are limited in their ability to protect consumers in time from potential microbial hazards. Fluorescence in situ hybridization (FISH) represents a rapid and highly specific technique for whole-cell detection. This review aims to summarize the current data on FISH-testing for the detection of pathogenic bacteria in different food matrices and to evaluate its suitability for the implementation in routine testing. In this context, the use of FISH in different matrices and their pretreatment will be presented, the sensitivity and specificity of FISH tests will be considered and the need for automation shall be discussed as well as the use of technological improvements to overcome current hurdles for a broad application in monitoring food safety. In addition, the overall economical feasibility will be assessed in a rough calculation of costs, and strengths and weaknesses of FISH are considered in comparison with traditional and well-established detection methods. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
An overview of cleaner fish use in Ireland.
Bolton-Warberg, M
2017-11-21
Sea lice infestations represent one of the most significant challenges facing the salmon farming industry, giving rise to lost production, additional costs of treatment and potential negative interactions with wild stocks. At present, cleaner fish, which actively remove lice from salmon, are an effective, biological, long-term option which has been adopted by many countries. In Ireland, several key studies were conducted in the 1990s on the use of wild-caught wrasse (corkwing, goldsinny and rock cook) as cleaner fish in experimental and commercial scale trials. More recently, the National University of Ireland Galway (NUIG), at their marine research facility in Carna (CRS), has undertaken applied research on ballan wrasse and lumpsucker. Currently, CRS is providing lumpsucker juveniles and research and development for the Irish salmon industry with support from BIM (Ireland's Seafood Development Agency) and Marine Harvest Ireland. There is a large amount of research currently being carried out in this area in all countries that are utilizing cleaner fish technology. The current focus in Ireland is the development of a native lumpsucker broodstock to facilitate its sustainable production. The aim of this article was to provide an overview of the research, challenges and use of cleaner fish in Ireland. © 2017 The Authors Journal of Fish Diseases Published by John Wiley & Sons Ltd.
Ethnobiology of snappers (Lutjanidae): target species and suggestions for management
2011-01-01
In this study, we sought to investigate the biology (diet and reproduction) and ethnobiology (fishers knowledge and fishing spots used to catch snappers) of five species of snappers (Lutjanidae), including Lutjanus analis, Lutjanus synagris, Lutjanus vivanus, Ocyurus chrysurus, and Romboplites saliens at five sites along the northeast (Riacho Doce, Maceió in Alagoas State, and Porto do Sauípe, Entre Rios at Bahia State) and the southeast (SE) Brazilian coast (Paraty and Rio de Janeiro cities at Rio de Janeiro State, and Bertioga, at São Paulo State.). We collected 288 snappers and interviewed 86 fishermen. The stomach contents of each fish were examined and macroscopic gonad analysis was performed. Snappers are very important for the fisheries of NE Brazil, and our results indicated that some populations, such as mutton snapper (L. analis) and lane snapper (L. synagris), are being caught when they are too young, at early juvenile stages. Local knowledge has been shown to be a powerful tool for determining appropriate policies regarding management of target species, and artisanal fishermen can be included in management processes. Other suggestions for managing the fisheries are discussed, including proposals that could provide motivation for artisanal fishermen to participate in programs to conserve resources, such as co-management approaches that utilize local knowledge, the establishment of fishing seasons, and compensation of fishermen, through 'payment for environmental services'. These suggestions may enhance the participation of local artisanal fishermen in moving to a more realistic and less top-down management approach of the fish population. PMID:21410969
Identification of potential essential fish habitats for skates based on fishers' knowledge.
Serra-Pereira, Bárbara; Erzini, Karim; Maia, Catarina; Figueiredo, Ivone
2014-05-01
Understanding of spatio-temporal patterns of sensitive fish species such as skates (Rajidae) is essential for implementation of conservation measures. With insufficient survey data available for these species in Portuguese Continental waters, this study shows that fishery-dependent data associated with fishers' knowledge can be used to identify potential Essential Fish Habitats (EFH) for seven skate species. Sites with similar geomorphology were associated with the occurrence of juveniles and/or adults of the same group of species. For example, sites deeper than 100 m with soft sediment include predominantly adults of Raja clavata, and are the habitat for egg deposition of this species. Raja undulata and R. microocellata are the more coastal species, preferring sand or gravel habitats, while coastal areas with rocks and sand seabed are potential nursery areas for R. brachyura, R. montagui and R. clavata. The main output of this study is the identification of preferential fishing sites enclosing potential EFH for some species, associated with egg-laying and nursery grounds. The location of these areas will be considered for future seasonal closures, and studies will be conducted to evaluate the biological and socio-economic impacts of such measures. As in the past, fishermen will collaborate in the process of evaluating those impacts, since they have practical and applied knowledge that is extremely valuable for evaluating the advantages and disadvantages of such closures. In conclusion, this study is a first contribution to the understanding and identification of EFH for skate species, associated with nursery and egg deposition sites, with direct application to management.
Identification of Potential Essential Fish Habitats for Skates Based on Fishers' Knowledge
NASA Astrophysics Data System (ADS)
Serra-Pereira, Bárbara; Erzini, Karim; Maia, Catarina; Figueiredo, Ivone
2014-05-01
Understanding of spatio-temporal patterns of sensitive fish species such as skates (Rajidae) is essential for implementation of conservation measures. With insufficient survey data available for these species in Portuguese Continental waters, this study shows that fishery-dependent data associated with fishers' knowledge can be used to identify potential Essential Fish Habitats (EFH) for seven skate species. Sites with similar geomorphology were associated with the occurrence of juveniles and/or adults of the same group of species. For example, sites deeper than 100 m with soft sediment include predominantly adults of Raja clavata, and are the habitat for egg deposition of this species. Raja undulata and R. microocellata are the more coastal species, preferring sand or gravel habitats, while coastal areas with rocks and sand seabed are potential nursery areas for R. brachyura, R. montagui and R. clavata. The main output of this study is the identification of preferential fishing sites enclosing potential EFH for some species, associated with egg-laying and nursery grounds. The location of these areas will be considered for future seasonal closures, and studies will be conducted to evaluate the biological and socio-economic impacts of such measures. As in the past, fishermen will collaborate in the process of evaluating those impacts, since they have practical and applied knowledge that is extremely valuable for evaluating the advantages and disadvantages of such closures. In conclusion, this study is a first contribution to the understanding and identification of EFH for skate species, associated with nursery and egg deposition sites, with direct application to management.
Mäenpää, Kimmo; Leppänen, Matti T; Figueiredo, Kaisa; Tigistu-Sahle, Feven; Käkelä, Reijo
2015-01-01
Knowledge on the internal distribution of halogenated organic chemicals (HOCs) would improve our understanding of dose-effect relationships and subsequently improve risk assessment of contaminated sites. Herein, we determine the concentrations of HOCs based on equilibrium partitioning in storage lipids, membrane lipids, and proteins in field-contaminated fish using equilibrium sampling devices. The study shows the importance of protein as a sorptive phase in lean fish. Our results provide a basis for using species-specific equilibrium partitioning coefficients between sorptive tissues and fish internal water as a substitute for K(ow) in, for example, upgrading models that simulate food-chain accumulation of the chemical.
Schultz, Luke; Cavalli, Pete; Sexauer, Hilda; Zafft, David
2016-01-01
Human activities have extensively altered native fish assemblages and their habitats in the western United States. Conservation and restoration for long-term persistence of these fishes requires knowledge of their distributional patterns and life history requirements. Northern leatherside chub Lepidomeda copei (hereafter northern leatherside) is a cyprinid native to the Snake and Bear River Basins of Wyoming, Idaho, Nevada, and Utah, and it is believed to have declined in distribution relative to historical records. To address information gaps in the species' ecology and assess its status in the state, the objectives of this study were first to document the distribution (2010–2011) of northern leatherside in Wyoming and then to examine habitat factors related to the entire fish assemblage and to evaluate specific habitat associations of northern leatherside in the Bear River Basin, Wyoming. In the Bear River and Upper Snake River Basins, we documented the distribution of northern leatherside and compared it to the previously known distribution. Across the Bear River Basin, we used habitat measurements to assess abiotic features related to the distribution and abundance of northern leatherside. Northern leatherside was found across the Bear River Basin and was present in 2 streams each in the Upper Snake River and Green River Basins in Wyoming. Populations in Wyoming appear to represent the core of northern leatherside range, and our work provided a finer-scale delineation of the species' occurrence. Northern leatherside was collected from a variety of habitats, but multivariate analyses and occurrence modeling indicated it was associated with increased channel depth and depth variability, and positively associated with other native fishes (including mountain sucker Catostomus platyrhynchus, redside shiner Richardsonius balteatus, and speckled dace Rhinichthys osculus). These findings on the distribution and ecology of northern leatherside provide important new information to assist successful management and conservation efforts within Wyoming and across the species' range.
Mondin, Mateus; Santos-Serejo, Janay A.; Bertäo, Mônica R.; Laborda, Prianda; Pizzaia, Daniel; Aguiar-Perecin, Margarida L. R.
2014-01-01
Maize karyotype variability has been extensively investigated. The identification of maize somatic and pachytene chromosomes has improved with the development of fluorescence in situ hybridization (FISH) using tandemly repeated DNA sequences as probes. We identified the somatic chromosomes of sister inbred lines that were derived from a tropical flint maize population (Jac Duro [JD]), and hybrids between them, using FISH probes for the 180-bp knob repeat, centromeric satellite (CentC), centromeric satellite 4 (Cent4), subtelomeric clone 4-12-1, 5S ribosomal DNA and nucleolus organizing region DNA sequences. The observations were integrated with data based on C-banded mitotic metaphases and conventional analysis of pachytene chromosomes. Heterochromatic knobs visible at pachynema were coincident with C-bands and 180-bp FISH signals on somatic chromosomes, and most of them were large. Variation in the presence of some knobs was observed among lines. Small 180-bp knob signals were invariant on the short arms of chromosomes 1, 6, and 9. The subtelomeric 4-12-1 signal was also invariant and useful for identifying some chromosomes. The centromere location of chromosomes 2 and 4 differed from previous reports on standard maize lines. Somatic chromosomes of a JD line and the commonly used KYS line were compared by FISH in a hybrid of these lines. The pairing behavior of chromosomes 2 and 4 at pachytene stage in this hybrid was investigated using FISH with chromosome-specific probes. The homologues were fully synapsed, including the 5S rDNA and CentC sites on chromosome 2, and Cent4 and subtelomeric 4-12-1 sites on chromosome 4. This suggests that homologous chromosomes could pair through differential degrees of chromatin packaging in homologous arms differing in size. The results contribute to current knowledge of maize global diversity and also raise questions concerning the meiotic pairing of homologous chromosomes possibly differing in their amounts of repetitive DNA. PMID:25352856
James T. Peterson; Sherry P. Wollrab
1999-01-01
Natural resource managers in the Inland Northwest need tools for assessing the success or failure of conservation policies and the impacts of management actions on fish and fish habitats. Effectiveness monitoring is one such potential tool, but there are currently no established monitoring protocols. Since 1991, U.S. Forest Service biologists have used the standardized...
Fish Alternatives in Environmental Risk Assessment: Overview of the Current Landscape
The need for alternative testing strategies has recently expanded into the realm of environmental risk assessment leading to the development of new alternatives to standard aquatic vertebrate testing such as the OECD 203 acute fish toxicity test. The fish embryo test (FET) is one...
Small aquarium fishes provide a model organism that recapitulates the development, physiology and specific disease processes present in humans without the many limitations of rodent-based models currently in use. Fish models offer advantages in cost, rapid life-cycles, and extern...
Overview of fish immune system and infectious diseases
USDA-ARS?s Scientific Manuscript database
A brief overview of the fish immune system and the emerging or re-emerging bacterial, viral, parasitic and fungal diseases considered to currently have a negative impact on aquaculture is presented. The fish immune system has evolved with both innate (natural resistance) and adaptive (acquired) immu...
A Fish Consumption Survey of the Nez Perce Tribe
This report culminates two years of work—preceded by years of discussion—to characterize the current and heritage fish consumption rates and fishing-related activities of the Nez Perce Tribe. The report contains three volumes in one document. Volume I is concerned with heritage r...
Lewis
1998-12-01
In this issue of the Journal of Helminthology I have much pleasure in including a selection of papers drawn from two workshops, one on 'Nematode Population Genetics' and another on the 'Ecology of Fish Parasites' held in April 1998 at Exeter during the Spring Meeting of the British Society for Parasitology (BSP).The aim of the workshop on 'Nematode Population Genetics' convened by Dr Mark Viney, University of Edinburgh, is to review the current state of knowledge of this topic and to consider future research priorities. Following Mark Viney's overview, Michael Blouin, Oregon State University, Corvallis, USA, considers the effects of parasite life histories on mitochondrial DNA diversity in nematodes. Marleen Roos et al., Institute for Animal Science and Health and the University of Utrecht, The Netherlands, then review polymorphic DNA markers in the genome of parasitic nematodes whereas in the fourth and final paper of this series Alison Galvani and Sunetra Gupta, University of Oxford, consider the effects of mating probability on the population genetics of nematodes.Two papers from the workshop on the 'Ecology of Fish Parasites', convened by Professor Clive Kennedy, University of Exeter, focus on the community ecology of helminths in fish and include a study by Clive Kennedy et al., University of Exeter and University of Rome on the 'Composition and diversity of helminth communities in eels in the River Tiber: long term changes and comparison with insular Europe'. This is followed by an invited paper by William Font, Southeastern Louisiana University, USA on 'Parasites in paradise: patterns of helminth distribution in Hawaiian stream fishes'.I wish to express my grateful thanks to Mark Viney and Clive Kennedy for their assistance in the publication of these papers for this special issue.
Tserpes, George; Lampadariou, Nikolaos; Stergiou, Kostantinos I.
2017-01-01
Knowledge on biodiversity patterns of demersal megafaunal species in the Mediterranean and particularly in its eastern basin is still very scarce. In the present study, fine-scale diversity patterns in relation to depth were analyzed for three major megafaunal groups (fish, cephalopods and crustaceans) in three subareas of the eastern Mediterranean (Crete, Cyclades and Dodecanese islands). The analysis was based on data from the Mediterranean International Trawl Survey conducted during 2005–2014 and the relationship between depth and two different diversity measures (species richness and Shannon-Weaver) was examined using Generalized Additive Modeling (GAM) techniques. Species richness of fish decreased with depth in two of the three subareas (Cyclades, Dodecanese), while the opposite was true for crustaceans in all subareas. Cephalopods had higher species richness at intermediate depths, near the shelf break. Significant differences among subareas were found, with Crete showing a distinct species richness-depth pattern, which was more obvious for fish and cephalopods. The differences among subareas were also highlighted based on the occurrence of alien species of Indo-Pacific origin, which were more frequent in Crete. Our results suggested that the importance of depth-related factors in structuring communities was higher for cephalopods and less important for fish, and that Crete showed a distinct diversity-depth relationship, a fact that can be attributed to its specific geographical and oceanographic characteristics. These results support the current GFCM/FAO’s characterization of Crete as a unique geographic subarea. The findings of the study contribute to understanding the causes of underlying diversity patterns and would assist various environmental management actions, particularly those related to the establishment of marine-protected areas. PMID:28873395
Chapter 3. Effects of climate change and commercial fishing on Atlantic cod Gadus morhua.
Mieszkowska, Nova; Genner, Martin J; Hawkins, Stephen J; Sims, David W
2009-01-01
During the course of the last century, populations of Atlantic cod Gadus morhua L. have undergone dramatic declines in abundance across their biogeographic range, leading to debate about the relative roles of climatic warming and overfishing in driving these changes. In this chapter, we describe the geographic distributions of this important predator of North Atlantic ecosystems and document extensive evidence for limitations of spatial movement and local adaptation from population genetic markers and electronic tagging. Taken together, this evidence demonstrates that knowledge of spatial population ecology is critical for evaluating the effects of climate change and commercial harvesting. To explore the possible effects of climate change on cod, we first describe thermal influences on individual physiology, growth, activity and maturation. We then evaluate evidence that temperature has influenced population-level processes including direct effects on recruitment through enhanced growth and activity, and indirect effects through changes to larval food resources. Although thermal regimes clearly define the biogeographic range of the species, and strongly influence many aspects of cod biology, the evidence that population declines across the North Atlantic are strongly linked to fishing activity is now overwhelming. Although there is considerable concern about low spawning stock biomasses, high levels of fishing activity continues in many areas. Even with reduced fishing effort, the potential for recovery from low abundance may be compromised by unfavourable climate and Allee effects. Current stock assessment and management approaches are reviewed, alongside newly advocated methods for monitoring stock status and recovery. However, it remains uncertain whether the rebuilding of cod to historic population sizes and demographic structures will be possible in a warmer North Atlantic.
Phelps, Quinton E; Tripp, Sara J; Bales, Kyle R; James, Daniel; Hrabik, Robert A; Herzog, David P
2017-01-01
Numerous studies throughout North America allege deleterious associations among invasive Asian Carp and native fishes; however, no empirical evidence on a system-wide scale exists. We used Mississippi River Basin fish community data collected by the Long Term Resource Monitoring program and the Missouri Department of Conservation to evaluate possible interaction between Asian Carp and native fishes. Results from two decades of long-term monitoring throughout much of the Mississippi River suggest that Silver Carp relative abundance has increased while relative abundance (Bigmouth Buffalo [F 3, 8240 = 6.44, P<0.01] and Gizzard Shad [F 3, 8240 = 31.04, P<0.01]) and condition (Bigmouth Buffalo [slope = -0.11; t = -1.71; P = 0.1014] and Gizzard Shad [slope = -0.39; t = -3.02; P = 0.0073]) of native planktivores have declined. Floodplain lake qualitative evaluations yielded similar results; floodplain lake fish communities were likely altered (i.e., reductions in native species) by Silver Carp. Furthermore, laboratory experiments corroborated field evidence; Silver Carp negatively influence native planktivores through competition for prey (all comparisons, P > 0.05). To this end, this study provides evidence that Silver Carp are likely adversely influencing native fishes; however, mere presence of Silver Carp in the system does not induce deleterious effects on native fishes. To the best of our knowledge, this evaluation is the first to describe the effects of Asian Carp throughout the Mississippi River Basin and could be used to reduce the effects of Asian Carp on native biota through an integrated pest management program as suggested by congressional policy. Despite the simplicity of the data analyzed and approach used, this study provides a framework for beginning to identify the interactions of invasive fish pests on native fishes (i.e., necessary first step of integrated pest management). However, knowledge gaps remain. We suggest future efforts should conduct more in depth analyses (i.e., multivariate statistical approaches) that investigate the influence on all native species.
A middle Pleistocene eastern Mediterranean fish refuge: the Tsampika Bay (Rhodes, Greece)
NASA Astrophysics Data System (ADS)
Agiadi, K.; Koskeridou, E.; Moissette, P.; Lopez-Otalvaro, G. E.; Quillévéré, F.; Cornée, J. J.
2012-04-01
Extensive sampling of the Tsampika marly diatomites reveals the presence of at least three very important fish species, Bregmaceros sp., Sygnathus acus and Spratteloides sp.. Previous records of Bregmaceros sp. in the Mediterranean have suggested that this characteristic Pliocene warm-water circumglobal pelagic fish disappeared from the Mediterranean basin due to the climatic deterioration, after the Gelasian age1,2,3,4. The Tsampika fish-bearing deposits, mainly marly diatomites, are younger than 268 Ka, based on the occurrence of Emiliania huxleyi. Consequently, this is so far the youngest record of Bregmaceros sp. in the Mediterranean, suggesting that typical Pliocene fish may have found refuge in selected localities, such as Tsampika Bay, at least until the Ionian. Evidence for its presence in the Mediterranean basin today is ambiguous. Isolated records of Bregmaceros atlanticus place it in the Sicily Strait5, and off the Israeli and south Turkish coasts6. Although it appears more likely that Bregmaceros atlanticus has been introduced to the modern Mediterranean from the Red Sea, through the Suez Canal, the possibility that it is part of a small population native to the Mediterranean can not be excluded based on present-day data6. Indeed the late Pleistocene Mediterranean fish record is obsolete, due to the lack of appropriate sampling on this subject. Furthermore, the majority of Pleistocene Bregmaceros samples pertain to otoliths, which cannot be unambiguously identified on the species level. As a result, the present findings pose the considerable possibility that the Pleistocene Bregmaceros records belong to two species, B. albyi, the well known post-Messinian Mediterranean fish, and B. atlanticus, which may have invaded the Mediterranean Sea from Gibraltar along with several other warm-water taxa during recurring interglacial periods. The specific identification of the Tsampika fish will undoubtedly shed light to this possibility, and enhance our knowledge on the resilience of fish populations to significant environmental perturbations. Acknowledgments This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.
Tripp, Sara J.; James, Daniel; Hrabik, Robert A.; Herzog, David P.
2017-01-01
Numerous studies throughout North America allege deleterious associations among invasive Asian Carp and native fishes; however, no empirical evidence on a system-wide scale exists. We used Mississippi River Basin fish community data collected by the Long Term Resource Monitoring program and the Missouri Department of Conservation to evaluate possible interaction between Asian Carp and native fishes. Results from two decades of long-term monitoring throughout much of the Mississippi River suggest that Silver Carp relative abundance has increased while relative abundance (Bigmouth Buffalo [F 3, 8240 = 6.44, P<0.01] and Gizzard Shad [F 3, 8240 = 31.04, P<0.01]) and condition (Bigmouth Buffalo [slope = -0.11; t = -1.71; P = 0.1014] and Gizzard Shad [slope = -0.39; t = -3.02; P = 0.0073]) of native planktivores have declined. Floodplain lake qualitative evaluations yielded similar results; floodplain lake fish communities were likely altered (i.e., reductions in native species) by Silver Carp. Furthermore, laboratory experiments corroborated field evidence; Silver Carp negatively influence native planktivores through competition for prey (all comparisons, P > 0.05). To this end, this study provides evidence that Silver Carp are likely adversely influencing native fishes; however, mere presence of Silver Carp in the system does not induce deleterious effects on native fishes. To the best of our knowledge, this evaluation is the first to describe the effects of Asian Carp throughout the Mississippi River Basin and could be used to reduce the effects of Asian Carp on native biota through an integrated pest management program as suggested by congressional policy. Despite the simplicity of the data analyzed and approach used, this study provides a framework for beginning to identify the interactions of invasive fish pests on native fishes (i.e., necessary first step of integrated pest management). However, knowledge gaps remain. We suggest future efforts should conduct more in depth analyses (i.e., multivariate statistical approaches) that investigate the influence on all native species. PMID:28873472
Farrell, Hazel; Zammit, Anthony; Manning, Jennifer; Shadbolt, Craig; Szabo, Lisa; Harwood, D Tim; McNabb, Paul; Turahui, John A; van den Berg, Debra J
2016-03-31
Ciguatera fish poisoning is common in tropical and sub-tropical areas and larger fish (> 10 kg) are more susceptible to toxin accumulation with age. Although the coastal climate of northern New South Wales is considered sub-tropical, prior to 2014 there has only been 1 documented outbreak of ciguatera fish poisoning from fish caught in the region. During February and March 2014, 2 outbreaks of ciguatera fish poisoning involved 4 and 9 individuals, respectively, both following consumption of Spanish mackerel from northern New South Wales coastal waters (Evans Head and Scotts Head). Affected individuals suffered a combination of gastrointestinal and neurological symptoms requiring hospital treatment. At least 1 individual was symptomatic up to 7 months later. Liquid chromatography-tandem mass spectrometry detected the compound Pacific ciguatoxin-1B at levels up to 1.0 µg kg(-1) in fish tissue from both outbreaks. During April 2015, another outbreak of ciguatera fish poisoning was reported in 4 individuals. The fish implicated in the outbreak was caught further south than the 2014 outbreaks (South West Rocks). Fish tissue was unavailable for analysis; however, symptoms were consistent with ciguatera fish poisoning. To our knowledge, these cases are the southernmost confirmed sources of ciguatera fish poisoning in Australia. Educational outreach to the fishing community, in particular recreational fishers was undertaken after the Evans Head outbreak. This highlighted the outbreak, species of fish involved and the range of symptoms associated with ciguatera fish poisoning. Further assessment of the potential for ciguatoxins to occur in previously unaffected locations need to be considered in terms of food safety.
Whales, dolphins or fishes? The ethnotaxonomy of cetaceans in São Sebastião, Brazil
Souza, Shirley P; Begossi, Alpina
2007-01-01
The local knowledge of human populations about the natural world has been addressed through ethnobiological studies, especially concerning resources uses and their management. Several criteria, such as morphology, ecology, behavior, utility and salience, have been used by local communities to classify plants and animals. Studies regarding fishers' knowledge on cetaceans in the world, especially in Brazil, began in the last decade. Our objective is to investigate the folk classification by fishers concerning cetaceans, and the contribution of fishers' local knowledge to the conservation of that group. In particular, we aim to record fishers' knowledge in relation to cetaceans, with emphasis on folk taxonomy. The studied area is São Sebastião, located in the southeastern coast of Brazil, where 70 fishers from 14 communities were selected according to their fishing experience and interviewed through questionnaires about classification, nomenclature and ecological aspects of local cetaceans' species. Our results indicated that most fishers classified cetaceans as belonging to the life-form 'fish'. Fishers' citations for the nomenclature of the 11 biological species (10 biological genera), resulted in 14 folk species (3 generic names). Fishers' taxonomy was influenced mostly by the phenotypic and cultural salience of the studied cetaceans. Cultural transmission, vertical and horizontal, was intimately linked to fishers' classification process. The most salient species, therefore well recognized and named, were those most often caught by gillnets, in addition to the biggest ones and those most exposed by media, through TV programs, which were watched and mentioned by fishers. Our results showed that fishers' ecological knowledge could be a valuable contribution to cetaceans' conservation, helping to determine areas and periods for their protection, indicating priority topics for research and participating in alternative management related to the gillnet fisheries. PMID:17311681
Pre-anthropocene mercury residues in North American freshwater fish.
Hope, Bruce K; Louch, Jeff
2014-04-01
Mercury (Hg) has been entering the environment from both natural and anthropogenic sources for millennia, and humans have been influencing its environmental transport and fate from well before the Industrial Revolution. Exposure to Hg (as neurotoxic monomethylmercury [MeHg]) occurs primarily through consumption of finfish, shellfish, and marine mammals, and regulatory limits for MeHg concentrations in fish tissue have steadily decreased as information on its health impacts has become available. These facts prompted us to consider 2 questions: 1) What might the MeHg levels in fish tissue have been in the pre-Anthropocene, before significant human impacts on the environment? and 2) How would these pre-Anthropocene levels have compared with current regulatory criteria for MeHg residues in fish tissue? We addressed the first question by estimating pre-Anthropocene concentrations of MeHg in the tissues of prey and predatory fish with an integrated Hg speciation, transport, fate, and food web model (SERAFM), using estimated Hg concentrations in soil, sediment, and atmospheric deposition before the onset of significant human activity (i.e., ≤2000 BCE). Model results show MeHg residues in fish varying depending on the characteristics of the modeled water body, which suggests that Hg in fish tissue is best considered at the scale of individual watersheds or water bodies. We addressed the second question by comparing these model estimates with current regulatory criteria and found that MeHg residues in predatory (but not prey) fish could have approached or exceeded these criteria in some water bodies during the pre-Anthropocene. This suggests that the possibility of naturally occurring levels of Hg in fish below which it is not possible to descend, regardless of where those levels stand with respect to current regulatory limits. Risk management decisions made under these circumstances have the potential to be ineffectual, frustrating, and costly for decision makers and stakeholders alike, suggesting the need for regulatory flexibility when addressing the issue of Hg in fish. © 2013 SETAC.
A standard deviation selection in evolutionary algorithm for grouper fish feed formulation
NASA Astrophysics Data System (ADS)
Cai-Juan, Soong; Ramli, Razamin; Rahman, Rosshairy Abdul
2016-10-01
Malaysia is one of the major producer countries for fishery production due to its location in the equatorial environment. Grouper fish is one of the potential markets in contributing to the income of the country due to its desirable taste, high demand and high price. However, the demand of grouper fish is still insufficient from the wild catch. Therefore, there is a need to farm grouper fish to cater to the market demand. In order to farm grouper fish, there is a need to have prior knowledge of the proper nutrients needed because there is no exact data available. Therefore, in this study, primary data and secondary data are collected even though there is a limitation of related papers and 30 samples are investigated by using standard deviation selection in Evolutionary algorithm. Thus, this study would unlock frontiers for an extensive research in respect of grouper fish feed formulation. Results shown that the fitness of standard deviation selection in evolutionary algorithm is applicable. The feasible and low fitness, quick solution can be obtained. These fitness can be further predicted to minimize cost in farming grouper fish.
History of fish toxicants in the United States
Cumming, K.B.
1975-01-01
Many bodies of water have been overrun with fish species that are undesirable for the well-being of endemic aquatic biota and are of little or no interest to anglers. This situation has resulted from the transplanting of fish, creation of new waters, increasing fishing pressure and changing water quality. Although as many as 30 toxicants have been tried, only about 30 major piscicides have been used in rehabilitation programs to remove the unwanted species. Explicit knowledge of the mode of action of toxicants in the environment and improvements in fish farming, have permitted fishery managers to reduce the amount of control chemical that is applied to obtain a desired result. The number and volume of waters being reclaimed have increased, but this trend may change soon because environmental laws involving the use of registered pesticides are becoming more restrictive. Registration research has established the safety of some fish toxicants but has eliminated others. Only four piscicides are presently registered (or nonfood use application: antimycin and rotenone as general fish toxicants and 3-trifluoromethyl-4-nitrophenol (TFM) and Bayluscide as selective lampricides.
Effects of Sex Steroids on Fish Leukocytes
Cabas, Isabel
2018-01-01
In vertebrates, in addition to their classically reproductive functions, steroids regulate the immune system. This action is possible mainly due to the presence of steroid receptors in the different immune cell types. Much evidence suggests that the immune system of fish is vulnerable to xenosteroids, which are ubiquitous in the aquatic environment. In vivo and in vitro assays have amply demonstrated that oestrogens interfere with both the innate and the adaptive immune system of fish by regulating the main leukocyte activities and transcriptional genes. They activate nuclear oestrogen receptors and/or G-protein coupled oestrogen receptor. Less understood is the role of androgens in the immune system, mainly due to the complexity of the transcriptional regulation of androgen receptors in fish. The aim of this manuscript is to review our present knowledge concerning the effect of sex steroid hormones and the presence of their receptors on fish leukocytes, taking into consideration that the studies performed vary as regard the fish species, doses, exposure protocols and hormones used. Moreover, we also include evidence of the probable role of progestins in the regulation of the immune system of fish. PMID:29315244
Gholami, Zeinab; Rahimi, Mohammad Taghi; Kia, Eshrat Beigom; Esmaeili, Hamid Reza; Mobedi, Iraj
2014-01-01
Objective To investigate the parasitic infection status of cyprinid fish, Capoeta damascina in Gomban spring-stream, Kor River Basin, Fars Province, southwestern Iran. Methods A total of 12 cyprinid fish (7 females and 5 males) were collected from Gomban spring-stream, Kor River Basin, Fars Province, southwestern Iran. The collected fish were dissected carefully and their internal organs such as liver, gonad, muscle, abdominal lobes, whole viscera and digestive tract were surveyed parasitologically. Results One female cyprinid fish out of 12 fish was infected with three nematodes. Two nematodes (larvae) were identified as Contracaecum sp. which were attached firmly to the outer part of intestine and another adult helminth was recognized as Capillaria sp. which was recovered from digestive content. Conclusions This study is the first record indicating that cyprinid fish acts as a new host for recovered nematodes. Further helminthological investigations are highly recommended in different parts of Iran in order to expand our knowledge about helmintic parasites of cyprinid fish and their role in transmission of diseases to human and animal. PMID:25183068
ABS-FishCount: An Agent-Based Simulator of Underwater Sensors for Measuring the Amount of Fish.
García-Magariño, Iván; Lacuesta, Raquel; Lloret, Jaime
2017-11-13
Underwater sensors provide one of the possibilities to explore oceans, seas, rivers, fish farms and dams, which all together cover most of our planet's area. Simulators can be helpful to test and discover some possible strategies before implementing these in real underwater sensors. This speeds up the development of research theories so that these can be implemented later. In this context, the current work presents an agent-based simulator for defining and testing strategies for measuring the amount of fish by means of underwater sensors. The current approach is illustrated with the definition and assessment of two strategies for measuring fish. One of these two corresponds to a simple control mechanism, while the other is an experimental strategy and includes an implicit coordination mechanism. The experimental strategy showed a statistically significant improvement over the control one in the reduction of errors with a large Cohen's d effect size of 2.55.
Estimation of sport fish harvest for risk and hazard assessment of environmental contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, T.M.; Strenge, D.L.
1989-01-01
Consumption of contaminated fish flesh can be a significant route of human exposure to hazardous chemicals. Estimation of exposure resulting from the consumption of fish requires knowledge of fish consumption and contaminant levels in the edible portion of fish. Realistic figures of sport fish harvest are needed to estimate consumption. Estimates of freshwater sport fish harvest were developed from a review of 72 articles and reports. Descriptive statistics based on fishing pressure were derived from harvest data for four distinct groups of freshwater sport fish in three water types: streams, lakes, and reservoirs. Regression equations were developed to relate harvestmore » to surface area fished where data bases were sufficiently large. Other aspects of estimating human exposure to contaminants in fish flesh that are discussed include use of bioaccumulation factors for trace metals and organic compounds. Using the bioaccumulation factor and the concentration of contaminants in water as variables in the exposure equation may also lead to less precise estimates of tissue concentration. For instance, muscle levels of contaminants may not increase proportionately with increases in water concentrations, leading to overestimation of risk. In addition, estimates of water concentration may be variable or expressed in a manner that does not truly represent biological availability of the contaminant. These factors are discussed. 45 refs., 1 fig., 7 tabs.« less
Carassou, Laure; Léopold, Marc; Guillemot, Nicolas; Wantiez, Laurent; Kulbicki, Michel
2013-01-01
Parts of coral reefs from New Caledonia (South Pacific) were registered at the UNESCO World Heritage list in 2008. Management strategies aiming at preserving the exceptional ecological value of these reefs in the context of climate change are currently being considered. This study evaluates the appropriateness of an exclusive fishing ban of herbivorous fish as a strategy to enhance coral reef resilience to hurricanes and bleaching in the UNESCO-registered areas of New Caledonia. A two-phase approach was developed: 1) coral, macroalgal, and herbivorous fish communities were examined in four biotopes from 14 reefs submitted to different fishing pressures in New Caledonia, and 2) results from these analyses were challenged in the context of a global synthesis of the relationship between herbivorous fish protection, coral recovery and relative macroalgal development after hurricanes and bleaching. Analyses of New Caledonia data indicated that 1) current fishing pressure only slightly affected herbivorous fish communities in the country, and 2) coral and macroalgal covers remained unrelated, and macroalgal cover was not related to the biomass, density or diversity of macroalgae feeders, whatever the biotope or level of fishing pressure considered. At a global scale, we found no relationship between reef protection status, coral recovery and relative macroalgal development after major climatic events. These results suggest that an exclusive protection of herbivorous fish in New Caledonia is unlikely to improve coral reef resilience to large-scale climatic disturbances, especially in the lightly fished UNESCO-registered areas. More efforts towards the survey and regulation of major chronic stress factors such as mining are rather recommended. In the most heavily fished areas of the country, carnivorous fish and large targeted herbivores may however be monitored as part of a precautionary approach.
Essential coastal habitats for fish in the Baltic Sea
NASA Astrophysics Data System (ADS)
Kraufvelin, Patrik; Pekcan-Hekim, Zeynep; Bergström, Ulf; Florin, Ann-Britt; Lehikoinen, Annukka; Mattila, Johanna; Arula, Timo; Briekmane, Laura; Brown, Elliot John; Celmer, Zuzanna; Dainys, Justas; Jokinen, Henri; Kääriä, Petra; Kallasvuo, Meri; Lappalainen, Antti; Lozys, Linas; Möller, Peter; Orio, Alessandro; Rohtla, Mehis; Saks, Lauri; Snickars, Martin; Støttrup, Josianne; Sundblad, Göran; Taal, Imre; Ustups, Didzis; Verliin, Aare; Vetemaa, Markus; Winkler, Helmut; Wozniczka, Adam; Olsson, Jens
2018-05-01
Many coastal and offshore fish species are highly dependent on specific habitat types for population maintenance. In the Baltic Sea, shallow productive habitats in the coastal zone such as wetlands, vegetated flads/lagoons and sheltered bays as well as more exposed rocky and sandy areas are utilized by fish across many life history stages including spawning, juvenile development, feeding and migration. Although there is general consensus about the critical importance of these essential fish habitats (EFH) for fish production along the coast, direct quantitative evidence for their specific roles in population growth and maintenance is still scarce. Nevertheless, for some coastal species, indirect evidence exists, and in many cases, sufficient data are also available to carry out further quantitative analyses. As coastal EFH in the Baltic Sea are often found in areas that are highly utilized and valued by humans, they are subjected to many different pressures. While cumulative pressures, such as eutrophication, coastal construction and development, climate change, invasive species and fisheries, impact fish in coastal areas, the conservation coverage for EFH in these areas remains poor. This is mainly due to the fact that historically, fisheries management and nature conservation are not integrated neither in research nor in management in Baltic Sea countries. Setting joint objectives for fisheries management and nature conservation would hence be pivotal for improved protection of EFH in the Baltic Sea. To properly inform management, improvements in the development of monitoring strategies and mapping methodology for EFH are also needed. Stronger international cooperation between Baltic Sea states will facilitate improved management outcomes across ecologically arbitrary boundaries. This is especially important for successful implementation of international agreements and legislative directives such as the Baltic Sea Action Plan, the Marine Strategy Framework Directive, the Habitats Directive, and the Maritime Spatial Planning Directive, but also for improving the communication of information related to coastal EFH among researchers, stakeholders, managers and decision makers. In this paper, efforts are made to characterize coastal EFH in the Baltic Sea, their importance and the threats/pressures they face, as well as their current conservation status, while highlighting knowledge gaps and outlining perspectives for future work in an ecosystem-based management framework.
NASA Astrophysics Data System (ADS)
Theunynck, Denis; Peze, Thierry; Toumazou, Vincent; Zunquin, Gauthier; Cohen, Olivier; Monges, Arnaud
2005-03-01
It is interesting to see whether the model of routing designed for races and great Navy operations could be transferred to commercial navigation and if so, within which framework.Sail boat routing conquered its letters of nobility during great races like the « Route du Rhum » or the transatlantic race « Jacques Vabre ». It is the ultimate stage of the step begun by the Navy at the time of great operations, like D-day (Overlord )June 6, 1944, in Normandy1.Routing is, from the beginning, mainly based on statistical knowledge and weather forecast, but with the recent availability of reliable currents forecast, sail boats routers and/or skippers now have to learn how to use both winds and currents to obtain the best performance, that is to travel between two points in the shortest time possible in acceptable security conditions.Are the currents forecast only useful to racing sail boat ? Of course not, they are a great help to fisherman for whom the knowledge of currents is also the knowledge of sea temperature who indicates the probability of fish presence. They are also used in offshore work to predict the hardness of the sea during operation.A less developed field of application is the route optimization of trading ships. The idea is to optimize the use of currents to increase the relative speed of ships with no augmentation of fuel expense. This new field will require that currents forecasters learn about the specific needs of another type of clients. There is also a need of teaching because the future customers will have to learn how to use the information they will get.At this point, the introduction of the use of currents forecast in racing sail boats routing is only the first step. It is of great interest because it can rely on a high knowledge in routing.The main difference is of course that the wind direction and its force are of greater importance to a sail boat that they are for a trading ship for whom the point of interest will be the fuel consumption and the ETA respect.Despite that, sail boat routing could be use as a prototype to determine the needs, both in term of information and formations of ship routers and skippers2.
LAKE HERRING (COREGONUS ARTEDI) AND RAINBOW SMELT (OSMERUS MORDAX) DIETS IN LAKE SUPERIOR
This manuscript reports on the diets of lake herring and rainbow smelt, currently the two dominant forage fish species (fish that are food for game fishes) in western Lake Superior. Despite the pelagic nature of both these species, they have substantially different diets and henc...
MERCURY CONCENTRATION IN FROZEN WHOLE-FISH HOMOGENATES IS INSENSITIVE TO HOLDING TIME
Current recommended holding times for the analysis of total mercury (Hg) in fish tissue ranges from 28 to 180 days. In 2006, we evaluated the effect of an extended holding time on Hg concentrations by reanalyzing whole-fish wet homogenates that were analyzed originally in 2002 an...
Is a Frog a Fish with Lungs? A Case Study of the Fungicide Trifloxystrobin
Current risk assessment practice is to use fish as a surrogate for larval stage amphibian species in determining chemical sensitivity when data for amphibians is not available. While evidence exists that fish are a sufficiently sensitive surrogate for amphibians for a wide range...
A research update for the Stuttgart National Aquaculture Research Center
USDA-ARS?s Scientific Manuscript database
Aquaculture (fish farming) has played an ever-increasing role in providing people with fish, shrimp, and shellfish. Aquaculture is currently the fastest growing sector of global food production and in 2016 totaled 90 million tons valued at $180 billion. The production of food-fish from aquaculture...
2013-12-04
Coral Reef Dredging Project SAV Migrating Fish Coral Reef Dredging Project SAV Migrating Fish... Coral Reef Dredging Project SAV Migrating Fish Coral Reef Dredging Project Coastal and Hydraulics Laboratory 22 Dredging Materials and...Introduction to CMS Coastal and Hydraulics Laboratory Integrated waves , current, and sediment transport model in the Surface-water Modeling
A Research Update for the Stuttgart National Aquaculture Research Center
USDA-ARS?s Scientific Manuscript database
Aquaculture (fish farming) has played an ever-increasing role in providing people with fish, shrimp, and shellfish. Aquaculture is currently the fastest growing sector of global food production and in 2014 totaled 80 million tons valued at $140 billion. The production of food-fish from aquaculture...
Smith, William Leo; Wheeler, Ward C
2006-01-01
Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism's venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step involved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on approximately 1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, >1,200 fishes in 12 clades should be presumed venomous. This assertion was corroborated by a detailed anatomical study examining potentially venomous structures in >100 species. The results of these studies not only alter our view of the diversity of venomous fishes, now representing >50% of venomous vertebrates, but also provide the predictive phylogeny or "road map" for the efficient search for potential pharmacological agents or physiological tools from the unexplored fish venoms.
NASA Astrophysics Data System (ADS)
Nurhayati, A.; Purnomo, A. H.
2018-03-01
This research was aimed at analyzing factors influencing capture fisheries losses, focusing on technical, social and economic aspects at Pelabuhan Ratu. A case study was undertaken, through a survey involving 40 respondents. These respondents represented groups of fishers, collectors, middlemen, processors and consumers. The questions delivered in the survey was adapted from the Exploratory Fish Loss Assessment Method (EFLAM). Based on this research, the fish loss was detected in Palabuhan Ratu, which amounted to 4.25 % at the fisher level and 5.12 % in the following supply chains, due to some factors. It was found that among the technical factors, the most influential ones were handling of landed fish, fish sortation, fish size, fish shelf life and season. Among economic aspect, factors with the most significant influence were fish price fluctuation and price level; meanwhile, among the social factors, those that had the most significant influence was the revenue distribution system. Based on this, the relevant policy implication of this research was the need for effective programs which covers the development of cold chain and distribution facilities and infrastructure, and an improvement in skills and knowledge of fish derivative product processors.
NASA Astrophysics Data System (ADS)
Greely, T. M.; Lodge, A.
2009-12-01
Ocean issues with conceptual ties to science and global society have captured the attention, imagination, and concern of an international audience. Climate change, over fishing, marine pollution, freshwater shortages and alternative energy sources are a few ocean issues highlighted in our media and casual conversations. The ocean plays a role in our life in some way everyday, however, disconnect exists between what scientists know and the public understands about the ocean as revealed by numerous ocean and coastal literacy surveys. While the public exhibits emotive responses through care, concern and connection with the ocean, there remains a critical need for a baseline of ocean knowledge. However, knowledge about the ocean must be balanced with understanding about how to apply ocean information to daily decisions and actions. The present study analyzed underlying factors and patterns contributing to ocean literacy and reasoning within the context of an ocean education program, the Oceanography Camp for Girls. The OCG is designed to advance ocean conceptual understanding and decision making by engagement in a series of experiential learning and stewardship activities from authentic research settings in the field and lab. The present study measured a) what understanding teens currently hold about the ocean (content), b) how teens feel toward the ocean environment (environmental attitudes and morality), and c) how understanding and feelings are organized when reasoning about ocean socioscientific issues (e.g. climate change, over fishing, energy). The Survey of Ocean Literacy and Engagement (SOLE), was used to measure teens understanding about the ocean. SOLE is a 57-item survey instrument aligned with the Essential Principles and Fundamental Concepts of Ocean Literacy (NGS, 2007). Rasch analysis was used to refine and validate SOLE as a reasonable measure of ocean content knowledge (reliability, 0.91). Results revealed that content knowledge and environmental attitudes significantly contributed to ocean literacy. Teens demonstrated a 2-32% increase in content knowledge following the OCG learning experience. The most significant content gains correlated with ocean literacy Essential Principles 1, 2 and 5. Analysis of environmental reasoning patterns revealed that biocentric reasoning (71%) was most important to teens in solving ocean dilemmas. Further, teens reasoning about challenging ocean dilemmas were capable of supporting a position, counter-argument, rebuttal, and accurately use scientific information. Findings provide empirical evidence that connects field studies with ocean literacy. Current guidelines for ocean literacy address cognitive understanding but lack multimodality. The need for ocean literacy that goes beyond content to include reasoning and actions is relevant towards preparing students, teachers and citizens to regularly contribute to decisions about ocean issues and undertake actions as consumer, citizen or steward. This research supports the use of socioscientific issues and stewardship to advance ‘functional’ ocean literacy.
Environmental effects on fish neural plasticity and cognition.
Ebbesson, L O E; Braithwaite, V A
2012-12-01
Most fishes experiencing challenging environments are able to adjust and adapt their physiology and behaviour to help them cope more effectively. Much of this flexibility is supported and influenced by cognition and neural plasticity. The understanding of fish cognition and the role played by different regions of the brain has improved significantly in recent years. Techniques such as lesioning, tract tracing and quantifying changes in gene expression help in mapping specialized brain areas. It is now recognized that the fish brain remains plastic throughout a fish's life and that it continues to be sensitive to environmental challenges. The early development of fish brains is shaped by experiences with the environment and this can promote positive and negative effects on both neural plasticity and cognitive ability. This review focuses on what is known about the interactions between the environment, the telencephalon and cognition. Examples are used from a diverse array of fish species, but there could be a lot to be gained by focusing research on neural plasticity and cognition in fishes for which there is already a wealth of knowledge relating to their physiology, behaviour and natural history, e.g. the Salmonidae. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Environmental Factors Affecting Large-Bodied Coral Reef Fish Assemblages in the Mariana Archipelago
Richards, Benjamin L.; Williams, Ivor D.; Vetter, Oliver J.; Williams, Gareth J.
2012-01-01
Large-bodied reef fishes represent an economically and ecologically important segment of the coral reef fish assemblage. Many of these individuals supply the bulk of the reproductive output for their population and have a disproportionate effect on their environment (e.g. as apex predators or bioeroding herbivores). Large-bodied reef fishes also tend to be at greatest risk of overfishing, and their loss can result in a myriad of either cascading (direct) or indirect trophic and other effects. While many studies have investigated habitat characteristics affecting populations of small-bodied reef fishes, few have explored the relationship between large-bodied species and their environment. Here, we describe the distribution of the large-bodied reef fishes in the Mariana Archipelago with an emphasis on the environmental factors associated with their distribution. Of the factors considered in this study, a negative association with human population density showed the highest relative influence on the distribution of large-bodied reef fishes; however, depth, water temperature, and distance to deep water also were important. These findings provide new information on the ecology of large-bodied reef fishes can inform discussions concerning essential fish habitat and ecosystem-based management for these species and highlight important knowledge gaps worthy of additional research. PMID:22384014
Test of a Power Transfer Model for Standardized Electrofishing
Miranda, L.E.; Dolan, C.R.
2003-01-01
Standardization of electrofishing in waters with differing conductivities is critical when monitoring temporal and spatial differences in fish assemblages. We tested a model that can help improve the consistency of electrofishing by allowing control over the amount of power that is transferred to the fish. The primary objective was to verify, under controlled laboratory conditions, whether the model adequately described fish immobilization responses elicited with various electrical settings over a range of water conductivities. We found that the model accurately described empirical observations over conductivities ranging from 12 to 1,030 ??S/cm for DC and various pulsed-DC settings. Because the model requires knowledge of a fish's effective conductivity, an attribute that is likely to vary according to species, size, temperature, and other variables, a second objective was to gather available estimates of the effective conductivity of fish to examine the magnitude of variation and to assess whether in practical applications a standard effective conductivity value for fish may be assumed. We found that applying a standard fish effective conductivity of 115 ??S/cm introduced relatively little error into the estimation of the peak power density required to immobilize fish with electrofishing. However, this standard was derived from few estimates of fish effective conductivity and a limited number of species; more estimates are needed to validate our working standard.
Environmental factors affecting large-bodied coral reef fish assemblages in the Mariana Archipelago.
Richards, Benjamin L; Williams, Ivor D; Vetter, Oliver J; Williams, Gareth J
2012-01-01
Large-bodied reef fishes represent an economically and ecologically important segment of the coral reef fish assemblage. Many of these individuals supply the bulk of the reproductive output for their population and have a disproportionate effect on their environment (e.g. as apex predators or bioeroding herbivores). Large-bodied reef fishes also tend to be at greatest risk of overfishing, and their loss can result in a myriad of either cascading (direct) or indirect trophic and other effects. While many studies have investigated habitat characteristics affecting populations of small-bodied reef fishes, few have explored the relationship between large-bodied species and their environment. Here, we describe the distribution of the large-bodied reef fishes in the Mariana Archipelago with an emphasis on the environmental factors associated with their distribution. Of the factors considered in this study, a negative association with human population density showed the highest relative influence on the distribution of large-bodied reef fishes; however, depth, water temperature, and distance to deep water also were important. These findings provide new information on the ecology of large-bodied reef fishes can inform discussions concerning essential fish habitat and ecosystem-based management for these species and highlight important knowledge gaps worthy of additional research.
Defining thresholds of sustainable impact on benthic communities in relation to fishing disturbance.
Lambert, G I; Murray, L G; Hiddink, J G; Hinz, H; Lincoln, H; Hold, N; Cambiè, G; Kaiser, M J
2017-07-14
While the direct physical impact on seabed biota is well understood, no studies have defined thresholds to inform an ecosystem-based approach to managing fishing impacts. We addressed this knowledge gap using a large-scale experiment that created a controlled gradient of fishing intensity and assessed the immediate impacts and short-term recovery. We observed a mosaic of taxon-specific responses at various thresholds. The lowest threshold of significant lasting impact occurred between 1 and 3 times fished and elicited a decrease in abundance of 39 to 70% for some sessile epifaunal organisms (cnidarians, bryozoans). This contrasted with significant increases in abundance and/or biomass of scavenging species (epifaunal echinoderms, infaunal crustaceans) by two to four-fold in areas fished twice and more. In spite of these significant specific responses, the benthic community structure, biomass and abundance at the population level appeared resilient to fishing. Overall, natural temporal variation in community metrics exceeded the effects of fishing in this highly dynamic study site, suggesting that an acute level of disturbance (fished over six times) would match the level of natural variation. We discuss the implications of our findings for natural resources management with respect to context-specific human disturbance and provide guidance for best fishing practices.
Haematology and plasma chemistry of the red top ice blue mbuna cichlid (Metriaclima greshakei).
Snellgrove, Donna L; Alexander, Lucille G
2011-10-01
Clinical haematology and blood plasma chemistry can be used as a valuable tool to provide substantial diagnostic information for fish. A wide range of parameters can be used to assess nutritional status, digestive function, disease identification, routine metabolic levels, general physiological status and even the assessment and management of wild fish populations. However to evaluate such data accurately, baseline reference intervals for each measurable parameter must be established for the species of fish in question. Baseline data for ornamental fish species are limited, as research is more commonly conducted using commercially cultured fish. Blood samples were collected from sixteen red top ice blue cichlids (Metriaclima greshakei), an ornamental freshwater fish, to describe a range of haematology and plasma chemistry parameters. Since this cichlid is fairly large in comparison with most tropical ornamental fish, two independent blood samples were taken to assess a large range of parameters. No significant differences were noted between sample periods for any parameter. Values obtained for a large number of parameters were similar to those established for other closely related fish species such as tilapia (Oreochromis spp.). In addition to reporting the first set of blood values for M. Greshakei, to our knowledge, this study highlights the possibility of using previously established data for cultured cichlid species in studies with ornamental cichlid fish.
Development of Solar Drying Model for Selected Cambodian Fish Species
Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan
2014-01-01
A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R 2), chi-square (χ 2) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing. PMID:25250381
McCartney, Kristen L.
2016-01-01
Abstract The fundamental unit of rapid, physiological color change in vertebrates is the dermal chromatophore unit. This unit, comprised of cellular associations between different chromatophore types, is relatively conserved across the fish, amphibian, and reptilian species capable of physiological color change and numerous attempts have been made to understand the nature of the four major chromatophore types (melanophores, erythrophores, xanthophores, and iridophores) and their biochemical regulation. In this review, we attempt to describe the current state of knowledge regarding what classifies a pigment cell as a dynamic chromatophore, the unique characteristics of each chromatophore type, and how different hormones, neurotransmitters, or other signals direct pigment reorganization in a variety of vertebrate taxa. PMID:29491911
Hereditary Deafness in a Former Fishing Village on the Dutch Coast
ERIC Educational Resources Information Center
Nyst, Victoria A. S.
2016-01-01
In communities with an increased prevalence of hereditary deafness, social, and linguistic adaptations are found in response. Aulbers (1959) describes a high prevalence of deafness in a fishing village on the Dutch coast: Katwijk aan Zee. This article aims to assess the current prevalence of deafness in Katwijk, as well as the current sign…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodley, Christa M.; Wagner, Katie A.; Knox, Kasey M.
2012-01-31
The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed for the U.S. Army Corp of Engineers Portland District (USACE) to address questions related to survival and performance measures of juvenile salmonids as they pass through the Federal Columbia River Power System (FCRPS). Researchers using JSATS acoustic transmitters (ATs) were tasked with standardizing the surgical implantation procedure to ensure that the stressors of handling and surgery on salmonids were consistent and less likely to cause effects of tagging in survival studies. Researchers questioned whether the exposure time in 'knockdown' anesthesia (or induction) to prepare fish for surgery could influence the survivalmore » of study fish (CBSPSC 2011). Currently, fish are held in knockdown anesthesia after they reach Stage 4 anesthesia until the completion of the surgical implantation of a transmitter, varies from 5 to 15 minutes for studies conducted in the Columbia Basin. The Columbia Basin Surgical Protocol Steering Committee (CBSPSC ) expressed concern that its currently recommended 10-minute maximum time limit during which fish are held in anesthetic - tricaine methanesulfonate (MS-222, 80 mg L-1 water) - could increase behavioral and physiological costs, and/or decrease survival of outmigrating juvenile salmonids. In addition, the variability in the time fish are held at Stage 4 could affect the data intended for direct comparison of fish within or among survival studies. Under the current recommended protocol, if fish exceed the 10-minute time limit, they are to be released without surgical implantation, thereby increasing the number of fish handled and endangered species 'take' at the bypass systems for FCRPS survival studies.« less
Panek, F.M.; Densmore, Christine L.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.
2011-01-01
Depletion sampling in combination with multiple-pass electrofishing is an important fisheries management tool for wadeable streams. This combination of techniques has been used routinely by federal and state fishery management agencies for several decades as a reliable means to obtain quantitative data on trout populations or to describe fish community structure. In this paper we review the effects of electrofishing on fish and discuss this within the context of depletion sampling and multiple exposures of fishes to electric fields. The multiple wave forms most commonly used in sampling (alternating current, direct current, and pulsed direct current) are discussed as well as electrofishing induced response, injury and physiological stress. Fish that survive electrofishing injuries are more likely to suffer short and long-term adverse effects to their behavior, health, growth, or reproduction. Of greatest concern are the native, non-target species that may be subjected to multiple electrical shocks during the course of a 3-pass depletion survey. These exposures and their effects on the non-target species warrant further study as do the overall effects of electrofishing on populations and community structure.
Nguyen, Hoang Minh; Rountrey, Adam N.; Meeuwig, Jessica J.; Coulson, Peter G.; Feng, Ming; Newman, Stephen J.; Waite, Anya M.; Wakefield, Corey B.; Meekan, Mark G.
2015-01-01
The effects of climate change on predatory fishes in deep shelf areas are difficult to predict because complex processes may govern food availability and temperature at depth. We characterised the net impact of recent environmental changes on hapuku (Polyprion oxygeneios), an apex predator found in continental slope habitats (>200 m depth) by using dendrochronology techniques to develop a multi-decadal record of growth from otoliths. Fish were sampled off temperate south-western Australia, a region strongly influenced by the Leeuwin Current, a poleward-flowing, eastern boundary current. The common variance among individual growth records was relatively low (3.4%), but the otolith chronology was positively correlated (r = 0.61, p < 0.02) with sea level at Fremantle, a proxy for the strength of the Leeuwin Current. The Leeuwin Current influences the primary productivity of shelf ecosystems, with a strong current favouring growth in hapuku. Leeuwin Current strength is predicted to decline under climate change models and this study provides evidence that associated productivity changes may flow through to higher trophic levels even in deep water habitats. PMID:25761975
Nguyen, Hoang Minh; Rountrey, Adam N; Meeuwig, Jessica J; Coulson, Peter G; Feng, Ming; Newman, Stephen J; Waite, Anya M; Wakefield, Corey B; Meekan, Mark G
2015-03-12
The effects of climate change on predatory fishes in deep shelf areas are difficult to predict because complex processes may govern food availability and temperature at depth. We characterised the net impact of recent environmental changes on hapuku (Polyprion oxygeneios), an apex predator found in continental slope habitats (>200 m depth) by using dendrochronology techniques to develop a multi-decadal record of growth from otoliths. Fish were sampled off temperate south-western Australia, a region strongly influenced by the Leeuwin Current, a poleward-flowing, eastern boundary current. The common variance among individual growth records was relatively low (3.4%), but the otolith chronology was positively correlated (r = 0.61, p < 0.02) with sea level at Fremantle, a proxy for the strength of the Leeuwin Current. The Leeuwin Current influences the primary productivity of shelf ecosystems, with a strong current favouring growth in hapuku. Leeuwin Current strength is predicted to decline under climate change models and this study provides evidence that associated productivity changes may flow through to higher trophic levels even in deep water habitats.
Manipulations of the reproductive system of fishes by means of exogenous chemicals
Patino, R.
1997-01-01
Environmental control of reproductive activity of captive fish is feasible (or potentially feasible) but, with few exceptions, is currently impractical for most species. Therefore, chemical methods of manipulating reproductive activity continue to be widely used in fish production operations worldwide. However, the control of fish reproduction in captivity cannot be exercised without regard to adequate environmental conditions, which can differ markedly for different species. This review provides a synopsis of relevant aspects of fish reproductive physiology and addresses current and promising future chemical methods of sex control, gonadal recrudescence, and spawning. Most research on the control of reproduction in fishes has focused on female physiology because ovarian development and maturation are easily disturbed by environmental stressors. Control of sex ratios by steroid treatment has become a well-established technique for several fish species, but the technique continues to be problematic in some cases. Final gonadal growth and spawning usually can be achieved by implant treatment with gonadotropin-releasing hormone analogs (GnRHa), which in some species have to be applied in combination with dopamine antagonists to enhance responsiveness to GnRHa. However, efforts to accelerate gonadal recrudescence and maturational competence by chemical means have yielded mixed results, reflecting a relative lack of understanding of the basic physiological and biochemic mechanisms controlling these processes. The potential benefits of using reproductive pheromone, to manipulate gonadal development and spawning has been demonstrated in a few species, but further research is needed to determine whether this technique is applicable to fish culture. Because a reliable supply of young fish is critical for the expansion and diversification of fish culture operations, the use of chemicals in combination with adequate environmental conditions to contain gametogenesis and spawning in fishes will continue to be an important tool for the fish culture.
NASA Astrophysics Data System (ADS)
Chiaverano, Luciano M.; Robinson, Kelly L.; Tam, Jorge; Ruzicka, James J.; Quiñones, Javier; Aleksa, Katrina T.; Hernandez, Frank J.; Brodeur, Richard D.; Leaf, Robert; Uye, Shin-ichi; Decker, Mary Beth; Acha, Marcelo; Mianzan, Hermes W.; Graham, William M.
2018-05-01
Large jellyfish are important consumers of plankton, fish eggs and fish larvae in heavily fished ecosystems worldwide; yet they are seldom included in fisheries production models. Here we developed a trophic network model with 41 functional groups using ECOPATH re-expressed in a donor-driven, end-to-end format to directly evaluate the efficiency of large jellyfish and forage fish at transferring energy to higher trophic levels, as well as the ecosystem-wide effects of varying jellyfish and forage fish consumption rates and fishing rates, in the Northern Humboldt Current system (NHCS) off of Peru. Large jellyfish were an energy-loss pathway for high trophic-level consumers, while forage fish channelized the production of lower trophic levels directly into production of top-level consumers. A simulated jellyfish bloom resulted in a decline in productivity of all functional groups, including forage fish (12%), with the exception of sea turtles. A modeled increase in forage fish consumption rate by 50% resulted in a decrease in large jellyfish productivity (29%). A simulated increase of 40% in forage fish harvest enhanced jellyfish productivity (24%), while closure of all fisheries caused a decline in large jellyfish productivity (26%) and productivity increases in upper level consumers. These outcomes not only suggest that jellyfish blooms and fisheries have important effects on the structure of the NHCS, but they also support the hypothesis that forage fishing provides a competitive release for large jellyfish. We recommend including jellyfish as a functional group in future ecosystem modeling efforts, including ecosystem-based approaches to fishery management of coastal ecosystems worldwide.
Dynamic behavior and deformation analysis of the fish cage system using mass-spring model
NASA Astrophysics Data System (ADS)
Lee, Chun Woo; Lee, Jihoon; Park, Subong
2015-06-01
Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.
NASA Astrophysics Data System (ADS)
Nel, L.; Strydom, N. A.; Perissinotto, R.; Adams, J. B.; Lemley, D. A.
2017-10-01
Estuarine marine-dependent species, such as Rhabdosargus holubi, depend greatly on structured sheltered environments and important feeding areas provided by estuaries. In this study, we investigate the ecological feeding niches of the estuarine marine-dependent sparid, R. holubi, by using conventional stomach contents and stable isotope methods (δ13C and δ15N signatures). The study has been carried out in five temperate estuaries in order to understand how fish feed in multiple intertidal vegetated habitats. These habitats included the submerged seagrass, Zostera capensis, and both previously unexplored small intertidal cord grass, Spartina maritima, and the common reed, Phragmites australis. The diet varied amongst habitats, estuaries and fish sizes and data consistently confirmed their omnivorous diet relating to ontogenetic niche shifts. Stomach contents revealed the importance of benthic prey within both the S. maritima and P. australis habitats in the absence of large intertidal vegetation, available during low tides. Similarly, isotopic mixing models showed that R. holubi from these habitats have a greater isotopic niche compared to the Z. capensis habitat, due to their limited availability during the falling tide, suggesting migration between available habitats. Stable isotopes confirmed that R. holubi actively feeds on the epiphytic algae (especially diatoms) covering the leaves and stalks of plant matter, as supported by Bayesian mixing models. These findings add to the current knowledge regarding habitat partitioning in multiple aquatic vegetation types critical to fish ecology and the effective management and conservation of estuaries.
Land use structures fish assemblages in reservoirs of the Tennessee River
Miranda, Leandro E.; Bies, J. M.; Hann, D. A.
2015-01-01
Inputs of nutrients, sediments and detritus from catchments can promote selected components of reservoir fish assemblages, while hindering others. However, investigations linking these catchment subsidies to fish assemblages have generally focussed on one or a handful of species. Considering this paucity of community-level awareness, we sought to explore the association between land use and fish assemblage composition in reservoirs. To this end, we compared fish assemblages in reservoirs of two sub-basins of the Tennessee River representing differing intensities of agricultural development, and hypothesised that fish assemblage structure indicated by species percentage composition would differ among reservoirs in the two sub-basins. Using multivariate statistical analysis, we documented inter-basin differences in land use, reservoir productivity and fish assemblages, but no differences in reservoir morphometry or water regime. Basins were separated along a gradient of forested and non-forested catchment land cover, which was directly related to total nitrogen, total phosphorous and chlorophyll-a concentrations. Considering the extensive body of knowledge linking land use to aquatic systems, it is reasonable to postulate a hierarchical model in which productivity has direct links to terrestrial inputs, and fish assemblages have direct links to both land use and productivity. We observed a shift from an invertivore-based fish assemblage in forested catchments to a detritivore-based fish assemblage in agricultural catchments that may be a widespread pattern among reservoirs and other aquatic ecosystems.
Use of Copper Sulfate and a New Disinfectant called Peracetic Acid in Aquaculture
USDA-ARS?s Scientific Manuscript database
Copper sulfate treatments are currently used for water treatments to control algae and snails, but also to control parasites (mainly Ich) on fish and fungus (Saprolegnia) on fish eggs. This compound has also been used in the past to control columnaris on fish, although antibiotics are the common tr...
Currently, the fish early life-stage (FELS) test (OECD 210) is the primary guideline used to estimate chronic toxicity of regulated chemicals. Although already more cost-efficient than adult fish tests, the FELS test has some important drawbacks. Both industry and regulatory inst...
Signal Cloaking by Electric Fish
STODDARD, PHILIP K.; MARKHAM, MICHAEL R.
2010-01-01
Electric fish produce weak electric fields to image their world in darkness and to communicate with potential mates and rivals. Eavesdropping by electroreceptive predators exerts selective pressure on electric fish to shift their signals into less-detectable high-frequency spectral ranges. Hypopomid electric fish evolved a signal-cloaking strategy that reduces their detectability by predators in the lab (and thus presumably their risk of predation in the field). These fish produce broad-frequency electric fields close to the body, but the heterogeneous local fields merge over space to cancel the low-frequency spectrum at a distance. Mature males dynamically regulate this cloaking mechanism to enhance or suppress low-frequency energy. The mechanism underlying electric-field cloaking involves electrogenic cells that produce two independent action potentials. In a unique twist, these cells orient sodium and potassium currents in the same direction, potentially boosting their capabilities for current generation. Exploration of such evolutionary inventions could aid the design of biogenerators to power implantable medical devices, an ambition that would benefit from the complete genome sequence of a gymnotiform fish. PMID:20209064
Guiding out-migrating juvenile sea lamprey (Petromyzon marinus) with pulsed direct current
Johnson, Nicholas S.; Miehls, Scott M.
2014-01-01
Non-physical stimuli can deter or guide fish without affecting water flow or navigation and therefore have been investigated to improve fish passage at anthropogenic barriers and to control movement of invasive fish. Upstream fish migration can be blocked or guided without physical structure by electrifying the water, but directional downstream fish guidance with electricity has received little attention. We tested two non-uniform pulsed direct current electric systems, each having different electrode orientations (vertical versus horizontal), to determine their ability to guide out-migrating juvenile sea lamprey (Petromyzon marinus) and rainbow trout (Oncorhynchus mykiss). Both systems guided significantly more juvenile sea lamprey to a specific location in our experimental raceway when activated than when deactivated, but guidance efficiency decreased at the highest water velocities tested. At the electric field setting that effectively guided sea lamprey, rainbow trout were guided by the vertical electrode system, but most were blocked by the horizontal electrode system. Additional research should characterize the response of other species to non-uniform fields of pulsed DC and develop electrode configurations that guide fish over a range of water velocity.
Manikandan, B; Ravindran, J; Shrinivaasu, S; Marimuthu, N; Paramasivam, K
2014-10-01
Coral reef fishes are exploited without the knowledge of their sustainability and their possible effect in altering the community structure of a coral reef ecosystem. Alteration of the community structure could cause a decline in the health of coral reefs and its services. We documented the coral community structure, status of live corals and reef fish assemblages in Palk Bay at the reef fishing hotspots and its nearby reef area with minimum fishing pressure and compared it with a control reef area where reef fishing was banned for more than two decades. The comparison was based on the percent cover of different forms of live corals, their diversity and the density and diversity of reef fishes. The reef fish stock in the reef fishing hotspots and its neighbouring reef was lower by 61 and 38%, respectively compared to the control reef. The herbivore fish Scarus ghobban and Siganus javus were exploited at a rate of 250 and 105 kg month(-1) fishermen(-1), respectively, relatively high comparing the small reef area. Live and dead corals colonized by turf algae were predominant in both the reef fishing hotspots and its nearby coral ecosystems. The percent cover of healthy live corals and live corals colonized by turf algae was <10 and >80%, respectively, in the intensively fished coral ecosystems. The corals were less diverse and the massive Porites and Favia colonies were abundant in the intensive reef fishing sites. Results of this study suggest that the impact of reef fish exploitation was not solely restricted to the intensively fished reefs, but also to the nearby reefs which play a critical role in the resilience of degraded reef ecosystems.
Hagen, Ingrid V; Helland, Anita; Bratlie, Marianne; Brokstad, Karl A; Rosenlund, Grethe; Sveier, Harald; Mellgren, Gunnar; Gudbrandsen, Oddrun A
2016-08-01
The aim of the present study was to examine whether high intake of lean or fatty fish (cod and farmed salmon, respectively) by healthy, normal-weight adults would affect risk factors of type 2 diabetes and CVD when compared with lean meat (chicken). More knowledge is needed concerning the potential health effects of high fish intake (>300 g/week) in normal-weight adults. In this randomised clinical trial, thirty-eight young, healthy, normal-weight participants consumed 750 g/week of lean or fatty fish or lean meat (as control) for 4 weeks at dinner according to provided recipes to ensure similar ways of preparations and choices of side dishes between the groups. Energy and macronutrient intakes at baseline and end point were similar in all groups, and there were no changes in energy and macronutrient intakes within any of the groups during the course of the study. High intake of fatty fish, but not lean fish, significantly reduced TAG and increased HDL-cholesterol concentrations in fasting serum when compared with lean meat intake. When compared with lean fish intake, fatty fish intake increased serum HDL-cholesterol. No differences were observed between lean fish, fatty fish and lean meat groups regarding fasting and postprandial glucose regulation. These findings suggest that high intake of fatty fish, but not of lean fish, could beneficially affect serum concentrations of TAG and HDL-cholesterol, which are CVD risk factors, in healthy, normal-weight adults, when compared with high intake of lean meat.
NASA Astrophysics Data System (ADS)
Bulkley, G. B.; Mattenberger, S.
2009-12-01
Black Drake Ranch comprises ~1000 acres of Klamath Basin high desert in S. Central OR, containing 2.5m reaches each of the North Fork Sprague River (NFSR) and its major tributary, Five Mile Creek, a meandering meadow spring creek anchoring 26m of upstream habitat for several species of concern, including native redband trout. Decades of unenlightened management had resulted in substantial watershed degradation: channelization and diking by the U.S. Army Corps of Engineers (hubris), massive stream bank head cuts and erosion by cattle hooves, complete blockade of fish passage by two irrigation diversion dams, loss of eggs and fry in irrigation runoff, upland juniper overgrowth from fire suppression, and extensive infestation of noxious weeds. After in depth analysis by the Working Landscapes Alliance, Klamath Watershed Partnership, Oregon Dept. of Fish and Wildlife, and adjacent landowners, the landowner, a retired cellular biologist, collaborated with an United States Fish & Wildlife Service hydrologist to formulate a comprehensive Long Term Strategic Plan (LTSP) to restore a functioning ecosystem compatible with an economically viable cattle/hay ranching operation. The LTSP is based upon current best practices (CPBs) recommended by experts in relevant, but relatively young scientific fields, with the recognition that these CPBs are constantly evolving as new information becomes available, particularly relevant to this particular site. Consequently, the LTSP remains flexible, and is repeatedly revised as new information is culled from the literature, but mostly from on-site experience and errors. This LTSP entails: 1. Rotational cattle grazing and riparian fencing to allow the re-establishment of bank-stabilizing native plant populations; 2. At diversion dams, installation of fish screens and 3. re-establishment of fish passage using paleochannels revealed by aerial contour mapping; 4. Selective stream bank head cut repair to retain and thereby reduce irrigation water diversions; 5. Riparian planting of alders, willows, aspens and Ponderosa pines and 6. placement of instream large wood mass to provide cooling shade and refuge from predators; 7. Placement of spawning gravel; 8. Management of noxious weeds along stream banks; 9. Thinning of upland junipers to conserve surface water for runoff instream; and 10, Establishment of a formal program to monitor bank morphology and riparian plant populations (photomonitoring), water temperatures and fish census. After 4.5 years this LTSP has been ~80% implemented. Striking recovery of stream bank morphology and riparian plant species are seen, with ranching economics sustained. Changes in stream fish, invertebrate, and mammal populations will be evaluated as effects thereupon are anticipated. Perhaps most remarkable, this positive experience, and especially the open-minded flexibility of the project managers, has served to recruit traditionally resistant neighboring cattle ranchers to institute synergistic restoration programs along a contiguous 12m stretch of the NFSR. The key component of this project has been its substantial flexibility, based upon a realistic appreciation of the limits of current knowledge; ie: true Adaptive Management.
Distribution of grizzly bears in the Greater Yellowstone Ecosystem, 2004
Schwartz, C.C.; Haroldson, M.A.; Gunther, K.; Moody, D.
2006-01-01
The US Fish and Wildlife Service (USFWS) proposed delisting the Yellowstone grizzly bear (Ursus arctos horribilis) in November 2005. Part of that process required knowledge of the most current distribution of the species. Here, we update an earlier estimate of occupied range (1990–2000) with data through 2004. We used kernel estimators to develop distribution maps of occupied habitats based on initial sightings of unduplicated females (n = 481) with cubs of the year, locations of radiomarked bears (n = 170), and spatially unique locations of conflicts, confrontations, and mortalities (n = 1,075). Although each data set was constrained by potential sampling bias, together they provided insight into areas in the Greater Yellowstone Ecosystem (GYE) currently occupied by grizzly bears. The current distribution of 37,258 km2 (1990–2004) extends beyond the distribution map generated with data from 1990–2000 (34,416 km2 ). Range expansion is particularly evident in parts of the Caribou–Targhee National Forest in Idaho and north of Spanish Peaks on the Gallatin National Forest in Montana.
Fish consumption and track to a fish feed formulation
NASA Astrophysics Data System (ADS)
Cai-Juan, Soong; Ramli, Razamin; Rahman, Rosshairy Abdul
2015-12-01
Strategically located in the equator, Malaysia is blessed with plenty of fish supply. The high demand in fish consumption has helped the development in the fishery industry and provided numerous jobs in the secondary sector, contributing significantly to the nation's income. A survey was conducted to understand the trend of current demands for fish for the purpose of designing a feed formulation, which is still limited in this area of study. Results showed that grouper fish in restaurants commanded a very high price compared to other species of fish. Tiger grouper gained the highest demand in most restaurants, while giant grouper had the highest price in restaurants. Due to the demand and challenges to culture this type of fish, a framework for fish feed formulation is proposed. The formulation framework when materialized could be an alternative to the use of trash fish as the feed for grouper.
Fujitani, Marie; McFall, Andrew; Randler, Christoph; Arlinghaus, Robert
2017-06-01
Resolving uncertainties in managed social-ecological systems requires adaptive experimentation at whole-ecosystem levels. However, whether participatory adaptive management fosters ecological understanding among stakeholders beyond the sphere of science is unknown. We experimentally involved members of German angling clubs ( n = 181 in workshops, n = 2483 in total) engaged in self-governance of freshwater fisheries resources in a large-scale ecological experiment of active adaptive management of fish stocking, which constitutes a controversial management practice for biodiversity and ecosystem functioning when conducted inappropriately. The collaborative ecological experiments spanned several years and manipulated fish densities in 24 lakes with two species. In parallel, we experimentally compared changes in ecological knowledge and antecedents of proenvironmental behavior in stakeholders and managers who were members of a participatory adaptive management treatment group, with those receiving only a standard lecture, relative to placebo controls. Using a within-subjects pretest-posttest control design, changes in ecological knowledge, environmental beliefs, attitudes, norms, and behavioral intentions were evaluated. Participants in adaptive management retained more knowledge of ecological topics after a period of 8 months compared to those receiving a standard lecture, both relative to controls. Involvement in adaptive management was also the only treatment that altered personal norms and beliefs related to stocking. Critically, only the stakeholders who participated in adaptive management reduced their behavioral intentions to engage in fish stocking in the future. Adaptive management is essential for robust ecological knowledge, and we show that involving stakeholders in adaptive management experiments is a powerful tool to enhance ecological literacy and build environmental capacity to move toward sustainability.
Fujitani, Marie; McFall, Andrew; Randler, Christoph; Arlinghaus, Robert
2017-01-01
Resolving uncertainties in managed social-ecological systems requires adaptive experimentation at whole-ecosystem levels. However, whether participatory adaptive management fosters ecological understanding among stakeholders beyond the sphere of science is unknown. We experimentally involved members of German angling clubs (n = 181 in workshops, n = 2483 in total) engaged in self-governance of freshwater fisheries resources in a large-scale ecological experiment of active adaptive management of fish stocking, which constitutes a controversial management practice for biodiversity and ecosystem functioning when conducted inappropriately. The collaborative ecological experiments spanned several years and manipulated fish densities in 24 lakes with two species. In parallel, we experimentally compared changes in ecological knowledge and antecedents of proenvironmental behavior in stakeholders and managers who were members of a participatory adaptive management treatment group, with those receiving only a standard lecture, relative to placebo controls. Using a within-subjects pretest-posttest control design, changes in ecological knowledge, environmental beliefs, attitudes, norms, and behavioral intentions were evaluated. Participants in adaptive management retained more knowledge of ecological topics after a period of 8 months compared to those receiving a standard lecture, both relative to controls. Involvement in adaptive management was also the only treatment that altered personal norms and beliefs related to stocking. Critically, only the stakeholders who participated in adaptive management reduced their behavioral intentions to engage in fish stocking in the future. Adaptive management is essential for robust ecological knowledge, and we show that involving stakeholders in adaptive management experiments is a powerful tool to enhance ecological literacy and build environmental capacity to move toward sustainability. PMID:28630904
Risk factors for fishermen's health and safety in Greece.
Frantzeskou, Elpida; Kastania, Anastasia N; Riza, Elena; Jensen, Olaf C; Linos, Athena
2012-01-01
This is, to the best of our knowledge, the first occupational health study in Greek fishing. The aim of the study is to determine the risks for health and safety in Greek fisheries workers by exploring their health status and the health risk factors present in their occupational environment, thus providing a current baseline for further research in the future and for documentation of the needs for prevention. A questionnaire pilot study was carried out in a random sample of 100 Greek fishermen. Twenty-eight per cent (28%) had experienced at least one injury, of which half caused more than one day absence, while 14% had a near drowning experience. The health risks factors studied include excessive weight, cardiovascular incidents and dermatological, musculoskeletal, respiratory, hearing, stress, and anxiety problems. The occupational health risk factors include alcohol, fatty food consumption, smoking, and lack of physical exercise. The health effects observed are causally related to diet, smoking, and exercise, which in turn relate to the specific working conditions and culture in small-scale fishing that need to be taken into consideration in prevention programmes. The results are comparable with international fisheries experience, mainly from Poland, Denmark, and Turkey.
Application of biomimetics principles in space optics
NASA Astrophysics Data System (ADS)
Remisova, K.; Hudec, R.
2017-09-01
The principles of biomimetics have been successfully applied in space optics, e.g. in Lobster-Eye X-ray optical systems. However, the recent increase in knowledge on vision of sea animals, especially on mirror eyes of scallops, crustaceans, and deep sea fishes, makes possible to consider other such applications. Especially the discoveries of mirror eyes of the deep sea fishes Dolichopteryx longipes and Rhynchohyalus natalensis are promising because of their unique arrangements and likely active optics.
2012-01-01
Background Omnivorous diets are high in arachidonic acid (AA) compared to vegetarian diets. Research shows that high intakes of AA promote changes in brain that can disturb mood. Omnivores who eat fish regularly increase their intakes of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), fats that oppose the negative effects of AA in vivo. In a recent cross-sectional study, omnivores reported significantly worse mood than vegetarians despite higher intakes of EPA and DHA. This study investigated the impact of restricting meat, fish, and poultry on mood. Findings Thirty-nine omnivores were randomly assigned to a control group consuming meat, fish, and poultry daily (OMN); a group consuming fish 3-4 times weekly but avoiding meat and poultry (FISH), or a vegetarian group avoiding meat, fish, and poultry (VEG). At baseline and after two weeks, participants completed a food frequency questionnaire, the Profile of Mood States questionnaire and the Depression Anxiety and Stress Scales. After the diet intervention, VEG participants reduced their EPA, DHA, and AA intakes, while FISH participants increased their EPA and DHA intakes. Mood scores were unchanged for OMN or FISH participants, but several mood scores for VEG participants improved significantly after two weeks. Conclusions Restricting meat, fish, and poultry improved some domains of short-term mood state in modern omnivores. To our knowledge, this is the first trial to examine the impact of restricting meat, fish, and poultry on mood state in omnivores. PMID:22333737
Prichard, Emma; Granek, Elise F
2016-11-01
Pharmaceuticals and personal care products (PPCPs) are contaminants of emerging concern that are increasing in use and have demonstrated negative effects on aquatic organisms. There is a growing body of literature reporting the effects of PPCPs on freshwater organisms, but studies on the effects of PPCPs to marine and estuarine organisms are limited. Among effect studies, the vast majority examines subcellular or cellular effects, with far fewer studies examining organismal- and community-level effects. We reviewed the current published literature on marine and estuarine algae, invertebrates, fish, and mammals exposed to PPCPs, in order to expand upon current reviews. This paper builds on previous reviews of PPCP contamination in marine environments, filling prior literature gaps and adding consideration of ecosystem function and level of knowledge across marine habitat types. Finally, we reviewed and compiled data gaps suggested by current researchers and reviewers and propose a multi-level model to expand the focus of current PPCP research beyond laboratory studies. This model includes examination of direct ecological effects including food web and disease dynamics, biodiversity, community composition, and other ecosystem-level indicators of contaminant-driven change.
NASA Astrophysics Data System (ADS)
Retnowati, Daru; Subarjo, A. H.
2018-05-01
Food Security is closely related to agriculture, including fisheries. Food is a basic necessity and indispensable to humans. Nowadays, there are many agricultural lands and fisheries are turning to settlements and offices. To overcome these obstacles, the government took the policy of forming farmer groups. Farmer groups are channeling the government assistance, whether capital, seeds, training, or technology and knowledge assistance. This research is qualitative. The population in this study were members of the fish farming group in Purwomartani, Kalasan, Sleman. The population in this study were 4 Farmers Group in Purwomartani, Kalasan, Sleman. The sample in this research is 1 farmer group with the largest number of members that is 31 people. For the other three groups of fish farmers the number of members is 20 people. The results show that farmer groups are effective in supporting government programs. The role of farmer groups is needed to support the successful management of agricultural land, improvement of knowledge and skills of fish farmers, renewal of agricultural technology and equipment, and marketing of agricultural products.
NASA Astrophysics Data System (ADS)
Médoc, Vincent; Rigaud, Thierry; Motreuil, Sébastien; Perrot-Minnot, Marie-Jeanne; Bollache, Loïc
2011-10-01
Although trophically transmitted parasites are recognized to strongly influence food-web dynamics through their ability to manipulate host phenotype, our knowledge of their host spectrum is often imperfect. This is particularly true for the facultative paratenic hosts, which receive little interest. We investigated the occurrence and significance both in terms of ecology and evolution of paratenic hosts in the life cycle of the fish acanthocephalan Pomphorhynchus laevis. This freshwater parasite uses amphipods as intermediate hosts and cyprinids and salmonids as definitive hosts. Within a cohort of parasite larvae, usually reported in amphipod intermediate hosts, more than 90% were actually hosted by small-sized fish. We demonstrated experimentally, using one of these fish, that they get infected through the consumption of parasitized amphipods and contribute to the parasite's transmission to a definitive host, hence confirming their paratenic host status. A better knowledge of paratenic host spectrums could help us to understand the fine tuning of transmission strategies, to better estimate parasite biomass, and could improve our perception of parasite subwebs in terms of host-parasite and predator-parasite links.
History of Science and Science Museums
NASA Astrophysics Data System (ADS)
Faria, Cláudia; Guilherme, Elsa; Gaspar, Raquel; Boaventura, Diana
2015-10-01
The activities presented in this paper, which are addressed to elementary school, are focused on the pioneering work of the Portuguese King Carlos I in oceanography and involve the exploration of the exhibits belonging to two different science museums, the Aquarium Vasco da Gama and the Maritime Museum. Students were asked to study fish adaptations to deep sea, through the exploration of a fictional story, based on historical data and based on the work of the King that served as a guiding script for all the subsequent tasks. In both museums, students had access to: historical collections of organisms, oceanographic biological sampling instruments, fish gears and ships. They could also observe the characteristics and adaptations of diverse fish species characteristic of deep sea. The present study aimed to analyse the impact of these activities on students' scientific knowledge, on their understanding of the nature of science and on the development of transversal skills. All students considered the project very popular. The results obtained suggest that the activity promoted not only the understanding of scientific concepts, but also stimulated the development of knowledge about science itself and the construction of scientific knowledge, stressing the relevance of creating activities informed by the history of science. As a final remark we suggest that the partnership between elementary schools and museums should be seen as an educational project, in which the teacher has to assume a key mediating role between the school and the museums.
Are Fish Consumption Advisories for the Great Lakes Adequately Protective against Chemical Mixtures?
Gandhi, Nilima; Drouillard, Ken G; Arhonditsis, George B; Gewurtz, Sarah B; Bhavsar, Satyendra P
2017-04-01
The North American Great Lakes are home to > 140 types of fish and are famous for recreational and commercial fishing. However, the presence of toxic substances has resulted in the issuance of fish consumption advisories that are typically based on the most restrictive contaminant. We investigated whether these advisories, which typically neglect the existence of a mixture of chemicals and their possible additive adverse effects, are adequately protective of the health of humans consuming fish from the Canadian waters of the Great Lakes. Using recent fish contaminant monitoring data collected by the government of Ontario, Canada, we simulated advisories using most-restrictive-contaminant (one-chem) and multi-contaminant additive effect (multi-chem) approaches. The advisories from the two simulations were compared to determine if there is any deficiency in the currently issued advisories. Approximately half of the advisories currently issued are potentially not adequately protective. Of the four Great Lakes studied, the highest percentage of advisories affected are in Lake Ontario if an additive effect is considered. Many fish that are popular for consumption, such as walleye, salmon, bass and trout, would have noticeably more stringent advisories. Improvements in the advisories may be needed to ensure that the health of humans consuming fish from the Great Lakes is protected. In this region, total polychlorinated biphenyls (PCBs) and mercury are the major contaminants causing restrictions on consuming fish, whereas dioxins/furans, toxaphene, and mirex/photomirex are of minor concern. Regular monitoring of most organochlorine pesticides and metals in fish can be discontinued.
Evaluation of Application Space Expansion for the Sensor Fish
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRolph, Christopher R.; Bevelhimer, Mark S.
The Pacific Northwest National Laboratory has developed an instrument known as the sensor fish that can be released into downstream passage routes at hydropower facilities to collect data on the physical conditions that a fish might be exposed to during passage through a turbine. The US Department of Energy Wind and Water Power Program sees value in expanding the sensor fish application space beyond large Kaplan turbines in the northwest United States to evaluate conditions to which a greater variety of fish species are exposed. Development of fish-friendly turbines requires an understanding of both physical passage conditions and biological responsesmore » to those conditions. Expanding the use of sensor fish into other application spaces will add to the knowledge base of physical passage conditions and could also enhance the use of sensor fish as a site-specific tool in mitigating potential impacts to fish populations from hydropower. The Oak Ridge National Laboratory (ORNL) National Hydropower Assessment Program (NHAAP) database contains hydropower facility characteristics that, along with national fish distribution data, were used to evaluate potential interactions between fish species and project characteristics related to downstream passage issues. ORNL developed rankings for the turbine types in the NHAAP database in terms of their potential to impact fish through injury or mortality during downstream turbine passage. National-scale fish distributions for 31 key migratory species were spatially intersected with hydropower plant locations to identify facilities where turbines with a high threat to fish injury or mortality overlap with the potential range of a sensitive fish species. A dataset was produced that identifies hydropower facilities where deployment of the sensor fish technology might be beneficial in addressing issues related to downstream fish passage. The dataset can be queried to target specific geographic regions, fish species, license expiration dates, generation capacity levels, ownership characteristics, turbine characteristics, or any combination of these metrics.« less
Norambuena, Fernando; Lewis, Michael; Hamid, Noor Khalidah Abdul; Hermon, Karen; Donald, John A; Turchini, Giovanni M
2013-01-01
Teleost fish, as with all vertebrates, are capable of synthesizing cholesterol and as such have no dietary requirement for it. Thus, limited research has addressed the potential effects of dietary cholesterol in fish, even if fish meal and fish oil are increasingly replaced by vegetable alternatives in modern aquafeeds, resulting in progressively reduced dietary cholesterol content. The objective of this study was to determine if dietary cholesterol fortification in a vegetable oil-based diet can manifest any effects on growth and feed utilization performance in the salmonid fish, the rainbow trout. In addition, given a series of studies in mammals have shown that dietary cholesterol can directly affect the fatty acid metabolism, the apparent in vivo fatty acid metabolism of fish fed the experimental diets was assessed. Triplicate groups of juvenile fish were fed one of two identical vegetable oil-based diets, with additional cholesterol fortification (high cholesterol; H-Chol) or without (low cholesterol; L-Chol), for 12 weeks. No effects were observed on growth and feed efficiency, however, in fish fed H-Col no biosynthesis of cholesterol, and a remarkably decreased apparent in vivo fatty acid β-oxidation were recorded, whilst in L-Chol fed fish, cholesterol was abundantly biosynthesised and an increased apparent in vivo fatty acid β-oxidation was observed. Only minor effects were observed on the activity of stearyl-CoA desaturase, but a significant increase was observed for both the transcription rate in liver and the apparent in vivo activity of the fatty acid Δ-6 desaturase and elongase, with increasing dietary cholesterol. This study showed that the possible effects of reduced dietary cholesterol in current aquafeeds can be significant and warrant future investigations.
NASA Astrophysics Data System (ADS)
Peck, M. A.
2016-02-01
Gaining a cause-and-effect understanding of climate-driven changes in marine fish populations at appropriate spatial scales is important for providing robust advice for ecosystem-based fisheries management. Coupling long-term, retrospective analyses and 3-d biophysical, individual-based models (IBMs) shows great potential to reveal mechanism underlying historical changes and to project future changes in marine fishes. IBMs created for marine fish early life stages integrate organismal-level physiological responses and climate-driven changes in marine habitats (from ocean physics to lower trophic level productivity) to test and reveal processes affecting marine fish recruitment. Case studies are provided for hindcasts and future (A1 and B2 projection) simulations performed on some of the most ecologically- and commercially-important pelagic and demersal fishes in the North Sea including European anchovy, Atlantic herring, European sprat and Atlantic cod. We discuss the utility of coupling biophysical IBMs to size-spectrum models to better project indirect (trophodynamic) pathways of climate influence on the early life stages of these and other fishes. Opportunities and challenges are discussed regarding the ability of these physiological-based tools to capture climate-driven changes in living marine resources and food web dynamics of shelf seas.
Predictive modeling of deep-sea fish distribution in the Azores
NASA Astrophysics Data System (ADS)
Parra, Hugo E.; Pham, Christopher K.; Menezes, Gui M.; Rosa, Alexandra; Tempera, Fernando; Morato, Telmo
2017-11-01
Understanding the link between fish and their habitat is essential for an ecosystem approach to fisheries management. However, determining such relationship is challenging, especially for deep-sea species. In this study, we applied generalized additive models (GAMs) to relate presence-absence and relative abundance data of eight economically-important fish species to environmental variables (depth, slope, aspect, substrate type, bottom temperature, salinity and oxygen saturation). We combined 13 years of catch data collected from systematic longline surveys performed across the region. Overall, presence-absence GAMs performed better than abundance models and predictions made for the observed data successfully predicted the occurrence of the eight deep-sea fish species. Depth was the most influential predictor of all fish species occurrence and abundance distributions, whereas other factors were found to be significant for some species but did not show such a clear influence. Our results predicted that despite the extensive Azores EEZ, the habitats available for the studied deep-sea fish species are highly limited and patchy, restricted to seamounts slopes and summits, offshore banks and island slopes. Despite some identified limitations, our GAMs provide an improved knowledge of the spatial distribution of these commercially important fish species in the region.
Hydrogen peroxide as a fungicide for fish culture
Dawson, V.K.; Rach, J.J.; Schreier, Theresa M.
1994-01-01
Antifungal agents are needed to maintain healthy stocks of fish in the intensive culture systems currently employed in fish hatcheries. Malachite green has been the most widely used antifungal agent; however, its potential for producing teratology in animals and fish precludes further use in fish culture. Preliminary studies at the National Fisheries Research Center, La Crosse, WI, USA (La Crosse Center) indicate that hydrogen peroxide is effective for control of Saprolegnia sp. fungus on incubating eggs of rainbow trout. It is also effective against a wide variety of other organisms such as bacteria, yeasts, viruses, and spores, and has been proposed as a treatment for sea lice on salmon. Hydrogen peroxide and its primary decomposition products, oxygen and water, are not systemic poisons and are considered environmentally compatible. In response to a petition from the La Crosse Center, the U.S. Food and Drug Administration (FDA) recently classified hydrogen peroxide as a 'low regulatory priority' when used for control of fungus on fish and fish eggs. Preliminary tests conducted at the La Crosse Center suggest that prophylactic treatments of 250 to 500 ppm (based on 100% active ingredient) for 15 minutes every other day will inhibit fungal infections on healthy rainbow trout (Oncorhynchus mykiss) eggs. This treatment regime also seems to inhibit fungal development and increase hatching success among infected eggs. Efficacy and safety of hydrogen peroxide as a fungicide for fish are currently being evaluated.
Great Lakes fish consumption advisories: is mercury a concern?
Bhavsar, Satyendra P; Awad, Emily; Mahon, Chris G; Petro, Steve
2011-10-01
The majority of the restrictive fish consumption advisories for the Canadian waters of the Great Lakes issued by the Ontario Ministry of the Environment, Canada based on the most restrictive contaminant, are attributed to polychlorinated biphenyls (PCBs) and dioxins/furans. Mercury currently causes about <1-2.5% and 9-16% of the restrictive advisories for the general population (GP) and sensitive population of children under 15 and women of child-bearing age (SP), respectively (the St. Lawrence River is not considered here). Toxaphene causes minor restrictions. At present it is not clear that if PCBs and dioxins/furans were to decrease below their fish consumption advisory guidelines, current fish mercury levels would replace some, most or all of the consumption restrictions. In order to examine this, location-, species- and size-specific fish consumption advisories were calculated for a "mercury only" scenario by disregarding the presence of the other contaminants. In the absence of other contaminants, mercury would replace some of the current advisories caused by other contaminants; however, the overall advisories would be minimally to moderately restrictive (<1-7% for GP; 13-32% for SP). Almost half of the Great Lake blocks considered here would have more than double the unrestricted consumption advisories than they currently have, with Lake Ontario showing the greatest improvement. Certain size ranges of each species across the main basins of the Canadian waters of the Great Lakes would be deemed safe for unrestricted consumption. However, at least some sizes of a number of species from certain locations of each lake would still have "do not eat" advisories issued for the SP, although these restrictions would be minimal for Lake Erie. These results suggest that the current mercury levels in the Canadian Great Lakes fish are of very minor concern for the GP and of moderate concern for the SP.
ABS-FishCount: An Agent-Based Simulator of Underwater Sensors for Measuring the Amount of Fish
2017-01-01
Underwater sensors provide one of the possibilities to explore oceans, seas, rivers, fish farms and dams, which all together cover most of our planet’s area. Simulators can be helpful to test and discover some possible strategies before implementing these in real underwater sensors. This speeds up the development of research theories so that these can be implemented later. In this context, the current work presents an agent-based simulator for defining and testing strategies for measuring the amount of fish by means of underwater sensors. The current approach is illustrated with the definition and assessment of two strategies for measuring fish. One of these two corresponds to a simple control mechanism, while the other is an experimental strategy and includes an implicit coordination mechanism. The experimental strategy showed a statistically significant improvement over the control one in the reduction of errors with a large Cohen’s d effect size of 2.55. PMID:29137165
The goal of this study was to determine the current incidence rate of fish tumors and deformities in the St. Louis River and compare that to the rate in a relatively unimpaired waterbody on Lake Superior. These data are necessary to remove the “Fish Tumors and Deformities” Benef...
USDA-ARS?s Scientific Manuscript database
In developing a sustainable diet for piscivorous fish species it will be necessary to not only substantially reduce the current level of fishmeal, but also the level of fish oil. Standard salmonid diets use between 9 and 15% fish oil which functions as a key source of energy and essential fatty acid...
Fish Parasites: A Growing Concern During Pregnancy.
Villazanakretzer, Diana L; Napolitano, Peter G; Cummings, Kelly F; Magann, Everett F
2016-04-01
Intestinal parasitic worms affect more than 2 billion people worldwide according to the World Health Organization. Fish-borne parasitic infections are becoming more common with the increasing popularity of sushi, sashimi, Carpaccio, tartare, gefilte, and ceviche. The ingestion of these parasites can cause serve anemia, malabsorption, severe abdominal pain, nausea, vomiting, strong allergic reactions, and gastric ulcers. Knowledge about fish parasites and pregnancy is limited. A literature search on PubMed and Web of Science used the search terms "fish parasites" OR "diphyllobothrium" OR "anisakiasis" OR "pseudoterranova" OR ("food borne parasites" AND "fish") AND "pregnancy" OR "maternal" OR "fetus" OR "fetal" OR "newborn" OR "neonatal" OR "childbirth." No limit was put on the number of years searched. There were 281 publications identified. The abstracts of all of these publications were read. After exclusion of the articles that were not relevant to pregnancy, pregnancy outcome, and fish parasites, there were 24 articles that became the basis of this review. The pathophysiology, altered maternal immunity related to the infection, limited information about fish-borne parasitic infections and pregnancy, and treatments are discussed. The main impact of a fish-borne parasitic infection on pregnant women is anemia and altered immunity, which may increase the risk of a maternal infection. The primary fetal effects include intrauterine growth restriction and preterm delivery.
Detection of eyeshine by flashlight fishes of the family Anomalopidae.
Howland, H C; Murphy, C J; McCosker, J E
1992-04-01
Flashlight fishes of the family Anomalopidae live in clear tropical waters and are nocturnally active. They have luminescent organs located just below the pupils of their eyes. The relation of the luminescent organ to the pupil of the anomalopid eye is similar to that of the illumination and pupil system of the ophthalmoscope and identical to that of some photoretinoscopes. Indeed, one species of flashlight fish, Anomalops katoptron, actually moves its luminous organ away from its pupils in the process of occluding its light organ, making a retinoscopic-like movement. By photographing the eyeshine of a number of fishes with a photoretinoscope and by analyzing the optics of light organs of fish of the family Anomalopidae as well as the optics of reflecting eyes, we show under what light conditions and ranges flashlight fishes may reasonably be able to detect eyeshine from other fishes in the environment. Further, we suggest that flashlight fishes may be able to communicate with each other by altering the accommodation of their eyes. In such a communication system, the sender radiates no energy and communicates only with the interrogating receiver of the information. To our knowledge, this utilization of eyeshine, both for detection and for communication, is unique in the animal kingdom.
Understanding and managing fish populations: keeping the toolbox fit for purpose.
Paris, J R; Sherman, K D; Bell, E; Boulenger, C; Delord, C; El-Mahdi, M B M; Fairfield, E A; Griffiths, A M; Gutmann Roberts, C; Hedger, R D; Holman, L E; Hooper, L H; Humphries, N E; Katsiadaki, I; King, R A; Lemopoulos, A; Payne, C J; Peirson, G; Richter, K K; Taylor, M I; Trueman, C N; Hayden, B; Stevens, J R
2018-03-01
Wild fish populations are currently experiencing unprecedented pressures, which are projected to intensify in the coming decades. Developing a thorough understanding of the influences of both biotic and abiotic factors on fish populations is a salient issue in contemporary fish conservation and management. During the 50th Anniversary Symposium of The Fisheries Society of the British Isles at the University of Exeter, UK, in July 2017, scientists from diverse research backgrounds gathered to discuss key topics under the broad umbrella of 'Understanding Fish Populations'. Below, the output of one such discussion group is detailed, focusing on tools used to investigate natural fish populations. Five main groups of approaches were identified: tagging and telemetry; molecular tools; survey tools; statistical and modelling tools; tissue analyses. The appraisal covered current challenges and potential solutions for each of these topics. In addition, three key themes were identified as applicable across all tool-based applications. These included data management, public engagement, and fisheries policy and governance. The continued innovation of tools and capacity to integrate interdisciplinary approaches into the future assessment and management of fish populations is highlighted as an important focus for the next 50 years of fisheries research. © 2018 The Fisheries Society of the British Isles.
Takase, Mai; Murata, Masataka; Hibi, Kyoko; Huifeng, Ren; Endo, Hideaki
2014-04-01
We developed a wireless monitoring system to monitor fish condition by tracking the change in whole cholesterol concentration. The whole cholesterol concentration of fish is a source of steroid hormones or indicator of immunity level, which makes its detection important for tracking physiological condition of fish. Wireless monitoring system comprises of mediator-type biosensor and wireless transmission device. Biosensor is implantable to fish body, and transmission device is so light, in that fish is allowed to swim freely during monitoring. Cholesterol esterase and oxidase were fixated on to the detection site of biosensor and used to detect the whole cholesterol concentration. However, cholesterol oxidase incorporates oxidation-reduction reaction of oxygen for detection, which concentration fluctuates easily due to change in environmental condition. Meanwhile, mediator-type biosensor enables monitoring of whole cholesterol concentration by using mediator to substitute that oxidation-reduction reaction of oxygen. Characteristic of fabricated mediator-type biosensor was tested. The sensor output current of mediator-type biosensor remained stable compared to output current of non-mediator-type biosensor under fluctuating oxygen concentration of 0-8 ppm, which implied that this sensor is less affected by change in dissolved oxygen concentration. That biosensor was then implanted into fish for wireless monitoring. As a result, approximately 48 h of real-time monitoring was successful.
Arimi, Kayode S
2014-05-01
Undesirable impacts of climate change have been a common occurrence that has made fish farmers in developing countries adopt some climate-change adaptation strategies. However, little is known about determinants of climate-change adaptation strategies used by these fish farmers. This study, therefore, articulates novelties on adaptation to climate change, as well ascertains determinants of adaptation strategies used by fish farmers in Epe, Lagos State, Nigeria. Climate change adaptation strategies mostly used by fish farmers include frequent seeking for early warning information about climate change (76.7%) and avoidance of areas susceptible to flooding (60.0%). Climate-change adaptation strategies used by fish farmers were significantly influenced by access to early warning information (β = 7.21), knowledge of farmers about climate change adaptation strategies (β = 8.86), access to capital (β = 28.25), and participation in workshop and conferences (β = 37.19) but were reduced by number of fish stocking (β = -2.06). The adaptation strategies used by fish farmers were autonomous and mostly determined by the access to credit facilities and information. Development policy should focus on carbon capture and storage technology in order to reduce adverse impacts of climate change, as well as making early warning information on climate change available to fish farmers. These will enhance adaptation to climate change. © 2013 Society of Chemical Industry.
Qian, Zhi-Ming; Wang, Shuo Hong; Cheng, Xi En; Chen, Yan Qiu
2016-06-23
Fish tracking is an important step for video based analysis of fish behavior. Due to severe body deformation and mutual occlusion of multiple swimming fish, accurate and robust fish tracking from video image sequence is a highly challenging problem. The current tracking methods based on motion information are not accurate and robust enough to track the waving body and handle occlusion. In order to better overcome these problems, we propose a multiple fish tracking method based on fish head detection. The shape and gray scale characteristics of the fish image are employed to locate the fish head position. For each detected fish head, we utilize the gray distribution of the head region to estimate the fish head direction. Both the position and direction information from fish detection are then combined to build a cost function of fish swimming. Based on the cost function, global optimization method can be applied to associate the target between consecutive frames. Results show that our method can accurately detect the position and direction information of fish head, and has a good tracking performance for dozens of fish. The proposed method can successfully obtain the motion trajectories for dozens of fish so as to provide more precise data to accommodate systematic analysis of fish behavior.
Fishes and fisheries in tropical estuaries: The last 10 years
NASA Astrophysics Data System (ADS)
Blaber, S. J. M.
2013-12-01
Since 2002 there has been an increase in knowledge of many aspects of the biology and ecology of tropical estuarine fishes, as well as significant changes to many estuarine fisheries. Analyses of literature databases (2002-2012) show that: of the c. 600 relevant papers, 52% are primarily related to ecology, 11% to conservation, 11% to anthropogenic and pollution effects on fishes, 9% to fisheries, 7% to aquaculture, 4% to study techniques, and 1% each to fish larvae, effects of fishing, taxonomy, climate change, evolution and genetics. In terms of geographic spread 17% are from North America, 15% from south Asia, 14% from the Caribbean, 13% from Australasia, 12% from Africa and 9% each from South America and SE Asia. Research papers came from 50 countries of which the dominant were USA (15%), India (12%), Australia (11%) and Brazil (7%). Increasing numbers of studies in West Africa, SE and South Asia and South America have increased basic knowledge of the ecology of estuarine fish faunas. Increases in understanding relate to: roles of salinity, turbidity and habitat diversity; connectivity between habitats; water flow; ecological drivers of spatial variability; scale dependent variation; thermal tolerances; movement patterns; food webs; larval adaptations; and the viability of areas heavily impacted by human activities. New reviews both challenge and support different aspects of the estuarine dependence paradigm - still perhaps one of the main research issues - and the protective function of estuaries and mangroves for juvenile fishes has received attention in relation to e.g. predation risks and fisheries. There have also been significant advances in the use of guilds and biodiversity models. Fishing pressures have continued unabated in most tropical estuaries and are summarised and management issues discussed. Understanding of the relationships between fisheries production and mangroves has advanced and significant differences have emerged between Indo-West Pacific and Atlantic systems. The effects of fishing itself have also received attention and research is often related to conservation studies. The effects of anthropogenic activities are reviewed and important advances in mitigation are discussed. Restoration of estuarine habitats, such as mangroves, previously taking place mainly in countries such as Australia and USA, is now occurring in more countries. The design of reserves and the use of protected areas as management tools are gaining credence. Finally, the evidence for actual and potential effects of climate change is discussed.
Freshwater savings from marine protein consumption
NASA Astrophysics Data System (ADS)
Gephart, Jessica A.; Pace, Michael L.; D'Odorico, Paolo
2014-01-01
Marine fisheries provide an essential source of protein for many people around the world. Unlike alternative terrestrial sources of protein, marine fish production requires little to no freshwater inputs. Consuming marine fish protein instead of terrestrial protein therefore represents freshwater savings (equivalent to an avoided water cost) and contributes to a low water footprint diet. These water savings are realized by the producers of alternative protein sources, rather than the consumers of marine protein. This study quantifies freshwater savings from marine fish consumption around the world by estimating the water footprint of replacing marine fish with terrestrial protein based on current consumption patterns. An estimated 7 600 km3 yr-1 of water is used for human food production. Replacing marine protein with terrestrial protein would require an additional 350 km3 yr-1 of water, meaning that marine protein provides current water savings of 4.6%. The importance of these freshwater savings is highly uneven around the globe, with savings ranging from as little as 0 to as much as 50%. The largest savings as a per cent of current water footprints occur in Asia, Oceania, and several coastal African nations. The greatest national water savings from marine fish protein occur in Southeast Asia and the United States. As the human population increases, future water savings from marine fish consumption will be increasingly important to food and water security and depend on sustainable harvest of capture fisheries and low water footprint growth of marine aquaculture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
The report is divided into the following sections: (1) Introduction; (2) Conclusions and Recommendations; (3) Existing Conditions and Facilities for a Fuel Distribution Center; (4) Pacific Ocean Regional Tuna Fisheries and Resources; (5) Fishing Effort in the FSMEEZ 1992-1994; (6) Current Transshipping Operations in the Western Pacific Ocean; (7) Current and Probale Bunkering Practices of United States, Japanese, Koren, and Taiwanese Offshore-Based Vessels Operating in FSM and Adjacent Waters; (8) Shore-Based Fish-Handling/Processing; (9) Fuels Forecast; (10) Fuel Supply, Storage and Distribution; (11) Cost Estimates; (12) Economic Evaluation of Fuel Supply, Storage and Distribution.
Consumer beliefs regarding farmed versus wild fish.
Claret, Anna; Guerrero, Luis; Ginés, Rafael; Grau, Amàlia; Hernández, M Dolores; Aguirre, Enaitz; Peleteiro, José Benito; Fernández-Pato, Carlos; Rodríguez-Rodríguez, Carmen
2014-08-01
Aquaculture is a food-producing activity, alternative to traditional extractive fishing, which still acts as a reference for most consumers. The main objective of the present paper was to study which consumer beliefs, regarding farmed versus wild fish, hinder the potential development of the aquaculture sector. To achieve this purpose the study was organized into two complementary steps: a qualitative approach (focus groups) aimed at assessing consumer perception about wild and farmed fish and to identify the salient beliefs that differentiate them; and a quantitative approach (survey by means of a questionnaire) to validate the results obtained in the focus group discussions over a representative sample of participants (n = 919). Results showed that participants perceive clear differences between farmed and wild fish. Although no significant differences between both kinds of fish were detected on safety, in general farmed fish was perceived to be less affected by marine pollution, heavy metals and parasites. In the contrary, wild fish was considered to have healthier feeding, to contain fewer antibiotics and to be fresher, healthier, less handled and more natural. Beliefs related to quality were in favour of wild fish, while those related to availability and price were in favour of farmed fish. Significant differences were observed in the perception of both kinds of fish depending on the consumers' objective knowledge about fish, on the level of education, age and gender and on the three segments of consumers identified: "Traditional/Conservative", "Connoisseur", "Open to aquaculture". The results provided could play an important role when planning and designing efficient marketing strategies for promoting farmed fish by adapting the information provided to the perception of each segment of consumers identified by the present study. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fish traders as key actors in fisheries: gender and adaptive management.
Fröcklin, Sara; de la Torre-Castro, Maricela; Lindström, Lars; Jiddawi, Narriman S
2013-12-01
This paper fills an important gap towards adaptive management of small-scale fisheries by analyzing the gender dimension of fish trade in Zanzibar, Tanzania. We hypothesize that gender-based differences are present in the fish value chain and to test the hypothesis interviews were performed to analyze: (i) markets, customers, and mobility, (ii) material and economic resources, (iii) traded fish species, (iv) contacts and organizations, and (v) perceptions and experiences. Additionally, management documents were analyzed to examine the degree to which gender is considered. Results show that women traders had less access to social and economic resources, profitable markets, and high-value fish, which resulted in lower income. These gender inequalities are linked, among others, to women's reproductive roles such as childcare and household responsibilities. Formal fisheries management was found to be gender insensitive, showing how a crucial feedback element of adaptive management is missing in Zanzibar's management system, i.e., knowledge about key actors, their needs and challenges.
Jantz, Lesley A; Morishige, Carey L; Bruland, Gregory L; Lepczyk, Christopher A
2013-04-15
Plastic marine debris affects species on most trophic levels, including pelagic fish. While plastic debris ingestion has been investigated in planktivorous fish in the North Pacific Ocean, little knowledge exists on piscivorous fish. The objectives of this study were to determine the frequency of occurrence and the composition of ingested plastic marine debris in longnose lancetfish (Alepisaurus ferox), a piscivorous fish species captured in the Hawaii-based pelagic longline fishery. Nearly a quarter (47 of 192) of A. ferox sampled contained plastic marine debris, primarily in the form of plastic fragments (51.9%). No relationship existed between size (silhouette area) or amount of plastic marine debris ingested and morphometrics of A. ferox. Although A. ferox are not consumed by humans, they are common prey for fish commercially harvested for human consumption. Further research is needed to determine residence time of ingested plastic marine debris and behavior of toxins associated with plastic debris. Published by Elsevier Ltd.
Kim, Jin-Hyoung; Balfry, Shannon; Devlin, Robert H
2013-06-01
To extend previous findings regarding fish health and disease susceptibility of growth-enhanced fish, hematological and immunological parameters have been compared between growth hormone (GH) transgenic and wild-type non-transgenic coho salmon (Oncorhynchus kisutch). Compared to non-transgenic coho salmon, transgenic fish had significantly higher hematocrit (Hct), hemoglobin (Hb), mean cellular hemoglobin (MCH), mean cellular volume (MCV), and erythrocyte numbers, and lower white cell numbers. In addition, resistance to the bacterial pathogen Aeromonas salmonicida (causal agent of furunculosis) has been assessed between the strains. Higher susceptibility of transgenic fish to this disease challenge was observed in two separate year classes of fish. The present findings provide fundamental knowledge of the disease resistance on GH enhanced transgenic coho salmon, which is of importance for assessing the fitness of transgenic strains for environmental risk assessments, and for improving our understanding effects of growth modification on basic immune functions. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dewi, Indah Sari; Hastuti, Utami Sri; Lestari, Umi; Suwono, Hadi
2017-05-01
Wadi is the processed product of fish, due to local knowledge of the Dayak community, made of fresh fish with salt and lumus. The efforts to increase the quality of wadi as a kind of food were based on local knowledge, and are still ongoing. It is one of the ways to conserve wadi existence in the middle of the modern culture. It is important to add a variety of spices in suitable amounts as the innovation in producing wadi. People process wadi by using lumus made of rice and corn. Lumus gives a special taste and aroma t o wadi, furthermore, the effects of kinds of lumus and their concentrates, and the storage period on the nutrients of wadi are not known yet. This research used patin fish (Pangasius sp), white rice (Oryza sativa), white sticky rice (Oryza sativa var.glutinous), and corn (Zea mays) as the kinds of lumus. Each kind of lumus is mixed with fresh patin fish in different concentrations: 15%, 25% and 35%. The results of nutrient tests include measures of protein, carbohydrate, and fat, and show that patin which has been processed into wadi has more nutrients than fresh patin. The storage period and the varying concentrates of lumus effect the level of nutrients in patin wadi.
Pre- and post-bomb radiocarbon in fish otoliths
NASA Astrophysics Data System (ADS)
Kalish, John M.
1993-02-01
Measurements of radiocarbon in seawater dissolved inorganic carbon (DIC), or suitable proxies such as hermatypic corals, are a valuable source of information on carbon flux and ocean circulation. However, knowledge of the global distribution of both pre- and post-bomb radiocarbon is limited due to the sources of these data. Suitable hermatypic corals are restricted to shallow tropical and subtropical waters and oceanographic collections of seawater are prohibitively expensive. What is needed is a proxy for ocean radiocarbon that can be collected at most latitudes and depths, and which can be reliably aged. Here I report accelerator mass spectrometry analyses of radiocarbon from selected regions of fish otoliths and show that such measurements are suitable for determining both pre- and post-bomb radiocarbon in all oceans and at most depths. Radiocarbon data obtained from otoliths can extend our knowledge of carbon flux in the oceans and atmosphere and help to develop further understanding of the fate of atmospheric CO 2 and ocean circulation. The data presented here represent the first pre- and post-bomb time series of radiocarbon levels from temperate waters. Furthermore, I demonstrate that the dramatic increase in radiocarbon in the atmosphere and oceans, attributable to the atmospheric testing of thermonuclear bombs during the 1950's and 1960's, provides a chemical mark on fish otoliths that is suitable for the validation of age in fishes.
Salinity stress response in estuarine fishes from the Murray Estuary and Coorong, South Australia.
Hossain, Md Afzal; Aktar, Shefali; Qin, Jian G
2016-12-01
Estuaries are unstable ecosystems and can be changed by the environmental and anthropogenic impact. The Murray Estuary and Coorong were degraded by drought and low freshwater input in the last decade and therefore transformed into the largest hyper-saline lagoon in Australia. This study evaluates the physiological stress of two estuarine fish species (small-mouthed hardyhead Atherinosoma microstoma and Tamar goby Afurcagobius tamarensis) to the induced salinity change in captivity. The test fishes were collected from the Coorong and transported to the laboratory in the water from the Coorong. Each fish species was exposed to different levels of salinity, and a number of enzymes were assessed to measure the stress response of fish to salinity change. The activity of reactive oxygen species was significantly increased with the salinity change in both fish species compared with the fish in the control. Significant salinity effect on superoxide dismutase activity was observed on Tamar goby but not on small-mouthed hardyhead. Conversely, the impact of salinity on catalase activity was detected on small-mouthed hardyhead but not on Tamar goby. The study reveals that the induction of physical stress by salinity changes occurred in both Tamar goby and small-mouthed hardyhead despite the varying response of antioxidant enzymes between fish species. The study provides an insight into the understanding of physiological adaptation in estuarine fish to salinity change. The results could improve our knowledge on stress response and resilience of estuarine fish to hypo- and hyper-salinity stress.
Lac Qui Parle Flood Control Project Master Plan for Public Use Development and Resource Management.
1980-08-01
the project area is the disposal of dead carp. Minnesota fishing regulations prohibit fishermen from returning rough fish to lakes or rivers after...in trash cans. Unless the dead fish are removed virtually daily, they begin to decompose and smell. Due to current work- force constraints, the Corps...is unable to remove the dead fish as often as it would like. No easy solution to this problem is apparent. 6.25 Potential for Future Development The
Nutritional knowledge in an Italian population of children, pre-adolescents and adolescents.
Tallarini, Anna; Zabeo, Alessandra; Ferraretto, Anita
2014-03-01
To evaluate general knowledge about nutrition in an Italian population of children, pre-adolescents and adolescents. Knowledge about nutrition-related items such as healthy eating, breakfast, snacks, fast food, beverages, fruits and vegetables, cereals and tubers, meat/fish/legumes/eggs, milk and dairy products, fats and dressings, and sweets was analysed by means of a self-administered questionnaire (QuesCA IT) containing thirty-one questions, that was translated and adapted from a Swiss version (QuesCA) previously used in Geneva and Vaud. North of Italy (Bergamo, Milan). Students (n 614) belonging to two different age groups: 9-11 years (GR1) and 12-16 years (GR2). Data analysis showed that nutritional knowledge varied in relation to the age of the participants, increasing in particular in the older group, although this difference was not statistically significant for all the considered items. Nutritional knowledge also varied in relation to the gender of the participants, with females in particular seeming to possess better cognition. For each age group there was poor knowledge about the items healthy diet, snacks, milk and dairy products, meat/fish/legumes/eggs, and fats and dressings. Moreover, the percentage of participants who declared own knowledge as insufficient was higher in GR2 compared with GR1. The present research demonstrates a lack of knowledge about the main concepts of healthy nutrition both in the youngest and oldest participants of the survey. This evidence, together with the presence of higher self-consciousness in GR2, should be taken into account in specific educational interventions during the school period.
Starr, Richard M.; Wendt, Dean E.; Barnes, Cheryl L.; Marks, Corina I.; Malone, Dan; Waltz, Grant; Schmidt, Katherine T.; Chiu, Jennifer; Launer, Andrea L.; Hall, Nathan C.; Yochum, Noëlle
2015-01-01
Meta-analyses of field studies have shown that biomass, density, species richness, and size of organisms protected by no-take marine reserves generally increase over time. The magnitude and timing of changes in these response variables, however, vary greatly and depend upon the taxonomic groups protected, size and type of reserve, oceanographic regime, and time since the reserve was implemented. We conducted collaborative, fishery-independent surveys of fishes for seven years in and near newly created marine protected areas (MPAs) in central California, USA. Results showed that initially most MPAs contained more and larger fishes than associated reference sites, likely due to differences in habitat quality. The differences between MPAs and reference sites did not greatly change over the seven years of our study, indicating that reserve benefits will be slow to accumulate in California’s temperate eastern boundary current. Fishes in an older reserve that has been closed to fishing since 1973, however, were significantly more abundant and larger than those in associated reference sites. This indicates that reserve benefits are likely to accrue in the California Current ecosystem, but that 20 years or more may be needed to detect significant changes in response variables that are due to MPA implementation. Because of the high spatial and temporal variability of fish recruitment patterns, long-term monitoring is needed to identify positive responses of fishes to protection in the diverse set of habitats in a dynamic eastern boundary current. Qualitative estimates of response variables, such as would be obtained from an expert opinion process, are unlikely to provide an accurate description of MPA performance. Similarly, using one species or one MPA as an indicator is unlikely to provide sufficient resolution to accurately describe the performance of multiple MPAs. PMID:25760856
NASA Astrophysics Data System (ADS)
Zhan, Qinghua; Chen, Zhucheng; Li, Hongtao; Liu, Yijun; Mei, Cheng; He, Zhijie
2017-05-01
In order to solve the accidents happened in the ponds or other special places around the tower which were caused by the diffusion current after lightning stroke the transmission tower, the protection measures for the problem tower in the area of Guangdong Province which occurred dead fish in the pond in thunderstorm weather were studied in this paper. The COMSOL mutiphysics simulation software was used in order to calculate the electromagnetic environment of the diffusion situation by grounding device after lightning stroke the power transmission tower. Study concluded that the safe distance between the fish pond and grounding device of transmission tower is 14 meter. The effects of the length and depth or stayed a gap of the insulation baffle on the fish in the fish pond were discussed. The protection method of the insulation baffle has important practical significance to the protection of the grounding device for diffusion current, and can provide some engineering guidance and basis for the grounding arrangement and transformation of the high voltage transmission line tower.
Homogenization patterns of the world’s freshwater fish faunas
Villéger, Sébastien; Blanchet, Simon; Beauchard, Olivier; Oberdorff, Thierry; Brosse, Sébastien
2011-01-01
The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the “Homogocene era” is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes. PMID:22025692
Homogenization patterns of the world's freshwater fish faunas.
Villéger, Sébastien; Blanchet, Simon; Beauchard, Olivier; Oberdorff, Thierry; Brosse, Sébastien
2011-11-01
The world is currently undergoing an unprecedented decline in biodiversity, which is mainly attributable to human activities. For instance, nonnative species introduction, combined with the extirpation of native species, affects biodiversity patterns, notably by increasing the similarity among species assemblages. This biodiversity change, called taxonomic homogenization, has rarely been assessed at the world scale. Here, we fill this gap by assessing the current homogenization status of one of the most diverse vertebrate groups (i.e., freshwater fishes) at global and regional scales. We demonstrate that current homogenization of the freshwater fish faunas is still low at the world scale (0.5%) but reaches substantial levels (up to 10%) in some highly invaded river basins from the Nearctic and Palearctic realms. In these realms experiencing high changes, nonnative species introductions rather than native species extirpations drive taxonomic homogenization. Our results suggest that the "Homogocene era" is not yet the case for freshwater fish fauna at the worldwide scale. However, the distressingly high level of homogenization noted for some biogeographical realms stresses the need for further understanding of the ecological consequences of homogenization processes.
Detecting the Upstream Extent of Fish in the Redwood Region of Northern California
Aaron K. Bliesner; E. George Robison
2007-01-01
The point at which fish use ends represents a key ecological and regulatory demarcation on state and private forest land in the Redwood region. Currently, the end of fish use and other key demarcations with stream classification are measured or estimated based on judgments of Registered Professional Foresters and aquatic biologists with little guidance from empirical...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntington, Charles W.
If implemented, the Orofino Creek Passage Project will provide adult fish passage at barrier waterfalls on Orofino Creek, Idaho, and give anadromous salmonids access to upstream habitat. Anadromous fish are currently blocked at Orofino Falls, 8.3 km above the stream's confluence with the Clearwater River. This report summarizes results of a study to determine the potential for increasing natural production of summer steelhead (Salmo gairdneri) and spring chinook salmon (Oncorhynchus tschawytscha) in the Orofino Creek drainage by enhancing adult fish passage. Data on fish habitat, migration barriers, stream temperatures and fish populations in the drainage were collected during 1987 andmore » provided a basis for estimating the potential for self-sustaining anadromous salmonid production above Orofino Falls. Between 84.7 and 103.6 km of currently inaccessible streams would be available to anadromous fish following project implementation, depending on the level of passage enhancement above Orofino Falls. These streams contain habitat of poor to good quality for anadromous salmonids. Low summer flows and high water temperatures reduce habitat quality in lower mainstem Orofino Creek. Several streams in the upper watershed have habitat that is dominated by brook trout and may be poorly utilized by steelhead or salmon. 32 refs., 20 figs., 22 tabs.« less
Checklist of the continental fishes of the state of Chiapas, Mexico, and their distribution
Velázquez-Veláquez, Ernesto; López-Vila, Jesús Manuel; Gómez-González, Adán Enrique; Romero-Berny, Emilio Ismael; Lievano-Trujillo, Jorge Luis; Matamoros, Wilfredo A.
2016-01-01
Abstract An updated checklist of the distribution of fishes that inhabit the continental waters of the Mexican state of Chiapas is presented. The state was compartmentalized into 12 hydrological regions for the purpose of understanding the distribution of fish fauna across a state with large physiographic variance. The ichthyofauna of Chiapas is represented by 311 species distributed in two classes, 26 orders, 73 families, and 182 genera, including 12 exotic species. The families with the highest number of species were Cichlidae, Poeciliidae, Sciaenidae, Carangidae, Ariidae, Gobiidae, and Haemulidae. This study attempts to close gaps in knowledge of the distribution of ichthyofauna in the diverse hydrological regions of Chiapas, Mexico. PMID:27920608
Using posts to an online social network to assess fishing effort
Martin, Dustin R.; Chizinski, Christopher J.; Eskridge, Kent M.; Pope, Kevin L
2014-01-01
Fisheries management has evolved from reservoir to watershed management, creating a need to simultaneously gather information within and across interacting reservoirs. However, costs to gather information on the fishing effort on multiple reservoirs using traditional creel methodology are often prohibitive. Angler posts about reservoirs online provide a unique medium to test hypotheses on the distribution of fishing pressure. We show that the activity on an online fishing social network is related to fishing effort and can be used to facilitate management goals. We searched the Nebraska Fish and Game Association Fishing Forum for all references from April 2009 to December 2010 to 19 reservoirs that comprise the Salt Valley regional fishery in southeastern Nebraska. The number of posts was positively related to monthly fishing effort on a regional scale, with individual reservoirs having the most annual posts also having the most annual fishing effort. Furthermore, this relationship held temporally. Online fishing social networks provide the potential to assess effort on larger spatial scales than currently feasible.
Wild, Laurianne G; Lehrer, Samuel B
2005-01-01
Fish and shellfish are important in the American diet and economy. Nearly $27 billion are spent each year in the United States on seafood products. Fish and shellfish are also important causes of food hypersensitivity. In fact, shellfish constitute the number one cause of food allergy in the American adult. During the past decade, much has been learned about allergens in fish and shellfish. The major allergens responsible for cross-reactivity among distinct species of fish and amphibians are parvalbumins. The major shellfish allergen has been identified as tropomyosin. Many new and important potential cross-reacting allergens have been identified within the fish family and between shellfish, arachnids, and insects. Extensive research is currently underway for the development of safer and more effective methods for the diagnosis and management of fish and shellfish hypersensitivity.
Questions and Answers about Ebola, Pets, and Other Animals
... dead. Can non-mammals (birds, reptiles, amphibians, or fish) become sick with Ebola? There is currently no ... kept as pets including birds, reptiles, amphibians, or fish. No Ebola virus has been detected in non- ...
Contaminated fish consumption in California's Central Valley Delta.
Shilling, Fraser; White, Aubrey; Lippert, Lucas; Lubell, Mark
2010-05-01
Extensive mercury contamination and angler selection of the most contaminated fish species coincide in California's Central Valley. This has led to a policy conundrum: how to balance the economic and cultural impact of advising subsistence anglers to eat less fish with the economic cost of reducing the mercury concentrations in fish? State agencies with regulatory and other jurisdictional authority lack sufficient data and have no consistent approach to this problem. The present study focused on a critical and contentious region in California's Central Valley (the Sacramento-San Joaquin Rivers Delta) where mercury concentrations in fish and subsistence fishing rates are both high. Anglers and community members were surveyed for their fish preferences, rates of consumption, the ways that they receive health information, and basic demographic information. The rates of fish consumption for certain ethnicities were higher than the rates used by state agencies for planning pollution remediation. A broad range of ethnic groups were involved in catching and eating fish. The majority of anglers reported catching fish in order to feed to their families, including children and women of child-bearing age. There were varied preferences for receiving health information and no correlation between knowledge of fish contamination and rates of consumption. Calculated rates of mercury intake by subsistence anglers were well above the EPA reference dose. The findings here support a comprehensive policy strategy of involvement of the diverse communities in decision-making about education and clean-up and an official recognition of subsistence fishers in the region. Copyright 2010 Elsevier Inc. All rights reserved.
Contaminant transport in Massachusetts Bay
Butman, Bradford
Construction of a new treatment plant and outfall to clean up Boston Harbor is currently one of the world's largest public works projects, costing about $4 billion. There is concern about the long-term impact of contaminants on Massachusetts Bay and adjacent Gulf of Maine because these areas are used extensively for transportation, recreation, fishing, and tourism, as well as waste disposal. Public concern also focuses on Stellwagen Bank, located on the eastern side of Massachusetts Bay, which is an important habitat for endangered whales. Contaminants reach Massachusetts Bay not only from Boston Harbor, but from other coastal communities on the Gulf of Maine, as well as from the atmosphere. Knowledge of the pathways, mechanisms, and rates at which pollutants are transported throughout these coastal environments is needed to address a wide range of management questions.
HIS Design: Big Data that Supports Hydrologic Modeling from Continental to Hillslope Scales
NASA Astrophysics Data System (ADS)
Rasmussen, T. C.; Deemy, J. B.; Younger, S. E.; Kirk, S. E.; Brockman, L. E.
2016-12-01
Analogous to Google Maps, hydrologic data, information, and knowledge resolve differently depending upon the spatial and temporal scales of interest. We show how a multi-scale hydrologic information system (HIS) can be designed and populated for a broad range of spatial (e.g., hillslope, local, regional, continental) and temporal (e.g., current, recent, historic, geologic) scales. Surface and subsurface hydrologic and transport processes are assumed to be scale-dependent, requiring unique governing equations and parameters at each scale. This robust and flexible framework is designed to meet the inventory, monitoring, and management needs of multiple federal agencies (i.e., Forest Service, National Park Service, Fish and Wildlife Service, National Wildlife Reserves). Multi-scale HIS examples are provided using Geographic Information Systems (GIS) for the Southeastern US.
Widespread kelp-derived carbon in pelagic and benthic nearshore fishes
von Biela, Vanessa R.; Newsome, Seth D.; Bodkin, James L.; Kruse, Gordon H.; Zimmerman, Christian E.
2016-01-01
Kelp forests provide habitat for diverse and abundant fish assemblages, but the extent to which kelp provides a source of energy to fish and other predators is unclear. To examine the use of kelp-derived energy by fishes we estimated the contribution of kelp- and phytoplankton-derived carbon using carbon (δ13C) and nitrogen (δ15N) isotopes measured in muscle tissue. Benthic-foraging kelp greenling (Hexagrammos decagrammus) and pelagic-foraging black rockfish (Sebastes melanops) were collected at eight sites spanning ∼35 to 60°N from the California Current (upwelling) to Alaska Coastal Current (downwelling) in the northeast Pacific Ocean. Muscle δ13C values were expected to be higher for fish tissue primarily derived from kelp, a benthic macroalgae, and lower for tissue primarily derived from phytoplankton, pelagic microalgae. Muscle δ13C values were higher in benthic-feeding kelp greenling than in pelagic-feeding black rockfish at seven of eight sites, indicating more kelp-derived carbon in greenling as expected. Estimates of kelp carbon contributions ranged from 36 to 89% in kelp greenling and 32 to 65% in black rockfish using carbon isotope mixing models. Isotopic evidence suggests that these two nearshore fishes routinely derive energy from kelp and phytoplankton, across coastal upwelling and downwelling systems. Thus, the foraging mode of nearshore predators has a small influence on their ultimate energy source as energy produced by benthic macroalgae and pelagic microalgae were incorporated in fish tissue regardless of feeding mode and suggest strong and widespread benthic-pelagic coupling. Widespread kelp contributions to benthic- and pelagic-feeding fishes suggests that kelp energy provides a benefit to nearshore fishes and highlights the potential for kelp and fish production to be linked.
NASA Astrophysics Data System (ADS)
McMonagle, H.; Koslow, J. A.; Watson, W.
2016-02-01
Climate has been shown to play a major role in the dynamics of fisheries and marine ecosystems. Previous studies of relationships between physical oceanography and fish population dynamics have focused primarily on commercially important species. However, as we move towards more comprehensive, ecosystem-based management of fisheries, it is important to understand how entire assemblages of fish, including ecologically important but noncommercial taxa, are influenced by climate. We used the ichthyoplankton time series maintained by the California Cooperative Oceanic Fisheries Investigations (CalCOFI) to examine changes in over 200 fish taxa from 1969 to 2011 in the Southern California Current region. We used several indices of species richness and evenness, as well as graphical approaches, to examine potential changes in the diversity of regional fish assemblages in relation to interannual and decadal-scale climate variability. These include El Niño-La Niña events, changes in deepwater oxygen concentration and long-term ocean warming. Richness was positively correlated with deepwater oxygen concentration, consistent with the strong correlation between midwater fish abundance and oxygen. Diversity (a measurement of both richness and evenness) was positively correlated with sea surface temperature. Diversity decreased as the abundance of a diverse midwater fish assemblage declined, and it increased as a dominant assemblage of common, coldwater fish declined. This latter pattern may be due to the strong dominance of species with cold water affinities when conditions were favorable, which reduced evenness in the community. Trends in deoxygenation and warming are predicted to continue due to climate change. A better understanding of the relationships between the diversity of fish communities and climate could lead to improved indicators of ecosystem status and the ability to predict trends in fish communities related to climate change.
Occupational allergy and asthma among salt water fish processing workers.
Jeebhay, Mohamed F; Robins, Thomas G; Miller, Mary E; Bateman, Eric; Smuts, Marius; Baatjies, Roslynn; Lopata, Andreas L
2008-12-01
Fish processing is a common economic activity in Southern Africa. The aim of this study was to determine the prevalence and host determinants of allergic symptoms, allergic sensitization, bronchial hyper-responsiveness and asthma among workers processing saltwater fish. A cross-sectional study was conducted on 594 currently employed workers in two processing plants involved in pilchard canning and fishmeal processing. A modified European Community Respiratory Health Survey (ECRHS) questionnaire was used. Skin prick tests (SPT) used extracts of common airborne allergens, fresh fish (pilchard, anchovy, maasbanker, mackerel, red eye) and fishmeal. Spirometry and methacholine challenge tests (MCTs; tidal breathing method) used ATS guidelines. Work-related ocular-nasal symptoms (26%) were more common than asthma symptoms (16%). The prevalence of atopy was 36%, while 7% were sensitized to fish species and 26% had NSBH (PC(20) < or = 8 mg/ml or > or =12% increase in FEV(1) post-bronchodilator). The prevalence of probable occupational asthma was 1.8% and fish allergic rhino-conjunctivitis 2.6%. Women were more likely to report work-related asthma symptoms (OR = 1.94) and have NSBH (OR = 3.09), while men were more likely to be sensitized to fish (OR = 2.06) and have airway obstruction (OR = 4.17). Atopy (OR = 3.16) and current smoking (OR = 2.37), but not habitual seafood consumption were associated with sensitization to fish. Based on comparison with previous published studies, the prevalence of occupational asthma to salt water fish is lower than due to shellfish. The gendered distribution of work and exposures in fish processing operations together with atopy and cigarette smoking are important determinants of occupational allergy and asthma. Copyright 2008 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
von Biela, Vanessa R.; Newsome, Seth D.; Bodkin, James L.; Kruse, Gordon H.; Zimmerman, Christian E.
2016-11-01
Kelp forests provide habitat for diverse and abundant fish assemblages, but the extent to which kelp provides a source of energy to fish and other predators is unclear. To examine the use of kelp-derived energy by fishes we estimated the contribution of kelp- and phytoplankton-derived carbon using carbon (δ13C) and nitrogen (δ15N) isotopes measured in muscle tissue. Benthic-foraging kelp greenling (Hexagrammos decagrammus) and pelagic-foraging black rockfish (Sebastes melanops) were collected at eight sites spanning ∼35 to 60°N from the California Current (upwelling) to Alaska Coastal Current (downwelling) in the northeast Pacific Ocean. Muscle δ13C values were expected to be higher for fish tissue primarily derived from kelp, a benthic macroalgae, and lower for tissue primarily derived from phytoplankton, pelagic microalgae. Muscle δ13C values were higher in benthic-feeding kelp greenling than in pelagic-feeding black rockfish at seven of eight sites, indicating more kelp-derived carbon in greenling as expected. Estimates of kelp carbon contributions ranged from 36 to 89% in kelp greenling and 32 to 65% in black rockfish using carbon isotope mixing models. Isotopic evidence suggests that these two nearshore fishes routinely derive energy from kelp and phytoplankton, across coastal upwelling and downwelling systems. Thus, the foraging mode of nearshore predators has a small influence on their ultimate energy source as energy produced by benthic macroalgae and pelagic microalgae were incorporated in fish tissue regardless of feeding mode and suggest strong and widespread benthic-pelagic coupling. Widespread kelp contributions to benthic- and pelagic-feeding fishes suggests that kelp energy provides a benefit to nearshore fishes and highlights the potential for kelp and fish production to be linked.
Pen rearing and imprinting of fall Chinook salmon. Annual report 1989
Beeman, J.W.; Novotny, J.F.
1990-01-01
The goal of this project is to compare net-pen rearing methods to traditional hatchery methods of rearing upriver bright fall chinook salmon (Oncorhvnchus tshawvtscha). Fish were reared at several densities in net pens at three Columbia River backwater sites during 1984-1987, and in a barrier net at one site during 1984-1986; methods included both fed and unfed treatments. The purpose of this report is to summarize the results obtained from the unfed treatments and the current return of adults from all fed treatments and the barrier net. Zooplankton were the primary food item of unfed fish. Fish reared in net pens utilized insects colonizing the nets as an additional food source, whereas those reared in the barrier net did not. Growth and production of fish reared in the unfed treatments were low. Instantaneous growth rates of unfed fish were much lower than those of the fed treatments and hatchery controls except when zooplankton densities were high and chironomid larvae were important in the diet of unfed fish reared in pens. Only fish in the barrier net treatment resulted in consistent net gains in growth and production over the rearing periods. Adult returns of fish from all fed and unfed treatments are lower than those of control fish reared at the hatchery. Returns appear to be inversely related to rearing density. Even though adult returns are lower than those of traditional hatchery methods, a cost-benefit analysis, as return data becomes more complete, may prove these methods to be an economical means of expanding current hatchery production, particularly if "thinning" releases were used.
Possibilities of fish passage through the block ramp: Model-based estimation of permeability.
Plesiński, Karol; Bylak, Aneta; Radecki-Pawlik, Artur; Mikołajczyk, Tomasz; Kukuła, Krzysztof
2018-08-01
Block ramps offer an opportunity to combine hydrotechnical structures with fish passages. The primary study objective was to evaluate the effectiveness of a block ramp for upstream fish movement in a mountain stream. Geodetic measurements of the bottom surface and water level were taken for three cross-sections. The description of the geometric and hydrodynamic parameters of the block ramp was supplemented with information on the width and length of crevices between boulders. Measurements of the geometric and hydrodynamic parameters of the block ramp were performed at 76 measurement sites, at three different types of discharge. Ichthyological data were collected in the analyzed stream. Measurements covered among others total length, width, and height of caught fish. Salmonid, cottid, balitorid, and cyprinid fish were studied. The determination of the main effects of the geometric and hydrodynamic parameters of the block ramp on the possibilities of use by target fish species employed generalized linear models (GLMs). The study shows that the block ramp cannot provide longitudinal connectivity and migration of fish occurring in the mountain stream. According to estimates, the block ramp did not meet the permeability expectations. The reason for low usefulness of the ramp for fish is particularly excessively strong water current. The stream concentration constituted an unsurmountable velocity barrier for fish moving upstream for each of the analyzed discharges. The developed model suggests that some crevices in the side zones of the ramp could be parts of the migration corridor, but only for small and medium-sized fish. At medium and high water stages, movement of fish in crevices was difficult due to fast water current, and at low and very low discharges, some crevices lost their permeability, and could become ecological traps for fish. The necessity of estimation of ramp permeability during pre-construction phase was emphasized. Copyright © 2018 Elsevier B.V. All rights reserved.
Exploring the Hg pollution in global marginal seas by trophic biomagnification in demersal fishes
NASA Astrophysics Data System (ADS)
Tseng, C. M.; Hsieh, Y. C.; Chiang, C. Y.; Lamborg, C. H.; Chang, N. N.; Shiao, J. C.
2017-12-01
Limited knowledge still exists concerning the effects of size composition and trophic level (TL) on mercury levels in the demersal fishes associated with human activities in the marginal seas. In this study, we found evidence of strong control of TL on the Hg in fish and its biomagnification via food webs in the ECS. Total Hg in seven selected fish species, collected during the cruise OR1- 890 in July 2009, ranged from 2.6 and 256.2 ng g-1 (n=72). There were good linear relationships between Hg concentrations and fish body length (R2 = 0.79) and weight (R2 = 0.82), respectively, other than environmental variables (R2 = 0 0.03). It indicates that the Hg concentration in fish is mainly controlled by the growth mechanism of the fish itself through food chain transfer. In order to investigate how Hg levels in fish through trophic magnification associated with environmental changes, we hence developed the empirical method to calculate Hg accumulation rate (MAR) via the relationship of Hg concentration with the fish age for each fish species. The results further showed a significantly positive correlation of MAR with trophic levels, which relationship is Ln MAR =6.1 TL-15.8 (R2 = 0.89) in the ECS shelf. The magnitude of the slope (δMAR/δTL) as a biomagnification index of demersal fish shall provide the feasibility to compare Hg pollution situation among different marine ecosystems. Globally, the biomagnification indicator in the demersal fishes of the ECS is much greater than those in other marginal seas, suggesting high regional Hg pollution impacts from Mainland China.
Li, Junyi; Zhang, Hui; Lin, Danqing; Wu, Jinming; Wang, Chengyou; Xie, Xuan; Wei, Qiwei
2016-01-01
Now more and more ecologists concern about the impacts of dam construction on fish. However, studies of fishes downstream Gezhouba Dam were rarely reported except Chinese sturgeon ( Acipenser sinensis Gray). In this study, catch investigations and five hydroacoustic detections were completed from 2015 to 2016 to understand the distribution, size, and categories of fishes and their relationship with the environmental factors below Gezhouba Dam in protected reach in the Yangtze River main stream. Results showed significant differences in fish distribution and TS (target strength) between wet and flood seasons. Mean TS in five hydroacoustic detections were -59.98 dB, -54.70 dB, -56.16 dB, -57.90 dB, and -59.17 dB, respectively, and dominant fish species are Coreius guichenoti (Bleeker), Siniperca chuatsi (Basilewsky), and Pelteobagrus vachelli (Richardson). In the longitudinal direction, fish preferred to stay in some specific sections like reaches 2, 4, 7, 8, 11, and 16. Since hydrology factors change greatly in different seasons, environmental characteristics vary along the reaches, and human activities play an important role in the fish behavior, it is concluded that great cross-season changes in hydrology lead to the differences in TS and fish assemblages and that geography characteristics, especially channel geography, together with human activities influence fish longitudinal distribution. This finding provides basic knowledge of spatiotemporal distribution and assemblages of fishes in the extended reaches downstream Gezhouba Dam. In addition, it offers implications for river management. It could also serve as reference of future research on fish habitat.
Li, Junyi; Zhang, Hui; Lin, Danqing; Wu, Jinming; Wang, Chengyou; Xie, Xuan
2016-01-01
Now more and more ecologists concern about the impacts of dam construction on fish. However, studies of fishes downstream Gezhouba Dam were rarely reported except Chinese sturgeon (Acipenser sinensis Gray). In this study, catch investigations and five hydroacoustic detections were completed from 2015 to 2016 to understand the distribution, size, and categories of fishes and their relationship with the environmental factors below Gezhouba Dam in protected reach in the Yangtze River main stream. Results showed significant differences in fish distribution and TS (target strength) between wet and flood seasons. Mean TS in five hydroacoustic detections were −59.98 dB, −54.70 dB, −56.16 dB, −57.90 dB, and −59.17 dB, respectively, and dominant fish species are Coreius guichenoti (Bleeker), Siniperca chuatsi (Basilewsky), and Pelteobagrus vachelli (Richardson). In the longitudinal direction, fish preferred to stay in some specific sections like reaches 2, 4, 7, 8, 11, and 16. Since hydrology factors change greatly in different seasons, environmental characteristics vary along the reaches, and human activities play an important role in the fish behavior, it is concluded that great cross-season changes in hydrology lead to the differences in TS and fish assemblages and that geography characteristics, especially channel geography, together with human activities influence fish longitudinal distribution. This finding provides basic knowledge of spatiotemporal distribution and assemblages of fishes in the extended reaches downstream Gezhouba Dam. In addition, it offers implications for river management. It could also serve as reference of future research on fish habitat. PMID:27843943
NASA Astrophysics Data System (ADS)
Phelan, M. J.; Gribble, N. A.; Garrett, R. N.
2008-09-01
The sciaenid Protonibea diacanthus is a large, long-lived predatory fish of inshore northern Australian waters, which forms annual aggregations that are fished extensively by traditional (subsistence) and recreational fishers. There are now widespread concerns that the resource is being overexploited. Indigenous fishers of the Cape York Northern Peninsula Area (NPA) relate that large adult fish (up to 1500 mm total length (TL)) made up the bulk of the catch from the sciaenid aggregations until about 1994. In contrast, sexually mature P. diacanthus comprised only a small component (12 fish out of 270=4.4%) examined in a 1999-2000 sampling programme that was biased towards the largest individuals available. At 790 mm TL, the minimum size at first maturity for female P. diacanthus in this study is much smaller than the 920 mm TL reported previously in Queensland waters. Developing ovaries were observed in specimens sampled from sciaenid aggregations which formed in NPA waters between May and September 2000. However, no fish with ripe or spent gonads were found in the study, so the current timing and location of the spawning season for P. diacanthus in the region remain unknown. Food items observed in the analysis of the diet of P. diacanthus from the NPA included a variety of teleosts and invertebrates. The range of animal taxa represented in the prey items support the description of an 'opportunistic predator' attributed to the species. In our sampling, the stomach contents of fish caught during the time of the aggregation events did not differ from those observed at other times of the year. A total of 114 P. diacanthus were tagged and released at aggregation sites during the study period, and 3 fish (2.6%) were subsequently recaptured. The low rate of tag returns from the wild stock tagging programme, both in this study (2.6%) and from recreational fisher tag/release programmes for the sciaenid elsewhere in Queensland (6.5%), were not explained by tag loss nor mortality, given the high retention rate of tags and the zero mortality seen in tank trials. In response to the biological findings from this study, indigenous community councils of the NPA imposed a 2-year fishing moratorium for P. diacanthus. Surveys at aggregation sites in 2002 and 2003 established that much larger fish (mean size 103.5 cm TL) were again present on the grounds, albeit in very low numbers. These recent preliminary results highlight the critical need for continued monitoring and management of the P. diacanthus fishery in the NPA, if prospects for resource recovery are to be realised. The NPA initiative has provided a rare opportunity to negotiate a co-management strategy, based on scientific data and traditional knowledge, for the recovery of a cultural and economically significant fished resource.
The use of fish models to study human neurological disorders.
Matsui, Hideaki
2017-07-01
Small teleost fish including zebrafish and medaka have been used as animal models in basic science research due to the relative ease of handling and transparency during embryogenesis. Current advances in genetic engineering and progress in disease genetics allowed utilization of these fish to study neurological diseases and psychiatric disorders. This review summarizes the advantages and disadvantages of using fish for neuropsychiatric research using primarily our own studies as examples. We discuss how fish belong to a class of vertebrates, are feasible for imaging, and include diverse species with multiple research possibilities yet to be discovered. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Mahaffey, Kathryn R; Sunderland, Elsie M; Chan, Hing Man; Choi, Anna L; Grandjean, Philippe; Mariën, Koenraad; Oken, Emily; Sakamoto, Mineshi; Schoeny, Rita; Weihe, Pál; Yan, Chong-Huai; Yasutake, Akira
2011-01-01
Fish and shellfish are widely available foods that provide important nutrients, particularly n-3 polyunsaturated fatty acids (n-3 PUFAs), to many populations globally. These nutrients, especially docosahexaenoic acid, confer benefits to brain and visual system development in infants and reduce risks of certain forms of heart disease in adults. However, fish and shellfish can also be a major source of methylmercury (MeHg), a known neurotoxicant that is particularly harmful to fetal brain development. This review documents the latest knowledge on the risks and benefits of seafood consumption for perinatal development of infants. It is possible to choose fish species that are both high in n-3 PUFAs and low in MeHg. A framework for providing dietary advice for women of childbearing age on how to maximize the dietary intake of n-3 PUFAs while minimizing MeHg exposures is suggested. PMID:21884130
The weaker points of fish acute toxicity tests and how tests on embryos can solve some issues.
Wedekind, Claus; von Siebenthal, Beat; Gingold, Ruth
2007-07-01
Fish acute toxicity tests play an important role in environmental risk assessment and hazard classification because they allow for first estimates of the relative toxicity of various chemicals in various species. However, such tests need to be carefully interpreted. Here we shortly summarize the main issues which are linked to the genetics and the condition of the test animals, the standardized test situations, the uncertainty about whether a given test species can be seen as representative to a given fish fauna, the often missing knowledge about possible interaction effects, especially with micropathogens, and statistical problems like small sample sizes and, in some cases, pseudoreplication. We suggest that multi-factorial embryo tests on ecologically relevant species solve many of these issues, and we shortly explain how such tests could be done to avoid the weaker points of fish acute toxicity tests.
Lammer, E; Carr, G J; Wendler, K; Rawlings, J M; Belanger, S E; Braunbeck, Th
2009-03-01
The fish acute toxicity test is a mandatory component in the base set of data requirements for ecotoxicity testing. The fish acute toxicity test is not compatible with most current animal welfare legislation because mortality is the primary endpoint and it is often hypothesized that fish suffer distress and perhaps pain. Animal alternative considerations have also been incorporated into new European REACH regulations through strong advocacy for the reduction of testing with live animals. One of the most promising alternative approaches to classical acute fish toxicity testing with live fish is the fish embryo toxicity (FET) test. The FET has been a mandatory component in routine whole effluent testing in Germany since 2005 and has already been standardized at the international level. In order to analyze the applicability of the FET also in chemical testing, a comparative re-evaluation of both fish and fish embryo toxicity data was carried out for a total of 143 substances, and statistical approaches were developed to evaluate the correlation between fish and fish embryo toxicity data. Results confirm that fish embryo tests are neither better nor worse than acute fish toxicity tests and provide strong scientific support for the FET as a surrogate for the acute fish toxicity test.
Neuromuscular Control of Rapid Linear Accelerations in Fish
2016-06-22
2014 30-Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: Neuromuscular Control of Rapid Linear Accelerations in Fish The...it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Tufts University Research... Control of Rapid Linear Accelerations in Fish Report Title In this project, we measured muscle activity, body movements, and flow patterns during linear
Fish Pond Aquaculture in Cameroon: A Field Survey of Determinants for Farmers' Adoption Behaviour
ERIC Educational Resources Information Center
Ndah, Hycenth Tim; Knierim, Andrea; Ndambi, Oghaiki Asaah
2011-01-01
Although fish farming in Cameroon started in the late 1940s, currently the country meets only half of its domestic demand for fish. This article examines the complex issue of farmers' adoption decisions and attempts to answer why there is a lag in the diffusion process. The theory of behaviour modification and key variables of adoption form the…
Antibiotic use during the intracoelomic implantation of electronic tags into fish
Mulcahy, D.M.
2011-01-01
The use of antibiotics, in particular, the use of a single dose of antibiotics during electronic tag implantation is of unproven value, and carries with it the potential for the development of antibiotic resistance in bacteria and the alteration of the immune response of the fish. Antibiotic use during electronic tag implantation must conform to relevant drug laws and regulations in the country where work is being done, including the requirements for withdrawal times before human consumption is a possibility. Currently, the choice of antibiotics (most often tetracycline or oxytetracycline) and the use of a single dose of the drug are decisions made without knowledge of the basic need for antibiotic usage and of the bacteria involved in infections that occur following electronic tag implantation. Correct perioperative use of an antibiotic is to apply the drug to the animal before surgery begins, to assure serum and tissue levels of the drug are adequate before the incision is made. However, the most common perioperative application of antibiotics during implantation of an electronic tag is to delay the administration of the drug, injecting it into the coelom after the electronic tag is inserted, just prior to closure of the incision. There is little empirical evidence that the present application of antibiotics in fish being implanted with electronic tags is of value. Improvements should first be made to surgical techniques, especially the use of aseptic techniques and sterilized instruments and electronic tags, before resorting to antibiotics. ?? 2010 Springer Science+Business Media B.V.(outside the USA).
A critical analysis of the biological impacts of plasticizers on wildlife
Oehlmann, Jörg; Schulte-Oehlmann, Ulrike; Kloas, Werner; Jagnytsch, Oana; Lutz, Ilka; Kusk, Kresten O.; Wollenberger, Leah; Santos, Eduarda M.; Paull, Gregory C.; Van Look, Katrien J. W.; Tyler, Charles R.
2009-01-01
This review provides a critical analysis of the biological effects of the most widely used plasticizers, including dibutyl phthalate, diethylhexyl phthalate, dimethyl phthalate, butyl benzyl phthalate and bisphenol A (BPA), on wildlife, with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians. Moreover, the paper provides novel data on the biological effects of some of these plasticizers in invertebrates, fish and amphibians. Phthalates and BPA have been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations. Molluscs, crustaceans and amphibians appear to be especially sensitive to these compounds, and biological effects are observed at environmentally relevant exposures in the low ng l−1 to µg l−1 range. In contrast, most effects in fish (except for disturbance in spermatogenesis) occur at higher concentrations. Most plasticizers appear to act by interfering with the functioning of various hormone systems, but some phthalates have wider pathways of disruption. Effect concentrations of plasticizers in laboratory experiments coincide with measured environmental concentrations, and thus there is a very real potential for effects of these chemicals on some wildlife populations. The most striking gaps in our current knowledge on the impacts of plasticizers on wildlife are the lack of data for long-term exposures to environmentally relevant concentrations and their ecotoxicity when part of complex mixtures. Furthermore, the hazard of plasticizers has been investigated in annelids, molluscs and arthropods only, and given the sensitivity of some invertebrates, effects assessments are warranted in other invertebrate phyla. PMID:19528055
Kulczykowska, Ewa; Kalamarz-Kubiak, Hanna; Nietrzeba, Marta; Gozdowska, Magdalena
2015-01-01
ABSTRACT Fish may respond to different social situations with changes in both physiology and behaviour. A unique feature of fish is that social interactions between males and females strongly affect the sexual characteristics of individuals. Here we provide the first insight into the endocrine background of two phenomena that occur in mono-sex groups of the black molly (Poecilia sphenops): masculinization in females and same-sex sexual behaviour, manifested by gonopodial displays towards same-sex tank mates and copulation attempts in males. In socially controlled situations, brain neurohormones impact phenotypic sex determination and sexual behaviour. Among these hormones are the nonapeptides arginine vasotocin (AVT) and isotocin (IT), counterparts of the well-known mammalian arginine vasopressin and oxytocin, respectively. To reveal potential hormone interactions, we measured the concentrations of bioactive AVT and IT in the brain, along with those of the sex steroids 17β-estradiol and 11-ketotestosterone in the gonads, of females, masculinized females, males displaying same-sex sexual behaviour and those who did not. These data were supplemented by morphological and histological analyses of the gonads. Correlations between brain nonapeptides and gonadal steroids strongly suggest a cross talk between hormonal systems. In the black molly, the masculinization process was associated with the production of brain AVT and gonadal steroids, whereas same-sex sexual behaviour involves both brain nonapeptides, but neither of the sex steroids. This study extends current knowledge of endocrine control of phenotypic sex and sexual behaviour in fish and for the first time links brain nonapeptides with the occurrence of male-male sexual behaviour in lower vertebrates. PMID:25527645
Ruiz-López, Noemi; Sayanova, Olga; Napier, Johnathan A; Haslam, Richard P
2012-04-01
Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.
Common sole larvae survive high levels of pile-driving sound in controlled exposure experiments.
Bolle, Loes J; de Jong, Christ A F; Bierman, Stijn M; van Beek, Pieter J G; van Keeken, Olvin A; Wessels, Peter W; van Damme, Cindy J G; Winter, Hendrik V; de Haan, Dick; Dekeling, René P A
2012-01-01
In view of the rapid extension of offshore wind farms, there is an urgent need to improve our knowledge on possible adverse effects of underwater sound generated by pile-driving. Mortality and injuries have been observed in fish exposed to loud impulse sounds, but knowledge on the sound levels at which (sub-)lethal effects occur is limited for juvenile and adult fish, and virtually non-existent for fish eggs and larvae. A device was developed in which fish larvae can be exposed to underwater sound. It consists of a rigid-walled cylindrical chamber driven by an electro-dynamical sound projector. Samples of up to 100 larvae can be exposed simultaneously to a homogeneously distributed sound pressure and particle velocity field. Recorded pile-driving sounds could be reproduced accurately in the frequency range between 50 and 1000 Hz, at zero to peak pressure levels up to 210 dB re 1µPa(2) (zero to peak pressures up to 32 kPa) and single pulse sound exposure levels up to 186 dB re 1µPa(2)s. The device was used to examine lethal effects of sound exposure in common sole (Solea solea) larvae. Different developmental stages were exposed to various levels and durations of pile-driving sound. The highest cumulative sound exposure level applied was 206 dB re 1µPa(2)s, which corresponds to 100 strikes at a distance of 100 m from a typical North Sea pile-driving site. The results showed no statistically significant differences in mortality between exposure and control groups at sound exposure levels which were well above the US interim criteria for non-auditory tissue damage in fish. Although our findings cannot be extrapolated to fish larvae in general, as interspecific differences in vulnerability to sound exposure may occur, they do indicate that previous assumptions and criteria may need to be revised.
Common Sole Larvae Survive High Levels of Pile-Driving Sound in Controlled Exposure Experiments
Bolle, Loes J.; de Jong, Christ A. F.; Bierman, Stijn M.; van Beek, Pieter J. G.; van Keeken, Olvin A.; Wessels, Peter W.; van Damme, Cindy J. G.; Winter, Hendrik V.; de Haan, Dick; Dekeling, René P. A.
2012-01-01
In view of the rapid extension of offshore wind farms, there is an urgent need to improve our knowledge on possible adverse effects of underwater sound generated by pile-driving. Mortality and injuries have been observed in fish exposed to loud impulse sounds, but knowledge on the sound levels at which (sub-)lethal effects occur is limited for juvenile and adult fish, and virtually non-existent for fish eggs and larvae. A device was developed in which fish larvae can be exposed to underwater sound. It consists of a rigid-walled cylindrical chamber driven by an electro-dynamical sound projector. Samples of up to 100 larvae can be exposed simultaneously to a homogeneously distributed sound pressure and particle velocity field. Recorded pile-driving sounds could be reproduced accurately in the frequency range between 50 and 1000 Hz, at zero to peak pressure levels up to 210 dB re 1µPa2 (zero to peak pressures up to 32 kPa) and single pulse sound exposure levels up to 186 dB re 1µPa2s. The device was used to examine lethal effects of sound exposure in common sole (Solea solea) larvae. Different developmental stages were exposed to various levels and durations of pile-driving sound. The highest cumulative sound exposure level applied was 206 dB re 1µPa2s, which corresponds to 100 strikes at a distance of 100 m from a typical North Sea pile-driving site. The results showed no statistically significant differences in mortality between exposure and control groups at sound exposure levels which were well above the US interim criteria for non-auditory tissue damage in fish. Although our findings cannot be extrapolated to fish larvae in general, as interspecific differences in vulnerability to sound exposure may occur, they do indicate that previous assumptions and criteria may need to be revised. PMID:22431996
Arphorn, Sara; Jiraniratisai, Sopaphan; Rungtakul, Rungsri; Phutta, Nikom
2011-12-01
The Thai Health Promotion Foundation supported the Improvement of Quality of Life of Informal Workers project in Ban Luang District, Amphur Photaram, Ratchaburi Province. There were many informal workers in Ban Luang District. Sweet-crispy fish producers in Ban Luang were the largest group among the sweet-crispy fish producers in Thailand. This project was aimed at improving living and working conditions of informal workers, with a focus on the sweet-crispy fish group. Good practices of improved living and working conditions were used to help informal workers build safe, healthy and productive work environments. These informal workers often worked in substandard conditions and were exposed to various hazards in the working area. These hazards included risk of exposure to hot work environment, ergonomics-related injuries, chemical hazards, electrical hazards etc. Ergonomics problems were commonly in the sweet-crispy fish group. Unnatural postures such as prolonged sitting were performed dominantly. One hundred and fifty informal workers participated in this project. Occupational health volunteers were selected to encourage occupational health and safety in four groups of informal workers in 2009. The occupational health volunteers trained in 2008 were farmers, beauty salon workers and doll makers. The occupational health and safety knowledge is extended to a new informal worker group: sweet-crispy fish producer, in 2009. The occupational health and safety training for sweet-crispy fish group is conducted by occupational health volunteers. The occupational health volunteers increased their skills and knowledge assist in to make safe home and safe community through participatory oriented training. The improvement of living and working condition is conducted by using a modified WISH, Work Improvement for Safe Home, checklist. The plans of improvement were recorded. The informal workers showed improvement mostly on material handling and storage. The safe uses and safe storage of chemicals were introduced among farmers. The awareness of healthcare using personal protective equipments is increased in all groups especially in farmers. Safe home by local occupational health volunteer is proposed to be one effective measure for improvement of quality of life.
Svanevik, Cecilie Smith; Roiha, Irja Sunde; Levsen, Arne; Lunestad, Bjørn Tore
2015-10-01
Microbes play an important role in the degradation of fish products, thus better knowledge of the microbiological conditions throughout the fish production chain may help to optimise product quality and resource utilisation. This paper presents the results of a ten-year spot sampling programme (2005-2014) of the commercially most important pelagic fish species harvested in Norway. Fish-, surface-, and storage water samples were collected from fishing vessels and processing factories. Totally 1,181 samples were assessed with respect to microbiological quality, hygiene and food safety. We introduce a quality and safety assessment scheme for fresh pelagic fish recommending limits for heterotrophic plate counts (HPC), thermos tolerant coliforms, enterococci and Listeria monocytogenes. According to the scheme, in 25 of 41 samplings, sub-optimal conditions were found with respect to quality, whereas in 21 and 9 samplings, samples were not in compliance concerning hygiene and food safety, respectively. The present study has revealed that the quality of pelagic fish can be optimised by improving the hygiene conditions at some critical points at an early phase of the production chain. Thus, the proposed assessment scheme may provide a useful tool for the industry to optimise quality and maintain consumer safety of pelagic fishery products. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Caveen, Alex J; Fitzsimmons, Clare; Pieraccini, Margherita; Dunn, Euan; Sweeting, Christopher J; Johnson, Magnus L; Bloomfield, Helen; Jones, Estelle V; Lightfoot, Paula; Gray, Tim S; Stead, Selina M; Polunin, Nicholas V C
2014-01-01
The North Sea is one of the most economically important seas in the world due to productive fisheries, extensive oil and gas fields, busy shipping routes, marine renewable energy development and recreational activity. Unsurprisingly, therefore, the use of marine protected areas (here defined widely to include fisheries closed areas and no-take marine reserves) in its management has generated considerable controversy-particularly with regards to the design of a regional ecologically coherent MPA network to meet international obligations. Drawing on three MPA processes currently occurring in the UK North Sea, we examine the real-world problems that make the designation of MPA networks challenging. The political problems include: disagreement among (and within) sectors over policy objectives and priorities, common access to fisheries resources at the EU level increasing the scale at which decisions have to be made and lack of an integrated strategy for implementing protected areas in the North Sea. The scientific problems include the patchy knowledge of benthic assemblages, limited knowledge of fishing gear-habitat interactions, and the increased risk of unforeseen externalities if human activity (predominantly fishing) is displaced from newly protected sites. Diverging stakeholder attitudes to these problems means that there is no consensus on what ecological coherence actually means. Ultimately, we caution against 'quick-fix' solutions that are based on advocacy and targets, as they create confusion and undermine trust in the planning process. We argue for a more pragmatic approach to marine protection that embraces the complexity of the social and political arena in which decisions are made.
77 FR 21084 - Endangered and Threatened Species; Take of Anadromous Fish
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... under the Endangered Species Act (ESA). The proposed research program is intended to increase knowledge of the species and to help guide management and conservation efforts. The applications and related...
Ecotoxicology of mercury in fish and wildlife: Recent advances
Scheuhammer, Anton M.; Basu, Niladri; Evers, David C.; Heinz, Gary H.; Sandheinrich, Mark B.; Bank, Michael S.; edited by Bank, Michael S.; Bank, Michael S.
2012-01-01
A number of recent studies have documented subtle, yet potentially important effects of mercury on behavior, neurochemistry, and endocrine function in fish and wildlife at currently realistic levels of environmental exposure. Current levels of environmental methylmercury exposure are sufficient to cause significant biological impairment, both in individuals and in whole populations, in some ecosystems. Future toxicological studies on fish and wildlife will focus on linking biomarkers of methylmercury exposure and associated oxidative stress to effects on reproduction and population change; determining the genetic basis for mercury-related neurotoxic and other biological changes; determining the genetic basis for species differences in sensitivity to methylmercury; and linking toxic effects of methylmercury in individual animals to population-level changes.
The distribution and abundance of reef-associated predatory fishes on the Great Barrier Reef
NASA Astrophysics Data System (ADS)
Emslie, Michael J.; Cheal, Alistair J.; Logan, Murray
2017-09-01
Predatory fishes are important components of coral-reef ecosystems of the Great Barrier Reef (GBR) through both the ecological functions they perform and their high value to recreational and commercial fisheries, estimated at 30 million in 2014. However, management of GBR predatory fish populations is hampered by a lack of knowledge of their distribution and abundance, aside from that of the highly targeted coral trout ( Plectropomus spp. and Variola spp.). Furthermore, there is little information on how these fishes respond to environmental stressors such as coral bleaching, outbreaks of coral-feeding starfishes ( Acanthaster planci) and storms, which limits adaptive management of their populations as the frequency or severity of such natural disturbances increases under climate change. Here, we document the distribution and abundance of 48 species of reef-associated predatory fishes and assess their vulnerability to a range of natural disturbances. There were clear differences in predatory fish assemblages across the continental shelf, but many species were widespread, with few species restricted to either inshore or offshore waters. There was weak latitudinal structure with only a few species restricted to either the northern or southern GBR. On the whole, predatory fishes were surprisingly resistant to the effects of disturbance, with few clear changes in abundance or species richness following 66 documented disturbances of varying magnitudes.