Klüver, Nils; König, Maria; Ortmann, Julia; Massei, Riccardo; Paschke, Albrecht; Kühne, Ralph; Scholz, Stefan
2015-06-02
The fish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, but concerns have been raised for its predictivity given that a few compounds have been shown to exhibit a weak acute toxicity in the fish embryo. In order to better define the applicability domain and improve the predictive capacity of the fish embryo test, we performed a systematic analysis of existing fish embryo and acute fish toxicity data. A correlation analysis of a total of 153 compounds identified 28 compounds with a weaker or no toxicity in the fish embryo test. Eleven of these compounds exhibited a neurotoxic mode of action. We selected a subset of eight compounds with weaker or no embryo toxicity (cyanazine, picloram, aldicarb, azinphos-methyl, dieldrin, diquat dibromide, endosulfan, and esfenvalerate) to study toxicokinetics and a neurotoxic mode of action as potential reasons for the deviating fish embryo toxicity. Published fish embryo LC50 values were confirmed by experimental analysis of zebrafish embryo LC50 according to OECD guideline 236. Except for diquat dibromide, internal concentration analysis did not indicate a potential relation of the low sensitivity of fish embryos to a limited uptake of the compounds. Analysis of locomotor activity of diquat dibromide and the neurotoxic compounds in 98 hpf embryos (exposed for 96 h) indicated a specific effect on behavior (embryonic movement) for the neurotoxic compounds. The EC50s of behavior for neurotoxic compounds were close to the acute fish toxicity LC50. Our data provided the first evidence that the applicability domain of the fish embryo test (LC50s determination) may exclude neurotoxic compounds. However, neurotoxic compounds could be identified by changes in embryonic locomotion. Although a quantitative prediction of acute fish toxicity LC50 using behavioral assays in fish embryos may not yet be possible, the identification of neurotoxicity could trigger the conduction of a conventional fish acute toxicity test or application of assessment factors while considering the very good fish embryo-acute fish toxicity correlation for other compounds.
Evaluating the zebrafish embryo toxicity test for pesticide hazard screening.
Glaberman, Scott; Padilla, Stephanie; Barron, Mace G
2017-05-01
Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more resource-intensive, juvenile fish acute toxicity tests. However, there is also evidence that fish embryos are less sensitive than juvenile fish for certain types of chemicals, including neurotoxicants. The utility of fish embryos for pesticide hazard assessment was investigated by comparing published zebrafish embryo toxicity data from pesticides with median lethal concentration 50% (LC50) data for juveniles of 3 commonly tested fish species: rainbow trout, bluegill sunfish, and sheepshead minnow. A poor, albeit significant, relationship (r 2 = 0.28; p < 0.05) was found between zebrafish embryo and juvenile fish toxicity when pesticides were considered as a single group, but a much better relationship (r 2 = 0.64; p < 0.05) when pesticide mode of action was factored into an analysis of covariance. This discrepancy is partly explained by the large number of neurotoxic pesticides in the dataset, supporting previous findings that commonly used fish embryo toxicity test endpoints are particularly insensitive to neurotoxicants. These results indicate that it is still premature to replace juvenile fish toxicity tests with embryo-based tests such as the Organisation for Economic Co-operation and Development Fish Embryo Acute Toxicity Test for routine pesticide hazard assessment, although embryo testing could be used with other screening tools for testing prioritization. Environ Toxicol Chem 2017;36:1221-1226. © 2016 SETAC. © 2016 SETAC.
Lammer, E; Carr, G J; Wendler, K; Rawlings, J M; Belanger, S E; Braunbeck, Th
2009-03-01
The fish acute toxicity test is a mandatory component in the base set of data requirements for ecotoxicity testing. The fish acute toxicity test is not compatible with most current animal welfare legislation because mortality is the primary endpoint and it is often hypothesized that fish suffer distress and perhaps pain. Animal alternative considerations have also been incorporated into new European REACH regulations through strong advocacy for the reduction of testing with live animals. One of the most promising alternative approaches to classical acute fish toxicity testing with live fish is the fish embryo toxicity (FET) test. The FET has been a mandatory component in routine whole effluent testing in Germany since 2005 and has already been standardized at the international level. In order to analyze the applicability of the FET also in chemical testing, a comparative re-evaluation of both fish and fish embryo toxicity data was carried out for a total of 143 substances, and statistical approaches were developed to evaluate the correlation between fish and fish embryo toxicity data. Results confirm that fish embryo tests are neither better nor worse than acute fish toxicity tests and provide strong scientific support for the FET as a surrogate for the acute fish toxicity test.
Evaluating the Zebrafish Embryo Toxicity Test for Pesticide ...
Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more resource-intensive, juvenile fish acute toxicity tests. However, there is also evidence that fish embryos are less sensitive than juvenile fish for certain types of chemicals, including neurotoxicants. The utility of fish embryos for pesticide hazard assessment was investigated by comparing published zebrafish embryo toxicity data from pesticides with median lethal concentration 50% (LC50) data for juveniles of 3 commonly tested fish species: rainbow trout, bluegill sunfish, and sheepshead minnow. A poor, albeit significant, relationship (r2 = 0.28; p < 0.05) was found between zebrafish embryo and juvenile fish toxicity when pesticides were considered as a single group, but a much better relationship (r2 = 0.64; p < 0.05) when pesticide mode of action was factored into an analysis of covariance. This discrepancy is partly explained by the large number of neurotoxic pesticides in the dataset, supporting previous findings that commonly used fish embryo toxicity test endpoints are particularly insensitive to neurotoxicants. These results indicate that it is still premature to replace juvenile fish toxicity tests with embryo-based tests such as the Organisation for Economic Co-op
Braunbeck, Thomas; Boettcher, Melanie; Hollert, Henner; Kosmehl, Thomas; Lammer, Eva; Leist, Erik; Rudolf, Mark; Seitz, Nadja
2005-01-01
After its standardisation at the national level in Germany (DIN 38415-6, 2001, 2001), the 48 h sewage testing assay with zebrafish (Danio rerio) embryos has been submitted for standardisation to ISO. As an alternative to the conventional acute (96 h) fish test, a modified fish embryo test will be submitted to the OECD for chemical testing in late 2005. For this, a protocol originally designed for zebrafish was adapted to fit also the requirements of other OECD species, namely medaka (Oryzias latipes) and fathead minnow (Pimephales promelas). Results document that the transfer of the protocol is possible with only minor modifications. Data obtained from embryo tests with the three species are comparable. Statistical analysis of existing zebrafish embryo toxicity data resulted in the conclusions (1) that there is a reliable correlation between the fish embryo test and the acute fish test, (2) that the confidence belt of the regression line was relatively small, but that the prediction range was relatively wide. The regression thus seems appropriate to describe the relationship between acute fish and embryo LC(50) with good confidence, but is less appropriate as a prediction model. Investigations into oxygen requirements of zebrafish embryos reveal that they adapt to a broad range of oxygen levels and survive at concentrations of 2 mg/l without malformations. Zebrafish embryos can thus be exposed in very small toxicant volumes (100 microl), which is of particular interest for the testing of metabolites. Dechorionation studies with 48 h old zebrafish embryos indicate that the barrier function of the chorion increases with the lipophilicity of the test compound. Finally, examples are given as to how additional endpoints can be incorporated into the fish embryo test protocol to extend its scope, e.g. to sediment toxicity assessment or genotoxicity and mutagenicity testing.
PGS-FISH in reproductive medicine and perspective directions for improvement: a systematic review.
Zamora, Sandra; Clavero, Ana; Gonzalvo, M Carmen; de Dios Luna Del Castillo, Juan; Roldán-Nofuentes, Jose Antonio; Mozas, Juan; Castilla, Jose Antonio
2011-08-01
Embryo selection can be carried out via morphological criteria or by using genetic studies based on Preimplantation Genetic Screening. In the present study, we evaluate the clinical validity of Preimplantation Genetic Screening with fluorescence in situ hybridization (PGS-FISH) compared with morphological embryo criteria. A systematic review was made of the bibliography, with the following goals: firstly, to determine the prevalence of embryo chromosome alteration in clinical situations in which the PGS-FISH technique has been used; secondly, to calculate the statistics of diagnostic efficiency (negative Likelihood Ratio), using 2 × 2 tables, derived from PGS-FISH. The results obtained were compared with those obtained from embryo morphology. We calculated the probability of transferring at least one chromosome-normal embryo when it was selected using either morphological criteria or PGS-FISH, and considered what diagnostic performance should be expected of an embryo selection test with respect to achieving greater clinical validity than that obtained from embryo morphology. After an embryo morphology selection that produced a negative result (normal morphology), the likelihood of embryo aneuploidies was found to range from a pre-test value of 65% (prevalence of embryo chromosome alteration registered in all the study groups) to a post-test value of 55% (Confidence interval: 50-61), while after PGS-FISH with a negative result (euploid), the post-test probability was 42% (Confidence interval: 35-49) (p < 0.05). The probability of transferring at least one euploid embryo was the same whether 3 embryos were selected according to morphological criteria or whether 2, selected by PGS-FISH, were transferred. Any embryo selection test, if it is to provide greater clinical validity than embryo morphology, must present a LR-value of 0.40 (Confidence interval: 0.32-0.51) in single embryo transfer, and 0.06 (CI: 0.05-0.07) in double embryo transfer. With currently available technology, and taking into account the number of embryos to be transferred, the clinical validity of PGS-FISH, although superior to that of morphological criteria, does not appear to be clinically relevant.
Scholz, Stefan; Ortmann, Julia; Klüver, Nils; Léonard, Marc
2014-08-01
Distribution and marketing of chemicals require appropriate labelling of health, physical and environmental hazards according to the United Nations global harmonisation system (GHS). Labelling for (human) acute toxicity categories is based on experimental findings usually obtained by oral, dermal or inhalative exposure of rodents. There is a strong societal demand for replacing animal experiments conducted for safety assessment of chemicals. Fish embryos are considered as alternative to animal testing and are proposed as predictive model both for environmental and human health effects. Therefore, we tested whether LC50s of the fish embryo acute toxicity test would allow effectively predicting of acute mammalian toxicity categories. A database of published fish embryo LC50 containing 641 compounds was established. For these compounds corresponding rat oral LD50 were identified resulting in 364 compounds for which both fish embryo LC50 and rat LD50 was available. Only a weak correlation of fish embryo LC50 and rat oral LD50 was obtained. Fish embryos were also not able to effectively predict GHS oral acute toxicity categories. We concluded that due to fundamental exposure protocol differences (single oral dose versus water-borne exposure) a reverse dosimetry approach is needed to explore the predictive capacity of fish embryos. Copyright © 2014 Elsevier Inc. All rights reserved.
The Zebrafish Embryo Test (ZFET) for acute fish toxicity is a well developed method nearing adoption as an OECD Test Guideline. Early drafts of the test guideline (TG) envisioned a suite of potential test species to be covered including zebrafish, fathead minnow, Japanese Medaka...
Embry, Michelle R; Belanger, Scott E; Braunbeck, Thomas A; Galay-Burgos, Malyka; Halder, Marlies; Hinton, David E; Léonard, Marc A; Lillicrap, Adam; Norberg-King, Teresa; Whale, Graham
2010-04-15
Animal alternatives research has historically focused on human safety assessments and has only recently been extended to environmental testing. This is particularly for those assays that involve the use of fish. A number of alternatives are being pursued by the scientific community including the fish embryo toxicity (FET) test, a proposed replacement alternative to the acute fish test. Discussion of the FET methodology and its application in environmental assessments on a global level was needed. With this emerging issue in mind, the ILSI Health and Environmental Sciences Institute (HESI) and the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) held an International Workshop on the Application of the Fish Embryo Test as an Animal Alternative Method in Hazard and Risk Assessment and Scientific Research in March, 2008. The workshop included approximately 40 scientists and regulators representing government, industry, academia, and non-governmental organizations from North America, Europe, and Asia. The goal was to review the state of the science regarding the investigation of fish embryonic tests, pain and distress in fish, emerging approaches utilizing fish embryos, and the use of fish embryo toxicity test data in various types of environmental assessments (e.g., hazard, risk, effluent, and classification and labeling of chemicals). Some specific key outcomes included agreement that risk assessors need fish data for decision-making, that extending the FET to include eluethereombryos was desirable, that relevant endpoints are being used, and that additional endpoints could facilitate additional uses beyond acute toxicity testing. The FET was, however, not yet considered validated sensu OECD. An important action step will be to provide guidance on how all fish tests can be used to assess chemical hazard and to harmonize the diverse terminology used in test guidelines adopted over the past decades. Use of the FET in context of effluent assessments was considered and it is not known if fish embryos are sufficiently sensitive for consideration as a surrogate to the sub-chronic 7-day larval fish growth and survival test used in the United States, for example. Addressing these needs by via workshops, research, and additional data reviews were identified for future action by scientists and regulators.
Vaughan, Martin; van Egmond, Roger
2010-06-01
At present, the acute toxicity of chemicals to fish is most commonly estimated by means of a short-term test on juvenile or adult animals (OECD TG 203). Although, over the last few years, the numbers used have been reduced due to the implementation of the Three Rs (Reduction, Refinement and Replacement), significant numbers of fish are still used in acute toxicity tests. With the introduction of the new European Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) system, this number is likely to increase dramatically. The aim of this work was to test the acute toxicity of a number of anionic, cationic and non-ionic surfactants to embryos of the zebrafish (Danio rerio), over 48 hours, as a possible alternative to the standard 96-hour fish acute test. We measured the toxicities of 15 surfactants, and compared the results to previously generated adult D. rerio LC50 data (or other fish species, if these data were not available). Comparison of the LC50 data showed that embryos appear to be as sensitive to cationic and non-ionic surfactants as the adult fish, but possibly are more sensitive to anionic surfactants. Toxicity testing with the embryo test can be carried out more quickly than with the adult test, uses much less space and media, requires less effort, and therefore can be performed at a reduced cost. The embryo test may also uncover additional sub-lethal effects, although these were not observed for surfactants. The data presented here show that the 48-hour embryo test can be considered as a suitable alternative to the adult acute fish test for surfactants.
Schreiber, Benjamin; Fischer, Jonas; Schiwy, Sabrina; Hollert, Henner; Schulz, Ralf
2018-04-01
The effects of sediment contamination on fish are of high significance for the protection of ecosystems, human health and economy. However, standardized sediment bioassays with benthic fish species, that mimic bioavailability of potentially toxic compounds and comply with the requirements of alternative test methods, are still scarce. In order to address this issue, embryos of the benthic European weatherfish (Misgurnus fossilis) were exposed to freeze-dried sediment (via sediment contact assays (SCA)) and sediment extracts (via acute fish embryo toxicity tests) varying in contamination level. The extracts were gained by accelerated solvent extraction with (i) acetone and (ii) pressurized hot water (PHWE) and subsequently analyzed for polycyclic aromatic hydrocarbons, polychlorinated biphenyls and polychlorinated dibenzodioxins and dibenzofurans. Furthermore, embryos of the predominately used zebrafish (Danio rerio) were exposed to extracts from the two most contaminated sediments. Results indicated sufficient robustness of weatherfish embryos towards varying test conditions and sensitivity towards relevant sediment-bound compounds. Furthermore, a compliance of effect concentrations derived from weatherfish embryos exposed to sediment extracts (96h-LC 50 ) with both measured gradient of sediment contamination and previously published results was observed. In comparison to zebrafish, weatherfish embryos showed higher sensitivity to the bioavailability-mimicking extracts from PHWE but lower sensitivity to extracts gained with acetone. SCAs conducted with weatherfish embryos revealed practical difficulties that prevented an implementation with three of four sediments tested. In summary, an application of weatherfish embryos, using bioassays with sediment extracts from PHWE might increase the ecological relevance of sediment toxicity testing: it allows investigations using benthic and temperate fish species considering both bioavailable contaminants and animal welfare concerns. Copyright © 2017 Elsevier B.V. All rights reserved.
Henn, Kirsten; Braunbeck, Thomas
2011-01-01
Prior to hatching, the zebrafish embryo is surrounded by an acellular envelope, the chorion. Despite repeated speculations, it could not be clarified unequivocally whether the chorion represents an effective barrier and, thus, protects the embryo from exposure to distinct chemicals. Potentially, there is a risk of generating false negative results in developmental toxicity studies due to limited permeability of the chorion for some compounds. The simplest way to exclude this is to remove the chorion and expose the "naked" embryo. In the context of ecotoxicity testing, standardized protocols do not exist for fish embryo dechorionation, and survival rates of dechorionated embryos have usually not been subjected to statistical analysis. Since reproducibly high survival rates are of fundamental importance for chemical toxicity assessment, the present study was designed to develop and optimize a dechorionation procedure. With appropriate modifications of the fish embryo test protocol, embryos can be dechorionated at 24h post-fertilization (hpf) with survival rates of ≥90%. However, for fish embryo tests with dechorionated embryos, the standard positive control test substance, 3,4-dichloroaniline, should be replaced by another compound, e.g., acetone, since 3,4-dichloroaniline exerts its effects during the first 24h of development. Dechorionation of younger stages (<24 hpf) is generally possible, however with lower survival rates. The effect of dechorionation was demonstrated with the cationic polymer Luviquat HM 552, which is blocked by the chorion non-dechorionated embryos due to its molecular weight of ~400,000 Dalton, but becomes strongly toxic after dechorionation. Copyright © 2010 Elsevier Inc. All rights reserved.
Schiller, Viktoria; Wichmann, Arne; Kriehuber, Ralf; Muth-Köhne, Elke; Giesy, John P; Hecker, Markus; Fenske, Martina
2013-01-01
Assessment of endocrine disruption currently relies on testing strategies involving adult vertebrates. In order to minimize the use of animal tests according to the 3Rs principle of replacement, reduction and refinement, we propose a transcriptomics and fish embryo based approach as an alternative to identify and analyze an estrogenic activity of environmental chemicals. For this purpose, the suitability of 48 h and 7 days post-fertilization zebrafish and medaka embryos to test for estrogenic disruption was evaluated. The embryos were exposed to the phytoestrogen genistein and subsequently analyzed by microarrays and quantitative real-time PCR. The functional analysis showed that the genes affected related to multiple metabolic and signaling pathways in the early fish embryo, which reflect the known components of genistein's mode of actions, like apoptosis, estrogenic response, hox gene expression and steroid hormone synthesis. Moreover, the transcriptomic data also suggested a thyroidal mode of action and disruption of the nervous system development. The parallel testing of two fish species provided complementary data on the effects of genistein at gene expression level and facilitated the separation of common from species-dependent effects. Overall, the study demonstrated that combining fish embryo testing with transcriptomics can deliver abundant information about the mechanistic effects of endocrine disrupting chemicals, rendering this strategy a promising alternative approach to test for endocrine disruption in a whole organism in-vitro scale system. Copyright © 2012 Elsevier Inc. All rights reserved.
Knöbel, Melanie; Busser, Frans J M; Rico-Rico, Angeles; Kramer, Nynke I; Hermens, Joop L M; Hafner, Christoph; Tanneberger, Katrin; Schirmer, Kristin; Scholz, Stefan
2012-09-04
The zebrafish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, which is required by various regulations for environmental risk assessment of chemicals. We investigated the reliability of the embryo test by probing organic industrial chemicals with a wide range of physicochemical properties, toxicities, and modes of toxic action. Moreover, the relevance of using measured versus nominal (intended) exposure concentrations, inclusion of sublethal endpoints, and different exposure durations for the comparability with reported fish acute toxicity was explored. Our results confirm a very strong correlation of zebrafish embryo to fish acute toxicity. When toxicity values were calculated based on measured exposure concentrations, the slope of the type II regression line was 1 and nearly passed through the origin (1 to 1 correlation). Measured concentrations also explained several apparent outliers. Neither prolonged exposure (up to 120 h) nor consideration of sublethal effects led to a reduced number of outliers. Yet, two types of compounds were less lethal to embryos than to adult fish: a neurotoxic compound acting via sodium channels (permethrin) and a compound requiring metabolic activation (allyl alcohol).
Stieglitz, John D; Mager, Edward M; Hoenig, Ronald H; Alloy, Matthew; Esbaugh, Andrew J; Bodinier, Charlotte; Benetti, Daniel D; Roberts, Aaron P; Grosell, Martin
2016-11-01
Key differences in the developmental process of pelagic fish embryos, in comparison to embryos of standard test fish species, present challenges to obtaining sufficient control survival needed to successfully perform traditional toxicity testing bioassays. Many of these challenges relate to the change in buoyancy, from positive to negative, of pelagic fish embryos that occurs just prior to hatch. A novel exposure system, the pelagic embryo-larval exposure chamber (PELEC), has been developed to conduct successful bioassays on the early life stages (ELSs; embryos/larvae) of pelagic fish. Using this unique recirculating upwelling system, it was possible to significantly improve control survival in pelagic fish ELS bioassays compared to commonly used static exposure methods. Results demonstrate that control performance of mahi-mahi (Coryphaena hippurus) embryos in the PELEC system, measured as percent survival after 96-hrs, significantly outperformed agitated static exposure and static exposure systems. Similar significant improvements in 72-hr control survival were obtained with yellowfin tuna (Thunnus albacares). The PELEC system was subsequently used to test the effects of photo-induced toxicity of crude oil to mahi-mahi ELSs over the course of 96-hrs. Results indicate a greater than 9-fold increase in toxicity of Deepwater Horizon (DWH) crude oil during co-exposure to ambient sunlight compared to filtered ambient sunlight, revealing the importance of including natural sunlight in 96-hr DWH crude oil bioassays as well as the PELEC system's potential application in ecotoxicological assessments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fish embryo toxicity of carbamazepine, diclofenac and metoprolol.
van den Brandhof, Evert-Jan; Montforts, Mark
2010-11-01
Frequently measured pharmaceuticals in environmental samples were tested in fish embryo toxicity (FET) tests with Danio rerio, based on the draft OECD test protocol. In this FET test 2-h-old zebrafish embryos were exposed for 72 h to carbamazepine, diclofenac and metoprolol to observe effects on embryo mortality, gastrulation, somite formation, tail movement and detachment, pigmentation, heartbeat, malformation of head, otoliths and heart, scoliosis, deformity of yolk, and hatching success at 24, 48 and 72 h. We found specific effects on growth retardation above 30.6 mg/l for carbamazepine, on hatching, yolk sac and tail deformation above 1.5mg/l for diclofenac, and on scoliosis and growth retardation above 12.6 mg/l for metoprolol. Scoring all effect parameters, the 72-h-EC(50) values were: for carbamazepine 86.5mg/l, for diclofenac 5.3mg/l and for metoprolol 31.0mg/l (mean measured concentrations). In conclusion, our results for carbamazepine and metoprolol are in agreement with other findings for aquatic toxicity, and also fish embryos responded in much the same way as rat embryos did. For diclofenac, the FET test performs comparably to Early Life Stage testing. Copyright © 2010 Elsevier Inc. All rights reserved.
Lammer, E; Kamp, H G; Hisgen, V; Koch, M; Reinhard, D; Salinas, E R; Wendler, K; Zok, S; Braunbeck, Th
2009-10-01
The acute fish test is still a mandatory component in chemical hazard and risk assessment. However, one of the objectives of the new European chemicals policy (REACH - Registration, Evaluation, Authorization and Restriction of Chemicals) is to promote non-animal testing. For whole effluent testing in Germany, the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) has been an accepted and mandatory replacement of the fish test since January 2005. For chemical testing, however, further optimization of the FET is required to improve the correlation between the acute fish test and the alternative FET. Since adsorption of the test chemical to surfaces may reduce available exposure concentrations, a flow-through system for the FET using modified commercially available polystyrene 24-well microtiter plates was developed, thus combining the advantages of the standard FET with those of continuous delivery of test substances. The advantages of the design presented include: small test footprint, availability of adequate volumes of test solution for subsequent chemical analysis, and sufficient flow to compensate for effects of non-specific adsorption within 24h. The flow-through test system can also be utilized to conduct longer-term embryo larval fish tests, thus offering the possibility for teratogenicity testing.
Nguyen, L T H; Janssen, C R
2002-02-01
Embryo-larval toxicity tests with the African catfish (Clarias gariepinus) were performed to assess the comparative sensitivity of different endpoints. Measured test responses included embryo and larval survival, hatching, morphological development, and larval growth. Chromium, cadmium, copper, sodium pentachlorphenol (NaPCP), and malathion were used as model toxicants. Hatching was not affected by any of the chemicals tested, and embryo survival was only affected by chromium at > or = 36 mg/L. The growth of larvae was significantly reduced at > or = 11 mg/L Cr, > or = 0.63 mg/L Cu, > or = 0.03 mg/L NaPCP, and > or = 1.25 mg/L malathion. Morphological development of C. gariepinus was affected by all of the toxicants tested. Different types of morphological aberrations were observed, i.e., reduction of pigmentation in fish exposed to cadmium and copper, yolk sac edema in fish exposed to NaPCP and malathion, and deformation of the notochord in fish exposed to chromium and malathion. The sensitivity of the endpoints measured can be summarized as follows: growth > abnormality > larval survival > embryo survival > hatching.
Zhu, Feng; Wigh, Adriana; Friedrich, Timo; Devaux, Alain; Bony, Sylvie; Nugegoda, Dayanthi; Kaslin, Jan; Wlodkowic, Donald
2015-12-15
The fish embryo toxicity (FET) biotest has gained popularity as one of the alternative approaches to acute fish toxicity tests in chemical hazard and risk assessment. Despite the importance and common acceptance of FET, it is still performed in multiwell plates and requires laborious and time-consuming manual manipulation of specimens and solutions. This work describes the design and validation of a microfluidic Lab-on-a-Chip technology for automation of the zebrafish embryo toxicity test common in aquatic ecotoxicology. The innovative device supports rapid loading and immobilization of large numbers of zebrafish embryos suspended in a continuous microfluidic perfusion as a means of toxicant delivery. Furthermore, we also present development of a customized mechatronic automation interface that includes a high-resolution USB microscope, LED cold light illumination, and miniaturized 3D printed pumping manifolds that were integrated to enable time-resolved in situ analysis of developing fish embryos. To investigate the applicability of the microfluidic FET (μFET) in toxicity testing, copper sulfate, phenol, ethanol, caffeine, nicotine, and dimethyl sulfoxide were tested as model chemical stressors. Results obtained on a chip-based system were compared with static protocols performed in microtiter plates. This work provides evidence that FET analysis performed under microperfusion opens a brand new alternative for inexpensive automation in aquatic ecotoxicology.
Küster, E; Altenburger, R
2006-01-01
The acute zebra fish embryo test (Danio rerio Hamilton-Buchanan, 1822) is an accepted bioassay to assess the toxicity of waste water that may be used for the replacement of testing with adult fish. It is also suggested for chemical hazard characterization and assessment, although only a few groups of substances have yet been studied. Specifically acting substances such as neurotoxic insecticides pose a potentially hazard for non-target fish. To establish whether the proposed zebra fish embryo test protocol and the inhibition of cholinesterases (acetylcholinesterase EC 3.1.1.7, propionylcholinesterase EC 3.1.1.8) and carboxylesterase (EC 3.1.1.1) enzymes can be used in a similar fashion for hazard characterization and risk assessment of chemicals and environmental samples, two types of experiments were conducted. Visual effects of exposure to the organophosphate metabolite paraoxon-methyl after 24 and 48 h in the zebra fish embryo test system were analysed with the use of an inverse microscope (rate of mortality, developmental disturbances, heart rate and others). The inhibition to cholinesterases and carboxylesterase was also measured. Enzyme inhibition as a biomarker of exposure was about 70 times more sensitive than the effects in the zebra fish embryo test with an IC50 below 1.2 micromol compared with an EC50 of 91 micromol. The dose-response relationships showed different curve characteristics with a linear increase of enzyme inhibition compared with a sigmoidal curve for the overt effects. Significant overt effects could only be seen at concentrations at which already 80% of the activities of the different esterases were inhibited.
Biotechnology applied to fish reproduction: tools for conservation.
de Siqueira-Silva, Diógenes Henrique; Saito, Taiju; Dos Santos-Silva, Amanda Pereira; da Silva Costa, Raphael; Psenicka, Martin; Yasui, George Shigueki
2018-04-29
This review discusses the new biotechnological tools that are arising and promising for conservation and enhancement of fish production, mainly regarding the endangered and the most economically important species. Two main techniques, in particular, are available to avoid extinction of endangered fish species and to improve the production of commercial species. Germ cell transplantation technology includes a number of approaches that have been studied, such as the transplantation of embryo-to-embryo blastomere, embryo-to-embryo differentiated PGC, larvae to larvae and embryo differentiated PGC, transplantation of spermatogonia from adult to larvae or between adults, and oogonia transplantation. However, the success of germ cell transplantation relies on the prior sterilization of fish, which can be performed at different stages of fish species development by means of several protocols that have been tested in order to achieve the best approach to produce a sterile fish. Among them, fish hybridization and triploidization, germline gene knockdown, hyperthermia, and chemical treatment deserve attention based on important results achieved thus far. This review currently used technologies and knowledge about surrogate technology and fish sterilization, discussing the stronger and the weaker points of each approach.
Saltatory ontogeny of fishes and sensitive early life stages for ecotoxicology tests.
Belanger, Scott E; Balon, Eugene K; Rawlings, Jane M
2010-04-15
Fish display a wide range of developmental ontogenies. These distinctions have taxonomic, evolutionary, and ecological importance in addition to practical implications on the use of fish in aquatic toxicity tests. With respect to animal welfare, vertebrates are afforded protected or non-protected status in the European Union based upon whether they feed endogenously off the yolk or exogenously by procurement and ingestion of food. The concept of saltatory ontogeny suggests development is not gradual but proceeds in leaps separated by a series of stable developmental states. In this context, endogenous/exogenous feeding also distinguishes the developmental phases of embryo (egg), eleutheroembryo (feeding off the yolk sac) and larvae (exogenous feeding) in fish. The recent proposal for the Fish Embryo Test (FET) as an animal alternative to the standard fish acute toxicity test (OECD 203 and equivalent tests) puts a clear focus on the need to identify the non-protected and protected life intervals in test species as well as their sensitivities which coincides with the developmental phases identified in saltatory ontogeny. In this paper we described a method to quantify embryo, eleutheroembryo, and larva phases in Danio rerio, the zebrafish. Danio eleutheroembryos preyed upon 5 different protozoan species (Euglena, Euplotes, Paramecium aurelia, Paramecium bursaria and Paramecium multimicronucleatum) between 24 and 48hr following hatching (85-95% of fish, n=20 per species, 25 degrees C). Based upon these data it is recommended that testing of developing zebrafish embryos should be terminated between 24 and 48hr after hatching in order to be compliant with existing animal welfare legislation within Europe.
Weil, Mirco; Meißner, Tobias; Busch, Wibke; Springer, Armin; Kühnel, Dana; Schulz, Ralf; Duis, Karen
2015-10-15
For degradation of halogenated chemicals in groundwater Carbo-Iron®, a composite of activated carbon and nano-sized Fe(0), was developed (Mackenzie et al., 2012). Potential effects of this nanocomposite on fish were assessed. Beyond the contaminated zone Fe(0) can be expected to have oxidized and Carbo-Iron was used in its oxidized form in ecotoxicological tests. Potential effects of Carbo Iron in zebrafish (Danio rerio) were investigated using a 48 h embryo toxicity test under static conditions, a 96 h acute test with adult fish under semi-static conditions and a 34 d fish early life stage test (FELST) in a flow-through system. Particle diameters in test suspensions were determined via dynamic light scattering (DLS) and ranged from 266 to 497 nm. Particle concentrations were measured weekly in samples from the FELST using a method based on the count rate in DLS. Additionally, uptake of particles into test organisms was investigated using microscopic methods. Furthermore, effects of Carbo-Iron on gene expression were investigated by microarray analysis in zebrafish embryos. In all tests performed, no significant lethal effects were observed. Furthermore, Carbo-Iron had no significant influence on weight and length of fish as determined in the FELST. In the embryo test and the early life stage test, growth of fungi on the chorion was observed at Carbo-Iron concentrations between 6.3 and 25mg/L. Fungal growth did not affect survival, hatching success and growth. In the embryo test, no passage of Carbo-Iron particles into the perivitelline space or the embryo was observed. In juvenile and adult fish, Carbo-Iron was detected in the gut at the end of exposure. In juvenile fish exposed to Carbo-Iron for 29 d and subsequently kept for 5d in control water, Carbo-Iron was no longer detectable in the gut. Global gene expression in zebrafish embryos was not significantly influenced by Carbo-Iron. Copyright © 2015 Elsevier B.V. All rights reserved.
Kais, B; Schneider, K E; Keiter, S; Henn, K; Ackermann, C; Braunbeck, T
2013-09-15
Since 2007, when REACH came into force, the fish embryo test has received increasing attention as a potential alternative for the acute fish test. Due to its low toxicity and the ability to permeate biological membranes without significant damage to their structural integrity, dimethyl sulfoxide (DMSO) is a commonly used solvent in the fish embryo test. Little is known, however, about the membrane penetration properties of DMSO, the impact of different concentrations of DMSO on the potential barrier function of the zebrafish chorion and on changes in the uptake of chemicals into the embryo. Therefore, in the present study, the fluorescent dyes fluorescein (mol wt 332; Pow 3.4) and 2,7-dichlorofluorescein (mol wt 401; Pow 4.7), both substances with limited water solubility, were used to visualize the uptake into the egg as well as the accumulation in the embryo of the zebrafish depending on different concentrations of DMSO. The distribution of fluorescein within the egg compartments varied with DMSO concentration: When dissolved in 0.01% DMSO, fluorescein did not pass the chorion. In contrast, concentrations ≥ 0.1% DMSO increasingly facilitated the uptake into the perivitelline space. In contrast, the uptake of 2,7-dichlorofluorescein was not substantially increased with rising DMSO concentrations, indicating the importance of factors other than the solvent (e.g. mol wt). With respect to the fish embryo test, results indicate that DMSO may be used without complications as a solvent, however, only at a maximum concentration of 0.01% (0.1 mL/L) as already indicated in the OECD difficult substances paper (OECD, 2000). Copyright © 2013 Elsevier B.V. All rights reserved.
The fish embryo test (FET): origin, applications, and future.
Braunbeck, Thomas; Kais, Britta; Lammer, Eva; Otte, Jens; Schneider, Katharina; Stengel, Daniel; Strecker, Ruben
2015-11-01
Originally designed as an alternative for the acute fish toxicity test according to, e.g., OECD TG 203, the fish embryo test (FET) with the zebrafish (Danio rerio) has been optimized, standardized, and validated during an OECD validation study and adopted as OECD TG 236 as a test to assess toxicity of embryonic forms of fish. Given its excellent correlation with the acute fish toxicity test and the fact that non-feeding developmental stages of fish are not categorized as protected stages according to the new European Directive 2010/63/EU on the protection of animals used for scientific purposes, the FET is ready for use not only for range-finding but also as a true alternative for the acute fish toxicity test, as required for a multitude of national and international regulations. If-for ethical reasons-not accepted as a full alternative, the FET represents at least a refinement in the sense of the 3Rs principle. Objections to the use of the FET have mainly been based on the putative lack of biotransformation capacity and the assumption that highly lipophilic and/or high molecular weight substances might not have access to the embryo due to the protective role of the chorion. With respect to bioactivation, the only substance identified so far as not being activated in the zebrafish embryo is allyl alcohol; all other biotransformation processes that have been studied in more detail so far were found to be present, albeit, in some cases, at lower levels than in adult fish. With respect to larger molecules, the extension of the test duration to 96 h (i.e., beyond hatch) has-at least for the substances tested so far-compensated for the reduced access to the embryo; however, more research is necessary to fully explore the applicability of the FET to substances with a molecular weight >3 kDa as well as substances with a neurotoxic mode of action. An extension of the endpoints to also cover sublethal endpoints makes the FET a powerful tool for the detection of teratogenicity, dioxin-like activity, genotoxicity and mutagenicity, neurotoxicity, as well as various forms of endocrine disruption.
Regulatory aspects on the use of fish embryos in environmental toxicology.
Halder, Marlies; Léonard, Marc; Iguchi, Taisen; Oris, James T; Ryder, Kathy; Belanger, Scott E; Braunbeck, Thomas A; Embry, Michelle R; Whale, Graham; Norberg-King, Teresa; Lillicrap, Adam
2010-07-01
Animal alternative tests are gaining serious consideration in an array of environmental sciences, particularly as they relate to sound management of chemicals and wastewater discharges. The ILSI Health and Environmental Sciences Institute and the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) held an International Workshop on the Application of the Fish Embryo Test in March, 2008. This relatively young discipline is following advances in animal alternatives for human safety sciences, and it is advisable to develop a broad comparison of how animal alternative tests involving fish are viewed in a regulatory context over a wide array of authorities or advising bodies. These include OECD, Western Europe, North America, and Japan. This paper summarizes representative practices from these regions. Presently, the global regulatory environment has varying stances regarding the protection of fish for use as an experimental animal. Such differences have a long-term potential to lead to a lack of harmony in approaches to fish toxicity testing, especially for chemicals in commerce across multiple geographic regions. Implementation of alternative methods and approaches will be most successful if accepted globally, including methods of fish toxicity testing. An important area for harmonization would be in the interpretation of protected and nonprotected life stages of fish. Use of fish embryos represent a promising alternative and allow bridging to more technically challenging alternatives with longer prospective timelines, including cell-based assays, ecotoxicogenomics, and QSARs. (c) 2010 SETAC.
Nagel, Roland
2002-01-01
The acute fish test is an animal test whose ecotoxicological relevance is worthy of discussion. The primary aim of protection in ecotoxicology is the population and not the individual. Furthermore the concentration of pollutants in the environment is normally not in the lethal range. Therefore the acute fish test covers solely the situation after chemical spills. Nevertheless, acute fish toxicity data still belong to the base set used for the assessment of chemicals. The embryo test with the zebrafish Danio rerio (DarT) is recommended as a substitute for the acute fish test. For validation an international laboratory comparison test was carried out. A summary of the results is presented in this paper. Based on the promising results of testing chemicals and waste water the test design was validated by the DIN-working group "7.6 Fischei-Test". A normed test guideline for testing waste water with fish is available. The test duration is short (48 h) and within the test different toxicological endpoints can be examined. Endpoints from the embryo test are suitable for QSAR-studies. Besides the use in ecotoxicology the introduction as a toxicological model was investigated. Disturbance of pigmentation and effects on the frequency of heart-beat were examined. A further important application is testing of teratogenic chemicals. Based on the results DarT could be a screening test within preclinical studies.
Roush, Kyle S; Krzykwa, Julie C; Malmquist, Jacob A; Stephens, Dane A; Sellin Jeffries, Marlo K
2018-05-30
The fathead minnow fish embryo toxicity (FET) test has been identified as a potential alternative to toxicity test methods that utilize older fish. However, several challenges have been identified with the fathead minnow FET test, including: 1) difficulties in obtaining appropriately-staged embryos for FET test initiation, 2) a paucity of data comparing fathead minnow FET test performance to the fathead minnow larval growth and survival (LGS) test and 3) a lack of sublethal endpoints that could be used to estimate chronic toxicity and/or predict adverse effects. These challenges were addressed through three study objectives. The first objective was to optimize embryo production by assessing the effect of breeding group composition (number of males and females) on egg production. Results showed that groups containing one male and four females produced the largest clutches, enhancing the likelihood of procuring sufficient numbers of embryos for FET test initiation. The second study objective was to compare the performance of the FET test to that of the fathead minnow LGS test using three reference toxicants. The FET and LGS tests were similar in their ability to predict the acute toxicity of sodium chloride and ethanol, but the FET test was found to be more sensitive than the LGS test for sodium dodecyl sulfate. The last objective of the study was to evaluate the utility and practicality of several sublethal metrics (i.e., growth, developmental abnormalities and growth- and stress-related gene expression) as FET test endpoints. Developmental abnormalities, including pericardial edema and hatch success, were found to offer the most promise as additional FET test endpoints, given their responsiveness, potential for predicting adverse effects, ease of assessment and low cost of measurement. Copyright © 2018 Elsevier Inc. All rights reserved.
Busquet, François; Nagel, Roland; von Landenberg, Friedrich; Mueller, Stefan O; Huebler, Nicole; Broschard, Thomas H
2008-07-01
The assessment of teratogenic effects of chemicals is generally performed using in vivo teratogenicity assays, for example, in rats or rabbits. We have developed an in vitro teratogenicity assay using the zebrafish Danio rerio embryo combined with an exogenous mammalian metabolic activation system (MAS), able to biotransform proteratogenic compounds. Cyclophosphamide (CPA) and ethanol were used as proteratogens to test the efficiency of this assay. Briefly, the zebrafish embryos were cocultured at 2 hpf (hours postfertilization) with the test material at varying concentrations, induced male rat liver microsomes and nicotinamide adenine dinucleotide phosphate (reduced) for 60 min at 32 degrees C under moderate agitation in Tris-buffer. The negative control (test material alone) and the MAS control (MAS alone) were incubated in parallel. For each test group, 20 eggs were used for statistical robustness. Afterward fish embryos were transferred individually into 24-well plates filled with fish medium for 48 h at 26 degrees C with a 12-h light cycle. Teratogenicity was scored after 24 and 48 hpf using morphological endpoints. No teratogenic effects were observed in fish embryos exposed to the proteratogens alone, that is, without metabolic activation. In contrast, CPA and ethanol induced abnormalities in fish embryos when coincubated with microsomes. The severity of malformations increased with increasing concentrations of the proteratogens. We conclude that the application of microsomes will improve and refine the D. rerio teratogenicity assay as a predictive and valuable alternative method to screen teratogenic substances.
Fish Alternatives in Environmental Risk Assessment: Overview of the Current Landscape
The need for alternative testing strategies has recently expanded into the realm of environmental risk assessment leading to the development of new alternatives to standard aquatic vertebrate testing such as the OECD 203 acute fish toxicity test. The fish embryo test (FET) is one...
Lahnsteiner, Franz
2008-07-01
The sensitivity of the zebrafish embryo test, a test proposed for routine waste water control, was compared with the acute fish toxicity test, in the determination of six types of waste water and ten different chemicals. The waste water was sampled from the following industrial processes: paper and cardboard production, hide tanning, metal galvanisation, carcass treatment and utilisation, and sewage treatment. The chemicals tested were: dimethylacetamide, dimethylsulphoxide, cadmium chloride, cyclohexane, hydroquinone, mercuric chloride, nickel chloride, nonylphenol, resmethrin and sodium nitrite. For many of the test substances, the zebrafish embryo test and the acute fish toxicity test results showed high correlations. However, there were certain environmentally-relevant substances for which the results of the zebrafish embryo test and the acute fish toxicity test differed significantly, up to 10,000-fold (Hg(2+) > 150-fold difference; NO(2)(-) > 300-fold; Cd(2+) > 200-fold; resmethrin > 10,000-fold). For the investigated waste water samples and chemicals, the survival rate of the zebrafish embryos showed high variations between different egg samples, within the range of the EC50 concentration. Subsequently, 5-6 parallel assays were deemed to be the appropriate number necessary for the precise evaluation of the toxicity of the test substances. Also, it was found that the sensitivities of different ontogenetic stages to chemical exposure differed greatly. During the first 12 hours after fertilisation (4-cell stage to the 5-somite stage), the embryos reacted most sensitively to test substance exposure, whereas the later ontogenetic stages showed only slight or no response, indicating that the test is most sensitive during the first 24 hours post-fertilisation.
The weaker points of fish acute toxicity tests and how tests on embryos can solve some issues.
Wedekind, Claus; von Siebenthal, Beat; Gingold, Ruth
2007-07-01
Fish acute toxicity tests play an important role in environmental risk assessment and hazard classification because they allow for first estimates of the relative toxicity of various chemicals in various species. However, such tests need to be carefully interpreted. Here we shortly summarize the main issues which are linked to the genetics and the condition of the test animals, the standardized test situations, the uncertainty about whether a given test species can be seen as representative to a given fish fauna, the often missing knowledge about possible interaction effects, especially with micropathogens, and statistical problems like small sample sizes and, in some cases, pseudoreplication. We suggest that multi-factorial embryo tests on ecologically relevant species solve many of these issues, and we shortly explain how such tests could be done to avoid the weaker points of fish acute toxicity tests.
Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test.
Klüver, Nils; Vogs, Carolina; Altenburger, Rolf; Escher, Beate I; Scholz, Stefan
2016-12-01
Fish embryos have become a popular model in ecotoxicology and toxicology. The fish embryo acute toxicity test (FET) with the zebrafish embryo was recently adopted by the OECD as technical guideline TG 236 and a large database of concentrations causing 50% lethality (LC 50 ) is available in the literature. Quantitative Structure-Activity Relationships (QSARs) of baseline toxicity (also called narcosis) are helpful to estimate the minimum toxicity of chemicals to be tested and to identify excess toxicity in existing data sets. Here, we analyzed an existing fish embryo toxicity database and established a QSAR for fish embryo LC 50 using chemicals that were independently classified to act according to the non-specific mode of action of baseline toxicity. The octanol-water partition coefficient K ow is commonly applied to discriminate between non-polar and polar narcotics. Replacing the K ow by the liposome-water partition coefficient K lipw yielded a common QSAR for polar and non-polar baseline toxicants. This developed baseline toxicity QSAR was applied to compare the final mode of action (MOA) assignment of 132 chemicals. Further, we included the analysis of internal lethal concentration (ILC 50 ) and chemical activity (La 50 ) as complementary approaches to evaluate the robustness of the FET baseline toxicity. The analysis of the FET dataset revealed that specifically acting and reactive chemicals converged towards the baseline toxicity QSAR with increasing hydrophobicity. The developed FET baseline toxicity QSAR can be used to identify specifically acting or reactive compounds by determination of the toxic ratio and in combination with appropriate endpoints to infer the MOA for chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Weil, Mirco; Scholz, Stefan; Zimmer, Michaela; Sacher, Frank; Duis, Karen
2009-09-01
Based on the hypothesis that analysis of gene expression could be used to predict chronic fish toxicity, the zebrafish (Danio rerio) embryo test (DarT), developed as a replacement method for the acute fish test, was expanded to a gene expression D. rerio embryo test (Gene-DarT). The effects of 14 substances on lethal and sublethal endpoints of the DarT and on expression of potential marker genes were investigated: the aryl hydrocarbon receptor 2, cytochrome P450 1A (cypla), heat shock protein 70, fizzy-related protein 1, the transcription factors v-maf musculoaponeurotic fibrosarcoma oncogene family protein g (avian) 1 and NF-E2-p45-related factor, and heme oxygenase 1 (hmox1). After exposure of zebrafish embryos for 48 h, differential gene expression was evaluated using reverse transcriptase-polymerase chain reaction, gel electrophoresis, and densitometric analysis of the gels. All tested compounds significantly affected the expression of at least one potential marker gene, with cyp1a and hmox1 being most sensitive. Lowest-observed-effect concentrations (LOECs) for gene expression were below concentrations resulting in 10% lethal effects in the DarT. For 10 (3,4- and 3,5-dichloroaniline, 1,4-dichlorobenzene, 2,4-dinitrophenol, atrazine, parathion-ethyl, chlorotoluron, genistein, 4-nitroquinoline-1-oxide, and cadmium) out of the 14 tested substances, LOEC values derived with the Gene-DarT differ by a factor of less than 10 from LOEC values of fish early life stage tests with zebrafish. For pentachloroaniline and pentachlorobenzene, the Gene-DarT showed a 23- and 153-fold higher sensitivity, respectively, while for lindane, it showed a 13-fold lower sensitivity. For ivermectin, the Gene-DarT was by a factor of more than 1,000 less sensitive than the acute fish test. The results of the present study indicate that gene expression analysis in zebrafish embryos could principally be used to predict effect concentrations in the fish early life stage test.
Schiller, Viktoria; Wichmann, Arne; Kriehuber, Ralf; Schäfers, Christoph; Fischer, Rainer; Fenske, Martina
2013-12-01
Exposure to environmental chemicals known as endocrine disruptors (EDs) is in many cases associated with an unpredictable hazard for wildlife and human health. The identification of endocrine disruptive properties of chemicals certain to enter the aquatic environment relies on toxicity tests with fish, assessing adverse effects on reproduction and sexual development. The demand for quick, reliable ED assays favored the use of fish embryos as alternative test organisms. We investigated the application of a transcriptomics-based assay for estrogenic and anti-androgenic chemicals with zebrafish embryos. Two reference compounds, 17α-ethinylestradiol and flutamide, were tested to evaluate the effects on development and the transcriptome after 48h-exposures. Comparison of the transcriptome response with other estrogenic and anti-androgenic compounds (genistein, bisphenol A, methylparaben, linuron, prochloraz, propanil) showed commonalities and differences in regulated pathways, enabling us to classify the estrogenic and anti-androgenic potencies. This demonstrates that different mechanism of ED can be assessed already in fish embryos. Copyright © 2013 Elsevier Inc. All rights reserved.
Horie, Yoshifumi; Yamagishi, Takahiro; Takahashi, Hiroko; Shintaku, Youko; Iguchi, Taisen; Tatarazako, Norihisa
2017-10-01
Fish embryo toxicity tests are used to assess the lethal and sublethal effects of environmental chemicals in aquatic organisms. Previously, we used a short-term toxicity test published by the Organization for Economic Co-operation and Development (test no. 212: Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages [OECD TG 212]) to assess the lethal and sublethal effects of aniline and several chlorinated anilines in zebrafish embryos and larvae. To expand upon this previous study, we used OECD TG 212 in zebrafish embryos and larvae to assess the lethal and sublethal effects of 20 additional environmental chemicals that included active pharmaceutical ingredients, pesticides, metals, aromatic compounds or chlorinated anilines. Zebrafish embryos (Danio rerio) were exposed to the test chemicals until 8 days post-fertilization. A delayed lethal effect was induced by 16 of the 20 test chemicals, and a positive correlation was found between heart rate turbulence and mortality. We also found that exposure to the test chemicals at concentrations lower than the lethal concentration induced the sublethal effects of edema, body curvature and absence of swim-bladder inflation. In conclusion, the environmental chemicals assessed in the present study induced both lethal and sublethal effects in zebrafish embryos and larvae, as assessed by using OECD TG 212. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Wright, P.J.; Noltie, Douglas B.; Tillitt, D.E.
2003-01-01
The C-start in teleost fishes, a type of startle response, mediates the ability to respond to abrupt, unexpected stimuli and is characterized by a short-latency, C-type fast start acceleration. In prehatch fish embryos, the C-start appears necessary for mechanical breakdown of the egg chorion and successful hatching by way of increased embryo movement and distribution of the hatching enzymes. In later stages, the C-start plays an important role in predator avoidance. Using tactile stimulation, we evaluated the C-start response in rainbow trout Oncorhynchus mykiss at 170 degree-days, when 6.6% of embryos exhibited C-starts, and lake trout Salvelinus namaycush embryos at 320 degree-days, when 23% of embryos exhibited C-starts. Triplicate groups of embryos were later tested at three developmental stages: early (220 and 360 degree-days for rainbow trout and lake trout, respectively), middle (260 and 480 degree-days, respectively), and late (320 and 560 degree-days, respectively). The proportion of trout embryos exhibiting C-start increased through time, such that 100% had responded by the late stage, just prior to hatching. C-starts could be obtained by repeated stimulation, and the relative activity of the embryos (based on the number of flexures per stimulus) also increased over time. Rainbow trout and lake trout showed very similar C-start responses at parallel developmental stages, and these patterns of response were similar to those reported in other fish species.
NASA Astrophysics Data System (ADS)
Rahman, Sk. Mustafizur; Majhi, Sullip Kumar; Suzuki, Toru; Strussmann, Carlos Augusto; Watanabe, Manabu
Cryopreservation of fish eggs and embryos is a highly desired tool to promote aquaculture production and fisheries resource management, but it is still not technically feasible. The failure to develop successful cryopreservation protocols for fish embryos is largely attributed to poor cryoprotectant permeability. The purpose of this study was to test the effectiveness of CaCl2 to enhance cryoprotectant uptake by fish embryos. In this study, embryos (somites and tail elongation stages) of Japanese whiting Sillago japonica were exposed to 10 and 15% dimethyl sulfoxide (DMSO) in artificial sea water (ASW) or a solution of 0.125M CaCl2 in distilled water for 20 min at 24°C. The toxicity of all solutions was estimated from the hatching rates of the embryos and High Performance Liquid Chromatography was used to determine the amount of DMSO taken up during impregnation. The results showed that DMSO incorporation into the embryos was greatly (›50%) enhanced in the presence of CaCl2 compared to ASW. CaCl2 itself was not toxic to the embryos but, probably as a result of the enhanced DMSO uptake, caused decreases in survival of about 14-44% relative to ASW. Somites stage embryos were more tolerant than tail elongation ones to DMSO both as ASW and CaCl2 solutions. The use of CaCl2 as a vehicle for DMSO impregnation could be a promising aid for the successful cryopreservation of fish embryos.
2012-01-01
Background Oestrogenic contaminants are widespread in the aquatic environment and have been shown to induce adverse effects in both wildlife (most notably in fish) and humans, raising international concern. Available detecting and testing systems are limited in their capacity to elucidate oestrogen signalling pathways and physiological impacts. Here we developed a transient expression assay to investigate the effects of oestrogenic chemicals in fish early life stages and to identify target organs for oestrogenic effects. To enhance the response sensitivity to oestrogen, we adopted the use of multiple tandem oestrogen responsive elements (EREc38) in a Tol2 transposon mediated Gal4ff-UAS system. The plasmid constructed (pTol2_ERE-TATA-Gal4ff), contains three copies of oestrogen response elements (3ERE) that on exposure to oestrogen induces expression of Gal4ff which this in turn binds Gal4-responsive Upstream Activated Sequence (UAS) elements, driving the expression of a second reporter gene, EGFP (Enhanced Green Fluorescent Protein). Results The response of our construct to oestrogen exposure in zebrafish embryos was examined using a transient expression assay. The two plasmids were injected into 1–2 cell staged zebrafish embryos, and the embryos were exposed to various oestrogens including the natural steroid oestrogen 17ß-oestradiol (E2), the synthetic oestrogen 17α- ethinyloestradiol (EE2), and the relatively weak environmental oestrogen nonylphenol (NP), and GFP expression was examined in the subsequent embryos using fluorescent microscopy. There was no GFP expression detected in unexposed embryos, but specific and mosaic expression of GFP was detected in the liver, heart, somite muscle and some other tissue cells for exposures to steroid oestrogen treatments (EE2; 10 ng/L, E2; 100 ng/L, after 72 h exposures). For the NP exposures, GFP expression was observed at 10 μg NP/L after 72 h (100 μg NP/L was toxic to the fish). We also demonstrate that our construct works in medaka, another model fish test species, suggesting the transient assay is applicable for testing oestrogenic chemicals in fish generally. Conclusion Our results indicate that the transient expression assay system can be used as a rapid integrated testing system for environmental oestrogens and to detect the oestrogenic target sites in developing fish embryos. PMID:22726887
Busquet, François; Strecker, Ruben; Rawlings, Jane M; Belanger, Scott E; Braunbeck, Thomas; Carr, Gregory J; Cenijn, Peter; Fochtman, Przemyslaw; Gourmelon, Anne; Hübler, Nicole; Kleensang, André; Knöbel, Melanie; Kussatz, Carola; Legler, Juliette; Lillicrap, Adam; Martínez-Jerónimo, Fernando; Polleichtner, Christian; Rzodeczko, Helena; Salinas, Edward; Schneider, Katharina E; Scholz, Stefan; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Walter-Rohde, Susanne; Weigt, Stefan; Witters, Hilda; Halder, Marlies
2014-08-01
The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were analytically confirmed for 11 chemicals. Newly fertilised zebrafish eggs (20/concentration and control) were exposed for 96h to chemicals. Four apical endpoints were recorded daily as indicators of acute lethality: coagulation of the embryo, lack of somite formation, non-detachment of the tail bud from the yolk sac and lack of heartbeat. Results (LC50 values for 48/96h exposure) show that the ZFET is a robust method with a good intra- and inter-laboratory reproducibility (CV<30%) for most chemicals and laboratories. The reproducibility was lower (CV>30%) for some very toxic or volatile chemicals, and chemicals tested close to their limit of solubility. The ZFET is now available as OECD Test Guideline 236. Considering the high predictive capacity of the ZFET demonstrated by Belanger et al. (2013) in their retrospective analysis of acute fish toxicity and fish embryo acute toxicity data, the ZFET is ready to be considered for acute fish toxicity for regulatory purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Developing a list of reference chemicals for testing alternatives to whole fish toxicity tests.
Schirmer, Kristin; Tanneberger, Katrin; Kramer, Nynke I; Völker, Doris; Scholz, Stefan; Hafner, Christoph; Lee, Lucy E J; Bols, Niels C; Hermens, Joop L M
2008-11-11
This paper details the derivation of a list of 60 reference chemicals for the development of alternatives to animal testing in ecotoxicology with a particular focus on fish. The chemicals were selected as a prerequisite to gather mechanistic information on the performance of alternative testing systems, namely vertebrate cell lines and fish embryos, in comparison to the fish acute lethality test. To avoid the need for additional experiments with fish, the U.S. EPA fathead minnow database was consulted as reference for whole organism responses. This database was compared to the Halle Registry of Cytotoxicity and a collation of data by the German EPA (UBA) on acute toxicity data derived from zebrafish embryos. Chemicals that were present in the fathead minnow database and in at least one of the other two databases were subject to selection. Criteria included the coverage of a wide range of toxicity and physico-chemical parameters as well as the determination of outliers of the in vivo/in vitro correlations. While the reference list of chemicals now guides our research for improving cell line and fish embryo assays to make them widely applicable, the list could be of benefit to search for alternatives in ecotoxicology in general. One example would be the use of this list to validate structure-activity prediction models, which in turn would benefit from a continuous extension of this list with regard to physico-chemical and toxicological data.
OpenSource lab-on-a-chip physiometer for accelerated zebrafish embryo biotests.
Akagi, Jin; Hall, Chris J; Crosier, Kathryn E; Cooper, Jonathan M; Crosier, Philip S; Wlodkowic, Donald
2014-01-02
Zebrafish (Danio rerio) embryo assays have recently come into the spotlight as convenient experimental models in both biomedicine and ecotoxicology. As a small aquatic model organism, zebrafish embryo assays allow for rapid physiological, embryo-, and genotoxic tests of drugs and environmental toxins that can be simply dissolved in water. This protocol describes prototyping and application of an innovative, miniaturized, and polymeric chip-based device capable of immobilizing a large number of living fish embryos for real-time and/or time-lapse microscopic examination. The device provides a physical address designation to each embryo during analysis, continuous perfusion of medium, and post-analysis specimen recovery. Miniaturized embryo array is a new concept of immobilization and real-time drug perfusion of multiple individual and developing zebrafish embryos inside the mesofluidic device. The OpenSource device presented in this protocol is particularly suitable to perform accelerated fish embryo biotests in ecotoxicology and phenotype-based pharmaceutical screening. Copyright © 2014 John Wiley & Sons, Inc.
Praskova, E; Voslarova, E; Siroka, Z; Plhalova, L; Macova, S; Marsalek, P; Pistekova, V; Svobodova, Z
2011-01-01
The aim of the study was to compare the acute toxicity of diclofenac to juvenile and embryonic stages of the zebrafish (Danio rerio). Acute toxicity tests were performed on the aquarium fish Danio rerio, which is one of the model organisms most commonly used in toxicity testing. The tests were performed using a semi-static method according to OECD guideline No. 203 (Fish, acute toxicity test). Embryo toxicity tests were performed in zebrafish embryos (Danio rerio) in compliance with OECD No. 212 methodology (Fish, short-term toxicity test on embryo and sac-fry stages). The results were subjected to a probit analysis using the EKO-TOX 5.2 programme to determine 96hLC50 and 144hLC50 (median lethal concentration, 50% mortality after a 96 h or 144 h interval, respectively) values of diclofenac. The statistical significance of the difference between LC50 values in juvenile and embryonic stages of Danio rerio was tested using the Mann-Whitney non-parametric test implemented in the Unistat 5.1 programme. The LC50 mean value of diclofenac was 166.6 +/- 9.8 mg/L in juvenile Danio rerio, and 6.11 +/- 2.48 mg/L in embryonic stages of Danio rerio. The study demonstrated a statistically higher sensitivity to diclofenac (P < 0.05) in embryonic stages compared to the juvenile fish.
Schiller, Viktoria; Zhang, Xiaowei; Hecker, Markus; Schäfers, Christoph; Fischer, Rainer; Fenske, Martina
2014-10-01
A number of regulations have been implemented that aim to control the release of potentially adverse endocrine disrupters into the aquatic environment based on evidence from laboratory studies. Currently, such studies rely on testing approaches with adult fish because reliable alternatives have not been validated so far. Fish embryo tests have been proposed as such an alternative, and here we compared two species (medaka and zebrafish) to determine their suitability for the assessment of substances with estrogenic and anti-androgenic activity. Changes in gene expression (in here the phrase gene expression is used synonymously to gene transcription, although it is acknowledged that gene expression is additionally regulated, e.g., by translation and protein stability) patterns between the two species were compared in short term embryo exposure tests (medaka: 7-day post fertilization [dpf]; zebrafish: 48 and 96h post fertilization [hpf]) by using relative quantitative real-time RT-PCR. The tested genes were related to the hypothalamic-gonadal-axis and early steroidogenesis. Test chemicals included 17α-ethinylestradiol and flutamide as estrogenic and anti-androgenic reference compounds, respectively, as well as five additional substances with endocrine activities, namely bisphenol A, genistein, prochloraz, linuron and propanil. Estrogenic responses were comparable in 7-dpf medaka and 48/96-hpf zebrafish embryos and included transcriptional upregulation of aromatase b, vitellogenin 1 as well as steroidogenic genes, suggesting that both species reliably detected exposure to estrogenic compounds. However, anti-androgenic responses differed between the two species, with each species providing specific information concerning the mechanism of anti-androgenic disruption in fish embryos. Although small but significant changes in the expression of selected genes was observed in 48-hpf zebrafish embryos, exposure prolonged to 96hpf was necessary to obtain a response indicative of anti-androgenic activity. In contrast, for medaka clear anti-androgenic response, e.g. transcriptional downregulation of 11β-hydroxylase, 3β-hydroxysteroid-dehydrogenase, gonadotropin-releasing hormone receptor 2, was already observed at the pre-hatch stage. Together, this data suggests that medaka and zebrafish embryos would provide a beneficial alternative testing platform for endocrine disruption that involves additive information on interspecies and exposure time variability when using both species. Copyright © 2014 Elsevier B.V. All rights reserved.
Evaluating the Zebrafish Embryo Toxicity Test for Pesticide Hazard Screening
Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more reso...
Wells, Michael W; Turko, Andy J; Wright, Patricia A
2015-10-01
Few teleost fishes incubate embryos out of water, but the oxygen-rich terrestrial environment could provide advantages for early growth and development. We tested the hypothesis that embryonic oxygen uptake is limited in aquatic environments relative to air using the self-fertilizing amphibious mangrove rivulus, Kryptolebias marmoratus, which typically inhabits hypoxic, water-filled crab burrows. We found that adult mangrove rivulus released twice as many embryos in terrestrial versus aquatic environments and that air-reared embryos had accelerated developmental rates. Surprisingly, air-reared embryos consumed 44% less oxygen and possessed larger yolk reserves, but attained the same mass, length and chorion thickness. Water-reared embryos moved their opercula ∼2.5 more times per minute compared with air-reared embryos at 7 days post-release, which probably contributed to the higher rates of oxygen uptake and yolk utilization we observed. Genetically identical air- and water-reared embryos from the same parent were raised to maturity, but the embryonic environment did not affect growth, reproduction or emersion ability in adults. Therefore, although aspects of early development were plastic, these early differences were not sustained into adulthood. Kryptolebias marmoratus embryos hatched out of water when exposed to aerial hypoxia. We conclude that exposure to a terrestrial environment reduces the energetic costs of development partly by reducing the necessity of embryonic movements to dispel stagnant boundary layers. Terrestrial incubation of young would be especially beneficial to amphibious fishes that occupy aquatic habitats of poor water quality, assuming low terrestrial predation and desiccation risks. © 2015. Published by The Company of Biologists Ltd.
Advances in understanding the response of fish to linear alcohols in the environment.
Belanger, Scott E; Rawlings, Jane M; Stackhouse, Ricky
2018-09-01
Short to long chain alcohols have a range of ecotoxicity to aquatic life driven by hydrophobic interactions with biological membranes. Carbon chain length and octanol:water partitioning coefficients are surrogates for hydrophobicity and strongly relate to aquatic toxicity. In these investigations, the toxicity of ethanol to 1-n-dodecanol to juvenile fish in standard acute toxicity tests is reviewed. Toxicity tests employing fish embryos (zebrafish Danio rerio and fathead minnow Pimephales promelas) in the Fish Embryo Test (OECD 236) format were conducted from C2 to C10 to compare against standard juvenile fish toxicity. Quantitative structure activity relationships for FET and fish individually and combined demonstrate that embryos are not different in sensitivity to juvenile fish. A combined QSAR was developed of the form Log 96 h LC50 (mM/L) = -0.925*log Kow + 2.060 (R2 10 = 0.954). Alcohols of 11-12 carbons show a deflection in the QSAR as toxicity approaches the solubility limit. Alcohols with longer chain lengths may only be tested at lower exposures relevant for chronic toxicity. Decanol was evaluated in a 33-d fish early life stage test (OECD 210) and survival was the most sensitive endpoint (EC10 = 0.43 mg/L, 0.0027 mM/L). This study suggests a reasonable acute to chronic ratio of 6.5 in line with historical literature for non-polar narcotic compounds. Fish are not uniquely more sensitive than Daphnia magna which suggests estimations of environmental hazard can be confidently made with either taxon. The overall environmental risk assessments for the longer chain alcohols included in this research remain largely unchanged primarily due to previous research demonstrating a very minimal environmental exposure even for highly toxic members of the category. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chronic toxicity of azo and anthracenedione dyes to embryo-larval fathead minnow.
Parrott, Joanne L; Bartlett, Adrienne J; Balakrishnan, Vimal K
2016-03-01
The toxicity of selected azo and anthracenedione dyes was studied using chronic exposures of embryo-larval fathead minnows (Pimephales promelas). Newly fertilized fathead minnow embryos were exposed through the egg stage, past hatching, through the larval stage (until 14 days post-hatch), with dye solutions renewed daily. The anthracenedione dyes Acid Blue 80 (AB80) and Acid Blue 129 (AB129) caused no effects in larval fish at the highest measured concentrations tested of 7700 and 6700 μg/L, respectively. Both azo dyes Disperse Yellow 7 (DY7) and Sudan Red G (SRG) decreased survival of larval fish, with LC50s (based on measured concentrations of dyes in fish exposure water) of 25.4 μg/L for DY7 and 16.7 μg/L for SRG. Exposure to both azo dyes caused a delayed response, with larval fish succumbing 4-10 days after hatch. If the exposures were ended at the embryo stage or just after hatch, the potency of these two dyes would be greatly underestimated. Concentrations of dyes that we measured entering the Canadian environment were much lower than those that affected larval fish survival in the current tests. In a total of 162 samples of different municipal wastewater effluents from across Canada assessed for these dyes, all were below detection limits. The similarities of the structures and larval fish responses for the two azo and two anthracenedione dyes in this study support the use of read-across data for risk assessment of these classes of compounds. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
PAH toxicity at aqueous solubility in the fish embryo test with Danio rerio using passive dosing.
Seiler, Thomas-Benjamin; Best, Nina; Fernqvist, Margit Møller; Hercht, Hendrik; Smith, Kilian E C; Braunbeck, Thomas; Mayer, Philipp; Hollert, Henner
2014-10-01
As part of the risk assessment process within REACh, prior to manufacturing and distribution of chemical substances their (eco)toxicological impacts have to be investigated. The fish embryo toxicity test (FET) with the zebrafish Danio rerio has gained a high significance as an in vitro alternative to animal testing in (eco)toxicology. However, for hydrophobic organic chemicals it remains a technical challenge to ensure constant freely dissolved concentration at the maximum exposure level during such biotests. Passive dosing with PDMS silicone was thus applied to control the freely dissolved concentration of ten PAHs at their saturation level in the FET. The experiments gave repeatable results, with the toxicity of the PAHs generally increasing with the maximum chemical activities of the PAHs. HPLC analysis confirmed constant exposure at the saturation level. In additional experiments, fish embryos without direct contact to the silicone surface showed similar mortalities as those exposed with direct contact to the silicone. Silicone oil overlaying the water phase as a novel passive dosing phase had no observable effects on the development of the fish embryos until hatching. This study provides further data to support the close relationship between the chemical activity and the toxicity of hydrophobic organic compounds. Passive dosing from PDMS silicone enabled reliable toxicity testing of (highly) hydrophobic substances at aqueous solubility, providing a practical way to control toxicity exactly at the maximum exposure level. This approach is therefore expected to be useful as a cost-effective initial screening of hydrophobic chemicals for potential adverse effects to freshwater vertebrates. Copyright © 2014 Elsevier Ltd. All rights reserved.
Melo, Karina Motta; Oliveira, Rhaul; Grisolia, Cesar Koppe; Domingues, Inês; Pieczarka, Julio Cesar; de Souza Filho, José; Nagamachi, Cleusa Yoshiko
2015-09-01
Rotenone, a natural compound derived from plants of the genera Derris and Lonchocarpus, is used worldwide as a pesticide and piscicide. This study aims to assess short-term toxicity of rotenone to early-life stages of the fish Danio rerio and Poecilia reticulata using a wide and integrative range of biomarkers (developmental, biochemical, behavioral, and histopathological). Moreover, the species sensitivity distribution (SSD) approach was used to compare rotenone acute toxicity to fish species. Toxicity tests were based on the OECD protocols, fish embryo toxicity test (for D. rerio embryos), and fish acute toxicity test (for P. reticulata juveniles). D. rerio embryos were used to estimate lethal concentrations and analyze embryonic and enzymatic alterations (activity of catalase, glutathione-S-transferase, and cholinesterase), while P. reticulata juveniles were used for the assessment of histological damage in the gills and liver. Rotenone induced significant mortality in zebrafish embryos with a 96-h lethal concentration 50% (LC50) = 12.2 μg/L. Rotenone was embryotoxic, affecting the development of D. rerio embryos, which showed cardiac edema; tail deformities; loss of equilibrium; and a general delay characterized by lack of tail detachment, delayed somite formation, yolk sac absorption, and lack of pigmentation. Biochemical biomarker inhibition was observed for concentrations ≥1 μg/L for CAT and glutathione-S-transferase (GST) and for cholinesterase (ChE) in concentration from 10 μg/L. Behavioral changes were observed for P. reticulata juveniles exposed to concentrations equal to or above 25 μg/L of rotenone; moreover, histological damage in the liver and gills of fish exposed to concentrations equal to or above 2.5 μg/L could be observed. A hazard concentration 5% (HC5) of 3.2 μg/L was estimated considering the acute toxicity data for different fish species (n = 49). Lethal and sublethal effects of rotenone raise a concern about its effects on nontarget fish species, especially because rotenone and its metabolite rotenolone are frequently reported in the microgram range in natural environments for several days after field applications. Rotenone should be used with caution. Given the high toxicity and wide range of sublethal effects here reported, further studies in a chronic exposure scenario are recommended.
The zebrafish embryo model in toxicology and teratology, September 2–3, 2010, Karlsruhe, Germany.
Busch, Wibke; Duis, Karen; Fenske, Martina; Maack, Gerd; Legler, Juliette; Padilla, Stephanie; Strähle, Uwe; Witters, Hilda; Scholz, Stefan
2011-05-01
The use of fish embryos is gaining popularity for research in the area of toxicology and teratology. Particularly embryos of the zebrafish offer an array of different applications ranging from regulatory testing to mechanistic research. For this reason a consortium of two research centres and a company with the support of the COST Action EuFishBiomed has organised the Workshop “The zebrafish embryo model in toxicology and teratology”, in Karlsruhe, Germany, 2nd–3rd September 2010. The workshop aimed at bringing together experts from different areas of toxicology using the (zebra)fish embryo and stimulating networking between scientists and representatives from regulatory bodies, research institutions and industry. Recent findings, presented in various platform presentations in the area of regulatory toxicity, high throughput screening, toxicogenomics, as well as environmental and human risk assessment are highlighted in this meeting report. Furthermore, the constraints and possibilities of the model as discussed at the workshop are described. A follow up-meeting was appreciated by the about 120 participants and is planned for 2012.
Park, Kwangsik; Tuttle, George; Sinche, Federico; Harper, Stace L.
2014-01-01
The stability of citrate-capped silver nanoparticles (AgNPs) and the embryonic developmental toxicity were evaluated in the fish test water. Serious aggregation of AgNPs was observed in undiluted fish water (DM-100) in which high concentration of ionic salts exist. However, AgNPs were found to be stable for 7 days in DM-10, prepared by diluting the original fish water (DM-100) with deionized water to 10%. The normal physiology of zebrafish embryos were evaluated in DM-10 to see if DM-10 can be used as a control vehicle for the embryonic fish toxicity test. As results, DM-10 without AgNPs did not induce any significant adverse effects on embryonic development of zebrafish determined by mortality, hatching, malformations and heart rate. When embryonic toxicity of AgNPs was tested in both DM-10 and in DM-100, AgNPs showed higher toxicity in DM-10 than in DM-100. This means that the big-sized aggregates of AgNPs were low toxic compared to the nano-sized AgNPs. AgNPs induced delayed hatching, decreased heart rate, pericardial edema, and embryo death. Accumulation of AgNPs in the embryo bodies was also observed. Based on this study, citrate-capped AgNPs are not aggregated in DM-10 and it can be used as a control vehicle in the toxicity test of fish embryonic development. PMID:23325492
Use of Medaka in Toxicity Testing
Cowden, John; Hinton, David E.; Johnson, Rodney; Flynn, Kevin; Hardman, Ronald C.; Yuen, Bonny; Law, Sheran; Kullman, Seth W.; Au, Doris W.T.
2015-01-01
Small aquarium fishes are increasingly used as animal models, and one of these, Japanese Medaka (Oryzias latipes), is frequently utilized for toxicity testing. While these vertebrates have many similarities with their terrestrial counterparts, there are differences that must be considered if these organisms are to be used to their highest potential. Testing commonly may employ either the developing embryo or adults; both are easy to use and to work with. We present here three main protocols to illustrate the utility and breadth of toxicity testing possible using medaka fish. The first protocol assesses neurotoxicity in developing embryos. The second protocol describes the sexual genotyping of medaka to evaluate toxicant effects on sexual phenotype after treatment with endocrine disrupting chemicals. The third protocol assesses hepatotoxicity in adult fish after treatment with a model hepatotoxicant. The methods run the gamut from immunohistology through PCR to basic histological techniques. PMID:20922755
Kurobe, Tomofumi; Lehman, Peggy W; Haque, M E; Sedda, Tiziana; Lesmeister, Sarah; Teh, Swee
2018-01-01
In the San Francisco Estuary, California, the largest estuary on the Pacific Coast of North America, the frequency and intensity of drought and associated cyanobacteria blooms are predicted to increase with climate change. To assess the impact of water quality conditions on estuarine fish health during successive severe drought years with Microcystis blooms, we performed fish embryo toxicity testing with Delta Smelt and Medaka. Fish embryos were exposed to filtered ambient water collected from the San Francisco Estuary during the Microcystis bloom season in 2014 and 2015, the third and fourth most severe recorded drought years in California. Medaka embryos incubated in filtered ambient waters exhibited high mortality rates (>77%), which was mainly due to bacterial growth. Medaka mortality data was negatively correlated with chloride, and positively correlated with water temperature, total and dissolved organic carbon, and ambient and net chlorophyll a concentration. Delta Smelt embryo mortality rates were lower (<42%) and no prominent seasonal or geographic trend was observed. There was no significant correlation between the Delta Smelt mortality data and water quality parameters. Aeromonas was the dominant bacteria that adversely affected Medaka. The growth of Aeromonas was suppressed when salinity was greater than or equal to 1psu and resulted in a significant reduction in mortality rate. Bacterial growth test demonstrated that the lysate of Microcystis cells enhanced the growth of Aeromonas. Toxin production by Microcystis is a major environmental concern, however, we conclude that dissolved substances released from Microcystis blooms could result in water quality deterioration by promoting growth of bacteria. Furthermore, a distinctive developmental deformity was observed in Medaka during the toxicity tests; somite formation was inhibited at the same time that cardiogenesis occurred and the functional heart was observed to be beating. The exact cause of the embryonic developmental deformity is still unknown. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Feng; Akagi, Jin; Hall, Chris J.; Crosier, Kathryn E.; Crosier, Philip S.; Delaage, Pierre; Wlodkowic, Donald
2013-12-01
Drug discovery screenings performed on zebrafish embryos mirror with a high level of accuracy. The tests usually performed on mammalian animal models, and the fish embryo toxicity assay (FET) is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, conventional methods utilising 96-well microtiter plates and manual dispensing of fish embryos are very time-consuming. They rely on laborious and iterative manual pipetting that is a main source of analytical errors and low throughput. In this work, we present development of a miniaturised and high-throughput Lab-on-a-Chip (LOC) platform for automation of FET assays. The 3D high-density LOC array was fabricated in poly-methyl methacrylate (PMMA) transparent thermoplastic using infrared laser micromachining while the off-chip interfaces were fabricated using additive manufacturing processes (FDM and SLA). The system's design facilitates rapid loading and immobilization of a large number of embryos in predefined clusters of traps during continuous microperfusion of drugs/toxins. It has been conceptually designed to seamlessly interface with both upright and inverted fluorescent imaging systems and also to directly interface with conventional microtiter plate readers that accept 96-well plates. We also present proof-of-concept interfacing with a high-speed imaging cytometer Plate RUNNER HD® capable of multispectral image acquisition with resolution of up to 8192 x 8192 pixels and depth of field of about 40 μm. Furthermore, we developed a miniaturized and self-contained analytical device interfaced with a miniaturized USB microscope. This system modification is capable of performing rapid imaging of multiple embryos at a low resolution for drug toxicity analysis.
NASA Astrophysics Data System (ADS)
Mages, Margarete; Bandow, Nicole; Küster, Eberhard; Brack, Werner; von Tümpling, Wolf
2008-12-01
Trace metals such as Cadmium (Cd) and Zinc (Zn) are known to exhibit adverse effects on many aquatic organisms including early life stages of fish. In contact with contaminated sediment, fish eggs and embryos may be exposed to metals via the water phase as well as via direct contact with contaminated particles. This may result in body burdens that are difficult to predict and may vary according to individual micro scale exposure conditions. The highly sensitive total reflection X-ray fluorescence spectrometry (TXRF) may provide a tool to analyse individual embryos for internal contaminant concentrations and thus helps to develop a better understanding of dose-response relationships. To test this hypothesis, embryos of Danio rerio were exposed to Cd and Zn spiked sediment in different treatments applying an ion exchange resin for modification of bioavailable concentrations. The TXRF analysis indicated individual embryos with dramatically enhanced exposure compared to other individuals despite uniform exposure conditions on a macro scale. Ion exchanger reduced embryo Zn concentrations to values close to control value with a comparably low standard deviation. Cadmium concentrations in embryos were in the range of 4000 to 7000 µg/g with a median of 5740 µg/g. A commercial ion exchanger reduced individual body burdens by a factor 50 to 100. Individual peak body burdens of up to 3160 µg/g were accompanied by reduced weight of the fish eggs due to early death i.e. coagulation. The investigation of exposure and effects on an individual-based scale may significantly help to reduce uncertainty and inconsistencies occurring in conventional analysis of pooled fish embryo samples.
Robles, V; Barbosa, V; Herráez, M P; Martínez-Páramo, S; Cancela, M L
2007-07-15
To date, all attempts at fish embryo cryopreservation have failed. One of the main reasons for this to occur is the high chilling sensitivity reported in fish embryos thus emphasizing the need for further testing of different methods and alternative cryoprotective agents (CPAs) in order to improve our chances to succeed in this purpose. In this work we have used the antifreeze protein type I (AFP I) as a natural CPA. This protein is naturally expressed in sub-arctic fish species, and inhibits the growth of ice crystals as well as recrystallization during thawing. Embryos from Sparus aurata were microinjected with AFP I at different developmental stages, 2 cells and blastula, into the blastomere-yolk interface and into the yolk sac, respectively. Control, punctured and microinjected embryos were subjected to chilling at two different temperatures, 0 degrees C (1h) and -10 degrees C (15min) when embryos reached 5-somite stage. Embryos were subjected to -10 degrees C chilling in a 3M DMSO extender to avoid ice crystal formation in the external solution. Survival after chilling was established as the percentage of embryos that hatch. To study the AFP I distribution in the microinjected embryos, a confocal microscopy study was done. Results demonstrate that AFP I can significantly improve chilling resistance at 0 degrees C, particularly in 2-cell microinjected embryos, displaying nearly 100% hatching rates. This fact is in agreement with the confocal microscopy observations which confirmed the presence of the AFP protein in embryonic cells. These results support the hypothesis that AFP protect cellular structures by stabilizing cellular membranes.
Diffusion of small molecules into medaka embryos improved by electroporation
2013-01-01
Background Diffusion of small molecules into fish embryos is essential for many experimental procedures in developmental biology and toxicology. Since we observed a weak uptake of lithium into medaka eggs we started a detailed analysis of its diffusion properties using small fluorescent molecules. Results Contrary to our expectations, not the rigid outer chorion but instead membrane systems surrounding the embryo/yolk turned out to be the limiting factor for diffusion into medaka eggs. The consequence is a bi-phasic uptake of small molecules first reaching the pervitelline space with a diffusion half-time in the range of a few minutes. This is followed by a slow second phase (half-time in the range of several hours) during which accumulation in the embryo/yolk takes place. Treatment with detergents improved the uptake, but strongly affected the internal distribution of the molecules. Testing electroporation we could establish conditions to overcome the diffusion barrier. Applying this method to lithium chloride we observed anterior truncations in medaka embryos in agreement with its proposed activation of Wnt signalling. Conclusions The diffusion of small molecules into medaka embryos is slow, caused by membrane systems underneath the chorion. These results have important implications for pharmacologic/toxicologic techniques like the fish embryo test, which therefore require extended incubation times in order to reach sufficient concentrations in the embryos. PMID:23815821
Ismail, Ahmad; Yusof, Shahrizad
2011-01-01
Several organisms have been used as indicators, bio-monitoring agents or test organisms in ecotoxicological studies. A close relative of the well established Japanese medaka, the Java medaka (Oryzias javanicus), has the potential to be a test organism. The fish is native to the estuaries of the Malaysian Peninsula, Thailand, Indonesia and Singapore. In this study, newly fertilised eggs were exposed to different concentrations of Cd and Hg. Observations were done on the development of the embryos. Exposure to low levels of Cd and Hg (0.01-0.05 ppm) resulted in several developmental disorders that led to death. Exposure to ≥1.0 ppm Cd resulted in immediate developmental arrest. The embryos of Java medaka showed tolerance to a certain extent when exposed to ≥1.0 ppm Hg compared to Cd. Based on the sensitivity of the embryos, Java medaka is a suitable test organism for ecotoxicology in the tropical region. Copyright © 2011 Elsevier Ltd. All rights reserved.
Akagi, Jin; Khoshmanesh, Khashayar; Evans, Barbara; Hall, Chris J.; Crosier, Kathryn E.; Cooper, Jonathan M.; Crosier, Philip S.; Wlodkowic, Donald
2012-01-01
Zebrafish (Danio rerio) has recently emerged as a powerful experimental model in drug discovery and environmental toxicology. Drug discovery screens performed on zebrafish embryos mirror with a high level of accuracy the tests usually performed on mammalian animal models, and fish embryo toxicity assay (FET) is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, automated in-situ analysis of zebrafish embryos is still deeply in its infancy. This is mostly due to the inherent limitations of conventional techniques and the fact that metazoan organisms are not easily susceptible to laboratory automation. In this work, we describe the development of an innovative miniaturized chip-based device for the in-situ analysis of zebrafish embryos. We present evidence that automatic, hydrodynamic positioning, trapping and long-term immobilization of single embryos inside the microfluidic chips can be combined with time-lapse imaging to provide real-time developmental analysis. Our platform, fabricated using biocompatible polymer molding technology, enables rapid trapping of embryos in low shear stress zones, uniform drug microperfusion and high-resolution imaging without the need of manual embryo handling at various developmental stages. The device provides a highly controllable fluidic microenvironment and post-analysis eleuthero-embryo stage recovery. Throughout the incubation, the position of individual embryos is registered. Importantly, we also for first time show that microfluidic embryo array technology can be effectively used for the analysis of anti-angiogenic compounds using transgenic zebrafish line (fli1a:EGFP). The work provides a new rationale for rapid and automated manipulation and analysis of developing zebrafish embryos at a large scale. PMID:22606275
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herkovits, J.; Herkovits, F.D.; Perez-Coll, C.S.
Although crustaceans, fish and algae are receiving increasing attention as test organisms in short-term tests, it is important to note that other species could be more than order of magnitude more susceptible la xenobiotics and therefore, profitable for toxicity screening for a proper protection of the diversity and complexity of the ecosystems. In this report the sensitivity of Bufo arenarum (embryos) and Cnesterodon decemmaculatus to aluminum (AIC1 3) is evaluated in a renewal toxicity test system at 20 C and informed as LC100, LC50 and NOEC for 24 and up till 96 hours of exposure (acute Toxicity Profile -- TPamore » -- for aluminum). The tests with fish were conducted maintaining 10 individuals in 1 liter of EPA water (by quadruplicate) in six concentration of Al(3+). The pH of the experimental solutions were measured. The LC100, LC50 and NOEC for fishes expressed in Al(3+) mg/L were: 7.5 (the pH of this solutions was 4.3), 7 and 6 at 24 as well as for 48, 72 and 96 hours of exposure, while for Bufo arenarum embryos the LC100, LC50 and NOEC were 0.9 (pH 6.2), 0.6 and 0.1 for 24 hours and up till 96 hours of exposure. Therefore, Bufo arenarum (embryos) seems to be about one order of magnitude more sensitive than the solution is adjusted from 4.3 to 6.2, no lethal effect on fish was registered. The TPa shows that the most toxic period is within the first 24 hours of exposure while on the other hand in fishes as well as in amphibian embryos the LC50 is closer to the LC100 value that to NOEC and therefore, exposure around LC50 concentrations, in the case of aluminum, represents a risk for the whole population.« less
Fish as bioreactors: transgene expression of human coagulation factor VII in fish embryos.
Hwang, Gyulin; Müller, Ferenc; Rahman, M Aziz; Williams, Darren W; Murdock, Paul J; Pasi, K John; Goldspink, Geoffrey; Farahmand, Hamid; Maclean, Norman
2004-01-01
A plasmid containing human coagulation factor VII (hFVII) complementary DNA regulated by a cytomegalovirus promoter was microinjected into fertilized eggs of zebrafish, African catfish, and tilapia. The active form of hFVll was detected in the fish embryos by various assays. This positive expression of human therapeutic protein in fish embryos demonstrates the possibility of exploitation of transgenic fish as bioreactors.
Butler, Josh D; Parkerton, Thomas F; Redman, Aaron D; Letinski, Daniel J; Cooper, Keith R
2016-08-02
Aromatic hydrocarbons (AH) are known to impair fish early life stages (ELS). However, poorly defined exposures often confound ELS-test interpretation. Passive dosing (PD) overcomes these challenges by delivering consistent, controlled exposures. The objectives of this study were to apply PD to obtain 5 d acute embryo lethality and developmental data and 30 d chronic embryo-larval survival and growth-effects data using zebrafish with different AHs; to analyze study and literature toxicity data using target-lipid (TLM) and chemical-activity (CA) models; and to extend PD to a mixture and test the assumption of AH additivity. PD maintained targeted exposures over a concentration range of 6 orders of magnitude. AH toxicity increased with log Kow up to pyrene (5.2). Pericardial edema was the most sensitive sublethal effect that often preceded embryo mortality, although some AHs did not produce developmental effects at concentrations causing mortality. Cumulative embryo-larval mortality was more sensitive than larval growth, with acute-to-chronic ratios of <10. More-hydrophobic AHs did not exhibit toxicity at aqueous saturation. The relationship and utility of the TLM-CA models for characterizing fish ELS toxicity is discussed. Application of these models indicated that concentration addition provided a conservative basis for predicting ELS effects for the mixture investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blüthgen, Nancy; University of Basel, Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, CH-4056 Basel; Zucchi, Sara
Organic UV filters including benzophenone-3 (BP-3) are widely used to protect humans and materials from damage by UV irradiation. Despite the environmental occurrence of BP-3 in the aquatic environment, little is known about its effects and modes of action. In the present study we assess molecular and physiological effects of BP-3 in adult male zebrafish (Danio rerio) and in eleuthero-embryos by a targeted gene expression approach focusing on the sex hormone system. Fish and embryos are exposed for 14 days and 120 hours post fertilization, respectively, to 2.4–312 μg/L and 8.2–438 μg/L BP-3. Chemical analysis of water and fish demonstratesmore » that BP-3 is partly transformed to benzophenone-1 (BP-1) and both compounds are accumulated in adult fish. Biotransformation to BP-1 is absent in eleuthero-embryos. BP-3 exposure leads to similar alterations of gene expression in both adult fish and eleuthero-embryos. In the brain of adult males esr1, ar and cyp19b are down-regulated at 84 μg/L BP-3. There is no induction of vitellogenin expression by BP-3, both at the transcriptional and protein level. An overall down-regulation of the hsd3b, hsd17b3, hsd11b2 and cyp11b2 transcripts is observed in the testes, suggesting an antiandrogenic activity. No histological changes were observed in the testes after BP-3 treatment. The study leads to the conclusion that low concentrations of BP-3 exhibit similar multiple hormonal activities at the transcription level in two different life stages of zebrafish. Forthcoming studies should show whether this translates to additional physiological effects. Highlights: ► Activity of UV filter benzophenone-3 (BP-3) is assessed in zebrafish. ► BP-3 is partly metabolized to benzophenone-1 by adult fish but not embryos. ► Alterations of gene expression are similar in adult males and embryos. ► Gene expression alterations point to multiple hormonal activity of BP-3.« less
Sobanska, Marta; Scholz, Stefan; Nyman, Anna-Maija; Cesnaitis, Romanas; Gutierrez Alonso, Simon; Klüver, Nils; Kühne, Ralph; Tyle, Henrik; de Knecht, Joop; Dang, Zhichao; Lundbergh, Ivar; Carlon, Claudio; De Coen, Wim
2018-03-01
In 2013 the Organisation for Economic Co-operation and Development (OECD) test guideline (236) for fish embryo acute toxicity (FET) was adopted. It determines the acute toxicity of chemicals to embryonic fish. Previous studies show a good correlation of FET with the standard acute fish toxicity (AFT) test; however, the potential of the FET test to predict AFT, which is required by the Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) regulation (EC 1907/2006) and the Classification, Labelling and Packaging (CLP) Regulation (EC 1272/2008), has not yet been fully clarified. In 2015 the European Chemicals Agency (ECHA) requested that a consultant perform a scientific analysis of the applicability of FET to predict AFT. The purpose was to compare the toxicity of substances to fish embryos and to adult fish, and to investigate whether certain factors (e.g., physicochemical properties, modes of action, or chemical structures) could be used to define the applicability boundaries of the FET test. Given the limited data availability, the analysis focused on organic substances. The present critical review summarizes the main findings and discusses regulatory application of the FET test under REACH. Given some limitations (e.g., neurotoxic mode of action) and/or remaining uncertainties (e.g., deviation of some narcotic substances), it has been found that the FET test alone is currently not sufficient to meet the essential information on AFT as required by the REACH regulation. However, the test may be used within weight-of-evidence approaches together with other independent, relevant, and reliable sources of information. The present review also discusses further research needs that may overcome the remaining uncertainties and help to increase acceptance of FET as a replacement for AFT in the future. For example, an increase in the availability of data generated according to OECD test guideline 236 may provide evidence of a higher predictive power of the test. Environ Toxicol Chem 2018;37:657-670. © 2017 SETAC. © 2017 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty
2012-05-01
On December 22, 2008, a dike containing fly ash and bottom ash in an 84-acre complex of the Tennessee Valley Authority's (TVA) Kingston Steam Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits extended as far as 4 miles upstream (Emory River mile 6) of the Plant, and some ash was carried as far downstream as Tennessee River mile 564 ({approx}4 miles downstream of the Tennessee River confluence with the Clinch River). A byproduct of coal burning power plants, fly ash contains a variety of metals and other elements which,more » at sufficient concentrations and in specific forms, can be toxic to biological systems. The effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to be the effects of specific ash constituents, especially selenium, on fish early life stages. Uptake by adult female fish of fly ash constituents through the food chain and subsequent maternal transfer of contaminants to the developing eggs is thought to be the primary route of selenium exposure to larval fish (Woock and others 1987, Coyle and others 1993, Lemly 1999, Moscatello and others 2006), but direct contact of the fertilized eggs and developing embryos to ash constituents in river water and sediments is also a potential risk factor (Woock and others 1987, Coyle and others 1993, Jezierska and others 2009). To address the risk of fly ash from the Kingston spill to the reproductive health of downstream fish populations, ORNL has undertaken a series of studies in collaboration with TVA including: (1) a field study of the bioaccumulation of fly ash constituents in fish ovaries and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill; (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (reported in the current technical manuscript); (3) additional laboratory experimentation focused on the potential effects of long-term exposures to fly ash on fish survival and reproductive competence; and (4) a combined field and laboratory study examining the in vitro developmental success of embryos and larvae obtained from fish exposed in vivo for over two years to fly ash in the Emory and Clinch Rivers. These fish reproduction and early life-stage studies are being conducted in conjunction with a broader biological monitoring program administered by TVA that includes a field study of the condition of larval fish in the Emory and Clinch Rivers along with assessments of water quality, sediment composition, ecotoxicological studies, terrestrial wildlife studies, and human and ecological risk assessment. Information and data generated from these studies will provide direct input into risk assessment efforts and will also complement and help support other phases of the overall biomonitoring program. Fish eggs, in general, are known to be capable of concentrating heavy metals and other environmental contaminants from water-borne exposures during embryonic development (Jezierska and others 2009), and fathead minnow embryos in particular have been shown to concentrate methylmercury (Devlin 2006) as well as other chemical toxicants. This technical report focuses on the responses of fathead minnow embryos to simple contact exposures to fly ash in laboratory toxicity tests adapted from a standard fathead minnow (Pimephales promelas) 7-d embryo-larval survival and teratogenicity test (method 1001.0 in EPA 2002) with mortality, hatching success, and the incidences of developmental abnormalities as measured endpoints.« less
Panter, G H; Hutchinson, T H; Hurd, K S; Bamforth, J; Stanley, R D; Duffell, S; Hargreaves, A; Gimeno, S; Tyler, C R
2006-05-10
An extended early-life stage test (based on OECD test guideline 210) was developed to allow the evaluation of a weak environmental oestrogen, 4-tert-pentyphenol (4TPP), on sexual differentiation and gonadal development. Fathead minnow (Pimephales promelas) embryos were exposed to three concentrations of 4TPP (56, 180 and 560 microg l(-1)) in a flow-through system, at 25+/-1 degrees C, for <107 days post-hatch (dph). In addition, some embryos were exposed to 180 microg 4TPPl(-1) until 30 or 60 dph, after which they were exposed to dilution water only until 107 dph. At 30, 60 and 107 dph fish were evaluated for growth and gonadal development (via histology), and at 107 dph fish were also evaluated for secondary sexual characteristics (SSC), gonadosomatic index (GSI) and plasma vitellogenin (VTG). There were no effects of 4TPP on hatching success or survival, however, there was a delay in the time taken for embryos to hatch (560 microg 4TPPl(-1)). No treatment-related effects were observed on fish growth, with the exception of at 107 dph when the condition factor in female fish was reduced in all 4TPP continuous exposure treatments. Plasma VTG was only elevated in female fish exposed to 180 microg 4TPPl(-1) and inhibition of gonadal growth (GSI) occurred only in females exposed to 560 microg 4TPPl(-1). Histological examination of the gonads revealed delays and disruption in male sexual differentiation and development (180 microg 4TPPl(-1)) and no testicular tissue was observed in any fish exposed to 560 microg 4TPPl(-1). Mixed gonads (predominately testes with a scattering of primary oocytes) were present in fish exposed to all doses of 180 microg 4TPPl(-1) at 107 dph. Feminisation of the reproductive ducts (formation of an ovarian like cavity) occurred in the testis of all males exposed to 180 microg l(-1), regardless of length of 4TPP exposure. Results indicate that the period of 30-60 dph appears to be the sensitive window for disruption of formation of the reproductive duct and this effect is not reversible when the fish are transferred to dilution water. The data also show that this integrative test is suitable for the detection of a weak environmental oestrogen and comparisons of these results with that of a fish full life-cycle, in medaka, indicate that this test could be a suitable surrogate for a fish full life-cycle.
Gurkov, Anton; Sadovoy, Anton; Shchapova, Ekaterina; Teh, Cathleen; Meglinski, Igor; Timofeyev, Maxim
2017-01-01
In vivo physiological measurement is a major challenge in modern science and technology, as is environment conservation at the global scale. Proper toxicological testing of widely produced mixtures of chemicals is a necessary step in the development of new products, allowing us to minimize the human impact on aquatic ecosystems. However, currently available bioassay-based techniques utilizing small aquatic organisms such as fish embryos for toxicity testing do not allow assessing in time the changes in physiological parameters in the same individual. In this study, we introduce microencapsulated fluorescent probes as a promising tool for in vivo monitoring of internal pH variation in zebrafish embryos. The pH alteration identified under stress conditions demonstrates the applicability of the microencapsulated fluorescent probes for the repeated analysis of the embryo's physiological state. The proposed approach has strong potential to simultaneously measure a range of physiological characteristics using a set of specific fluorescent probes and to finally bring toxicological bioassays and related research fields to a new level of effectiveness and sensitivity.
Locomotor behavior of fish hatched from embryos exposed to flight conditions
NASA Technical Reports Server (NTRS)
Kleerekoper, H.
1978-01-01
Embryos of Fundulus heteroclitus in various stages of development were exposed to space flight conditions aboard Apollo spacecraft and Cosmos satellites. The objective of the study was to ascertain whether fish hatched from these embryos displayed locomotor behavior different from that of control fish of the same age. An electronic monitoring technique was used to record behavior. Results indicate no change in locomotor behavior in fish on Apollo Spacecraft, but inexplicable significant changes were noted in fish aboard Cosmos Satellites.
Takagi, Wataru; Kajimura, Makiko; Tanaka, Hironori; Hasegawa, Kumi; Ogawa, Shuntaro; Hyodo, Susumu
2017-09-01
Urea is an essential osmolyte for marine cartilaginous fishes. Adult elasmobranchs and holocephalans are known to actively produce urea in the liver, muscle and other extrahepatic organs; however, osmoregulatory mechanisms in the developing cartilaginous fish embryo with an undeveloped urea-producing organ are poorly understood. We recently described the contribution of extraembryonic yolk sac membranes (YSM) to embryonic urea synthesis during the early developmental period of the oviparous holocephalan elephant fish (Callorhinchus milii). In the present study, to test whether urea production in the YSM is a general phenomenon among oviparous Chondrichthyes, we investigated gene expression and activities of ornithine urea cycle (OUC) enzymes together with urea concentrations in embryos of the elasmobranch cloudy catshark (Scyliorhinus torazame). The intracapsular fluid, in which the catshark embryo develops, had a similar osmolality to seawater, and embryos maintained a high concentration of urea at levels similar to that of adult plasma throughout development. Relative mRNA expressions and activities of catshark OUC enzymes were significantly higher in YSM than in embryos until stage 32. Concomitant with the development of the embryonic liver, the expression levels and activities of OUC enzymes were markedly increased in the embryo from stage 33, while those of the YSM decreased from stage 32. The present study provides further evidence that the YSM contributes to embryonic urea homeostasis until the liver and other extrahepatic organs become fully functional, and that urea-producing tissue shifts from the YSM to the embryonic liver in the late developmental period of oviparous marine cartilaginous fishes. Copyright © 2017 Elsevier Inc. All rights reserved.
Scholz, S; Renner, P; Belanger, S E; Busquet, F; Davi, R; Demeneix, B A; Denny, J S; Léonard, M; McMaster, M E; Villeneuve, D L; Embry, M R
2013-01-01
Endocrine disruption is considered a highly relevant hazard for environmental risk assessment of chemicals, plant protection products, biocides and pharmaceuticals. Therefore, screening tests with a focus on interference with estrogen, androgen, and thyroid hormone pathways in fish and amphibians have been developed. However, they use a large number of animals and short-term alternatives to animal tests would be advantageous. Therefore, the status of alternative assays for endocrine disruption in fish and frogs was assessed by a detailed literature analysis. The aim was to (i) determine the strengths and limitations of alternative assays and (ii) present conclusions regarding chemical specificity, sensitivity, and correlation with in vivo data. Data from 1995 to present were collected related to the detection/testing of estrogen-, androgen-, and thyroid-active chemicals in the following test systems: cell lines, primary cells, fish/frog embryos, yeast and cell-free systems. The review shows that the majority of alternative assays measure effects directly mediated by receptor binding or resulting from interference with hormone synthesis. Other mechanisms were rarely analysed. A database was established and used for a quantitative and comparative analysis. For example, a high correlation was observed between cell-free ligand binding and cell-based reporter cell assays, between fish and frog estrogenic data and between fish embryo tests and in vivo reproductive effects. It was concluded that there is a need for a more systematic study of the predictive capacity of alternative tests and ways to reduce inter- and intra-assay variability.
Barbee, Nicole C; Greig, Alan; Swearer, Stephen E
2013-07-01
In this study we explore the use of fish otoliths ('earbones') as a tool for detecting exposure to heavy metals in sediments. Because otoliths are metabolically inert and incorporate chemical impurities during growth, they can potentially provide a more permanent record of pollutant exposure history in aquatic environments than soft tissues. To validate this technique we cultured embryos of a native Australian fish, the common Galaxias (Galaxias maculatus), in the laboratory on sediments spiked with copper in a concentration gradient. Our aims were to test whether exposure to copper contaminated sediments is recorded in the otoliths of embryos and determine over what range in concentrations we can detect differences in exposure. We found elevated copper levels in otoliths of embryos exposed to high copper concentrations in sediments, suggesting that otoliths can be used as a tool to track a history of exposure to elevated copper levels in the environment. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greeley Jr, Mark Stephen; Elmore, Logan R; McCracken, Kitty
2014-01-01
The largest environmental release of coal ash in U.S. history occurred in December 2008 with the failure of a retention structure at the Tennessee Valley Authority (TVA) Kingston Fossil Plant in East Tennessee. A byproduct of coal-burning power plants, coal ash is enriched in metals and metalloids such as selenium and arsenic with known toxicity to fish including embryonic and larval stages. The effects of contact exposure to sediments containing up to 78 % coal ash from the Kingston spill on the early development of fish embryos and larvae were examined in 7-day laboratory tests with the fathead minnow (Pimephalesmore » promelas). No significant effects were observed on hatching success, incidences of gross developmental abnormalities, or embryo-larval survival. Results suggest that direct exposures to sediment containing residual coal ash from the Kingston ash release may not present significant risks to fish eggs and larvae in waterways affected by the spill.« less
NASA Astrophysics Data System (ADS)
Fuad, Nurul M.; Wlodkowic, Donald
2013-12-01
The demand to reduce the numbers of laboratory animals has facilitated the emergence of surrogate models such as tests performed on zebrafish (Danio rerio) or African clawed frog's (Xenopus levis) eggs, embryos and larvae. Those two model organisms are becoming increasingly popular replacements to current adult animal testing in toxicology, ecotoxicology and also in drug discovery. Zebrafish eggs and embryos are particularly attractive for toxicological analysis due their size (diameter 1.6 mm), optical transparency, large numbers generated per fish and very straightforward husbandry. The current bottleneck in using zebrafish embryos for screening purposes is, however, a tedious manual evaluation to confirm the fertilization status and subsequent dispensing of single developing embryos to multitier plates to perform toxicity analysis. Manual procedures associated with sorting hundreds of embryos are very monotonous and as such prone to significant analytical errors due to operator's fatigue. In this work, we present a proofof- concept design of a continuous flow embryo sorter capable of analyzing, sorting and dispensing objects ranging in size from 1.5 - 2.5 mm. The prototypes were fabricated in polymethyl methacrylate (PMMA) transparent thermoplastic using infrared laser micromachining. The application of additive manufacturing processes to prototype Lab-on-a-Chip sorters using both fused deposition manufacturing (FDM) and stereolithography (SLA) were also explored. The operation of the device was based on a revolving receptacle capable of receiving, holding and positioning single fish embryos for both interrogation and subsequent sorting. The actuation of the revolving receptacle was performed using a DC motor and/or microservo motor. The system was designed to separate between fertilized (LIVE) and non-fertilized (DEAD) eggs, based on optical transparency using infrared (IR) emitters and receivers.
Genetic documentation of filial cannibalism in nature
DeWoody, J. Andrew; Fletcher, Dean E.; Wilkins, S. David; Avise, John C.
2001-01-01
Cannibalism is widespread in natural populations of fishes, where the stomachs of adults frequently contain conspecific juveniles. Furthermore, field observations suggest that guardian males routinely eat offspring from their own nests. However, recent genetic paternity analyses have shown that fish nests often contain embryos not sired by the nest-tending male (because of cuckoldry events, egg thievery, or nest piracy). Such findings, coupled with the fact that several fish species have known capabilities for distinguishing kin from nonkin, raise the possibility that cannibalism by guardian males is directed primarily or exclusively toward unrelated embryos in their nests. Here, we test this hypothesis by collecting freshly cannibalized embryos from the stomachs of several nest-tending darter and sunfish males in nature and determining their genetic parentage by using polymorphic microsatellite markers. Our molecular results clearly indicate that guardian males do indeed consume their own genetic offspring, even when unrelated (foster) embryos are present within the nest. These data provide genetic documentation of filial cannibalism in nature. Furthermore, they suggest that the phenomenon may result, at least in part, from an inability of guardians to differentiate between kin and nonkin within their own nests. PMID:11309508
2010-01-01
Background Mosquitoes that breed in temporary pools in remote areas that dry up seasonally are especially difficult to control through chemical or biological means. The annual killifish has been suggested as a means of eradicating the aquatic stages of mosquitoes in transient pools because they can maintain permanent populations in such habitats by undergoing suspended animation or diapause during the embryonic stages to survive periodic drought. However, very little is known about the predatory activity of annual killifish and their usefulness in mosquito control. Results The annual killifish, Nothobranchius guentheri, native to Tanzania, was used in this investigation. Food preference was tested under laboratory conditions by feeding juvenile killifish with 2nd instar mosquito larvae of Culex quinquefasciatus in the presence of alternative food sources, such as rotifers and chironomid larvae. Semi-field tests were conducted by introduction of hibernating killifish embryos and juvenile fish to artificial ponds in an outdoor open environment that allowed natural oviposition of Cx. quinquefasciatus. Food preference studies show that N. guentheri preferred to prey on mosquito larvae than either chironomid or rotifers. When hibernating killifish embryos were added to ponds simultaneously with the addition of freshwater, the embryos hatched and fed on mosquito larval population resulting in complete elimination of the immature stages. The introduction of juvenile fish to ponds with high density of mosquito larvae resulted in total eradication of the mosquito population due to predation by fish. Complete biocontrol of the mosquito larval population was achieved in the presence of 3 fish per m2 of pond surface area. Conclusions The annual killifish provides yet another tool that may be employed in the eradication diseases carried by mosquitoes through vector control, particularly in temporary bodies of freshwater. The fish can be conveniently transported in the absence of water in the form of hibernating embryos. Once introduced either as embryos or juveniles in ponds, the annual killifish can effectively reduce the larval population because of its aggressive predatory activity. PMID:20492714
A new developmental toxicity test for pelagic fish using anchoveta (Engraulis ringens J.).
Llanos-Rivera, A; Castro, L R; Silva, J; Bay-Schmith, E
2009-07-01
A series of six 96-h static bioassays were performed to validate the use of anchoveta (Engraulis ringens) embryos as test organisms for ecotoxicological studies. The standardization protocol utilized potassium dichromate (K(2)Cr(2)O(7)) as a reference toxicant and egg mortality as the endpoint. The results indicated that the mean sensitivity of anchoveta embryos to potassium dichromate was 156.1 mg L(-1) (range: 131-185 mg L(-1)). The statistical data analysis showed high homogeneity in LC50 values among bioassays (variation coefficient = 11.02%). These results demonstrated that the protocol and handling procedures implemented for the anchoveta embryo bioassays comply with international standards for intra-laboratory precision. After secondary treatment, an effluent from a modern Kraft pulp mill was tested for E. ringens embryo toxicity, finding no significant differences from the controls.
Toxicity test of xanthone from mangosteen on zebrafish embryos
NASA Astrophysics Data System (ADS)
Noordin, Muhammad Akram Mohd; Noor, Mahanem Mat; Kamaruddin, Wan Mohd Aizat Wan; Lazim, Azwan Mat; Fazry, Shazrul
2016-11-01
Xanthone is a chemical compound identified in mangosteen pericarp. A previous study showed that xanthone has anti-proliferating effect on cancer cells. In this study we investigate the toxicity level of xanthone in zebrafish embryo to for future reference on other animal model. We employed Fish Embryo Toxicity (FET) assay to determine the toxicity level of different concentrations of xanthone. Embryos were observed at 24, 48 and 72 hours post fertilization (hpf) under microscope at 4× magnification. The extract showed toxicity effect on embryo at concentrations of 250, 125 and 62.5 µg/mL. Concentrations at 15.63, 7.81 and 3.91 µg / mL of xanthone did not harm the embryos and showed 100% of survival.
Blüthgen, Nancy; Zucchi, Sara; Fent, Karl
2012-09-01
Organic UV filters including benzophenone-3 (BP-3) are widely used to protect humans and materials from damage by UV irradiation. Despite the environmental occurrence of BP-3 in the aquatic environment, little is known about its effects and modes of action. In the present study we assess molecular and physiological effects of BP-3 in adult male zebrafish (Danio rerio) and in eleuthero-embryos by a targeted gene expression approach focusing on the sex hormone system. Fish and embryos are exposed for 14 days and 120 hours post fertilization, respectively, to 2.4-312 μg/L and 8.2-438 μg/L BP-3. Chemical analysis of water and fish demonstrates that BP-3 is partly transformed to benzophenone-1 (BP-1) and both compounds are accumulated in adult fish. Biotransformation to BP-1 is absent in eleuthero-embryos. BP-3 exposure leads to similar alterations of gene expression in both adult fish and eleuthero-embryos. In the brain of adult males esr1, ar and cyp19b are down-regulated at 84 μg/L BP-3. There is no induction of vitellogenin expression by BP-3, both at the transcriptional and protein level. An overall down-regulation of the hsd3b, hsd17b3, hsd11b2 and cyp11b2 transcripts is observed in the testes, suggesting an antiandrogenic activity. No histological changes were observed in the testes after BP-3 treatment. The study leads to the conclusion that low concentrations of BP-3 exhibit similar multiple hormonal activities at the transcription level in two different life stages of zebrafish. Forthcoming studies should show whether this translates to additional physiological effects. Copyright © 2012 Elsevier Inc. All rights reserved.
Basnet, Ram Manohar; Guarienti, Michela; Memo, Maurizio
2017-03-09
Zebrafish embryo is emerging as an important tool for behavior analysis as well as toxicity testing. In this study, we compared the effect of nine different methylxanthine drugs using zebrafish embryo as a model. We performed behavioral analysis, biochemical assay and Fish Embryo Toxicity (FET) test in zebrafish embryos after treatment with methylxanthines. Each drug appeared to behave in different ways and showed a distinct pattern of results. Embryos treated with seven out of nine methylxanthines exhibited epileptic-like pattern of movements, the severity of which varied with drugs and doses used. Cyclic AMP measurement showed that, despite of a significant increase in cAMP with some compounds, it was unrelated to the observed movement behavior changes. FET test showed a different pattern of toxicity with different methylxanthines. Each drug could be distinguished from the other based on its effect on mortality, morphological defects and teratogenic effects. In addition, there was a strong positive correlation between the toxic doses (TC 50 ) calculated in zebrafish embryos and lethal doses (LD 50 ) in rodents obtained from TOXNET database. Taken together, all these findings elucidate the potentiality of zebrafish embryos as an in vivo model for behavioral and toxicity testing of methylxanthines and other related compounds.
Capalbo, Antonio; Wright, Graham; Elliott, Thomas; Ubaldi, Filippo Maria; Rienzi, Laura; Nagy, Zsolt Peter
2013-08-01
Does comprehensive chromosome screening (CCS) of cells sampled from the blastocyst trophectoderm (TE) accurately predict the chromosome complement of the inner cell mass (ICM)? Comprehensive chromosome screening of a TE sample is unlikely to be confounded by mosaicism and has the potential for high diagnostic accuracy. The effectiveness of chromosome aneuploidy screening is limited by the technologies available and chromosome mosaicism in the embryo. Combined with improving methods for cryopreservation and blastocyst culture, TE biopsy and CCS is considered to be a promising approach to select diploid embryos for transfer. The study was performed between January 2011 and August 2011. In the first part, a new ICM isolation method was developed and tested on 20 good morphology blastocysts. In the main phase of the study, fluorescence in situ hybridization (FISH) was used to reanalyse the ICMs and TEs separated from 70 embryos obtained from 26 patients undergoing blastocyst stage array comparative genome hybridization (aCGH) PGS cycles. The isolated ICM and TE fractions were characterized by immunostaining for KRT18. Then, non-transferrable cryopreserved embryos were selected for the FISH reanalysis based on previous genetic diagnosis obtained by TE aCGH analysis. Blastocysts either diploid for chromosome copy number (20) or diagnosed as single- (40) or double aneuploid (10) were included after preparing the embryo into one ICM and three equal-sized TE sections. Accuracy of the aCGH was measured based on FISH reanalysis. Chromosomal segregations resulting in diploid/aneuploid mosaicism were classified as 'low-', 'medium-' and 'high-' grade and categorized with respect to their distribution (1TE, 2TE, 3TE, ICM or ALL embryo). Linear regression model was used to test the relationship between the distributions and the proportion of aneuploid cells across the four embryo sections. Fisher's exact test was used to test for random allocation of aneuploid cells between TE and ICM. All ICM biopsy procedures displayed ICM cells in the recovered fraction with a mean number of ICM cells of 26.2 and a mean TE cell contamination rate of 2%. By FISH reanalysis of previously aCGH-screened blastocysts, a total of 66 aneuploidies were scored, 52 (78.8%) observed in all cells and 14 (21.2%) mosaic. Overall, mosaic chromosomal errors were observed only in 11 out of 70 blastocysts (15.7%) but only 2 cases were classified as mosaic diploid/aneuploid (2.9%). Sensitivity and specificity of aCGH on TE clinical biopsies were 98.0 and 100% per embryo and 95.2 and 99.8% per chromosome, respectively. Linear regression analysis performed on the 11 mosaic diploid/aneuploid chromosomal segregations showed a significant positive correlation between the distribution and the proportion of aneuploid cells across the four-blastocyst sections (P < 0.01). In addition, regression analysis revealed that both the grade and the distribution of mosaic abnormal cells were significantly correlated with the likelihood of being diagnosed by aCGH performed on clinical TE biopsies (P = 0.019 and P < 0.01, respectively). Fisher's exact test for the 66 aneuploidies recorded showed no preferential allocation of abnormal cells between ICM and TE (P = 0.33). The study is limited to non-transferable embryos, reanalyzed for only nine chromosomes and excludes segmental imbalance and uniparental disomy. The prevalence of aneuploidy in the study group is likely to be higher than in the general population of clinical PGD embryos. This study showed high accuracy of diagnosis achievable during blastocyst stage PGS cycles coupled with 24-chromosomes molecular karyotyping analysis. The new ICM isolation strategy developed may open new possibilities for basic research in embryology and for clinical grade derivation of human embryonic stem cells. No specific funding was sought or obtained for this study.
Oil and oil dispersant do not cause synergistic toxicity to fish embryos.
Adams, Julie; Sweezey, Michael; Hodson, Peter V
2014-01-01
Atlantic herring (Clupea harengus) embryos were exposed to water accommodated fractions (WAFs; oil dissolved in water) and chemically enhanced water accommodated fractions (CEWAFs; oil dispersed in water with Corexit 9500A) of Medium South American (MESA) crude oil. The CEWAF was approximately 100-fold more toxic than WAF based on nominal loadings of test solutions (% v/v). In contrast, the ratio of WAF and CEWAF toxicity expressed as measured oil concentrations approximated 1.0, indicating that the higher toxicity of CEWAFs was caused by an increase in exposure to hydrocarbons with chemical dispersion. In a second experiment, the chronic toxicity of Corexit 9500A and chemically dispersed heavy fuel oil 7102 (HFO 7102) to rainbow trout (Oncorhynchus mykiss) embryos was compared to chemically dispersed Nujol, a nontoxic mineral oil. Dispersant alone was toxic, but caused different signs of toxicity than HFO 7102. Nujol at a dispersant-to-oil ratio of 1:20 was nontoxic, suggesting that dispersant was sequestered by oil and not present at toxic concentrations. In contrast, the same nominal loadings of dispersed HFO 7102 caused concentration-dependent increases in toxicity. Both experiments suggest that chemically dispersed oil was more toxic to fish embryos than solutions created by mechanical mixing due to the increased exposure of fish to petroleum hydrocarbons and not to changes in hydrocarbon toxicity. The Nujol control discriminated between the toxicity of oil and chemical dispersant and would be a practical addition to programs of dispersant testing.
Kynard, B.; Parker, E.; Pugh, D.; Parker, T.
2007-01-01
Understanding the drift dynamics of pallid sturgeon (Scaphirhynchus albus) early life intervals is critical to evaluating damming effects on sturgeons. However, studying dispersal behavior is difficult in rivers. In stream tanks, we studied the effect of velocity on dispersal and holding ability, estimated swimming height, and used the data to estimate drift distance of pallid sturgeon. Dispersal was by days 0-10 embryos until fish developed into larvae on day 11 after 200 CTU (daily cumulative temperature units). Embryos in tanks with a mean channel velocity of 30.1 cm s-1 and a side eddy could not hold position in the eddy, so current controlled dispersal. Late embryos (days 6-10 fish) dispersed more passes per hour than early embryos (days 0-5 fish) and held position in side eddies when channel velocities were 17.3 cm s-1 or 21.1 cm s-1. Day and night swim-up and drift by embryos is an effective adaptation to disperse fish in channel flow and return fish from side eddies to the channel. Early embryos swam <0.50 cm above the bottom and late embryos swam higher (mean, 90 cm). A passive drift model using a near bottom velocity of 32 cm s-1 predicted that embryos dispersing for 11 days in channel flow would travel 304 km. Embryos spawned at Fort Peck Dam, Missouri River, must stop dispersal in <330 km or enter Lake Sakakawea, where survival is likely poor. The model suggests there may be a mismatch between embryo dispersal distance and location of suitable rearing habitat. This situation may be common for pallid sturgeon in dammed rivers. ?? 2007 Blackwell Verlag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herkovits, J.; Herkovits, F.D.; Fernandez, A.
The identification of mercurium hazard for Cnesterodon decemmaculatus and Bufo arenarum (embryos) was evaluated in a renewal toxicity test system at 20 C and informed as LC100, LC50 and NOEC for 24 and up till 96 hours of exposure (acute Toxicity Profile -- TPa -- for mercurium). On addition the beneficial effect of zinc against the lethal effect of mercurium is reported. The test with fish were conducted maintaining 10 individuals in 1 L of EPA water (by quadruplicate) in six concentrations of Hg plus controls, while for amphibian, batches of 10 Bufo arenarum embryos at stage 25 (by quadruplicate)more » were maintained in 40 ml of Holtfreter`s solution in six concentration of Hg + (HgCl) plus controls. The LC100, LC50 and NOEC for fishes expressed in Hg (+) mg/L were: 0.60, 0.25 and 0.10 for 24 hours of exposure. These values increased very slightly at least up till 96 hours of exposure. Therefore, Bufo arenarum seems to be about three times more sensitive than Cnesterodon decemmaculatus to mercurium. By means of simultaneous mercurium-zinc treatment (ZnSO4) the lethal effect of mercurium could be reduced in amphibians up till 100% with 18 mg Zn2+/L, while for the fish the best result obtained was a reduction of about 50% of lethality within the first 96 hours of treatment with 20 mg Zn2+/L. As a whole the results point out the high susceptibility of amphibian embryos to xenobiotics, the beneficial effect of zinc against embryos to xenobiotics, the beneficial effect of zinc against toxicity exerted by Hg and the need of biological test systems for recording the combined effects of substances released to the environment.« less
Thellmann, Paul; Kuch, Bertram; Wurm, Karl; Köhler, Heinz-R; Triebskorn, Rita
2017-01-01
The present work investigates the impact of discharges from a storm water sedimentation basin (SSB) receiving runoff from a connected motorway in southern Germany. The study lasted for almost two years and was aimed at assessing the impact of the SSB on the fauna of the Argen River, which is a tributary of Lake Constance. Two sampling sites were examined up- and downstream of the SSB effluent. A combination of different diagnostic methods (fish embryo test with the zebrafish, histopathology, micronucleus test) was applied to investigate health impairment and genotoxic effects in indigenous fish as well as embryotoxic potentials in surface water and sediment samples of the Argen River, respectively, in samples of the SSB effluent. In addition, sediment samples from the Argen River and tissues of indigenous fish were used for chemical analyses of 33 frequently occurring pollutants by means of gas chromatography. Furthermore, the integrity of the macrozoobenthos community and the fish population were examined at both investigated sampling sites. The chemical analyses revealed a toxic burden with trace substances (originating from traffic and waste water) in fish and sediments from both sampling sites. Fish embryo tests with native sediment and surface water samples resulted in various embryotoxic effects in exposed zebrafish embryos (Fig. 1). In addition, the health condition of the investigated fish species (e.g., severe alterations in the liver and kidney) provided clear evidence of water contamination at both Argen River sites (Fig. 2). At distinct points in time, some parameters (fish development, kidney and liver histopathology) indicated stronger effects at the sampling site downstream of the SSB effluent than at the upstream site. Our results clearly showed that the SSB cannot be assigned as the main source of pollutants that are released into the investigated Argen River section. Moreover, we showed that there is moderate background pollution with substances originating from waste waters and traffic which still should be taken seriously, particularly with regard to the impairment of fish health at both investigated field sites. Since the Argen is a tributary of Lake Constance, our results call for a management plan to ensure and improve the river's ecological stability.
Phototoxicity of TiO2 nanoparticles to zebrafish (Danio rerio) is dependent on life stage.
Ma, Hongbo; Diamond, Stephen A
2013-09-01
Zebrafish embryos have been used increasingly to evaluate nanomaterial toxicity. The present study compared phototoxicity of TiO2 nanoparticles with zebrafish at 4 life stages (embryos, yolk-sac larvae, free-swimming larvae, and juvenile) under simulated sunlight using the 96-h standard toxicity assay. Yolk-sac larvae were found to be the most sensitive to TiO2 phototoxicity, suggesting that the widely used zebrafish embryo test may not fully or accurately predict hazard and risk of these nanoparticles to small fish. Copyright © 2013 SETAC.
Park, Yong Joo; Lee, Min Jee; Kim, Ha Ryong; Chung, Kyu Hyuck; Oh, Seung Min
2014-09-01
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent bioaccumulative environmental contaminant that is an endocrine disruptor. Embryos of various fish species are responsive to TCDD and have been used as an alternative method to the acute toxicity test with juvenile and adult fish. The TCDD test has similar endpoints of developmental toxicity. However, their sensitivity and signs of TCDD-induced toxicity are different depending on fish species and its habit. Crucian carp (Carassius auratus) - the sentinel species for persistent organic pollutants and a common foodfish in China, Japan, and Korea - was used to identify the developmental toxicity of TCDD. We obtained the fertilized eggs from the artificial fertilization of crucian carp (97.45% success rate). Embryos at 3h post fertilization (hpf) were exposed to no vehicle, vehicle (dimethylsulfoxide, 0.1% v/v) or TCDD (0.128, 0.32, 0.8, 2 and 5 μg/L) for 1h and then fresh water was changed and aerated. Embryonic development and toxicity were monitored until 150 hpf. TCDD-exposed group showed no effects on embryo mortality and hatching rate from 6 to 126 hpf. On the other hand, the post-hatching mortality rate in TCDD-exposed group was increased in a dose-dependent manner, especially at high doses (0.8, 2 and 5 μg/L). The LD50 for larval mortality was calculated to 0.24 ng TCDD/g embryo. Pericardial edema was continuously observed in larvae of TCDD-exposed groups from hatching complete time (78 hpf), followed by the onset of yolk sac edema. Hemorrhage and edema showed a significant increase depending on exposure concentration and time. Expression of TCDD-related CYP1A genes was evaluated quantitatively. Embryo and larvae in TCDD-exposed groups displayed a significant increase of CYP1A gene expression. Overall, we defined TCDD-induced toxicity in artificially fertilized crucian carp embryo and these results suggest that crucian carp can be applied as an early life stage model of TCDD-induced toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jelinski, J.A.; Anderson, S.L.
1995-12-31
The authors` objectives were to determine the feasibility of using embryos of two fish species, Menidia beryllina and Atherinops affinis, in estuarine sediment toxicity tests at ambient temperatures and salinities, and to compare pore-water and sediment water interface corer (SWIC) exposure techniques using these same species. The ultimate goal is to determine whether these pore-water and SWIC methods can be used in in situ exposure studies. Sediment samples were collected at both a reference and contaminated site at the Mare Island Naval Shipyard in San Francisco Bay. Pore-water testes were conducted using methods developed in the laboratory, and SWIC testsmore » were conducted using a modification of B. Anderson et al. Salinity and temperature tolerance experiments revealed that M. beryllina embryos can tolerate temperatures between 160 C and 240 C and salinities of 10 ppt to 25 ppt, whereas A. affinis has a temperature range between 160 C and 200 C. Comparisons between pore-water and SWIC exposures at a reference site within MINSY showed no significant difference in hatching success. However, hatching success in SWIC exposures was significantly lower than pore-water exposures at a previously characterized contaminated site. In conclusion, both M. beryllina and A. affinis embryos may be useful for sediment and in situ toxicity testing in estuarine environments. Their wide temperature and salinity tolerances allow for minimal test manipulations, and M. beryllina showed excellent hatching success in reference sediments for both types of exposures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodewein, Lambert
Dendrimers are an emerging class of polymeric nanoparticles with beneficial biomedical applications like early diagnostics, in vitro gene transfection or controlled drug delivery. However, the potential toxic impact of exposure on human health or the environment is often inadequately defined. Thus, polyamidoamine (PAMAM) dendrimers of generations G3.0, 3.5, 4.0, 4.5 and 5.0 and polypropylenimine (PPI) dendrimers G3.0, 4.0 and 5.0 were tested in zebrafish embryos for 96 h and human cancer cell lines for 24 h, to assess and compare developmental in vivo toxicity with cytotoxicity. The zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time, withmore » EC50 values ranging from 0.16 to just below 1.7 μM at 24 and 48 hpf. The predominant effects were mortality, plus reduced heartbeat and blood circulation for PPI dendrimers. Apoptosis in the embryos increased in line with the general toxicity concentration-dependently. Hatch and dechorionation of the embryos increased the toxicity, suggesting a protective role of the chorion. Lower generation dendrimers were more toxic in the embryos whereas the toxicity in the HepG2 and DU145 cell lines increased with increasing generation of cationic PAMAMs and PPI dendrimers. HepG2 were less sensitive than DU145 cells, with IC50 values ≥ 402 μM (PAMAMs) and ≤ 240 μM (PPIs) for HepG2 and ≤ 13.24 μM (PAMAMs) and ≤ 12.84 μM (PPIs) for DU145. Neither in fish embryos nor cells toxicity thresholds were determinable for anionic PAMAM G3.5 and G4.5. The study demonstrated that the cytotoxicity underestimated the in-vivo toxicity of the dendrimers in the fish embryos. - Highlights: • Zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time. • Zebrafish embryo toxicity of cationic dendrimers did not increase with generation. • Cationic dendrimers induced apoptosis in zebrafish embryos. • Toxicity of cationic dendrimers was lower in HepG2 and DU145 than zebrafish embryos. • Anionic PAMAM dendrimers showed little to no toxicity in fish embryos and cells.« less
Rocha, Otávio Pelegrino; De Oliveira, Danielle Palma
2017-01-01
Tannery effluents consist of a complex chemical composition not only limited to primary pollutants, which also require biological detection as these compounds may produce adverse effects. The fish embryo toxicity (FET) test with Danio rerio is an alternative method in hazard and risk assessment for determination of chemical-mediated effects. The aim of this investigation was to use the FET test to detect compounds and consequent effects in Brazilian tannery effluents. Samples were collected from the inlet and outlet of the effluent treatment plant at a tannery located in Restinga, São Paulo, Brazil. The toxicological effects were assessed using FET assay for a period of 144 hr using indices such as (1) coagulation of fertilized eggs, (2) lack of detachment of tail-bud from yolk sac, (3) absence of spontaneous movement, (4) yolk sack edema, (5) malformation of the tail, (6) scoliosis, and (7) deformation of swim bladder in the embryos. Data showed that effluent treatment plant exposure produced acute toxicity in D. rerio embryos as evidenced by coagulation of fertilized eggs in up to 5% of all diluted samples 24 hr post fertilization for inlet effluent samples compared to 100% coagulation for outlet samples. Results demonstrated that these effects may not be attributed to metals, but to other non-detected components, such as dyes, pigments, biocides, carriers, surfactants, or other organic compounds that might be present in these complex mixtures. The use of D. rerio embryos was found to be useful as an additional tool for ecotoxicity testing to assess the potential environmental acute toxicity influence of tannery effluents.
Support of ASTP/KOSMOS fundulus embryo development experiment
NASA Technical Reports Server (NTRS)
Fuller, P. M.; Keefe, J. R.
1977-01-01
Results from the Kosmos Biosatellite 782 flight are presented. Experiments with fish hatchlings are discussed along with postflight observation and testing. The preparation of fertilized eggs for the experiments is described.
Mhadhbi, Lazhar; Fumega, José; Boumaiza, Moncef; Beiras, Ricardo
2012-03-01
The environmental presence of polybrominated diphenyl ethers (PBDEs), among which BDE-47 and BDE-99 are particularly abundant, makes toxicity data necessary to assess the hazard risk posed by PBDE to aquatic organisms. This study examines the effects of BDE-47 and BDE-99 on embryo-larval stages of the marine flatfish turbot. The turbot embryos were exposed at nominal concentrations of BDE-47 and BDE-99 for 6 days. Selected dose levels were relevant for investigating sublethal and lethal effects. Both tested compounds caused lethal toxicity as well as non-lethal malformations during embryo development. We found a high toxic potency of BDE-47 compared to BDE-99 (LC₅₀ values for embryos and larvae, respectively, BDE-47: 27.35 and 14.13 μg L⁻¹; BDE-99: 38.28 and 29.64 μg L⁻¹). The present study shows high sensitivity of fish early life stages (ELS) to PBDE compounds. Based on environmental concentrations of dissolved PBDEs from various aquatic ecosystems, waterborne BDE-47 and BDE-99 pose little risk of acute toxicity to marine fish at relevant environmental concentrations. Turbot fish ELS proved to be an excellent model for the study of ecotoxicity of contaminants in seawater. The results demonstrate harmful effects of PBDE on turbot ELS at concentrations in the range of parts per billion units. In the perspective of risk assessment, ELS endpoints provide rapid, cost-effective and ecologically relevant information, and links should be sought between these short-term tests and effects of long-term exposures in more realistic scenarios.
Gao, Yan-Jie; Zhu, Hao-Jun; Chen, Yi; Li, Yun-He; Peng, Yu-Fa; Chen, Xiu-Ping
2018-05-02
As a result of the large-scale planting of transgenic Bacillus thuringiensis (Bt) crops, fish would be exposed to freely soluble Bt insecticidal protein(s) that are released from Bt crop tissues into adjacent bodies of water or by way of direct feeding on deposited plant material. To assess the safety of two Bt proteins Cry1C and Cry2A to fish, we used zebrafish as a representative species and exposed their embryos to 0.1, 1, and 10 mg/L of the two Cry proteins until 132 h post-fertilization and then several developmental, biochemical, and molecular parameters were evaluated. Chlorpyrifos (CPF), a known toxicant to aquatic organisms, was used as a positive control. Although CPF exposure resulted in significant developmental, biochemical, and molecular changes in the zebrafish embryos, there were almost no significant differences after Cry1C or Cry2A exposure. Thus, we conclude that zebrafish embryos are not sensitive to Cry1C and Cry2A insecticidal proteins at test concentrations.
Greer, Colleen D; Hodson, Peter V; Li, Zhengkai; King, Thomas; Lee, Kenneth
2012-06-01
Tests of crude oil toxicity to fish are often chronic, exposing embryos from fertilization to hatch to oil solutions prepared using standard mixing procedures. However, during oil spills, fish are not often exposed for long periods and the dynamic nature of the ocean is not easily replicated in the lab. Our objective was to determine if brief exposures of Atlantic herring (Clupea harengus) embryos to dispersed oil prepared by standard mixing procedures was as toxic as oil dispersed in a more realistic model system. Embryos were first exposed to chemically dispersed Alaska North Slope crude and Arabian light crude oil for 2.4 h to 14 d from fertilization to determine if exposure time affected toxicity. Toxicity increased with exposure time, but 2.4-h exposures at realistic concentrations of oil induced blue-sac disease and reduced the percentage of normal embryos at hatch; there was little difference in toxicity between the two oils. Secondly, oil was chemically dispersed in a wave tank to determine if the resultant oil solutions were as toxic to herring embryos as laboratory-derived dispersed oil using a single exposure period of 24 h. Samples taken 15 min postdispersion were more toxic than laboratory-prepared solutions, but samples taken at 5, 30, and 60 min postdispersion were less toxic. Overall, the laboratory- and wave tank-derived solutions of dispersed oil provided similar estimates of toxicity despite differences in the methods for preparing test solutions, suggesting that laboratory and wave tank data are a reliable basis for ecological risk assessments of spilled oil. Copyright © 2012 SETAC.
Dang, ZhiChao; van der Ven, Leo T M; Kienhuis, Anne S
2017-11-01
The acute fish toxicity test (AFT) is requested by EU legal frameworks for hazard classification and risk assessment. AFT is one of the few regulatory required tests using death as an endpoint. This paper reviews efforts made to reduce, refine and replace (3Rs) AFT. We make an inventory of information requirements for AFT, summarize studies on 3Rs of AFT and give recommendations. The fish embryo toxicity test (FET) is proposed as a replacement of AFT and analyses have focused on two aspects: assessing the capacity of FET in predicting AFT and defining the applicability domain of FET. Six comparison studies have consistently shown a strong correlation of FET and AFT. In contrast, the applicability domain of FET has not yet been fully defined. FET has not yet been accepted as a replacement of AFT by any EU legal frameworks to fulfill information requirements because FET is insensitive to some chemicals. It is recommended that the outlier chemicals that do not correlate between FET and AFT should be further investigated. When necessary, additional FET data should be generated. Another effort to reduce and refine AFT is incorporation of FET into the threshold approach. Furthermore, moribund as an endpoint of fish death has been introduced in revising AFT guideline to reduce the duration of suffering for refinement. This endpoint, however, needs further work on the link of moribund and death. Global regulatory acceptance of the moribund endpoint would be critical for this development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jeffries, Marlo K Sellin; Stultz, Amy E; Smith, Austin W; Rawlings, Jane M; Belanger, Scott E; Oris, James T
2014-11-01
An increased demand for chemical toxicity evaluations has resulted in the need for alternative testing strategies that address animal welfare concerns. The fish embryo toxicity (FET) test developed for zebrafish (Danio rerio) is one such alternative, and the application of the FET test to other species such as the fathead minnow (Pimephales promelas) has been proposed. In the present study, the performances of the FET test and the larval growth and survival (LGS; a standard toxicity testing method) test in zebrafish and fathead minnows were evaluated. This required that testing methods for the fathead minnow FET and zebrafish LGS tests be harmonized with existing test methods and that the performance of these testing strategies be evaluated by comparing the median lethal concentrations of 2 reference toxicants, 3,4-dicholoraniline and ammonia, obtained via each of the test types. The results showed that procedures for the zebrafish FET test can be adapted and applied to the fathead minnow. Differences in test sensitivity were observed for 3,4-dicholoraniline but not ammonia; therefore, conclusions regarding which test types offer the least or most sensitivity could not be made. Overall, these results show that the fathead minnow FET test has potential as an alternative toxicity testing strategy and that further analysis with other toxicants is warranted in an effort to better characterize the sensitivity and feasibility of this testing strategy. © 2014 SETAC.
40 CFR 797.1600 - Fish early life stage toxicity test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... dilution water or the test solution. (4) “Control” an exposure of test organisms to dilution water only or... (treatment) concentrations of a test substance and one control are required to conduct an early life stage... trays or cups for each test concentration and control (i.e., 30 per embryo cup with 2 replicates); (C...
40 CFR 797.1600 - Fish early life stage toxicity test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... dilution water or the test solution. (4) “Control” an exposure of test organisms to dilution water only or... (treatment) concentrations of a test substance and one control are required to conduct an early life stage... trays or cups for each test concentration and control (i.e., 30 per embryo cup with 2 replicates); (C...
40 CFR 797.1600 - Fish early life stage toxicity test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... dilution water or the test solution. (4) “Control” an exposure of test organisms to dilution water only or... (treatment) concentrations of a test substance and one control are required to conduct an early life stage... trays or cups for each test concentration and control (i.e., 30 per embryo cup with 2 replicates); (C...
Chromosome analysis in embryos from young patients with previous parity.
Kilani, Z; Magli, Mc; Qaddomi, E; Ferraretti, Ap; Shaban, M; Crippa, A; Haj Hassan, L; Shenfield, F; Gianaroli, L
2014-09-01
This study included 173 young couples of proven fertility who had previously undergone preimplantation genetic screening for chromosomes X and Y for family balancing. Several months later, when the outcome of the pregnancies was already known, the blastomeres from the corresponding embryos transferred were reanalysed by fluorescence in-situ hybridization (FISH) for chromosomes 13, 16, 18, 21, 22 with the aim of investigating correlation with embryo viability and the level of FISH sensitivity (embryos confirmed to be euploid). According to the results, informative in 152 couples, the proportion of euploid embryos was significantly lower in 53 nonpregnant women when compared with 99 women with term pregnancy (49% versus 75% respectively, P < 0.001). In addition, in 21 nonpregnant patients, all embryos transferred were found to be chromosomally abnormal. The level of FISH sensitivity was calculated in the group of term pregnancies where the number of euploid embryos was expected to exceed or match with the number of babies born. The resulting false-negative rate was 4.0% per patient and 1.9% per embryo. These findings confirmed the limited prediction power of embryo morphology on implantation but also the relevance of chromosomal abnormalities in causing embryo demise. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Walker, Mary K.; Zabel, Erik W.; Akerman, Gun; Balk, Lennart; Wright, Peggy J.; Tillitt, Donald E.
1996-01-01
In the environment, lipophilic contaminants such as halogenated aromatic hydrocarbons (HAHs, e.g., polychlorinated biphenyls, PCBs) and polycyclic aromatic hydrocarbons (PAHs, e.g., benzo[a]pyrene) readily bioaccumulate in fish, and the bioaccumulation of these lipophilic chemicals by adult fish may have significant consequences on the development and survival of their offspring. Halogenated and polycyclic aromatic hydrocarbons translocate from adult female body stores into eggs during oocyte maturation, and early life stages of fish are often more sensitive than adults to the toxicity of these chemicals. Thus, the presence of persistent, bioaccumulative contaminants in the environment may pose a risk to fish early life stage survival and ultimately reduce recruitment into the adult population.Typically, standard early life stage toxicity studies exposed embryos, larvae, and juveniles to graded concentrations of waterborne toxicants, and dose-response relationships are based on the concentrations of chemicals in the water. However, use of waterborne exposure to assess the toxicity of persistent, bioaccumulative contaminants, such as HAHs and PAHs, has two significant drawbacks. First, uptake of hydrophobic chemicals, such as HAHs and PAHs, into the developing embryo from water is not a significant route of exposure in the environment since concentrations of these chemicals freely dissolved in water are extremely low. Rather, maternal deposition into developing oocytes is the most significant source of these chemicals to the embryo. Second, the dose received by the target tissue, in this case the developing embryo, is the most accurate predictor of the toxic response, and since extrapolation from water concentrations of the chemical to egg concentrations is required, the exact dose received by the embryo can only be estimated, often with large uncertainty. Due to these drawbacks, it is important to develop an alternative exposure method that will directly expose the developing embryo without the need to chronically expose adult fish with subsequent natural deposition of hydrophobic chemicals into the oocytes. Fish egg injection provides this exposure route. Embryos are exposed directly after fertilization with known doses of contaminants, the dose is delivered prior to critical developmental events, and extrapolation of the dose received by the embryo is not needed.We have developed two unique fish egg injection methods as alternative routes of exposure for fish early life stage toxicity studies of lipophilic environmental contaminants. With either method, individual fish eggs are injected with a known dose of chemical. The first approach, a microinjection method, originally developed to assess the developmental toxicity of HAH congeners to early life stages of salmonids, utilizes micro-syringes, 30- gauge stainless steel injection needles, and micro- to nanoliter injection volume. The second approach, a nano-injection method, utilizes glass capillary micropipettes with 2 to 10 µm tips as injection needles, and nano- to picoliter injection volume, allowing injection of nearly any size of fish egg.Both of these egg injection methods allow an investigator to assess the toxicity of lipophilic environmental contaminants to early life stages of fish in a manner that realistically reflects environmental exposure and allows accurate quantitation of the dose to the developing embryo. These injection techniques, however, are not limited to use with only lipophilic chemicals. Since the developmental toxicity of many environmental contaminants ultimately depends on the dose received by the embryo, these egg injection methods could serve as a realistic exposure route in many fish early life stage toxicity studies.
Transient Overexpression of adh8a Increases Allyl Alcohol Toxicity in Zebrafish Embryos
Klüver, Nils; Ortmann, Julia; Paschke, Heidrun; Renner, Patrick; Ritter, Axel P.; Scholz, Stefan
2014-01-01
Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in metabolization. PMID:24594943
Can we reduce the number of fish in the OECD acute toxicity test?
Rufli, Hans; Springer, Timothy A
2011-04-01
OECD (Organisation for Economic Co-operation and Development) Guideline 203, Fish Acute Toxicity Test, states that the test should be performed using at least five concentrations in a geometric series with a separation factor not exceeding 2.2, with at least seven fish per concentration. However, the efficiency of this design can be questioned, because it often results in only one concentration that causes partial mortality (mortality >0% and <100%). We performed Monte Carlo computer simulations to assess whether more efficient designs could allow reductions in fish use. Simulations indicated that testing with six fish per concentration could yield 50% lethal concentration (LC50) estimates of quality similar to those obtained using seven fish. Experts attending a workshop organized to consider this finding and to identify the best methods for reducing fish use concluded that significant reductions could best be achieved by modifying the test paradigm. They suggested initiating testing using a 96-h fish embryo test instead of juvenile fish to cover the range from the upper threshold concentration (the lowest 50% effective concentration [EC50] in existing algae and daphnia studies) to the highest concentration with no mortality. This would be followed by a confirmatory limit test with juvenile fish at the highest concentration with no mortality or by a full test with juvenile fish, if a point estimate of the LC50 is required. Copyright © 2011 SETAC.
Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals.
Belanger, Scott E; Rawlings, Jane M; Carr, Gregory J
2013-08-01
The fish embryo test (FET) is a potential animal alternative for the acute fish toxicity (AFT) test. A comprehensive validation program assessed 20 different chemicals to understand intra- and interlaboratory variability for the FET. The FET had sufficient reproducibility across a range of potencies and modes of action. In the present study, the suitability of the FET as an alternative model is reviewed by relating FET and AFT. In total, 985 FET studies and 1531 AFT studies were summarized. The authors performed FET-AFT regressions to understand potential relationships based on physical-chemical properties, species choices, duration of exposure, chemical classes, chemical functional uses, and modes of action. The FET-AFT relationships are very robust (slopes near 1.0, intercepts near 0) across 9 orders of magnitude in potency. A recommendation for the predictive regression relationship is based on 96-h FET and AFT data: log FET median lethal concentration (LC50) = (0.989 × log fish LC50) - 0.195; n = 72 chemicals, r = 0.95, p < 0.001, LC50 in mg/L. A similar, not statistically different regression was developed for the entire data set (n = 144 chemicals, unreliable studies deleted). The FET-AFT regressions were robust for major chemical classes with suitably large data sets. Furthermore, regressions were similar to those for large groups of functional chemical categories such as pesticides, surfactants, and industrial organics. Pharmaceutical regressions (n = 8 studies only) were directionally correct. The FET-AFT relationships were not quantitatively different from acute fish-acute fish toxicity relationships with the following species: fathead minnow, rainbow trout, bluegill sunfish, Japanese medaka, and zebrafish. The FET is scientifically supportable as a rational animal alternative model for ecotoxicological testing of acute toxicity of chemicals to fish. Copyright © 2013 SETAC.
Vera-Rodriguez, M; Diez-Juan, A; Jimenez-Almazan, J; Martinez, S; Navarro, R; Peinado, V; Mercader, A; Meseguer, M; Blesa, D; Moreno, I; Valbuena, D; Rubio, C; Simon, C
2018-04-01
What is the origin and composition of cell-free DNA in human embryo spent culture media? Cell-free DNA from human embryo spent culture media represents a mix of maternal and embryonic DNA, and the mixture can be more complex for mosaic embryos. In 2016, ~300 000 human embryos were chromosomally and/or genetically analyzed using preimplantation genetic testing for aneuploidies (PGT-A) or monogenic disorders (PGT-M) before transfer into the uterus. While progress in genetic techniques has enabled analysis of the full karyotype in a single cell with high sensitivity and specificity, these approaches still require an embryo biopsy. Thus, non-invasive techniques are sought as an alternative. This study was based on a total of 113 human embryos undergoing trophectoderm biopsy as part of PGT-A analysis. For each embryo, the spent culture media used between Day 3 and Day 5 of development were collected for cell-free DNA analysis. In addition to the 113 spent culture media samples, 28 media drops without embryo contact were cultured in parallel under the same conditions to use as controls. In total, 141 media samples were collected and divided into two groups: one for direct DNA quantification (53 spent culture media and 17 controls), the other for whole-genome amplification (60 spent culture media and 11 controls) and subsequent quantification. Some samples with amplified DNA (N = 56) were used for aneuploidy testing by next-generation sequencing; of those, 35 samples underwent single-nucleotide polymorphism (SNP) sequencing to detect maternal contamination. Finally, from the 35 spent culture media analyzed by SNP sequencing, 12 whole blastocysts were analyzed by fluorescence in situ hybridization (FISH) to determine the level of mosaicism in each embryo, as a possible origin for discordance between sample types. Trophectoderm biopsies and culture media samples (20 μl) underwent whole-genome amplification, then libraries were generated and sequenced for an aneuploidy study. For SNP sequencing, triads including trophectoderm DNA, cell-free DNA, and follicular fluid DNA were analyzed. In total, 124 SNPs were included with 90 SNPs distributed among all autosomes and 34 SNPs located on chromosome Y. Finally, 12 whole blastocysts were fixed and individual cells were analyzed by FISH using telomeric/centromeric probes for the affected chromosomes. We found a higher quantity of cell-free DNA in spent culture media co-cultured with embryos versus control media samples (P ≤ 0.001). The presence of cell-free DNA in the spent culture media enabled a chromosomal diagnosis, although results differed from those of trophectoderm biopsy analysis in most cases (67%). Discordant results were mainly attributable to a high percentage of maternal DNA in the spent culture media, with a median percentage of embryonic DNA estimated at 8%. Finally, from the discordant cases, 91.7% of whole blastocysts analyzed by FISH were mosaic and 75% of the analyzed chromosomes were concordant with the trophectoderm DNA diagnosis instead of the cell-free DNA result. This study was limited by the sample size and the number of cells analyzed by FISH. This is the first study to combine chromosomal analysis of cell-free DNA, SNP sequencing to identify maternal contamination, and whole-blastocyst analysis for detecting mosaicism. Our results provide a better understanding of the origin of cell-free DNA in spent culture media, offering an important step toward developing future non-invasive karyotyping that must rely on the specific identification of DNA released from human embryos. This work was funded by Igenomix S.L. There are no competing interests.
The effect of tramadol hydrochloride on early life stages of fish.
Sehonova, Pavla; Plhalova, Lucie; Blahova, Jana; Berankova, Petra; Doubkova, Veronika; Prokes, Miroslav; Tichy, Frantisek; Vecerek, Vladimir; Svobodova, Zdenka
2016-06-01
The aim of this study was to perform the fish embryo acute toxicity test (FET) on zebrafish (Danio rerio) and the early-life stage toxicity test on common carp (Cyprinus carpio) with tramadol hydrochloride. The FET was performed using the method inspired by the OECD guideline 236. Newly fertilized zebrafish eggs were exposed to tramadol hydrochloride at concentrations of 10; 50; 100 and 200μg/l for a period of 144h. An embryo-larval toxicity test on C. carpio was performed according to OECD guideline 210 also with tramadol hydrochloride at concentrations 10; 50; 100 and 200μg/l for a period of 32 days. Hatching was significantly influenced in both acute and subchronic toxicity assays. Subchronic exposure also influenced early ontogeny, both morphometric and condition characteristics and caused changes in antioxidant enzyme activity. The LOEC value was found to be 10μg/l tramadol hydrochloride. Copyright © 2016 Elsevier B.V. All rights reserved.
Methods for conducting bioassays using embryos and larvae of Pacific herring, Clupea pallasi.
Dinnel, Paul A; Middaugh, Douglas P; Schwarck, Nathan T; Farren, Heather M; Haley, Richard K; Hoover, Richard A; Elphick, James; Tobiason, Karen; Marshall, Randall R
2011-02-01
The rapid decrease of several stocks of Pacific herring, Clupea pallasi, in Puget Sound, Washington, has led to concerns about the effects of industrial and nonpoint source contamination on the embryo and larval stages of this and related forage fish species. To address these concerns, the state of Washington and several industries have funded efforts to develop embryo and larval bioassay protocols that can be used by commercial laboratories for routine effluent testing. This article presents the results of research to develop herring embryo and larval bioassay protocols. Factors evaluated during protocol development included temperature, salinity, dissolved oxygen (DO), light intensity, photoperiod, larval feeding regimes, use of brine and artificial sea salts, gonad sources, collection methods, and egg quality.
Effect of vitrification solutions on survival rate of cryopreserved Epinephelus moara embryos.
Tian, Y S; Zhang, J J; Li, Z T; Tang, J; Cheng, M L; Wu, Y P; Ma, W H; Pang, Z F; Li, W S; Zhai, J M; Li, B
2018-06-01
Embryo cryopreservation is important for long-term preservation of germplasm and assisted reproduction. However, it is still very difficult to obtain viable embryos from cryopreserved fish embryos. In this study, embryos of Epinephelus moara were used to investigate the effects of various cryopreservation methods. Embryos in stages 10 pairs somite (10S), 18 pairs somite (18S), 22 pairs somite (22S), tail-bud (TB), embryo twitching (ET) and pre-hatch (PH) were treated with five-step equilibrium penetration in 40% PMG3T vitrification solution, which contained 15.75% 1,2-propylene glycol, 10.50% Methanol, 8.75% Glycerol and 5.00% Trehalose. We found that 18S, 22S, TB and ET stage embryos had higher survival rates and were more tolerant to the vitrification solution. Five-step equilibrium treatments on the embryos at the tail-bud stage were performed using two vitrification solutions: 40% PMG3T and 40% PMG3S, which consisted of 15.75% 1,2-propylene glycol, 10.50% Methanol, 8.75% Glycerol and 5.00% Sucrose. The embryonic survival rate under PMG3S treatment (63.36%) was significantly higher than PMG3T treatment (43.93%) (P < 0.05). PMG3S and PMG3T with concentrations of 35%, 40% and 45% were tested on tail-bud stage embryos. Higher concentration of the vitrification solution led to significantly lower embryonic survival rate (P < 0.05). The survival rate was 36.79-72.05% in PMG3S, and 37.11-55.18% in PMG3T, and there were non-significant differences in embryonic development and malformation rates among the groups treated with different concentrations. The embryonic normal development rates in PMG3S and PMG3T were 21.27% and 11.04%, and the malformation rates were 36.13% and 31.04%, respectively. The optimum treatment condition was 40 min using 40% PMG3S on embryos at the tail-bud stage. Both PMG3S and PMG3T were used for cryopreserving embryos at 16 pairs somite, tail-bud and ET stage in liquid nitrogen, where we obtained 190 surviving embryos, and 44 fishes underwent normal development and hatched. The survival rate of cryopreserved embryos was 5.15%, the normal development rate was 1.31%, and the malformation rate was 3.66%. We found that PMG3S and PMG3T were effective for cryopreservation of Epinephelus moara embryos. The results provide a foundation for further explorations of fish embryo cryopreservation techniques. Copyright © 2018 Elsevier Inc. All rights reserved.
Barkalow, Stephani L. Clark; Bonar, Scott A.
2015-01-01
High levels of total suspended sediment (TSS) can have negative consequences on fishes, such as altering food supply, lowering food acquisition, clogging gills, and disrupting reproduction. While effects of TSS on salmonids and estuarine fish are well studied, less is known about possible negative impacts of suspended sediment on desert fishes. Several imperiled desert fishes inhabit streams and springs near the U.S.–Mexico border and are potentially threatened by increased sediment loads from borderlands activity such as livestock grazing, road building, illegal traffic, and law enforcement patrols. One such species is the Yaqui Chub Gila purpurea, a federally listed endangered cyprinid. We exposed Yaqui Chub embryos and fry (mean TL = 12.6 mm; SE = 0.42) to a range of TSS levels commonly found in one of the only streams they inhabit, Black Draw, which crosses the Arizona–Mexico border. We tested effects of 0; 300; 500; 1,000; 5,000; and 10,000 mg/L TSS loads on fry and embryos over a 5-d period in three replicate containers for each treatment. Fifty percent hatch rate (i.e., median lethal concentration, LC50) was 3,977 mg/L for embryos. The LC50 for fry (concentration at which half died) was 8,372 mg/L after 12 h of exposure; however, after 5-d exposure, LC50 leveled at 1,197 mg/L. The TL of fry did not change significantly in any treatment over the 5-d period. Suspended sediment in Black Draw reached concentrations lethal to Yaqui Chub embryo and fry during four floods in 2012. Although some desert fishes have evolved in rivers and streams subject to elevated TSS and are tolerant to high TSS concentrations, other fish species are less tolerant and may be impacted by land practices which increase erosion into stream systems. Management of critically endangered desert fishes should include considerations of the effects of increased suspended sediment.
Mateo, Silvia; Vidal, Francesca; Coll, Lluc; Veiga, Anna; Boada, Montserrat
2017-09-01
This study aims to increase the knowledge about monopronucleated ICSI-derived blastocysts, analyzing trophectoderm biopsies by aCGH and FISH to evaluate their chromosome constitution. Fifteen monopronucleated ICSI-derived blastocysts were studied. Double trophectoderm biopsy was performed and analyzed by FISH and aCGH. The blastocysts were classified according to chromosome constitution. Disagreements between the two techniques were assessed. Results obtained after FISH and aCGH analyses showed the following: 20% (3/15) and 60% (9/15) diploid females, respectively; 26.7% (4/15) and 26.7% (4/15) diploid males, respectively; and 53.3% (8/15) and 13.3% (2/15) mosaics, respectively. No mosaic male embryos were found using FISH or aCGH. There were disagreements in 40% (6/15) of the cases due to the higher detection of mosaicism by FISH compared to aCGH. The combination of FISH and aCGH has been shown to be a suitable approach to increase the knowledge about monopronucleated ICSI-derived embryos. FISH analysis of blastocysts derived from monopronucleated ICSI zygotes enabled us to conclude that aCGH underestimates haploidy. Some diploid embryos diagnosed by aCGH are in fact mosaic. In cases where these embryos would be used for reproductive purposes, extra analysis of parental genome origin is recommended.
An automated assay for the assessment of cardiac arrest in fish embryo.
Puybareau, Elodie; Genest, Diane; Barbeau, Emilie; Léonard, Marc; Talbot, Hugues
2017-02-01
Studies on fish embryo models are widely developed in research. They are used in several research fields including drug discovery or environmental toxicology. In this article, we propose an entirely automated assay to detect cardiac arrest in Medaka (Oryzias latipes) based on image analysis. We propose a multi-scale pipeline based on mathematical morphology. Starting from video sequences of entire wells in 24-well plates, we focus on the embryo, detect its heart, and ascertain whether or not the heart is beating based on intensity variation analysis. Our image analysis pipeline only uses commonly available operators. It has a low computational cost, allowing analysis at the same rate as acquisition. From an initial dataset of 3192 videos, 660 were discarded as unusable (20.7%), 655 of them correctly so (99.25%) and only 5 incorrectly so (0.75%). The 2532 remaining videos were used for our test. On these, 45 errors were made, leading to a success rate of 98.23%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thellmann, Paul; Köhler, Heinz-R; Rößler, Annette; Scheurer, Marco; Schwarz, Simon; Vogel, Hans-Joachim; Triebskorn, Rita
2015-11-01
In order to evaluate surface water and the sediment quality of rivers connected to wastewater treatment plants (WWTPs) with different treatment technologies, fish embryo tests (FET) with Danio rerio were conducted using native water and sediment samples collected upstream and downstream of four WWTPs in Southern Germany. Two of these WWTPs are connected to the Schussen River, a tributary of Lake Constance, and use a sand filter with final water purification by flocculation. The two others are located on the rivers Schmiecha and Eyach in the area of the Swabian Alb and were equipped with a powdered activated carbon stage 20 years ago, which was originally aimed at reducing the release of stains from the textile industry. Several endpoints of embryo toxicity including mortality, malformations, reduced hatching rate, and heart rate were investigated at defined time points of embryonic development. Higher embryotoxic potentials were found in water and sediments collected downstream of the WWTPs equipped with sand filtration than in the sample obtained downstream of both WWTPs upgraded with a powdered activated carbon stage.
Marentette, Julie R; Sullivan, Cheryl A; Lavalle, Christine; Shires, Kallie; Parrott, Joanne L
2015-01-01
Fathead minnow embryos and larvae are frequently used in toxicology, including short-term embryo-only tests which often use small volumes of test solution. The effect that such conditions may have on fathead minnow development has yet to be explicitly described. Here we compared rates of embryonic development in fathead minnow embryos reared under standard light and temperature conditions with a range of possible methods. All methods yielded excellent control survival. We demonstrated that fathead minnow embryos incubated in a range of small volumes in multi-well plates (500 μL to 2 mL per embryo) did not substantially vary in developmental rate, but flexed less frequently as embryos, hatched smaller, later and with larger yolk-sacs, and initiated feeding later than embryos reared in an excess of solution (20 mL per embryo) with or without supplemental aeration. Faster hatch and growth were promoted with an orbital shaker, but growth benefits were not sustained into the larval stage. Developmental differences persisted in larvae reared to 20 days post-fertilization when monitoring ceased, but growth differences did not magnify and in some measurements partially resolved. To our knowledge we are the first to report effects of incubation in multi-well plates in any fish taxa. As our data revealed that the eleutheroembryonic stage for fathead minnow may be prolonged in multi-well plates, this may allow the use of longer toxicity tests using fathead minnow embryos without conflicting with existing animal welfare legislation in many countries. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Rocha, Paula Suares; Bernecker, Conny; Strecker, Ruben; Mariani, Carolina Fiorillo; Pompêo, Marcelo Luiz Martins; Storch, Volker; Hollert, Henner; Braunbeck, Thomas
2011-10-01
The Tietê River and its tributary Pinheiros River receive a highly complex organic and inorganic pollutants load from sanitary sewage and industrial sources, as well as agricultural and agroindustrial activities. The aim of the present study was to evaluate the embryotoxic and teratogenic effects of sediments from selected locations in the Tietê River Basin by means of the sediment contact embryo toxicity assay with Danio rerio, in order to provide a comprehensive and realistic insight into the bioavailable hazard potential of these sediment samples. Lethal and sub-lethal effects were recorded, and high embryo toxicity could be found in the samples not only in the vicinity of the megacity São Paulo (Billings reservoir and Pinheiros River samples), but also downstream (in the reservoirs Barra Bonita, Promissão and Três Irmãos). Results confirm that most toxicity is due to the discharges of the metropolitan area of São Paulo. However, they also indicate additional sources of pollutants along the river course, probably from industrial, agricultural and agroindustrial residues, which contribute to the degradation of each area. The sediment contact fish embryo test showed to be powerful tool to detect embryo toxicity in sediments, not only by being a sensitive method, but also for taking into account bioavailability. This test provides an ecological highly realistic and relevant exposure scenario, and should therefore be added in ecotoxicological sediment quality assessments. Copyright © 2011 Elsevier Inc. All rights reserved.
A high throughput passive dosing format for the Fish Embryo Acute Toxicity test.
Vergauwen, Lucia; Schmidt, Stine N; Stinckens, Evelyn; Maho, Walid; Blust, Ronny; Mayer, Philipp; Covaci, Adrian; Knapen, Dries
2015-11-01
High throughput testing according to the Fish Embryo Acute Toxicity (FET) test (OECD Testing Guideline 236) is usually conducted in well plates. In the case of hydrophobic test substances, sorptive and evaporative losses often result in declining and poorly controlled exposure conditions. Therefore, our objective was to improve exposure conditions in FET tests by evaluating a passive dosing format using silicone O-rings in standard 24-well polystyrene plates. We exposed zebrafish embryos to a series of phenanthrene concentrations until 120h post fertilization (hpf), and obtained a linear dilution series. We report effect values for both mortality and sublethal morphological effects based on (1) measured exposure concentrations, (2) (lipid normalized) body residues and (3) chemical activity. The LC50 for 120hpf was 310μg/L, CBR50 (critical body residue) was 2.72mmol/kg fresh wt and La50 (lethal chemical activity) was 0.047. All values were within ranges expected for baseline toxicity. Impaired swim bladder inflation was the most pronounced morphological effect and swimming activity was reduced in all exposure concentrations. Further analysis showed that the effect on swimming activity was not attributed to impaired swim bladder inflation, but rather to baseline toxicity. We conclude that silicone O-rings (1) produce a linear dilution series of phenanthrene in the 120hpf FET test, (2) generate and maintain aqueous concentrations for reliable determination of effect concentrations, and allow for obtaining mechanistic toxicity information, and (3) cause no toxicity, demonstrating its potential as an extension of the FET test when testing hydrophobic chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inducible Sterilization of Zebrafish by Disruption of Primordial Germ Cell Migration
Wong, Ten-Tsao; Collodi, Paul
2013-01-01
During zebrafish development, a gradient of stromal-derived factor 1a (Sdf1a) provides the directional cue that guides the migration of the primordial germ cells (PGCs) to the gonadal tissue. Here we describe a method to produce large numbers of infertile fish by inducing ubiquitous expression of Sdf1a in zebrafish embryos resulting in disruption of the normal PGC migration pattern. A transgenic line of zebrafish, Tg(hsp70:sdf1a-nanos3, EGFP), was generated that expresses Sdf1a under the control of the heat-shock protein 70 (hsp70) promoter and nanos3 3?UTR. To better visualize the PGCs, the Tg(hsp70:sdf1a-nanos3, EGFP) fish were crossed with another transgenic line, Tg(kop:DsRed-nanos3), that expresses DsRed driven by the PGC-specific kop promoter. Heat treatment of the transgenic embryos caused an induction of Sdf1a expression throughout the embryo resulting in the disruption of their normal migration. Optimal embryo survival and disruption of PGC migration was achieved when transgenic embryos at the 4- to 8-cell stage were incubated at 34.5°C for 18 hours. Under these conditions, disruption of PGC migration was observed in 100% of the embryos. Sixty-four adult fish were developed from three separate batches of heat-treated embryos and all were found to be infertile males. When each male was paired with a wild-type female, only unfertilized eggs were produced and histological examination revealed that each of the adult male fish possessed severely under-developed gonads that lacked gametes. The results demonstrate that inducible Sdf1a expression is an efficient and reliable strategy to produce infertile fish. This approach makes it convenient to generate large numbers of infertile adult fish while also providing the capability to maintain a fertile brood stock. PMID:23826390
Vincze, Krisztina; Gehring, Martin; Braunbeck, Thomas
2014-01-01
2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) is a high-production volume chemical used in paper, ink, pesticide, and adhesive industries as a wetting and anti-foaming agent. The physicochemical properties and slow biodegradation rate of TMDD indicate a low bioaccumulation potential but a high prevalence in the environment. As a consequence, TMDD has been detected in several European rivers in the nanogram per liter and lower microgram per liter range; however, its environmental risk to aquatic organisms is considered low. Recent studies almost exclusively focused on acute effects by TMDD, little is known about cytotoxic and genotoxic effects, reproduction and developmental toxicity, endocrine disruption, and any kind of long-term toxicity and carcinogenicity so far. The present study aims to provide more specific baseline information on the ecotoxicological effects of TMDD in fish. For this end, cyto- and genotoxicity assays were carried out in vitro with the permanent fish cell line RTL-W1; in addition, in vivo studies were conducted with the early life stages of zebrafish (Danio rerio) in order to fill the data gaps in developmental toxicity and endocrine disruption. TMDD showed a cytotoxic and slight genotoxic potential in fish cell lines; moreover, various sublethal and lethal effects could be detected in developing zebrafish embryos. There was no evidence of endocrine-disrupting effects by TMDD; however, mortality following prolonged exposure to TMDD during fish sexual development test was clearly higher than mortality in the fish embryo test after 96-h exposure. Our results thus confirmed previous findings of laboratory screening tests, suggesting short-term toxic effects of TMDD in the intermediate, and long-term effects in the lower milligram per liter range.
Rotomskis, Ričardas; Jurgelėnė, Živilė; Stankevičius, Mantas; Stankevičiūtė, Milda; Kazlauskienė, Nijolė; Jokšas, Kęstutis; Montvydienė, Danguolė; Kulvietis, Vytautas; Karabanovas, Vitalijus
2018-09-01
Due to colloidal instability even with protective coatings, nanoparticles tend to aggregate in complex environments and possibly interact with biota. In this study, visualization of quantum dots (QDs) interaction with rainbow trout (Oncorhynchus mykiss) embryos was performed. Studies on zebrafish (Danio rerio) and pearl gourami (Trichogaster leerii) embryos have shown that QDs interact with embryos in a general manner and their affects are independent on the type of the embryo. It was demonstrated that carboxylated CdSe/ZnS QDs (4 nM) were aggregating in accumulation media and formed agglomerates on the surface of fish embryos under 1-12 days incubation in deep-well water. Detailed analysis of QDs distribution on fish embryos surface and investigation of the penetration of QDs through embryo's membrane showed that the chorion protects embryos from the penetration through the chorion and the accumulation of nanoparticles inside the embryos. Confocal microscopy and spectroscopy studies on rainbow trout embryos demonstrated that QDs cause chorion damage, due to QDs aggregation on the surface of chorion, even the formation of the agglomerates at the outer part of the embryos and/or with the mucus were detected. Aggregation of QDs and formation of agglomerates on the outer part of the embryo's membrane caused the intervention of the aggregates to the chorion and even partially destroyed the embryo's chorion. The incorporation of QDs in chorion was confirmed by two methods: in living embryos from a 3D reconstruction view, and in slices of embryos from a histology view. The damage of chorion integrity might have adverse effects on embryonic development. Moreover, for the first time the toxic effect of QDs was separated from the heavy metal toxicity, which is most commonly discussed in the literature to the toxicity of the QDs. Copyright © 2018 Elsevier B.V. All rights reserved.
Regulatory Aspects on the Use of Fish Embryos in Environmental Toxicology
Animal alternative tests are gaining consideration in an array of environmental sciences, particularly as they relate to sound management of chemicals and wastewater discharges. The ILSI Health and Environmental Sciences Institute and the European Centre for Ecotoxicology and To...
Development of the Fish Medaka in Microgravity
NASA Technical Reports Server (NTRS)
Wolgemuth, Debra J.
1995-01-01
The goal of these experiments was to determine the effect of microgravity on the early development of the fish medaka. There were two objectives for this flight series. The primary objective was to assess the effects of microgravity on different stages of development and to ascertain whether the relevant developmental questions can be addressed at the gross morphological level or if the issues involve more subtle questions about regulation at the molecular and cellular levels. The secondary objective was the assessment of the utility of flight hardware with the capabilities to perform embryological studies. We have been able to take advantage of the flight testing phase of the STL-B hardware to also study the effects of microgravity on the early development of the fish, Medaka. Our initial studies involved monitoring the early Medaka development and raising flight embryos for breeding. Images of the developing embryos were collected either via video which was either taken by the astronauts or broadcast to Earth. Sample video images were digitized and stored on a hard drive resident within the on-board STL-B unit. Embryos were fixed at specific intervals, returned to Earth and are being analyzed for the timing and location of molecular events associated with controlling the morphological pattern for the onset of adult structures.
Toxic effects of brominated indoles and phenols on zebrafish embryos.
Kammann, U; Vobach, M; Wosniok, W
2006-07-01
Organobromine compounds in the marine environment have been the focus of growing attention in past years. In contrast to anthropogenic brominated flame retardants, other brominated compounds are produced naturally, e.g., by common polychaete worms and algae. Brominated phenols and indoles assumed to be of biogenic origin have been detected in water and sediment extracts from the German Bight. These substances as well as some of their isomers have been tested with the zebrafish embryo test and were found to cause lethal as well as nonlethal malformations. The zebrafish test was able to detect a log K(OW)-related toxicity for bromophenols, suggesting nonpolar narcosis as a major mode of action. Different effect patterns could be observed for brominated indoles and bromophenols. The comparison of effective concentrations in the zebrafish embryo test with the concentrations determined in water samples suggests the possibility that brominated indoles may affect early life stages of marine fish species in the North Sea.
Tian, Yongsheng; Chen, Zhangfan; Tang, Jiang; Duan, Huimin; Zhai, Jieming; Li, Bo; Ma, Wenhui; Liu, Jiangchun; Hou, Yunxia; Sun, Zhengxiang
2017-04-01
Fish embryo cryopreservation is highly important for the long-term preservation of genomic and genetic information; however, few successful cases of fish embryo cryopreservation have been reported over the past 60 years. This is the first study to use Epinephelus moara embryos from fertilization with cryopreserved sperm as experimental material. Embryos that developed to the 16-22 somite stage and tail-bud stage were treated with the vitrification solution PMG3T according to a five-step equilibration method and cryopreserved at various temperatures and storage duration. Only 19.9 ± 9.2% of 16-22 somite stage embryos and 1.3 ± 1.1% of tail-bud stage embryos survived when cooled at 4 °C for 60 min. In total, 8.0 ± 3.0% of 16-22 somite stage embryos survived when cooled at -25.7 °C for 30 min, 22.4 ± 4.7% of tail-bud stage embryos survived after 45 min of cooling at -25.7 °C, and none survived after 60 min. Only 2.0 ± 2.7% of embryos survived when cryopreserved at -140 °C for 20 min. However, 9.7% of tail-bud stage embryos survived after cryopreservation in liquid nitrogen (-196 °C) for 2 h. Most surviving embryos developed normally. Embryonic volume decreased and spherical segments appeared when embryos were treated with higher concentrations of vitrification solution. Additionally, the volume recovered gradually after rinsing with sucrose and seawater. This is the first estimate of the survival of E. moara embryos and larvae after cryopreservation. These findings provide a foundation for further explorations of fish embryo cryopreservation techniques. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of the lipid regulator drug gemfibrozil: A toxicological and behavioral perspective.
Henriques, Jorge F; Almeida, Ana Rita; Andrade, Thayres; Koba, Olga; Golovko, Oksana; Soares, Amadeu M V M; Oliveira, Miguel; Domingues, Inês
2016-01-01
Pharmaceuticals are emerging contaminants as their worldwide consumption increases. Fibrates such as gemfibrozil (GEM) are used in human medicine to reduce blood concentrations of cholesterol and triacylglycerol and also are some of the most frequently reported pharmaceuticals in waste waters and surface waters. Despite some studies have already demonstrated the negative impact in physiological and/or reproductive endpoints in adult fish, data on survival and behavioral effects in fish larvae are lacking. This study aimed to assess the effects of GEM on zebrafish eleutheroembryo development and locomotor behavior. A fish embryo toxicity (FET) test was undertaken to evaluate GEM acute toxicity by exposing embryos to 0, 6.58, 9.87, 14.81, 22.22, 33.33 and 50mg/L. Developmental endpoints such as hatching success, edemas and malformations were recorded. A second test was undertaken by exposing embryos to 0, 1.5, 3 and 6mg/L in order to evaluate the effects of GEM on 120 and 144h post fertilization (hpf) larvae locomotor activity by video tracking, using a Zebrabox(®) (Viewpoint, France) device. From the data recorded, several parameters such as total swimming distance (TSD) and total swimming time (TST) in each 120s integration time were calculated. Data showed that this compound has a moderate toxic effect on fish embryo development, affecting both survival and hatching success with a calculated 96h LC50 of 11.01mg/L and no effects at the developmental level at 6mg/L. GEM seems to impair locomotor activity, even at concentrations where developmental abnormalities were unperceived, at concentrations as low as 1.5mg/L. Both TSD and TST were sensitive to GEM exposure. These effects do not seem to be independent of the developmental stage as 120hpf larvae seem to present a development bias with repercussions in locomotor behavior. This study highlights the need to include behavioral endpoints in ecotoxicological assays as this seems to be a more sensitive endpoint often disregarded. Copyright © 2015 Elsevier B.V. All rights reserved.
Acute and chronic toxicity of sodium sulfate to four freshwater organisms in water-only exposures
Wang, Ning; Consbrock, Rebecca A.; Ingersoll, Christopher G.; Hardesty, Douglas K.; Brumbaugh, William G.; Hammer, Edward J.; Bauer, Candice R.; Mount, David R.
2016-01-01
The acute and chronic toxicity of sulfate (tested as sodium sulfate) was determined in diluted well water (hardness of 100 mg/L and pH 8.2) with a cladoceran (Ceriodaphnia dubia; 2-d and 7-d exposures), a midge (Chironomus dilutus; 4-d and 41-d exposures), a unionid mussel (pink mucket, Lampsilis abrupta; 4-d and 28-d exposures), and a fish (fathead minnow, Pimephales promelas; 4-d and 34-d exposures). Among the 4 species, the cladoceran and mussel were acutely more sensitive to sulfate than the midge and fathead minnow, whereas the fathead minnow was chronically more sensitive than the other 3 species. Acute-to-chronic ratios ranged from 2.34 to 5.68 for the 3 invertebrates but were as high as 12.69 for the fish. The fathead minnow was highly sensitive to sulfate during the transitional period from embryo development to hatching in the diluted well water, and thus, additional short-term (7- to 14-d) sulfate toxicity tests were conducted starting with embryonic fathead minnow in test waters with different ionic compositions at a water hardness of 100 mg/L. Increasing chloride in test water from 10 mg Cl/L to 25 mg Cl/L did not influence sulfate toxicity to the fish, whereas increasing potassium in test water from 1mg K/L to 3mg K/L substantially reduced the toxicity of sulfate. The results indicate that both acute and chronic sulfate toxicity data, and the influence of potassium on sulfate toxicity to fish embryos, need to be considered when environmental guidance values for sulfate are developed or refined.
Superfetation increases total fecundity in a viviparous fish regardless of the ecological context
NASA Astrophysics Data System (ADS)
Zúñiga-Vega, J. Jaime; Olivera-Tlahuel, Claudia; Molina-Moctezuma, Alejandro
2017-10-01
Superfetation is the ability of females to simultaneously carry multiple broods of embryos at different developmental stages. This is an uncommon reproductive strategy that has evolved independently several times in viviparous fishes. The ecological conditions that favor higher degrees of superfetation (the presence of more simultaneous broods) still remain unclear. In this study we tested hypotheses about the potential effects of three particular ecological factors (water flow velocity, population density, and adult mortality) on superfetation. We used data on six populations of one fish species from the family Poeciliidae (Poeciliopsis baenschi) and a multimodel inference framework to test these hypotheses. We found no clear associations between the degree of superfetation and these ecological factors. Instead, we found a positive relationship between the total number of embryos carried by females and superfetation. Females increased their total fecundity as they overlapped more broods and this pattern was independent of the particular ecological conditions. Thus, in P. baenschi superfetation may facilitate a greater reproductive output. In addition, this positive relationship between total number of embryos and superfetation was stronger in small- and medium-sized females, whereas large females produced few or no simultaneous broods regardless of their total fecundity. The observed lack of association between superfetation and ecological variables is noteworthy because previous studies on other congeneric species have found that superfetation may vary as a function of water flow velocity or food availability. Our results indicate that the effect of particular selective factors on the degree of superfetation may differ among closely related species.
Fishing on chips: up-and-coming technological advances in analysis of zebrafish and Xenopus embryos.
Zhu, Feng; Skommer, Joanna; Huang, Yushi; Akagi, Jin; Adams, Dany; Levin, Michael; Hall, Chris J; Crosier, Philip S; Wlodkowic, Donald
2014-11-01
Biotests performed on small vertebrate model organisms provide significant investigative advantages as compared with bioassays that employ cell lines, isolated primary cells, or tissue samples. The main advantage offered by whole-organism approaches is that the effects under study occur in the context of intact physiological milieu, with all its intercellular and multisystem interactions. The gap between the high-throughput cell-based in vitro assays and low-throughput, disproportionally expensive and ethically controversial mammal in vivo tests can be closed by small model organisms such as zebrafish or Xenopus. The optical transparency of their tissues, the ease of genetic manipulation and straightforward husbandry, explain the growing popularity of these model organisms. Nevertheless, despite the potential for miniaturization, automation and subsequent increase in throughput of experimental setups, the manipulation, dispensing and analysis of living fish and frog embryos remain labor-intensive. Recently, a new generation of miniaturized chip-based devices have been developed for zebrafish and Xenopus embryo on-chip culture and experimentation. In this work, we review the critical developments in the field of Lab-on-a-Chip devices designed to alleviate the limits of traditional platforms for studies on zebrafish and clawed frog embryo and larvae. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.
Wilkins, Laetitia G E; Fumagalli, Luca; Wedekind, Claus
2016-10-01
Recent studies found fish egg-specific bacterial communities that changed over the course of embryogenesis, suggesting an interaction between the developing host and its microbiota. Indeed, single-strain infections demonstrated that the virulence of opportunistic bacteria is influenced by environmental factors and host immune genes. However, the interplay between a fish embryo host and its microbiota has not been studied yet at the community level. To test whether host genetics affects the assemblage of egg-associated bacteria, adult brown trout (Salmo trutta) were sampled from a natural population. Their gametes were used for full-factorial in vitro fertilizations to separate sire from dam effects. In total, 2520 embryos were singly raised under experimental conditions that differently support microbial growth. High-throughput 16S rRNA amplicon sequencing was applied to characterize bacterial communities on milt and fertilized eggs across treatments. Dam and sire identity influenced embryo mortality, time until hatching and composition of egg-associated microbiotas, but no link between bacterial communities on milt and on fertilized eggs could be found. Elevated resources increased embryo mortality and modified bacterial communities with a shift in their putative functional potential. Resource availability did not significantly affect any parental effects on embryo performance. Sire identity affected bacterial diversity that turned out to be a significant predictor of hatching time: embryos associated with high bacterial diversity hatched later. We conclude that both host genetics and the availability of resources define diversity and composition of egg-associated bacterial communities that then affect the life history of their hosts. © 2016 John Wiley & Sons Ltd.
Pre-implantation diagnosis of aneuploidy by polar body and blastomere FISH analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munne, S.; Cohen, J.; Grifo, J.
1994-09-01
For preimplantation genetic diagnosis (PGD) of aneuploidy in human in-vitro fertilization (IVF), two blastomeres per embryo should be analyzed to minimize errors caused by FISH and mosaicism. But the biopsy of two cells from an 8-cell embryo can be detrimental. This can be substituted by initial FISH analysis of the first polar body (PB) and subsequent single blastomere analysis. Simultaneous FISH analysis of chromosomes X, Y, 18, 13/21 was used for first polar body aneuploidy analysis. Normal divalents appeared as single-dotted signals corresponding to their two chromatids. We found that pre-division of chromatids increased dramatically with time in culture. Allmore » but three pre-division events involved separation of chromatids within the PB or the egg, with a total of two chromatids in each. We concluded that PB aneuploidy analysis is safe when performed within 6 hours after egg retrieval. For our first clinical case we chose a 39 year-old female carrier of an X-linked disease already selected for FISH pre-implantation diagnosis. Eight polar bodies from 12 eggs were analyzed: six showed a normal X181321 complement of divalents; one had an extra chromatid for 13/21 (egg {number_sign}8); and one had a missing chromatid for 13/21 (egg {number_sign}10). After insemination, six fertilized eggs developed into embryos, including egg {number_sign}10 but not egg {number_sign}8. At day 3 of development, a single blastomere per embryo was analyzed by FISH. According to the blastomere analysis, one embryo was haploid, one tetraploid. The two normal female embryos were replaced and pregnancy and CFS results are pending. These results suggest that this technique can be successfully applied for PGD of major aneuploidies in IVF patients over 35. In addition, it indicates that studies on pre-division should be performed on eggs within six hours of retrieval.« less
Chang, Carolyn T.; Colicino, Erica G.; DiPaola, Elizabeth J.; Al-Hasnawi, Hadi Jabbar; Whipps, Christopher M.
2016-01-01
Mycobacteriosis is a bacterial disease that is common in captive, wild and research fish. There is no one causative agent of mycobacteriosis, as several strains and species of Mycobacterium have been identified in zebrafish. With increased usage and investment in wild-type and mutant zebrafish strains, considerable value is placed on preserving zebrafish health. One control measure used to prevent mycobacterial spread within and between zebrafish facilities is egg disinfection. Here we investigate the effectiveness of three disinfectants [chlorine bleach, hydrogen peroxide, and povidone iodine (PVPI)] commonly included in egg disinfection protocols for laboratory fish as well as aquaculture fish and compare the knockdown effect of these treatments on Mycobacterium spp. in vitro. Despite current usage, comparison of these disinfection regimes’ abilities to prevent mycobacterial growth has not been tested. We found that the germicidal effect of different disinfectants vary by Mycobacterium spp.. Hydrogen peroxide was the least effective disinfectant, followed by unbuffered chlorine bleach, which is commonly used to disinfect embryos in zebrafish facilities. Disinfection with 25 ppm PVPI for 5 min was very effective, and may be an improved alternative to chlorine bleach for embryo disinfection. Results from this study can be utilized by laboratory fish facilities in order to prevent the spread of mycobacteriosis in research fish. PMID:26423444
To address the EPA's need to prioritize hundreds to thousands of chemicals for testing, we are developing a rapid, cost-effective in vivo screen for developmental neurotoxicity using zebrafish (Danio rerio), a small freshwater fish with external fertilization. Zebrafish embryos d...
Conklin, D.J.; Mowbray, R.C.; Gingerich, W.H.
1992-01-01
Recruitment failure is considered to be a major factor contributing to the decline of fish populations in soft, acidic waters; direct mortality of embryo-larval fishes has been postulated as a major cause of the decline. Little is understood of the physiological consequences to embryo-larval fishes of prolonged exposure to soft, acidic waters; however, dysfunction of respiratory and ionoregulatory processes is suspected. In order to evaluate the effects of acid exposure on the respiratory and ionoregulatory systems of developing brook trout, Salvelinus fontinalis, differences in gill morphology and numbers of chloride cells were compared between groups cf developing embryo-larval fish continuously exposed to moderately hard well water (130.0 mg.l-1 as CaCO3, pH 7.94) or to reconstituted soft, acidic water (4.4 mg.l-1 as CaCO3, pH 5.25) designed to mimic acidic waters of northern Wisconsin acidified lakes. Exposures were maintained for up to 48 days (82 days after fertilization) during critical periods of growth and differentiation of branchial structures. The second right gill arch of each fish was examined for changes in the development of filaments and lamellae and for differences in numbers of chloride cells. Gills of fish that developed in soft, acidic water contained greater numbers of normal and degenerating chloride cells, exhibited hyperplasia of primary epithelium and multiple fusions of adjacent filaments and lamellar epithelium than the gills of control fish. Filament and lamellar lengths and numbers of lamellae per filament were significantly less (P< 0.05) in fish that developed in soft, acidic water than in fish exposed to well water.
Impact of motorboats on fish embryos depends on engine type
Jain-Schlaepfer, Sofia; Fakan, Eric; Rummer, Jodie L; Simpson, Stephen D; McCormick, Mark I
2018-01-01
Abstract Human generated noise is changing the natural underwater soundscapes worldwide. The most pervasive sources of underwater anthropogenic noise are motorboats, which have been found to negatively affect several aspects of fish biology. However, few studies have examined the effects of noise on early life stages, especially the embryonic stage, despite embryo health being critical to larval survival and recruitment. Here, we used a novel setup to monitor heart rates of embryos from the staghorn damselfish (Amblyglyphidodon curacao) in shallow reef conditions, allowing us to examine the effects of in situ boat noise in context with real-world exposure. We found that the heart rate of embryos increased in the presence of boat noise, which can be associated with the stress response. Additionally, we found 2-stroke outboard-powered boats had more than twice the effect on embryo heart rates than did 4-stroke powered boats, showing an increase in mean individual heart rate of 1.9% and 4.6%, respectively. To our knowledge this is the first evidence suggesting boat noise elicits a stress response in fish embryo and highlights the need to explore the ecological ramifications of boat noise stress during the embryo stage. Also, knowing the response of marine organisms caused by the sound emissions of particular engine types provides an important tool for reef managers to mitigate noise pollution. PMID:29593871
Impact of motorboats on fish embryos depends on engine type.
Jain-Schlaepfer, Sofia; Fakan, Eric; Rummer, Jodie L; Simpson, Stephen D; McCormick, Mark I
2018-01-01
Human generated noise is changing the natural underwater soundscapes worldwide. The most pervasive sources of underwater anthropogenic noise are motorboats, which have been found to negatively affect several aspects of fish biology. However, few studies have examined the effects of noise on early life stages, especially the embryonic stage, despite embryo health being critical to larval survival and recruitment. Here, we used a novel setup to monitor heart rates of embryos from the staghorn damselfish ( Amblyglyphidodon curacao ) in shallow reef conditions, allowing us to examine the effects of in situ boat noise in context with real-world exposure. We found that the heart rate of embryos increased in the presence of boat noise, which can be associated with the stress response. Additionally, we found 2-stroke outboard-powered boats had more than twice the effect on embryo heart rates than did 4-stroke powered boats, showing an increase in mean individual heart rate of 1.9% and 4.6%, respectively. To our knowledge this is the first evidence suggesting boat noise elicits a stress response in fish embryo and highlights the need to explore the ecological ramifications of boat noise stress during the embryo stage. Also, knowing the response of marine organisms caused by the sound emissions of particular engine types provides an important tool for reef managers to mitigate noise pollution.
A comparison of two mobile electrode arrays for increasing mortality of Lake Trout embryos
Brown, Peter J.; Guy, Christopher S.; Meeuwig, Michael H.
2017-01-01
Conservation of sport fisheries and populations of several native fishes in the western United States is dependent on sustained success of removal programs targeting invasive Lake Trout Salvelinus namaycush. Gill-netting of spawning adults is one strategy used to decrease spawning success; however, additional complementary methods are needed to disrupt Lake Trout reproduction where bycatch in gill nets is unacceptable. We developed and tested two portable electrode arrays designed to increase Lake Trout embryo mortality in known spawning areas. Both arrays were powered by existing commercial electrofishing equipment. However, one array was moved across the substrate to simulate being towed behind a boat (i.e., towed array), while the other array was lowered from a boat and energized when sedentary (i.e., sedentary array). The arrays were tested on embryos placed within substrates of known spawning areas. Both arrays increased mortality of embryos (>90%) at the surface of substrates, but only the sedentary array was able to increase mortality to >90% at deeper burial depths. In contrast, embryos at increasingly deeper depths exhibited progressively lower mortality when exposed to the towed array. Mortality of embryos placed under 20 cm of substrate and exposed to the towed array was not significantly different from that of unexposed embryos in a control group. We suggest that the sedentary array could be used as a viable approach for increasing mortality of Lake Trout embryos buried to 20 cm and that it could be modified to be effective at deeper depths.
Sediment toxicity tests are needed that can be conducted with less sediment volume and fewer organisms. Bench scale remediation techniques often produce less sediment than is required to perform the standardized sediment methods and the excess sediments that are generated present...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weier, Jingly F.; Ferlatte, Christy; Baumgartner, Adolf
Numerical chromosome aberrations in gametes typically lead to failed fertilization, spontaneous abortion or a chromosomally abnormal fetus. By means of preimplantation genetic diagnosis (PGD), we now can screen human embryos in vitro for aneuploidy before transferring the embryos to the uterus. PGD allows us to select unaffected embryos for transfer and increases the implantation rate in in vitro fertilization programs. Molecular cytogenetic analyses using multi-color fluorescence in situ hybridization (FISH) of blastomeres have become the major tool for preimplantation genetic screening of aneuploidy. However, current FISH technology can test for only a small number of chromosome abnormalities and hitherto failedmore » to increase the pregnancy rates as expected. We are in the process of developing technologies to score all 24 chromosomes in single cells within a 3 day time limit, which we believe is vital to the clinical setting. Also, human placental cytotrophoblasts (CTBs) at the fetal-maternal interface acquire aneuploidies as they differentiate to an invasive phenotype. About 20-50% of invasive CTB cells from uncomplicated pregnancies were found aneuploidy, suggesting that the acquisition of aneuploidy is an important component of normal placentation, perhaps limiting the proliferative and invasive potential of CTBs. Since most invasive CTBs are interphase cells and possess extreme heterogeneity, we applied multi-color FISH and repeated hybridizations to investigate individual CTBs. In summary, this study demonstrates the strength of Spectral Imaging analysis and repeated hybridizations, which provides a basis for full karyotype analysis of single interphase cells.« less
Greeley, Jr., Mark Stephen; Adams, S. Marshall; Elmore, Logan R.; ...
2016-01-03
In December 2008, an earthen retaining wall at the Tennessee Valley Authority (TVA) Kingston Fossil Fuel Plant failed and released 4.1 million m 3 of coal ash to rivers flowing into Watts Bar Reservoir in east Tennessee, United States (U.S.). As part of a comprehensive effort to evaluate the risks to aquatic resources from this spill – the largest in U.S. history – we compared bioaccumulation and maternal transfer of selenium (Se), arsenic (As), and mercury (Hg) in adult redear sunfish ( Lepomis macrolophus), collected two years after the spill from both coal-ash exposed and non-exposed areas of the Emorymore » and Clinch Rivers, with the success of embryo-larval development in their offspring. Whole body and ovary concentrations of Se in female sunfish at three study sites downstream of the spill were significantly elevated (site means = 4.9–5.3 and 6.7–9.0 mg/kg d.w. whole body and ovary concentrations, respectively) compared with concentrations in fish from reference sites upstream of the spill site (2.2–3.2 mg/kg d.w. for whole bodies and 3.6–4.8 mg/kg d.w. for ovaries). However, Se concentrations in coal ash-exposed areas remain below proposed U.S. Environmental Protection Agency (USEPA) criteria for the protection of aquatic life. Site-to-site variation in fish concentrations of As and Hg were not well-correlated with ash-exposure, reflecting the multiple sources of these metal(loid)s in the affected watersheds. In 7-day laboratory tests of embryos and larvae derived from in vitro crosses of eggs and sperm from these field-collected sunfish, fertilization success, hatching success, embryo-larval survival, and incidences of developmental abnormalities did not differ significantly between ash-exposed and non-exposed fish. Furthermore, these developmental endpoints were not correlated with whole body or ovary concentrations of Se, As, or Hg in the maternal fish, or with fish size, ovary weight, or gonadal-somatic indices. Furthermore, results from this and related studies associated with the Kingston coal ash spill are consistent with proposed USEPA fish-based water quality criteria for Se, and to date continue to suggest that long-term exposures to sediment containing residual ash may not present a significant chronic risk to fish populations exposed to this major coal ash release.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greeley, Jr., Mark Stephen; Adams, S. Marshall; Elmore, Logan R.
In December 2008, an earthen retaining wall at the Tennessee Valley Authority (TVA) Kingston Fossil Fuel Plant failed and released 4.1 million m 3 of coal ash to rivers flowing into Watts Bar Reservoir in east Tennessee, United States (U.S.). As part of a comprehensive effort to evaluate the risks to aquatic resources from this spill – the largest in U.S. history – we compared bioaccumulation and maternal transfer of selenium (Se), arsenic (As), and mercury (Hg) in adult redear sunfish ( Lepomis macrolophus), collected two years after the spill from both coal-ash exposed and non-exposed areas of the Emorymore » and Clinch Rivers, with the success of embryo-larval development in their offspring. Whole body and ovary concentrations of Se in female sunfish at three study sites downstream of the spill were significantly elevated (site means = 4.9–5.3 and 6.7–9.0 mg/kg d.w. whole body and ovary concentrations, respectively) compared with concentrations in fish from reference sites upstream of the spill site (2.2–3.2 mg/kg d.w. for whole bodies and 3.6–4.8 mg/kg d.w. for ovaries). However, Se concentrations in coal ash-exposed areas remain below proposed U.S. Environmental Protection Agency (USEPA) criteria for the protection of aquatic life. Site-to-site variation in fish concentrations of As and Hg were not well-correlated with ash-exposure, reflecting the multiple sources of these metal(loid)s in the affected watersheds. In 7-day laboratory tests of embryos and larvae derived from in vitro crosses of eggs and sperm from these field-collected sunfish, fertilization success, hatching success, embryo-larval survival, and incidences of developmental abnormalities did not differ significantly between ash-exposed and non-exposed fish. Furthermore, these developmental endpoints were not correlated with whole body or ovary concentrations of Se, As, or Hg in the maternal fish, or with fish size, ovary weight, or gonadal-somatic indices. Furthermore, results from this and related studies associated with the Kingston coal ash spill are consistent with proposed USEPA fish-based water quality criteria for Se, and to date continue to suggest that long-term exposures to sediment containing residual ash may not present a significant chronic risk to fish populations exposed to this major coal ash release.« less
Fathead minnow (Pimephales promelas) embryo to adult exposure to decamethylcyclopentasiloxane (D5).
Parrott, J L; Alaee, M; Wang, D; Sverko, E
2013-10-01
The cyclic siloxane decamethylcyclopentasiloxane (D5) is a high production volume chemical which has recently been assessed under the Canadian Chemicals Management Plan (CMP). Cyclic volatile methyl siloxanes (cVMS) are one of the challenge substances in the CMP batches. To provide toxicity and growth information on a species of relevance to the Canadian environment, we assessed D5 in a fathead minnow (Pimephales promelas) embryo to young adult assay. The test was 65d in length, and exposed fathead minnow eggs to juveniles until near maturity (60d post-hatch). The D5 concentrations in flow-through fish exposure aquaria were about one-third of nominal D5 concentrations. Fathead minnows were exposed to 0.25, 0.82, 1.7, 3.6, and 8.7μgL(-1) D5. During the exposure of fathead minnows to D5 there were few effects seen. Egg hatching and larval fish survival and growth were normal. Juvenile fish survival and growth were good in all environmentally-relevant concentrations of D5, and were similar to control fish. The two highest D5 concentrations (8.7μgL(-1) and 3.6μgL(-1), mean measured D5) increased the condition factors of fathead minnows compared to water control and DMSO control fish. Although there were few effects of D5 in our fathead minnow study, the compound was taken up and stored in fish bodies over the 65-d exposure. The bioconcentration factor for D5 in fathead minnows was 4450, for the lowest environmentally-relevant D5 exposure water concentrations, and 4920 for all D5 exposure concentrations tested. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Küster, Eberhard; Altenburger, Rolf
2008-12-01
Environmental samples such as groundwater, sediment pore water, native or freeze dried sediments may be difficult to analyze for toxic effects with organismic aquatic bioassays. These samples might evoke low oxygen concentration or oxygen depletion during the test. The toxicity assessment could thus be confounded by low oxygen concentrations. The acute zebrafish embryo assay was used to analyze the influence of oxygen deficit on the embryonic development in the first 48 h post fertilization. Embryos were exposed to varying oxygen concentrations ranging from <30 to >80% oxygen saturation of water. A clear concentration dependent retardation of fish embryo development was observed. Because of a retarded development toxic thresholds of environmental samples which might include substances slowing down the development will be altered. For the purpose of identification of critical contaminants in complex environmental samples, it is proposed to actively aerate environmental samples which are likely to be oxygen depleted during the duration of the zebrafish embryo bioassay. 2008 Wiley Periodicals, Inc.
Bou, Gerelchimeg; Sun, Mingju; Lv, Ming; Zhu, Jiang; Li, Hui; Wang, Juan; Li, Lu; Liu, Zhongfeng; Zheng, Zhong; He, Wenteng; Kong, Qingran; Liu, Zhonghua
2014-08-01
For efficient transgenic herd expansion, only the transgenic animals that possess the ability to transmit transgene into next generation are considered for breeding. However, for transgenic pig, practically lacking a pre-breeding screening program, time, labor and money is always wasted to maintain non-transgenic pigs, low or null transgenic transmission pigs and the related fruitless gestations. Developing a pre-breeding screening program would make the transgenic herd expansion more economical and efficient. In this technical report, we proposed a three-step pre-breeding screening program for transgenic boars simply through combining the fluorescence in situ hybridization (FISH) assay with the common pre-breeding screening workflow. In the first step of screening, combined with general transgenic phenotype analysis, FISH is used to identify transgenic boars. In the second step of screening, combined with conventional semen test, FISH is used to detect transgenic sperm, thus to identify the individuals producing high quality semen and transgenic sperm. In the third step of screening, FISH is used to assess the in vitro fertilization embryos, thus finally to identify the individuals with the ability to produce transgenic embryos. By this three-step screening, the non-transgenic boars and boars with no ability to produce transgenic sperm or transgenic embryos would be eliminated; therefore only those boars could produce transgenic offspring are maintained and used for breeding and herd expansion. It is the first time a systematic pre-breeding screening program is proposed for transgenic pigs. This program might also be applied in other transgenic large animals, and provide an economical and efficient strategy for herd expansion.
Chromosomal Aneuploidies and Early Embryonic Developmental Arrest.
Maurer, Maria; Ebner, Thomas; Puchner, Manuela; Mayer, Richard Bernhard; Shebl, Omar; Oppelt, Peter; Duba, Hans-Christoph
2015-01-01
Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF) technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH) with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting.
Kynard, B.; Parker, E.
2005-01-01
We studied Sacramento River white sturgeon, Acipenser transmontanus, in the laboratory to develop a conceptual model of ontogenetic behavior and provide insight into probable behavior of wild sturgeon. After hatching, free embryos initiated a low intensity, brief downstream dispersal during which fish swam near the bottom and were photonegative. The weak, short dispersal style and behavior of white sturgeon free embryos contrasts greatly with the intense, long dispersal style and behavior (photopositive and swimming far above the bottom) of dispersing free embryos of other sturgeon species. If spawned eggs are concentrated within a few kilometers downstream of a spawning site, the adaptive significance of the free embryo dispersal is likely to move fish away from the egg deposition site to avoid predation and reduce fish density prior to feeding. Larvae foraged on the open bottom, swam <1 m above the bottom, aggregated, but did not disperse. Early juveniles initiated a strong dispersal with fish strongly vigorously swimming downstream. Duration of the juvenile dispersal is unknown, but the strong swimming likely disperses fish many kilometers. Recruitment failure in white sturgeon populations may be a mis-match between the innate fish dispersal and post-dispersal rearing habitat, which is now highly altered by damming and reservoirs. Sacramento River white sturgeon has a two-step downstream dispersal by the free embryo and juvenile life intervals. Diel activity of all life intervals peaked at night, whether fish were dispersing or foraging. Nocturnal behavior is likely a response to predation, which occurs during both activities. An intense black-tail body color was present on foraging larvae, but was weak or absent on the two life intervals that disperse. Black-tail color may be an adaptation for avoiding predation, signaling among aggregated larvae, or both, but not for dispersal. ?? Springer 2005.
Bodewein, Lambert; Schmelter, Frank; Di Fiore, Stefano; Hollert, Henner; Fischer, Rainer; Fenske, Martina
2016-08-15
Dendrimers are an emerging class of polymeric nanoparticles with beneficial biomedical applications like early diagnostics, in vitro gene transfection or controlled drug delivery. However, the potential toxic impact of exposure on human health or the environment is often inadequately defined. Thus, polyamidoamine (PAMAM) dendrimers of generations G3.0, 3.5, 4.0, 4.5 and 5.0 and polypropylenimine (PPI) dendrimers G3.0, 4.0 and 5.0 were tested in zebrafish embryos for 96h and human cancer cell lines for 24h, to assess and compare developmental in vivo toxicity with cytotoxicity. The zebrafish embryo toxicity of cationic PAMAM and PPI dendrimers increased over time, with EC50 values ranging from 0.16 to just below 1.7μM at 24 and 48hpf. The predominant effects were mortality, plus reduced heartbeat and blood circulation for PPI dendrimers. Apoptosis in the embryos increased in line with the general toxicity concentration-dependently. Hatch and dechorionation of the embryos increased the toxicity, suggesting a protective role of the chorion. Lower generation dendrimers were more toxic in the embryos whereas the toxicity in the HepG2 and DU145 cell lines increased with increasing generation of cationic PAMAMs and PPI dendrimers. HepG2 were less sensitive than DU145 cells, with IC50 values≥402μM (PAMAMs) and ≤240μM (PPIs) for HepG2 and ≤13.24μM (PAMAMs) and ≤12.84μM (PPIs) for DU145. Neither in fish embryos nor cells toxicity thresholds were determinable for anionic PAMAM G3.5 and G4.5. The study demonstrated that the cytotoxicity underestimated the in-vivo toxicity of the dendrimers in the fish embryos. Copyright © 2016 Elsevier Inc. All rights reserved.
In vitro function of the aryl hydrocarbon receptor predicts in ...
Differences in sensitivity to dioxin-like compounds (DLCs) among species and taxa presents a major challenge to ecological risk assessments. Activation of the aryl hydrocarbon receptor (AHR) regulates adverse effects associated with exposure to DLCs in vertebrates. Prior investigations demonstrated that sensitivity to activation of the AHR1 (50% effect concentration; EC50) in an in vitro luciferase reporter gene (LRG) assay was predictive of the sensitivity of embryos (lethal dose to cause 50% lethality; LD50) across all species of birds for all DLCs. However, nothing was known about whether sensitivity to activation of the AHR is predictive of sensitivity of embryos of fishes to DLCs. Therefore, this study investigated in vitro sensitivities of AHR1s and AHR2s to the model DLC, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), among eight species of fish of known sensitivities of embryos to TCDD. AHR1s and AHR2s of all fishes were activated by TCDD in vitro. There was no significant linear relationship between in vitro sensitivity of AHR1 and in vivo sensitivity among the investigated fishes (R2 = 0.33, p = 0.23). However, there was a significant linear relationship between in vitro sensitivity of AHR2 and in vivo sensitivity among the investigated fishes (R2 = 0.97, p = < 0.0001). The linear relationship between in vitro sensitivity of AHR2 and in vivo sensitivity of embryos among fishes was compared to the previously generated linear relationship between in vitro s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirakashi, Ryo, E-mail: aa21150@iis.u-tokyo.ac.jp; Mischke, Miriam; Fischer, Peter
2012-11-09
Highlights: Black-Right-Pointing-Pointer Electrorotation offers a non-invasive tool for dielectric analysis of fish embryos. Black-Right-Pointing-Pointer The three-shell dielectric model matches the rotation spectra of medaka eggs. Black-Right-Pointing-Pointer The capacitance value suggests a double-membrane structure of yolk envelope. -- Abstract: The Japanese medaka fish, Oryzias latipes, has become a powerful vertebrate model organism in developmental biology and genetics. The present study explores the dielectric properties of medaka embryos during pre-hatching development by means of the electrorotation (ROT) technique. Due to their layered structure, medaka eggs exhibited up to three ROT peaks in the kHz-MHz frequency range. During development from blastula to earlymore » somite stage, ROT spectra varied only slightly. But as the embryo progressed to the late-somite stage, the ROT peaks underwent significant changes in frequency and amplitude. Using morphological data obtained by light and electron microscopy, we analyzed the ROT spectra with a three-shell dielectric model that accounted for the major embryonic compartments. The analysis yielded a very high value for the ionic conductivity of the egg shell (chorion), which was confirmed by independent osmotic experiments. A relatively low capacitance of the yolk envelope was consistent with its double-membrane structure revealed by transmission electron microscopy. Yolk-free dead eggs exhibited only one co-field ROT peak, shifted markedly to lower frequencies with respect to the corresponding peak of live embryos. The dielectric data may be useful for monitoring the development and changes in fish embryos' viability/conditions in basic research and industrial aquaculture.« less
The effect of oil sands tailings pond sediments on embryo-larval walleye (Sander vitreus).
Raine, J C; Turcotte, D; Tumber, V; Peru, K M; Wang, Z; Yang, C; Headley, J V; Parrott, J L
2017-10-01
Walleye (Sander vitreus) are a commercially important North American fish species that inhabit the Athabasca River. This river flows through the Athabasca oil sands where natural sources of bitumen erode from the McMurray formation. Little information is available on responses of walleye embryos to oil sands tailings pond sediments in a laboratory setting. The current study describes the design and implementation of a daily-renewal bioassay to assess the potential effects of tailings pond sediments from the Athabasca oil sands area on walleye development. Developing walleye embryos were exposed to increasing concentrations of two tailings pond sediments (collected in the Athabasca oil sands area) until the completion of yolk absorption in control fish. Sediments from the tailings pond represent a mixture of polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs. During the 31 day exposure, the walleye were examined for mortalities, weight, length and developmental abnormalities to provide an initial evaluation of the effects of the oil sands tailings pond sediments. Walleye embryo survival differed between the tailings pond sediments, and survival decreased with increasing sediment concentration. Alkylated PAH content differed between the two tailings pond sediments and lower embryo survival corresponded to higher total and alkylated PAH content. Tailings pond sediment-exposed walleye exhibited a delay in development, as well as increased percentages of larvae with heart and yolk sac edema, and cranial and spinal malformations. These abnormalities in development are often associated with PAH and alkylated PAH exposure. This study provides an exposure design that can be used to assess sediment toxicity to early developmental stages of a fish species not commonly tested in the lab, and lays the groundwork for future studies with this and other difficult-to-culture species. These results offer information on the potential effects of tailings pond sediments containing PAH/alkylated PAH mixtures on walleye development and survival. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Jeffries, Marlo K Sellin; Stultz, Amy E; Smith, Austin W; Stephens, Dane A; Rawlings, Jane M; Belanger, Scott E; Oris, James T
2015-06-01
The fish embryo toxicity (FET) test has been proposed as an alternative to the larval growth and survival (LGS) test. The objectives of the present study were to evaluate the sensitivity of the FET and LGS tests in fathead minnows (Pimephales promelas) and zebrafish (Danio rerio) and to determine if the inclusion of sublethal metrics as test endpoints could enhance test utility. In both species, LGS and FET tests were conducted using 2 simulated effluents. A comparison of median lethal concentrations determined via each test revealed significant differences between test types; however, it could not be determined which test was the least and/or most sensitive. At the conclusion of each test, developmental abnormalities and the expression of genes related to growth and toxicity were evaluated. Fathead minnows and zebrafish exposed to mock municipal wastewater-treatment plant effluent in a FET test experienced an increased incidence of pericardial edema and significant alterations in the expression of genes including insulin-like growth factors 1 and 2, heat shock protein 70, and cytochrome P4501A, suggesting that the inclusion of these endpoints could enhance test utility. The results not only show the utility of the fathead minnow FET test as a replacement for the LGS test but also provide evidence that inclusion of additional endpoints could improve the predictive power of the FET test. © 2015 SETAC.
Dependence between LD50 for Rodents and LC50 for Adult Fish and Fish Embryos.
Zolotarev, K V; Belyaeva, N F; Mikhailov, A N; Mikhailova, M V
2017-02-01
We revealed empirical dependences between common logarithm of a ratio of rat oral LD 50 to LC a 50 for adult fish and lgP for 50 different chemicals; and common logarithm of a ratio of the oral LD 50 in rodents to LC e 50 for fish embryos and lgP for 30 different chemicals. The dependences were obtained by constructing a trend line between experimental points and calculation of Pearson's R correlation coefficient as a measure of regression significance. These dependences can show the influence of substance lipophilicity on its toxicity for aquatic organisms comparing to mammals.
Shaw, Benjamin J; Liddle, Corin C; Windeatt, Kirsten M; Handy, Richard D
2016-09-01
There are concerns that regulatory toxicity tests are not fit for purpose for engineered nanomaterials (ENMs) or need modifications. The aim of the current study was to evaluate the OECD 210 fish, early-life stage toxicity test for use with TiO2 ENMs, Ag ENMs, and MWCNT. Both TiO2 ENMS (≤160 mg l(-1)) and MWCNT (≤10 mg l(-1)) showed limited acute toxicity, whilst Ag ENMs were acutely toxic to zebrafish, though less so than AgNO3 (6-day LC50 values of 58.6 and 5.0 µg l(-1), respectively). Evidence of delayed hatching, decreased body length and increased muscle width in the tail was seen in fish exposed to Ag ENMs. Oedema (swollen yolk sacs) was also seen in fish from both Ag treatments with, for example, mean yolk sac volumes of 17, 35 and 39 µm(3) for the control, 100 µg l(-1) Ag ENMs and 5 µg l(-1) AgNO3 treatments, respectively. Among the problems with the standard test guidelines was the inability to maintain the test solutions within ±20 % of nominal concentrations. Pronounced settling of the ENMs in some beakers also made it clear the fish were not being exposed to nominal concentrations. To overcome this, the exposure apparatus was modified with the addition of an exposure chamber that ensured mixing without damaging the delicate embryos/larvae. This allowed more homogeneous ENM exposures, signified by improved measured concentrations in the beakers (up to 85.7 and 88.1 % of the nominal concentrations from 10 mg l(-1) TiO2 and 50 µg l(-1) Ag ENM exposures, respectively) and reduced variance between measurements compared to the original method. The recommendations include: that the test is conducted using exposure chambers, the use of quantitative measurements for assessing hatching and morphometrics, and where there is increased sensitivity of larvae over embryos to conduct a shorter, larvae-only toxicity test with the ENMs.
Krzykwa, Julie C; Olivas, Alexis; Jeffries, Marlo K Sellin
2018-06-19
The fathead minnow fish embryo toxicity (FET) test has been proposed as a more humane alternative to current toxicity testing methods, as younger organisms are thought to experience less distress during toxicant exposure. However, the FET test protocol does not include endpoints that allow for the prediction of sublethal adverse outcomes, limiting its utility relative to other test types. Researchers have proposed the development of sublethal endpoints for the FET test to increase its utility. The present study 1) developed methods for previously unmeasured sublethal metrics in fathead minnows (i.e., spontaneous contraction frequency and heart rate) and 2) investigated the responsiveness of several sublethal endpoints related to growth (wet weight, length, and growth-related gene expression), neurodevelopment (spontaneous contraction frequency, and neurodevelopmental gene expression), and cardiovascular function and development (pericardial area, eye size and cardiovascular related gene expression) as additional FET test metrics using the model toxicant 3,4-dichloroaniline. Of the growth, neurological and cardiovascular endpoints measured, length, eye size and pericardial area were found to more responsive than the other endpoints, respectively. Future studies linking alterations in these endpoints to longer-term adverse impacts are needed to fully evaluate the predictive power of these metrics in chemical and whole effluent toxicity testing. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Zebrafish as a Model System for Environmental Health Studies in the Grade 9–12 Classroom
Hesselbach, Renee; Carvan, Michael John; Goldberg, Barbara; Berg, Craig A.; Petering, David H.
2014-01-01
Abstract Developing zebrafish embryos were used as a model system for high school students to conduct scientific investigations that reveal features of normal development and to test how different environmental toxicants impact the developmental process. The primary goal of the module was to engage students from a wide range of socio-economic backgrounds, with particular focus on underserved inner-city high schools, in inquiry-based learning and hands-on experimentation. In addition, the module served as a platform for both teachers and students to design additional inquiry-based experiments. In this module, students spawned adult zebrafish to generate developing embryos, exposed the embryos to various toxicants, then gathered, and analyzed data obtained from control and experimental embryos. The module provided a flexible, experimental framework for students to test the effects of numerous environmental toxicants, such as ethanol, caffeine, and nicotine, on the development of a model vertebrate organism. Students also observed the effects of dose on experimental outcomes. From observations of the effects of the chemical agents on vertebrate embryos, students drew conclusions on how these chemicals could impact human development and health. Results of pre-tests and post-tests completed by participating students indicate statistically significant changes in awareness of the impact of environmental agents on fish and human beings In addition, the program's evaluator concluded that participation in the module resulted in significant changes in the attitude of students and teachers toward science in general and environmental health in particular. PMID:24941301
Souders, Christopher L; Liang, Xuefang; Wang, Xiaohong; Ector, Naomi; Zhao, Yuan H; Martyniuk, Christopher J
2018-06-01
Mitochondrial dysfunction is a prevalent molecular event that can result in multiple adverse outcomes. Recently, a novel high throughput method to assess metabolic capacity in fish embryos following exposure to chemicals has been adapted for environmental toxicology. Assessments of oxygen consumption rates using the Seahorse XF(e) 24/96 Extracellular Flux Analyzer (Agilent Technologies) can be used to garner insight into toxicant effects at early stages of development. Here we synthesize the current state of the science using high throughput metabolic profiling in zebrafish embryos, and present considerations for those wishing to adopt high throughput methods for mitochondrial bioenergetics into their research. Chemicals that have been investigated in zebrafish using this metabolic platform include herbicides (e.g. paraquat, diquat), industrial compounds (e.g. benzo-[a]-pyrene, tributyltin), natural products (e.g. quercetin), and anti-bacterial chemicals (i.e. triclosan). Some of these chemicals inhibit mitochondrial endpoints in the μM-mM range, and reduce basal respiration, maximum respiration, and spare capacity. We present a theoretical framework for how one can use mitochondrial performance data in zebrafish to categorize chemicals of concern and prioritize mitochondrial toxicants. Noteworthy is that our studies demonstrate that there can be considerable variation in basal respiration of untreated zebrafish embryos due to clutch-specific effects as well as individual variability, and basal oxygen consumption rates (OCR) can vary on average between 100 and 300 pmol/min/embryo. We also compare OCR between chorionated and dechorionated embryos, as both models are employed to test chemicals. After 24 h, dechorionated embryos remain responsive to mitochondrial toxicants, although they show a blunted response to the uncoupling agent carbonylcyanide-4-trifluoromethoxyphenylhydrazone (FCCP); dechorionated embryos are therefore a viable option for investigations into mitochondrial bioenergetics. We present an adverse outcome pathway framework that incorporates endpoints related to mitochondrial bioenergetics. High throughput bioenergetics assays conducted using whole embryos are expected to support adverse outcome pathways for mitochondrial dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.
Gadomski, D.M.; Barfoot, C.A.
1998-01-01
Diel and distributional abundance patterns of free embryos and larvae of fishes in the lower Columbia River Basin were investigated. Ichthyoplankton samples were collected in 1993 during day and night in the main-channel and a backwater of the lower Columbia River, and in a tributary, the Deschutes River. Fish embryos and larvae collected in the main-channel Columbia River were primarily (85.6%) of native taxa (peamouth Mylocheilus caurinus, northern squawfish Ptychocheilus oregonensis, suckers Catostomus spp., and sculpins Cottus spp.), with two introduced species (American shad Alosa sapidissima and common carp Cyprinus carpio) comprising a smaller percentage of the catch (13.3%). Similarly, in the Deschutes River native taxa [lampreys (Petromyzontidae), minnows (Cyprinidae), and suckers Catostomus spp.] dominated collections (99.5% of the catch). In contrast, 83.5% of embryos and larvae in the Columbia River backwater were of introduced taxa [American shad, common carp, and sunfishes (Centrarchidae)]. In all locations, all dominant taxa except sculpins were collected in significantly greater proportions at night. Taxon-specific differences in proportions of embryos and larvae collected at night can in some instances be related to life history styles. In the main-channel Columbia River, northern squawfish and peamouth were strongly nocturnal and high proportions still had yolksacs, suggesting that they had recently hatched and were drifting downriver to rearing areas. In contrast, sculpin abundances were similar during day and night, and sculpins mostly had depleted yolksacs, indicating sculpins were feeding and rearing in offshore limnetic habitats. Taxon-specific diel abundance patterns and their causes must be considered when designing effective sampling programs for fish embryos and larvae.
Lethal and sublethal effects of aniline and chlorinated anilines on zebrafish embryos and larvae.
Horie, Yoshifumi; Yamagishi, Takahiro; Koshio, Masaaki; Iguchi, Taisen; Tatarazako, Norihisa
2017-07-01
Environmental risk assessments show increased attention to the sublethal effects of chemicals on aquatic organisms. The Organization for Economic Cooperation and Development (OECD) established the "Fish, Short-term Toxicity Test on Embryo and Sac-fry Stages" (OECD test 212) to predict lethal effects. It is still unclear, however, whether this test can predict sublethal effects. Although their sublethal effects are still unknown, chlorinated anilines are widely used in various fields. The purpose of this study, therefore, is to investigate sublethal effects of chlorinated anilines using OECD test 212 with zebrafish, and to examine the correlation of several sublethal effects between embryo and larval stages. Embryos were exposed to aniline and nine chlorinated anilines until 8 days post-fertilization. A delayed lethal effect was observed from three of the 10 anilines tested. In the control group, the swim bladder inflated after hatching, but there was no swim-bladder inflation after exposure to the chlorinated anilines. Fertilized eggs exposed to lower concentrations of test chemicals showed effects during embryogenesis that did not affect mortality rates, such as changes in body curvature and edema. Our results show that chlorinated anilines induce not only lethal effects but also a variety of sublethal effects. Moreover, a detailed estimate of these effects requires study during both embryonic and larval stages. OECD test 212 may therefore prove useful as a method for screening chemicals for lethal and sublethal effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Chromosomal Aneuploidies and Early Embryonic Developmental Arrest
Maurer, Maria; Ebner, Thomas; Puchner, Manuela; Mayer, Richard Bernhard; Shebl, Omar; Oppelt, Peter; Duba, Hans-Christoph
2015-01-01
Background Selecting the best embryo for transfer, with the highest chance of achieving a vital pregnancy, is a major goal in current in vitro fertilization (IVF) technology. The high rate of embryonic developmental arrest during IVF treatment is one of the limitations in achieving this goal. Chromosomal abnormalities are possibly linked with chromosomal arrest and selection against abnormal fertilization products. The objective of this study was to evaluate the frequency and type of chromosomal abnormalities in preimplantation embryos with developmental arrest. Materials and Methods This cohort study included blastomeres of embryos with early developmental arrest that were biopsied and analyzed by fluorescence in-situ hybridization (FISH) with probes for chromosomes 13, 16, 18, 21 and 22. Forty-five couples undergoing IVF treatment were included, and 119 arrested embryos were biopsied. All probes were obtained from the Kinderwunsch Zentrum, Linz, Austria, between August 2009 and August 2011. Results Of these embryos, 31.6% were normal for all chromosomes tested, and 68.4% were abnormal. Eleven embryos were uniformly aneuploid, 20 were polyploid, 3 were haploid, 11 displayed mosaicism and 22 embryos exhibited chaotic chromosomal complement. Conclusion Nearly 70% of arrested embryos exhibit chromosomal errors, making chromosomal abnormalities a major cause of embryonic arrest and may be a further explanation for the high developmental failure rates during culture of the embryos in the IVF setting. PMID:26644858
Lobel, Lisa M Kerr; Davis, Elizabeth A
2002-01-01
Antibodies against polychlorinated biphenyls (PCBs) were used to determine if immunohistochemical methods could detect PCBs in embryos and larvae of a territorial coral reef fish (Abudefduf sordidus; Pomacentridae) collected from Johnston Atoll, Central Pacific Ocean. Sites with differing levels of contamination were sampled, one with relatively high sediment PCB concentrations of up to 389.0 ng/g and another with low PCB concentrations of only 0.5 ng/g. Immunostaining suggested that PCB concentrations were higher in fish larvae from the PCB contaminated site and that PCB concentrations within abnormal embryos were higher than normal embryos from the same nest. This technique will be useful for detecting exposed populations in the field and assessing correlations with adverse effects, particularly in potential indicator organisms such as Abudefduf sordidus.
Bukhari, Syed Abbas; Bell, Alison M.
2016-01-01
Offspring from females that experience stressful conditions during reproduction often exhibit altered phenotypes and many of these effects are thought to arise owing to increased exposure to maternal glucocorticoids. While embryos of placental vertebrates are known to regulate exposure to maternal glucocorticoids via placental steroid metabolism, much less is known about how and whether egg-laying vertebrates can control their steroid environment during embryonic development. We tested the hypothesis that threespine stickleback (Gasterosteus aculeatus) embryos can regulate exposure to maternal steroids via active efflux of maternal steroids from the egg. Embryos rapidly (within 72 h) cleared intact steroids, but blocking ATP-binding cassette (ABC) transporters inhibited cortisol clearance. Remarkably, this efflux of cortisol was sufficient to prevent a transcriptional response of embryos to exogenous cortisol. Taken together, these findings suggest that, much like their placental counterparts, developing fish embryos can actively regulate their exposure to maternal cortisol. These findings highlight the fact that even in egg-laying vertebrates, the realized exposure to maternal steroids is mediated by both maternal and embryonic processes and this has important implications for understanding how maternal stress influences offspring development. PMID:26984623
Xu, Xiaojuan; Weber, Daniel; Burge, Rebekah; VanAmberg, Kelsey
2016-01-01
The zebrafish has become a useful animal model for studying the effects of environmental contaminants on neurobehavioral development due to its ease of breeding, high number of eggs per female, short generation times, and a well-established avoidance conditioning paradigm. Using avoidance conditioning as the behavioral paradigm, the present study investigated the effects of embryonic exposure to lead (Pb) on learning in adult zebrafish and the third (F3) generation of those fish. In Experiment 1, adult zebrafish that were developmentally exposed to 0.0, 0.1, 1.0 or 10.0μM Pb (2-24h post fertilization) as embryos were trained and tested for avoidance responses. The results showed that adult zebrafish hatched from embryos exposed to 0.0 or 0.1μM Pb learned avoidance responses during training and displayed significantly increased avoidance responses during testing, while those hatched from embryos exposed to 1.0 or 10.0μM Pb displayed no significant increases in avoidance responses from training to testing. In Experiment 2, the F3 generation of zebrafish that were developmentally exposed to an identical exposure regimen as in Experiment 1 were trained and tested for avoidance responses. The results showed that the F3 generation of zebrafish developmentally exposed as embryos to 0.0 or 0.1μM Pb learned avoidance responses during training and displayed significantly increased avoidance responses during testing, while the F3 generation of zebrafish developmentally exposed as embryos to 1.0 or 10.0μM Pb displayed no significant changes in avoidance responses from training to testing. Thus, developmental Pb exposure produced learning impairments that persisted for at least three generations, demonstrating trans-generational effects of embryonic exposure to Pb. Copyright © 2015. Published by Elsevier B.V.
Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays.
Macdonald, N P; Zhu, F; Hall, C J; Reboud, J; Crosier, P S; Patton, E E; Wlodkowic, D; Cooper, J M
2016-01-21
3D printing has emerged as a rapid and cost-efficient manufacturing technique to enable the fabrication of bespoke, complex prototypes. If the technology is to have a significant impact in biomedical applications, such as drug discovery and molecular diagnostics, the devices produced must be biologically compatible to enable their use with established reference assays and protocols. In this work we demonstrate that we can adapt the Fish Embryo Test (FET) as a new method to quantify the toxicity of 3D printed microfluidic devices. We assessed the biocompatibility of four commercially available 3D printing polymers (VisiJetCrystal EX200, Watershed 11122XC, Fototec SLA 7150 Clear and ABSplus P-430), through the observation of key developmental markers in the developing zebrafish embryos. Results show all of the photopolymers to be highly toxic to the embryos, resulting in fatality, although we do demonstrate that post-printing treatment of Fototec 7150 makes it suitable for zebrafish culture within the FET.
A Sketch of the Taiwan Zebrafish Core Facility.
You, May-Su; Jiang, Yun-Jin; Yuh, Chiou-Hwa; Wang, Chien-Ming; Tang, Chih-Hao; Chuang, Yung-Jen; Lin, Bo-Hung; Wu, Jen-Leih; Hwang, Sheng-Ping L
2016-07-01
In the past three decades, the number of zebrafish laboratories has significantly increased in Taiwan. The Taiwan Zebrafish Core Facility (TZCF), a government-funded core facility, was launched to serve this growing community. The Core Facility was built on two sites, one located at the National Health Research Institutes (NHRI, called Taiwan Zebrafish Core Facility at NHRI or TZeNH) and the other is located at the Academia Sinica (Taiwan Zebrafish Core Facility at AS a.k.a. TZCAS). The total surface area of the TZCF is about 180 m(2) encompassing 2880 fish tanks. Each site has a separate quarantine room and centralized water recirculating systems, monitoring key water parameters. To prevent diseases, three main strategies have been implemented: (1) imported fish must be quarantined; (2) only bleached embryos are introduced into the main facilities; and (3) working practices were implemented to minimize pathogen transfer between stocks and facilities. Currently, there is no health program in place; however, a fourth measure for the health program, specific regular pathogen tests, is being planned. In March 2015, the TZCF at NHRI has been AAALAC accredited. It is our goal to ensure that we provide "disease-free" fish and embryos to the Taiwanese research community.
Transient expression and activity of human DNA polymerase iota in loach embryos.
Makarova, Irina V; Kazakov, Andrey A; Makarova, Alena V; Khaidarova, Nella V; Kozikova, Larisa V; Nenasheva, Valentina V; Gening, Leonid V; Tarantul, Vyacheslav Z; Andreeva, Ludmila E
2012-02-01
Human DNA polymerase iota (Pol ι) is a Y-family DNA polymerase with unusual biochemical properties and not fully understood functions. Pol ι preferentially incorporates dGTP opposite template thymine. This property can be used to monitor Pol ι activity in the presence of other DNA polymerases, e.g. in cell extracts of tissues and tumors. We have now confirmed the specificity and sensitivity of the method of Pol ι activity detection in cell extracts using an animal model of loach Misgurnus fossilis embryos transiently expressing human Pol ι. The overexpression of Pol ι was shown to be accompanied by an increase in abnormalities in development and the frequency of pycnotic nuclei in fish embryos. Further analysis of fish embryos with constitutive or regulated Pol ι expression may provide insights into Pol ι functions in vertebrate animals.
Surgical manipulation of mammalian embryos in vitro.
Naruse, I; Keino, H; Taniguchi, M
1997-04-01
Whole-embryo culture systems are useful in the fields of not only embryology but also teratology, toxicology, pharmacology, and physiology. Of the many advantages of whole-embryo culture, we focus here on the surgical manipulation of mammalian embryos. Whole-embryo culture allows us to manipulate mammalian embryos, similarly to fish, amphibian and avian embryos. Many surgical experiments have been performed in mammalian embryos in vitro. Such surgical manipulation alters the destiny of morphogenesis of the embryos and can answer many questions concerning developmental issues. As an example of surgical manipulation using whole-embryo culture systems, one of our experiments is described. Microsurgical electrocauterization of the deep preaxial mesodermal programmed cell death zone (fpp) in the footplate prevented the manifestation of polydactyly in genetic polydactyly mouse embryos (Pdn/Pdn), in which fpp was abolished.
Schmidt, Susanne; Busch, Wibke; Altenburger, Rolf; Küster, Eberhard
2016-06-01
Three water contaminants were selected to be tested in the zebrafish embryo toxicity test (DarT) in order to investigate the sensitivity of the zebrafish embryo toxicity test with respect to mixture effect detection. The concentration-response curves for the observed effects lethality and hypo-pigmentation were calculated after an exposure of the embryos for 96 h with a fungicide (carbendazim), a plasticizer or propellent precursor (2,4-DNT: 2,4- dinitrotoluene) and an aromatic compound (AαC: 2-amino-9H-pyrido[2,3-b]indol), respectively. Follow-up mixture tests were based on the calculated LC50 or EC50 of the single compounds and combined effects were predicted according to the mixture concepts of concentration addition (CA) and independent action (IA). The order of toxicity for the single substances was carbendazim (LC50 = 1.25 μM) < AαC (LC50 = 8.16 μM) < 2,4-DNT (LC50 = 177.05 μM). For AαC and 2,4 DNT hypo-pigmentation was observed in addition (AαC EC50 = 1.81 μM; 2,4-DNT EC50 = 8.81 μM). Two binary and one ternary mixture were studied on lethality and one on hypo-pigmentation: 2,4-DNT/AαC (LC50 = 119.21 μM, EC50 = 5.37 μM), carbendazim/AαC (LC50 = 4.49 μM) and AαC/Carbendazim/2,4 DNT (LC50 = 108.62 μM). Results showed that the effects were in agreement with the CA model when substances were tested in mixtures. Therefore, in a reasonable worst case scenario substance combination effects in fish embryos were at maximum only prone to overestimation when using CA as the mixture concept. Copyright © 2016 Elsevier Ltd. All rights reserved.
SURVIVAL OF STEELHEAD TROUT (SALMO GAIRDNERI) EGGS, EMBRYOS, AND FRY IN AIR-SUPERSATURATED WATER
Egg, embryo, fry, and swim-up stages of steelhead trout (Salmo gairdneri) were exposed to water at total gas saturation levels ranging from 130 to 115%. Eggs, embryos, and newly hatched fry were not affected at 126.7%, but at about day 16 posthatch when the fish began swimming up...
Space Tissue Loss Configuration B (STL-B)
NASA Technical Reports Server (NTRS)
1998-01-01
The goal of these experiments was to determine the effect of microgravity on the early development of the fish medaka. There were two objectives for this flight series. The primary objective was to assess the effects of microgravity on different stages of development and to ascertain whether the relevant developmental questions can be addressed at the gross morphological level or if the issues involve more subtle questions about regulation at the molecular and cellular levels. The secondary objective was the assessment of the utility of flight hardware with the capabilities to perform embryological studies. We have been able to take advantage of the flight testing phase of the STL-B hardware to also study the effects of microgravity on the early development of the fish, Medaka. Our initial studies involved monitoring the early Medaka development and raising flight embryos for breeding. Images of the developing embryos were collected either via video which was either taken by the astronauts or broadcast to Earth. Sample video images were digitized and stored on a hard drive resident within the on-board STL-B unit. Embryos were fixed at specific intervals, returned to Earth and are being analyzed for the timing and location of molecular events associated with controlling the morphological pattern for the onset of adult structures.
Toxicity of chlorine to zebrafish embryos
Kent, Michael L.; Buchner, Cari; Barton, Carrie; Tanguay, Robert L.
2014-01-01
Surface disinfection of fertilized fish eggs is widely used in aquaculture to reduce extraovum pathogens that may be released from brood fish during spawning, and this is routinely used in zebrafish (Danio rerio) research laboratories. Most laboratories use approximately 25 – 50 ppm unbuffered chlorine solution for 5 – 10 min. Treatment of embryos with chlorine has significant germicidal effects for many Gram-negative bacteria, viruses, and trophozoite stages of protozoa, it has reduced efficacy against cyst or spore stages of protozoa and certain Mycobacterium spp. Therefore, we evaluated the toxicity of unbufferred and buffered chlorine solution to embryos exposed at 6 or 24 hours post-fertilization (hpf) to determine if higher concentrations can be used for treating zebrafish embryos. Most of our experiments entailed using an outbred line (5D), with both mortality and malformations as endpoints. We found that 6 hpf embryos consistently were more resistant than 24 hpf embryos to the toxic effects of chlorine. Chlorine is more toxic and germicidal at lower pHs, and chlorine causes elevated pH. Consistent with this, we found that unbufferred chlorine solutions (pH ca 8–9) were less toxic at corresponding concentrations than solutions buffered to pH 7. Based on our findings here, we recommend treating 6 hpf embryos for 10 min and 24 hpf for 5 min with unbuffered chlorine solution at 100 ppm. One trial indicated that AB fish, a popular outbred line, are more susceptible to toxicity than 5Ds. This suggests that variability between zebrafish lines occurs, and researchers should evaluate each line or strain under their particular laboratory conditions for selection of the optimum chlorine treatment procedure. PMID:24429474
Bettio, Daniela; Capalbo, Antonio; Albani, Elena; Rienzi, Laura; Achille, Valentina; Venci, Anna; Ubaldi, Filippo Maria; Levi Setti, Paolo Emanuele
2016-09-06
Preimplantation genetic screening (PGS) provides an opportunity to eliminate a potential implantation failure due to aneuploidy in infertile couples. Some studies clearly show that twins following single embryo transfer (SET) can be the result of a concurrent natural conception and an incidence as high as 1 in 5 twins has been reported. In our case PGS was performed on trophectoderm (TE) biopsies by quantitative polymerase chain reaction (qPCR). The product of conception (POC) was cytogenetically investigated after selection of the placental villi by means of the direct method. Molecular cytogenetic characterization of the POC was performed by fluorescence in situ hybridization (FISH) and array-comparative genomic hybridization (a-CGH) analyses. To investigate the possibility of a spontaneous conception, a panel of 40 single nucleotide polymorphisms (SNPs) was used to compare genetic similarity between the DNA of the POC and the DNA leftover of the TE biopsy. We describe a 36-year old infertile woman undergoing PGS who had a spontaneous abortion after a single euploid embryo transfer on a spontaneous cycle. The POC showed a 45,X karyotype confirmed by FISH and a-CGH. DNA fingerprinting demonstrated a genetic similarity of 75 % between the DNA of the POC and TE biopsy, consistent with a sibling status. All supernumerary euploid embryos were also tested showing a non-self relationship with the POC, excluding a mix-up event at the time of fetal embryo transfer. DNA fingerprinting of the transferred blastocyst and POC, confirmed the occurrence of a spontaneous conception. This case challenges the assumption that a pregnancy after assisted reproductive technology (ART) is always a result of ART, and strengthens the importance to avoid intercourses during PGS and natural transfer cycles. Moreover, cytogenetic analysis of the POCs is strongly recommended along with fingerprinting children born after PGS to see what the concordance is between the embryo transferred and the resultant child.
Heger, Sebastian; Du, Miaomiao; Bauer, Kevin; Schäffer, Andreas; Hollert, Henner
2018-08-01
The ecotoxicity of two biofuel candidates (1‑octanol and 2‑butanone) was investigated by an integrative test strategy using three bioassays: the acute immobilisation test with water flea (D. magna), the fish embryo acute toxicity test with zebrafish (Danio rerio) and the in vitro micronucleus assay with Chinese hamster (Cricetulus griseus) V79 cells. The median effective concentration (EC 50 ) values were 14.9±0.66mgL -1 for 1‑octanol, and 2152.1±44.6mgL -1 for 2‑butanone in the D. magna test. Both 1‑octanol and 2‑butanone caused teratogenic and lethal effects on zebrafish embryos, while exposure to 1‑octanol significantly induced these effects at concentrations ≥2.0mgL -1 . These results indicate that 1‑octanol exert much higher ecotoxicity than 2‑butanone to D. magna and zebrafish embryos. Moreover, both 1‑octanol and 2‑butanone did not cause significant genotoxic effects, while their metabolites significantly induced micronuclei in V79 cells. The present study proposed an integrative test approach to evaluate the potential ecotoxicity of biofuels using simple, quick and inexpensive bioassays. Copyright © 2018 Elsevier B.V. All rights reserved.
Shared and Unique Patterns of Embryo Development in Extremophile Poeciliids
Riesch, Rüdiger; Schlupp, Ingo; Langerhans, R. Brian; Plath, Martin
2011-01-01
Background Closely related lineages of livebearing fishes have independently adapted to two extreme environmental factors: toxic hydrogen sulphide (H2S) and perpetual darkness. Previous work has demonstrated in adult specimens that fish from these extreme habitats convergently evolved drastically increased head and offspring size, while cave fish are further characterized by reduced pigmentation and eye size. Here, we traced the development of these (and other) divergent traits in embryos of Poecilia mexicana from benign surface habitats (“surface mollies”) and a sulphidic cave (“cave mollies”), as well as in embryos of the sister taxon, Poecilia sulphuraria from a sulphidic surface spring (“sulphur mollies”). We asked at which points during development changes in the timing of the involved processes (i.e., heterochrony) would be detectible. Methods and Results Data were extracted from digital photographs taken of representative embryos for each stage of development and each type of molly. Embryo mass decreased in convergent fashion, but we found patterns of embryonic fat content and ovum/embryo diameter to be divergent among all three types of mollies. The intensity of yellow colouration of the yolk (a proxy for carotenoid content) was significantly lower in cave mollies throughout development. Moreover, while relative head size decreased through development in surface mollies, it increased in both types of extremophile mollies, and eye growth was arrested in mid-stage embryos of cave mollies but not in surface or sulphur mollies. Conclusion Our results clearly demonstrate that even among sister taxa convergence in phenotypic traits is not always achieved by the same processes during embryo development. Furthermore, teleost development is crucially dependent on sufficient carotenoid stores in the yolk, and so we discuss how the apparent ability of cave mollies to overcome this carotenoid-dependency may represent another potential mechanism explaining the lack of gene flow between surface and cave mollies. PMID:22087302
Chi, Liang; Liu, Qinghua; Xu, Shihong; Xiao, Zhizhong; Ma, Daoyuan; Li, Jun
2015-10-01
Trypsin is an important serine protease that is considered to be involved in digestion of protein in teleost fish. Nevertheless, studies on trypsin/trypsinogen in fish embryos are very limited. In this study, the trypsinogen of turbot (Scophthalmus maximus) (tTG) was identified and the expression patterns and activity of trypsinogen/trypsin were investigated. The results showed that the tTG mRNA was evenly distributed in the oocytes and was also expressed along the yolk periphery in early embryos. At later embryo stages and 1 days after hatching (dph), the tTG mRNA concentrated at the alimentary tract and head. Quantitative expression analysis showed that the tTG transcripts decreased after fertilization until the gastrula stage, then increased with the embryo and larvae development. This result was also confirmed by the specific activity analysis of trypsin and in-situ-hybridization (ISH). All of the results indicated that tTG in early embryo stages was maternally derived and expressed by itself after gastrula stages. Additionally, location of tTG mRNA in embryos and larvae was investigated; we considered that trypsin may have multiple functions during the embryo development process. Based on our results regarding trypsinogen in embryos and early development, we concluded that the trypsin/trypsinogen in turbot embryos was inherited from a maternal source and we suggested that trypsin in early development has multiple functions in the process of development. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henshel, D.S.
1996-12-31
This article will present the argument that the chicken embryo is especially appropriate as an animal model for studying the mechanism of the developmental toxicological effects of the polyhalogenated aromatic hydrocarbons (PHAHs). The PHAHs are a group of toxicologically related compounds including, in part, the polychlorinated dibenzodioxins, dibenzofurans and biphenyls. The chicken (Gallus gallus) embryo is relatively sensitive to the toxicological effects of the PHAHs being approximately two orders of magnitude more sensitive than the mature bird. The chicken embryo has been used to demonstrate general toxicological teratogeneicity, hepatotoxicity and neurotoxicity. Many of these effects, or analogous effects, have alsomore » been observed in mammals and fish. Thus, most animals appear to respond to the PHAHs with a similar toxicological profile, indicating that many of the biomarkers used for the PHAHs are valid across a number of species, including the chicken. Furthermore, the chicken embryo is relatively inexpensive to use for toxicity testing. In addition, all effects detected are due to direct effects on the embryo and are not complicated by maternal interactions. In short, for sensitivity, ease of use, cost and applicability of results to other animals, the chicken embryo is an excellent animal model for evaluation of the mechanism underlying the developmental toxicological effects of the PHAHs.« less
Madureira, Tânia Vieira; Cruzeiro, Catarina; Rocha, Maria João; Rocha, Eduardo
2011-09-01
Fish embryos are a particularly vulnerable stage of development, so they represent optimal targets for screening toxicological effects of waterborne xenobiotics. Herein, the toxicity potential of two mixtures of pharmaceuticals was evaluated using a zebrafish embryo test. One of the mixtures corresponds to an environmentally realistic scenario and both have carbamazepine, fenofibric acid, propranolol, trimethoprim and sulfamethoxazole. The results evidenced morphological alterations, such as spinal deformities and yolk-sac oedemas. Moreover, heart rates decreased after both mixture exposures, e.g., at 48hpf, highest mixture versus blank control (47.8±4.9 and 55.8±3.7 beats/30s, respectively). The tail lengths also diminished significantly from 3208±145μm in blank control to 3130±126μm in highest mixture. The toxicological effects were concentration dependent. Mortality, hatching rate and the number of spontaneous movements were not affected. However, the low levels of pharmaceuticals did interfere with the normal development of zebrafish, which indicates risks for wild organisms. Copyright © 2011 Elsevier B.V. All rights reserved.
Progressive hypoxia decouples activity and aerobic performance of skate embryos
Di Santo, Valentina; Tran, Anna H.; Svendsen, Jon C.
2016-01-01
Although fish population size is strongly affected by survival during embryonic stages, our understanding of physiological responses to environmental stressors is based primarily on studies of post-hatch fishes. Embryonic responses to acute exposure to changes in abiotic conditions, including increase in hypoxia, could be particularly important in species exhibiting long developmental time, as embryos are unable to select a different environment behaviourally. Given that oxygen is key to metabolic processes in fishes and aquatic hypoxia is becoming more severe and frequent worldwide, organisms are expected to reduce their aerobic performance. Here, we examined the metabolic and behavioural responses of embryos of a benthic elasmobranch fish, the little skate (Leucoraja erinacea), to acute progressive hypoxia, by measuring oxygen consumption and movement (tail-beat) rates inside the egg case. Oxygen consumption rates were not significantly affected by ambient oxygen levels until reaching 45% air saturation (critical oxygen saturation, Scrit). Below Scrit, oxygen consumption rates declined rapidly, revealing an oxygen conformity response. Surprisingly, we observed a decoupling of aerobic performance and activity, as tail-beat rates increased, rather than matching the declining metabolic rates, at air saturation levels of 55% and below. These results suggest a significantly divergent response at the physiological and behavioural levels. While skate embryos depressed their metabolic rates in response to progressive hypoxia, they increased water circulation inside the egg case, presumably to restore normoxic conditions, until activity ceased abruptly around 9.8% air saturation. PMID:27293746
Progressive hypoxia decouples activity and aerobic performance of skate embryos.
Di Santo, Valentina; Tran, Anna H; Svendsen, Jon C
2016-01-01
Although fish population size is strongly affected by survival during embryonic stages, our understanding of physiological responses to environmental stressors is based primarily on studies of post-hatch fishes. Embryonic responses to acute exposure to changes in abiotic conditions, including increase in hypoxia, could be particularly important in species exhibiting long developmental time, as embryos are unable to select a different environment behaviourally. Given that oxygen is key to metabolic processes in fishes and aquatic hypoxia is becoming more severe and frequent worldwide, organisms are expected to reduce their aerobic performance. Here, we examined the metabolic and behavioural responses of embryos of a benthic elasmobranch fish, the little skate (Leucoraja erinacea), to acute progressive hypoxia, by measuring oxygen consumption and movement (tail-beat) rates inside the egg case. Oxygen consumption rates were not significantly affected by ambient oxygen levels until reaching 45% air saturation (critical oxygen saturation, S crit). Below S crit, oxygen consumption rates declined rapidly, revealing an oxygen conformity response. Surprisingly, we observed a decoupling of aerobic performance and activity, as tail-beat rates increased, rather than matching the declining metabolic rates, at air saturation levels of 55% and below. These results suggest a significantly divergent response at the physiological and behavioural levels. While skate embryos depressed their metabolic rates in response to progressive hypoxia, they increased water circulation inside the egg case, presumably to restore normoxic conditions, until activity ceased abruptly around 9.8% air saturation.
Delov, Vera; Muth-Köhne, Elke; Schäfers, Christoph; Fenske, Martina
2014-05-01
The fish embryo toxicity test (FET) is currently one of the most advocated animal alternative tests in ecotoxicology. To date, the application of the FET with zebrafish (zFET) has focused on acute toxicity assessment, where only lethal morphological effects are accounted for. An application of the zFET beyond acute toxicity, however, necessitates the establishment of more refined and quantifiable toxicological endpoints. A valuable tool in this context is the use of gene expression-dependent fluorescent markers that can even be measured in vivo. We investigated the application of embryos of Tg(fli1:EGFP)(y1) for the identification of vasotoxic substances within the zFET. Tg(fli1:EGFP)(y1) fish express enhanced GFP in the entire vasculature under the control of the fli1 promoter, and thus enable the visualization of vascular defects in live zebrafish embryos. We assessed the fli1 driven EGFP-expression in the intersegmental blood vessels (ISVs) qualitatively and quantitatively, and found an exposure concentration related increase in vascular damage for chemicals like triclosan, cartap and genistein. The fluorescence endpoint ISV-length allowed an earlier and more sensitive detection of vasotoxins than the bright field assessment method. In combination with the standard bright field morphological effect assessment, an increase in significance and value of the zFET for a mechanism-specific toxicity evaluation was achieved. This study highlights the benefits of using transgenic zebrafish as convenient tools for identifying toxicity in vivo and to increase sensitivity and specificity of the zFET. Copyright © 2014 Elsevier B.V. All rights reserved.
Forest, David; Nishikawa, Ryuhei; Kobayashi, Hiroshi; Parton, Angela; Bayne, Christopher J.; Barnes, David W.
2007-01-01
We have established a cartilaginous fish cell line [Squalus acanthias embryo cell line (SAE)], a mesenchymal stem cell line derived from the embryo of an elasmobranch, the spiny dogfish shark S. acanthias. Elasmobranchs (sharks and rays) first appeared >400 million years ago, and existing species provide useful models for comparative vertebrate cell biology, physiology, and genomics. Comparative vertebrate genomics among evolutionarily distant organisms can provide sequence conservation information that facilitates identification of critical coding and noncoding regions. Although these genomic analyses are informative, experimental verification of functions of genomic sequences depends heavily on cell culture approaches. Using ESTs defining mRNAs derived from the SAE cell line, we identified lengthy and highly conserved gene-specific nucleotide sequences in the noncoding 3′ UTRs of eight genes involved in the regulation of cell growth and proliferation. Conserved noncoding 3′ mRNA regions detected by using the shark nucleotide sequences as a starting point were found in a range of other vertebrate orders, including bony fish, birds, amphibians, and mammals. Nucleotide identity of shark and human in these regions was remarkably well conserved. Our results indicate that highly conserved gene sequences dating from the appearance of jawed vertebrates and representing potential cis-regulatory elements can be identified through the use of cartilaginous fish as a baseline. Because the expression of genes in the SAE cell line was prerequisite for their identification, this cartilaginous fish culture system also provides a physiologically valid tool to test functional hypotheses on the role of these ancient conserved sequences in comparative cell biology. PMID:17227856
Li, Qian; Chen, Ling; Liu, Li; Wu, Lingling
2016-03-01
Sediments function both as a sink and a source of pollutants in aquatic ecosystems and may impose serious effects on benthic organisms and human health. As one of the largest estuaries in the world, the Yangtze River estuary suffers from abundant wastewater from the coastal cities. In this study, the zebrafish (Danio rerio) embryos were employed in the fish embryo test and a comet assay to evaluate the embryotoxicity and genotoxicity of the sediments from the Yangtze River estuary, respectively. Results showed that the sediments from the Yangtze River estuary significantly increased mortality, induced development abnormalities, and reduced hatching rate and heart rate of zebrafish embryos after 96 h of exposure. Significant genotoxicity was observed in the samples relative to the controls. Relatively low-level embryotoxicity and genotoxicity of sediments were found in the Yangtze River compared with other river systems. Toxic responses were also discussed in relation to the analyzed organic contaminants in sediments. More attention should be paid to non-priority pollutant monitoring in the Yangtze River estuary.
Small fish models for identifying carcinogens in the aqueous environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawkins, W.E.; Overstreet, R.M.; Walker, W.W.
1988-10-01
Contaminants in water and sediments can be carcinogenic to aquatic wildlife as well as humans. Identifying those carcinogens, however, is difficult because they often occur in low concentrations and exert their effects over a large part of the life span of affected organisms. Furthermore, the carcinogens are often components of complex mixtures. Recent studies suggest that laboratory-reared fish species might be well suited for testing water-associated and other carcinogens. Here, we review the principal carcinogen exposure methods that utilize small fish species or can be adapted to utilize small fish species to detect carcinogens in aqueous environments. Emphasis is placedmore » on methods for which the end-point is tumor induction. The methods discussed are dietary exposures, skin painting, embryo microinjection, early life stage (pulse) exposures, static water exposures, flow-through exposures, and controlled field exposures. Early life stage exposures seem to have the greatest utility with regard to carcinogen sensitivity, ease of administration, disposal of test compounds, and economy of materials and effort. For certain types of carcinogens, however, long-term flow-through exposures are probably required. In summary, small fish carcinogenesis models offer an array of methodologies that can be utilized in a variety of combinations depending on compounds tested, exposure parameters employed, and end point sought.« less
da Fonseca, A P; Volcan, M V; Robaldo, R B
2018-01-01
To analyse the survival, pathway and time of embryo development in the annual fish Austrolebias nigrofasciatus eggs were monitored in four liquid media and two damp media under experimental conditions for 130 days until their development was complete. Eggs kept in the same breeding water from oviposition remained in diapause I (DI) during all experiments. In constrast, up to the stage prior to entering diapause II (DII), the other media had no influence on development. Embryos at this stage (DII), however, show longer development time when treated in medium with water and powdered coconut shell so that about 80% of embryos remained in DII at 100 days. In contrast, all other treatments had a significantly lower proportion of embryos remaining in DII. When treated with Yamamoto's solution in humid media, embryos showed the fastest development. The first fully developed embryos (DIII) were seen at 27 days after oviposition. It took an average of 46-58 days for 50% of eggs in each treatment to reach DIII. Compared with other studies, survival in all incubation media was high at between 70 and 98%. Taken together, it can be concluded that all incubation media were found to be viable for maintaining embryos. Altering developmental trajectories through the manipulation of diapauses in different media makes this species a potential model organism for laboratory studies. © 2017 The Fisheries Society of the British Isles.
Onimaru, Koh; Motone, Fumio; Kiyatake, Itsuki; Nishida, Kiyonori
2018-01-01
Background: Studying cartilaginous fishes (chondrichthyans) has helped us understand vertebrate evolution and diversity. However, resources such as genome sequences, embryos, and detailed staging tables are limited for species within this clade. To overcome these limitations, we have focused on a species, the brownbanded bamboo shark (Chiloscyllium punctatum), which is a relatively common aquarium species that lays eggs continuously throughout the year. In addition, because of its relatively small genome size, this species is promising for molecular studies. Results: To enhance biological studies of cartilaginous fishes, we establish a normal staging table for the embryonic development of the brownbanded bamboo shark. Bamboo shark embryos take around 118 days to reach the hatching period at 25°C, which is approximately 1.5 times as fast as the small‐spotted catshark (Scyliorhinus canicula) takes. Our staging table divides the embryonic period into 38 stages. Furthermore, we found culture conditions that allow early embryos to grow in partially opened egg cases. Conclusions: In addition to the embryonic staging table, we show that bamboo shark embryos exhibit relatively fast embryonic growth and are amenable to culture, key characteristics that enhance their experimental utility. Therefore, the present study is a foundation for cartilaginous fish research. Developmental Dynamics 247:712–723, 2018. © 2017 Wiley Periodicals, Inc. PMID:29396887
Lavado, Ramon; Shi, Dalin; Schlenk, Daniel
2012-02-01
Previous studies in mammals have shown that organoselenium depletes the cellular antioxidant, glutathione (GSH) due to activation of organoselenides to organoselenoxides by flavin-containing monooxygenases (FMO). Since FMO tends to be induced in euryhaline fish exposed to hypersaline conditions, the developmental toxicity of salinity and organoselenium was examined in the euryhaline fish Japanese medaka (Oryzias latipes). FMO activity, GSH, and selenium concentrations in Japanese medaka embryos were measured following a 24-h exposure to 0.05 mM L-selenomethionine (SeMet) under different saline conditions: freshwater (<0.5 dS/m), 4.2, 6.7, and 16.8 dS/m. Concentrations of GSH and the hatch-out ratio of the SeMet-treated embryos decreased in a salinity dependent manner. While SeMet treatment led to accumulation within embryos, selenium concentrations were unaltered by salinity treatment. Compared to freshwater-exposed embryos, microsomes from embryos at 6.7 and 16.8 dS/m had enhanced oxidation of SeMet to the selenoxide (10- and 14.3-fold, respectively), which correlated with GSH depletion. The results show that increased SeMet oxidation by hypersaline conditions with subsequent GSH depletion may play an important role in the developmental toxicity of selenomethionine. Copyright © 2011 Elsevier B.V. All rights reserved.
Brion, F; Tyler, C R; Palazzi, X; Laillet, B; Porcher, J M; Garric, J; Flammarion, P
2004-06-24
Zebrafish (Danio rerio) were exposed for 3 weeks to low concentrations of estradiol including environmentally relevant concentrations (5, 25 and 100 ng/l), encompassing either their embryo-larvae (from fertilization to 21 day post-fertilization (dpf)), juvenile (from 21 to 42 dpf) or adult life stages (>200 dpf) with a view to investigating the most sensitive life stage of the zebrafish to 17beta-estradiol (E2). At all sampling points, whole-body vitellogenin concentrations and gonadal development were analyzed in order to investigate the effects of estrogen exposure on these endpoint in the zebrafish. In the adult stage, additional endpoints were measured including secondary sexual characteristics (manifestation of the uro-genital papillae (UGP) in males), gonadal growth (the gonado-somatic index (GSI)) and sex ratio. For all the different life stage exposures, reproductive performance of the F0 generation was assessed (egg production) and survival and development of the F1 embryo-larvae. Exposure to low concentrations of E2 resulted in vitellogenin induction whatever the life stage exposed but these effects were reversible after depuration. The effective concentration for vitellogenin induction in zebrafish early life stages was 100 ng E2/l, and in adult male zebrafish the effective concentration for vitellogenin induction (between 5 and 25 ng/l) was lower than for the early life stage fish. Exposure to E2 prior to (from fertilization to 21 dpf) and during the time of sex differentiation (from 21 to 42 dpf) also caused disruptions in the process of sexual differentiation (resulting in formation of a retrogonadal cavity in presumptive male, germ cell development and leading to a significant change of the sex ratio towards the female sex at the dose of 100 ng E2/l for the fish exposure as embryo-larvae) and altered patterns of egg production in the subsequent adults. Exposure of adult fish to E2 resulted in a modification of the secondary sexual characteristic in males at 25 and 100 ng E2/l as well as a dose-dependent inhibition of egg production. The findings from this study show that the nature and intensity of the reproductive effects of E2 are dependent of the time and concentration of exposures of zebrafish to E2, some of these effects being permanent (effect on the sexual differentiation) while others being reversible (effect on the Vtg induction). This study demonstrated that early life stages of zebrafish are sensitive to low concentrations of E2 and provides relevant data that could be used for the adaptation of existing fish early life stage test for the in vivo testing of estrogenic compounds. The data presented raise further concerns about the effects of steroid estrogens in the environment on fish reproductive health.
Nowosad, Joanna; Targońska, Katarzyna; Chwaluczyk, Rafał; Kaszubowski, Rafał; Kucharczyk, Dariusz
2014-10-01
This study sought to determine the effect of water temperature on the effectiveness of artificial reproduction of dace brooders under laboratory and field conditions. Three temperatures were tested in the laboratory: 9.5, 12 and 14.5 °C (± 0.1 °C). The water temperature under field conditions was 11.0 ± 0.3 °C (Czarci Jar Fish Farm) and 13.2 ± 1.4 °C (Janowo Fish Farm). The study showed that artificial reproduction of dace is possible in all the temperature ranges under study and an embryo survival rate of over 87% can be achieved. Dace has also been found to be very sensitive to rapid temperature changes, even within the temperature ranges optimal for the species. Such changes have an adverse effect on the outcome of the reproduction process, such as a decrease in the percentage of reproducing females, a decrease in the pseudo-gonado-somatic index (PGSI) and a decrease in the embryo survival rate. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jaward, Foday M.; Alegria, Henry A.; Galindo Reyes, Jose G.; Hoare, Armando
2012-01-01
PAHs were measured in water, sediment, and shrimps of Estero de Urias, an estuary in Sinaloa, Mexico, during the rainy and dry seasons, and analyzed for eleven PAHs routinely detected in samples. Phenanthrene was the most dominant congener in the water, sediment, and shrimp samples comprising about 38, 24, and 25%, respectively, of the eleven PAHs detected, followed by pyrene and naphthalene in water and sediment samples, and pyrene and fluorine in the shrimp samples. Total PAH concentrations ranged from 9 to 347 ng/L in water, 27 to 418 ng/g in sediments, and 36 to 498 ng/g in shrimps. The sources of contamination are closely related to human activities such as domestic and industrial discharge, automobile exhausts, and street runoff. High concentrations were also measured during the rainy season and during the first quarter of the year. Toxicity tests were also carried out, exposing fish embryos and juvenile shrimps to some of these PAHs. Fish embryos exposed to PAHs showed exogastrulation, while juvenile shrimps showed significantly lower growth rates than controls. DNA and protein alterations were also observed. These toxicity tests indicate that PAH concentrations measured could be dangerous to some aquatic organisms, particularly during early stages of development. PMID:22997501
Mixture toxicity of wood preservative products in the fish embryo toxicity test.
Coors, Anja; Dobrick, Jan; Möder, Monika; Kehrer, Anja
2012-06-01
Wood preservative products are used globally to protect wood from fungal decay and insects. We investigated the aquatic toxicity of five commercial wood preservative products, the biocidal active substances and some formulation additives contained therein, as well as six generic binary mixtures of the active substances in the fish embryo toxicity test (FET). Median lethal concentrations (LC50) of the single substances, the mixtures, and the products were estimated from concentration-response curves and corrected for concentrations measured in the test medium. The comparison of the experimentally observed mixture toxicity with the toxicity predicted by the concept of concentration addition (CA) showed less than twofold deviation for all binary mixtures of the active substances and for three of the biocidal products. A more than 60-fold underestimation of the toxicity of the fourth product by the CA prediction was detected and could be explained fully by the toxicity of one formulation additive, which had been labeled as a hazardous substance. The reason for the 4.6-fold underestimation of toxicity of the fifth product could not be explained unambiguously. Overall, the FET was found to be a suitable screening tool to verify whether the toxicity of formulated wood preservatives can reliably be predicted by CA. Applied as a quick and simple nonanimal screening test, the FET may support approaches of applying component-based mixture toxicity predictions within the environmental risk assessment of biocidal products, which is required according to European regulations. Copyright © 2012 SETAC.
Kanamori, Akira; Yamamura, Aki; Koshiba, Satoshi; Lee, Jae-Seong; Orlando, Edward F; Hori, Hiroshi
2006-10-01
A hermaphrodite fish, Kryptolebias marmoratus, is the only known vertebrate that reproduces by self-fertilization. In nature, males have been rarely observed. Low-temperature treatment during late embryonic stages is known to induce males but its efficacy is variable. Here we report that 17alpha-methyltestosterone (MT) treatment of the embryos converted most of the fish to males. We examined a time course of this male induction with histological and marker gene expression analyses. Oogenesis started in the gonads of the control embryo at hatching; spermatogenesis did not start until two months after hatching. In the MT-treated fish, oogenesis started initially as in the control but stopped completely within one month after hatching. Instead, spermatogonial proliferation started earlier than in the control fish and progressed to full spermatogenesis. Expression profiles of the sex-specific marker genes corresponded well with histological observations. From one month after hatching, expression of an oocyte-specific marker, figalpha, and a testicular somatic cell marker, dmrt1, started to increase in the control and in the MT-treated fish, respectively. (c) 2006 Wiley-Liss, Inc.
Bernicot, I; Dechanet, C; Mace, A; Hedon, B; Hamamah, S; Pellestor, F; Anahory, T
2010-07-01
Pericentric inversions (PIs) are structural chromosomal abnormalities, potentially associated with infertility or multiple miscarriages. More rarely, at meiosis, odd numbers of genetic recombinations within the inversion loop produce recombinant gametes which may lead to aneusomy of recombination in the offspring. We report a FISH segregation analysis of an inv5(p15.3q11.2) carrier, both in sperm and blastomeres. In sperm, we directly evaluated the proportion of recombinant gametes and compared the results with chromosomal abnormalities found in blastomeres collected from embryos obtained following a preimplantation genetic diagnosis (PGD) procedure. A total of 7006 sperm nuclei were analyzed. The size of the inverted segment represented 27% of the total length of chromosome 5. The frequencies of balanced chromosomes (normal or inverted), recombinant chromosomes and unbalanced combinations were 97.1, 0.17 and 2.73%, respectively. Of six embryos, PGD FISH analysis revealed that one was a balanced embryo, whereas five were unbalanced and there were no recombinants. This study demonstrated the value of sperm-FISH analysis in providing reproductive genetic counseling for PI carriers. Our study also highlights the clinical relevance of performing PGD instead of prenatal diagnosis.
Deepwater Horizon crude oil impacts the developing hearts of large predatory pelagic fish
Incardona, John P.; Gardner, Luke D.; Linbo, Tiffany L.; Brown, Tanya L.; Esbaugh, Andrew J.; Mager, Edward M.; Stieglitz, John D.; French, Barbara L.; Labenia, Jana S.; Laetz, Cathy A.; Tagal, Mark; Sloan, Catherine A.; Elizur, Abigail; Benetti, Daniel D.; Grosell, Martin; Block, Barbara A.; Scholz, Nathaniel L.
2014-01-01
The Deepwater Horizon disaster released more than 636 million L of crude oil into the northern Gulf of Mexico. The spill oiled upper surface water spawning habitats for many commercially and ecologically important pelagic fish species. Consequently, the developing spawn (embryos and larvae) of tunas, swordfish, and other large predators were potentially exposed to crude oil-derived polycyclic aromatic hydrocarbons (PAHs). Fish embryos are generally very sensitive to PAH-induced cardiotoxicity, and adverse changes in heart physiology and morphology can cause both acute and delayed mortality. Cardiac function is particularly important for fast-swimming pelagic predators with high aerobic demand. Offspring for these species develop rapidly at relatively high temperatures, and their vulnerability to crude oil toxicity is unknown. We assessed the impacts of field-collected Deepwater Horizon (MC252) oil samples on embryos of three pelagic fish: bluefin tuna, yellowfin tuna, and an amberjack. We show that environmentally realistic exposures (1–15 µg/L total PAH) cause specific dose-dependent defects in cardiac function in all three species, with circulatory disruption culminating in pericardial edema and other secondary malformations. Each species displayed an irregular atrial arrhythmia following oil exposure, indicating a highly conserved response to oil toxicity. A considerable portion of Gulf water samples collected during the spill had PAH concentrations exceeding toxicity thresholds observed here, indicating the potential for losses of pelagic fish larvae. Vulnerability assessments in other ocean habitats, including the Arctic, should focus on the developing heart of resident fish species as an exceptionally sensitive and consistent indicator of crude oil impacts. PMID:24706825
Yusof, Shahrizad; Ismail, Ahmad; Alias, Mohamad Shafiq
2014-08-30
Glyphosate is globally a widely used herbicide, yet there is little information on their toxicity to marine fishes. Java medaka, a small tropical fish native to coastal areas in several Southeast Asian countries, is viewed as a suitable candidate for toxicity test and thus was used for this study. Java medaka adults were cultured in the laboratory and the fertilized eggs of the F2 generation were exposed to different concentrations of glyphosate-based herbicide (100, 200, 300, 400 and 500 ppm) until they hatched. The survival and hatching rates of the embryos, changes in the heart rate and morphological impairments were recorded. Generally, survival and hatching percentage decreased as glyphosate concentration increased. Absence of pectoral fin(s) and cornea, permanently bent tail, irregular shaped abdomen, and cell disruption in the fin, head and abdomen are among the common teratogenic effects observed. Furthermore, risk factor also increased with the increased in glyphosate concentrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lourenço, J; Marques, S; Carvalho, F P; Oliveira, J; Malta, M; Santos, M; Gonçalves, F; Pereira, R; Mendo, S
2017-12-15
Active and abandoned uranium mining sites often create environmentally problematic situations, since they cause the contamination of all environmental matrices (air, soil and water) with stable metals and radionuclides. Due to their cytotoxic, genotoxic and teratogenic properties, the exposure to these contaminants may cause several harmful effects in living organisms. The Fish Embryo Acute Toxicity Test (FET) test was employed to evaluate the genotoxic and teratogenic potential of mine liquid effluents and sludge elutriates from a deactivated uranium mine. The aims were: a) to determine the risk of discharge of such wastes in the environment; b) the effectiveness of the chemical treatment applied to the uranium mine water, which is a standard procedure generally applied to liquid effluents from uranium mines and mills, to reduce its toxicological potential; c) the suitability of the FET test for the evaluation the toxicity of such wastes and the added value of including the evaluation of genotoxicity. Results showed that through the FET test it was possible to determine that both elutriates and effluents are genotoxic and also that the mine effluent is teratogenic at low concentrations. Additionally, liquid effluents and sludge elutriates affect other parameters namely, growth and hatching and that water pH alone played an important role in the hatching process. The inclusion of genotoxicity evaluation in the FET test was crucial to prevent the underestimation of the risks posed by some of the tested effluents/elutriates. Finally, it was possible to conclude that care should be taken when using benchmark values calculated for specific stressors to evaluate the risk posed by uranium mining wastes to freshwater ecosystems, due to their chemical complexity. Copyright © 2017 Elsevier B.V. All rights reserved.
Sun, Haiyan; Zhang, Yulin; Shen, Yixiao; Zhu, Yongchao; Wang, Hua; Xu, Zhimin
2017-03-01
The capabilities of red wine against lipid oxidation and angiogenesis were evaluated by using a fish oil emulsion system and an in vivo zebrafish embryos model, respectively. The red wine contained 12 different antioxidant phenolics which levels were led by anthocyanins (140.46 mg/L), catechin (55.08 mg/L), and gallic acid (46.76 mg/L). The diversity of the phenolics in red wine was greater than the tea, coffee, or white wine selected as a peer control in this study. The total phenolics concentration of red wine was 305.53 mg/L, although the levels of tea, coffee, and white wine were 85.59, 76.85, and 26.57 mg/L, respectively. The activity of red wine in scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl) free radicals was approximately 4 times higher than the tea and 8 times than the coffee or white wine. The red wine showed the highest capability in preventing long chain PUFA oxidation in the fish oil emulsion. Because of the outstanding antioxidant activity of red wine, the red wine dried extract was used to monitor its inhibitory effect against angiogenesis by using transgenic zebrafish embryos (Tg[fli1:egfp] y1 ) with fluorescent blood vessels. After incubated in 100 μg/mL of the extract solution for 26 h pf, each of the embryos had a lower number of intersegmental vessel than the control embryo. The inhibition rate of red wine extract against growing of angiogenic blood vessel reached 100%. © 2017 Institute of Food Technologists®.
Houdebine, L M; Chourrout, D
1991-09-15
Gene transfer into fish embryo is being performed in several species (trout, salmon, carps, tilapia, medaka, goldfish, zebrafish, loach, catfish, etc.). In most cases, pronuclei are not visible and microinjection must be done into the cytoplasm of early embryos. Several million copies of the gene are generally injected. In medaka, transgenesis was attempted by injection of the foreign gene into the nucleus of oocyte. Several reports indicate that the injected DNA was rapidly replicated in the early phase of embryo development, regardless of the origin and the sequence of the foreign DNA. The survival of the injected embryos was reasonably good and a large number reached maturity. The proportion of transgenic animals ranged from 1 to 50% or more, according to species and to experimentators. The reasons for this discrepancy have not been elucidated. In all species, the transgenic animals were mosaic. The copy number of the foreign DNA was different in the various tissues of an animal and a proportion lower than 50% of F1 offsprings received the gene from their parents. This suggests that the foreign DNA was integrated into the fish genome at the two cells stage or later. An examination of the integrated DNA in different cell types of an animal revealed that integration occurred mainly during early development. The transgene was found essentially unrearranged in the fish genome of the founders and offsprings. The transgenes were therefore stably transmitted to progeny in a Mendelian fashion. Southern blot analysis revealed the presence of possible junction fragments and also of minor bands which may result from a rearrangement of the injected DNA. In all species, the integrated DNA appeared mainly as random end-to-end concatemers. In adult trout blood cells, a small proportion of the foreign DNA was maintained in the form of non-integrated concatemers, as judged by the existence of end fragments. The transgenes were generally only poorly expressed. The majority of the injected gene constructs contained essentially mammalian or higher vertebrates sequences. The comparison of the expression efficiency of these constructs in transfected fish and mammalian cells indicates that some of the mammalian DNA sequences are most efficiently understood by the fish cell machinery. Chloramphenicol acetyl transferase gene under the control of promoters from Rous sarcoma virus, and human cytomegalovirus, was expressed in several tissues of transgenic fish. Chicken delta-crystallin gene was expressed in several tissues of transgenic fish.(ABSTRACT TRUNCATED AT 400 WORDS)
Osaki, Kae; Kashiwada, Shosaku; Tatarazako, Norihisa; Ono, Yoshiro
2006-06-01
To investigate the environmental safety of waste disposal landfill sites and of land reclaimed from such sites, we evaluated the toxicity of leachate from these sites by a combination of bioassays in the Japanese killifish medaka Oryzias latipes. We tested for lethal toxicity in adult and larval medaka and for hatching inhibition of embryos from eggs. As biochemical evidence of the effects of leachate exposure, CYP1A (EROD activity) and vitellogenin (Vtg) were induced. We also bioassayed water-treated leachate and downstream river water. Leachate solution was lethal to larval and adult medaka. Embryo hatchability was inhibited, and abnormal hatching, spinal deformity and anisophthalmia occurred in embryos exposed to leachate solution. CYP1A was induced by exposure to leachate solution diluted to 1.0%, and EROD activity was significantly higher than in control. Vtg and unknown proteins were induced in the sera of male medaka exposed to the diluted leachate solution. Conventional water treatments worked effectively to remove toxic compounds but did not work well to remove element ions, including heavy metals. Treated leachate produced neither lethal toxicity nor hatching abnormalities during the exposure period. Fish toxicity tests for leachate would be useful for monitoring the environmental safety of landfill sites.
Embryotoxicity of nitrophenols to the early life stages of zebrafish (Danio rerio).
Ceylan, Zeynep; Şişman, Turgay; Yazıcı, Zehra; Altıkat, Aysun Özen
2016-08-01
The nitrophenols (NPs) are water-soluble compounds. These compounds pose a significant health threat since they are priority environmental pollutants. In this study, 2-Nitrophenol (2NP) and 2,4-dinitrophenol (DNP) were examined for embryo and early life stage toxicity in zebrafish (Danio rerio). Acute toxicity and teratogenicity of 2NP and DNP were tested for 4 days using zebrafish embryos. The typical lesions observed were no somite formation, incomplete eye and head development, tail curvature, weak pigmentation (≤48 hours postfertilization (hpf)), kyphosis, scoliosis, yolk sac deformity, and nonpigmentation (72 hpf). Also, embryo and larval mortality increased and hatching success decreased. The severity of abnormalities and mortalities were concentration- and compound-dependent. Of the compounds tested, 2,4-DNP was found to be highly toxic to the fish embryos following exposure. The median lethal concentrations and median effective concentrations for 2NP are 18.7 mg/L and 7.9 mg/L, respectively; the corresponding values for DNP are 9.65 mg/L and 3.05 mg/L for 48 h. The chorda deformity was the most sensitive endpoint measured. It is suggested that the embryotoxicity may be mediated by an oxidative phosphorylation uncoupling mechanism. This article is the first to describe the teratogenicity and embryotoxicity of two NPs to the early life stages of zebrafish. © The Author(s) 2014.
Kühnert, Agnes; Vogs, Carolina; Seiwert, Bettina; Aulhorn, Silke; Altenburger, Rolf; Hollert, Henner; Küster, Eberhard; Busch, Wibke
2017-11-01
Not much is known about the biotransformation capability of zebrafish (Danio rerio) embryos. For understanding possible toxicity differences to adult fish, it might be crucial to understand the biotransformation of chemicals in zebrafish embryos i.e. as part of toxicokinetics. The biotransformation capabilities were analysed for two different stages of zebrafish embryos in conjunction with the internal concentrations of a xenobiotic. Zebrafish embryos of the late cleavage/early blastula period (2-26 hpf) and the early pharyngula period (26-50 hpf) were exposed for 24 h to the AhR binding compound benz[a]anthracene (BaA). Time dependent changes in cyp transcription (cyp1a, cyp1b1, cyp1c1 and cyp1c2) as well as concentration & time-dependent courses of BaA in the fish embryo and the exposure medium were analysed. Additionally, the CYP mediated formation of biotransformation products was investigated. We found correlations between transcriptional responses and the internal concentration for both exposure types. These correlations were depending on the start of the exposure i.e. the age of the exposed embryo. While no significant induction of the examined gene transcripts was observed in the first 12 h of exposure beginning in the blastula period a correlation was apparent when exposure started later i.e. in the pharyngula period. A significant induction of cyp1a was detected already after 1.5 h of BaA exposure. Gene transcripts for cyp1b1, cyp1c1 and cyp1c2 showed expressions distinctly different from cyp1a and were, in general, less inducible by BaA in both exposure windows. The toxicokinetic analysis showed that the biotransformation capability was fivefold higher in the older fish embryos. Biotransformation products of phase I reactions were found between 32 hpf and 50 hpf and were tentatively identified as benz[a]anthracene-phenol and benz[a]anthracene-dihydrodiol-epoxide. In conclusion, not only duration but also onset of exposure in relation to the developmental stage of zebrafish embryos is important in the analysis and interpretation of effects due to different biotransformation capabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Early-life stage fish can be more sensitive to chemical exposure than adult fish. Therefore, determining possible adverse outcome pathways (AOPs) for early-life stages is crucial. To determine chemical effects and/or mechanisms of action in exposed fish embryos and larvae, whole-...
Bogers, Rinus; De Vries-Buitenweg, Selinda; Van Gils, Mariëlle; Baltussen, Erik; Hargreaves, Adam; van de Waart, Beppy; De Roode, Daphne; Legler, Juliette; Murk, Albertinka
2006-11-16
The Endocrine Modulators Study Group (EMSG) of the European Chemical Industry has proposed an extended fish early-life stage (ELS) test based on OECD test guideline 210 in combination with a fish pair-breeding reproduction study as a possible alternative for fish full life cycle testing. In this paper the androgen methyldihydrotestosterone (MDHT) was tested in an extended ELS test with fathead minnow supplementary to such a test with the weak estrogen 4-tert-pentylphenol (4TPP). Main endpoints were secondary sexual characteristics (SSC), plasma vitellogenin (VTG) induction and gonadal development. Early blastula embryos were exposed to 0, 0.10, 0.32 and 1.0 microgMDHTl(-1) for up to 114 days post-hatch (dph). A batch of fish exposed to 1.0 microg l(-1) was transferred to clean water after 30 or 63 dph for the remainder of the study. Ethinylestradiol (EE2) was included as estrogenic reference substance at 0.01 microg l(-1). Exposure to MDHT had no significant effect on hatching success or survival, but significantly increased the condition factor of fish exposed for 63 and 114 dph (up to 150% of the control). At 63 dph MDHT exposure induced appearance of tubercles on the snout (a male SSC) of more than 80% of fish. Compared to the controls, plasma VTG was not detectable or significantly lower in fish exposed to MDHT at 0.10 microg/l, but not significantly affected at higher MDHT concentrations. Both lower levels of MDHT significantly inhibited the development of female gonads as of 30 dph. Fish exposed to MDHT at 0.32 and 1.0 microg l(-1) showed higher incidences of mixed sex gonads (10-25%) and smaller testes or dysplasia of gonadal tissue. Dysplasia was present in 80% of the fish continuously exposed to 1.0 microg l(-1) up to 114 dph, but reversible when fish were transferred to dilution water. Results indicate that suppression of ovarian development was the most sensitive endpoint for MDHT exposure after 30 dph. Other endpoints (e.g., growth and SSC) required exposure during at least up to 63 dph to yield a significant effect. Androgenic effects on VTG production required even longer exposure, i.e., until sufficient number of females had matured.
The early-stage diagnosis of albinic embryos by applying optical coherence tomography
NASA Astrophysics Data System (ADS)
Yang, Bor-Wen; Wang, Shih-Yuan; Wang, Yu-Yen; Cai, Jyun-Jhang; Chang, Chung-Hao
2013-09-01
Albinism is a kind of congenital disease of abnormal metabolism. Poecilia reticulata (guppy fish) is chosen as the model to study the development of albinic embryos as it is albinic, ovoviviparous and with short life period. This study proposed an imaging method for penetrative embryo investigation using optical coherence tomography. By imaging through guppy mother’s reproduction purse, we found the embryo’s eyes were the early-developed albinism features. As human’s ocular albinism typically appear at about four weeks old, it is the time to determine if an embryo will grow into an albino.
An integrated micromechanical large particle in flow sorter (MILPIS)
NASA Astrophysics Data System (ADS)
Fuad, Nurul M.; Skommer, Joanna; Friedrich, Timo; Kaslin, Jan; Wlodkowic, Donald
2015-06-01
At present, the major hurdle to widespread deployment of zebrafish embryo and larvae in large-scale drug development projects is lack of enabling high-throughput analytical platforms. In order to spearhead drug discovery with the use of zebrafish as a model, platforms need to integrate automated pre-test sorting of organisms (to ensure quality control and standardization) and their in-test positioning (suitable for high-content imaging) with modules for flexible drug delivery. The major obstacle hampering sorting of millimetre sized particles such as zebrafish embryos on chip-based devices is their substantial diameter (above one millimetre), mass (above one milligram), which both lead to rapid gravitational-induced sedimentation and high inertial forces. Manual procedures associated with sorting hundreds of embryos are very monotonous and as such prone to significant analytical errors due to operator's fatigue. In this work, we present an innovative design of a micromechanical large particle in-flow sorter (MILPIS) capable of analysing, sorting and dispensing living zebrafish embryos for drug discovery applications. The system consisted of a microfluidic network, revolving micromechanical receptacle actuated by robotic servomotor and opto-electronic sensing module. The prototypes were fabricated in poly(methyl methacrylate) (PMMA) transparent thermoplastic using infrared laser micromachining. Elements of MILPIS were also fabricated in an optically transparent VisiJet resin using 3D stereolithography (SLA) processes (ProJet 7000HD, 3D Systems). The device operation was based on a rapidly revolving miniaturized mechanical receptacle. The latter function was to hold and position individual fish embryos for (i) interrogation, (ii) sorting decision-making and (iii) physical sorting..The system was designed to separate between fertilized (LIVE) and non-fertilized (DEAD) eggs, based on optical transparency using infrared (IR) emitters and receivers embedded in the system. Digital oscilloscope were used to distinguish the diffraction signals from IR sensors when both LIVE and DEAD embryos were flow through in the chip. Image process analysis were also used as detection module to track DEAD embryos as it flowed in the channel.
Letcher, B.H.; Dubreuil, T.; O'Donnell, M. J.; Obedzinski, M.; Griswold, K.; Nislow, K.H.
2004-01-01
We tested the influence of introduction time and the manner of introduction on growth, survival, and life-history expression of Atlantic salmon (Salmo salar). Introduction treatments included three fry stocking times and stream rearing of embryos. Despite poor growth conditions during the early stocking period, early-stocked fish were larger throughout the entire study period, likely the result of prior residence advantage. This interpretation was reinforced by the laboratory study, where early-stocked fish outgrew late-stocked fish when reared together, but not when they were reared separately. In contrast to growth, abundance of stocked fish was greatest for fish stocked during the middle period, and this stocking group produced the greatest number of smolts. Despite smaller size, survival of stream-incubated fish was generally greater than survival of stocked fish. Introduction timing had a pronounced effect on smolt age but a weak effect on extent of parr maturation. Overall, these observations indicate that small differences (???2 weeks) in introduction time can have long-term effects on size, survival, and life-history expression. Results suggest stabilizing selection on introduction times, mediated by the interaction between prior residence (advantage to fish introduced earlier) and habitat suitability (advantage to fish introduced later). ?? 2004 NRC Canada.
NASA Astrophysics Data System (ADS)
Walpitagama, Milanga; Kaslin, Jan; Nugegoda, Dayanthi; Wlodkowic, Donald
2016-12-01
The fish embryo toxicity (FET) biotest performed on embryos of zebrafish (Danio rerio) has gained significant popularity as a rapid and inexpensive alternative approach in chemical hazard and risk assessment. The FET was designed to evaluate acute toxicity on embryonic stages of fish exposed to the test chemical. The current standard, similar to most traditional methods for evaluating aquatic toxicity provides, however, little understanding of effects of environmentally relevant concentrations of chemical stressors. We postulate that significant environmental effects such as altered motor functions, physiological alterations reflected in heart rate, effects on development and reproduction can occur at sub-lethal concentrations well below than LC10. Behavioral studies can, therefore, provide a valuable integrative link between physiological and ecological effects. Despite the advantages of behavioral analysis development of behavioral toxicity, biotests is greatly hampered by the lack of dedicated laboratory automation, in particular, user-friendly and automated video microscopy systems. In this work we present a proof-of-concept development of an optical system capable of tracking embryonic vertebrates behavioral responses using automated and vastly miniaturized time-resolved video-microscopy. We have employed miniaturized CMOS cameras to perform high definition video recording and analysis of earliest vertebrate behavioral responses. The main objective was to develop a biocompatible embryo positioning structures that were suitable for high-throughput imaging as well as video capture and video analysis algorithms. This system should support the development of sub-lethal and behavioral markers for accelerated environmental monitoring.
Acute embryo toxicity and teratogenicity of three potential biofuels also used as flavor or solvent.
Bluhm, Kerstin; Seiler, Thomas-Benjamin; Anders, Nico; Klankermayer, Jürgen; Schaeffer, Andreas; Hollert, Henner
2016-10-01
The demand for biofuels increases due to concerns regarding greenhouse gas emissions and depletion of fossil oil reserves. Many substances identified as potential biofuels are solvents or already used as flavors or fragrances. Although humans and the environment may be readily exposed little is known regarding their (eco)toxicological effects. In this study, the three potential biofuels ethyl levulinate (EL), 2-methyltetrahydrofuran (2-MTHF) and 2-methylfuran (2-MF) were investigated for their acute embryo toxicity and teratogenicity using the fish embryo toxicity (FET) test to identify unknown hazard potentials and to allow focusing further research on substances with low toxic potentials. In addition, two fossil fuels (diesel and gasoline) and an established biofuel (rapeseed oil methyl ester) were investigated as references. The FET test is widely accepted and used in (eco)toxicology. It was performed using the zebrafish Danio rerio, a model organism useful for the prediction of human teratogenicity. Testing revealed a higher acute toxicity for EL (LC50: 83mg/L) compared to 2-MTHF (LC50: 2980mg/L), 2-MF (LC50: 405mg/L) and water accommodated fractions of the reference fuels including gasoline (LC50: 244mg DOC/L). In addition, EL caused a statistically significant effect on head development resulting in elevated head lengths in zebrafish embryos. Results for EL reduce its likelihood of use as a biofuel since other substances with a lower toxic potential are available. The FET test applied at an early stage of development might be a useful tool to avoid further time and money requiring steps regarding research on unfavorable biofuels. Copyright © 2016 Elsevier B.V. All rights reserved.
Biological observations on the crocodile shark Pseudocarcharias kamoharai.
Dai, X J; Zhu, J F; Chen, X J; Xu, L X; Chen, Y
2012-04-01
Sex ratios and gravid characteristics were analysed for the crocodile shark Pseudocarcharias kamoharai from the tropical eastern Pacific Ocean. Gravid females ranged from 80 to 102 cm fork length (L(F) ). The mode litter size was four (two embryos per uterus), mean embryo length was linearly correlated with maternal length (r = 0·465, n = 32); there was no significant difference in L(F) between female and male embryos. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Trexler, Joel C.; DeAngelis, Donald L.
2003-01-01
We used analytic and simulation models to determine the ecological conditions favoring evolution of a matrotrophic fish from a lecithotrophic ancestor given a complex set of trade‐offs. Matrotrophy is the nourishment of viviparous embryos by resources provided between fertilization and parturition, while lecithotrophy describes embryo nourishment provided before fertilization. In fishes and reptiles, embryo nourishment encompasses a continuum from solely lecithotrophic to primarily matrotrophic. Matrotrophy has evolved independently from lecithotrophic ancestors many times in many groups. We assumed matrotrophy increased the number of offspring a viviparous female could gestate and evaluated conditions of food availability favoring lecithotrophy or matrotrophy. The matrotrophic strategy was superior when food resources exceeded demand during gestation but at a risk of overproduction and reproductive failure if food intake was limited. Matrotrophic females were leaner during gestation than lecithotrophic females, yielding shorter life spans. Our models suggest that matrotrophic embryo nourishment evolved in environments with high food availability, consistently exceeding energy requirements for maintaining relatively large broods. Embryo abortion with some resorption of invested energy is a necessary preadaptation to the evolution of matrotrophy. Future work should explore trade‐offs of age‐specific mortality and reproductive output for females maintaining different levels of fat storage during gestation.
Inagaki, T; Smith, N L; Sherva, K M; Ramakrishnan, S
2016-12-01
Growing evidence indicates that chronic exposure to Bisphenol A (BPA) may disrupt normal brain function and behavior mediated by gonadotropin-releasing hormone (GnRH) pathways. Previous studies have shown that low dose BPA (200ng/ml) exposure during embryogenesis altered development of extra-hypothalamic GnRH3 systems and non-reproductive locomotor behavior in medaka. Effects of parental low-dose BPA exposure on the development of GnRH3 systems and locomotor behavior of offspring are not well known. This study examines whether the neurophysiological and behavioral effects of BPA in parents (F0 generation) are carried over to their offspring (F1 generation) using stable transgenic medaka embryos/larvae with GnRH3 neurons tagged with green fluorescent protein (GFP). Parental fish were exposed to BPA (200ng/ml) for either life-long or different developmental time windows. Fertilized F1 eggs were collected and raised in egg/fish water with no environmental exposure to BPA. All experiments were performed on F1 embryos/larvae, which were grouped based on the following parental (F0) BPA exposure conditions - (i) Group 1 (G1): through life; (ii) G2: during embryogenesis and early larval development [1-14days post fertilization (dpf)]; (iii) G3: during neurogenesis (1-5dpf); and (iv) G4: during sex differentiation (5-14dpf). Embryos from unexposed vehicle treated parents served as controls (G0). G1 embryos showed significantly reduced survival rates and delayed hatching time compared to other groups, while G4 embryos hatched significantly earlier than all other groups. At 3 dpf, the GnRH3-GFP intensity was increased by 47% in G3 embryos and decreased in G4 embryos by 59% compared to controls. At 4dpf, G1 fish showed 42% increased intensity, while GFP intensity was reduced by 44% in G3 subjects. In addition, the mean brain size of G1, G3 and G4 embryos were smaller than that of control at 4dpf. At 20dpf, all larvae from BPA-treated parents showed significantly decreased total movement (distance covered) compared with controls, with G2 and G3 fish showing reduced velocity of movement. While at 20 dpf no group differences were seen in the soma diameter of GnRH3-GFP neurons, a 34% decrease in SV2 expression, a marker for synaptic transmission, in G1 larvae was observed. These data suggest that parental BPA exposure during critical windows of embryonic development or chronic treatment affects next-generation offspring both in embryonic and larval brain development as well as larval behavior. Copyright © 2016 Elsevier B.V. All rights reserved.
Prolonging hypothermic storage (4 C) of bovine embryos with fish antifreeze protein.
Ideta, Atsushi; Aoyagi, Yoshito; Tsuchiya, Kanami; Nakamura, Yuuki; Hayama, Kou; Shirasawa, Atsushi; Sakaguchi, Kenichiro; Tominaga, Naomi; Nishimiya, Yoshiyuki; Tsuda, Sakae
2015-01-01
Embryos obtained via superovulation are necessary for mammalian artificial reproduction, and viability is a key determinant of success. Nonfreezing storage at 4 C is possible, but currently used storage solutions can maintain embryo viability for only 24-48 h. Here we found that 10 mg/ml antifreeze protein (AFP) dissolved in culture medium 199 with 20% (v/v) fetal bovine serum and 25 mM HEPES could keep bovine embryos alive for 10 days at 4 C. We used a recombinant AFP isolated from the notched-fin eelpout (Zoarces elongatus Kner). Photomicroscopy indicated that the AFP-embryo interaction was enhanced at 37 C. Embryos pre-warmed with the AFP solution at 37 C for 60 min maintained high viability, whereas those that were not pre-warmed could live no longer than 7 days. Thus, short-term storage of bovine embryos was achieved by a combination of AFP-containing medium and controlled pre-warming.
Wills, Lauren P.; Matson, Cole W.; Landon, Chelsea D.; Di Giulio, Richard T.
2010-01-01
Fundulus heteroclitus (Atlantic killifish) found at the Atlantic Wood Industries Superfund site on the Elizabeth River (ER) in Portsmouth, VA (USA), have been shown to be resistant to the teratogenic effects of creosote-contaminated sediments found at this highly contaminated site. Many of the polycyclic aromatic hydrocarbons (PAHs) found at the ER are known to activate the aryl hydrocarbon receptor (AHR), and are thought to mediate their toxic effects through this pathway. Activation of the AHR results in the induction of several Phase I and II metabolic enzymes. It has been previously shown that the AHR of killifish from the ER are refractory to induction by AHR agonists. To more fully characterize this altered AHR response, we exposed embryos from the ER and from a reference site on King's Creek, VA (KC) to two PAHs, benzo[α]pyrene (BaP) and benzo[k]fluoranthene (BkF), and to the dioxin-like compound (DLC), 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). We compared their developmental and molecular responses by screening the embryos for CYP1A enzyme activity, cardiac deformities, and mRNA expression of CYP1A, CYP1B1, CYP1C1, and AHR2. Basal gene expression of both CYP1A and CYP1B1 was 40% higher in the KC control embryos compared to those from the ER, while AHR2 and CYP1C1 were not significantly different between the populations. Exposure of KC embryos to BaP, BkF, and PCB126 induced CYP1A activity and cardiac deformities. In contrast, CYP1A activity was induced in ER embryos only in response to BkF exposure, although this induction in ER embryos was significantly lower than that observed in KC fish at comparable concentrations. ER embryos did not develop cardiac deformities in response to any of the chemicals tested. CYP1A, CYP1B1 and CYP1C1 mRNA were all significantly induced in the KC embryos after exposure to BaP, BkF and PCB126. Exposure to BaP and BkF in ER embryos resulted in a significant induction of CYP1A mRNA, albeit significantly lower than observed in KC fish. Interestingly, BaP exposure resulted in induction of CYP1B1 at comparable levels in embryos from both populations. CYP1s were not induced in ER embryos in response to PCB126, nor was CYP1C1 for any treatment examined. Additionally, AHR2 was not significantly induced for any of the treatment groups. This study further characterizes the AHR response in killifish, and provides greater insight into the adapted ER phenotype. The ER adaptation involves the suppression of normal AHR-inducible gene expression for all three CYP1 genes, and therefore is likely an alteration in AHR signaling or control. PMID:20471113
Dechorionation is a method used to enable image acquisition in embryonic and larval zebrafish studies. As it is assumed that dechorionation has no long-term effects on fish embryo development, it is important to determine if that assumption is correct. The present study explored ...
Frumkin, Tsvia; Malcov, Mira; Yaron, Yuval; Ben-Yosef, Dalit
2008-01-30
Preimplantation genetic screening (PGS) has been proposed as a method for improving success rates in patients with repeated IVF failures. This approach is based on the hypothesis that such failures are the result of aneuploid embryos. It has been suggested that FISH analysis of blastomeres removed from preimplantation embryos represent the chromosomal constitution of the entire embryo. However, it is not yet clear whether it also represents the chromosomal constitution of the implanted embryo. PGS reanalysis on day 5 of embryos designated as "aneuploid" on day 3 may demonstrate a high rate of mosaicism for chromosomal aberration. Some of these mosaic embryos are capable of developing into normal embryos by "self-correction". Others, however, may accumulate additional chromosomal anomalies. It is therefore concluded that the chromosomal constitution of a preimplantation embryo may evolve during early cleavages. Meiotic and post zygotic mitotic errors may account for these chromosomal aberrations. This review will focus on elucidating the origin of chromosomal changes during preimplantation embryo development by studying their chromosomal constitution at different stages.
NASA Astrophysics Data System (ADS)
Ijiri, K.
In the second International Microgravity Laboratory (IML-2) mission in 1994, four small Japanese killifish (Medaka, Oryzias latipes) made a space travel of 15 days aboard a space shuttle. These four adult Medaka fish successfully mated in space for the first time among vertebrate animals. Moreover, the eggs they laid developed normally, at least in their external appearance, hatching as fry (baby fish) in space. Fish mated and laid eggs every day during the first week. Near the end of the mission most of the eggs had a well-developed body with two pigmented eyes. In total, 43 eggs were laid (detected), out of which 8 fry hatched in space, as truly `space-originated' babies. A further 30 fry hatched within 3 days after landing. This is the normal hatching rate, compared with the ground-based data. Among the 8 space-originated fry, four were killed for histological sections, and germ cells at the gonadal region were counted for each fry. Their numbers were in the range of the germ cells of the normal control fry (ground-kept samples). Thus, as embryos developed normally in their external appearance, inside the embryos the formation of primordial germ cells took place normally in space, and their migration to the genital ridges was not hindered by microgravity. The two of the remaining space-originated fry have grown up and been creating their offspring in the laboratory. This proved that the primordial germ cells formed in space were also normal from a functional point of view. The four space-travelled adult fish re-started mating and laying eggs on the 7th day after landing and continued to do so every day afterward. Fertilization rate and hatchability of these eggs were as high as the eggs laid by the laboratory-kept fish. This fact implies that in gametogenesis of adult fish, there are no specific stages of germ cells extremely susceptible to microgravity.
Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina
2017-12-01
Environmental metals are known to cause harmful effects to fish of which many molecular mechanisms still require elucidation. Particularly concentration dependence of gene expression effects is unclear. Focusing on this matter, zebrafish embryo toxicity tests were used in combination with transcriptomics. Embryos were exposed to three concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) from just after fertilization until the end of the 48hpf pre- and 96hpf post-hatch stage. The RNA was then analyzed on Agilent's Zebrafish (V3, 4×44K) arrays. Enrichment for GO terms of biological processes illustrated for cadmium that most affected GO terms were represented in all three concentrations, while for cobalt and copper most GO terms were represented in the lowest test concentration only. This suggested a different response to the non-essential cadmium than cobalt and copper. In cobalt and copper treated embryos, many developmental and cellular processes as well as the Wnt and Notch signaling pathways, were found significantly enriched. Also, different exposure concentrations affected varied functional networks. In contrast, the largest clusters of enriched GO terms for all three concentrations of cadmium included responses to cadmium ion, metal ion, xenobiotic stimulus, stress and chemicals. However, concentration dependence of mRNA levels was evident for several genes in all metal exposures. Some of these genes may be indicative of the mechanisms of action of the individual metals in zebrafish embryos. Real-time quantitative RT-PCR (qRT-PCR) verified the microarray data for mmp9, mt2, cldnb and nkx2.2a. Copyright © 2017 Elsevier Inc. All rights reserved.
Siddique, Mohammad Abdul Momin; Linhart, Otomar; Krejszeff, Sławomir; Żarski, Daniel; Król, Jarosław; Butts, Ian Anthony Ernest
2016-03-15
Standardization of fertilization protocols is crucial for improving reproductive techniques for externally fertilizing fish in captive breeding. Therefore, the objectives of this study were to determine the effects of preincubation of eggs and activation medium on the percentage of eyed embryos for ide (Leuciscus idus). Pooled eggs from five females were preincubated in three different activating media for 0, 30, 60, 90, and 120 seconds and then fertilized by pooled sperm from five males. At the eyed-egg stage, the percentage of viable embryos was later calculated. Results showed that preincubation time was significant for the freshwater activation medium (P < 0.001), such that the percentage of eyed embryos declined across the preincubation time gradient. Additionally, there was an effect on the percentage of eyed embryos when eggs were incubated with Woynarovich solution (P < 0.001), such that a decline was detected at 90 seconds, whereas no effect was detected for the saline water medium. Activating medium had a significant effect on the percentage of eyed embryos for each preincubation time (P < 0.05). More precisely, freshwater produced the lowest percentage of eyed embryos at all preincubation times (ranged from 1.9% at 120 seconds to 43.6% at 0 seconds), whereas saline water and Woynarovich solution produced the highest percentage of eyed embryos at 0 seconds and 30 seconds before incubation. Woynarovich solution produced the highest percentage of eyed embryos at 60 seconds (65.26%), whereas saline water produced the highest percentage at 90 seconds (68.37%). No difference was detected between saline water and Woynarovich solution at 120 seconds. Examination of sperm traits showed no impact of activating medium on computer assisted sperm analysis parameters. Together, these results suggest that saline water or Woynarovich solution improve fertilization rate in ide during IVF; thus, these media are useful for standardizing fertilization protocols and controlled reproduction for this species. Copyright © 2016 Elsevier Inc. All rights reserved.
Dumont, J.N.; Bantle, J.A.; Linder, G.; ,
2003-01-01
The energy crisis of the 1970's and 1980's prompted the search for alternative sources of fuel. With development of alternate sources of energy, concerns for biological resources potentially adversely impacted by these alternative technologies also heightened. For example, few biological tests were available at the time to study toxic effects of effluents on surface waters likely to serve as receiving streams for energy-production facilities; hence, we began to use Xenopus laevis embryos as test organisms to examine potential toxic effects associated with these effluents upon entering aquatic systems. As studies focused on potential adverse effects on aquatic systems continued, a test procedure was developed that led to the initial standardization of FETAX. Other .than a limited number of aquatic toxicity tests that used fathead minnows and cold-water fishes such as rainbow trout, X. laevis represented the only other aquatic vertebrate test system readily available to evaluate complex effluents. With numerous laboratories collaborating, the test with X. laevis was refined, improved, and developed as ASTM E-1439, Standard Guide for the Conducting Frog Embryo Teratogenesis Assay-Xenopus (FETAX). Collabrative work in the 1990s yielded procedural enhancements, for example, development of standard test solutions and exposure methods to handle volatile organics and hydrophobic compounds. As part of the ASTM process, a collaborative interlaboratory study was performed to determine the repeatability and reliability of FETAX. Parallel to these efforts, methods were also developed to test sediments and soils, and in situ test methods were developed to address "lab-to-field extrapolation errors" that could influence the method's use in ecological risk assessments. Additionally, a metabolic activation system composed of rat liver microsomes was developed which made FETAX more relevant to mammalian studies.
Chen, Jiangfei; Das, Siba R; La Du, Jane; Corvi, Margaret M; Bai, Chenglian; Chen, Yuanhong; Liu, Xiaojuan; Zhu, Guonian; Tanguay, Robert L; Dong, Qiaoxiang; Huang, Changjiang
2013-01-01
Perfluorooctane sulfonic acid (PFOS) is an organic contaminant that is ubiquitous in the environment. Few studies have assessed the behavioral effects of chronic PFOS exposure in aquatic organisms. The present study defined the behavioral effects of varying life span chronic exposures to PFOS in zebrafish. Specifically, zebrafish were exposed to control or 0.5 µM PFOS during 1 to 20, 21 to 120, or 1 to 120 d postfertilization (dpf). Exposure to PFOS impaired the adult zebrafish behavior mode under the tapping stimulus. The movement speed of male and female fish exposed for 1 to 120 dpf was significantly increased compared with control before and after tapping, whereas in the groups exposed for 1 to 20 and 21 to 120 dpf, only the males exhibited elevated swim speed before tapping. Residues of PFOS in F1 embryos derived from parental exposure for 1 to 120 and 21 to 120 dpf were significantly higher than control, and F1 embryos in these two groups also showed high malformation and mortality. The F1 larvae of parental fish exposed to PFOS for 1 to 20 or 21 to 120 dpf exhibited a higher swimming speed than control larvae in a light-to-dark behavior assessment test. The F1 larvae derived from parental fish exposed to PFOS for 1 to 120 dpf showed a significantly lower speed in the light period and a higher speed in the dark period compared with controls. Although there was little PFOS residue in embryos derived from the 1- to 20-dpf parental PFOS-exposed group, the adverse behavioral effects on both adult and F1 larvae indicate that exposure during the first 21 dpf induces long-term neurobehaviorial toxicity. The authors' findings demonstrate that chronic PFOS exposure during different life stages adversely affects adult behavior and F1 offspring morphology, behavior, and survival. Copyright © 2012 SETAC.
Early developmental stages of fish are extremely sensitive to a class of toxic and persistent environmental contaminants known as dioxin-like compounds (DLCs). Most of the toxicological actions of DLCs are mediated via the Aryl hydrocarbon Receptor (AhR) that regulates transcript...
Carballeira, C; Ramos-Gómez, J; Martín-Díaz, L; DelValls, T A
2012-06-01
Standard toxicity screening tests are useful tools in the management of impacted coastal ecosystems. To our knowledge, this is the first time that the sea urchin embryo development test has been used to evaluate the potential impact of effluents from land-based aquaculture farms in coastal areas. The toxicity of effluents from 8 land-based turbot farms was determined by calculating the percentage of abnormal larvae, according to two criteria: (a) standard, considering as normal pyramid-shaped larvae with differentiated components, and (b) skeletal, a new criterion that considers detailed skeletal characteristics. The skeletal criterion appeared to be more sensitive and enabled calculation of effective concentrations EC(5), EC(10), EC(20) and EC(50), unlike the classical criterion. Inclusion of the skeleton criterion in the sea urchin embryo development test may be useful for categorizing the relatively low toxicity of discharges from land-based marine fish farms. Further studies are encouraged to establish any causative relationships between pollutants and specific larval deformities. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cooling strategies for brazilian flounder Paralichthys orbignyanus embryos.
Varela, A S; Cardoso, T F; Fernandes E Silva, E; Goularte, K L; Okamoto, M H; Sampaio, L A; Jardim, R D; Corcini, C D
Paralichthys orbignyanus is the species of the greatest potential for marine and estuarine fish farming in southern Brazil. Consequently, embryo cryopreservation becomes an important tool for increasing their production. To evaluate the effects of cooling protocols on the viability of embryos of P. orbignyanus at two stages of development (neurula and early differentiation of the tail). Control embryos were maintained at 23 degree C and treated embryos were cooled to 15 degree C, 10 degree C and 5 degree C at rapid, moderate and slow cooling rates. Then embryos were maintained at these different temperatures for 30, 60 and 90 min and the loss of viability assessed as hatching rates (HR) and morphologically normal larvae (MNL). The average HR for embryos following cooling was higher for those at the tail stage compared to the neurula stage (P<0.05). In both stages there was no statistical difference between the HR of control embryos and those exposed to rapid cooling. Also for tail stage embryos, there was no difference between MNL of control and rapidly cooled embryos. As first steps in the development of cryopreservation methods for P. orbignyanus embryos, the use of a rapid cooling and holding at 5 degree C for 30 min are recommended.
Bertin, Aline; Meurisse, Maryse; Arnould, Cécile; Leterrier, Christine; Constantin, Paul; Cornilleau, Fabien; Vaudin, Pascal; Burlot, Thierry; Delaveau, Joel; Rat, Christophe; Calandreau, Ludovic
2016-03-01
In this study, we assessed whether prenatal exposure to elevated yolk steroid hormones can influence in ovo chemosensory learning and the behavior of domestic chicks. We simulated a maternal environmental challenge by experimentally enhancing yolk progesterone, testosterone, and estradiol concentrations in hen eggs prior to incubation. The embryos from these hormones-treated eggs (HO) as well as sham embryos (O) that had received the vehicle-only were exposed to the odor of fish oil (menhaden) between embryonic Days 11 and 20. An additional group of control embryos (C) was not exposed to the odor. All chicks were tested following hatching for their feeding preferences between foods that were or were not odorized with the menhaden odor. In the 3-min choice tests, the behavior of O chicks differed significantly according to the type of food whereas C and HO chicks showed no preference between odorized and non-odorized food. Our result suggests weaker response in HO chicks. In addition, HO chicks showed impaired growth and reduced intake of an unfamiliar food on the 24-h time scale compared to controls. Our data suggest that embryonic exposure to increased yolk hormone levels can alter growth, chemosensory learning, and the development of feeding behaviors. © 2015 Wiley Periodicals, Inc.
1985-04-01
osmoconformer at salinities greater ENVIRONMENTAL REQUIREMENTS than 10 ppt, and an osmoregulator at lower salinities (Bedford and Anderson 1972a,b; Otto...1973, 1974) tested the combined effects of temperature (8 to 32°C) and salinity (0 to 20 ppt) on .. k6.. Temperature embryos and larvae of common...Bedford, W. B. , and J. W. Anderson. Allen, K. 1961. The effect of salin - 1972a. The physiological response ity on the amino acid concentra- of the
Developmental effects of simulated microgravity on zebrafish, (Danio rerio)
NASA Astrophysics Data System (ADS)
Stoyek, Matthew; Edsall, Sara; Franz-Odendaal, Tamara; Smith, Frank; Croll, Roger
Zebrafish are widely used model vertebrates in research and recently this species has been used to study the effects of microgravity on fundamental biological processes. In this study we used a NASA-designed rotating wall vessel (RWV) to investigate the effects of simulated microgravity (SMG) on zebrafish development up to 14 days post fertilization (dpf). At developmental stages beyond the 3-4 somite stage we found SMG-exposed embryos reached key developmental stag-ing points more rapidly than fish raised within a non-rotating vessel. By the 21 somite stage, both groups were again synchronized in their developmental staging. However, SMG-exposed embryos eventually exhibited a delay in hatching time compared to controls. Otolith and to-tal body size were observed to be greater in larvae raised in SMG. In addition, pigmentation patterns in SMG exposed fish differed, with larger and differentially aggregated melanocytes . Heart development was slowed in SMG exposed fish, but no change in nervous system de-velopment was detected. Ongoing research will focus on differences in heart and respiration rates. Finally, by developing a method to extend the duration of SMG exposure, we found the swimming behaviour of SMG-exposed animals was altered with time in the RWV. Initially SMG-exposed animals swam in the direction of RWV rotation (5-9dpf) but older (9+dpf) fish swam against rotation and demonstrated righting behaviour with each rotation. These results suggest that vestibular reflexes may develop normally and be maintained in animals exposed to SMG. Together, our data provide insights into how zebrafish may develop when flown in space, permitting better formulation of experiments to test mechanisms by which microgravity may affect ontogeny of this model organism. Keywords: microgravity, zebrafish, growth, development
Parsley, Michael J.; Kofoot, Eric
2013-01-01
The Kootenai River white sturgeon (Acipenser transmontanus) was listed as endangered under the Endangered Species Act in 1994 because several decades of failed spawning had put the population at risk of extinction. Natural spawning is known to occur at several locations in the Kootenai River, Idaho, but there is little natural recruitment. Microhabitat where embryo incubation occurs is known to be an important factor in white sturgeon reproductive success. This study was conducted to address questions regarding the suitability of different substrates as egg attachment and incubation sites for these fish. A comparative laboratory study using six types of incubation substrates—clean river rocks, periphyton- and algae-covered rocks, waterlogged wood, sand, riparian vegetation, and clean glass plates—tested the hypothesis that survival to hatch of white sturgeon eggs differs among incubation substrates. The results showed that sand was unsuitable as an incubation substrate, as the adhesive embryos were easily dislodged. Periphyton- and algae-covered rocks had the lowest hatch success, and all other substrates had similar hatch success.
Zebrafish and Medaka: new model organisms for modern biomedical research.
Lin, Cheng-Yung; Chiang, Cheng-Yi; Tsai, Huai-Jen
2016-01-28
Although they are primitive vertebrates, zebrafish (Danio rerio) and medaka (Oryzias latipes) have surpassed other animals as the most used model organisms based on their many advantages. Studies on gene expression patterns, regulatory cis-elements identification, and gene functions can be facilitated by using zebrafish embryos via a number of techniques, including transgenesis, in vivo transient assay, overexpression by injection of mRNAs, knockdown by injection of morpholino oligonucleotides, knockout and gene editing by CRISPR/Cas9 system and mutagenesis. In addition, transgenic lines of model fish harboring a tissue-specific reporter have become a powerful tool for the study of biological sciences, since it is possible to visualize the dynamic expression of a specific gene in the transparent embryos. In particular, some transgenic fish lines and mutants display defective phenotypes similar to those of human diseases. Therefore, a wide variety of fish model not only sheds light on the molecular mechanisms underlying disease pathogenesis in vivo but also provides a living platform for high-throughput screening of drug candidates. Interestingly, transgenic model fish lines can also be applied as biosensors to detect environmental pollutants, and even as pet fish to display beautiful fluorescent colors. Therefore, transgenic model fish possess a broad spectrum of applications in modern biomedical research, as exampled in the following review.
Hypoxia impairs embryo development and survival in black bream (Acanthopagrus butcheri).
Hassell, Kathryn L; Coutin, Patrick C; Nugegoda, Dayanthi
2008-01-01
Coastal environments are threatened by the increasing frequency, extent and severity of hypoxic events. Hypoxia affects vast areas around the world and often causes fish kills, reduced abundance, altered distribution, low benthic biomass and declines in fisheries. In Australia, many fisheries are based on sparid fishes and in the southern states black bream (Acanthopagrus butcheri) is important to both the recreational and commercial sectors. This species completes its entire life cycle in estuaries and annual recruitment is highly variable and very likely influenced by environmental conditions during the spawning season. In a laboratory-based experiment, fertilised black bream eggs (embryos) were exposed to five different levels of dissolved oxygen (DO). The DO levels were maintained in small test wells using nitrogen gas in a novel chamber design. Embryo development was assessed over a 2-day period and hatched larvae were observed until Day 2 post-hatch. Significant differences (p<0.05) were observed in embryonic development and survival as a function of DO level. In severely hypoxic conditions (30% saturation) survival to 1 day was reduced and no hatching occurred. In moderately hypoxic conditions (45-55%S), both precocious and delayed hatching was observed and hatch rates were reduced, whilst the number of hatched larvae with deformities increased, resulting in reduced larval lengths. No larvae survived to Day 2 post-hatch when held in hypoxic conditions (<55%S). This study demonstrates the detrimental effect that severe hypoxia can have on the early development of black bream which could result in reduced recruitment and lowered abundance. Other species that share similar early life histories may also be at risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herkovits, J.; Herkovits, F.D.; Perez-Coll, C.S.
The water quality based toxics control is essential to evaluate the aggregate toxicity, bioavailability as well as for the detection and/or prediction of ecological impacts. Reconquista River valley is situated in the north area of Great Buenos Aires with a population of three million inhabitants. The river is loaded with industrial and municipal waste water. In the present preliminary study the authors report the toxicity found in surface water at a 6 sample stations (including a reference point and a stream) all of them downstream from mixing zone areas. The ecotoxicological study was performed with three native species (Bufo arenarummore » embryos, Cnesterodon decemmaculatus and a species of shrimp collected in an upstream reference site) during a 7 day renewal toxicity test conducted with 10 individuals (by duplicate) for each condition plus control. The results point out that the Bufo arenarum embryos test is the most sensitive to toxic substances as well as the better adapted species to the changing physico-chemical conditions of this river. The results obtained with embryos, expressed in Acute and Chronic Toxicity Units (according USEPA) range between <0.3--2 and <1--5 respectively (recommended magnitudes for industrial effluents according USEPA: 0.3 and 1 toxicity units respectively). Therefore, the toxicity found in Reconquista River ecosystem was up to 6 times higher than the maximal value recommended for industrial effluents. It is noteworthy that in the place where toxicity starts to rise, a large number of dead fishes were found and from that place downstream, no macroorganisms were found in the river. The results confirm the high sensitivity of Bufo arenarum embryos for continental waters ecotoxicological studies and the possibility of using this test as a short-term chronic toxicity method for water quality-based toxics control.« less
Fish based preimplantation genetic diagnosis to prevent DiGeorge syndrome.
Shefi, Shai; Raviv, Gil; Rienstein, Shlomit; Barkai, Gad; Aviram-Goldring, Ayala; Levron, Jacob
2009-07-01
To report the performance of fluorescence in-situ hybridization in the setting of preimplantation genetic diagnosis in order to diagnose embryos affected by DiGeorge syndrome. Case report. Academic referral center. A 32 year-old female affected by DiGeorge syndrome. History and physical examination, karyotyping, amniocentesis, preimplantation genetic diagnosis, fluorescence in-situ hybridization. Avoidance of pregnancy with embryo affected by DiGeorge syndrome. Termination of pregnancy with an affected embryo followed by fluorescence in-situ hybridization based preimplantation genetic diagnosis and delivery of healthy offspring. The combination of preimplantation genetic diagnosis with fluorescence in-situ hybridization is recommended to prevent pregnancies with DiGeorge syndrome affected embryos in properly selected patients.
Rivero-Wendt, Carla Letícia Gediel; Oliveira, Rhaul; Monteiro, Marta Sofia; Domingues, Inês; Soares, Amadeu Mortágua Velho Maia; Grisolia, Cesar Koppe
2016-06-01
The synthetic androgen 17α-methyltestosterone is widely used in fish aquaculture for sex reversion of female individuals. Little is known about the amount of MT residues reaching the aquatic environment and further impacts in non-target organisms, including fish early-life stages. Thus, in this work, zebrafish embryos were exposed to two forms of 17α-methyltestosterone: the pure compound (MT) and a formulation commonly used in Brazil (cMT). For MT, a 96h-LC50 of 10.09mg/l was calculated. MT also affected embryo development inducing tail malformations, edemas, abnormal development of the head, and hatching delay. At biochemical level MT inhibited vitellogenin (VTG) and inhibited cholinesterase and lactate dehydrogenase. cMT elicited similar patterns of toxicity as the pure compound (MT). Effects reported in this study suggest a potential environmental risk of MT, especially since the VTG effects occurred at environmental relevant concentrations (0.004mg/l). Copyright © 2016 Elsevier B.V. All rights reserved.
George, Saji; Lin, Sijie; Ji, Zhaoxia; Thomas, Courtney; Li, LinJiang; Mecklenburg, Mathew; Meng, Huan; Wang, Xiang; Zhang, Haiyuan; Xia, Tian; Lin, Shuo; Hohman, J. Nathan; Zink, Jeffrey I.; Weiss, Paul; Nel, André E.
2014-01-01
We investigated and compared nano-size Ag spheres, plates, and wires in a fish gill epithelial cell line (RT-W1) and in zebrafish embryos to understand the mechanism of toxicity of an engineered nanomaterial raising considerable environmental concern. While most of the Ag nanoparticles induced N-acetyl cysteine sensitive toxic oxidative stress effects in RT-W1, Ag nanoplates were considerably more toxic than other particle shapes. Interestingly, while Ag ion shedding and bioavailability failed to explain the high toxicity of the nanoplates, cellular injury required direct particle contact, resulting in cell membrane lysis in RT-W1 as well as red blood cells (RBC). Ag nanoplates were also considerably more toxic in zebrafish embryos in spite of their lesser ability to shed Ag into the exposure medium. In order to elucidate the “surface reactivity” of Ag nanoplates, high-resolution transmission electron microscopy was performed and demonstrated a high level of crystal defects (stacking faults and point defects) on the nanoplate surfaces. Surface coating with cysteine was used to passivate the surface defects and demonstrated a reduction of toxicity in RT-W1 cells, RBC, and zebrafish embryos. This study demonstrates the important role of crystal defects in contributing to Ag nanoparticle toxicity in addition to the established roles of Ag ion shed from spherical nanoparticles. The excellent correlation between the in vitro and in vivo toxicological assessment illustrates the utility of using a fish cell line in parallel with zebrafish embryos to perform a predictive environmental toxicological paradigm. PMID:22482460
USDA-ARS?s Scientific Manuscript database
Anesthetics or sedatives are commonly used in fisheries and aquaculture research and production procedures to ease handling and reduce fish stress to conduct morphological and physiological evaluations on live fish. The anesthetics block or reduce the activation of the hypothalamus-pituitary-interr...
Danio rerio embryos on Prozac - Effects on the detoxification mechanism and embryo development.
Cunha, V; Rodrigues, P; Santos, M M; Moradas-Ferreira, P; Ferreira, M
2016-09-01
In the past decade the presence of psychopharmaceuticals, including fluoxetine (FLU), in the aquatic environment has been associated with the increasing trend in human consumption of these substances. Aquatic organisms are usually exposed to chronic low doses and, therefore, risk assessments should evaluate the effects of these compounds in non-target organisms. Teleost fish possess an array of active defence mechanisms to cope with the deleterious effects of xenobiotics. These include ABC transporters, phase I and II of cellular detoxification and oxidative stress enzymes. Hence, the present study aimed at characterising the effect of FLU on embryo development of the model teleost zebrafish (Danio rerio) concomitantly with changes in the detoxification mechanisms during early developmental phases. Embryos were exposed to different concentrations of FLU (0.0015, 0.05, 0.1, 0.5 and 0.8μM) for 80hours post fertilization. Development was screened and the impact in the transcription of key genes, i.e., abcb4, abcc1, abcc2, abcg2, cyp1a, cyp3a65, gst, sod, cat, ahr, pxr, pparα, pparβ, pparγ, rxraa, rxrab, rxrbb, rxrga, rxrgb, raraa, rarab, rarga evaluated. In addition, accumulation assays were performed to measure the activity of ABC proteins and antioxidant enzymes (CAT and Cu/ZnSOD) after exposure to FLU. Embryo development was disrupted at the lowest FLU concentration tested (0.0015μM), which is in the range of concentrations found in WWTP effluents. Embryos exposed to higher concentrations of FLU decreased Cu/Zn SOD, and increased CAT (0.0015 and 0.5μM) enzymatic activity. Exposure to higher concentrations of FLU decreased the expression of most genes belonging to the detoxification system and upregulated cat at 0.0015μM of FLU. Most of the tested concentrations downregulated pparα, pparβ, pparγ, and raraa, rxraa, rxrab, rxrbb rxrgb and ahr gene expression while pxr was significantly up regulated at all tested concentrations. In conclusion, this study shows that FLU can impact zebrafish embryo development, at concentrations found in effluents of WWTPs, concomitantly with changes in antioxidant enzymes, and the transcription of key genes involved in detoxification and development. These finding raises additional concerns supporting the need to monitor the presence of this compound in aquatic reservoirs. Copyright © 2016 Elsevier B.V. All rights reserved.
Asian medaka fishes offer new models for studying mechanisms of seawater adaptation.
Inoue, Koji; Takei, Yoshio
2003-12-01
Japanese medaka (Oryzias latipes) is a freshwater (FW) teleost that is popular throughout the world for laboratory use. In this paper, we discuss the utility of Japanese medaka and related species for studying mechanisms of seawater (SW) adaptation. In addition to general advantages as an experimental animal such as their daily spawning activity, transparency of embryos, short generation time and established transgenic techniques, Japanese medaka have some adaptability to SW unlike the strictly stenohaline zebrafish (Danio rerio). Since other species in the genus Oryzias exhibit different degrees of adaptability to SW, comparative studies between Japanese medaka, where molecular-biological and genetic information is abundant, and other Oryzias species are expected to present varying approaches to solving the problems of SW adaptation. We introduce some examples of interspecies comparison for SW adaptabilities both in adult fish and in embryos. Oryzias species are good models for evolutionary, ecological and zoogeographical studies and a relationship between SW adaptability and geographic distribution has been suggested. Medaka fishes may thus deliver new insights into our understanding of how fish have expanded their distribution to a wide variety of osmotic environments.
Transcriptome analysis of zebrafish embryos exposed to deltamethrin.
Chueh, Tsung-Cheng; Hsu, Li-Sung; Kao, Chin-Ming; Hsu, Tung-Wei; Liao, Hung-Yu; Wang, Kuan-Yi; Chen, Ssu Ching
2017-05-01
Deltamethrin (DTM), a type II pyrethroid, is one of the most commonly used insecticides. The increased use of pyrethroid leads to potential adverse effects, particularly in sensitive populations such as children and pregnant women. None of the related studies was focused on the transcriptome responses in zebrafish embryos after treatment with DTM; therefore, RNA-seq, a high-throughput method, was performed to analyze the global expression of differential expressed genes (DEGs) in zebrafish embryos treated with DTM (40 and 80 μg/L) from fertilization to 48 h postfertilization (hpf) as compared with that in the control group (without DTM treatment). Two cDNA libraries were generated from treated embryos and one cDNA library from nontreated embryos, respectively. Over 92% of reads mapped to the reference in these three libraries. It was observed that many differential genes were expressed in comparison with embryos before and after DTM. The 20 most differentially expressed upregulated or downregulated genes were majorly involved in the signaling transduction. Validation of selected nine genes expression using qRT-PCR confirmed RNA-seq results. The transcriptome sequences were further subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, showing G-protein-coupled receptor signaling pathway and neuroactive ligand-receptor interaction, respectively, were most enriched. The data from this study contributed to a better understanding of the potential consequences of fish exposed to DTM, to an evaluation of the potential threat of DTM to fish populations in aquatic environments. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1548-1557, 2017. © 2016 Wiley Periodicals, Inc.
Wills, Lauren P; Matson, Cole W; Landon, Chelsea D; Di Giulio, Richard T
2010-08-01
Fundulus heteroclitus (Atlantic killifish) found at the Atlantic Wood Industries Superfund site on the Elizabeth River (ER) in Portsmouth, VA (USA), have been shown to be resistant to the teratogenic effects of creosote-contaminated sediments found at this highly contaminated site. Many of the polycyclic aromatic hydrocarbons (PAHs) found at the ER are known to activate the aryl hydrocarbon receptor (AHR), and are thought to mediate their toxic effects through this pathway. Activation of the AHR results in the induction of several Phase I and II metabolic enzymes. It has been previously shown that the AHR of killifish from the ER are refractory to induction by AHR agonists. To more fully characterize this altered AHR response, we exposed embryos from the ER and from a reference site on King's Creek, VA (KC) to two PAHs, benzo[alpha]pyrene (BaP) and benzo[k]fluoranthene (BkF), and to the dioxin-like compound (DLC), 3,3',4,4',5-pentachlorobiphenyl (PCB126). We compared their developmental and molecular responses by screening the embryos for CYP1A enzyme activity, cardiac deformities, and mRNA expression of CYP1A, CYP1B1, CYP1C1, and AHR2. Basal gene expression of both CYP1A and CYP1B1 was 40% higher in the KC control embryos compared to those from the ER, while AHR2 and CYP1C1 were not significantly different between the populations. Exposure of KC embryos to BaP, BkF, and PCB126 induced CYP1A activity and cardiac deformities. In contrast, CYP1A activity was induced in ER embryos only in response to BkF exposure, although this induction in ER embryos was significantly lower than that observed in KC fish at comparable concentrations. ER embryos did not develop cardiac deformities in response to any of the chemicals tested. CYP1A, CYP1B1 and CYP1C1 mRNA were all significantly induced in the KC embryos after exposure to BaP, BkF and PCB126. Exposure to BaP and BkF in ER embryos resulted in a significant induction of CYP1A mRNA, albeit significantly lower than observed in KC fish. Interestingly, BaP exposure resulted in induction of CYP1B1 at comparable levels in embryos from both populations. CYP1s were not induced in ER embryos in response to PCB126, nor was CYP1C1 for any treatment examined. Additionally, AHR2 was not significantly induced for any of the treatment groups. This study further characterizes the AHR response in killifish, and provides greater insight into the adapted ER phenotype. The ER adaptation involves the suppression of normal AHR-inducible gene expression for all three CYP1 genes, and therefore is likely an alteration in AHR signaling or control. Copyright 2010 Elsevier B.V. All rights reserved.
Reubinoff, B E; Abeliovich, D; Werner, M; Schenker, J G; Safran, A; Lewin, A
1998-07-01
Non-mosaic Klinefelter patients are generally azoospermic due to primary testicular failure. Nevertheless, in some cases, testicular spermatozoa may be recovered and utilized to fertilize oocytes via intracytoplasmic sperm injection (ICSI). As the risk for an increased number of gonosomes in these spermatozoa is unclear, preimplantation genetic diagnosis (PGD) may be attempted in the resulting embryos. In the present study, we report our experience with the combined approach of sperm retrieval by testicular fine needle aspiration (FNA), ICSI and PGD in seven consecutive non-mosaic Klinefelter individuals. In four patients, between one and five spermatozoa were retrieved in five out of nine consecutive attempts. In a fifth patient, only 10 round spermatids could be isolated. Mature spermatozoa were injected into a total of 16 metaphase-II oocytes, of which 11 (69%) remained intact. Two distinct pronuclei (2PN) were observed in four oocytes (36%) while a single pronucleus (1PN) was documented in two oocytes. Five cleavage stage embryos developed from the oocytes of two couples. Upon the request of one couple, their three embryos (two derived from 1PN oocytes) were transferred without PGD but pregnancy was not achieved. PGD by fluorescence in-situ hybridization (FISH) was performed in the two embryos of the other couple which were derived from normal fertilization. PGD results of one embryo were 18,18,X,X,Y, the embryo was not transferred and FISH analysis of the remaining blastomeres identified variable chromosome numbers in the nuclei. The second embryo was diagnosed as normal and was transferred, resulting in a successful pregnancy and birth. In conclusion, the results of this report indicate that a pregnancy and birth may be attained in azoospermic non-mosaic Klinefelter individuals by testicular FNA combined with ICSI. Due to the unknown risk of gonosomes aneuploidy in embryos from Klinefelter patients, PGD or prenatal diagnosis should be recommended.
Garcia-Käufer, M; Gartiser, S; Hafner, C; Schiwy, S; Keiter, S; Gründemann, C; Hollert, H
2015-11-01
The embryotoxic potential of three model sediment samples with a distinct and well-characterized pollutant burden from the main German river basins Rhine and Elbe was investigated. The Fish Embryo Contact Test (FECT) in zebrafish (Danio rerio) was applied and submitted to further development to allow for a comprehensive risk assessment of such complex environmental samples. As particulate pollutants are constructive constituents of sediments, they underlay episodic source-sink dynamics, becoming available to benthic organisms. As bioavailability of xenobiotics is a crucial factor for ecotoxicological hazard, we focused on the direct particle-exposure pathway, evaluating throughput-capable endpoints and considering toxicokinetics. Fish embryo and larvae were exposed toward reconstituted (freeze-dried) sediment samples on a microcosm-scale experimental approach. A range of different developmental embryonic stages were considered to gain knowledge of potential correlations with metabolic competence during the early embryogenesis. Morphological, physiological, and molecular endpoints were investigated to elucidate induced adverse effects, placing particular emphasis on genomic instability, assessed by the in vivo comet assay. Flow cytometry was used to investigate the extent of induced cell death, since cytotoxicity can lead to confounding effects. The implementation of relative toxicity indices further provides inter-comparability between samples and related studies. All of the investigated sediments represent a significant ecotoxicological hazard by disrupting embryogenesis in zebrafish. Beside the induction of acute toxicity, morphological and physiological embryotoxic effects could be identified in a concentration-response manner. Increased DNA strand break frequency was detected after sediment contact in characteristic non-monotonic dose-response behavior due to overlapping cytotoxic effects. The embryonic zebrafish toxicity model along with the in vivo comet assay and molecular biomarker analysis should prospectively be considered to assess the ecotoxicological potential of sediments allowing for a comprehensive hazard ranking. In order to elucidate mode of action, novel techniques such as flow cytometry have been adopted and proved to be valuable tools for advanced risk assessment and management.
Use of an otolith-deficient mutant in studies of fish behavior in microgravity
NASA Astrophysics Data System (ADS)
Ijiri, K.; Mizuno, R.; Eguchi, H.
2003-10-01
The mutant strain ( ha) of medaka ( Oryzias latipes) lack utricular otoliths as fry, and some never form otoliths for life. The cross (Fl generation) between the strain having good eyesight and another strain having ordinary eyesight augmented visual acuity of the Fl generation. Crossing the good eyesight strain and ha mutant produced fish having good eyesight and less sensitivity to gravity in the F2 population. Their tolerance to microgravity was tested by parabolic flight using an airplane. The fish exhibited less looping and no differences in degree of looping between light and dark conditions, suggesting that loss of eyesight (in darkness) is not a direct cause for looping behavior in microgravity. The ha embryos could not form utricular otoliths. They did form saccular otoliths, but with a delay. Fry of the mutant fish lacking the utricular otoliths are highly dependent on light upon hatching and exhibit a perfect dorsal-light response (DLR). As they grow, they eventually shift from being light-dependent to being gravity-dependent. Continuous treatment of the fry with altered light direction suppressed this shift to gravity dependence. Being less dependent on gravity, these fish can serve as models in studying the differences expected for the vestibular system of fish reared in microgravity. When these fish were exposed to microgravity (parabolic flights) of an airplane, they spent far less time looping than fish reared in an ordinary light regimen.
Sonnack, Laura; Kampe, Sebastian; Muth-Köhne, Elke; Erdinger, Lothar; Henny, Nicole; Hollert, Henner; Schäfers, Christoph; Fenske, Martina
2015-01-01
Low level metal contaminations are a prevalent issue with often unknown consequences for health and the environment. Effect-based, multifactorial test systems with zebrafish embryos to assess in particular developmental toxicity are beneficial but rarely used in this context. We therefore exposed wild-type embryos to the metals copper (CuSO4), cadmium (CdCl2) and cobalt (CoSO4) for 72 h to determine lethal as well as sublethal morphological effects. Motor neuron damage was investigated by immunofluorescence staining of primary motor neurons (PMNs) and secondary motor neurons (SMNs). In vivo stainings using the vital dye DASPEI were used to quantify neuromast development and damage. The consequences of metal toxicity were also assessed functionally, by testing fish behavior following tactile stimulation. The median effective concentration (EC50) values for morphological effects 72 h post fertilization (hpf) were 14.6 mg/L for cadmium and 0.018 mg/L for copper, whereas embryos exposed up to 45.8 mg/L cobalt showed no morphological effects. All three metals caused a concentration-dependent reduction in the numbers of normal PMNs and SMNs, and in the fluorescence intensity of neuromasts. The results for motor neuron damage and behavior were coincident for all three metals. Even the lowest metal concentrations (cadmium 2mg/L, copper 0.01 mg/L and cobalt 0.8 mg/L) resulted in neuromast damage. The results demonstrate that the neuromast cells were more sensitive to metal exposure than morphological traits or the response to tactile stimulation and motor neuron damage. Copyright © 2015 Elsevier Inc. All rights reserved.
Kuliev, Anver; Janzen, Jeanine Cieslak; Zlatopolsky, Zev; Kirillova, Irina; Ilkevitch, Yury; Verlinsky, Yury
2010-07-01
Due to the limitations of preimplantation genetic diagnosis (PGD) for chromosomal rearrangements by interphase fluorescent in-situ hybridization (FISH) analysis, a method for obtaining chromosomes from single blastomeres was introduced by their fusion with enucleated or intact mouse zygotes, followed by FISH analysis of the resulting heterokaryons. Although this allowed a significant improvement in the accuracy of testing of both maternally and paternally derived translocations, it is still labour intensive and requires the availability of fertilized mouse oocytes, also creating ethical issues related to the formation of interspecies heterokaryons. This method was modified with a chemical conversion procedure that has now been clinically applied for the first time on 877 embryos from PGD cycles for chromosomal rearrangements and has become the method of choice for performing PGD for structural rearrangements. This is presented within the context of overall experience of 475 PGD cycles for translocations with pre-selection and transfer of balanced or normal embryos in 342 (72%) of these cycles, which resulted in 131 clinical pregnancies (38%), with healthy deliveries of 113 unaffected children. The spontaneous abortion rate in these cycles was as low as 17%, which confirms an almost five-fold reduction of spontaneous abortion rate following PGD for chromosomal rearrangements. 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Phenemenological vs. biophysical models of thermal stress in aquatic eggs
NASA Astrophysics Data System (ADS)
Martin, B.
2016-12-01
Predicting species responses to climate change is a central challenge in ecology, with most efforts relying on lab derived phenomenological relationships between temperature and fitness metrics. We tested one of these models using the embryonic stage of a Chinook salmon population. We parameterized the model with laboratory data, applied it to predict survival in the field, and found that it significantly underestimated field-derived estimates of thermal mortality. We used a biophysical model based on mass-transfer theory to show that the discrepancy was due to the differences in water flow velocities between the lab and the field. This mechanistic approach provides testable predictions for how the thermal tolerance of embryos depends on egg size and flow velocity of the surrounding water. We found support for these predictions across more than 180 fish species, suggesting that flow and temperature mediated oxygen limitation is a general mechanism underlying the thermal tolerance of embryos.
Derivation of a water quality guideline for aluminium in marine waters.
Golding, Lisa A; Angel, Brad M; Batley, Graeme E; Apte, Simon C; Krassoi, Rick; Doyle, Chris J
2015-01-01
Metal risk assessment of industrialized harbors and coastal marine waters requires the application of robust water quality guidelines to determine the likelihood of biological impacts. Currently there is no such guideline available for aluminium in marine waters. A water quality guideline of 24 µg total Al/L has been developed for aluminium in marine waters based on chronic 10% inhibition or effect concentrations (IC10 or EC10) and no-observed-effect concentrations (NOECs) from 11 species (2 literature values and 9 species tested including temperate and tropical species) representing 6 taxonomic groups. The 3 most sensitive species tested were a diatom Ceratoneis closterium (formerly Nitzschia closterium; IC10 = 18 µg Al/L, 72-h growth rate inhibition) < mussel Mytilus edulis plannulatus (EC10 = 250 µg Al/L, 72-h embryo development) < oyster Saccostrea echinata (EC10 = 410 µg Al/L, 48-h embryo development). Toxicity to these species was the result of the dissolved aluminium forms of aluminate (Al(OH4 (-) ) and aluminium hydroxide (Al(OH)3 (0) ) although both dissolved, and particulate aluminium contributed to toxicity in the diatom Minutocellus polymorphus and green alga Dunaliella tertiolecta. In contrast, aluminium toxicity to the green flagellate alga Tetraselmis sp. was the result of particulate aluminium only. Four species, a brown macroalga (Hormosira banksii), sea urchin embryo (Heliocidaris tuberculata), and 2 juvenile fish species (Lates calcarifer and Acanthochromis polyacanthus), were not adversely affected at the highest test concentration used. © 2014 SETAC.
COMPARATIVE SENSITIVITY OF DIFFERENT LIFE-STAGES OF MEDAKA AND SALMONID FISHES TO 2,3,7,8-TCDD
The early life stages of fish are known to be more sensitive than the adults to the toxicological effects of 2,3,7,8-tetrachlorodibenzo(p)dioxin (TCDD). Embryo larval stages of medake, for example, experience 50% lethality when TCDD residues in the eggs are 1396 pg/g. By contrast...
Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina
2018-03-01
Metal toxicity is a global environmental challenge. Fish are particularly prone to metal exposure, which can be lethal or cause sublethal physiological impairments. The objective of this study was to investigate how adverse effects of chronic exposure to non-toxic levels of essential and non-essential metals in early life stage zebrafish may be explained by changes in the transcriptome. We therefore studied the effects of three different metals at low concentrations in zebrafish embryos by transcriptomics analysis. The study design compared exposure effects caused by different metals at different developmental stages (pre-hatch and post-hatch). Wild-type embryos were exposed to solutions of low concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) until 96h post-fertilization (hpf) and microarray experiments were carried out to determine transcriptome profiles at 48 and 96hpf. We found that the toxic metal cadmium affected the expression of more genes at 96hpf than 48hpf. The opposite effect was observed for the essential metals cobalt and copper, which also showed enrichment of different GO terms. Genes involved in neuromast and motor neuron development were significantly enriched, agreeing with our previous results showing motor neuron and neuromast damage in the embryos. Our data provide evidence that the response of the transcriptome of fish embryos to metal exposure differs for essential and non-essential metals. Copyright © 2017 Elsevier Inc. All rights reserved.
Cadmium accumulation in zebrafish (Danio rerio) eggs is modulated by dissolved organic matter (DOM).
Burnison, B Kent; Meinelt, Thomas; Playle, Richard; Pietrock, Michael; Wienke, Andreas; Steinberg, Christian E W
2006-08-23
Experiments were conducted to investigate factors influencing the accumulation of cadmium (Cd(2+)) into zebrafish (Danio rerio) eggs. The accumulation of (109)Cd was affected by: (1) concentration, (2) time, (3) presence of dissolved organic material (DOM), (4) different origin of DOM and (5) different parts of fish eggs. Over a 5-h exposure, zebrafish eggs showed a steady increase in Cd-accumulation. DOM-concentrations over 15ppm carbon (C) decreased Cd-uptake significantly. Both samples of DOM, brown water marsh (LM) and a eutrophic pond (SP), at 16.9ppmC, reduced the Cd-accumulation in the chorion, perivitelline liquid and the embryo. Cd was mainly accumulated in the egg's outer shell chorion (61%) and only small amounts passed through the chorion into the perivitelline liquid (38%) and embryo (1%). In the presence of LM-DOM, the accumulation of Cd into the egg components was decreased by 43% (chorion), 52% (perivitelline liquid) and 52% (embryo), respectively, compared with the control group. Similarly, the presence of SP-DOM reduced the Cd-accumulation by 29% (chorion), 61% (perivitelline liquid) and 60% (embryo), respectively, compared with the controls. DOM-concentration should be taken into consideration when determining ecotoxicological effects of Cd on fish populations.
Miyamoto, Kei; Suzuki, Ken-Ichi T; Suzuki, Miyuki; Sakane, Yuto; Sakuma, Tetsushi; Herberg, Sarah; Simeone, Angela; Simpson, David; Jullien, Jerome; Yamamoto, Takashi; Gurdon, J B
2015-01-01
Recent advances in genome editing using programmable nucleases have revolutionized gene targeting in various organisms. Successful gene knock-out has been shown in Xenopus, a widely used model organism, although a system enabling less mosaic knock-out in founder embryos (F0) needs to be explored in order to judge phenotypes in the F0 generation. Here, we injected modified highly active transcription activator-like effector nuclease (TALEN) mRNA to oocytes at the germinal vesicle (GV) stage, followed by in vitro maturation and intracytoplasmic sperm injection, to achieve a full knock-out in F0 embryos. Unlike conventional injection methods to fertilized embryos, the injection of TALEN mRNA into GV oocytes allows expression of nucleases before fertilization, enabling them to work from an earlier stage. Using this procedure, most of developed embryos showed full knock-out phenotypes of the pigmentation gene tyrosinase and/or embryonic lethal gene pax6 in the founder generation. In addition, our method permitted a large 1 kb deletion. Thus, we describe nearly complete gene knock-out phenotypes in Xenopus laevis F0 embryos. The presented method will help to accelerate the production of knock-out frogs since we can bypass an extra generation of about 1 year in Xenopus laevis. Meantime, our method provides a unique opportunity to rapidly test the developmental effects of disrupting those genes that do not permit growth to an adult able to reproduce. In addition, the protocol shown here is considerably less invasive than the previously used host transfer since our protocol does not require surgery. The experimental scheme presented is potentially applicable to other organisms such as mammals and fish to resolve common issues of mosaicism in founders.
Sylvain, Nicole J; Brewster, Daniel L; Ali, Declan W
2010-01-01
Children exposed to alcohol in utero have significantly delayed gross and fine motor skills, as well as deficiencies in reflex development. The reasons that underlie the motor deficits caused by ethanol (EtOH) exposure remain to be fully elucidated. The present study was undertaken to investigate the effects of embryonic alcohol exposure (1.5%, 2% and 2.5% EtOH) on motor neuron and muscle fiber morphology in 3 days post fertilization (dpf) larval zebrafish. EtOH treated fish exhibited morphological deformities and fewer bouts of swimming in response to touch, compared with untreated fish. Immunolabelling with anti-acetylated tubulin indicated that fish exposed to 2.5% EtOH had significantly higher rates of motor neuron axon defects. Immunolabelling of primary and secondary motor neurons, using znp-1 and zn-8, revealed that fish exposed to 2% and 2.5% EtOH exhibited significantly higher rates of primary and secondary motor neuron axon defects compared to controls. Examination of red and white muscle fibers revealed that fish exposed to EtOH had significantly smaller fibers compared with controls. These findings indicate that motor neuron and muscle fiber morphology is affected by early alcohol exposure in zebrafish embryos, and that this may be related to deficits in locomotion. Copyright 2010 Elsevier Inc. All rights reserved.
Liu, J H; Wen, S; Luo, C; Zhang, Y Q; Tao, M; Wang, D W; Deng, S M; Xiao, Y M
2015-03-31
A colored phenotype is an important feature of ornamental fish. In mammals, microphthalmia-associated transcription factor (MITF) was found to regulate the development of melanocytes. In this study, the mitfa cDNA was first cloned from the Japanese ornamental (Koi) carp (Cyprinus carpio L.), an important ornamental freshwater fish. The full-length cDNA of the mitfa gene contains 1634 bp, coding for 412 amino acids in Koi. The identity degree of mitfa amino acid sequences between the Koi carp and zebrafish is 92.9%. We tested the expression of the mitfa gene in several varieties of Koi using reverse transcription-polymerase chain reaction and found that the mitfa gene is highly expressed in the skin tissues of the Taisho sanke and the Procypris merus. Interestingly, the mitfa gene was also expressed in the Kohaku and Yamabaki ogon, although melanocytes were not observed in the skin. Koi carp embryos were transparent and colorless, while after hatching, different types of pigment cells successively emerged in a fixed order. In Taisho sanke, melanocytes first appeared in the trunk at approximately 12 days of age. Subsequently, there was a large area of melanocytes by 30 days of age. The expression level of the mitfa mRNA was low in early embryos and newly hatched larvae, and increased to high levels in 30-day-old fry. The results show that the mitfa gene is involved in regulating fish body color in the development of both melanocytes and pigment cells.
Mochida, Kazuhiko; Amano, Haruna; Ito, Katsutoshi; Ito, Mana; Onduka, Toshimitsu; Ichihashi, Hideki; Kakuno, Akira; Harino, Hiroya; Fujii, Kazunori
2012-08-15
To carry out a primary risk assessment in the Inland Sea of Japan for 2,2'-dipyridyldisulfide [(PS)(2)], a metal pyrithione photodegradation product, we used a methodology based on the species sensitivity distribution (SSD) estimated with a Bayesian statistical model. We first conducted growth inhibition tests with three marine phytoplankton species, Tetraselmis tetrathele, Chaetoceros calcitrans, and Dunaliella tertiolecta. We also performed acute and early life stage toxicity (ELS) tests with a teleost fish, the mummichog (Fundulus heteroclitus). The algal growth inhibition tests revealed that the 72-h EC(50) ranged from 62 to 1100 μg/L. Acute toxicity tests with larval mummichogs revealed that the 96-h LC(50) was approximately 500 μg/L based on the actual toxicant concentrations. ELS testing of (PS)(2) under continuous flow-through conditions for 50 days revealed that growth was the most sensitive endpoint, and both total length and body weight were significantly lower in the groups exposed to 27 μg/L (PS)(2) compared to the solvent control group. We determined a lowest observed effect concentration of 17 μg/L and a NOEC of 5.9 μg/L based on the actual toxicant concentrations. By using the ecotoxicity data (LC(50) and EC(50)) from this study and previous work, we calculated a hazardous concentration that should protect 95% and 99% of species (HC(5) and HC(1)) based on the SSD derived with a Bayesian statistical model. The medians with 90% confidence intervals (parentheses) of the HC(5) and HC(1) were 31.0 (3.2, 101.8) μg/L and 10.1 (0.5, 44.2) μg/L, respectively. In the ELS test, about 80% of hatched larvae exposed to 243-μg/L (PS)(2) displayed a notochord undulation. To elucidate the cause of the notochord undulation, we carried out embryo toxicity tests by exposing embryos at various developmental stages to (PS)(2). Exposure to (PS)(2) through the entire gastrulae stage was important to induction of the morphological abnormality. Lysyl oxidase activity was significantly decreased in these embryos compared to the control group, a suggestion that lysyl oxidase-mediated collagen fiber organization, which is essential for notochord formation, is disrupted because of (PS)(2) toxicity. We also investigated the occurrence of (PS)(2) in water from several coastal sites of the Inland Sea and detected (PS)(2) at concentrations of <0.1-0.4 ng/L. Comparison of environmental concentrations to the HC values suggests that the current ecological risk posed by (PS)(2) in the Inland Sea is low. This is the first report of the detection of a metal pyrithione degradation product in the natural marine environment. Copyright © 2012 Elsevier B.V. All rights reserved.
Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish
Sørhus, Elin; Incardona, John P; Furmanek, Tomasz; Goetz, Giles W; Scholz, Nathaniel L; Meier, Sonnich; Edvardsen, Rolf B; Jentoft, Sissel
2017-01-01
Crude oil spills are a worldwide ocean conservation threat. Fish are particularly vulnerable to the oiling of spawning habitats, and crude oil causes severe abnormalities in embryos and larvae. However, the underlying mechanisms for these developmental defects are not well understood. Here, we explore the transcriptional basis for four discrete crude oil injury phenotypes in the early life stages of the commercially important Atlantic haddock (Melanogrammus aeglefinus). These include defects in (1) cardiac form and function, (2) craniofacial development, (3) ionoregulation and fluid balance, and (4) cholesterol synthesis and homeostasis. Our findings suggest a key role for intracellular calcium cycling and excitation-transcription coupling in the dysregulation of heart and jaw morphogenesis. Moreover, the disruption of ionoregulatory pathways sheds new light on buoyancy control in marine fish embryos. Overall, our chemical-genetic approach identifies initiating events for distinct adverse outcome pathways and novel roles for individual genes in fundamental developmental processes. DOI: http://dx.doi.org/10.7554/eLife.20707.001 PMID:28117666
Growth enhancement in transgenic tilapia by ectopic expression of tilapia growth hormone.
Martínez, R; Estrada, M P; Berlanga, J; Guillén, I; Hernández, O; Cabrera, E; Pimentel, R; Morales, R; Herrera, F; Morales, A; Piña, J C; Abad, Z; Sánchez, V; Melamed, P; Lleonart, R; de la Fuente, J
1996-03-01
The generation of transgenic fish with the transfer of growth hormone (GH) genes has opened new possibilities for the manipulation of growth in economically important fish species. The tilapia growth hormone (tiGH) cDNA was linked to the human cytomegalovirus (CMV) enhancer-promoter and used to generate transgenic tilapia by microinjection into one-cell embryos. Five transgenic tilapia were obtained from 40 injected embryos. A transgenic animal containing one copy of the transgene per cell was selected to establish a transgenic line. The transgene was stably transmitted to F1 and F2 generations in a Mendelian fashion. Ectopic, low-level expression of tiGH was detected in gonad and muscle cells of F1 transgenic tilapia by immunohystochemical analysis of tissue sections. Nine-month-old transgenic F1 progeny were 82% larger than nontransgenic fish at p = .001. These results showed that low-level ectopic expression of tiGH resulted in a growth acceleration in transgenic tilapia. Tilapia GH gene transfer is an alternative for growth acceleration in tilapia.
Epley, Kimberly E.; Urban, Jason M.; Ikenaga, Takanori; Ono, Fumihito
2008-01-01
The contraction of skeletal muscle is dependent upon synaptic transmission through acetylcholine receptors (AChRs) at the neuromuscular junction (NMJ). The lack of an AChR subunit causes a fetal akinesia in humans, leading to death in the first trimester and characteristic features of Fetal Akinesia Deformation Sequences (FADS). A corresponding null mutation of the δ-subunit in zebrafish (sofa potato; sop−/−) leads to the death of embryos around 5 days post-fertilization (dpf). In sop−/− mutants, we expressed modified δ-subunits, with one (δ1YFP) or two yellow fluorescent protein (δ2YFP) molecules fused at the intracellular loop, under the control of an α-actin promoter. AChRs containing these fusion proteins are fluorescent, assemble on the plasma membrane, make clusters under motor neuron endings, and generate synaptic current. We screened for germ-line transmission of the transgene and established a line of sop−/− fish stably expressing the δ2YFP. These δ2YFP/sop−/− embryos can mount escape behavior close to that of their wild type siblings. Synaptic currents in these embryos had a smaller amplitude, slower rise time, and slower decay when compared to wild type fish. Remarkably, these embryos grow to adulthood and display complex behaviors such as feeding and breeding. To the best of our knowledge, this is the first case of a mutant animal corresponding to first trimester lethality in human that has been rescued by a transgene and survived to adulthood. In the rescued fish, a foreign promoter drove the transgene expression and the NMJ had altered synaptic strength. The survival of the transgenic animal delineates requirements for gene therapies of NMJ. PMID:19052214
Brazzola, Gregory; Chèvre, Nathalie; Wedekind, Claus
2014-11-01
The evolutionary potential of natural populations to adapt to anthropogenic threats critically depends on whether there exists additive genetic variation for tolerance to the threat. A major problem for water-dwelling organisms is chemical pollution, and among the most common pollutants is 17α-ethinylestradiol (EE2), the synthetic estrogen that is used in oral contraceptives and that can affect fish at various developmental stages, including embryogenesis. We tested whether there is variation in the tolerance to EE2 within Alpine whitefish. We sampled spawners from two species of different lakes, bred them in vitro in a full-factorial design each, and studied growth and mortality of embryos. Exposure to EE2 turned out to be toxic in all concentrations we tested (≥1 ng/L). It reduced embryo viability and slowed down embryogenesis. We found significant additive genetic variation in EE2-induced mortality in both species, that is, genotypes differed in their tolerance to estrogen pollution. We also found maternal effects on embryo development to be influenced by EE2, that is, some maternal sib groups were more susceptible to EE2 than others. In conclusion, the toxic effects of EE2 were strong, but both species demonstrated the kind of additive genetic variation that is necessary for an evolutionary response to this type of pollution.
Sarmah, Swapnalee; Muralidharan, Pooja
2016-01-01
Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3–24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish. PMID:27556898
Sarmah, Swapnalee; Muralidharan, Pooja; Marrs, James A
2016-01-01
Fetal alcohol spectrum disorder (FASD), birth defects associated with ethanol exposure in utero, includes a wide spectrum of congenital heart defects (CHDs), the most prevalent of which are septal and conotruncal defects. Zebrafish FASD model was used to dissect the mechanisms underlying FASD-associated CHDs. Embryonic ethanol exposure (3-24 hours post fertilization) led to defects in atrio-ventricular (AV) valvulogenesis beginning around 37 hpf, a morphogenetic event that arises long after ethanol withdrawal. Valve leaflets of the control embryos comprised two layers of cells confined at the compact atrio-ventricular canal (AVC). Ethanol treated embryos had extended AVC and valve forming cells were found either as rows of cells spanning the AVC or as unorganized clusters near the AV boundary. Ethanol exposure reduced valve precursors at the AVC, but some ventricular cells in ethanol treated embryos exhibited few characteristics of valve precursors. Late staged larvae and juvenile fish exposed to ethanol during embryonic development had faulty AV valves. Examination of AVC morphogenesis regulatory networks revealed that early ethanol exposure disrupted the Bmp signaling gradient in the heart during valve formation. Bmp signaling was prominent at the AVC in controls, but ethanol-exposed embryos displayed active Bmp signaling throughout the ventricle. Ethanol exposure also led to mislocalization of Notch signaling cells in endocardium during AV valve formation. Normally, highly active Notch signaling cells were organized at the AVC. In ethanol-exposed embryos, highly active Notch signaling cells were dispersed throughout the ventricle. At later stages, ethanol-exposed embryos exhibited reduced Wnt/β-catenin activity at the AVC. We conclude that early embryonic ethanol exposure alters Bmp, Notch and other signaling activities during AVC differentiation leading to faulty valve morphogenesis and valve defects persist in juvenile fish.
Panhuis, Tami M; Fris, Megan; Tuhela, Laura; Kwan, Lucia
2017-12-01
In viviparous, teleost fish, with postfertilization maternal nutrient provisioning, embryonic structures that facilitate maternal-fetal nutrient transfer are predicted to be present. For the family Poeciliidae, only a handful of morphological studies have explored these embryonic specializations. Here, we present a comparative morphological study in the viviparous poeciliid genus, Poeciliopsis. Using microscopy techniques, we examine the embryonic surface epidermis of Poeciliopsis species that vary in their level of postfertilization maternal nutrient provisioning and placentation across two phylogenetic clades and three independent evolutionary origins of placentation. We focus on surface features of the embryo that may facilitate maternal-fetal nutrient transfer. Specifically, we studied cell apical-surface morphology associated with the superficial epithelium that covers the body and sac (yolk and pericardial) of embryos at different developmental stages. Scanning electron microscopy revealed common surface epithelial cells across species, including pavement cells with apical-surface microridges or microvilli and presumed ionocytes and/or mucus-secreting cells. For three species, in the mid-stage embryos, the surface of the body and sac were covered in microvillus epithelium. The remaining species did not display microvillus epithelium at any of the stages examined. Instead, their epithelium of the body and sac were composed of cells with apical-surface microridges. For all species, in the late stage embryos, the surface of the body proper was composed of apical-surface microridges in a "fingerprint-like arrangement." Despite the differences in the surface epithelium of embryos across Poeciliopsis species and embryonic developmental stages, this variation was not associated with the level of postfertilization maternal nutrient provisioning. We discuss these results in light of previous morphological studies of matrotrophic, teleost fish, phylogenetic relationships of Poeciliopsis species, and our earlier comparative microscopy work on the maternal tissue of the Poeciliopsis placenta. © 2017 Wiley Periodicals, Inc.
The toxicological application of transcriptomics and epigenomics in zebrafish and other teleosts.
Williams, Tim D; Mirbahai, Leda; Chipman, J Kevin
2014-03-01
Zebrafish (Danio rerio) is one of a number of teleost fish species frequently employed in toxicology. Toxico-genomics determines global transcriptomic responses to chemical exposures and can predict their effects. It has been applied successfully within aquatic toxicology to assist in chemical testing, determination of mechanisms and environmental monitoring. Moreover, the related field of toxico-epigenomics, that determines chemical-induced changes in DNA methylation, histone modifications and micro-RNA expression, is emerging as a valuable contribution to understanding mechanisms of both adaptive and adverse responses. Zebrafish has proven a useful and convenient model species for both transcriptomic and epigenetic toxicological studies. Despite zebrafish's dominance in other areas of fish biology, alternative fish species are used extensively in toxico-genomics. The main reason for this is that environmental monitoring generally focuses on species native to the region of interest. We are starting to see advances in the integration of high-throughput screening, omics techniques and bioinformatics together with more traditional indicator endpoints that are relevant to regulators. Integration of such approaches with high-throughput testing of zebrafish embryos, leading to the discovery of adverse outcome pathways, promises to make a major contribution to ensuring the safety of chemicals in the environment.
Mixtures of Chemical Pollutants at European Legislation Safety Concentrations: How Safe Are They?
Carvalho, Raquel N.; Arukwe, Augustine; Ait-Aissa, Selim; Bado-Nilles, Anne; Balzamo, Stefania; Baun, Anders; Belkin, Shimshon; Blaha, Ludek; Brion, François; Conti, Daniela; Creusot, Nicolas; Essig, Yona; Ferrero, Valentina E. V.; Flander-Putrle, Vesna; Fürhacker, Maria; Grillari-Voglauer, Regina; Hogstrand, Christer; Jonáš, Adam; Kharlyngdoh, Joubert B.; Loos, Robert; Lundebye, Anne-Katrine; Modig, Carina; Olsson, Per-Erik; Pillai, Smitha; Polak, Natasa; Potalivo, Monica; Sanchez, Wilfried; Schifferli, Andrea; Schirmer, Kristin; Sforzini, Susanna; Stürzenbaum, Stephen R.; Søfteland, Liv; Turk, Valentina; Viarengo, Aldo; Werner, Inge; Yagur-Kroll, Sharon; Zounková, Radka; Lettieri, Teresa
2014-01-01
The risk posed by complex chemical mixtures in the environment to wildlife and humans is increasingly debated, but has been rarely tested under environmentally relevant scenarios. To address this issue, two mixtures of 14 or 19 substances of concern (pesticides, pharmaceuticals, heavy metals, polyaromatic hydrocarbons, a surfactant, and a plasticizer), each present at its safety limit concentration imposed by the European legislation, were prepared and tested for their toxic effects. The effects of the mixtures were assessed in 35 bioassays, based on 11 organisms representing different trophic levels. A consortium of 16 laboratories was involved in performing the bioassays. The mixtures elicited quantifiable toxic effects on some of the test systems employed, including i) changes in marine microbial composition, ii) microalgae toxicity, iii) immobilization in the crustacean Daphnia magna, iv) fish embryo toxicity, v) impaired frog embryo development, and vi) increased expression on oxidative stress-linked reporter genes. Estrogenic activity close to regulatory safety limit concentrations was uncovered by receptor-binding assays. The results highlight the need of precautionary actions on the assessment of chemical mixtures even in cases where individual toxicants are present at seemingly harmless concentrations. PMID:24958932
Oliveira, Rhaul; McDonough, Sakchai; Ladewig, Jessica C L; Soares, Amadeu M V M; Nogueira, António J A; Domingues, Inês
2013-11-01
Antibiotics have been widely used in human and veterinary medicine to treat or prevent diseases. Residues of antibiotics have been found in aquatic environments, but their effects on fish have been not properly investigated. This work aimed to assess the sub-lethal effects of oxytetracycline and amoxicillin on zebrafish development and biomarkers. Embryos and adults were exposed during 96 h to amoxicillin and oxytetracycline following OECD guidelines. Tissues of adults and pools of embryos were used for catalase, glutathione-S-transferases and lactate dehydrogenase determinations. Amoxicillin caused premature hatching (48 h-EC50=132.4 mg/l) whereas oxytetracycline cause delayed hatching of embryos (72 h-EC50=127.6 mg/l). Moreover, both antibiotics inhibited catalase and induced glutathione-S-transferases in zebrafish adults. However, only oxytetracycline induced lactate dehydrogenase. Short-term effects of antibiotics were observed at high doses (mg/l) indicating that physiological impairment in fish populations is unlike to occur. However, effects of chronic exposures to low doses of ABs must be investigated. Copyright © 2013 Elsevier B.V. All rights reserved.
Fish full life-cycle testing for androgen methyltestosterone on medaka (Oryzias latipes).
Seki, Masanori; Yokota, Hirofumi; Matsubara, Haruki; Maeda, Masanobu; Tadokoro, Hiroshi; Kobayashi, Kunio
2004-03-01
Abstract-We studied the chronic effects of methyltestosterone (MT) on reproductive status of medaka (Oryzias latipes) over two generations under continuous exposure to verify the applicability of the fish full life-cycle test (FFLC) for this androgen with this species. The exposure of parental (F0) medaka to MT was begun on embryos within 12 h postfertilization and continued for up to 101 d; assessment endpoints included embryological development, hatching, posthatch survival, growth, sexual differentiation, reproduction, and hepatic vitellogenin (VTG) levels under flow-through exposure to MT at each mean measured concentration of 0.35, 1.09, 3.29, 9.98, and 27.75 ng/L. Eggs (F1) spawned from the F0 fish at 98, 99, and 100 d posthatch were examined for hatchability, survival after hatching, growth, sexual differentiation, and hepatic VTG level until 60 d posthatch. In the FFLC with medaka, MT induced masculinization of both secondary sex characteristics and gonads. We observed that all F0 fish in the 27.75-ng/L treatment group showed male secondary sex characteristics in which no fish with ovary could be discerned. Several fish with ovaries in F0 and F1 generations treated with 9.98 ng/L showed male secondary sex characteristics. We also observed swollen abdomens in the F0 and F1 female fish in the 9.98-ng/L treatment group. These swollen abdomens were induced by enlarged ovaries and were accompanied with declined fecundity and fertility in the F0 generation. These results indicate that MT reduces the reproductive potential of medaka and that the FFLC with this species is applicable to the evaluation of androgens.
[Adaptive specific features of energy metabolism in fish ontogenesis].
Ozerniuk, N D
2011-01-01
A review of data on the pattern of change of the intensity of oxygen consumption during early ontogenesis of different fish species (rainbow trout, loach, zebrafish, carp, and grass carp) is provided. It has a similar pattern: this index increases in the period of embryonic and larval development and, after passing of larvae to an active feeding, it begins to gradually decline. This dynamics is determined by specific features of an increase in the rate of oxygen uptake and body weight in the course of early stages of fish ontogenesis. For determining optimal temperature conditions of development, a method of total (for a definite stage of development) oxygen uptake was suggested, which makes it possible to determine minimal energy expenditures necessary for the process of a particular stage of embryogenesis to take place. Analysis of temperature dependence of kinetic properties of enzymes with reference to the Michaelis constant (Km) for lactate dehydrogenase demonstrated that minimal Km, corresponding to maximal enzyme-substrate affinity, for embryos of different fish species differs in correspondence with differences in temperature conditions of development of these species in nature. For embryos of one species developing at changing temperature conditions (salmonids), this index changes in accordance with a temperature drift in nature.
Efficient and Rapid Isolation of Early-stage Embryos from Arabidopsis thaliana Seeds
Raissig, Michael T.; Gagliardini, Valeria; Jaenisch, Johan; Grossniklaus, Ueli; Baroux, Célia
2013-01-01
In flowering plants, the embryo develops within a nourishing tissue - the endosperm - surrounded by the maternal seed integuments (or seed coat). As a consequence, the isolation of plant embryos at early stages (1 cell to globular stage) is technically challenging due to their relative inaccessibility. Efficient manual dissection at early stages is strongly impaired by the small size of young Arabidopsis seeds and the adhesiveness of the embryo to the surrounding tissues. Here, we describe a method that allows the efficient isolation of young Arabidopsis embryos, yielding up to 40 embryos in 1 hr to 4 hr, depending on the downstream application. Embryos are released into isolation buffer by slightly crushing 250-750 seeds with a plastic pestle in an Eppendorf tube. A glass microcapillary attached to either a standard laboratory pipette (via a rubber tube) or a hydraulically controlled microinjector is used to collect embryos from droplets placed on a multi-well slide on an inverted light microscope. The technical skills required are simple and easily transferable, and the basic setup does not require costly equipment. Collected embryos are suitable for a variety of downstream applications such as RT-PCR, RNA sequencing, DNA methylation analyses, fluorescence in situ hybridization (FISH), immunostaining, and reporter gene assays. PMID:23770918
Touchon, Justin C.; Worley, Julie L.
2015-01-01
Laying eggs out of water was crucial to the transition to land and has evolved repeatedly in multiple animal phyla. However, testing hypotheses about this transition has been difficult because extant species only breed in one environment. The pantless treefrog, Dendropsophus ebraccatus, makes such tests possible because they lay both aquatic and arboreal eggs. Here, we test the oviposition site choices of D. ebraccatus under conflicting risks of arboreal egg desiccation and aquatic egg predation, thereby estimating the relative importance of each selective agent on reproduction. We also measured discrimination between habitats with and without predators and development of naturally laid aquatic and arboreal eggs. Aquatic embryos in nature developed faster than arboreal embryos, implying no cost to aquatic egg laying. In choice tests, D. ebraccatus avoided habitats with fish, showing that they can detect aquatic egg predators. Most importantly, D. ebraccatus laid most eggs in the water when faced with only desiccation risk, but switched to laying eggs arboreally when desiccation risk and aquatic predators were both present. This provides the first experimental evidence to our knowledge that aquatic predation risk influences non-aquatic oviposition and strongly supports the hypothesis that it was a driver of the evolution of terrestrial reproduction. PMID:25948689
Alves, Romulo Nepomuceno; Mariz, Célio Freire; Paulo, Driele Ventura de; Carvalho, Paulo S M
2017-07-01
Used petroleum hydrocarbons and gasoline stations runoff are significant sources of polycyclic aromatic hydrocarbons (PAHs) to aquatic ecosystems. Samples of the final effluent of oil-water-separators were collected at gasoline stations in the metropolitan region of Recife, Brazil, before release to sewage or rainwater systems. Effluent soluble fractions (ESF) were prepared and bioassays were performed according to the Fish Embryo Toxicity Test. The test involved exposing zebrafish Danio rerio embryos to dilutions of the ESFs for 96 h, with daily examination of lethality and sublethal morphological effects integrated through the General Morphology Score (GMS), based on the achievement of developmental hallmarks. Frequencies of abnormalities were recorded after exposures. ESF LC50-96h (lethal concentration to 50% of exposed embryos) in the most toxic effluent achieved 8.9% (v/v), equivalent to 11 μg phenanthrene equivalents L -1 . GMS scores indicated significantly delayed embryo-larval development at ESF dilutions of 10% and 20% from effluents of all gas stations. Major abnormalities detected after the 96 h exposure included the presence of a yolk sac not fully absorbed coupled with the lack of an inflated swim bladder, lack of both pectoral fins, and the failure to develop a protruding mouth. Effective equivalent PAH concentrations that induce a 50% frequency of larvae without an inflated swim bladder (EC50) were 4.9 μg phenanthrene L -1 , 21.8 μg naphthalene L -1 , and 34.1 μg chrysene L -1 . This study shows that PAHs in ESFs from gas stations oil water separators are toxic to zebrafish, contributing to the toxicity of urban storm waters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Developmental lead exposure causes startle response deficits in zebrafish.
Rice, Clinton; Ghorai, Jugal K; Zalewski, Kathryn; Weber, Daniel N
2011-10-01
Lead (Pb(2+)) exposure continues to be an important concern for fish populations. Research is required to assess the long-term behavioral effects of low-level concentrations of Pb(2+) and the physiological mechanisms that control those behaviors. Newly fertilized zebrafish embryos (<2h post fertilization; hpf) were exposed to one of three concentrations of lead (as PbCl(2)): 0, 10, or 30 nM until 24 hpf. (1) Response to a mechanosensory stimulus: Individual larvae (168 hpf) were tested for response to a directional, mechanical stimulus. The tap frequency was adjusted to either 1 or 4 taps/s. Startle response was recorded at 1000 fps. Larvae responded in a concentration-dependent pattern for latency to reaction, maximum turn velocity, time to reach V(max) and escape time. With increasing exposure concentrations, a larger number of larvae failed to respond to even the initial tap and, for those that did respond, ceased responding earlier than control larvae. These differences were more pronounced at a frequency of 4 taps/s. (2) Response to a visual stimulus: Fish, exposed as embryos (2-24 hpf) to Pb(2+) (0-10 μM) were tested as adults under low light conditions (≈ 60 μW/m(2)) for visual responses to a rotating black bar. Visual responses were significantly degraded at Pb(2+) concentrations of 30 nM. These data suggest that zebrafish are viable models for short- and long-term sensorimotor deficits induced by acute, low-level developmental Pb(2+) exposures. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shaifer, J.
2016-02-01
The mummichog (Fundulus hetereoclitus) is an intertidal spawning fish that ranges from the Gulf of St. Lawrence to northeastern Florida. A notoriously hardy species, adults can tolerate a wide range of temperature typical of inshore, estuarine waters. This experiment assessed how a wide range of constant and fluctuating temperatures affect the survival, development, and condition of embryos and young larvae. Captive adults were provided nightly with spawning substrates that were inspected each morning for fertilized eggs. Young ( 8 hr post-fertilization) embryos (N = 25 per population) were assigned to either one of a wide range of constant temperatures (8 to 34 °C) generated by a thermal gradient block (TGB), or to one of 10 daily oscillating temperature regimes that spanned the TGB's mid temperature (21 °C). Water was changed and populations inspected for mortalities and hatching at 12-hr intervals. Hatch dates and mortalities were recorded, and larvae were either anesthetized and measured for size by analyzing digital images, or evaluated for persistence in a food-free environment. Mummichog embryos withstood all but the coldest constant regimes and the entire range of fluctuating ones although age at hatching varied substantially within and among experimental populations. Embryos incubated at warmer temperatures hatched out earlier and at somewhat smaller sizes than those experiencing cooler temperatures. Temperatures experienced by embryos had an inverse effect on persistence of larvae relying on yolk nutrition alone. Mummichog exhibited an especially plastic response to thermal challenges which reflects the highly variable nursery habitat used by this species.
Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success.
Pérez-Cerezales, S; Martínez-Páramo, S; Beirão, J; Herráez, M P
2010-06-01
Mammalian spermatozoa undergo a strong selection process along the female tract to guarantee fertilization by good quality cells, but risks of fertilization with DNA-damaged spermatozoa have been reported. In contrast, most external fertilizers such as fish seem to have weaker selection procedures. This fact, together with their high prolificacy and external embryo development, indicates that fish could be useful for the study of the effects of sperm DNA damage on embryo development. We cryopreserved sperm from rainbow trout using egg yolk and low-density lipoprotein as additives to promote different rates of DNA damage. DNA fragmentation and oxidization were analyzed using comet assay with and without digestion with restriction enzymes, and fertilization trials were performed. Some embryo batches were treated with 3-aminobenzamide (3AB) to inhibit DNA repair by the poly (ADP-ribose) polymerase, which is an enzyme of the base excision repair pathway. Results showed that all the spermatozoa cryopreserved with egg yolk carried more than 10% fragmented DNA, maintaining fertilization rates of 61.1+/-2.3 but a high rate of abortions, especially during gastrulation, and only 14.5+/-4.4 hatching success. Furthermore, after 3AB treatment, hatching dropped to 3.2+/-2.2, showing that at least 10% DNA fragmentation was repaired. We conclude that trout sperm maintains its ability to fertilize in spite of having DNA damage, but that embryo survival is affected. Damage is partially repaired by the oocyte during the first cleavage. Important advantages of using rainbow trout for the study of processes related to DNA damage and repair during development have been reported.
Goel, Shailendra; Chen, Zhenbang; Conner, Joann A; Akiyama, Yukio; Hanna, Wayne W; Ozias-Akins, Peggy
2003-01-01
Apomixis is a means of asexual reproduction by which plants produce embryos without meiosis and fertilization; thus the embryo is of clonal, maternal origin. We previously reported molecular markers showing no recombination with the trait for aposporous embryo sac development in Pennisetum squamulatum and Cenchrus ciliaris, and the collective single-dose alleles defined an apospory-specific genomic region (ASGR). Fluorescence in situ hybridization (FISH) was used to confirm that the ASGR is a hemizygous genomic region and to determine its chromosomal position with respect to rDNA loci and centromere repeats. We also documented chromosome transmission from P. squamulatum in several backcrosses (BCs) with P. glaucum using genomic in situ hybridization (GISH). One to three complete P. squamulatum chromosomes were detected in BC(6), but only one of the three hybridized with the ASGR-linked markers. In P. squamulatum and in all BCs examined, the apospory-linked markers were located in the distal region of the short arm of a single chromosome. All alien chromosomes behaved as univalents during meiosis and segregated randomly in BC(3) and later BC generations, but presence of the ASGR-carrier chromosome alone was sufficient to confer apospory. FISH results support our hypotheses that hemizygosity, proximity to centromeric sequences, and chromosome structure may all play a role in low recombination in the ASGR. PMID:12663545
Marine ornamental species culture: From the past to "Finding Dory".
Olivotto, Ike; Chemello, Giulia; Vargas, Arturo; Randazzo, Basilio; Piccinetti, Chiara Carla; Carnevali, Oliana
2017-05-01
The present article revises the major topics related to fish and coral reproduction. In particular after a short review of the ornamental trade and the destructive fishing methods that are still used in some areas, the present review revises the principal modes of fish and coral reproduction introducing the main critical bottlenecks in their captive propagation. Regarding fish these include sexing the fish, pair forming, the embryo development, the hatching process and of course the transition from an endogenous to an exogenous feeding by the larvae. As concerns corals, great attention is given to the main modes of reproduction as well as to nutrition and lightening. Copyright © 2016 Elsevier Inc. All rights reserved.
Early-life glucocorticoids programme behaviour and metabolism in adulthood in zebrafish
Wilson, K S; Tucker, C S; Al-Dujaili, E A S; Holmes, M C; Hadoke, P W F; Kenyon, C J
2016-01-01
Glucocorticoids (GCs) in utero influence embryonic development with consequent programmed effects on adult physiology and pathophysiology and altered susceptibility to cardiovascular disease. However, in viviparous species, studies of these processes are compromised by secondary maternal influences. The zebrafish, being fertilised externally, avoids this problem and has been used here to investigate the effects of transient alterations in GC activity during early development. Embryonic fish were treated either with dexamethasone (a synthetic GC), an antisense GC receptor (GR) morpholino (GR Mo), or hypoxia for the first 120h post fertilisation (hpf); responses were measured during embryonic treatment or later, post treatment, in adults. All treatments reduced cortisol levels in embryonic fish to similar levels. However, morpholino- and hypoxia-treated embryos showed delayed physical development (slower hatching and straightening of head–trunk angle, shorter body length), less locomotor activity, reduced tactile responses and anxiogenic activity. In contrast, dexamethasone-treated embryos showed advanced development and thigmotaxis but no change in locomotor activity or tactile responses. Gene expression changes were consistent with increased (dexamethasone) and decreased (hypoxia, GR Mo) GC activity. In adults, stressed cortisol values were increased with dexamethasone and decreased by GR Mo and hypoxia pre-treatments. Other responses were similarly differentially affected. In three separate tests of behaviour, dexamethasone-programmed fish appeared ‘bolder’ than matched controls, whereas Mo and hypoxia pre-treated fish were unaffected or more reserved. Similarly, the dexamethasone group but not the Mo or hypoxia groups were heavier, longer and had a greater girth than controls. Hyperglycaemia and expression of GC responsive gene (pepck) were also increased in the dexamethasone group. We conclude that GC activity controls many aspects of early-life growth and development in the zebrafish and that, like other species, manipulating GC status pharmacologically, physiologically or genetically in early life leads to programmable metabolic and behavioural traits in adulthood. PMID:27390302
Transcription-dependent induction of G1 phase during the zebra fish midblastula transition.
Zamir, E; Kam, Z; Yarden, A
1997-02-01
The early development of the zebra fish (Danio rerio) embryo is characterized by a series of rapid and synchronous cell cycles with no detectable transcription. This period is followed by the midblastula transition (MBT), during which the cell cycle gradually lengthens, cell synchrony is lost, and zygotic transcription is initially detected. In this work, we examined the changes in the pattern of the cell cycle during MBT in zebra fish and whether these changes are dependent on the initiation of zygotic transcription. To characterize the pattern of the early zebra fish cell cycles, the embryonic DNA content was determined by flow cytometric analysis. We found that G1 phase is below detection levels during the first 10 cleavages and can be initially detected at the onset of MBT. Inhibition of zygotic transcription, by microinjection of actinomycin D, abolished the appearance of G1 phase at MBT. Premature activation of zygotic transcription, by microinjection of nonspecific DNA, induced G1 phase before the onset of MBT, while coinjection of actinomycin D and nonspecific DNA abolished this early appearance of G1 phase. We therefore suggest that during the early development of the zebra fish embryo, G1 phase appears at the onset of MBT and that the activation of transcription at MBT is essential and sufficient for the G1-phase induction.
Sayed, Alaa El-Din H; Soliman, Hamdy A M
2017-10-01
Although, silver nanoparticles (AgNPs) are used in many different products, little information is known about their toxicity in tropical fish embryos. Therefore, this study evaluated the developmental toxicity of waterborne silver nanoparticles in embryos of Clarias gariepinus. Embryos were treated with (0, 25, 50, 75ng/L silver nanoparticles) in water up to 144h postfertilization stage (PFS). Results revealed various morphological malformations including notochord curvature and edema. The mortality rate, malformations, and DNA fragmentation in embryos exposed to silver nanoparticles increased in a dose- and embryonic stage-dependent manner. The total antioxidant capacity and the activity of catalase in embryos exposed to 25ng/L silver nanoparticles were decreased significantly while the total antioxidant capacity and the activity of catalase were insignificantly increased with increasing concentrations in the embryos from 24 to 144 h-PFS exposed to 50 and 75ng/L silver nanoparticles. Lipid peroxidation values showed fluctuations with doses of silver nanoparticles. Histopathological lesions including severely distorted and wrinkled notochord were observed. The current data propose that the toxicity of silver nanoparticles in C. gariepinus embryos is caused by oxidative stress and genotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Swarnalatha, Y; Jerrine Joseph, I S; Jayakrishna, Tippabathani
2017-05-01
To evaluate the protective nature of the rosmarinic acid from Sphaeranthus amaranthoides during zebra fish embryogenesis. Rosmarinic acid was isolated from the S. amaranthoides. An accurate, sensitive and simple LC-MS analysis was performed to determine the rosmarinic acid from S. amaranthoides. In the present study, zebrafish embryos were exposed to crimson red and sunset yellow at a concentration of 0.1 and 0.5mg/l and the effect of these food colours on the levels of aurora kinase A was studied individually. Aurora kinase A levels are crucial for embryogenesis in zebrafish which is used as model in this study. The decrease of aurora kinase A levels in food colour treated embryos influences the embryogenesis, resulting in short and bent trunk leading to cell death and growth retardation. Elevated levels of aurora kinase A in rosmarinic acid treated groups can be attributed to the restoration of normal growth in zebra fish embryos with well developed brain and eyes. Further insilico docking studies were carried out and target was identified as rosmarinic acid. From the docking studies the docking poses and binding energy confirms that aurora kinase A is the target for rosmarinic acid. Rosmarinic acid was found to play a protective role in the embryogenesis of zebra fish exposed to food colours (crimson red and sunset yellow) through its influence on aurora kinase A levels. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Keiter, Steffen; Rastall, Andrew; Kosmehl, Thomas; Wurm, Karl; Erdinger, Lothar; Braunbeck, Thomas; Hollert, Henner
2006-09-01
Fish populations, especially those of the grayling (Thymallus thymallus), have declined over the last two decades in the upper Danube River between Sigmaringen and Ulm, despite intensive and continuous stocking and improvement of water quality since the 1970s. Similar problems have been reported for other rivers, e.g. in Switzerland, Great Britain, the United States and Canada. In order to assess if ecotoxicological effects might be related to the decline in fish catch at the upper Danube River, sediment, suspended matter and waste water samples from sewage treatment plants were collected at selected locations and analyzed in a bioanalytical approach using a battery of bioassays. The results of this pilot study will be used to decide if a comprehensive weight-of-evidence study is needed. Freeze-dried sediments and suspended particulate matters were extracted with acetone in a Soxhlet apparatus. Organic pollutants from sewage water were concentrated using XAD-resins. In order to investigate the ecotoxicological burden, the following bioassays were used: (1) neutral red assay with RTL-W1 cells (cytotoxicity), (2) comet assay with RTL-W1 cells (genotoxicity), (3) Arthrobacter globiformis dehydrogenase assay (toxicity to bacteria), (4) yeast estrogen screen assay (endocrine disruption), (5) fish egg assay with the zebrafish (Danio rerio; embryo toxicity) and (6) Ames test with TA98 (mutagenicity). The results of the in vitro tests elucidated a considerable genotoxic, cytotoxic, mutagenic, bacteriotoxic, embryotoxic and estrogenic burden in the upper Danube River, although with a very inhomogeneous distribution of effects. The samples taken from Riedlingen, for example, induced low embryo toxicity, but the second highest 17beta-estradiol equivalent concentration (1.8 ng/L). Using the fish egg assay with native sediments, a broad range of embryotoxic effects could be elucidated, with clear-cut dose-response relationships for the embryotoxic effects of contaminated sediments. With native sediments, embryotoxicity was clearly higher than with corresponding pore waters, thus corroborating the view that--at least for fish eggs--the bioavailability of particle-bound lipophilic substances in native sediments is higher than generally assumed. The effect observed most frequently in the fish egg assay was a developmental delay. A comparison of our own results with locations along the rivers Rhine and Neckar demonstrated similar or even higher ranges of ecotoxicological burdens in the Danube River. The complex pattern of ecotoxicological effects caused by environmental samples from the Danube River, when assessed in an in vitro biotest battery using both acute and more specific endpoints, showed that integration of different endpoints is essential for appropriate hazard assessment. Overall, the ecotoxicological hazard potential shown has indeed to be considered as one potential reason for the decline in fish catches at the upper Danube River. However, based on the results of this pilot study, it is not possible to elucidate that chemically induced alterations are responsible for the fish decline. In order to confirm the ecological relevance of the in vitro results for the situation in the field and especially for the decline of the grayling and other fishes, further integrated investigations are required. For linking the weight of evidence obtained by in vitro assays and fish population investigations, the application of additional, more specific biomarkers (e.g. vitellogenin induction, EROD and micronucleus assay) has been initiated in fish taken from the field as well as in situ investigations.
Shamash, Jana; Rienstein, Shlomit; Wolf-Reznik, Haike; Pras, Elon; Dekel, Michal; Litmanovitch, Talia; Brengauz, Masha; Goldman, Boleslav; Yonath, Hagith; Dor, Jehoshua; Levron, Jacob; Aviram-Goldring, Ayala
2011-01-01
Preimplantation genetic diagnosis using fluorescence in-situ hybridization (PGD-FISH) is currently the most common reproductive solution for translocation carriers. However, this technique usually does not differentiate between embryos carrying the balanced form of the translocation and those carrying the homologous normal chromosomes. We developed a new application of preimplantation genetic haplotyping (PGH) that can identify and distinguish between all forms of the translocation status in cleavage stage embryos prior to implantation. Polymorphic markers were used to identify and differentiate between the alleles that carry the translocation and those that are the normal homologous chromosomes. Embryos from two families of robertsonian translocation carriers were successfully analyzed using polymorphic markers haplotyping. Our preliminary results indicate that the PGH is capable of distinguishing between normal, balanced and unbalanced translocation carrier embryos. This method will improve PGD and will enable translocation carriers to avoid transmission of the translocation and the associated medical complications to offspring.
Zebrafish Craniofacial Development: A Window into Early Patterning
Mork, Lindsey; Crump, Gage
2016-01-01
The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research. PMID:26589928
Comparison of Antemortem and Environmental Samples for Zebrafish Health Monitoring and Quarantine.
Crim, Marcus J; Lawrence, Christian; Livingston, Robert S; Rakitin, Andrei; Hurley, Shane J; Riley, Lela K
2017-07-01
Molecular diagnostic assays offer both exquisite sensitivity and the ability to test a wide variety of sample types. Various types of environmental sample, such as detritus and concentrated water, might provide a useful adjunct to sentinels in routine zebrafish health monitoring. Similarly, antemortem sampling would be advantageous for expediting zebrafish quarantine, without euthanasia of valuable fish. We evaluated the detection of Mycobacterium chelonae, M. fortuitum, M. peregrinum, Pseudocapillaria tomentosa, and Pseudoloma neurophilia in zebrafish, detritus, pooled feces, and filter membranes after filtration of 1000-, 500-, and 150-mL water samples by real-time PCR analysis. Sensitivity varied according to sample type and pathogen, and environmental sampling was significantly more sensitive than zebrafish sampling for detecting Mycobacterium spp. but not for Pseudocapillaria neurophilia or Pseudoloma tomentosa. The results of these experiments provide strong evidence of the utility of multiple sample types for detecting pathogens according to each pathogen's life cycle and ecological niche within zebrafish systems. In a separate experiment, zebrafish subclinically infected with M. chelonae, M. marinum, Pleistophora hyphessobryconis, Pseudocapillaria tomentosa, or Pseudoloma neurophilia were pair-spawned and individually tested with subsets of embryos from each clutch that received no rinse, a fluidizing rinse, or were surface-disinfected with sodium hypochlorite. Frequently, one or both parents were subclinically infected with pathogen(s) that were not detected in any embryo subset. Therefore, negative results from embryo samples may not reflect the health status of the parent zebrafish.
Comparison of Antemortem and Environmental Samples for Zebrafish Health Monitoring and Quarantine
Crim, Marcus J; Lawrence, Christian; Livingston, Robert S; Rakitin, Andrei; Hurley, Shane J; Riley, Lela K
2017-01-01
Molecular diagnostic assays offer both exquisite sensitivity and the ability to test a wide variety of sample types. Various types of environmental sample, such as detritus and concentrated water, might provide a useful adjunct to sentinels in routine zebrafish health monitoring. Similarly, antemortem sampling would be advantageous for expediting zebrafish quarantine, without euthanasia of valuable fish. We evaluated the detection of Mycobacterium chelonae, M. fortuitum, M. peregrinum, Pseudocapillaria tomentosa, and Pseudoloma neurophilia in zebrafish, detritus, pooled feces, and filter membranes after filtration of 1000-, 500-, and 150-mL water samples by real-time PCR analysis. Sensitivity varied according to sample type and pathogen, and environmental sampling was significantly more sensitive than zebrafish sampling for detecting Mycobacterium spp. but not for Pseudocapillaria neurophilia or Pseudoloma tomentosa. The results of these experiments provide strong evidence of the utility of multiple sample types for detecting pathogens according to each pathogen's life cycle and ecological niche within zebrafish systems. In a separate experiment, zebrafish subclinically infected with M. chelonae, M. marinum, Pleistophora hyphessobryconis, Pseudocapillaria tomentosa, or Pseudoloma neurophilia were pair-spawned and individually tested with subsets of embryos from each clutch that received no rinse, a fluidizing rinse, or were surface-disinfected with sodium hypochlorite. Frequently, one or both parents were subclinically infected with pathogen(s) that were not detected in any embryo subset. Therefore, negative results from embryo samples may not reflect the health status of the parent zebrafish. PMID:28724491
Volkova, Kristina; Reyhanian Caspillo, Nasim; Porseryd, Tove; Hallgren, Stefan; Dinnétz, Patrik; Porsch-Hällström, Inger
2015-07-01
Exposure to estrogenic endocrine disruptors (EDCs) during development affects fertility, reproductive and non-reproductive behavior in mammals and fish. These effects can also be transferred to coming generations. In fish, the effects of developmental EDC exposure on non-reproductive behavior are less well studied. Here, we analyze the effects of 17α-ethinylestradiol (EE2) on anxiety, shoaling behavior and fertility in zebrafish after developmental treatment and remediation in clean water until adulthood. Zebrafish embryos were exposed from day 1 to day 80 post fertilization to actual concentrations of 1.2 and 1.6ng/L EE2. After remediation for 82days non-reproductive behavior and fertilization success were analyzed in both sexes. Males and females from the 1.2ng/L group, as well as control males and females, were bred, and behavior of the untreated F1 offspring was tested as adults. Developmental treatment with 1.2 and 1.6ng/L EE2 significantly increased anxiety in the novel tank test and increased shoaling intensity in both sexes. Fertilization success was significantly reduced by EE2 in both sexes when mated with untreated fish of opposite sex. Progeny of fish treated with 1.2ng/L EE2 showed increased anxiety in the novel tank test and increased light avoidance in the scototaxis test compared to control offspring. In conclusion, developmental exposure of zebrafish to low doses of EE2 resulted in persistent changes in behavior and fertility. The behavior of unexposed progeny was affected by their parents' exposure, which might suggest transgenerational effects. Copyright © 2015. Published by Elsevier Inc.
Zebrafish embryo developmental toxicology assay.
Panzica-Kelly, Julieta M; Zhang, Cindy X; Augustine-Rauch, Karen
2012-01-01
A promising in vitro zebrafish developmental toxicology assay was generated to test compounds for their teratogenic potential. The assay's predictivity is approximately 87% in AB strain fish (Brannen KC et al., Birth Defects Res B Dev Reprod Toxicol 89:66-77, 2010). The procedure entails exposing dechorionated gastrulation-stage embryos to a range of compound concentrations for 5 days throughout embryonic and larva development. The larvae are evaluated for viability in order to identify an LC25 (the compound concentration in which 25% lethality is observed) and morphological anomalies using a numerical score system to identify the NOAEL (no observed adverse effect level). These values are used to calculate the teratogenic index (LC25/NOAEL ratio) of each compound. If the teratogenic index is equal to or greater than 10 then the compound is classified as a teratogen, and if the ratio is less than 10 then the compound is classified as a nonteratogen (Brannen KC et al., Birth Defects Res B Dev Reprod Toxicol 89:66-77, 2010).
Hanisch, Karen; Küster, Eberhard; Altenburger, Rolf; Gündel, Ulrike
2010-01-01
Studies using embryos of the zebrafish Danio rerio (DarT) instead of adult fish for characterising the (eco-) toxic potential of chemicals have been proposed as animal replacing methods. Effect analysis at the molecular level might enhance sensitivity, specificity, and predictive value of the embryonal studies. The present paper aimed to test the potential of toxicoproteomics with zebrafish eleutheroembryos for sensitive and specific toxicity assessment. 2-DE-based toxicoproteomics was performed applying low-dose (EC(10)) exposure for 48 h with three-model substances Rotenone, 4,6-dinitro-o-cresol (DNOC) and Diclofenac. By multivariate "pattern-only" PCA and univariate statistical analyses, alterations in the embryonal proteome were detectable in nonetheless visibly intact organisms and treatment with the three substances was distinguishable at the molecular level. Toxicoproteomics enabled the enhancement of sensitivity and specificity of the embryonal toxicity assay and bear the potency to identify protein markers serving as general stress markers and early diagnosis of toxic stress.
Hanisch, Karen; Küster, Eberhard; Altenburger, Rolf; Gündel, Ulrike
2010-01-01
Studies using embryos of the zebrafish Danio rerio (DarT) instead of adult fish for characterising the (eco-) toxic potential of chemicals have been proposed as animal replacing methods. Effect analysis at the molecular level might enhance sensitivity, specificity, and predictive value of the embryonal studies. The present paper aimed to test the potential of toxicoproteomics with zebrafish eleutheroembryos for sensitive and specific toxicity assessment. 2-DE-based toxicoproteomics was performed applying low-dose (EC10) exposure for 48 h with three-model substances Rotenone, 4,6-dinitro-o-cresol (DNOC) and Diclofenac. By multivariate “pattern-only” PCA and univariate statistical analyses, alterations in the embryonal proteome were detectable in nonetheless visibly intact organisms and treatment with the three substances was distinguishable at the molecular level. Toxicoproteomics enabled the enhancement of sensitivity and specificity of the embryonal toxicity assay and bear the potency to identify protein markers serving as general stress markers and early diagnosis of toxic stress. PMID:22084678
Cyanobacteria blooms induce embryonic heart failure in an endangered fish species.
Zi, Jinmei; Pan, Xiaofu; MacIsaac, Hugh J; Yang, Junxing; Xu, Runbing; Chen, Shanyuan; Chang, Xuexiu
2018-01-01
Cyanobacterial blooms drive water-quality and aquatic-ecosystem deterioration in eutrophic lakes worldwide, mainly owing to their harmful, secondary metabolites. The response of fish exposed to these cyanobacterial chemicals, however, remains largely unknown. In this paper, we employed an endangered fish species (Sinocyclocheilus grahami) in Dianchi Lake, China to evaluate the risks of cell-free exudates (MaE) produced by a dominant cyanobacterium (Microcystis aeruginosa) on embryo development, as well as the molecular mechanisms responsible. MaE (3d cultured) caused a reduction of fertilization (35.4%) and hatching (15.5%) rates, and increased mortality rates (≤90.0%) and malformation rate (27.6%), typically accompanied by heart failure. Proteomics analysis revealed that two greatest changed proteins - protein S100A1 (over-expressed 26 times compared with control) and myosin light chain (under-expressed 25 fold) - are closely associated with heart function. Further study revealed that heart failure was due to calcium ion imbalance and malformed cardiac structure. We conclude that harmful secondary metabolites from cyanobacteria may adversely affect embryo development in this endangered fish, and possibly contribute to its disappearance and unsuccessful recovery in Dianchi Lake. Hazardous consequences of substances released by cyanobacteria should raise concerns for managers addressing recovery of this and other imperiled species in affected lakes. Copyright © 2017 Elsevier B.V. All rights reserved.
Watanabe, Haruna; Tamura, Ikumi; Abe, Ryoko; Takanobu, Hitomi; Nakamura, Ataru; Suzuki, Toshinari; Hirose, Akihiko; Nishimura, Tetsuji; Tatarazako, Norihisa
2016-04-01
Principles of concentration addition and independent action have been used as effective tools to predict mixture toxicity based on individual component toxicity. The authors investigated the toxicity of a pharmaceutical mixture composed of the top 10 detected active pharmaceutical ingredients (APIs) in the Tama River (Tokyo, Japan) in a relevant concentration ratio. Both individual and mixture toxicities of the 10 APIs were evaluated by 3 short-term chronic toxicity tests using the alga Pseudokirchneriella subcapitata, the daphnid Ceriodaphnia dubia, and the zebrafish Danio rerio. With the exception of clarithromycin toxicity to alga, the no-observed-effect concentration of individual APIs for each test species was dramatically higher than the highest concentration of APIs found in the environment. The mixture of 10 APIs resulted in toxicity to alga, daphnid, and fish at 6.25 times, 100 times, and 15,000 times higher concentrations, respectively, than the environmental concentrations of individual APIs. Predictions by concentration addition and independent action were nearly identical for alga, as clarithromycin was the predominant toxicant in the mixture. Both predictions described the observed mixture toxicity to alga fairly well, whereas they slightly underestimated the observed mixture toxicity in the daphnid test. In the fish embryo test, the observed toxicity fell between the predicted toxicity by concentration addition and independent action. These results suggested that the toxicity of environmentally relevant pharmaceutical mixtures could be predicted by individual toxicity using either concentration addition or independent action. © 2015 SETAC.
Le Fol, Vincent; Brion, François; Hillenweck, Anne; Perdu, Elisabeth; Bruel, Sandrine; Aït-Aïssa, Selim; Cravedi, Jean-Pierre; Zalko, Daniel
2017-01-01
Zebrafish embryo assays are increasingly used in the toxicological assessment of endocrine disruptors. Among other advantages, these models are 3R-compliant and are fit for screening purposes. Biotransformation processes are well-recognized as a critical factor influencing toxic response, but major gaps of knowledge exist regarding the characterization of functional metabolic capacities expressed in zebrafish. Comparative metabolic studies between embryos and adults are even scarcer. Using 3H-labeled chemicals, we examined the fate of two estrogenic emerging contaminants, benzophenone-2 (BP2) and bisphenol S (BPS), in 4-day embryos and adult zebrafish. BPS and BP2 were exclusively metabolized through phase II pathways, with no major qualitative difference between larvae and adults except the occurrence of a BP2-di-glucuronide in adults. Quantitatively, the biotransformation of both molecules was more extensive in adults. For BPS, glucuronidation was the predominant pathway in adults and larvae. For BP2, glucuronidation was the major pathway in larvae, but sulfation predominated in adults, with ca. 40% conversion of parent BP2 and an extensive release of several conjugates into water. Further larvae/adults quantitative differences were demonstrated for both molecules, with higher residue concentrations measured in larvae. The study contributes novel data regarding the metabolism of BPS and BP2 in a fish model and shows that phase II conjugation pathways are already functional in 4-dpf-old zebrafish. Comparative analysis of BP2 and BPS metabolic profiles in zebrafish larvae and adults further supports the use of zebrafish embryo as a relevant model in which toxicity and estrogenic activity can be assessed, while taking into account the absorption and fate of tested substances. PMID:28346357
Le Fol, Vincent; Brion, François; Hillenweck, Anne; Perdu, Elisabeth; Bruel, Sandrine; Aït-Aïssa, Selim; Cravedi, Jean-Pierre; Zalko, Daniel
2017-03-25
Zebrafish embryo assays are increasingly used in the toxicological assessment of endocrine disruptors. Among other advantages, these models are 3R-compliant and are fit for screening purposes. Biotransformation processes are well-recognized as a critical factor influencing toxic response, but major gaps of knowledge exist regarding the characterization of functional metabolic capacities expressed in zebrafish. Comparative metabolic studies between embryos and adults are even scarcer. Using ³H-labeled chemicals, we examined the fate of two estrogenic emerging contaminants, benzophenone-2 (BP2) and bisphenol S (BPS), in 4-day embryos and adult zebrafish. BPS and BP2 were exclusively metabolized through phase II pathways, with no major qualitative difference between larvae and adults except the occurrence of a BP2-di-glucuronide in adults. Quantitatively, the biotransformation of both molecules was more extensive in adults. For BPS, glucuronidation was the predominant pathway in adults and larvae. For BP2, glucuronidation was the major pathway in larvae, but sulfation predominated in adults, with ca. 40% conversion of parent BP2 and an extensive release of several conjugates into water. Further larvae/adults quantitative differences were demonstrated for both molecules, with higher residue concentrations measured in larvae. The study contributes novel data regarding the metabolism of BPS and BP2 in a fish model and shows that phase II conjugation pathways are already functional in 4-dpf-old zebrafish. Comparative analysis of BP2 and BPS metabolic profiles in zebrafish larvae and adults further supports the use of zebrafish embryo as a relevant model in which toxicity and estrogenic activity can be assessed, while taking into account the absorption and fate of tested substances.
Ulanova, Lilia S; Pinheiro, Marina; Vibe, Carina; Nunes, Claudia; Misaghian, Dorna; Wilson, Steven; Zhu, Kaizheng; Fenaroli, Federico; Winther-Larsen, Hanne C; Reis, Salette; Griffiths, Gareth
2017-06-19
We tested the efficiency of 2 different antibiotics, rifampicin and oxolinic acid, against an established infection caused by fish pathogen Francisella noatunensis ssp. orientalis (F.n.o.) in zebrafish. The drugs were tested in the free form as well as encapsulated into biodegradable nanoparticles, either polylactic-co-glycolic acid (PLGA) nanoparticles or nanostructured lipid carriers. The most promising therapies were PLGA-rifampicin nanoparticles and free oxolinic acid; the PLGA nanoparticles significantly delayed embryo mortality while free oxolinic acid prevented it. Encapsulation of rifampicin in both PLGA and nanostructured lipid carriers enhanced its efficiency against F.n.o. infection relative to the free drug. We propose that the zebrafish model is a robust, rapid system for initial testing of different treatments of bacterial diseases important for aquaculture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zucchi, Sara; Bluethgen, Nancy; University of Basel, Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, CH-4056 Basel
Benzophenone-4 (BP-4) is frequently used as UV-absorber in cosmetics and materials protection. Despite its frequent detection in the aquatic environment potential effects on aquatic life are unknown. In this study, we evaluate the effects of BP-4 in eleuthero-embryos and in the liver, testis and brain of adult male fish on the transcriptional level by focusing on target genes involved in hormonal pathways to provide a more complete toxicological profile of this important UV-absorber. Eleuthero-embryos and males of zebrafish were exposed up to 3 days after hatching and for 14 days, respectively, to BP-4 concentrations between 30 and 3000 {mu}g/L. Inmore » eleuthero-embryos transcripts of vtg1, vtg3, esr1, esr2b, hsd17ss3, cyp19b cyp19a, hhex and pax8 were induced at 3000 {mu}g/L BP-4, which points to a low estrogenic activity and interference with early thyroid development, respectively. In adult males BP-4 displayed multiple effects on gene expression in different tissues. In the liver vtg1, vtg3, esr1 and esr2b were down-regulated, while in the brain, vtg1, vtg3 and cyp19b transcripts were up-regulated. In conclusion, the transcription profile revealed that BP-4 interferes with the expression of genes involved in hormonal pathways and steroidogenesis. The effects of BP-4 differ in life stages and adult tissues and point to an estrogenic activity in eleuthero-embryos and adult brain, and an antiestrogenic activity in the liver. The results indicate that BP-4 interferes with the sex hormone system of fish, which is important for the risk assessment of this UV-absorber.« less
Toxicity of weathered Deepwater Horizon oil to bay anchovy (Anchoa mitchilli) embryos.
O'Shaughnessy, Kathryn A; Forth, Heather; Takeshita, Ryan; Chesney, Edward J
2018-02-01
The BP-contracted Deepwater Horizon Macondo well blowout occurred on 20 April 2010 and lasted nearly three months. The well released millions of barrels of crude oil into the northern Gulf of Mexico, causing extensive impacts on pelagic, benthic, and estuarine fish species. The bay anchovy (Anchoa mitchilli) is an important zooplanktivore in the Gulf, serving as an ecological link between lower trophic levels and pelagic predatory fish species. Bay anchovy spawn from May through November in shallow inshore and estuarine waters throughout the Gulf. Because their buoyant embryos are a dominant part of the inshore ichthyoplankton throughout the summer, it is likely bay anchovy embryos encountered oil in coastal estuaries during the summer and fall of 2010. Bay anchovy embryos were exposed to a range of concentrations of two field-collected Deepwater Horizon oils as high-energy and low-energy water accommodated fractions (HEWAFs and LEWAFs, respectively) for 48h. The median lethal concentrations (LC 50 ) were lower in exposures with the more weathered oil (HEWAF, 1.48µg/L TPAH50; LEWAF, 1.58µg/L TPAH50) compared to the less weathered oil (HEWAF, 3.87µg/L TPAH50; LEWAF, 4.28µg/L TPAH50). To measure delayed mortality and life stage sensitivity between embryos and larvae, an additional 24h acute HEWAF exposure using the more weathered oil was run followed by a 24h grow-out period. Here the LC 50 was 9.71µg/L TPAH50 after the grow-out phase, suggesting a toxic effect of oil at the embryonic or hatching stage. We also found that exposures prepared with the more weathered Slick B oil produced lower LC 50 values compared to the exposures prepared with Slick A oil. Our results demonstrate that even relatively acute environmental exposure times can have a detrimental effect on bay anchovy embryos. Copyright © 2017 Elsevier Inc. All rights reserved.
Kato, Akira; Watanabe, Taro; Takagi, Wataru; Romero, Michael F.; Bell, Justin D.; Toop, Tes; Donald, John A.; Hyodo, Susumu
2016-01-01
Most vertebrates, including cartilaginous fishes, maintain their plasma SO42− concentration ([SO42−]) within a narrow range of 0.2–1 mM. As seawater has a [SO42−] about 40 times higher than that of the plasma, SO42− excretion is the major role of kidneys in marine teleost fishes. It has been suggested that cartilaginous fishes also excrete excess SO42− via the kidney. However, little is known about the underlying mechanisms for SO42− transport in cartilaginous fish, largely due to the extraordinarily elaborate four-loop configuration of the nephron, which consists of at least 10 morphologically distinguishable segments. In the present study, we determined cDNA sequences from the kidney of holocephalan elephant fish (Callorhinchus milii) that encoded solute carrier family 26 member 1 (Slc26a1) and member 6 (Slc26a6), which are SO42− transporters that are expressed in mammalian and teleost kidneys. Elephant fish Slc26a1 (cmSlc26a1) and cmSlc26a6 mRNAs were coexpressed in the proximal II (PII) segment of the nephron, which comprises the second loop in the sinus zone. Functional analyses using Xenopus oocytes and the results of immunohistochemistry revealed that cmSlc26a1 is a basolaterally located electroneutral SO42− transporter, while cmSlc26a6 is an apically located, electrogenic Cl−/SO42− exchanger. In addition, we found that both cmSlc26a1 and cmSlc26a6 were abundantly expressed in the kidney of embryos; SO42− was concentrated in a bladder-like structure of elephant fish embryos. Our results demonstrated that the PII segment of the nephron contributes to the secretion of excess SO42− by the kidney of elephant fish. Possible mechanisms for SO42− secretion in the PII segment are discussed. PMID:27122370
Sørhus, Elin; Edvardsen, Rolf B.; Karlsen, Ørjan; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Harman, Christopher; Jentoft, Sissel; Meier, Sonnich
2015-01-01
The toxicity resulting from exposure to oil droplets in marine fish embryos and larvae is still subject for debate. The most detailed studies have investigated the effects of water-dissolved components of crude oil in water accommodated fractions (WAFs) that lack bulk oil droplets. Although exposure to dissolved petroleum compounds alone is sufficient to cause the characteristic developmental toxicity of crude oil, few studies have addressed whether physical interaction with oil micro-droplets are a relevant exposure pathway for open water marine speices. Here we used controlled delivery of mechanically dispersed crude oil to expose pelagic embryos and larvae of a marine teleost, the Atlantic haddock (Melanogrammus aeglefinus). Haddock embryos were exposed continuously to two different concentrations of dispersed crude oil, high and low, or in pulses. By 24 hours of exposure, micro-droplets of oil were observed adhering and accumulating on the chorion, accompanied by highly elevated levels of cyp1a, a biomarker for exposure to aromatic hydrocarbons. Embryos from all treatment groups showed abnormalities representative of crude oil cardiotoxicity at hatch (5 days of exposure), such as pericardial and yolk sac edema. Compared to other species, the frequency and severity of toxic effects was higher than expected for the waterborne PAH concentrations (e.g., 100% of larvae had edema at the low treatment). These findings suggest an enhanced tissue uptake of PAHs and/or other petroleum compounds from attached oil droplets. These studies highlight a novel property of haddock embryos that leads to greater than expected impact from dispersed crude oil. Given the very limited number of marine species tested in similar exposures, the likelihood of other species with similar properties could be high. This unanticipated result therefore has implications for assessing the ecological impacts of oil spills and the use of methods for dispersing oil in the open sea. PMID:25923774
Ghosh, J; Wilson, R W; Kudoh, T
2009-12-01
The normal embryonic development of the tomato clownfish Amphiprion frenatus was analysed using live imaging and by in situ hybridization for detection of mesodermal and neurectodermal development. Both morphology of live embryos and tissue-specific staining revealed significant differences in the gross developmental programme of A. frenatus compared with better-known teleost fish models, in particular, initiation of somitogenesis before complete epiboly, initiation of narrowing of the neurectoderm (neurulation) before somitogenesis, relatively early pigmentation of melanophores at the 10-15 somite stage and a distinctive pattern of melanophore distribution. These results suggest evolutionary adaptability of the teleost developmental programme. The ease of obtaining eggs, in vitro culture of the embryo, in situ staining analyses and these reported characteristics make A. frenatus a potentially important model marine fish species for studying embryonic development, physiology, ecology and evolution.
Medaka Fish Embryo Developed for STS-78 Life and Microgravity Spacelab (LMS)
NASA Technical Reports Server (NTRS)
1996-01-01
Launched on June 20, 1996, the STS-78 mission's primary payload was the Life and Microgravity Spacelab (LMS), which was managed by the Marshall Space Flight Center (MSFC). During the 17 day space flight, the crew conducted a diverse slate of experiments divided into a mix of life science and microgravity investigations. In a manner very similar to future International Space Station operations, LMS researchers from the United States and their European counterparts shared resources such as crew time and equipment. Five space agencies (NASA/USA, European Space Agency/Europe (ESA), French Space Agency/France, Canadian Space Agency /Canada, and Italian Space Agency/Italy) along with research scientists from 10 countries worked together on the design, development and construction of the LMS. This photo represents the development of Medaka Fish Embryos, one of the many studies of the LMS mission.
Effects of cadmium-enriched sediment on fish and amphibian embryo-larval stages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, P.C.; Birge, W.J.; Black, J.A.
1984-08-01
Aquatic toxicity tests were conducted to evaluate the effects of cadmium-enriched sediment on embryo-larval stages of the goldfish (Carassius auratus), leopard frog (Rana pipiens), and largemouth bass (Micropterus salmoides). Natural stream sediment was collected and enriched with cadmium to nominal concentrations of 1.0, 10.0, 100, and 1000 mg/kg. Enriched sediments were placed in Pyrex dishes and covered with 350 ml of reconstituted water. Fertilized eggs were placed in the dishes and maintained through 4 days posthatching, giving a total exposure time of 6 to 7 days. For all tests the cadmium concentrations ranged from 1.1 to 76.5 micrograms/liter in watermore » above sediments containing 1 to 1000 mg Cd/kg, respectively. Although low frequencies of mortality were observed in all tests, goldfish, leopard frog, and bass exposed to sediments enriched to 1000 mg Cd/kg accumulated 4.61, 12.55, and 60.0 micrograms Cd/g, respectively. No significant correlations were found between mortality of the goldfish and leopard frog and the cadmium concentrations in either water or sediment. However, all three species showed strong correlations between cadmium concentrations in water and tissue, sediment and tissue, and water and sediment. Tissue cadmium concentrations were related to the length of time test organisms were in direct contact with cadmium-enriched sediment.« less
Feeding rate of slimy sculpin and burbot on young lake charr in laboratory reefs
Savino, Jacqueline F.; Henry, Mary G.
1991-01-01
Predation and contaminants are two possible factors in the poor recruitment of young lake charr Salvelinus namaycush in the Great Lakes. We measured the feeding rate of slimy sculpins Cottus cognatus and burbot Lota lota on young lake charr (uncontaminated young from eggs of a hatchery brood stock and contaminated young from eggs of Lake Michigan lake charr) in laboratory test chambers with a cobble substrate. The median daily consumption rate of sculpins for all tests was 2 lake charr eggs (N = 22 tests; 95% confidence interval, O-13) and 2 lake charr free embryos (N = 31 tests; 95% confidence interval, O-10). Feeding rate did not differ between hatchery and contaminated prey. Slimy sculpins continued to feed on lake charr when another prey organism, the deepwater amphipod Pontoporeia hoyi, was present. Feeding by burbot on free embryos (4-36 d-l) increased as the mobility of young increased, but burbot consumed about 10% of their body weight weekly in free-swimming young (140-380 d-l). Predation on lake charr eggs by sculpins could beconsiderable over the 100 to 140 d incubation period, and burbot could eat large numbers of free-swimming lake charr as the young fish left the reef. Predation pressure on young lake charr may inhibit rehabilitation ofself-sustaining populations of lake charr on some reefs unless a critical egg density has been reached.
Medaka embryonic stem cells are capable of generating entire organs and embryo-like miniatures.
Hong, Ni; He, Bei Ping; Schartl, Manfred; Hong, Yunhan
2013-03-01
Embryonic stem (ES) cells have the potency to produce many cell types of the embryo and adult body. Upon transplantation into early host embryos, ES cells are able to differentiate into various specialized cells and contribute to host tissues and organs of all germ layers. Here we present data in the fish medaka (Oryzias latipes) that ES cells have a novel ability to form extra organs and even embryo-like miniatures. Upon transplantation as individual cells according to the standard procedure, ES cells distributed widely to various organ systems of 3 germ layers. Upon transplantation as aggregates, ES cells were able to form extra organs, including the hematopoietic organ and contracting heart. We show that localized ES cell transplantation often led to the formation of extra axes that comprised essentially of either host cells or donor ES cells. These extra axes were associated with the head region of the embryo proper or formed at ectopic sites on the yolk sac. Surprisingly, certain ectopic axes were even capable of forming embryo-like miniatures. We conclude that ES cells have the ability to form entire organs and even embryo-like miniatures under proper environmental conditions. This finding points to a new possibility to generate ES cell-derived axes and organs.
Massonneau, Agnes; Coronado, Maria-José; Audran, Arthur; Bagniewska, Agnieszka; Mòl, Rafal; Testillano, Pilar S; Goralski, Grzegorz; Dumas, Christian; Risueño, Maria-Carmen; Matthys-Rochon, Elisabeth
2005-07-01
During maize pollen embryogenesis, a range of multicellular structures are formed. Using different approaches, the "nature" of these structures has been determined in terms of their embryogenic potential. In situ molecular identification techniques for gene transcripts and products, and a novel cell tracking system indicated the presence of embryogenic (embryo-like structures, ELS) and non-embryogenic (callus-like structures, CLS) structures that occurred for short periods within the cultures. Some multicellular structures with a compact appearance generated embryos. RT-PCR and fluorescence in situ hybridization (FISH) with confocal microscopy techniques using specific gene markers of the endosperm (ZmESR2, ZmAE3) and embryo (LTP2 and ZmOCL1, ZmOCL3) revealed "embryo" and "endosperm" potentialities in these various multicellular structures present in the cultures. The results presented here showed distinct and specific patterns of gene expression. Altogether, the results demonstrate the presence of different molecules on both embryonic and non-embryonic structures. Their possible roles are discussed in the context of a parallel between embryo/endosperm interactions in planta and embryonic and non-embryonic structure interrelations under in vitro conditions.
Endocrine disruption and reproduction impairment in zebrafish after long-term exposure to DE-71.
Yu, Liqin; Liu, Chunsheng; Chen, Qi; Zhou, Bingsheng
2014-06-01
The objective of the present study was to investigate the impact of polybrominated diphenyl ethers (PBDEs) on fish reproduction over 2 generations. Zebrafish (Danio rerio) embryos (F0) were exposed to low concentrations (3 µg/L, 10 µg/L, and 30 µg/L) of the PBDE mixture DE-71 until they were sexually mature, and steroid hormone production, expression of genes involved in steroidogenesis, gonadal development, and gamete characteristics were examined. Exposure of female zebrafish to DE-71 resulted in lower estradiol production and downregulation of cytochrome P450 aromatase mRNA. In males, exposure to DE-71 resulted in greater testosterone production and greater cytochrome P450 c17 α-hydroxylase,17,20-lase mRNA expression. Moreover, hepatic vitellogenin mRNA and estrogenic receptor β gene transcription were downregulated in females and males. Expression of the follicle-stimulating hormone β gene in the pituitary was upregulated, and the expression of luteinizing hormone β was downregulated in both sexes. Histological examination showed inhibition of oocyte maturation in females and retarded spermiation in males. The average number of eggs (F1) produced was also reduced. Additionally, exposure of F0 embryos to DE-71 did not result in developmental toxicity, whereas delayed hatching, reduced survival, and decreased growth were observed in the F1 embryos derived from parent fish exposed to DE-71. Therefore, long-term exposure to low concentrations of PBDEs in zebrafish could cause reproductive impairment, suggesting that PBDEs might have significant adverse effects on fish population in the highly PBDEs-contaminated aquatic environment. © 2014 SETAC.
Didier, Dominique A; LeClair, Elizabeth E; Vanbuskirk, Dana R
1998-04-01
The development of Callorhinchus milii, a primitive chondrichthyan fish (Subclass Holocephali) is described in detail based on a complete series of embryos from stage 17 to hatching. The external features of these specimens, in comparison with other chondrichthyan embryos, are used to establish the first staging table for any chimaeroid species. Each stage of C. milii is defined by a suite of morphological characters in addition to total length, including the number of somites, extent of external pigmentation, eye size and shape, head flexure, heart morphology, and size and shape of paired and unpaired fins. Particular attention is given to features of the gill arches and associated structures, including external gill filaments and the opercular flap. Embryos of this species also possess a transient rostral bulb, a feature unique to chimaeroids. Embryological development of Callorhinchus milii is similar to that previously described for sharks and batoids (Subclass Elasmobranchii), including the spiny dogfish, Squalus acanthias, the Japanese bullshark, Heterodontus japonicus, the lesser spotted dogfish, Scyliorhinus canicula, the frill shark, Chlamydoselachus anguineus, the guitarfish, Rhinobatus halavi, and the skate, Raja brachyura. Callorhinchus milii is also similar in overall development to another holocephalan, Hydrolagus colliei. A review of previous staging schemes confirms that early morphological development in all three major chondrichthyan lineages (sharks, batoids, and chimaeras) can be correlated using a common set of stages. A uniform staging system is provided that should prove useful in continuing ontogenetic and phylogenetic studies of this entire clade of fishes. J. Morphol. 236:25-47, 1998. © 1998 Wiley-Liss, Inc. Copyright © 1998 Wiley-Liss, Inc.
Behavorial assessments of larval zebrafish neurotoxicology
Fishes have long been a popular organism in ecotoxicology research, and are increasingly used in human health research as an alternative animal model for chemical screening. Our laboratory incorporates a zebrafish (Danio rerio) embryo/larval assay to screen chemicals for developm...
Marimuthu, Kasi; Muthu, Narmataa; Xavier, Rathinam; Arockiaraj, Jesu; Rahman, M. Aminur; Subramaniam, Sreeramanan
2013-01-01
Buprofezin is an insect growth regulator and widely used insecticide in Malaysia. The present study evaluated the toxic effects of buprofezin on the embryo and larvae of African catfish (Clarias gariepinus) as a model organism. The embryos and larvae were exposed to 7 different concentrations (0, 0.05, 0.5, 5, 25, 50 and 100 mg/L) of buprofezin. Each concentration was assessed in five replicates. Eggs were artificially fertilized and 200 eggs and larvae were subjected to a static bath treatment for all the concentrations. The mortality of embryos was significantly increased with increasing buprofezin concentrations from 5 to 100 mg/L (p< 0.05). However, the mortality was not significantly different (p<0.05) among the following concentrations: 0 (control), 0.05, 0.5 and 5 mg/L. Data obtained from the buprofezin acute toxicity tests were evaluated using probit analysis. The 24 h LC50 value (with 95% confidence limits) of buprofezin for embryos was estimated to be 6.725 (3.167-15.017) mg/L. The hatching of fish embryos was recorded as 68.8, 68.9, 66.9, 66.4, 26.9, 25.1 and 0.12% in response to 7 different concentrations of buprofezin, respectively. The mortality rate of larvae significantly (p<0.05) increased with increasing buprofezin concentrations exposed to 24-48 h. The 24 and 48 h LC50 values (with 95% confidence limits) of buprofezin for the larvae was estimated to be 5.702 (3.198-8.898) and 4.642 (3.264-6.287) mg/L respectively. There were no significant differences (p>0.05) in the LC50 values obtained at 24 and 48 h exposure times. Malformations were observed when the embryos and larvae exposed to more than 5 mg/L. The results emerged from the study suggest that even the low concentration (5 mg/L) of buprofezin in the aquatic environment may have adverse effect on the early embryonic and larval development of African catfish. PMID:24098390
Marimuthu, Kasi; Muthu, Narmataa; Xavier, Rathinam; Arockiaraj, Jesu; Rahman, M Aminur; Subramaniam, Sreeramanan
2013-01-01
Buprofezin is an insect growth regulator and widely used insecticide in Malaysia. The present study evaluated the toxic effects of buprofezin on the embryo and larvae of African catfish (Clarias gariepinus) as a model organism. The embryos and larvae were exposed to 7 different concentrations (0, 0.05, 0.5, 5, 25, 50 and 100 mg/L) of buprofezin. Each concentration was assessed in five replicates. Eggs were artificially fertilized and 200 eggs and larvae were subjected to a static bath treatment for all the concentrations. The mortality of embryos was significantly increased with increasing buprofezin concentrations from 5 to 100 mg/L (p< 0.05). However, the mortality was not significantly different (p<0.05) among the following concentrations: 0 (control), 0.05, 0.5 and 5 mg/L. Data obtained from the buprofezin acute toxicity tests were evaluated using probit analysis. The 24 h LC50 value (with 95% confidence limits) of buprofezin for embryos was estimated to be 6.725 (3.167-15.017) mg/L. The hatching of fish embryos was recorded as 68.8, 68.9, 66.9, 66.4, 26.9, 25.1 and 0.12% in response to 7 different concentrations of buprofezin, respectively. The mortality rate of larvae significantly (p<0.05) increased with increasing buprofezin concentrations exposed to 24-48 h. The 24 and 48 h LC50 values (with 95% confidence limits) of buprofezin for the larvae was estimated to be 5.702 (3.198-8.898) and 4.642 (3.264-6.287) mg/L respectively. There were no significant differences (p>0.05) in the LC50 values obtained at 24 and 48 h exposure times. Malformations were observed when the embryos and larvae exposed to more than 5 mg/L. The results emerged from the study suggest that even the low concentration (5 mg/L) of buprofezin in the aquatic environment may have adverse effect on the early embryonic and larval development of African catfish.
Hong, Ni; Li, Zhendong; Hong, Yunhan
2011-01-01
Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer. PMID:21547056
Hong, Ni; Li, Zhendong; Hong, Yunhan
2011-04-13
Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.
dos Anjos, Nislanha Ana; Schulze, Tobias; Brack, Werner; Val, Adalberto Luis; Schirmer, Kristin; Scholz, Stefan
2011-05-01
In order to monitor potential contamination deriving from exploration and transport of oil in the Urucu region (Brazil), there is a need to establish suitable biomarkers for native Amazonian fish. Therefore, the transcript expression of various potentially sensitive genes (ahr2(1), cyp1a, hmox1, hsp70, maft, mt, nfe212, gstp1 and nqo1) in fish exposed to water soluble fractions of oil (WSF) was compared. The analysis was first performed in an established laboratory model, the zebrafish embryo. The cyp1a gene proved to be the most sensitive and robust marker for oil contamination and, hence, was selected to study the effect of oil-derived contaminants in the Amazonian cichlid Astronotus ocellatus. Induction of cyp1a transcript expression was observed for ≥0.0061% (v/v) WSFs. In liver samples of fish, collected from different lakes in the Urucu oil mining area, no elevated expression of cyp1a transcripts was observed. The data demonstrate the high sensitivity of cyp1a as indicator of oil exposure; further studies should be considered to test its usefulness at known contaminated sites and to evaluate influential factors by, e.g. mesocosm experiments. Copyright © 2011 Elsevier B.V. All rights reserved.
Self-association of Gata1 enhances transcriptional activity in vivo in zebra fish embryos.
Nishikawa, Keizo; Kobayashi, Makoto; Masumi, Atsuko; Lyons, Susan E; Weinstein, Brant M; Liu, P Paul; Yamamoto, Masayuki
2003-11-01
Gata1 is a prototype transcription factor that regulates hematopoiesis, yet the molecular mechanisms by which Gata1 transactivates its target genes in vivo remain unclear. We previously showed, in transgenic zebra fish, that Gata1 autoregulates its own expression. In this study, we characterized the molecular mechanisms for this autoregulation by using mutations in the Gata1 protein which impair autoregulation. Of the tested mutations, replacement of six lysine residues with alanine (Gata1KA6), which inhibited self-association activity of Gata1, reduced the Gata1-dependent induction of reporter gene expression driven by the zebra fish gata1 hematopoietic regulatory domain (gata1 HRD). Furthermore, overexpression of wild-type Gata1 but not Gata1KA6 rescued the expression of Gata1 downstream genes in vlad tepes, a germ line gata1 mutant fish. Interestingly, both GATA sites in the double GATA motif in gata1 HRD were critical for the promoter activity and for binding of the self-associated Gata1 complex, whereas only the 3'-GATA site was required for Gata1 monomer binding. These results thus provide the first in vivo evidence that the ability of Gata1 to self-associate critically contributes to the autoregulation of the gata1 gene.
Brown, Daniel R; Thompson, Jasmine; Chernick, Melissa; Hinton, David E; Di Giulio, Richard T
2017-12-01
High-level, acute exposures to individual polycyclic aromatic hydrocarbons (PAHs) and complex PAH mixtures result in cardiac abnormalities in developing fish embryos. Whereas acute PAH exposures can be developmentally lethal, little is known about the later life consequences of early life, lower level PAH exposures in survivors. A population of PAH-adapted Fundulus heteroclitus from the PAH-contaminated Superfund site, Atlantic Wood Industries, Elizabeth River, Portsmouth, Virginia, United States, is highly resistant to acute PAH cardiac teratogenicity. We sought to determine and characterize long-term swimming performance and cardiac histological alterations of a subteratogenic PAH mixture exposure in both reference killifish and PAH-adapted Atlantic Wood killifish embryos. Killifish from a relatively uncontaminated reference site, King's Creek, Virginia, United States, and Atlantic Wood killifish were treated with dilutions of Elizabeth River sediment extract at 24 h post fertilization (hpf). Two proven subteratogenic dilutions, 0.1 and 1.0% Elizabeth River sediment extract (total PAH 5.04 and 50.4 µg/L, respectively), were used for embryo exposures. Then, at 5-mo post hatching, killifish were subjected to a swim performance test. A separate subset of these individuals was processed for cardiac histological analysis. Unexposed King's Creek killifish significantly outperformed the unexposed Atlantic Wood killifish in swimming performance as measured by Ucrit (i.e., critical swimming speed). However, King's Creek killifish exposed to Elizabeth River sediment extract (both 0.1 and 1.0%) showed significant declines in Ucrit. Histological analysis revealed the presence of blood in the pericardium of King's Creek killifish. Although Atlantic Wood killifish showed baseline performance deficits relative to King's Creek killifish, their pericardial cavities were nearly free of blood and atrial and ventricular alterations. These findings may explain, in part, the diminished swimming performance of King's Creek fish. Environ Toxicol Chem 2017;36:3246-3253. © 2017 SETAC. © 2017 SETAC.
Deaton, Raelynn
2009-01-01
I examined the effects of the parasitic larval nematode, Eustrongylides ignotus, on male mate choice in the western mosquitofish, Gambusia affinis. I hypothesized that parasite presence influences male mate choice either directly (via reduction in male mating behavior due to presence of parasite in females) or indirectly (via reduction in male mating behavior due to reduced condition of infected females). Specifically, I tested the predictions that (1) males would mate preferentially with uninfected over infected females (scoring both mating attempts and association time with females); (2) parasitized females would be in poorer condition than non-parasitized females (measured as soluble fat stores); and (3) parasitized females would have reduced fecundity (measured as number of developing embryos). Males preferred to mate with non-parasitized over parasitized females, but showed no differences in association time between females. The nematode did not decrease female body condition, but did decrease female mass, and appeared to decrease female fecundity via reduction in broods (# embryos). Results support that parasites affect male mate choice in mosquitofish; however, the mechanisms used by males to differentiate between parasitized and non-parasitized females remain untested. This study provides the first empirical evidence of parasite affects on male mate choice in livebearing fishes, and suggest a potentially important role for parasite-mediated sexual selection in organisms that use coercive mating as the primary mechanism of obtaining mates.
LaLone, Carlie A; Villeneuve, Daniel L; Olmstead, Allen W; Medlock, Elizabeth K; Kahl, Michael D; Jensen, Kathleen M; Durhan, Elizabeth J; Makynen, Elizabeth A; Blanksma, Chad A; Cavallin, Jenna E; Thomas, Linnea M; Seidl, Sara M; Skolness, Sarah Y; Wehmas, Leah C; Johnson, Rodney D; Ankley, Gerald T
2012-03-01
Synthetic glucocorticoids are pharmaceutical compounds prescribed in human and veterinary medicine as anti-inflammatory agents and have the potential to contaminate natural watersheds via inputs from wastewater treatment facilities and confined animal-feeding operations. Despite this, few studies have examined the effects of this class of chemicals on aquatic vertebrates. To generate data to assess potential risk to the aquatic environment, we used fathead minnow 21-d reproduction and 29-d embryo-larvae assays to determine reproductive toxicity and early-life-stage effects of dexamethasone. Exposure to 500 µg dexamethasone/L in the 21-d test caused reductions in fathead minnow fecundity and female plasma estradiol concentrations and increased the occurrence of abnormally hatched fry. Female fish exposed to 500 µg dexamethasone/L also displayed a significant increase in plasma vitellogenin protein levels, possibly because of decreased spawning. A decrease in vitellogenin messenger ribonucleic acid (mRNA) expression in liver tissue from females exposed to the high dexamethasone concentration lends support to this hypothesis. Histological results indicate that a 29-d embryo-larval exposure to 500 µg dexamethasone/L caused a significant increase in deformed gill opercula. Fry exposed to 500 µg dexamethasone/L for 29 d also exhibited a significant reduction in weight and length compared with control fry. Taken together, these results indicate that nonlethal concentrations of a model glucocorticoid receptor agonist can impair fish reproduction, growth, and development. Copyright © 2011 SETAC.
Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang
2016-12-01
Mercury (Hg) is a widespread environmental pollutant that can produce severe negative effects on fish even at very low concentrations. However, the mechanisms underlying inorganic Hg-induced oxidative stress and immunotoxicity in the early development stage of fish still need to be clarified. In the present study, zebrafish (Danio rerio) embryos were exposed to different concentrations of Hg 2+ (0, 1, 4 and 16μg/L; added as mercuric chloride, HgCl 2 ) from 2h post-fertilization (hpf) to 168hpf. Developmental parameters and total Hg accumulation were monitored during the exposure period, and antioxidant status and the mRNA expression of genes related to the innate immune system were examined at 168hpf. The results showed that increasing Hg 2+ concentration and time significantly increased total Hg accumulation in zebrafish embryos-larvae. Exposure to 16μg/L Hg 2+ caused developmental damage, including increased mortality and malformation, decreased body length, and delayed hatching period. Meanwhile, HgCl 2 exposure (especially in the 16μg/L Hg 2+ group) induced oxidative stress affecting antioxidant enzyme (CAT, GST and GPX) activities, endogenous GSH and MDA contents, as well as the mRNA levels of genes (cat1, sod1, gstr, gpx1a, nrf2, keap1, hsp70 and mt) encoding antioxidant proteins. Moreover, the transcription levels of several representative genes (il-1β, il-8, il-10, tnfα2, lyz and c3) involved in innate immunity were up-regulated by HgCl 2 exposure, suggesting that inorganic Hg had the potential to induce immunotoxicity. Taken together, the present study provides evidence that waterborne HgCl 2 exposure can induce developmental impairment, oxidative stress and immunotoxicity in the early development stage of fish, which brings insights into the toxicity mechanisms of inorganic Hg in fish. Copyright © 2016 Elsevier B.V. All rights reserved.
Mid Columbia sturgeon incubation and rearing study
Parsley, Michael J.; Kofoot, Eric; Blubaugh, J
2011-01-01
This report describes the results from the second year of a three-year investigation on the effects of different thermal regimes on incubation and rearing early life stages of white sturgeon Acipenser transmontanus. The Columbia River has been significantly altered by the construction of dams resulting in annual flows and water temperatures that differ from historical levels. White sturgeon have been demonstrated to spawn in two very distinct sections of the Columbia River in British Columbia, Canada, which are both located immediately downstream of hydropower facilities. The thermal regimes differ substantially between these two areas. The general approach of this study was to incubate and rear white sturgeon early life stages under two thermal regimes; one mimicking the current, cool water regime of the Columbia River downstream from Revelstoke Dam, and one mimicking a warmer regime similar to conditions found on the Columbia River at the international border. Second-year results suggest that thermal regimes during incubation influence rate of egg development and size at hatch. Eggs incubated under the warm thermal regime hatched sooner than those incubated under the cool thermal regime. Mean length of free embryos at hatch was significantly different between thermal regimes with free embryos from the warm thermal regime being longer at hatch. However, free embryos from the cool thermal regime had a significantly higher mean weight at hatch. This is in contrast with results obtained during 2009. The rearing trials revealed that growth of fish reared in the cool thermal regime was substantially less than growth of fish reared in the warm thermal regime. The magnitude of mortality was greatest in the warm thermal regime prior to initiation of exogenous feeding, but chronic low levels of mortality in the cool thermal regime were higher throughout the period. The starvation trials showed that the fish in the warm thermal regime exhausted their yolk reserves faster than fish in the cool thermal regime.
NASA Astrophysics Data System (ADS)
Chambers, R. C.; Habeck, E. A.; Candelmo, A. C.; Poach, M.; Wieczorek, D.; Phelan, B.; Caldarone, E.; Cooper, K. R.
2012-12-01
The limited available evidence about effects on finfish of high CO2 levels and acidification of our oceans suggests that effects will differ across fish species, be subtle, and interact with other stressors. A carefully planned, experimental framework was developed to cast an extensive yet strategic inferential net. Three key elements of our approach are the use of 1) multiple marine finfish species of relevance to the northeastern USA that differ in their ecologies including spawning season and habitat of early life-stages; 2) a wide yet realistic range of environmental conditions (i.e., concurrent manipulation of CO2 levels and water temperatures), and 3) a diverse set of response variables related to fish sensitivity to elevated CO2 levels, water temperatures, and their interactions. The response variable set reflects fish condition, fitness, and likelihood of recruitment, and includes measures of viability, physiology, histopathology, growth, development, and behavior expressed during fish early life-stages (i.e., gametes, embryos, and larvae). Early life-stages were chosen due to the anticipation of their vulnerability to acid-base challenges in their environment. To date, factorial experiments have been implemented on summer flounder (Paralichthys dentatus) and winter flounder (Pseudopleuronectes americanus). Initial results reveal survival of summer flounder embryos is compromised by pH < 7.7 (CO2 > 790 ppm). These results were similar across offspring groups (i.e., embryos from different parents). Winter flounder are larger at hatching when exposed to high CO2 levels in the coolest environment implemented in our experiments (range 4 to 10 ○C). Further responses of advanced larvae of both flounder species are currently being assessed for evidence of other whole body, component organ, and biochemical impairment. This study will aid researchers and resource managers in identifying species types, life-stages, and biotic responses that are most sensitive to the expected future levels of CO2 and water temperature in our oceans.
Crane, Helen M; Pickford, Daniel B; Hutchinson, Thomas H; Brown, J Anne
2006-10-01
The importance of thyroid hormones in regulating early developmental processes of many amphibian and fish species is well known, but the impacts of exposure to disrupters of thyroid homeostasis during the embryo-larval-juvenile transitions are unclear. To investigate these impacts, fathead minnows, Pimephales promelas, were exposed to a model thyroid axis disrupter, methimazole, an inhibitor of thyroid hormone synthesis, at control (0), 32, 100, and 320 mug/l, starting at <24-h postfertilization, for 28, 56, and 83/84 days postfertilization (dpf). Thyroid disruption was evident at 28 dpf, when survival was significantly reduced by 32 or 100 mug/l methimazole concomitant with a reduced thyroxine (T(4)) content. However, the T(3) content of these fish was similar to that of control fish, and body mass was unaffected (as in all groups), suggesting compensatory mechanisms overcame reduced T(4) synthesis. At the highest concentration of methimazole (320 mug/l), activation of feedback mechanisms on the hypothalamic-pituitary-thyroid axis was suggested by the normal T(4) content after 28 dpf exposure to methimazole, although triiodothyronine (T(3)) content of these fish was significantly reduced. The generally less pronounced disruption of thyroid hormone homeostasis after 56 days exposure to methimazole also suggests compensatory mechanisms in juvenile/adult fish that may regulate T(4) content, despite exposure to methimazole at 32 or 100 mug/l (in fish held in 320 mug/l methimazole, the T(4) content was significantly higher than in controls). Whole body T(3) content at 56 dpf was significantly depressed only in fish held in 100 mug/l methimazole. By 83/84 dpf, length, body mass, and thyroid hormone concentrations were similar in all experimental groups and controls, indicating that adult fish may achieve regulation of their thyroid axis despite prolonged exposures to thyroid disruptors throughout early development.
Toba, A; Ishimatsu, A
2014-03-01
Air was stored in 90% of Boleophthalmus pectinirostris burrows in summer breeding months when fish were active on the mudflat surface during low tide but only in 50% of burrows in overwintering months when the fish confined themselves to burrows. The volume of gas recovered from the burrows ranged from 30 to > 400 ml. The partial pressure of oxygen (PO₂) of the gas varied from 5 to 20 kPa and was inversely related to the partial pressure of carbon dioxide (PCO₂) in all but the wintering periods. Sampling in July demonstrated that gas was stored in both male and female burrows with no difference in volume, PO₂ or PCO₂ between them. Adult fish were able to survive total submersion in hypoxic (PO₂ = 1.96 kPa) water for 8 h, but no embryos survived to hatch in the hypoxic aquatic environment. Thus, the deposited air appears to be a crucial source of oxygen for the embryos developing in the egg chamber of the burrow, but may play only a subsidiary role for adult respiration during presumed high-tide confinement. © 2014 The Fisheries Society of the British Isles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Kim H.; Schultz, Irvin R.; Nagler, James J.
Exposure of fishes to environmental estrogens is known to affect sexual development and spawning, but little information exists regarding effects on gametes. This study evaluated embryonic survival of offspring from male rainbow trout (Oncorhynchus mykiss) exposed to 17a-ethynylestradiol (EE 2)using an in vitro fertilization protocol. Males were exposed at either 1800 or 6700 degree days (8d) (i.e. 161 or 587 days post-fertilization (dpf)) to test for effects on testes linked to reproductive ontogeny. At 18008d, fish were beginning testicular differentiation and were exposed to 109 ng EE 2/l for 21 days. At 67008d, fish have testes containing spermatocytes and spermatidsmore » and were exposed for 56 days to either 0.8, 8.3, or 65 ng EE 2/l. Semen was collected at full sexual maturity in each group and used to fertilize eggs pooled from several non-exposed females. Significant decreases in embryonic survival were observed only with the 67008d exposure. In 0.8 and 8.3 ng EE 2/l treatments, embryo survival was significantly reduced at 19 dpf when compared with the control. In contrast, an immediate decrease in embryonic survival at 0.5 dpf was observed in the 65 ng EE 2/l treatment. Blood samples collected at spawning from 67008d exposed males revealed a significant decrease in 11-ketotestosterone and a significant increase in luteinizing hormone levels for the 65 ng EE 2/l treatment when compared with the other treatment groups. Results indicate that sexually maturing male rainbow trout are susceptible to EE 2 exposure with these fish exhibiting two possible mechanisms of reduced embryonic survival through sperm varying dependant« less
Smail, D A; Bain, N; Bruno, D W; King, J A; Thompson, F; Pendrey, D J; Morrice, S; Cunningham, C O
2006-01-01
During mid-June 1999 peak mortalities of 11% of the total stock per week were seen at a sea cage site of Atlantic salmon, Salmo salar L., post-smolts in the Shetland Isles, Scotland. Virus was isolated on chinook salmon embryo (CHSE) cells in a standard diagnostic test and infectious pancreatic necrosis virus (IPNV) identified by enzyme-linked immunosorbent assay. IPNV was confirmed as serogroup A by a cell immunofluorescent antibody test using the cross-reactive monoclonal antibody AS-1. Four weeks after the main outbreak, virus titres in surviving moribund fish were assayed at >10(10) TCID50 g(-1) kidney. Histopathology of moribund fish was characterized by pancreatic acinar cell necrosis and a marked catarrhal enteritis of the intestinal mucosa. In the liver, necrosis, leucocytic infiltration and a generalized cell vacuolation were noted. IPNV-specific immunostaining was demonstrated in pancreas, liver, heart, gill and kidney tissue. The nucleotide sequence of the coding region of segment A was determined from the Shetland isolate. A 1180 bp fragment of the VP2 gene of this isolate was compared with a 1979 reference isolate from mainland Scottish Atlantic salmon, La/79 and another more recent mainland isolate, 432/00. Both A2 isolates were derived from carrier fish without signs of IPN and serotyped by a plaque neutralization test. The Shetland isolate shows a different nucleotide and amino acid sequence compared with the two isolates from carrier fish. These latter isolates showed identical amino acid sequences in the fragment examined, despite the 21 years separating the isolations. Sequence comparisons with other A2 (Sp) isolates on the database confirm all three Scottish isolates are A2 (Sp).
Brown, Kim H; Schultz, Irvin R; Nagler, James J
2007-01-01
Exposure of fishes to environmental estrogens is known to affect sexual development and spawning, but little information exists regarding effects on gametes. This study evaluated embryonic survival of offspring from male rainbow trout (Oncorhynchus mykiss) exposed to 17α-ethynylestradiol (EE2) using an in vitro fertilization protocol. Males were exposed at either 1800 or 6700 degree days (°d) (i.e. 161 or 587 days post-fertilization (dpf)) to test for effects on testes linked to reproductive ontogeny. At 1800°d, fish were beginning testicular differentiation and were exposed to 109 ng EE2/l for 21 days. At 6700°d, fish have testes containing spermatocytes and spermatids and were exposed for 56 days to either 0.8, 8.3, or 65 ng EE2/l. Semen was collected at full sexual maturity in each group and used to fertilize eggs pooled from several non-exposed females. Significant decreases in embryonic survival were observed only with the 6700°d exposure. In 0.8 and 8.3 ng EE2/l treatments, embryo survival was significantly reduced at 19 dpf when compared with the control. In contrast, an immediate decrease in embryonic survival at 0.5 dpf was observed in the 65 ng EE2/l treatment. Blood samples collected at spawning from 6700°d exposed males revealed a significant decrease in 11-ketotestosterone and a significant increase in luteinizing hormone levels for the 65 ng EE2/l treatment when compared with the other treatment groups. Results indicate that sexually maturing male rainbow trout are susceptible to EE2 exposure with these fish exhibiting two possible mechanisms of reduced embryonic survival through sperm varying dependant on EE2 exposure concentrations experienced. PMID:17965256
Reinardy, Helena C; Syrett, James R; Jeffree, Ross A; Henry, Theodore B; Jha, Awadhesh N
2013-01-15
Although cobalt (Co) is an environmental contaminant of surface waters in both radioactive (e.g. (60)Co) and non-radioactive forms, there is relatively little information about Co toxicity in fishes. The objective of this study was to investigate acute and chronic toxicity of Co in zebrafish, with emphasis on male genotoxicity and implications for reproductive success. The lethal concentration for 50% mortality (LC(50)) in larval zebrafish exposed (96 h) to 0-50 mg l(-1) Co was 35.3 ± 1.1 (95%C.I.) mg l(-1) Co. Adult zebrafish were exposed (13 d) to sub-lethal (0-25 mg l(-1)) Co and allowed to spawn every 4 d and embryos were collected. After 12-d exposure, fertilisation rate was reduced (6% total eggs fertilised, 25 mg l(-1)) and embryo survival to hatching decreased (60% fertilised eggs survived, 25 mg l(-1)). A concentration-dependent increase in DNA strand breaks was detected in sperm from males exposed (13 d) to Co, and DNA damage in sperm returned to control levels after males recovered for 6 d in clean water. Induction of DNA repair genes (rad51, xrcc5, and xrcc6) in testes was complex and not directly related to Co concentration, although there was significant induction in fish exposed to 15 and 25 mg l(-1) Co relative to controls. Induction of 4.0 ± 0.9, 2.5 ± 0.7, and 3.1 ± 0.7-fold change (mean ± S.E.M. for rad51, xrcc5, and xrcc6, respectively) was observed in testes at the highest Co concentration (25 mg l(-1)). Expression of these genes was not altered in offspring (larvae) spawned after 12-d exposure. Chronic exposure to Co resulted in DNA damage in sperm, induction of DNA repair genes in testes, and indications of reduced reproductive success. Copyright © 2012 Elsevier B.V. All rights reserved.
Developmental Toxicity of Louisiana Crude Oil-Spiked Sediment to Zebrafish
Embryonic exposures to the components of petroleum, including polycyclic aromatic hydrocarbons (PAHs), cause a characteristic suite of developmental defects and cardiotoxicity in a variety of fish species. We exposed zebrafish embryos to reference sediment mixed with laboratory w...
Developmental Toxicity of Louisiana Crude Oiled Sediment to Zebrafish
Embryonic exposures to polycyclic aromatic hydrocarbons (PAHs) and petroleum products cause a characteristic suite of developmental defects in a variety of fish species. We exposed zebrafish embryos to sediment mixed with laboratory weathered South Louisiana crude oil. Oiled sedi...
Developmental Toxicity of Louisiana Crude Oiled Sediment to Zebrafish - Abstract
Polycyclic aromatic hydrocarbons (PAHs) cause a number of developmental abnormalities in developing fish embryos, which has been primarily demonstrated through water-accommodated fractions. PAH-bound sediment is a more ecologically relevant route of exposure to many developing fi...
Detecting Developmental Neurotoxicants Using Zebrafish Embryos
As part of EPA’s program on the screening and prioritization of chemicals for developmental neurotoxicity, a rapid, cost-effective in vivo vertebrate screen is being developed using an alternative species approach. Zebrafish (Danio rerio), a small freshwater fish with external f...
[The development OF THE vestibular apparatus under conditions of weightlessness].
Vinikov, Ia A; Gazenko, O G; Titovo, L K; Bornshteĭn, A A; Govardovskiĭ, V I
1976-01-01
The spawn of the aquarium fish Brachydanio rerio was developing during 5--6 days under conditions of weightlessness (first on board the spaceship "Sojuz-16", then in the space station "Salut-4") in special aquariums "EMKON", in thermostable installations. Electron microscopically the embryos were found to have a well developed labyrinth in early developmental histologically and cytologically differentiated receptory structures of the macula utriculi and macula saccili. In contrast to controls, the experimental animals showed certain alterations in the otolite organization. In similar experiments the embryos of clawed frog Xenopus laevis in the stage of the tail bud were also placed in special containers "EMKON" and thermostable apparatus "Biotherm-4" and by the spaceship "Sojuz-17" were brought to the space station "Salut-4", where it stayed for 16 days. The initial embryos had already had a well developed acoustic vesicle with macula communis. Inspite of the preliminary load by start acceleration and staying under conditions of weightlessness, they reached the general development fairly similar to controls. As it was shown electron microscopically their labyrinth had highly histologically and cytologically differentiated structures. However, a disturbance of the development of the otolithic membrane and otoconia should be noted. The alterations observed in the otolithic membrane organization in experimental fishes and frogs may be explained by general disorders in calcium metabolism.
Selenium impacts on razorback sucker, Colorado River, Colorado II. Eggs.
Hamilton, Steven J; Holley, Kathy M; Buhl, Kevin J; Bullard, Fern A
2005-05-01
Effects on hatching and development of fertilized eggs in adult razorback sucker (Xyrauchen texanus) exposed to selenium in flooded bottomland sites near Grand Junction, Colorado, were determined. After 9 months exposure, fish were collected and induced to spawn and eggs collected for inorganic element analyses. A 9-day egg study was conducted with five spawns from Horsethief ponds, six spawns from Adobe Creek channel, and four spawns from North Pond using a reference water and site waters. Selenium concentrations in eggs were 6.5 microg/g from Horsethief, 46 microg/g from Adobe Creek, 38 microg/g from North Pond, and 6.0 microg/g from brood stock. Eggs from young adults had a smaller diameter and higher moisture content than brood stock. There were no differences among the four sources in viability, survival, hatch, hatchability, or mortality of deformed embryos or larvae. Adobe Creek larvae had more deformed embryos in eggs held in site water than held in reference water. There were significant negative correlations between selenium concentrations in adult muscle plugs and percent hatch, egg diameter, and deformities in embryos. Results from this study suggest that selenium contamination in parts of the upper basin of the Colorado River should be a major concern to recovery efforts for endangered fish.
Selenium impacts on razorback sucker, Colorado River, Colorado: II. Eggs
Hamilton, S.J.; Holley, K.M.; Buhl, K.J.; Bullard, F.A.
2005-01-01
Effects on hatching and development of fertilized eggs in adult razorback sucker (Xyrauchen texanus) exposed to selenium in flooded bottomland sites near Grand Junction, Colorado, were determined. After 9 months exposure, fish were collected and induced to spawn and eggs collected for inorganic element analyses. A 9-day egg study was conducted with five spawns from Horsethief ponds, six spawns from Adobe Creek channel, and four spawns from North Pond using a reference water and site waters. Selenium concentrations in eggs were 6.5 μg/g from Horsethief, 46 μg/g from Adobe Creek, 38 μg/g from North Pond, and 6.0 μg/g from brood stock. Eggs from young adults had a smaller diameter and higher moisture content than brood stock. There were no differences among the four sources in viability, survival, hatch, hatchability, or mortality of deformed embryos or larvae. Adobe Creek larvae had more deformed embryos in eggs held in site water than held in reference water. There were significant negative correlations between selenium concentrations in adult muscle plugs and percent hatch, egg diameter, and deformities in embryos. Results from this study suggest that selenium contamination in parts of the upper basin of the Colorado River should be a major concern to recovery efforts for endangered fish.
Dwyer, F.J.; Hardesty, D.K.; Henke, C.E.; Ingersoll, C.G.; Whites, D.W.; Augspurger, T.; Canfield, T.J.; Mount, D.R.; Mayer, F.L.
2005-01-01
Toxicity tests using standard effluent test procedures described by the U.S. Environmental Protection Agency were conducted with Ceriodaphnia dubia, fathead minnows (Pimephales promelas), and seven threatened and endangered (listed) fish species from four families: (1) Acipenseridae: shortnose sturgeon (Acipenser brevirostrum); (2) Catostomidae; razorback sucker (Xyrauchen texanus); (3) Cyprinidae: bonytail chub (Gila elegans), Cape Fear shiner (Notropis mekistocholas) Colorado pikeminnow (Ptychocheilus lucius), and spotfin chub (Cyprinella monacha); and (4) Poecillidae: Gila topminnow (Poeciliopsis occidentalis). We conducted 7-day survival and growth studies with embryo-larval fathead minnows and analogous exposures using the listed species. Survival and reproduction were also determined with C. dubia. Tests were conducted with carbaryl, ammonia-or a simulated effluent complex mixture of carbaryl, copper, 4-nonylphenol, pentachlorophenol and permethrin at equitoxic proportions. In addition, Cape Fear shiners and spotfin chub were tested using diazinon, copper, and chlorine. Toxicity tests were also conducted with field-collected effluents from domestic or industrial facilities. Bonytail chub and razorback suckers were tested with effluents collected in Arizona whereas effluent samples collected from North Carolina were tested with Cape Fear shiner, spotfin chub, and shortnose sturgeon. The fathead minnow 7-day effluent test was often a reliable estimator of toxic effects to the listed fishes. However, in 21 % of the tests, a listed species was more sensitive than fathead minnows. More sensitive species results varied by test so that usually no species was always more or less sensitive than fathead minnows. Only the Gila topminnow was consistently less sensitive than the fathead minnow. Listed fish species were protected 96% of the time when results for both fathead minnows and C. dubia were considered, thus reinforcing the value of standard whole-effluent toxicity tests using those two species. If the responses of specific listed species are important for management decisions, our study supports the value in developing culture and testing procedures for those species. ?? 2005 Springer Science+Business Media, Inc.
Novo, Sergi; Penon, Oriol; Barrios, Leonardo; Nogués, Carme; Santaló, Josep; Durán, Sara; Gómez-Matínez, Rodrigo; Samitier, Josep; Plaza, José Antonio; Pérez-García, Luisa; Ibáñez, Elena
2013-06-01
Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of cultured embryos? The results achieved provide a proof of concept for a direct embryo tagging system using biofunctionalized polysilicon barcodes, which could help to minimize the risk of mismatching errors (mix-ups) in human assisted reproduction technologies. Even though the occurrence of mix-ups is rare, several cases have been reported in fertility clinics around the world. Measures to prevent the risk of mix-ups in human assisted reproduction technologies are therefore required. Mouse embryos were tagged with 10 barcodes and the effectiveness of the tagging system was tested during fresh in vitro culture (n=140) and after embryo cryopreservation (n = 84). Finally, the full-term development of tagged embryos was evaluated (n =105). Mouse pronuclear embryos were individually rolled over wheat germ agglutinin-biofunctionalized polysilicon barcodes to distribute them uniformly around the ZONA PELLUCIDA surface. Embryo viability and retention of barcodes were determined during 96 h of culture. The identification of tagged embryos was performed every 24 h in an inverted microscope and without embryo manipulation to simulate an automatic reading procedure. Full-term development of the tagged embryos was assessed after their transfer to pseudo-pregnant females. To test the validity of the embryo tagging system after a cryopreservation process, tagged embryos were frozen at the 2-cell stage using a slow freezing protocol, and followed in culture for 72 h after thawing. Neither the in vitro or in vivo development of tagged embryos was adversely affected. The tagging system also proved effective during an embryo cryopreservation process. Global identification rates higher than 96 and 92% in fresh and frozen-thawed tagged embryos, respectively, were obtained when simulating an automatic barcode reading system, although these rates could be increased to 100% by simply rotating the embryos during the reading process. The direct embryo tagging developed here has exclusively been tested in mouse embryos. Its effectiveness in other species, such as the human, is currently being tested. The direct embryo tagging system developed here, once tested in human embryos, could provide fertility clinics with a novel tool to reduce the risk of mix-ups in human assisted reproduction technologies.
Ball, Jonathan S; Stedman, Donald B; Hillegass, Jedd M; Zhang, Cindy X; Panzica-Kelly, Julie; Coburn, Aleasha; Enright, Brian P; Tornesi, Belen; Amouzadeh, Hamid R; Hetheridge, Malcolm; Gustafson, Anne-Lee; Augustine-Rauch, Karen A
2014-05-01
A consortium of biopharmaceutical companies previously developed an optimized Zebrafish developmental toxicity assay (ZEDTA) where chorionated embryos were exposed to non-proprietary test compounds from 5 to 6 h post fertilization and assessed for morphological integrity at 5 days post fertilization. With the original 20 test compounds, this achieved an overall predictive value for teratogenicity of 88% of mammalian in vivo outcome [Gustafson, A. L., Stedman, D. B., Ball, J., Hillegass, J. M., Flood, A., Zhang, C. X., Panzica-Kelly, J., Cao, J., Coburn, A., Enright, B. P., et al. (2012). Interlaboratory assessment of a harmonized Zebrafish developmental toxicology assay-Progress report on phase I. Reprod. Toxicol. 33, 155-164]. In the second phase of this project, 38 proprietary pharmaceutical compounds from four consortium members were evaluated in two laboratories using the optimized method using either pond-derived or cultivated-strain wild-type Zebrafish embryos at concentrations up to 100μM. Embryo uptake of all compounds was assessed using liquid chromatography-tandem mass spectrometry. Twenty eight of 38 compounds had a confirmed embryo uptake of >5%, and with these compounds the ZEDTA achieved an overall predictive value of 82% and 65% at the two respective laboratories. When low-uptake compounds (≤ 5%) were retested with logarithmic concentrations up to 1000μM, the overall predictivity across all 38 compounds was 79% and 62% respectively, with the first laboratory achieving 74% sensitivity (teratogen detection) and 82% specificity (non-teratogen detection) and the second laboratory achieving 63% sensitivity (teratogen detection) and 62% specificity (non-teratogen detection). Subsequent data analyses showed that technical differences rather than strain differences were the primary contributor to interlaboratory differences in predictivity. Based on these results, the ZEDTA harmonized methodology is currently being used for compound assessment at lead optimization stage of development by 4/5 of the consortium companies.
Ocean acidification effects in the early life-stages of summer flounder, Paralichthys dentatus
NASA Astrophysics Data System (ADS)
Chambers, R. C.; Candelmo, A. C.; Habeck, E. A.; Poach, M. E.; Wieczorek, D.; Cooper, K. R.; Greenfield, C. E.; Phelan, B. A.
2013-08-01
The limited available evidence about effects of high CO2 and acidification of our oceans on fish suggests that effects will differ across fish species, be subtle, and interact with other stressors. An experimental framework was implemented that includes the use of (1) multiple marine fish species of relevance to the northeastern USA that differ in their ecologies including spawning season and habitat; (2) a wide yet realistic range of environmental conditions (i.e., concurrent manipulation of CO2 levels and water temperatures), and (3) a diverse set of response variables related to fish sensitivity to elevated CO2 levels, water temperatures, and their interactions. This report is on an array of early life-history responses of summer flounder (Paralichthys dentatus), an ecologically and economically important flatfish of this region, to a wide range of pH and CO2 levels. Survival of summer flounder embryos was reduced by 50% below local ambient conditions (7.8 pH, 775 ppm pCO2) when maintained at the intermediate conditions (7.4 pH, 1860 ppm pCO2), and by 75% below local ambient when maintained at the most acidic conditions tested (7.1 pH, 4715 ppm pCO2). This pattern of reduced survival of embryos at higher CO2 levels was consistent among three females used as sources of embryos. Sizes and shapes of larvae were altered by elevated CO2 levels with longer larvae in more acidic waters. This pattern of longer larvae was evident at hatching (although longer hatchlings had less energy reserves) to midway through the larval period. Larvae from the most acidic conditions initiated metamorphosis at earlier ages and smaller sizes than those from more moderate and ambient conditions. Tissue damage was evident in older larvae (age 14 to 28 d post-hatching) from both elevated CO2 levels. Damage included liver sinusoid dilation, focal hyperplasia on the epithelium, separation of the trunk muscle bundles, and dilation of the liver sinusoids and central veins. Cranial-facial features were affected by CO2 levels that changed with ages of larvae. Skeletal elements of larvae from ambient CO2 environments were comparable or smaller than those from elevated CO2 environments when younger (14 d and 21 d post-hatching) but larger at older ages (28 d). The degree of impairment in the early life-stages of summer flounder due to elevated CO2 levels suggests that this species will be challenged by ocean acidification in the near future. Further experimental comparative studies on marine fish are warranted in order to identify the species, life-stages, ecologies, and responses that are most sensitive to increased levels of CO2 and acidity in near-future ocean waters, and a strategy is proposed for achieving these goals.
Modeling the changes in the concentration of aromatic hydrocarbons from an oil-coated gravel column
NASA Astrophysics Data System (ADS)
Jung, Jee-Hyun; Kang, Hyun-Joong; Kim, Moonkoo; Yim, Un Hyuk; An, Joon Geon; Shim, Won Joon; Kwon, Jung-Hwan
2015-12-01
The performance of a lab-scale flow-through exposure system designed for the evaluation of ecotoxicity due to oil spills was evaluated. The system simulates a spill event using an oil-coated gravel column through which filtered seawater is passed and flows into an aquarium containing fish embryos of olive flounder ( Paralichthys olivaceus) and spotted sea bass ( Lateolabrax maculates). The dissolved concentrations of individual polycyclic aromatic hydrocarbons (PAHs) in the column effluent were monitored and compared with theoretical solubilities predicted by Raoult's law. The effluent concentrations after 24 and 48 h were close to the theoretical predictions for the higher molecular weight PAHs, whereas the measured values for the lower molecular weight PAHs were lower than predicted. The ratios of the concentration of PAHs in flounder embryos to that in seawater were close to the lipid-water partition coefficients for the less hydrophobic PAHs, showing that equilibrium was attained between embryos and water. On the other hand, 48 h were insufficient to attain phase equilibrium for the more hydrophobic PAHs, indicating that the concentration in fish embryos may be lower than expected by equilibrium assumption. The results indicate that the equilibrium approach may be suitable for less hydrophobic PAHs, whereas it might overestimate the effects of more hydrophobic PAHs after oil spills because phase equilibrium in an oil-seawater-biota system is unlikely to be achieved. The ecotoxicological endpoints that were affected within a few days are likely to be influenced mainly by moderately hydrophobic components such as 3-ring PAHs.
Luo, Si; Wu, Benli; Xiong, Xiaoqin; Wang, Jianwei
2016-01-01
The ionic composition of water is important for all fish. In the present study, the effects of total hardness and Ca(2+):Mg(2+) ratio on early life stages of rare minnows (Gobiocypris rarus), a promising laboratory fish in China, were evaluated. Paired parent fish were transferred to spawning aquaria (16 L) containing water at different total hardness and Ca:Mg ratios, and their offspring were further cultured at 25 ± 1 °C and 12:12-h light:dark photoperiod. Fertilization rates were not affected by total hardness to 480 mg L(-1) CaCO3, but egg size decreased with increasing total hardness. Ca:Mg ratios less than 1:20 or greater than 8:1 had adverse influences on hatching, feeding, development, larval growth, and survival. Embryos and larvae incubated in Mg(2+)- and Ca(2+)-deficient waters exhibited high malformation rates and high mortality. Our results demonstrate that rare minnows can adapt to a wide range of total hardness and Ca:Mg ratios, although an imbalance between Ca(2+) and Mg(2+) in water is toxic to this species. To increase the comparability and usefulness of test results, we recommend the use of reconstituted or drinking water of defined total hardness and Ca:Mg ratio for the culture and toxicity testing of rare minnows.
Chromosomal mosaicism in mouse two-cell embryos after paternal exposure to acrylamide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, Francesco; Bishop, Jack; Lowe, Xiu
2008-10-14
Chromosomal mosaicism in human preimplantation embryos is a common cause ofspontaneous abortions, however, our knowledge of its etiology is limited. We used multicolor fluorescence in situ hybridization (FISH) painting to investigate whether paternally-transmitted chromosomal aberrations result in mosaicism in mouse 2-cell embryos. Paternal exposure to acrylamide, an important industrial chemical also found in tobacco smoke and generated during the cooking process of starchy foods, produced significant increases in chromosomally defective 2-cell embryos, however, the effects were transient primarily affecting the postmeiotic stages of spermatogenesis. Comparisons with our previous study of zygotes demonstrated similar frequencies of chromosomally abnormal zygotes and 2-cellmore » embryos suggesting that there was no apparent selection against numerical or structural chromosomal aberrations. However, the majority of affected 2-cell embryos were mosaics showing different chromosomal abnormalities in the two blastomeric metaphases. Analyses of chromosomal aberrations in zygotes and 2-cell embryos showed a tendency for loss of acentric fragments during the first mitotic division ofembryogenesis, while both dicentrics and translocations apparently underwent propersegregation. These results suggest that embryonic development can proceed up to the end of the second cell cycle of development in the presence of abnormal paternal chromosomes and that even dicentrics can persist through cell division. The high incidence of chromosomally mosaic 2-cell embryos suggests that the first mitotic division of embryogenesis is prone to missegregation errors and that paternally-transmitted chromosomal abnromalities increase the risk of missegregation leading to embryonic mosaicism.« less
Johnson, Ian; Hutchings, Matt; Benstead, Rachel; Thain, John; Whitehouse, Paul
2004-07-01
In the UK Direct Toxicity Assessment Programme, carried out in 1998-2000, a series of internationally recognised short-term toxicity test methods for algae, invertebrates and fishes, and rapid methods (ECLOX and Microtox) were used extensively. Abbreviated versions of conventional tests (algal growth inhibition tests, Daphnia magna immobilisation test and the oyster embryo-larval development test) were valuable for toxicity screening of effluent discharges and the identification of causes and sources of toxicity. Rapid methods based on chemiluminescence and bioluminescence were not generally useful in this programme, but may have a role where the rapid test has been shown to be an acceptable surrogate for a standardised test method. A range of quality assurance and control measures were identified. Requirements for quality control/assurance are most stringent when deriving data for characterising the toxic hazards of effluents and monitoring compliance against a toxicity reduction target. Lower quality control/assurance requirements can be applied to discharge screening and the identification of causes and sources of toxicity.
2000-02-01
yolk proteins that serve to nourish the developing embryo . Depending on the species of fish and the experimental technique used, GTH-I, GTH-II, or...mium (Pereira et al. 1993), and walking catfish ( Clarias batrachus) injected with lead, zinc, and mer- curic acetate (Panigrahi et al. 1990...1989. Fish pathology. London: Bailliere Tindall. Rodriguez JN, Oteme ZJ, Hem, S. 1995. Comparative study of vitellogenesis of two African catfish
1979-08-01
eating contaminated fish and birds. Oil on feathers of birds carried to their eggs can kill the embryos. Heavier petroleum products, if spilled, would...result in death or sickness. Petroleum products on shore or in the water can get on bird feathers. Birds in the water lose both insulation and buoyancy...lake basin did not find detectable levels of hazardous substances such as arsenic, phenols, mercury, PCB’s and other chlorinated hydrocarbons . The
Chronic exposure to environmental levels of tribromophenol impairs zebrafish reproduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng Jun; Graduate School of the Chinese Academy of Sciences, Beijing 100039; Liu Chunsheng
Tribromophenol (2,4,6-TBP) is ubiquitously found in aquatic environments and biota. In this study, we exposed zebrafish embryos (F{sub 0}; 2'''' days post-fertilization, dpf) to environmental concentration (0.3 mug/L) and a higher concentration (3.0 mug/L) of TBP and assessed the impact of chronic exposure (120 dpf) on reproduction. TBP exposure did not cause a significant increase in the malformation and reduction in the survival in the F{sub 0}-generation fish. After TBP exposure, the plasma testosterone and estradiol levels significantly increased in males and decreased in females. The transcription of steroidogenic genes (3beta-HSD, 17beta-HSD, CYP17, CYP19A, CYP19B) was significantly upregulated in themore » brain and testes in males and downregulated in the brain and ovary in females. TBP exposure significantly downregulated and upregulated the expression of VTG in the liver of female and male fish, respectively. Meanwhile, TBP exposure altered the sex ratio toward a male-dominant state. The F{sub 1}-generation larvae exhibited increased malformation, reduced survival, and retarded growth, suggesting that TBP in the aquatic environment has significant adverse effects on fish population.« less
González-Contreras, A; Magariños, B; Godoy, M; Irgang, R; Toranzo, A E; Avendaño-Herrera, R
2011-03-01
Streptococcus phocae is an emerging pathogen for Chilean Atlantic salmon, Salmo salar, but the factors determining its virulence are not yet elucidated. In this work, cell surface-related properties such as hydrophobicity and haemagglutination, adhesion to mucus and cell lines, capsule detection, survival and biofilm formation in skin mucus and serum resistance of the isolates responsible for outbreaks in Atlantic salmon and seals were examined. Adhesion to hydrocarbons and the results of salt aggregation tests indicated most of the S. phocae were strongly hydrophobic. All isolates exhibited a similar ability to attach to the Chinook salmon embryo (CHSE) cells line, but were not able to enter CHSE cells. Haemagglutination was not detected. Our data clearly indicate that S. phocae can resist the killing activity of mucus and serum and proliferate in them, which could be associated with the presence of a capsular layer around the cells. Pathogenicity studies using seal and fish isolates demonstrated mortality or pathological signs in fish injected only with the Atlantic salmon isolate. No mortalities or histopathological alterations were observed in fish injected with extracellular products. © 2011 Blackwell Publishing Ltd.
Complex chromosomal rearrangement-a lesson learned from PGS.
Frumkin, Tsvia; Peleg, Sagit; Gold, Veronica; Reches, Adi; Asaf, Shiri; Azem, Foad; Ben-Yosef, Dalit; Malcov, Mira
2017-08-01
The aim of the study is to report a case of non-diagnosed complex chromosomal rearrangement (CCR) identified by preimplantation genetic screening (PGS) followed by preimplantation genetic diagnosis (PGD) which resulted in a pregnancy and delivery of healthy offspring. A 29-year-old woman and her spouse, both diagnosed previously with normal karyotypes, approached our IVF-PGD center following eight early spontaneous miscarriages. PGS using chromosomal microarray analysis (CMA) was performed on biopsied trophectoderm. Fluorescence in situ hybridization (FISH), as well as re-karyotype, were performed on metaphase derived from peripheral blood of the couple. Subsequently, in the following PGD cycle, a total of seven blastocysts underwent CMA. A gain or loss at three chromosomes (3, 7, 9) was identified in six out of seven embryos in the first PGS-CMA cycle. FISH analysis of parental peripheral blood samples demonstrated that the male is a carrier of a CCR involving those chromosomes; this was in spite of a former diagnosis of normal karyotypes for both parents. Re-karyotype verified the complex translocation of 46,XY,t (3;7;9)(q23;q22;q22). Subsequently, in the following cycle, a total of seven blastocysts underwent PGD-CMA for the identified complex translocation. Two embryos were diagnosed with balanced chromosomal constitution. A single balanced embryo was transferred and pregnancy was achieved, resulting in the birth of a healthy female baby. PGS employing CMA is an efficient method to detect unrevealed chromosomal abnormalities, including complicated cases of CCR. The combined application of array CGH and FISH technologies enables the identification of an increased number of CCR carriers for which PGD is particularly beneficial.
Barbee, Nicole C; Ganio, Katherine; Swearer, Stephen E
2014-07-01
Estuaries are natural sinks for a wide range of urban, industrial and agricultural contaminants that accumulate at potentially toxic but non-lethal concentrations, yet we know relatively little about the long-term impacts of toxicants at these levels on aquatic organisms. In this study, we present an integrated, multi-pronged approach to detect and assess the impacts to estuarine fish of exposure to sublethal concentrations of metal mixtures. Our aims were to (1) examine the effects of sublethal metal exposure on the embryonic development of Galaxias maculatus, an estuarine spawning fish native to southeastern Australia, (2) determine whether sublethal exposure during development has knock-on effects on larval behaviour, and (3) establish whether a signature of metal exposure during embryogenesis can be detected in larval otoliths ("ear bones"). G. maculatus eggs are fertilised in water but develop aerially, in direct contact with estuarine sediments. We were thus also able to explore the relative importance of two exposure pathways, water and sediment. Embryos were exposed to two concentrations of a metal mixture containing Cu, Zn and Pb in water (during fertilisation) and on spiked sediments (during development), using a fully crossed experimental design. Overall, we found that exposure to the metal mixture reduced embryo survival and slowed embryonic development, resulting in poorer quality larvae that exhibited a reduced phototactic response. Differences in exposure to metals between treatment and control embryos were also permanently recorded in the developing otoliths. Combined these three approaches have the potential to be a powerful novel bioassessment tool as they provide a means of identifying a history of metal exposure during the embryonic period and linking it to suboptimal early growth and performance traits which could have long term fitness consequences. Copyright © 2014 Elsevier B.V. All rights reserved.
Kobayashi, Hiroshi; Parton, Angela; Czechanski, Anne; Durkin, Christopher; Kong, Chi-Chon; Barnes, David
2007-01-01
The multidrug resistance-associated protein 3 (MRP3/Mrp3) is a member of the ATP-binding cassette (ABC) protein family of membrane transporters and related proteins that act on a variety of xenobiotic and anionic molecules to transfer these substrates in an ATP-dependent manner. In recent years, useful comparative information regarding evolutionarily conserved structure and transport functions of these proteins has accrued through the use of primitive marine animals such as cartilaginous fish. Until recently, one missing tool in comparative studies with cartilaginous fish was cell culture. We have derived from the embryo of Squalus acanthias, the spiny dogfish shark, the S. acanthias embryo (SAE) mesenchymal stem cell line. This is the first continuously proliferating cell line from a cartilaginous fish. We identified expression of Mrp3 in this cell line, cloned the molecule, and examined molecular and cellular physiological aspects of the protein. Shark Mrp3 is characterized by three membrane-spanning domains and two nucleotide-binding domains. Multiple alignments with other species showed that the shark Mrp3 amino acid sequence was well conserved. The shark sequence was overall 64% identical to human MRP3, 72% identical to chicken Mrp3, and 71% identical to frog and stickleback Mrp3. Highest identity between shark and human amino acid sequence (82%) was seen in the carboxyl-terminal nucleotide-binding domain of the proteins. Cell culture experiments showed that mRNA for the protein was induced as much as 25-fold by peptide growth factors, fetal bovine serum, and lipid nutritional components, with the largest effect mediated by a combination of lipids including unsaturated and saturated fatty acids, cholesterol, and vitamin E.
Folkerts, Erik J; Blewett, Tamzin A; He, Yuhe; Goss, Greg G
2017-12-01
Hydraulic fracturing flowback and produced water (FPW) is a wastewater produced during fracturing activities in an operating well which is hyper saline and chemically heterogeneous in nature, containing both anthropogenic and petrogenic chemicals. Determination of FPW associated toxicity to embryonic fish is limited, while investigation into how embryonic exposures may affect later life stages is not yet studied. Zebrafish embryos (24hrs post fertilization) were acutely exposed to 2.5% and 5% FPW fractions for either 24 or 48hrs and returned to freshwater. After either 24 or 48h exposures, embryos were examined for expression of 3 hypoxia related genes. Erythropoietin (epoa) but not hypoxia inducible factor (hif1aa) nor hemoglobin -ß chain (hbbe1.1) was up-regulated after either 24 or 48h FPW exposure. Surviving embryos were placed in freshwater and grown to a juvenile stage (60days post fertilization). Previously exposed zebrafish were analyzed for both swim performance (U crit and U max ) and aerobic capacity. Fish exposed to both sediment containing (FPW-S) or sediment free (FPW-SF) FPW displayed significantly reduced aerobic scope and U crit /U max values compared to control conditions. Our results collectively suggest that organics present in our FPW sample may be responsible for sub-lethal fitness and metabolic responses. We provide evidence supporting the theory that the cardio-respiratory system is impacted by FPW exposure. This is the first known research associating embryonic FPW exposures to sub-lethal performance related responses in later life fish stages. Copyright © 2017 Elsevier B.V. All rights reserved.
The male handicap: male-biased mortality explains skewed sex ratios in brown trout embryos.
Morán, P; Labbé, L; Garcia de Leaniz, C
2016-12-01
Juvenile sex ratios are often assumed to be equal for many species with genetic sex determination, but this has rarely been tested in fish embryos due to their small size and absence of sex-specific markers. We artificially crossed three populations of brown trout and used a recently developed genetic marker for sexing the offspring of both pure and hybrid crosses. Sex ratios (SR = proportion of males) varied widely one month after hatching ranging from 0.15 to 0.90 (mean = 0.39 ± 0.03). Families with high survival tended to produce balanced or male-biased sex ratios, but SR was significantly female-biased when survival was low, suggesting that males sustain higher mortality during development. No difference in SR was found between pure and hybrid families, but the existence of sire × dam interactions suggests that genetic incompatibility may play a role in determining sex ratios. Our findings have implications for animal breeding and conservation because skewed sex ratios will tend to reduce effective population size and bias selection estimates. © 2016 The Authors.
Volpi Ghirardini, A; Arizzi Novelli, A; Tagliapietra, D
2005-09-01
The capacity of two toxicity bioassays (fertilization and embryo toxicity tests) to discriminate sediment toxicity using the sea urchin Paracentrotus lividus was tested in five stations with different levels of pollution in the Lagoon of Venice. Two stations were located in estuarine sites, two in the industrial zone, and one in a site at the top of our quality gradient (reference). Elutriate was chosen as sediment matrix to assess the potential effects of bioavailable pollutants in the water column as a consequence of sediment resuspension (dredging and dumping, fishing gear, etc.). An experimental design based on Quality Assurance/Quality Control procedures (QA/QC) was adopted in order to set the methodological basis for an effective use of these bioassays in monitoring programs. Results revealed both higher embriotoxicity than spermiotoxicity in all stations and the efficacy of combined use of both toxicity bioassays in discriminating differing pollution/bioavailability between stations and periods. The good representativeness of the integrated sampling scheme and the standardization of all experimental phases yielded high precision of results. Clear Toxicity Fingerprints were evidenced for the investigated sites through the combined use of both bioassays. A good fit between ecotoxicological data and chemical contamination levels was found, except for unnatural sediment texture.
Transfering vitamin C from fish to embryos
USDA-ARS?s Scientific Manuscript database
Beneficial effects of ascorbic acid supplementation to broodstock of a select aquaculture species is well documented. At the present levels of feeding, dietary means of vitamin C does not meet the requirements for maturation, reproduction and needs of early life stages of larvae. In addition, thi...
Biophotonic patterns of optical interactions between fish eggs and embryos.
Beloussov, L V; Burlakov, A B; Louchinskaia, N N
2003-05-01
The optical (non-substantial) interactions between various biological samples have been evident in a number of cases mainly by the effects on their functional activity and developmental patterns. However, the mechanisms of these interactions have remained obscure. Effect of optical interaction has been observed on the intensity and Fourier patterns of biophoton emission of fish embryos. We demonstrate that: (1) the short-term optical interactions are accompanied by a gradual decrease of a total emission intensity of the interacting batches; (2) this effect is spread laterally to that part of a batch which does not have any direct optical contacts with its partner; and (3) the long-term optical contacts lead to a mutual exchange of spectral characteristics of interacting batches in which the total spectral density values are reversed (often with an overshoot). The reversal rate depends upon the developmental distance between the optical partners and the initial differences of their spectral characteristics. The results are discussed in terms of a sub-radiance and Le Chatelier principle.
Toxic effects of triazophos on rare minnow (Gobiocypris rarus) embryos and larvae.
Zhu, Bin; Gong, Yu-Xin; Liu, Lei; Li, Dong-Liang; Wang, Yuan; Ling, Fei; Wang, Gao-Xue
2014-08-01
Triazophos (TAP) has been widely used in agriculture for controlling insect pests and is a known organophosphorus pesticide. Due to TAP characteristics, such as high chemical and photochemical stability, its potential toxicity to aquatic organisms has gained great interest. To explore the potential developmental toxicity of TAP, Gobiocypris rarus embryos and larvae were exposed to various concentrations of TAP (0.1-15 mg L(-1)) until 72 h. Results showed that values of 72 h LC50 and EC50 were 7.44 and 5.60 mg L(-1) for embryos, 2.52 and 1.37 mg L(-1) for larvae. Increased malformation, decreased heart rate and body length provide a gradual concentration-dependent pattern. Enzyme activities and mRNA levels were significantly changed even at low concentration (0.05 mg L(-1) for embryos and 0.01 mg L(-(1) for larvae). Overall, the present study points out that TAP is likely a risk to the early development of G. rarus. The information presented in this study will be helpful in better understanding the toxicity induced by TAP in fish embryos and larvae. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mommer, Brett C; Bell, Alison M
2014-01-01
There is growing evidence for nongenetic effects of maternal experience on offspring. For example, previous studies have shown that female threespined stickleback fish (Gasterosteus aculeatus) exposed to predation risk produce offspring with altered behavior, metabolism and stress physiology. Here, we investigate the effect of maternal exposure to predation risk on the embryonic transcriptome in sticklebacks. Using RNA-sequencing we compared genome-wide transcription in three day post-fertilization embryos of predator-exposed and control mothers. There were hundreds of differentially expressed transcripts between embryos of predator-exposed mothers and embryos of control mothers including several non-coding RNAs. Gene Ontology analysis revealed biological pathways involved in metabolism, epigenetic inheritance, and neural proliferation and differentiation that differed between treatments. Interestingly, predation risk is associated with an accelerated life history in many vertebrates, and several of the genes and biological pathways that were identified in this study suggest that maternal exposure to predation risk accelerates the timing of embryonic development. Consistent with this hypothesis, embryos of predator-exposed mothers were larger than embryos of control mothers. These findings point to some of the molecular mechanisms that might underlie maternal effects.
Selenium and mercury have a synergistic negative effect on fish reproduction.
Penglase, S; Hamre, K; Ellingsen, S
2014-04-01
Selenium (Se) can reduce the negative impacts of mercury (Hg) toxicity on growth and survival, but little is known about how these two elements interact in reproduction. In the following study we explored the effects of organic Hg and Se on the growth, survival and reproduction of female zebrafish (Danio rerio). Fish were fed one of four diets from 73 until 226 dpf in a 2 × 2 factorial design, using selenomethionine (SeMet) and methylmercury (MeHg) as the Se and Hg sources, respectively. Each diet contained Se at either requirement (0.7 mg Se/kg DM) or elevated levels (10 mg Se/kgDM), and Hg at either low (0.05 mg Hg/kg DM) or elevated (12 mg Hg/kg DM) levels. Between 151 and 206 dpf the female fish were pairwise crossed against untreated male fish and the mating success, fecundity, embryo survival, and subsequent overall reproductive success were measured. Elevated dietary Se reduced Hg levels in both the adult fish and their eggs. Elevated dietary Hg and Se increased egg Se levels to a greater extent than when dietary Se was elevated alone. At elevated maternal intake levels, egg concentrations of Se and Hg reflected the maternal dietary levels and not the body burdens of the adult fish. Elevated dietary Hg reduced the growth and survival of female fish, but these effects were largely prevented with elevated dietary Se. Elevated dietary Se alone did not affect fish growth or survival. Compared to other treatments, elevated dietary Hg alone increased both mating and overall reproductive success with <100 days of exposure, but decreased these parameters with >100 days exposure. Elevated dietary Se decreased fecundity, embryo survival, and overall reproductive success. The combination of elevated Se and Hg had a synergistic negative effect on all aspects of fish reproduction compared to those groups fed elevated levels of either Se or Hg. Overall the data demonstrate that while increased dietary Se may reduce adverse effects of Hg on the growth and survival in adult fish, it can negatively affect fish reproductive potential, and the effect on reproduction is enhanced in the presence of elevated Hg. Copyright © 2014 Elsevier B.V. All rights reserved.
The Zebrafish Xenograft Platform: Evolution of a Novel Cancer Model and Preclinical Screening Tool.
Wertman, Jaime; Veinotte, Chansey J; Dellaire, Graham; Berman, Jason N
2016-01-01
Animal xenografts of human cancers represent a key preclinical tool in the field of cancer research. While mouse xenografts have long been the gold standard, investigators have begun to use zebrafish (Danio rerio) xenotransplantation as a relatively rapid, robust and cost-effective in vivo model of human cancers. There are several important methodological considerations in the design of an informative and efficient zebrafish xenotransplantation experiment. Various transgenic fish strains have been created that facilitate microscopic observation, ranging from the completely transparent casper fish to the Tg(fli1:eGFP) fish that expresses fluorescent GFP protein in its vascular tissue. While human cancer cell lines have been used extensively in zebrafish xenotransplantation studies, several reports have also used primary patient samples as the donor material. The zebrafish is ideally suited for transplanting primary patient material by virtue of the relatively low number of cells required for each embryo (between 50 and 300 cells), the absence of an adaptive immune system in the early zebrafish embryo, and the short experimental timeframe (5-7 days). Following xenotransplantation into the fish, cells can be tracked using in vivo or ex vivo measures of cell proliferation and migration, facilitated by fluorescence or human-specific protein expression. Importantly, assays have been developed that allow for the reliable detection of in vivo human cancer cell growth or inhibition following administration of drugs of interest. The zebrafish xenotransplantation model is a unique and effective tool for the study of cancer cell biology.
Code of Federal Regulations, 2013 CFR
2013-01-01
... EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth Disease Exists § 98.13 Import permit. (a) Ruminant and swine embryos and all test samples required by this... for a permit to import embryos will also serve as the application for a permit to import test samples...
9 CFR 113.37 - Detection of pathogens by the chicken embryo inoculation test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... embryo inoculation test. 113.37 Section 113.37 Animals and Animal Products ANIMAL AND PLANT HEALTH... VECTORS STANDARD REQUIREMENTS Standard Procedures § 113.37 Detection of pathogens by the chicken embryo...-serum mixture shall be inoculated into each of at least 20 fully susceptible chicken embryos. (1) Twenty...
Code of Federal Regulations, 2014 CFR
2014-01-01
... EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth Disease Exists § 98.13 Import permit. (a) Ruminant and swine embryos and all test samples required by this... for a permit to import embryos will also serve as the application for a permit to import test samples...
Code of Federal Regulations, 2012 CFR
2012-01-01
... EMBRYOS AND ANIMAL SEMEN Ruminant and Swine Embryos From Regions Where Rinderpest or Foot-and-Mouth Disease Exists § 98.13 Import permit. (a) Ruminant and swine embryos and all test samples required by this... for a permit to import embryos will also serve as the application for a permit to import test samples...
Bhandari, Ramji K.; vom Saal, Frederick S.; Tillitt, Donald E.
2015-01-01
The transgenerational consequences of environmental contaminant exposures of aquatic vertebrates have the potential for broad ecological impacts, yet are largely uninvestigated. Bisphenol A (BPA) and 17α-ethinylestradiol (EE2) are two ubiquitous estrogenic chemicals present in aquatic environments throughout the United States and many other countries. Aquatic organisms, including fish, are exposed to varying concentrations of these chemicals at various stages of their life history. Here, we tested the ability of embryonic exposure to BPA or EE2 to cause adverse health outcomes at later life stages and transgenerational abnormalities in medaka fish. Exposures of F0 medaka to either BPA (100 μg/L) or EE2 (0.05 μg/L) during the first 7 days of embryonic development, when germ cells are differentiating, did not cause any apparent phenotypic abnormalities in F0 or F1 generations, but led to a significant reduction in the fertilization rate in offspring two generations later (F2) as well as a reduction of embryo survival in offspring three generations later (F3). Our present observations suggest that BPA or EE2 exposure during development induces transgenerational phenotypes of reproductive impairment and compromised embryonic survival in fish of subsequent generations. These adverse outcomes may have negative impacts on populations of fish inhabiting contaminated aquatic environments.
Prenatal regression of the trophotaenial placenta in a viviparous fish, Xenotoca eiseni
Iida, Atsuo; Nishimaki, Toshiyuki; Sehara-Fujisawa, Atsuko
2015-01-01
The trophotaenial placenta is a branching, ribbon-like structure that extends from the perianal region of the embryo in viviparous teleost fishes belonging to the family Goodeidae. It is a hindgut-derived pseudoplacenta, which contributes to absorbing maternal nutrients during the prenatal stage. The trophotaeniae are known to reduce at birth; however, no previous study has evaluated the removal mechanisms. We report here the analysis of the trophotaeniae using the goodeid fish species Xenotoca eiseni. The X. eiseni trophotaenia consists of an epidermal cell layer, mesenchyme, vasculature, and circulating erythrocytes. The trophotaeniae had preliminary regressed when the embryo was born. Immunohistochemistry indicated that caspase3-activated cells with fragmented nuclei are present in the regressed processes of the fry immediately after birth, but not in the vasculature and blood cells. This finding suggests that the trophotaenia is rapidly resorbed by apoptosis in the last phase of the pregnancy and that its circulatory pathway is maintained. Such prenatal regression of pseudoplacentae has not been reported in other viviparous vertebrates. On the other hand, similar apoptotic remodeling in the gut has been reported in amphibians, which is regulated by thyroid hormone. Thus, apoptotic regression of the trophotaeniae might occur in a manner similar to amphibian metamorphosis. PMID:25598151
Andrews, Tessa M.; Shepard, Bradley B.; Litt, Andrea R.; Kruse, Carter G.; Zale, Alexander V.; Kalinowski, Steven T.
2013-01-01
Translocations are frequently used to increase the abundance and range of endangered fishes. One factor likely to affect the outcome of translocations is fish movement. We introduced embryos from five Westslope Cutthroat Trout Oncorhynchus clarkii lewisi populations (both hatchery and wild) at five different locations within a fishless watershed. We then examined the movement of age-1 and age-2 fish and looked for differences in movement distance among source populations and among introduction sites; we also examined the interactions among age, population, and introduction site. At age 1, most individuals (90.9%) remained within 1,000 m their introduction sites. By age 2, the majority of individuals (58.3%) still remained within 1,000 m of their introduction site, but considerably more individuals had moved downstream, some more than 6,000 m from their introduction site. We observed a significant interaction between age and source population (F 4, 1077 = 15.45, P 4, 1077 = 11.39, P < 0.0008), so we presented results in the context of these interactions. Within age-groups, we observed differences in movement behavior among source populations and among donor populations of Westslope Cutthroat Trout. We discuss these findings in light of previous research on juvenile salmonid movement.
[How can we nowadays select the best embryo to transfer?].
Alter, L; Boitrelle, F; Sifer, C
2014-01-01
Multiple pregnancies stand as the most common adverse outcome of assisted reproduction technologies (ART) and the dangers associated with those pregnancies have been reduced by doing elective single embryo transfers (e-SET). Many studies have shown that e-SET is compatible with a continuously high pregnancy rate per embryo transfer. Yet, it still becomes necessary to improve the selection process in order to define the quality of individual embryos - so that the ones we choose for transfer are more likely to implant. First, analysis of embryo morphology has greatly helped in this identification and remains the most relevant criterion for choosing the embryo. The introduction of time-lapse imaging provides new criteria predictive of implantation potential, but the real contribution of this system - including the benefit/cost ratio - seems to be not yet properly established. In this context, extended culture until blastocyst stage is an essential practice but it appears wise to keep it for a population showing a good prognosis. Then, the failure of aneuploid embryos to implant properly led to achieve preimplantation genetic screening (PGS) in order to increase pregnancy and delivery rates after ART. However, PGS by fluorescence in situ hybridization (FISH) at day 3 is a useless process - and may even be harmful. Another solution involves using comparative genomic hybridisation (CGH) and moving to blastocyst biopsy. Finally, it is envisaged that morphology will also be significantly aided by non-invasive analysis of biomarkers in the culture media that give a better reflection of whole-embryo physiology and function. Copyright © 2014. Published by Elsevier SAS.
Le Bihanic, Florane; Morin, Bénédicte; Cousin, Xavier; Le Menach, Karyn; Budzinski, Hélène; Cachot, Jérôme
2014-12-01
A new gravel-contact assay using rainbow trout, Oncorhynchus mykiss, embryos was developed to assess the toxicity of polycyclic aromatic hydrocarbons (PAHs) and other hydrophobic compounds. Environmentally realistic exposure conditions were mimicked with a direct exposure of eyed rainbow trout embryos incubated onto chemical-spiked gravels until hatching at 10 °C. Several endpoints were recorded including survival, hatching delay, hatching success, biometry, developmental abnormalities, and DNA damage (comet and micronucleus assays). This bioassay was firstly tested with two model PAHs, fluoranthene and benzo[a]pyrene. Then, the method was applied to compare the toxicity of three PAH complex mixtures characterized by different PAH compositions: a pyrolytic extract from a PAH-contaminated sediment (Seine estuary, France) and two petrogenic extracts from Arabian Light and Erika oils, at two environmental concentrations, 3 and 10 μg g(-1) sum of PAHs. The degree and spectrum of toxicity were different according to the extract considered. Acute effects including embryo mortality and decreased hatching success were observed only for Erika oil extract. Arabian Light and pyrolytic extracts induced mainly sublethal effects including reduced larvae size and hemorrhages. Arabian Light and Erika extracts both induced repairable DNA damage as revealed by the comet assay versus the micronucleus assay. The concentration and proportion of methylphenanthrenes and methylanthracenes appeared to drive the toxicity of the three PAH fractions tested, featuring a toxic gradient as follows: pyrolytic < Arabian Light < Erika. The minimal concentration causing developmental defects was as low as 0.7 μg g(-1) sum of PAHs, indicating the high sensitivity of the assay and validating its use for toxicity assessment of particle-bound pollutants.
Wang, Xiao H; Souders, Christopher L; Zhao, Yuan H; Martyniuk, Christopher J
2018-01-01
The dipyridyl herbicide paraquat induces oxidative stress in cells and is implicated in adult neurodegenerative diseases. However, less is known about paraquat toxicity in early stages of vertebrate development. To address this gap, zebrafish (Danio rerio) embryos were exposed to 1, 10 and 100 μM paraquat for 96 h. Paraquat did not induce significant mortality nor deformity in embryos and larvae, but it did accelerate time to hatch. To evaluate whether mitochondrial respiration was related to earlier hatch times, oxygen consumption rate was measured in whole embryos. Maximal respiration of embryos exposed to 100 μM paraquat for 24 h was reduced by more than 70%, suggesting that paraquat negatively impacts mitochondrial bioenergetics in early development. Based upon this evidence for mitochondrial dysfunction, transcriptional responses of oxidative stress- and apoptosis-related genes were measured. Fish exposed to 1 μM paraquat showed higher expression levels of superoxide dismutase 2, heat shock protein 70, Bcl-2-associated X protein, and B-cell CLL/lymphoma 2a compared to control fish. No differences among groups were detected in larvae exposed to 10 and 100 μM paraquat, suggesting a non-monotonic response. We also measured endpoints related to larval behavior and dopaminergic signaling as paraquat is associated with degeneration of dopamine neurons. Locomotor activity was stimulated with 100 μM paraquat and dopamine transporter and dopamine receptor 3 mRNA levels were increased in larvae exposed to 1 μM paraquat, interpreted to be a compensatory response at lower concentrations. This study improves mechanistic understanding into the toxic actions of paraquat on early developmental stages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Immunostaining of dissected zebrafish embryonic heart.
Yang, Jingchun; Xu, Xiaolei
2012-01-10
Zebrafish embryo becomes a popular in vivo vertebrate model for studying cardiac development and human heart diseases due to its advantageous embryology and genetics. About 100-200 embryos are readily available every week from a single pair of adult fish. The transparent embryos that develop ex utero make them ideal for assessing cardiac defects. The expression of any gene can be manipulated via morpholino technology or RNA injection. Moreover, forward genetic screens have already generated a list of mutants that affect different perspectives of cardiogenesis. Whole mount immunostaining is an important technique in this animal model to reveal the expression pattern of the targeted protein to a particular tissue. However, high resolution images that can reveal cellular or subcellular structures have been difficult, mainly due to the physical location of the heart and the poor penetration of the antibodies. Here, we present a method to address these bottlenecks by dissecting heart first and then conducting the staining process on the surface of a microscope slide. To prevent the loss of small heart samples and to facilitate solution handling, we restricted the heart samples within a circle on the surface of the microscope slides drawn by an immEdge pen. After the staining, the fluorescence signals can be directly observed by a compound microscope. Our new method significantly improves the penetration for antibodies, since a heart from an embryonic fish only consists of few cell layers. High quality images from intact hearts can be obtained within a much reduced procession time for zebrafish embryos aged from day 2 to day 6. Our method can be potentially extended to stain other organs dissected from either zebrafish or other small animals. Copyright © 2012 Journal of Visualized Experiments
Formation of the spinal network in zebrafish determined by domain-specific Pax genes
Ikenaga, Takanori; Urban, Jason M.; Gebhart, Nichole; Hatta, Kohei; Kawakami, Koichi; Ono, Fumihito
2012-01-01
In the formation of the spinal network, various transcription factors interact to develop specific cell types. Using a gene trap technique, we established a stable line of zebrafish in which the red fluorescent protein (RFP) was inserted in the pax8 gene. RFP insertion marked putative pax8-lineage cells with fluorescence and inhibited pax8 expression in homozygous embryos. Pax8 homozygous embryos displayed defects in the otic vesicle, as previously reported in studies using morpholinos. The pax8 homozygous embryos survived to adulthood in contrast to mammalian counterparts that die prematurely. RFP is expressed in the dorsal spinal cord. Examination of the axon morphology revealed that RFP (+) neurons include Commissural Bifurcating Longitudinal (CoBL) interneurons, but other inhibitory neurons such as Commissural Local (CoLo) interneurons and Circumferential Ascending (CiA) interneurons do not express RFP. We examined the effect of inhibiting pax2a/pax8 expression on interneuron development. In pax8 homozygous fish, the RFP (+) cells undergo differentiation similar to that of pax8 heterozygous fish, and the swimming behavior remained intact. In contrast, the RFP (+) cells of pax2a/pax8 double mutants displayed altered cell fates. CoBLs were not observed. Instead, RFP (+) cells exhibited axons descending ipsilaterally: a morphology resembling that of V2a/V2b interneurons. PMID:21452218
Formation of the spinal network in zebrafish determined by domain-specific pax genes.
Ikenaga, Takanori; Urban, Jason M; Gebhart, Nichole; Hatta, Kohei; Kawakami, Koichi; Ono, Fumihito
2011-06-01
In the formation of the spinal network, various transcription factors interact to develop specific cell types. By using a gene trap technique, we established a stable line of zebrafish in which the red fluorescent protein (RFP) was inserted into the pax8 gene. RFP insertion marked putative pax8-lineage cells with fluorescence and inhibited pax8 expression in homozygous embryos. Pax8 homozygous embryos displayed defects in the otic vesicle, as previously reported in studies with morpholinos. The pax8 homozygous embryos survived to adulthood, in contrast to mammalian counterparts that die prematurely. RFP is expressed in the dorsal spinal cord. Examination of the axon morphology revealed that RFP(+) neurons include commissural bifurcating longitudinal (CoBL) interneurons, but other inhibitory neurons such as commissural local (CoLo) interneurons and circumferential ascending (CiA) interneurons do not express RFP. We examined the effect of inhibiting pax2a/pax8 expression on interneuron development. In pax8 homozygous fish, the RFP(+) cells underwent differentiation similar to that of pax8 heterozygous fish, and the swimming behavior remained intact. In contrast, the RFP(+) cells of pax2a/pax8 double mutants displayed altered cell fates. CoBLs were not observed. Instead, RFP(+) cells exhibited axons descending ipsilaterally, a morphology resembling that of V2a/V2b interneurons. Copyright © 2010 Wiley-Liss, Inc.
Simoneschi, Daniele; Simoneschi, Francesco; Todd, Nancy E
2014-06-01
Malathion, a common organophosphate insecticide, is a proven acetylcholinesterase inhibitor and is the most applied organophosphate insecticide in the United States. The use of zebrafish as a model to study the effects of pesticides on development is an innovative approach yielding relevant implications for determining the potential toxic effects of these pesticides on humans. In this study, a simple noninvasive technique was developed to investigate the cardiotoxicity of malathion on Danio rerio embryos, and to detect and quantify its effect on heart rate. Videos were recorded under a stereomicroscope and examined with our custom-made software (FishBeat) to determine the heart rate of the embryos. The pixel average intensity frequency (PI) of the videos was computed at its maximum probability to indicate the average number of heartbeats per second. Experimental observations successfully demonstrated that this method was able to detect the heart rate of zebrafish embryos as compared with manual stopwatch counting, with no significant difference. Embryos were treated acutely with increasing malathion concentrations (33.3 and 50 μg/mL malathion) at 52, 76, and 96 hpf. Embryos treated with 33.3 μg/mL malathion had significant bradycardia at 52 and 76 hpf, whereas embryos treated with 50 μg/mL malathion presented bradycardia at all hpf. These novel observations confirmed that malathion, acting as an acetylcholinesterase inhibitor, induced heartbeat irregularity in zebrafish embryos.
Effects of dietary methylmercury on reproduction of fathead minnows
Hammerschmidt, C.R.; Sandheinrich, M.B.; Wiener, J.G.; Rada, R.G.
2002-01-01
We examined effects of dietary methylmercury (MeHg) on reproduction of fathead minnows (Pimephales promelas). Juvenile fish were fed one of four diets until sexual maturity (phase 1): a control diet (0.06 μg Hg g-1 dry weight) and three diets contaminated with MeHg at 0.88 (low), 4.11 (medium), and 8.46 μg Hg g-1 dry weight (high). At sexual maturity, male and female fish were paired, again fed one of the four diets, and allowed to reproduce (phase 2). To assess effects of MeHg during gametogenesis, some fish were fed diets during phase 2 that differed from those during phase 1. Spawning success of pairs fed the same diet during phases 1 and 2 was 75% for controls and 46%, 50%, and 36% for the low-, medium-, and high-MeHg treatments, respectively. Spawning success of pairs fed a contaminated diet during phase 1 and a control diet during phase 2 was 63%, 40%, and 14% for the low-, medium-, and high-MeHg treatments, respectively, whereas exposure to dietary MeHg only during phase 2 did not reduce spawning success. Dietary MeHg delayed spawning, and days to spawning was positively correlated with concentration of total mercury in the carcasses of test fish. MeHg reduced the instantaneous rate of reproduction of fish fed the same diets during phases 1 and 2. Both the gonadosomatic index and reproductive effort of female fish were inversely correlated with mercury in carcasses, whereas developmental and hatching success of embryos, 7-d survival, and 7-d growth of larvae were unrelated to mercury concentrations in parental fish or their diets. MeHg decreased reproduction of adult fathead minnows at dietary concentrations encountered by predatory fishes in aquatic systems with MeHg-contaminated food webs, implying that exposed fish populations could be adversely affected by this widespread contaminant.
Hens, Kristien; Dondorp, Wybo J; Geraedts, Joep P M; de Wert, Guido M
2013-05-01
What do scientists in the field of preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS) consider to be the future direction of comprehensive embryo testing? Although there are many biological and technical limitations, as well as uncertainties regarding the meaning of genetic variation, comprehensive embryo testing will impact the IVF/PGD practice and a timely ethical reflection is needed. Comprehensive testing using microarrays is currently being introduced in the context of PGD and PGS, and it is to be expected that whole-genome sequencing will also follow. Current ethical and empirical sociological research on embryo testing focuses on PGD as it is practiced now. However, empirical research and systematic reflection regarding the impact of comprehensive techniques for embryo testing is missing. In order to understand the potential of this technology and to be able to adequately foresee its implications, we held an expert panel with seven pioneers in PGD. We conducted an expert panel in October 2011 with seven PGD pioneers from Belgium, The Netherlands, Germany and the UK. Participants expected the use of comprehensive techniques in the context of PGD. However, the introduction of these techniques in embryo testing requires timely ethical reflection as it involves a shift from choosing an embryo without a particular genetic disease (i.e. PGD) or most likely to result in a successful pregnancy (i.e. PGS) to choosing the best embryo based on a much wider set of criteria. Such ethical reflection should take account of current technical and biological limitations and also of current uncertainties with regard to the meaning of genetic variance. However, ethicists should also not be afraid to look into the future. There was a general agreement that embryo testing will be increasingly preceded by comprehensive preconception screening, thus enabling smart combinations of genetic testing. The group was composed of seven participants from four Western Europe countries. As willingness to participate in this study may be connected with expectations regarding the pace and direction of future developments, selection bias cannot be excluded. The introduction of comprehensive screening techniques in embryo testing calls for further ethical reflection that is grounded in empirical work. Specifically, there is a need for studies querying the opinions of infertile couples undergoing IVF/PGS regarding the desirability of embryo screening beyond aneuploidy. This research was supported by the CSG, Centre for Society and Life Sciences (project number: 70.1.074). The authors declare no conflict of interest. N/A.
Exploring Larval Development and Applications in Marine Fish Aquaculture Using Pink Snapper Embryos
ERIC Educational Resources Information Center
Tamaru, Clyde; Haverkort-Yeh, Roxanne D.; Gorospe, Kelvin D.; Rivera, Malia Ana J.
2014-01-01
This biology investigation on "Pristipomoides filamentosus" larval development, survival, and aquaculture research was developed with three educational objectives: to provide high school students with (1) a scientific background on the biology and science of fisheries as well as overfishing, its consequences, and possible mitigations;…
Transcriptomic changes in zebrafish embryos and larvae following benzo[a]pyrene exposure
USDA-ARS?s Scientific Manuscript database
Benzo[a]pyrene (BaP) is an environmentally relevant carcinogenic and endocrine disrupting compound that causes immediate, long-term, and multigenerational health deficits in mammals and fish. Previously, we found that BaP alters DNA methylation patterns in developing zebrafish, which may affect gene...
USING THE MEDAKA EMBRYO ASSAY TO INVESTIGATE DEVELOPMENTAL ETHANOL TOXICITY.
Ethanol (EtOH) is a well-known developmental toxicant that produces a range of abnormal phenotypes. While the toxic potential of developmental EtOH exposure is well characterized, the effect of the timing of exposure on the extent of toxicity remains unknown. Fish models such as ...
LIFE-CYCLE TOXICITY OF BIS(TRIBUTYLTIN) OXIDE TO THE SHEEPSHEAD MINNOW (CYPRINODON VARIEGATUS)
The effects of tributyltin (TBT) to the life cycle of the estuarine fish C yprinodon variegatus were examined in a 180-day flow-through exposure. The study was initiated with embryos less than 24 h postfertilization and monitored through hatch, maturation, growth, and reproductio...
Braga, Daniela Paes Almeida Ferreira; Halpern, Gabriela; Setti, Amanda S; Figueira, Rita Cássia S; Iaconelli, Assumpto; Borges, Edson
2015-07-01
The aim of this study was to evaluate the influence of patients' lifestyle factors and eating habits on embryo development. A total of 2659 embryos recovered from 269 patients undergoing intracytoplasmic sperm injection cycles were included. The frequency of intake of food items and social habits were registered and its influences on embryo development evaluated. The consumption of cereals, vegetables and fruits positively influenced the embryo quality at the cleavage stage. The quality of the embryo at the cleavage stage was also negatively correlated with the consumption of alcoholic drinks and smoking habits. The consumption of fruits influenced the likelihood of blastocyst formation, which was also positively affected by the consumption of fish. Being on a weight-loss diet and consumption of red meat had a negative influence on the likelihood of blastocyst formation. The likelihood of blastocyst formation was also negatively influenced by the consumption of alcoholic drinks and by smoking habits. The consumption of red meat and body mass index had a negative effect on the implantation rate and the likelihood of pregnancy. In addition, being on a weight-loss diet had a negative influence on implantation rate. Our evidence suggests a possible relationship between environmental factors and ovary biology. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greeley Jr, Mark Stephen; Adams, Marshall; McCracken, Kitty
2012-05-01
On December 22, 2008, a dike containing fly ash and bottom ash at the Tennessee Valley Authority's (TVA) Kingston Fossil Plant in East Tennessee failed and released a large quantity of ash into the adjacent Emory River. Ash deposits from the spill extended 4 miles upstream of the facility to Emory River mile 6 and downstream to Tennessee River mile 564 ({approx}8.5 miles downstream of the confluence of the Emory River with the Clinch River, and {approx}4 miles downstream of the confluence of the Clinch River with the Tennessee River). A byproduct of coal combustion, fly ash contains a varietymore » of metals and other elements which, at sufficient concentrations and in specific forms, can be harmful to biological systems. The ecological effects of fly ash contamination on exposed fish populations depend on the magnitude and duration of exposure, with the most significant risk considered to come from elevated levels of certain metals in the ash, particularly selenium, on fish reproduction and fish early life stages (Lemly 1993; Besser and others 1996). The ovaries of adult female fish in a lake contaminated by coal ash were reported to have an increased frequency of atretic oocytes (dead or damaged immature eggs) and reductions in the overall numbers of developing oocytes (Sorensen 1988) associated with elevated body burdens of selenium. Larval fish exposed to selenium through maternal transfer of contaminants to developing eggs in either contaminated bodies of water (Lemly 1999) or in experimental laboratory exposures (Woock and others 1987, Jezierska and others 2009) have significantly increased incidences of developmental abnormalities. Contact of fertilized eggs and developing embryos to ash in water and sediments may also pose an additional risk to the early life stages of exposed fish populations through direct uptake of metals and other ash constituents (Jezierska and others 2009). The establishment and maintenance of fish populations is intimately associated with the ability of individuals within a population to reproduce. Reproduction is thus generally considered to be the most critical life function affected by environmental contamination. From a regulatory perspective, the issue of potential contaminant-related effects on fish reproduction from the Kingston fly ash spill has particular significance because the growth and propagation of fish and other aquatic life is a specific classified use of the affected river systems. To address the potential effects of fly ash from the Kingston spill on the reproductive health of exposed fish populations, ORNL has undertaken a series of studies in collaboration with TVA that include: (1) a combined field study of metal bioaccumulation in ovaries and other fish tissues (Adams and others 2012) and the reproductive condition of sentinel fish species in reaches of the Emory and Clinch Rivers affected by the fly ash spill (the current report); (2) laboratory tests of the potential toxicity of fly ash from the spill area on fish embryonic and larval development (Greeley and others 2012); (3) additional laboratory experimentation focused on the potential effects of long-term exposures to fly ash on fish survival and reproductive competence (unpublished); and (4) a combined field and laboratory study examining the in vitro developmental success of embryos and larvae obtained from fish exposed in vivo for over two years to fly ash in the Emory and Clinch Rivers (unpublished). The current report focuses on the reproductive condition of adult female fish in reaches of the Emory and Clinch Rivers influenced by the fly ash spill at the beginning of the spring 2009 breeding season - the first breeding season immediately following the fly ash release - and during the subsequent spring 2010 breeding season. Data generated from this and related reproductive/early life stage studies provide direct input to ecological risk assessment efforts and complement and support other phases of the overall biomonitoring program associated with the fly ash spill.« less
LaPatra, S.E.; Batts, W.N.; Overturf, K.; Jones, G.N.; Shewmaker, W.D.; Winton, J.R.
2001-01-01
To assess the risk of transmission of infectious haematopoietic necrosis virus (IHNV) associated with the movement of processed rainbow trout, Oncorhynchus mykiss, from an area where the virus is endemic, 240 freshly eviscerated fish (225-500 g) exhibiting spinal curvature or spinal compression types of deformities were tested for IHNV by virus isolation and polymerase chain reaction (PCR) techniques. Commercially produced rainbow trout, approximately 1-year-old, that exhibited spinal deformities were considered to have had a high likelihood of having survived an outbreak of IHN. Serological analysis of fish exhibiting spinal curvature or spinal compression types of deformities for anti-IHNV antibodies resulted, in 71 and 50% of the serum samples, respectively, with detectable neutralization activity suggesting previous infection with IHNV. A portion of the skin and muscle in the area of the deformity was collected, as well as brain tissue from each commercially processed fish. Tissue homogenates were tested for IHNV using the epithelioma papulosum cyprini (EPC) cell line pretreated with polyethylene glycol and the chinook salmon embryo (CHSE-214) cell line using standard methods. Nested, reverse transcriptase (RT)-PCR for the detection of IHNV used the central 1231 bp portion of the glycoprotein (G) challenge studies and is suggested as a mechanism responsible for virus clearance. These results provide scientific information that can be used to assess the risk associated with the movement of processed rainbow trout from an IHNV endemic area.
Zygotic Genome Activation in Vertebrates.
Jukam, David; Shariati, S Ali M; Skotheim, Jan M
2017-08-21
The first major developmental transition in vertebrate embryos is the maternal-to-zygotic transition (MZT) when maternal mRNAs are degraded and zygotic transcription begins. During the MZT, the embryo takes charge of gene expression to control cell differentiation and further development. This spectacular organismal transition requires nuclear reprogramming and the initiation of RNAPII at thousands of promoters. Zygotic genome activation (ZGA) is mechanistically coordinated with other embryonic events, including changes in the cell cycle, chromatin state, and nuclear-to-cytoplasmic component ratios. Here, we review progress in understanding vertebrate ZGA dynamics in frogs, fish, mice, and humans to explore differences and emphasize common features. Copyright © 2017 Elsevier Inc. All rights reserved.
Identifying sturgeon spawning locations through back-calculations of drift
Bulliner, Edward A.; Erwin, Susannah O.; Jacobson, Robert B.; Chojnacki, Kimberly A.; George, Amy E.; Delonay, Aaron J.
2016-01-01
Unfavorable spawning habitat conditions have been identified as a potential limiting factor for recovery of the endangered pallid sturgeon on the Missouri River and its tributaries. After successful spawning, incubation, and hatching, sturgeon free embryos passively drift downstream and are sometimes captured by sampling crews. While spawning habitat has been identified at time of spawning through field investigations, captured pallid and shovelnose (used as a surrogate species) sturgeon free embryos in the Missouri River often do not come from genetically-known telemetered fish and may be useful to identify additional areas of spawning habitat. We developed a routing model to identify potential spawning locations for captured free embryos of known age based on channel velocity estimates. To estimate velocity we compared use of at-a-station hydraulic geometry relations to empirical estimates of velocity form a 15-year archive of hydroacoustic measurements on the Missouri River.
Peippo, Jaana; Viitala, Sirja; Virta, Jouni; Räty, Mervi; Tammiranta, Niina; Lamminen, Terttu; Aro, Johanna; Myllymäki, Hannu; Vilkki, Johanna
2007-11-01
We report a method for multiplex genotyping of bovine embryo microblade biopsies. We have tested the reliability of the method and the viability of the embryos in vitro and in vivo. Two polymorphic gene markers (GHR F279Y and PRLR S18N) associated with milk production traits and one marker for sex diagnosis (ZFX/ZFY) were genotyped simultaneously with a method that combines nested PCR and allelic discrimination. To test the accuracy of genotyping, in the first experiment the genotypes of 134 biopsies from in vitro produced embryos were compared to genotypes determined from the corresponding embryos after biopsy. The method proved to be highly accurate as only in three cases (two for PRLR S18N and one for GHR F279Y) out of 395 genotypes the genotype was in disagreement between the two samples. The viability of similarly biopsied embryos was tested in parallel: after 24-hr culture 94.6% of embryos recovered in vitro. In the second experiment, a total of 150 in vivo-produced embryos were biopsied on Day 7 and genotyped. After the genotyping results were obtained on Day 8, female embryos were selected for transfer. From a total of 57 selected embryos 43 were transferred individually and 14 as pairs. After single embryo transfers, 19 recipients became pregnant and after embryo transfers in pairs one became pregnant. The success of genotyping was tested with the genotypes of donors and bulls and also from the hair samples of born calves. All calves were females and of the same genotypes determined from the biopsy. (c) 2007 Wiley-Liss, Inc.
Cal, Laura; MegÍas, Manuel; Cerdá-Reverter, José Miguel; Postlethwait, John H; Braasch, Ingo; Rotllant, Josep
2017-11-01
Dorsoventral pigment patterning, characterized by a light ventrum and a dark dorsum, is one of the most widespread chromatic adaptations in vertebrate body coloration. In mammals, this countershading depends on differential expression of agouti-signaling protein (ASIP), which drives a switch of synthesis of one type of melanin to another within melanocytes. Teleost fish share countershading, but the pattern results from a differential distribution of multiple types of chromatophores, with black-brown melanophores most abundant in the dorsal body and reflective iridophores most abundant in the ventral body. We previously showed that Asip1 (a fish ortholog of mammalian ASIP) plays a role in patterning melanophores. This observation leads to the surprising hypothesis that agouti may control an evolutionarily conserved pigment pattern by regulating different mechanisms in mammals and fish. To test this hypothesis, we compared two ray-finned fishes: the teleost zebrafish and the nonteleost spotted gar (Lepisosteus oculatus). By examining the endogenous pattern of asip1 expression in gar, we demonstrate a dorsoventral-graded distribution of asip1 expression that is highest ventrally, similar to teleosts. Additionally, in the first reported experiments to generate zebrafish transgenic lines carrying a bacterial artificial chromosome (BAC) from spotted gar, we show that both transgenic zebrafish lines embryos replicate the endogenous asip1 expression pattern in adult zebrafish, showing that BAC transgenes from both species contain all of the regulatory elements required for regular asip1 expression within adult ray-finned fishes. These experiments provide evidence that the mechanism leading to an environmentally important pigment pattern was likely in place before the origin of teleosts. © 2017 Wiley Periodicals, Inc.
Rong, Xiaozhi; Chen, Chen; Zhou, Pin; Zhou, Yumei; Li, Yun; Lu, Ling; Liu, Yunzhang; Zhou, Jianfeng; Duan, Cunming
2014-01-01
The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3) is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3) domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos.
Zhou, Pin; Zhou, Yumei; Li, Yun; Lu, Ling; Liu, Yunzhang; Zhou, Jianfeng; Duan, Cunming
2014-01-01
The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3) is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3) domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos. PMID:24918770
Zhou, Yan; Wang, Fenghe; Wan, Jinzhong; He, Jian; Li, Qun; Qiang Chen; Gao, Jay; Lin, Yusuo; Zhang, Shengtian
2017-03-01
Traditionally, the toxicity of river contaminants is analyzed chemically or physically through river bed sediments. The biotoxicity of polluted sediment leachates has not caught our attention. This study aims to overcome this deficiency through a battery of biotests which were conducted to monitor comprehensive toxicity of sediment leachates for the Yaogang River in East Jiangsu Province of China, which is in close proximity to former pesticide plants. The general physical and chemical parameters of major pollutants were analyzed from river bed sediments collected at five strategic locations. The ecotoxicity analyses undertaken include overall fish (adult zebrafish) acute toxicity, luminescent bacteria (Vibrio fischeri) bioassay, and zebrafish embryo toxicity assay. Compared with the control group, sediment leachates increased the lethality, inhibited the embryos hatching and induced development abnormalities of zebrafish embryos, and inhibited the luminescence of V. fischeri. The results show that sediment leachates may assume various toxic effects, depending on the test organism. This diverse toxicity to aquatic organisms reflects their different sensitivity to sediment leachates. It is found clearly that V. fischeri was the organism which was characterized by the highest sensitivity to the sediment leachates. The complicated toxicity of leachates was not caused by one single factor but by multiple pollutants together. This indicates the need of estimations of sediment leachate not only taking into account chemical detection but also of applying the biotests to the problem. Thus, multigroup bioassays are necessary to realistically evaluate river ecological risks imposed by leachates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankemeyer, J.T.; Nguyen, T.; Burks, S.L.
1994-12-31
DaphniaQuant{reg_sign} uses a fluorescent dye to permeate the cells of aquatic organisms. The technique has been used on frog embryos, fish embryos, and bovine erythrocytes. Two wavelengths of light are used to excite the fluorescent dye, Di-4-ANEPPS. The blue excitation wavelength measures the cell membrane potential while the yellow excitation wavelength measures the amount of dye loaded into the organisms. The authors applied the technique to the shrimp, Mysidopsis bahia, used in marine toxicity testing. The authors used from 1 to 10 shrimp, loaded into a 3 ml spectrofluorometry plastic cuvette. The fluorescent dye, Di-4-ANEPPS, was mixed with the 3more » ml of ASW in the cuvette at a final Di-4ANEPPS concentration of 10{sub {minus}6} M. After a thirty minute incubation, the fluorescence of Di-4-ANEPPS was measured in the DaphniaQuant{reg_sign} instrument. A similar protocol was used to test various concentrations of standard assay chemicals and effluents. The test chemical was mixed with ASW and Di-4-ANEPPS and incubated with the shrimp for thirty minutes. After thirty minutes, the fluorescence was measured and compared to the fluorescence of the control shrimp. The authors found that the fluorescence from a single shrimp was detectable and gave similar toxicity data as did the replicates using 10 shrimp. They conclude that the DaphniaQuant{reg_sign} assay can be successfully adapted to marine organisms, particularly Mysidopsis bahia.« less
Lee, Seungki; Katayama, Naoto; Yoshizaki, Goro
2016-09-23
Cryopreservation of fish sperm offers the practical applications in the selective breeding and biodiversity conservation. However, because of the lack of cryopreservation methods for fish eggs and embryos, maternally inherited cytoplasmic compartments cannot be successfully preserved. We previously developed an alternative method to derive functional eggs and sperm from cryopreserved whole testis by transplanting testicular cells into female and male recipients. However, if target fish had ovaries, the previous method employing male-derived germ cells would be ineffective. Here, we aimed to generate functional gametes from cryopreserved whole ovaries by transplanting ovarian germ cells into peritoneal cavity of sterile hatchlings. Cryopreservation conditions for rainbow trout ovaries (1.0 M DMSO, 0.1 M trehalose, and 10% egg yolk) were optimized by testing several different cryoprotective agents. Ovarian germ cells from thawed ovaries were intraperitoneally transplanted into allogeneic triploid hatchlings. Transplanted germ cells migrated toward and were incorporated into recipient gonads, where they underwent gametogenesis. Transplantation efficiency of ovarian germ cells remained stable after cryopreservation period up to 1185 days. Although all triploid recipients that did not undergo transplantation were functionally sterile, 5 of 25 female recipients and 7 of 25 male recipients reached sexual maturity at 2.5 years post-transplantation. Inseminating the resultant eggs and sperm generated viable offspring displaying the donor characteristics of orange body color, green fluorescence, and chromosome numbers. This method is thus a breakthrough tool for the conservation of endangered fish species that are crucial to cryopreserve the genetic resources of female fish. Copyright © 2016 Elsevier Inc. All rights reserved.
Akagi, Jin; Zhu, Feng; Hall, Chris J; Crosier, Kathryn E; Crosier, Philip S; Wlodkowic, Donald
2014-06-01
Transgenic zebrafish (Danio rerio) models of human diseases have recently emerged as innovative experimental systems in drug discovery and molecular pathology. None of the currently available technologies, however, allow for automated immobilization and treatment of large numbers of spatially encoded transgenic embryos during real-time developmental analysis. This work describes the proof-of-concept design and validation of an integrated 3D microfluidic chip-based system fabricated directly in the poly(methyl methacrylate) transparent thermoplastic using infrared laser micromachining. At its core, the device utilizes an array of 3D micromechanical traps to actively capture and immobilize single embryos using a low-pressure suction. It also features built-in piezoelectric microdiaphragm pumps, embryo-trapping suction manifold, drug delivery manifold, and optically transparent indium tin oxide heating element to provide optimal temperature during embryo development. Furthermore, we present design of the proof-of-concept off-chip electronic interface equipped with robotic servo actuator driven stage, innovative servomotor-actuated pinch valves, and embedded miniaturized fluorescent USB microscope. Our results showed that the innovative device has 100% embryo-trapping efficiency while supporting normal embryo development for up to 72 hr in a confined microfluidic environment. We also showed data that this microfluidic system can be readily applied to kinetic analysis of a panel of investigational antiangiogenic agents in transgenic zebrafish lines. The optical transparency and embryo immobilization allow for convenient visualization of developing vasculature patterns in response to drug treatment without the need for specimen re-positioning. The integrated electronic interfaces bring the lab-on-a-chip systems a step closer to realization of complete analytical automation. © 2014 International Society for Advancement of Cytometry.
Chen, Kun; Tsutsumi, Yuki; Yoshitake, Shuhei; Qiu, Xuchun; Xu, Hai; Hashiguchi, Yasuyuki; Honda, Masato; Tashiro, Kosuke; Nakayama, Kei; Hano, Takeshi; Suzuki, Nobuo; Hayakawa, Kazuichi; Shimasaki, Yohei; Oshima, Yuji
2017-01-01
Benzo[c]phenanthrene (BcP) is a highly toxic polycyclic aromatic hydrocarbon (PAHs) found throughout the environment. In fish, it is metabolized to 3-hydroxybenzo[c]phenanthrene (3-OHBcP). In the present study, we observed the effects of 1nM 3-OHBcP on the development and gene expression of Japanese medaka (Oryzias latipes) embryos. Embryos were nanoinjected with the chemical after fertilization. Survival, developmental stage, and heart rate of the embryos were observed, and gene expression differences were quantified by messenger RNA sequencing (mRNA-Seq). The exposure to 1nM 3-OHBcP accelerated the development of medaka embryos on the 1st, 4th, and 6th days post fertilization (dpf), and increased heart rates significantly on the 5th dpf. Physical development differences of exposed medaka embryos were consistent with the gene expression profiles of the mRNA-Seq results for the 3rd dpf, which show that the expression of 780 genes differed significantly between the solvent control and 1nM 3-OHBcP exposure groups. The obvious expression changes in the exposure group were found for genes involved in organ formation (eye, muscle, heart), energy supply (ATPase and ATP synthase), and stress-response (heat shock protein genes). The acceleration of development and increased heart rate, which were consistent with the changes in mRNA expression, suggested that 3-OHBcP affects the development of medaka embryos. The observation on the developmental stages and heart beat, in ovo-nanoinjection and mRNA-Seq may be efficient tools to evaluate the effects of chemicals on embryos. Copyright © 2016 Elsevier B.V. All rights reserved.
Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to zebrafish.
Orbea, Amaia; González-Soto, Nagore; Lacave, José María; Barrio, Irantzu; Cajaraville, Miren P
2017-09-01
Cellular and molecular mechanisms of toxicity of silver nanoparticles (NPs) and their toxicity to fish embryos after waterborne exposure have been widely investigated, but much less information is available regarding the effect of Ag NPs on physiological functions such as growth or reproduction. In this work, the effects of waterborne exposure of adult zebrafish (Danio rerio) to PVP/PEI coated Ag NPs (~5nm) on reproduction (fecundity) were investigated. Moreover, the development of the embryos after parental exposure was compared with the development of embryos after direct waterborne exposure to the NPs. For this, two experiments were run: 1) embryos from unexposed parents were treated for 5days with Ag NPs (10μgAgL -1 -10mgAgL -1 ) and development was monitored, and 2) selected breeding zebrafish were exposed for 3weeks to 100ngAgL -1 (environmentally relevant concentration) or to 10μgAgL -1 of Ag NPs, fecundity was scored and development of resulting embryos was monitored up to 5days. Waterborne exposure of embryos to Ag NPs resulted in being highly toxic (LC50 at 120h=50μgAgL -1 ), causing 100% mortality during the first 24h of exposure at 0.1mgAgL -1 . Exposure of adults, even at the environmentally relevant silver concentration, caused a significant reduction of fecundity by the second week of treatment and resulting embryos showed a higher prevalence of malformations than control embryos. Exposed adult females presented higher prevalence of vacuolization in the liver. These results show that Ag NPs at an environmentally relevant concentration are able to affect population level parameters in zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.
Acute and sub-chronic toxicity of four cytostatic drugs in zebrafish.
Kovács, Róbert; Bakos, Katalin; Urbányi, Béla; Kövesi, Judit; Gazsi, Gyöngyi; Csepeli, Andrea; Appl, Ádám János; Bencsik, Dóra; Csenki, Zsolt; Horváth, Ákos
2016-08-01
The acute and sub-chronic effects of four cytostatic drugs-5-fluorouracil (5-FU), cisplatin (CisPt), etoposide (ET) and imatinib mesylate (IM)-on zebrafish (Danio rerio) were investigated. Acute tests were carried out in a static system in accordance with the OECD guideline 203 for adult fish and the draft guideline for fish embryos (FET test) in order to find the LC50 values of the four cytostatic drugs. Early-life stage toxicity test on zebrafish was conducted according the OECD guideline 210 using the cytostatic drugs 5-FU and IM in a semistatic system with the objective of investigating the sub-chronic effects of the cytostatic drugs on fish. In adult fish, the cytostatic drugs 5-FU and ET did not pass the limit test, thus, are considered non-toxic. In case of cisplatin, LC50 was calculated at 64.5 mg L(-1), whereas in case of IM, LC50 was at 70.8 mg L(-1). In the FET test, LC50 of 5-FU at 72-h post fertilization (hpf) was 2441.6 mg L(-1). In case of CisPt, LC50 was 349.9 mg L(-1) at 48 hpf and it progressively decreased to 81.3 mg L(-1) at 120 hpf. In addition, CisPt caused a significant delay in the hatch of larvae. In case of ET, LC50 values were not calculable as they were higher than 300 mg L(-1) at which concentration the substance crystallized in the solution. LC50 values of IM were 48 hpf; 158.3 mg L(-1) , 72 hpf; 141.6 mg L(-1), 96 hpf; 118.0 mg L(-1), and 120 hpf; 65.9 mg L(-1). In the Early-life Stage Test with 5-FU, embryonic deformities were not detected during the tests. Regarding mortalities, the 10 mg L(-1) concentration can be considered as LOEC, as statistically significant difference in mortalities was detected in this group alone. Concerning dry body weight and standard length, 1 mg L(-1) is the LOEC. In case of IM, the highest tested concentration (10 mg L(-1)) can be considered LOEC for mortalities, however, the treatment did not have an effect on the other investigated parameters (dry and wet weight, standard length). All four cytostatic drugs were characterized by low toxicity in zebrafish in acute and sub-chronic tests.
Dioxin effects on wood duck (Aix sponsa) embryos from sites near paper mills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beeman, D.K.; Melancon, M.J.; Fleming, W.J.
Biological and biochemical variables were studied in wood duck embryos from four dioxin-contaminated sites near paper mills in the Southeastern United States and three reference sites. Sites were selected based on a history of dioxin contamination in both sediments and fish. In addition, wood duck embryos collected downstream from an Arkansas Superfund site with demonstrated dioxin-induced reproductive impairment served as positive controls. Whole clutches of eggs were collected from the wild after fifteen days of incubation and mechanically incubated. Two embryos per clutch were sacrificed at pipping and liver monooxygenase activities (BROD, EROD and MROD) were quantified. Hatching success wasmore » determined for the remainder of the nest. Preliminary results indicate no difference in monooxygenase activities across sites even though the authors have previously demonstrated induction of monooxygenase activity in wood duck embryos in laboratory studies. In addition, there were no differences in weight at pipping, liver weight and liver weight to body weight ratios. No differences were seen in hatching success or weight at hatch nor were there any gross morphological abnormalities. This may indicate that exposure of wood ducks nesting near these pulp paper mills is below those which cause elevated monooxygenase activities and reproductive impairment.« less
Parkhurst, Amy; Jeffery, William R.
2013-01-01
Albinism, the loss of melanin pigmentation, has evolved in a diverse variety of cave animals but the responsible evolutionary mechanisms are unknown. In Astyanax mexicanus, which has a pigmented surface dwelling form (surface fish) and several albino cave-dwelling forms (cavefish), albinism is caused by loss of function mutations in the oca2 gene, which operates during the first step of the melanin synthesis pathway. In addition to albinism, cavefish have evolved differences in behavior, including feeding and sleep, which are under the control of the catecholamine system. The catecholamine and melanin synthesis pathways diverge after beginning with the same substrate, L-tyrosine. Here we describe a novel relationship between the catecholamine and melanin synthesis pathways in Astyanax. Our results show significant increases in L-tyrosine, dopamine, and norepinephrine in pre-feeding larvae and adult brains of Pachón cavefish relative to surface fish. In addition, norepinephrine is elevated in cavefish adult kidneys, which contain the teleost homologs of catecholamine synthesizing adrenal cells. We further show that the oca2 gene is expressed during surface fish development but is downregulated in cavefish embryos. A key finding is that knockdown of oca2 expression in surface fish embryos delays the development of pigmented melanophores and simultaneously increases L-tyrosine and dopamine. We conclude that a potential evolutionary benefit of albinism in Astyanax cavefish may be to provide surplus L-tyrosine as a precursor for the elevated catecholamine synthesis pathway, which could be important for adaptation to the challenging cave environment. PMID:24282555
NASA Astrophysics Data System (ADS)
Li, Xiaoyan; Anken, Ralf; Liu, Liyue; Wang, Gaohong; Liu, Yongding
2017-02-01
Stimulus dependence is a general feature of developing animal sensory systems. In this respect, it has extensively been shown earlier that fish inner ear otoliths can act as test masses as their growth is strongly affected by altered gravity such as hypergravity obtained using centrifuges, by (real) microgravity achieved during spaceflight or by simulated microgravity using a ground-based facility. Since flight opportunities are scarce, ground-based simulators of microgravity, using a wide variety of physical principles, have been developed to overcome this shortcoming. Not all of them, however, are equally well suited to provide functional weightlessness from the perspective of the biosystem under evaluation. Therefore, the range of applicability of a particular simulator has to be extensively tested. Earlier, we have shown that a Rotating-Wall Vessel (RWV) can be used to provide simulated microgravity for developing Zebrafish regarding the effect of rotation on otolith development. In the present study, we wanted to find the most effective speed of rotation and identify the appropriate developmental stage of Zebrafish, where effects are the largest, in order to provide a methodological basis for future in-depth analyses dedicated to the physiological processes underlying otolith growth at altered gravity. Last not least, we compared data on the effect of simulated microgravity on the size versus the weight of otoliths, since the size usually is measured in related studies due to convenience, but the weight more accurately approximates the physical capacity of an otolith. Maintaining embryos at 10 hours post fertilization for three days in the RWV, we found that 15 revolutions per minute (rpm) yielded the strongest effects on otolith growth. Maintenance of Zebrafish staged at 10 hpf, 1 day post fertilization (dpf), 4 dpf, 7 dpf and 14 dpf for three days at 15 rpm resulted in the most prominent effects in 7 dpf larvae. Weighing versus measuring the size of otoliths yielded basically similar results, but the data gained by weighing were more distinct. Overall, our results clearly support the concept that the environmental gravity vector regulates fish otolith growth in terms of the pendulum model of otolith test masses, and that wall vessel rotation is a valuable means to provide functional weightlessness from the perspective of developing Zebrafish. We recommend that Zebrafish embryos staged 7 dpf (or possibly slightly elder) are rotated at 15 rpm in a Rotating-Wall Vessel as used in the present study for further experiments designed to elucidate the mechanisms underlying (altered gravity affected) otolith growth.
Kieslinger, Dorit C; De Gheselle, Stefanie; Lambalk, Cornelis B; De Sutter, Petra; Kostelijk, E Hanna; Twisk, Jos W R; van Rijswijk, Joukje; Van den Abbeel, Etienne; Vergouw, Carlijn G
2016-11-01
Does prospective embryo selection using the results from the Eava Test (Early Embryo Viability Assessment) in combination with standard morphology increase the pregnancy rate of IVF and ICSI patients compared to embryo selection based on morphology only? Embryo selection using the Eeva Test plus standard morphology on Day 3 results in comparable pregnancy rates as conventional morphological embryo selection. Time-lapse monitoring of embryo development may represent a superior way to culture and select embryos in vitro. The Eeva Test records the development of each embryo with a cell-tracking system and predicts the likelihood (High, Medium or Low) that an embryo will form a blastocyst based on an automated analysis of early cell division timings. This trial was designed as a prospective, observational, two-center pilot study with a propensity matched control group. The analysis involved 280 of 302 enrolled patients who were included in the Eeva Test group in 2013 and 560 control patients who were treated in the years 2011-2013. The majority of transfers (98%) were single embryo transfers. Two academic hospitals (VUmc Amsterdam and UZ Gent) enrolled patients <41 years old, with <3 previous attempts and ≥5 normally fertilized eggs. Propensity matching was used to identify a propensity matched control group from a cohort of 1777 patients based on age, cycle number, oocyte number and number of fertilized oocytes. There was no difference in patient baseline characteristics between the two groups. The ongoing pregnancy rate (OPR) of patients enrolled in the Eeva Test group (34.3%; 96/280) did not differ significantly from the OPR in the propensity matched control group (34.6%, 194/560; P = 0.92). However, significantly less top quality embryos (eight-cell embryos with ≤25% fragmentation) were transferred in the Eeva Test group compared to the propensity matched control group (70.4% vs. 82.3%; P < 0.001). The transfer of Eeva High and Medium embryos resulted in a significantly higher OPR of 36.8% (89/242) compared to 18.4% (7/38) for Eeva Low embryos (P = 0.02). This pilot study is limited by its nonrandomized design with a concurrent and historical control. Our pilot data did not reveal significant differences between time-lapse based and conventional embryo selection. Interestingly, the pregnancy rates were comparable in both groups even though the morphological quality of the transferred embryos was significantly lower in the Eeva Test group compared to the propensity matched control group. A sufficiently powered three-armed randomized controlled trial (RCT) with a solid design should be performed to generate decisive evidence in the future. Progyny Inc., formerly Auxogyn provided the Eeva scopes, software and technical support for this study. The funding sources did neither influence data collection, management, analysis and interpretation of the data, nor the preparation of the manuscript. ClinicalTrials.gov: NCT01671644. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Advances in understanding paternally transmitted Chromosomal Abnormalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, F; Sloter, E; Wyrobek, A J
2001-03-01
Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate themore » types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.« less
Kvarnemo, C; Svensson, O; Manson, W
2010-05-01
This study of the sand goby Pomatoschistus minutus, a nest-holding fish with paternal care, focused on gonadal investment among males of different sizes collected early and late in the breeding season. All males caught at the nest had breeding colour, whereas trawl-caught fish consisted of males both with and without colour. The absence or presence of breeding colour was a good predictor of testes investment. Compared to males with breeding colour, males without colour were smaller in body size but had extraordinarily large testes. In absolute terms, testes mass of males without breeding colour was on average 3.4 times greater than those of males with breeding colour. Since small colourless males are known to reproduce as sneaker males, this heavy investment in testes probably reflects that they are forced to spawn under sperm competition. Contrary to testes size, sperm-duct glands were largest among males with breeding colour. These glands produce mucins used for making sperm-containing mucous trails that males place in the nest before and during spawning. Since both sneakers and nest-holders potentially could benefit from having large glands, this result is intriguing. Yet, high mucus production may be more important for nest-holders, because it also protects developing embryos from infections. There was no significant effect of season on body size, testes or sperm-duct glands size, but colourless males tended to be less common late in the season. Possibly this may indicate that individual small colourless males develop into their more colourful counterparts within the breeding season.
Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia.
Nikinmaa, M
2001-11-15
The evolution of erythrocytic hypoxia responses is reviewed by comparing the cellular control of haemoglobin-oxygen affinity in agnathans, teleost fish and terrestrial vertebrates. The most ancient response to hypoxic conditions appears to be an increase in cell volume, which increases the haemoglobin-oxygen affinity in lampreys. In teleost fish, an increase of cell volume in hypoxic conditions is also evident. The volume increase is coupled to an increase in erythrocyte pH. These changes are caused by an adrenergic activation of sodium/proton exchange across the erythrocyte membrane. The mechanism is important in acute hypoxia and is followed by a decrease in cellular adenosine triphosphate (ATP) and guanosine triphosphate (GTP) concentrations in continued hypoxia. In hypoxic bird embryos, the ATP levels are also reduced. The mechanisms by which hypoxia decreases cellular ATP and GTP concentrations remains unknown, although at least in bird embryos cAMP-dependent mechanisms have been implicated. In mammals, hypoxia responses appear to occur mainly via modulation of cellular organic phosphate concentrations. In moderate hypoxia, 2,3-diphosphoglycerate levels are increased as a result of alkalosis caused by increased ventilation.
Life-cycle toxicity of bis(tributyltin) oxide to the sheepshead minnow (Cyprinodon variegatus).
Manning, C S; Lytle, T F; Walker, W W; Lytle, J S
1999-08-01
The effects of tributyltin (TBT) to the life cycle of the estuarine fish Cyprinodon variegatus were examined in a 180-day flow-through exposure. The study was initiated with embryos less than 24 h postfertilization and monitored through hatch, maturation, growth, and reproduction under continuous exposure to mean measured TBT concentrations of 5.4, 3.2, 1.3, 0.66, and 0.41 microg TBT/L. Progeny isolated at the onset of reproduction by the parental generation (F0) were monitored for survival as embryos, survival as fry/juveniles, and growth 30 days postisolation. TBT, at a concentration of 5.4 microg/L, significantly reduced embryo survival of the F0 generation sheepshead minnows. By day 145 of the exposure, significant effects to the survival of this generation increased and included all test concentrations >/=0.66 microg/L. Survival of 0.66 microg/L was reduced 59% relative to control survival by termination of the F0 generation. Growth of F0 generation organisms as measured by standard length was significantly reduced only on day 90 at 3.2 microg/L, however no significant reductions of wet or dry weight related to treatment concentration were detected. Due to complete mortality of organisms exposed to 5.4 microg/L by study day 7, effects to fecundity and progeny were monitored at measured concentrations of 3.2, 1.3, 0.66, and 0.41 microg TBT/L. Fecundity, as measured by the production of viable eggs produced per female per day, was unaffected by any of the test treatments. All F1 generation embryos isolated from treatment chambers into 3.2 microg/L died. Survival, standard length, wet and dry weight of the F1 generation at the remaining treatment concentrations were unaffected. The results of this study indicate that exposure to TBT reduced survival of the F0 generation sheepshead minnow and establishes the lowest observed effect concentration (LOEC) as 0.66 microg TBT/L, and the no observed effect concentration (NOEC) as 0.41 microg TBT/L for this species.http://link.springer-ny. com/link/service/journals/00244/bibs/37n2p258.html
Rubin, Stephen P.; Reisenbichler, Reginald R.; Slatton, Stacey L.; Rubin, Stephen P.; Reisenbichler, Reginald R.; Wetzel, Lisa A.; Hayes, Michael C.
2012-01-01
The accuracy of a model that predicts time between fertilization and maximum alevin wet weight (MAWW) from incubation temperature was tested for steelhead Oncorhynchus mykiss from Dworshak National Fish Hatchery on the Clearwater River, Idaho. MAWW corresponds to the button-up fry stage of development. Embryos were incubated at warm (mean=11.6°C) or cold (mean=7.3°C) temperatures and time between fertilization and MAWW was measured for each temperature. Model predictions of time to MAWW were within 1% of measured time to MAWW. Mean egg weight ranged from 0.101-0.136 g among females (mean = 0.116). Time to MAWW was positively related to egg size for each temperature, but the increase in time to MAWW with increasing egg size was greater for embryos reared at the warm than at the cold temperature. We developed equations accounting for the effect of egg size on time to MAWW for each temperature, and also for the mean of those temperatures (9.3°C).
Floehr, Tilman; Scholz-Starke, Björn; Xiao, Hongxia; Hercht, Hendrik; Wu, Lingling; Hou, Junli; Schmidt-Posthaus, Heike; Segner, Helmut; Kammann, Ulrike; Yuan, Xingzhong; Roß-Nickoll, Martina; Schäffer, Andreas; Hollert, Henner
2015-12-15
The Three Gorges Reservoir (TGR), created in consequence of the Yangtze River's impoundment by the Three Gorges Dam, faces numerous anthropogenic impacts that challenge its unique ecosystem. Organic pollutants, particularly aryl hydrocarbon receptor (AhR) agonists, have been widely detected in the Yangtze River, but only little research was yet done on AhR-mediated activities. Hence, in order to assess effects of organic pollution, with particular focus on AhR-mediated activities, several sites in the TGR area were examined applying the "triad approach". It combines chemical analysis, in vitro, in vivo and in situ investigations to a holistic assessment. Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011/2012, respectively, to identify relevant endpoints. Sediment was tested in vitro with the ethoxyresorufin-O-deethylase (EROD) induction assay, and in vivo with the Fish Embryo Toxicity Test and Sediment Contact Assay with Danio rerio. Activities of phase I (EROD) and phase II (glutathione-S-transferase) biotransformation enzymes, pollutant metabolites and histopathological alterations were studied in situ in P. vachellii. EROD induction was tested in vitro and in situ to evaluate possible relationships. Two sites, near Chongqing and Kaixian city, were identified as regional hot-spots and further investigated in 2013. The sediments induced in the in vitro/in vivo bioassays AhR-mediated activities and embryotoxic/teratogenic effects - particularly on the cardiovascular system. These endpoints could be significantly correlated to each other and respective chemical data. However, particle-bound pollutants showed only low bioavailability. The in situ investigations suggested a rather poor condition of P. vachellii, with histopathological alterations in liver and excretory kidney. Fish from Chongqing city exhibited significant hepatic EROD induction and obvious parasitic infestations. The polycyclic aromatic hydrocarbon (PAH) metabolite 1-hydroxypyrene was detected in bile of fish from all sites. All endpoints in combination with the chemical data suggest a pivotal role of PAHs in the observed ecotoxicological impacts. Copyright © 2015 Elsevier B.V. All rights reserved.
Fishing the Molecular Bases of Treacher Collins Syndrome
Weiner, Andrea M. J.; Scampoli, Nadia L.; Calcaterra, Nora B.
2012-01-01
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, and mutations in the TCOF1 gene are responsible for over 90% of TCS cases. The knowledge about the molecular mechanisms responsible for this syndrome is relatively scant, probably due to the difficulty of reproducing the pathology in experimental animals. Zebrafish is an emerging model for human disease studies, and we therefore assessed it as a model for studying TCS. We identified in silico the putative zebrafish TCOF1 ortholog and cloned the corresponding cDNA. The derived polypeptide shares the main structural domains found in mammals and amphibians. Tcof1 expression is restricted to the anterior-most regions of zebrafish developing embryos, similar to what happens in mouse embryos. Tcof1 loss-of-function resulted in fish showing phenotypes similar to those observed in TCS patients, and enabled a further characterization of the mechanisms underlying craniofacial malformation. Besides, we initiated the identification of potential molecular targets of treacle in zebrafish. We found that Tcof1 loss-of-function led to a decrease in the expression of cellular proliferation and craniofacial development. Together, results presented here strongly suggest that it is possible to achieve fish with TCS-like phenotype by knocking down the expression of the TCOF1 ortholog in zebrafish. This experimental condition may facilitate the study of the disease etiology during embryonic development. PMID:22295061
Fishing the molecular bases of Treacher Collins syndrome.
Weiner, Andrea M J; Scampoli, Nadia L; Calcaterra, Nora B
2012-01-01
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, and mutations in the TCOF1 gene are responsible for over 90% of TCS cases. The knowledge about the molecular mechanisms responsible for this syndrome is relatively scant, probably due to the difficulty of reproducing the pathology in experimental animals. Zebrafish is an emerging model for human disease studies, and we therefore assessed it as a model for studying TCS. We identified in silico the putative zebrafish TCOF1 ortholog and cloned the corresponding cDNA. The derived polypeptide shares the main structural domains found in mammals and amphibians. Tcof1 expression is restricted to the anterior-most regions of zebrafish developing embryos, similar to what happens in mouse embryos. Tcof1 loss-of-function resulted in fish showing phenotypes similar to those observed in TCS patients, and enabled a further characterization of the mechanisms underlying craniofacial malformation. Besides, we initiated the identification of potential molecular targets of treacle in zebrafish. We found that Tcof1 loss-of-function led to a decrease in the expression of cellular proliferation and craniofacial development. Together, results presented here strongly suggest that it is possible to achieve fish with TCS-like phenotype by knocking down the expression of the TCOF1 ortholog in zebrafish. This experimental condition may facilitate the study of the disease etiology during embryonic development.
Seahorse Brood Pouch Transcriptome Reveals Common Genes Associated with Vertebrate Pregnancy.
Whittington, Camilla M; Griffith, Oliver W; Qi, Weihong; Thompson, Michael B; Wilson, Anthony B
2015-12-01
Viviparity (live birth) has evolved more than 150 times in vertebrates, and represents an excellent model system for studying the evolution of complex traits. There are at least 23 independent origins of viviparity in fishes, with syngnathid fishes (seahorses and pipefish) unique in exhibiting male pregnancy. Male seahorses and pipefish have evolved specialized brooding pouches that provide protection, gas exchange, osmoregulation, and limited nutrient provisioning to developing embryos. Pouch structures differ widely across the Syngnathidae, offering an ideal opportunity to study the evolution of reproductive complexity. However, the physiological and genetic changes facilitating male pregnancy are largely unknown. We used transcriptome profiling to examine pouch gene expression at successive gestational stages in a syngnathid with the most complex brood pouch morphology, the seahorse Hippocampus abdominalis. Using a unique time-calibrated RNA-seq data set including brood pouch at key stages of embryonic development, we identified transcriptional changes associated with brood pouch remodeling, nutrient and waste transport, gas exchange, osmoregulation, and immunological protection of developing embryos at conception, development and parturition. Key seahorse transcripts share homology with genes of reproductive function in pregnant mammals, reptiles, and other live-bearing fish, suggesting a common toolkit of genes regulating pregnancy in divergent evolutionary lineages. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Andrews, Tessa M.; Shepard, Bradley B.; Litt, Andrea R.; Kruse, Carter G.; Zale, Alexander V.; Kalinowski, Steven T.
2013-01-01
Translocations are frequently used to increase the abundance and range of endangered fishes. One factor likely to affect the outcome of translocations is fish movement. We introduced embryos from five Westslope Cutthroat Trout Oncorhynchus clarkii lewisipopulations (both hatchery and wild) at five different locations within a fishless watershed. We then examined the movement of age-1 and age-2 fish and looked for differences in movement distance among source populations and among introduction sites; we also examined the interactions among age, population, and introduction site. At age 1, most individuals (90.9%) remained within 1,000 m their introduction sites. By age 2, the majority of individuals (58.3%) still remained within 1,000 m of their introduction site, but considerably more individuals had moved downstream, some more than 6,000 m from their introduction site. We observed a significant interaction between age and source population (F 4, 1077 = 15.45, P < 0.0001) as well as between age and introduction site (F 41, 1077 = 11.39, P < 0.0008), so we presented results in the context of these interactions. Within age-groups, we observed differences in movement behavior among source populations and among donor populations of Westslope Cutthroat Trout. We discuss these findings in light of previous research on juvenile salmonid movement.
Effects of simulated weightlessness on fish otolith growth: Clinostat versus Rotating-Wall Vessel
NASA Astrophysics Data System (ADS)
Brungs, Sonja; Hauslage, Jens; Hilbig, Reinhard; Hemmersbach, Ruth; Anken, Ralf
2011-09-01
Stimulus dependence is a general feature of developing sensory systems. It has been shown earlier that the growth of inner ear heavy stones (otoliths) of late-stage Cichlid fish ( Oreochromis mossambicus) and Zebrafish ( Danio rerio) is slowed down by hypergravity, whereas microgravity during space flight yields an opposite effect, i.e. larger than 1 g otoliths, in Swordtail ( Xiphophorus helleri) and in Cichlid fish late-stage embryos. These and related studies proposed that otolith growth is actively adjusted via a feedback mechanism to produce a test mass of the appropriate physical capacity. Using ground-based techniques to apply simulated weightlessness, long-term clinorotation (CR; exposure on a fast-rotating Clinostat with one axis of rotation) led to larger than 1 g otoliths in late-stage Cichlid fish. Larger than normal otoliths were also found in early-staged Zebrafish embryos after short-term Wall Vessel Rotation (WVR; also regarded as a method to simulate weightlessness). These results are basically in line with the results obtained on Swordtails from space flight. Thus, the growth of fish inner ear otoliths seems to be an appropriate parameter to assess the quality of "simulated weightlessness" provided by a particular simulation device. Since CR and WVR are in worldwide use to simulate weightlessness conditions on ground using small-sized specimens, we were prompted to directly compare the effects of CR and WVR on otolith growth using developing Cichlids as model organism. Animals were simultaneously subjected to CR and WVR from a point of time when otolith primordia had begun to calcify both within the utricle (gravity perception) and the saccule (hearing); the respective otoliths are the lapilli and the sagittae. Three such runs were subsequently carried out, using three different batches of fish. The runs were discontinued when the animals began to hatch. In the course of all three runs performed, CR led to larger than normal lapilli, whereas WVR had no effect on the growth of these otoliths. Regarding sagittae, CR resulted in larger than normal stones in one of the three runs. The other CR runs and all WVR runs had no effect on sagittal growth. These results clearly indicate that CR rather than WVR can be regarded as a device to simulate weightlessness using the Cichlid as model organism. Since WVR has earlier been shown to affect otolith growth in Zebrafish, the lifestyle of an animal (mouth-breeding versus egg-laying) seems to be of considerable importance. Further studies using a variety of simulation techniques (including, e.g. magnetic levitation and random positioning) and various species are needed in order to identify the most appropriate technique to simulate weightlessness regarding a particular model organism.
Mueller, Casey A; Eme, John; Manzon, Richard G; Somers, Christopher M; Boreham, Douglas R; Wilson, Joanna Y
2015-04-01
The timing, success and energetics of fish embryonic development are strongly influenced by temperature. However, it is unclear if there are developmental periods, or critical windows, when oxygen use, survival and hatchling phenotypic characteristics are particularly influenced by changes in the thermal environment. Therefore, we examined the effects of constant incubation temperature and thermal shifts on survival, hatchling phenotype, and cost of development in lake whitefish (Coregonus clupeaformis) embryos. We incubated whitefish embryos at control temperatures of 2, 5, or 8 °C, and shifted embryos across these three temperatures at the end of gastrulation or organogenesis. We assessed hatch timing, mass at hatch, and yolk conversion efficiency (YCE). We determined cost of development, the amount of oxygen required to build a unit of mass, for the periods from fertilization-organogenesis, organogenesis-fin flutter, fin flutter-hatch, and for total development. An increase in incubation temperature decreased time to 50 % hatch (164 days at 2 °C, 104 days at 5 °C, and 63 days at 8 °C), survival decreased from 55 % at 2 °C, to 38 % at 5 °C, and 17 % at 8 °C, and hatchling yolk-free dry mass decreased from 1.27 mg at 2 °C to 0.61 mg at 8 °C. Thermal shifts altered time to 50 % hatch and hatchling yolk-free dry mass and revealed a critical window during gastrulation in which a temperature change reduced survival. YCE decreased and cost of development increased with increased incubation temperature, but embryos that hatched at 8 °C and were incubated at colder temperatures during fertilization-organogenesis had reduced cost. The relationship between cost of development and temperature was altered during fin flutter-hatch, indicating it may be a critical window during which temperature has the greatest impact on energetic processes. The increase in cost of development with an increase in temperature has not been documented in other fishes and suggests whitefish embryos are more energy efficient at colder temperatures.
Carbajal-Hernández, Ana Laura; Valerio-García, Roberto Carlos; Martínez-Ruíz, Erika Berenice; Jarquín-Díaz, Víctor Hugo; Martínez-Jerónimo, Fernando
2017-07-01
Chapalichthys pardalis is a viviparous fish, microendemic to the Tocumbo Region in the state of Michoacán, Mexico. Despite the peculiar type of reproduction of goodeid fish and their mother-embryo interaction, the effects on embryos induced by maternal exposure to aquatic xenobiotics are still unknown. The objective of the present work was to determine the maternal-embryonic metabolic and antioxidant response of C. pardalis exposed to 3,4-dichloroaniline (3,4-DCA), a compound considered highly noxious to the environment because of its high toxicity and persistence, which has been used as reference toxicant in toxicological bioassays. We determined the median lethal concentration (LC 50 , 96 h) and then exposed pregnant females to 3.3, 2.5, and 0.5 mg L -1 of 3,4-DCA (equivalent to LC 1 , LC 0.01 , and LC 50/10 , respectively) during 21 days. We assessed the activity of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), macromolecules content (proteins, lipids, carbohydrates), glucose, and lactate concentration, as well as the oxidative damage, by measuring thiobarbituric acid reactive substances, and protein oxidation. To interpret results, we used the integrated biomarker response (IBRv2). The average LC 50 was of 5.18 mg L -1 (4.8-5.5 mg L -1 ; p = 0.05). All females exposed to concentrations of 3.3 and 2.5 mg L -1 lost 100% of the embryos during the bioassay, whereas those exposed to 0.5 mg L -1 showed alterations in the antioxidant activity and oxidative damage, being the embryos and the maternal liver the most affected, with IBRv2 values of 10.09 and 9.21, respectively. Damage to macromolecules was greater in embryos and the maternal liver, with IBRv2 of 16.14 and 8.40, respectively. We conclude that exposure to xenobiotics, like 3,4-DCA, in species with a marked maternal-embryonic interaction represents a potential risk for the development and survival of the descendants, thereby, potentially affecting the future of the population.
Additive manufacturing of lab-on-a-chip devices: promises and challenges
NASA Astrophysics Data System (ADS)
Zhu, Feng; Macdonald, Niall P.; Cooper, Jonathan M.; Wlodkowic, Donald
2013-12-01
This work describes a preliminary investigation of commercially available 3D printing technologies for rapid prototyping and low volume fabrication of Lab-on-a-Chip devices. The main motivation of the work was to use off-the-shelf 3D printing methods in order to rapidly and inexpensively build microfluidic devices with complex geometric features and reduce the need to use clear room environment and conventional microfabrication techniques. Both multi-jet modelling (MJM) and stereolithography (SLA) processes were explored. MJM printed devices were fabricated using a HD3500+ (3D Systems) high-definition printer using a thermo-polymer VisiJet Crystal (3D Systems) substratum that allows for a z-axis resolution of 16 μm and 25 μm x-y accuracy. SLA printed devices were produced using a Viper Pro (3D Systems) stereolithography system using Watershed 11122XC (DSM Somos) and Dreve Fototec 7150 Clear (Dreve Otoplastik GmbH) resins which allow for a z-axis resolution of 50 μm and 25 μm x-y accuracy. Fabrication results compared favourably with other forms of rapid prototyping such as laser cut PMMA devices and PDMS moulded microfluidic devices of the same design. Both processes allowed for fabrication of monolithic, optically transparent devices with features in the 100 μm range requiring minimal post-processing. Optical polymer qualities following different post-processing methods were also tested in both brightfield and fluorescence imaging of transgenic zebrafish embryos. Finally, we show that only ethanol-treated Dreve Fototec 7150 Clear resign proved to be non-toxic to human cell lines and fish embryos in fish toxicity assays (FET) requiring further investigation of 3D printing materials.
Arzuaga, Xabier; Wassenberg, Deena; Giulio, Richard D.; Elskus, Adria
2006-01-01
Exposure to dioxin-like chemicals that activate the aryl hydrocarbon receptor (AHR) can result in increased cellular and tissue production of reactive oxygen species (ROS). Little is known of these effects during early fish development. We used the fish model, Fundulus heteroclitus, to determine if the AHR ligand and pro-oxidant 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) can increase ROS production during killifish development, and to test a novel method for measuring ROS non-invasively in a living organism. The superoxide-sensitive fluorescent dye, dihydroethidium (DHE), was used to detect in ovo ROS production microscopically in developing killifish exposed to PCB126 or vehicle. Both in ovo CYP1A activity (ethoxyresorufin-o-deethylase, EROD) and in ovo ROS were induced by PCB126. In ovo CYP1A activity was inducible by PCB126 concentrations as low as 0.003 nM, with maximal induction occurring at 0.3 nM PCB126. These PCB126 concentrations also significantly increased in ovo ROS production in embryonic liver, ROS being detectable as early as 5 days post-fertilization. These data demonstrate that the pro-oxidant and CYP1A inducer, PCB126, increases both CYP1A activity and ROS production in developing killifish embryos. The superoxide detection assay (SoDA) described in this paper provides a semi-quantitative, easily measured, early indicator of altered ROS production that can be used in conjunction with simultaneous in ovo measurements of CYP1A activity and embryo development to explore functional relationships among biochemical, physiological and developmental responses to AHR ligands.
Sarkar, Biplab; Verma, Suresh K; Akhtar, Javed; Netam, Surya Prakash; Gupta, Sanjay Kr; Panda, Pritam Kumar; Mukherjee, Koel
2018-09-01
With the enhancement of commercial manifestation of silver nanoparticles, concerned has risen on their accumulation in aquatic system and consequent effects on fish development and metabolism. In this study, experiments were conducted to assess the impacts of silver nanoparticles on early life cycles of fish considering Zebrafish (Danio rerio) as experimental model. Silver nanoparticles were synthesized through chemical reduction method and characterized through UV-visible spectroscopy, dynamic light scattering (DLS), and HR-TEM. Different sub lethal doses of nanosilver were applied (13.6, 21.6, 42.4, 64, and 128 μgL -1 ) to post-fertilization phases of Zebrafish embryos and their interaction effects were monitored up to six days period. No significant morphological variations were observed at 13.6, 21.6, 42.4 μgL -1 dose of silver nanoparticles, whereas 64 and 128 μgL -1 exposure dose exhibited bending in myotome, deformity in tail region, somites, notochord and swelling in anterior and posterior region of embryos and larva. Hatching performances analysis elicited highest hatching success in 13.6 and 21.6 μgL -1 doses of silver nanoparticles followed by positive and negative control, whereas exposure dose of 64 and 128 μgL -1 exhibited comparatively lower success. Western blot analysis were conducted on developing hatchlings with Oct4 antibody and at 13.6 and 21.6 μgL -1 dose,it showed over expression elucidating stimulatory role of nanosilver in these mentioned doses. In silico analysis depicted a firm interaction of nanosilver with Oct4 revealing their key role in growth stimulation of developing embryos. The study demonstrates the function of nanosilver as a growth promoter rather only as a toxicant in fish metabolic system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sloman, Katherine A
2010-08-01
Even before fertilisation, exposure of ova to high levels of stress corticosteroids can have significant effects on offspring in a variety of animals. In fish, high levels of cortisol in ovarian fluid can elicit morphological changes and reduce offspring survival. Whether there are other more subtle effects, including behavioural effects, of exposure to cortisol pre-fertilisation in fish is unclear. Here I demonstrate that a brief (3h) exposure of brown trout eggs to a physiologically relevant ( approximately 500 microg l(-)(1)) concentration of cortisol pre-fertilisation resulted in changes to developing offspring. Embryos exposed to cortisol pre-fertilisation displayed elevated oxygen consumption and ammonia excretion rates during development. After hatch, in contrast to the effects of cortisol exposure in juvenile fish, fish exposed to cortisol as eggs were more aggressive than control individuals and responded differently within a maze system. Thus, a transient exposure to corticosteroids in unfertilised eggs results in both physiological and behavioural alterations in fish. Copyright 2010 Elsevier Inc. All rights reserved.
Small Fish Species as Powerful Model Systems to Study Vertebrate Physiology in Space
NASA Astrophysics Data System (ADS)
Muller, M.; Aceto, J.; Dalcq, J.; Alestrom, P.; Nourizadeh-Lillabadi, R.; Goerlich, R.; Schiller, V.; Winkler, C.; Renn, J.; Eberius, M.; Slenzka, K.
2008-06-01
Small fish models, mainly zebrafish (Danio rerio) and medaka (Oryzias latipes), have been used for many years as powerful model systems for vertebrate developmental biology. Moreover, these species are increasingly recognized as valuable systems to study vertebrate physiology, pathology, pharmacology and toxicology, including in particular bone physiology. The biology of small fishes presents many advantages, such as transparency of the embryos, external and rapid development, small size and easy reproduction. Further characteristics are particularly useful for space research or for large scale screening approaches. Finally, many technologies for easily characterizing bones are available. Our objective is to investigate the changes induced by microgravity in small fish. By combining whole genome analysis (microarray, DNA methylation, chromatin modification) with live imaging of selected genes in transgenic animals, a comprehensive and integrated characterization of physiological changes in space could be gained, especially concerning bone physiology.
Lee, Abigail H; Eme, John; Mueller, Casey A; Manzon, Richard G; Somers, Christopher M; Boreham, Douglas R; Wilson, Joanna Y
2016-04-01
Increasing incubation temperatures, caused by global climate change or thermal effluent from industrial processes, may influence embryonic development of fish. This study investigates the cumulative effects of increased incubation temperature and repeated heat shocks on developing Lake Whitefish (Coregonus clupeaformis) embryos. We studied the effects of three constant incubation temperatures (2°C, 5°C or 8°C water) and weekly, 1-h heat shocks (+3°C) on hatching time, survival and morphology of embryos, as these endpoints may be particularly susceptible to temperature changes. The constant temperatures represent the predicted magnitude of elevated water temperatures from climate change and industrial thermal plumes. Time to the pre-hatch stage decreased as constant incubation temperature increased (148d at 2°C, 92d at 5°C, 50d at 8°C), but weekly heat shocks did not affect time to hatch. Mean survival rates and embryo morphometrics were compared at specific developmental time-points (blastopore, eyed, fin flutter and pre-hatch) across all treatments. Constant incubation temperatures or +3°C heat-shock exposures did not significantly alter cumulative survival percentage (~50% cumulative survival to pre-hatch stage). Constant warm incubation temperatures did result in differences in morphology in pre-hatch stage embryos. 8°C and 5°C embryos were significantly smaller and had larger yolks than 2°C embryos, but heat-shocked embryos did not differ from their respective constant temperature treatment groups. Elevated incubation temperatures may adversely alter Lake Whitefish embryo size at hatch, but weekly 1-h heat shocks did not affect size or survival at hatch. These results suggest that intermittent bouts of warm water effluent (e.g., variable industrial emissions) are less likely to negatively affect Lake Whitefish embryonic development than warmer constant incubation temperatures that may occur due to climate change. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Chemotti, Diana C.; Davis, Sarah N.; Cook, Leslie W.; Willoughby, Ian R.; Paradise, Christopher J.; Lom, Barbara
2006-01-01
Malathion is an organophosphorus insecticide, which is often sprayed to control mosquitoes. When applied to aquatic habitats, malathion can also influence the embryogenesis of non-target organisms such as frogs and fish. We modified the frog embryo teratogen assay in "Xenopus" (FETAX), a standard toxicological assay, into an investigative…
Gambini, Andrés; De Stéfano, Adrián; Jarazo, Javier; Buemo, Carla; Karlanian, Florencia; Salamone, Daniel Felipe
2016-09-01
The low efficiency of interspecies somatic cell nuclear transfer (iSCNT) makes it necessary to investigate new strategies to improve embryonic developmental competence. Embryo aggregation has been successfully applied to improve cloning efficiency in mammals, but it remains unclear whether it could also be beneficial for iSCNT. In this study, we first compared the effect of embryo aggregation over in vitro development and blastocyst quality of porcine, bovine, and feline zona-free (ZF) parthenogenetic (PA) embryos to test the effects of embryo aggregation on species that were later used as enucleated oocytes donors in our iSCNT study. We then assessed whether embryo aggregation could improve the in vitro development of ZF equine iSCNT embryos after reconstruction with porcine, bovine, and feline ooplasm. Bovine- and porcine-aggregated PA blastocysts had significantly larger diameters compared with nonaggregated embryos. On the other hand, feline- and bovine-aggregated PA embryos had higher blastocyst cell number. Embryo aggregation of equine-equine SCNT was found to be beneficial for embryo development as we have previously reported, but the aggregation of three ZF reconstructed embryos did not improve embryo developmental rates on iSCNT. In vitro embryo development of nonaggregated iSCNT was predominantly arrested around the stage when transcriptional activation of the embryonic genome is reported to start on the embryo of the donor species. Nevertheless, independent of embryo aggregation, equine blastocyst-like structures could be obtained in our study using domestic feline-enucleated oocytes. Taken together, these results reported that embryo aggregation enhance in vitro PA embryo development and embryo quality but effects vary depending on the species. Embryo aggregation also improves, as expected, the in vitro embryo development of equine-equine SCNT embryos; however, we did not observe positive effects on equine iSCNT embryo development. Among oocytes from domestic animals tested in our study, the feline ooplasm might be the most appropriate recipient to partially allow preimplantation embryo development of iSCNT equine embryos. Copyright © 2016 Elsevier Inc. All rights reserved.
Wargelius, Anna; Fjelldal, Per Gunnar; Hansen, Tom
2005-07-01
In several terrestrial vertebrates, heat shock (HS) during somitogenesis causes vertebral deformities. To determine if vertebral deformities can occur due to sudden temperature changes during early development in fish, Atlantic salmon embryos were HS treated during somitogenesis. Ten months later these individuals displayed a high prevalence of caudal vertebral column condensations (27-34%). The defects were located caudally of the abdominal cavity, displaying an even distribution in this region independent of time of HS. To determine if HS disturbed vertebral development during somitogenesis, two genes coding for markers of skeletal development were identified, namely, the secreted protein Shh (Sashh) and the transcription factor Twist (Satwist). These proteins are involved in the proliferation and specification of presumptive skeletal cells (sclerotome) in vertebrates. The spatial expression pattern of sashh and satwist in salmon indicated a functional conservation of these proteins. Furthermore, HS embryos displayed expressional disturbance in both sashh and satwist, indicating an effect of HS on sclerotomal cell patterning. However, the HS-protecting ability in embryos seems to be individually regulated because reduction in gene expression was not detected at all stages; in addition, HS did not induce somitic disturbance and vertebral deformity in all embryos.
Thorpe, Karen L; Pereira, Maria L a Marca; Schiffer, Heidi; Burkhardt-Holm, Patricia; Weber, Klaus; Wheeler, James R
2011-10-01
Exogenous treatment of fish with natural sex hormones and their mimics has been shown to influence gonadal differentiation resulting in biased phenotypic sex-ratios. This has lead to the development of the Fish Sexual Development Test (FSDT) as a method for the detection of endocrine active chemicals. Proposed test organisms include the medaka, zebrafish (ZF) and stickleback, although the guideline also allows for inclusion of species such as the fathead minnow (FHM), provided the test duration allows for sufficient sexual differentiation. However, although the processes underlying sexual differentiation are known to differ for each of these species, it is not known how, or if, these differences would influence the results of the FSDT. In the experiments reported here, responses of the ZF and FHM to prochloraz, a sterol biosynthesis inhibitor and androgen antagonist, were characterized and compared. Exposure to 320 μg/L of prochloraz, from embryo until 60 (ZF) or 95-125 (FHM) days post hatch inhibited somatic growth of both species, but while a negative impact on ZF larval survival was observed (LOEC 32 μg/L) there was no evidence for an effect on FHM larval survival. Prochloraz influenced sexual differentiation in both species by decreasing the proportion of females (LOEC 100 μg/L (ZF), 320 μg/L (FHM)) and delaying completion of sexual differentiation; manifest as an increased incidence of ovotestis in the ZF (LOEC 100 μg/L) and as an increased number of fish with undifferentiated gonads in the FHM (LOEC 320 μg/L). However, while exposure to 320 μg/L prochloraz delayed maturation of the differentiated FHM testis, there was no such effect in the ZF. These results demonstrate that the different strategy of sexual differentiation in the ZF and FHM influences the profile of responses of their gonads to the masculinising effects of prochloraz, but does not affect their overall sensitivity. Copyright © 2011 Elsevier B.V. All rights reserved.
Toxicity of naproxen sodium and its mixture with tramadol hydrochloride on fish early life stages.
Sehonova, Pavla; Plhalova, Lucie; Blahova, Jana; Doubkova, Veronika; Prokes, Miroslav; Tichy, Frantisek; Fiorino, Emma; Faggio, Caterina; Svobodova, Zdenka
2017-12-01
Pharmaceuticals occur in water bodies as a consequence of their incomplete removal during waste water treatment processes. The occurence of pharmaceuticals in surface waters as well as their possible impact on aquatic vertebrates have received considerable attention in recent years. However, there is still a lack of informations on the chronic effects of widely used drugs as well as their possible mixture toxicity on non-target aquatic vertebrates as well as their possible mixture toxicity. The aim of this study was to assess the effects of naproxen sodium on early life stages of fish and evaluate its mixture toxicity with tramadol hydrochloride, which was assessed in our earlier study as a single substance. Two embryo-larval toxicity tests with common carp (Cyprinus carpio) were performed according to the OECD guideline 210 (Fish, Early-life Stage Toxicity Test) in order to assess the subchronic toxicity of naproxen sodium and tramadol hydrochlorid-naproxen sodium mixture at the concentrations of 10; 50; 100 and 200 μg/L. These experiments were conducted for 32 days. The subchronic exposure to naproxen sodium and naproxen sodium and tramadol hydrochloride mixture had a strong effect on the early life stages of common carp. Hatching, developmental rate, morphology, histopathology and, in the case of the naproxen sodium and tramadol hydrochloride mixture, mortality were influenced. The bioindicators of oxidative stress were also influenced. The LOEC was determined at 10 μg/L for both naproxen sodium and naproxen sodium and tramadol hydrochloride mixture. Copyright © 2017 Elsevier Ltd. All rights reserved.
Use of chick embryo in screening for teratogenicity.
Kotwani, A
1998-04-01
A teratology screening system would detect agents hazardous to the conceptus before they can perturb embryonic development in humans. The back log of untested chemicals and the rate at which new substances enter the market exceed the developmental effects testing by standard in vivo method. Thus, cheaper, quicker in vitro systems afford a unique opportunity for investigating the direct interaction of substances with developing morphogenetic system (MGSs), since maternal influences are excluded. As a carrier of a complete set of MGSs, the chick embryo in ovo manifests an advantage over those in vitro systems that employ isolated embryos or embryonic tissues that have only limited survival. Under controlled experimental conditions including standardization of subjects, administration technique and mode of evaluation, according to the basic principles of teratology, the chick embryo test is demonstrated to be reliable and to afford quantifiable end points for evaluation. Individual compounds, mixtures of compounds and against and antagonist can easily be administered and tested. The chick embryo possesses its own basic enzyme-catalyzed drug-transformation capacity and moreover, it can be used for screening specific human metabolites. Different newer techniques e.g. chick embryotoxicity screening test (CHEST), Chick embryo blastoderm model etc are described in detail. Chick embryo fulfills all the criteria which a test should have at a lower level of tier system in teratological studies i.e. modest laboratory equipment, moderate skill, minimal expenditure of time and money, ease of accessibility of embryo, known embryological development, possibility of experimenting on a large scale for statistically valid results and whole animals are also not required.
Seguin, Diane; Shams, Soaleha; Gerlai, Robert
2016-01-01
Background Fetal Alcohol Spectrum Disorders (FASD) may vary in symptoms and severity. In the milder and more prevalent forms of the disease, behavioural abnormalities may include impaired social behaviour, e.g. difficulty interpreting social cues. FASD patients remain often undiagnosed due to lack of biomarkers, and treatment is unavailable because the mechanisms of the disease are not yet understood. Animal models have been proposed to facilitate addressing these problems. More recently, short exposure of the zebrafish embryo to low concentrations of alcohol was shown to lead to significant and lasting impairment of behaviour in response to social stimuli. The impairment may be the result of abnormal social behaviour or altered fear/anxiety. The goal of the current study was to investigate the latter. Methods Here, we employed the alcohol exposure regimen used previously (exposure of 24th hour post-fertilization embryos to 0.00, 0.25, 0.50, 0.75 or 1.00 vol/vol % alcohol for 2 hours), allowed the fish to reach adulthood, and measured the behavioural responses of these adults to a novel tank (anxiety related behaviours) as well as to an animated image of a sympatric predator of zebrafish (fear related behaviours). Results We found behavioural responses of embryonic alcohol exposed adult fish to remain statistically indistinguishable from those of controls, suggesting unaltered anxiety and fear in the embryonic alcohol treated fish. Conclusions Given that motor and perceptual function was previously shown to be also unaltered in the adults after embryonic alcohol exposure, our current results suggest that the impaired response of these fish to social stimuli may be the result of abnormal social behaviour. PMID:27790739
Analysis of the Ush2a gene in medaka fish (Oryzias latipes).
Aller, Elena; Sánchez-Sánchez, Ana V; Chicote, Javier U; García-García, Gema; Udaondo, Patricia; Cavallé, Laura; Piquer-Gil, Marina; García-España, Antonio; Díaz-Llopis, Manuel; Millán, José M; Mullor, José L
2013-01-01
Patients suffering from Usher syndrome (USH) exhibit sensorineural hearing loss, retinitis pigmentosa (RP) and, in some cases, vestibular dysfunction. USH is the most common genetic disorder affecting hearing and vision and is included in a group of hereditary pathologies associated with defects in ciliary function known as ciliopathies. This syndrome is clinically classified into three types: USH1, USH2 and USH3. USH2 accounts for well over one-half of all Usher cases and mutations in the USH2A gene are responsible for the majority of USH2 cases, but also for atypical Usher syndrome and recessive non-syndromic RP. Because medaka fish (Oryzias latypes) is an attractive model organism for genetic-based studies in biomedical research, we investigated the expression and function of the USH2A ortholog in this teleost species. Ol-Ush2a encodes a protein of 5.445 aa codons, containing the same motif arrangement as the human USH2A. Ol-Ush2a is expressed during early stages of medaka fish development and persists into adulthood. Temporal Ol-Ush2a expression analysis using whole mount in situ hybridization (WMISH) on embryos at different embryonic stages showed restricted expression to otoliths and retina, suggesting that Ol-Ush2a might play a conserved role in the development and/or maintenance of retinal photoreceptors and cochlear hair cells. Knockdown of Ol-Ush2a in medaka fish caused embryonic developmental defects (small eyes and heads, otolith malformations and shortened bodies with curved tails) resulting in late embryo lethality. These embryonic defects, observed in our study and in other ciliary disorders, are associated with defective cell movement specifically implicated in left-right (LR) axis determination and planar cell polarity (PCP).
Use of blue crab (Callinectes sapidus) embryos for toxicity testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, R.; O`Malley, K.
1995-12-31
After fertilization, blue crab embryos develop in egg sacs attached to the female pleopods, often referred to as the sponge. Lipovitellin and lipid droplets in the egg sacs provide energy and nutrition for the developing embryos. Embryos were removed from the sponge and transferred to 24 well culture plates containing sea water with or without toxicants, Each well contained 10 embryos. After 7 to 10 days, embryos hatched to swimming zoea. The effects of toxicants at various concentrations on hatching were determined and the EC{sub 50} calculated. For example, the EC{sub 50} for tributyltin, fenvalerate and mercuric chloride were 50,more » 30 and 90 ng/liter, respectively. The hatching success of control embryos ranged from 95 to 98%. Formation of the heart, eyespot formation, appendage formation and utilization rate of lipovitellin were also effected by exposure to toxicants. At a low concentration of mercuric ion (30ng/liter) the heart formed, but there was no heart beat. Eyespot formation was abnormal in the presence of high concentrations of cadmium (2 {micro}g/liter) and zinc (5 {micro}g/liter), Crab embryos offer many advantages for toxicity testing of pure compounds or mixtures in water, including toxicity testing of sediment pore water. The crab embryos may also serve as models to understand the effect of specific toxicants on the heart and eye spots of crustaceans.« less
Saraf, Spencer R; Frenkel, Amy; Harke, Matthew J; Jankowiak, Jennifer G; Gobler, Christopher J; McElroy, Anne E
2018-01-01
Freshwater cyanobacterial harmful algal blooms (CyanoHABs) caused by algae in the genus Microcystis have been increasing in frequency and severity in recent decades. Microcystis blooms threaten aquatic organisms through effects associated with the rapid increase of biomass and the production of the hepatotoxin microcystin (MC) by toxic strains. Among fish, effects of blooms are likely to be more severe for early life stages, and physiological impacts on this life stage could significantly impact recruitment and fish populations. This study explores the effects of Microcystis blooms on the development of fish using the model organism, the Japanese medaka (Oryzias latipes), under realistic exposure conditions. Medaka embryos were exposed to natural blooms collected from New York City (USA) lakes, lab cultures of Microcystis, and MC-LR solutions. Field collected samples were more toxic than lab cultures (even when compared at the same algal density or MC concentration), causing decreased survival, premature time to hatch, reduced body length, yolk sac edema, and decreased heart rate, while lab culture exposures only resulted in bradycardia. Heart rate was the most sensitive endpoint measured, being depressed in embryos exposed to both lab cultures and field collected blooms. Generalized linear model analysis indicated bradycardia was statistically associated with both cell densities of blooms and MC concentrations, while single factor analysis indicated that MC concentrations had a stronger correlation compared to cell densities. However, MC exposure could not fully explain the effects observed, as exposures to MC-LR solutions alone were not able to reduce heart rate as severely as algal exposures. Collectively, these experiments indicate that factors beyond exposure to MC or even isolated Microcystis strains influence heart rate of fish exposed to Microcystis blooms. Enhanced mortality, depressed heart rate, and abnormal development observed in response to environmentally realistic exposures of Microcystis blooms could affect success of fish at both individual or population levels. Copyright © 2017 Elsevier B.V. All rights reserved.
Burton, Derek F; Zhang, Chengjin; Boa-Amponsem, Oswald; Mackinnon, Shanta; Cole, Gregory J
2017-05-01
Developmental exposure to ethanol is recognized to produce long-term neurobehavioral impairment in multiple animal models. However, the molecular mechanisms underlying these deficits remain poorly understood. The present study was undertaken to ascertain whether two well-characterized targets of prenatal alcohol exposure, sonic hedgehog (Shh) and retinoic acid (RA), that induce the hallmark morphological phenotypes of fetal alcohol spectrum disorders (FASD), are involved in the generation of behavioral alterations as a result of alcohol exposure. Zebrafish embryos were exposed to ethanol (0%, 1%, 3%) at either 8-10 or 24-27h post-fertilization (hpf) and then evaluated during adolescence in the novel tank dive test to assess anxiety and risk-taking behavior. Overt signs of dysmorphogenesis were also scored and behavioral and morphological changes were compared for embryos treated with alcohol alone or in combination with subthreshold doses of shh or alhh1a3 morpholinos (MOs). Ethanol treated fish displayed altered tank diving behavior that was not exacerbated by combined MO treatment. While treatment of embryos with either shha mRNA or RA prior to ethanol exposure only ameliorated the altered tank diving response in the case of shha mRNA overexpression, dysmorphogenesis was rescued by both treatments. These results suggest that the effects of ethanol exposure on changes in anxiety and risk-taking behavior in adolescent zebrafish is manifested by a blunting of Shh, but not RA, signaling during early development. Copyright © 2017 Elsevier Inc. All rights reserved.
21 CFR 884.6100 - Assisted reproduction needles.
Code of Federal Regulations, 2012 CFR
2012-04-01
... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...
21 CFR 884.6100 - Assisted reproduction needles.
Code of Federal Regulations, 2010 CFR
2010-04-01
... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...
21 CFR 884.6100 - Assisted reproduction needles.
Code of Federal Regulations, 2011 CFR
2011-04-01
... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...
21 CFR 884.6100 - Assisted reproduction needles.
Code of Federal Regulations, 2014 CFR
2014-04-01
... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...
21 CFR 884.6100 - Assisted reproduction needles.
Code of Federal Regulations, 2013 CFR
2013-04-01
... procedures to obtain gametes from the body or introduce gametes, zygote(s), preembryo(s) and/or embryo(s... (special controls) (mouse embryo assay information, endotoxin testing, sterilization validation, design...
Philipp, Melanie; Berger, Ina M.; Just, Steffen; Caron, Marc G.
2014-01-01
G protein-coupled receptor kinases 2 (GRK2) and 5 (GRK5) are fundamental regulators of cardiac performance in adults but are less well characterized for their function in the hearts of embryos. GRK2 and -5 belong to different subfamilies and function as competitors in the control of certain receptors and signaling pathways. In this study, we used zebrafish to investigate whether the fish homologs of GRK2 and -5, Grk2/3 and Grk5, also have unique, complementary, or competitive roles during heart development. We found that they differentially regulate the heart rate of early embryos and equally facilitate heart function in older embryos and that both are required to develop proper cardiac morphology. A loss of Grk2/3 results in dilated atria and hypoplastic ventricles, and the hearts of embryos depleted in Grk5 present with a generalized atrophy. This Grk5 morphant phenotype was associated with an overall decrease of early cardiac progenitors as well as a reduction in the area occupied by myocardial progenitor cells. In the case of Grk2/3, the progenitor decrease was confined to a subset of precursor cells with a committed ventricular fate. We attempted to rescue the GRK loss-of-function heart phenotypes by downstream activation of Hedgehog signaling. The Grk2/3 loss-of-function embryos were rescued by this approach, but Grk5 embryos failed to respond. In summary, we found that GRK2 and GRK5 control cardiac function as well as morphogenesis during development although with different morphological outcomes. PMID:25104355
Brignon, William R.; Pike, Martin M.; Ebbesson, Lars O.E.; Schaller, Howard A.; Peterson, James T.; Schreck, Carl B.
2018-01-01
Animals reared in barren captive environments exhibit different developmental trajectories and behaviors than wild counterparts. Hence, the captive phenotypes may influence the success of reintroduction and recovery programs for threatened and endangered species. We collected wild bull trout embryos from the Metolius River Basin, Oregon and reared them in differing environments to better understand how captivity affects the bull trout Salvelinus confluentusphenotype. We compared the boldness and prey acquisition behaviors and development of the brain and eye lens of bull trout reared in conventional barren and more structurally complex captive environments with that of wild fish. Wild fish and captive reared fish from complex habitats exhibited a greater level of boldness and prey acquisition ability, than fish reared in conventional captive environments. In addition, the eye lens of conventionally reared bull trout was larger than complex reared captive fish or same age wild fish. Interestingly, we detected wild fish had a smaller relative cerebellum than either captive reared treatment. Our results suggest that rearing fish in more complex captive environments can create a more wild-like phenotype than conventional rearing practices. A better understanding of the effects of captivity on the development and behavior of bull trout can inform rearing and reintroduction programs though prediction of the performance of released individuals.
Nakada, Chisako; Satoh, Shinya; Tabata, Yoko; Arai, Ken-ichi; Watanabe, Sumiko
2006-10-01
We identified zebra fish forkhead transcription factor l1 (zfoxl1) as a gene strongly expressed in neural tissues such as midbrain, hindbrain, and the otic vesicle at the early embryonic stage. Loss of the function of zfoxl1 effected by morpholino antisense oligonucleotide resulted in defects in midbrain and eye development, and in that of formation of the pectoral fins. Interestingly, ectopic expression of shh in the midbrain and elevated pax2a expression in the optic stalk were observed in foxl1 MO-injected embryos. In contrast, expression of pax6a, which is negatively regulated by shh, was suppressed in the thalamus and pretectum regions, supporting the idea of augmentation of the shh signaling pathway by suppression of foxl1. Expression of zfoxl1-EnR (repressing) rather than zfoxl1-VP16 (activating) resulted in a phenotype similar to that induced by foxl1-mRNA, suggesting that foxl1 may act as a transcriptional repressor of shh in zebra fish embryos. Supporting this notion, foxl1 suppressed isolated 2.7-kb shh promoter activity in PC12 cells, and the minimal region of foxl1 required for its transcriptional repressor activity showed strong homology with the groucho binding motif, which is found in genes encoding various homeodomain proteins. In view of all of our data taken together, we propose zfoxl1 to be a novel regulator of neural development that acts by suppressing shh expression.
Avey, S R; Ojehomon, M; Dawson, J F; Gillis, T E
2018-01-01
The present study examined how the expression of enhanced green fluorescent protein (eGFP) and human cardiac actin (ACTC) in zebrafish Danio rerio influences embryonic heart rate (R H ) and the swim performance and metabolic rate of adult fish. Experiments with the adults involved determining the critical swimming speed (U crit , the highest speed sustainable and measure of aerobic capacity) while measuring oxygen consumption. Two different transgenic D. rerio lines were examined: one expressed eGFP in the heart (tg(cmlc:egfp)), while the second expressed ACTC in the heart and eGFP throughout the body (tg(cmlc:actc,ba:egfp)). It was found that R H was significantly lower in the tg(cmlc:actc,ba:egfp) embryos 4 days post-fertilization compared to wild-type (WT) and tg(cmlc:egfp). The swim experiments demonstrated that there was no significant difference in U crit between the transgenic lines and the wild-type fish, but metabolic rate and cost of transport (oxygen used to travel a set distance) was nearly two-fold higher in the tg(cmlc:actc,ba:egfp) fish compared to WT at their respective U crit . These results suggest that the expression of ACTC in the D. rerio heart and the expression of eGFP throughout the animal, alters cardiac function in the embryo and reduces the aerobic efficiency of the animal at high levels of activity. © 2017 The Fisheries Society of the British Isles.
Xiao, Qing; Xia, Jian-Hong; Zhang, Xiao-Juan; Li, Zhi; Wang, Yang; Zhou, Li; Gui, Jian-Fang
2014-01-01
Many organisms in extremely cold environments such as the Antarctic Pole have evolved antifreeze molecules to prevent ice formation. There are four types of antifreeze proteins (AFPs). Type-IV antifreeze proteins (AFP4s) are present also in certain temperate and even tropical fish, which has raised a question as to whether these AFP4s have important functions in addition to antifreeze activity. Here we report the identification and functional analyses of AFP4s in cyprinid fish. Two genes, namely afp4a and afp4b coding for AFP4s, were identified in gibel carp (Carassius auratus gibelio) and zebrafish (Danio rerio). In both species, afp4a and afp4b display a head-to-tail tandem arrangement and share a common 4-exonic gene structure. In zebrafish, both afp4a and afp4b were found to express specifically in the yolk syncytial layer (YSL). Interestingly, afp4a expression continues in YSL and digestive system from early embryos to adults, whereas afp4b expression is restricted to embryogenesis. Importantly, we have shown by using afp4a-specific and afp4b-specifc morpholino knockdown and cell lineage tracing approaches that AFP4a participates in epiboly progression by stabilizing yolk cytoplasmic layer microtubules, and AFP4b is primarily related to convergence movement. Therefore, both AFP4 proteins are essential for gastrulation of zebrafish embryos. Our current results provide first evidence that AFP such as AFP4 has important roles in regulating developmental processes besides its well-known function as antifreeze factors.
NASA Astrophysics Data System (ADS)
Meissner, Robert; Sugden, Wade W.; Siekmann, Arndt F.; Denz, Cornelia
2018-02-01
All higher developed organisms contain complex hierarchical networks of arteries, veins and capillaries. These constitute the cardiovascular system responsible for supplying nutrients, gas and waste exchange. Diseases related to the cardiovascular system are among the main causes for death worldwide. In order to understand the processes leading to arteriovenous malformation, we studied hereditary hemorrhagic telangiectasia (HHT), which has a prevalence of 1:5000 worldwide and causes internal bleeding. In zebrafish, HHT is induced by mutation of the endoglin gene involved in HHT and observed to reduce red blood cell (RBC) flow to intersegmental vessels (ISVs) in the tail due to malformations of the dorsal aorta (DA) and posterior cardinal vein (PCV). However, these capillaries are still functional. Changes in the blood flow pattern are observed from in vivo data from zebrafish embryos through particle image velocimetry (PIV). Wall shear rates (WSRs) and blood flow velocities are obtained non-invasively with millisecond resolution. We observe significant increases of blood flow velocity in the DA for endoglin-deficient zebrafish embryos (mutants) at 3 days post fertilization. In the PCV, this increase is even more pronounced. We identified an increased similarity between the DA and the PCV of mutant fish compared to siblings, i.e., unaffected fish. To counteract the reduced RBC flow to ISVs we implement optical tweezers (OT). RBCs are steered into previously unperfused ISVs showing a significant increase of RBC count per minute. We discuss limitations with respect to biocompatibility of optical tweezers in vivo and determination of in vivo wall shear stress (WSS) connected to normal and endoglin-deficicent zebrafish embryos.
Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis.
Baltzinger, Mireille; Ori, Michela; Pasqualetti, Massimo; Nardi, Irma; Rijli, Filippo M
2005-12-01
The skeletal structures of the face and throat are derived from cranial neural crest cells (NCCs) that migrate from the embryonic neural tube into a series of branchial arches (BAs). The first arch (BA1) gives rise to the upper and lower jaw cartilages, whereas hyoid structures are generated from the second arch (BA2). The Hox paralogue group 2 (PG2) genes, Hoxa2 and Hoxb2, show distinct roles for hyoid patterning in tetrapods and fishes. In the mouse, Hoxa2 acts as a selector of hyoid identity, while its paralogue Hoxb2 is not required. On the contrary, in zebrafish Hoxa2 and Hoxb2 are functionally redundant for hyoid arch patterning. Here, we show that in Xenopus embryos morpholino-induced functional knockdown of Hoxa2 is sufficient to induce homeotic changes of the second arch cartilage. Moreover, Hoxb2 is downregulated in the BA2 of Xenopus embryos, even though initially expressed in second arch NCCs, similar to mouse and unlike in zebrafish. Finally, Xbap, a gene involved in jaw joint formation, is selectively upregulated in the BA2 of Hoxa2 knocked-down frog embryos, supporting a hyoid to mandibular change of NCC identity. Thus, in Xenopus Hoxa2 does not act redundantly with Hoxb2 for BA2 patterning, similar to mouse and unlike in fish. These data bring novel insights into the regulation of Hox PG2 genes and hyoid patterning in vertebrate evolution and suggest that Hoxa2 function is required at late stages of BA2 development. Copyright 2005 Wiley-Liss, Inc.
Kynard, B.; Zhuang, P.; Zhang, L.; Zhang, T.; Zhang, Z.
2002-01-01
We conducted laboratory experiments with Volga River Russian sturgeon, Acipenser gueldenstaedtii, to develop a conceptual model of early behavior. We daily observed fish from day-0 (embryos, first life interval after hatching) to day-29 feeding larvae for preference of bright habitat and cover, swimming distance above the bottom, up- and downstream movement, and diel activity. Hatchling embryos initiated a downstream migration, which suggests that predation risk of embryos at spawning sites is high. Migration peaked on days 0-5 and ceased on day 7 (8-day migration). Migrants preferred bright, open habitat and early migrants swam-up far above the bottom (maximum daily median, 140 cm) in a vertical swim tube. Post-migrant embryos did not prefer bright illumination but continued to prefer white substrate, increased use of cover habitat, and swam on the bottom. Larvae initiated feeding on day 10 after 170.6 cumulative temperature degree-days. Larvae did not migrate, weakly preferred bright illumination, preferred white substrate and open habitat, and swam near the bottom (daily median 5-78 cm). The lack of a strong preference by larvae for bright illumination suggests foraging relies more on olfaction than vision for locating prey. A short migration by embryos would disperse wild sturgeon from a spawning area, but larvae did not migrate, so a second later migration by juveniles disperses young sturgeon to the sea (2-step migration). Embryo and larva body color was light tan and tail color was black. The migration, behavior, and light body color of Russian sturgeon embryos was similar to species of Acipenser and Scaphirhynchus in North America and to Acipenser in Asia that migrate after hatching as embryos. The similarity in migration style and body color among species with diverse phylogenies likely reflects convergence for common adaptations across biogeographic regions. ?? 2002 Kluwer Academic Publishers.
Generality of vertebrate developmental patterns: evidence for a dermomyotome in fish
Devoto, S.H.
2012-01-01
Summary The somitic compartment that gives rise to trunk muscle and dermis in amniotes is an epithelial sheet on the external surface of the somite, and is known as the dermomyotome. However, despite its central role in the development of the trunk and limbs, the evolutionary history of the dermomyotome and its role in non-amniotes is poorly understood. We have tested whether a tissue with the morphological and molecular characteristics of a dermomyotome exists in non-amniotes. We show that representatives of the agnathans and of all major clades of gnathostomes each have a layer of cells on the surface of the somite, external to the embryonic myotome. These external cells do not show any signs of terminal myogenic or dermogenic differentiation. Moreover, in the embryos of bony fishes as diverse as sturgeons (Chondrostei) and zebrafish (Teleostei) this layer of cells expresses the pax 3 and 7 genes that mark myogenic precursors. Some of the pax7-expressing cells also express the differentiation-promoting myogenic regulatory factor Myogenin and appear to enter into the myotome. We therefore suggest that the dermomyotome is an ancient and conserved structure that evolved prior to the last common ancestor of all vertebrates. The identification of a dermomyotome in fish makes it possible to apply the powerful cellular and genetic approaches available in zebrafish to the understanding of this key developmental structure. PMID:16409387
Acute and chronic toxicity of nickel to rainbow trout (Oncorhynchus mykiss).
Brix, Kevin V; Keithly, James; DeForest, David K; Laughlin, Jim
2004-09-01
Of the fish species tested in chronic Ni exposures, rainbow trout (Oncorhynchus mykiss) is the most sensitive. To develop additional Ni toxicity data and to investigate the toxic mode of action for Ni, we conducted acute (96-h) and chronic (85-d early life-stage) flow-through studies using rainbow trout. In addition to standard toxicological endpoints, we investigated the effects of Ni on ionoregulatory physiology (Na, Ca, and Mg). The acute median lethal concentration for Ni was 20.8 mg/L, and the 24-h gill median lethal accumulation was 666 nmol/g wet weight. No effects on plasma Ca, Mg, or Na were observed during acute exposure. In the chronic study, no significant effects on embryo survival, swim-up, hatching, or fingerling survival or growth were observed at dissolved Ni concentrations up to 466 microg/L, the highest concentration tested. This concentration is considerably higher than the only other reported chronic no-observed-effect concentration (<33 microg/L) for rainbow trout. Accumulation of Ni in trout eggs indicates the chorion is only a partial barrier with 36%, 63%, and 1% of total accumulated Ni associated with the chorion, yolk, and embryo, respectively. Whole-egg ion concentrations were reduced by Ni exposure. However, most of this reduction occurred in the chorion rather than in the embryos, and no effects on hatching success or larval survival were observed as a result. Plasma ion concentrations measured in swim-up fingerlings at the end of the chronic-exposure period were not significantly reduced by exposure to Ni. Nickel accumulated on the gill in an exponential manner but plateaued in trout plasma at waterborne Ni concentrations of 118 microg/L or greater. Consistent with previous studies, Ni did not appear to disrupt ionoregulation in acute exposures of rainbow trout. Our results also suggest that Ni is not an ionoregulatory toxicant in long-term exposures, but the lack of effects in the highest Ni treatment precludes a definitive conclusion.
Fishing anti(lymph)angiogenic drugs with zebrafish.
García-Caballero, Melissa; Quesada, Ana R; Medina, Miguel A; Marí-Beffa, Manuel
2018-02-01
Zebrafish, an amenable small teleost fish with a complex mammal-like circulatory system, is being increasingly used for drug screening and toxicity studies. It combines the biological complexity of in vivo models with a higher-throughput screening capability compared with other available animal models. Externally growing, transparent embryos, displaying well-defined blood and lymphatic vessels, allow the inexpensive, rapid, and automatable evaluation of drug candidates that are able to inhibit neovascularisation. Here, we briefly review zebrafish as a model for the screening of anti(lymph)angiogenic drugs, with emphasis on the advantages and limitations of the different zebrafish-based in vivo assays. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anti-translational research: from the bedside back to the bench for reflectance confocal microscopy
NASA Astrophysics Data System (ADS)
Gareau, Daniel
2014-03-01
The reflectance confocal microscope has made translational progress in dermatology. 0.5 micrometer lateral resolution, 0.75mm field-of-view and excellent temporal resolution at ~15 frames/second serve the VivaScope well in the clinic, but it may be overlooked in basic research. This work reviews high spatiotemporal confocal microscopy and presents images acquired of various samples: zebra fish embryo where melanocytes with excellent contrast overly the spinal column, chicken embryo, where myocardium is seen moving at 15 frames/ second, calcium spikes in dendrites (fluorescence mode) just beyond the temporal resolution, and human skin where blood cells race through the artereovenous microvasculature. For an introduction to confocal microscopy, see: http://dangareau.net.s69818.gridserver.com/science/confocal-microscopy
The early life stages of fish are known to be more sensitive than the adults to the toxicological effects of 2,3,7,8-tetrachlorodibenzo(p)dioxide (TCDD). TCDD concentrations in surface waters are sufficiently low that direct exposure of the developing embryo is unlikely to be o...
Cryobanking of aquatic species.
Martínez-Páramo, Sonia; Horváth, Ákos; Labbé, Catherine; Zhang, Tiantian; Robles, Vanesa; Herráez, Paz; Suquet, Marc; Adams, Serean; Viveiros, Ana; Tiersch, Terrence R; Cabrita, Elsa
2017-04-01
This review is focused on the applications of genome cryobanking of aquatic species including freshwater and marine fish, as well as invertebrates. It also reviews the latest advances in cryobanking of model species, widely used by the scientific community worldwide, because of their applications in several fields. The state of the art of cryopreservation of different cellular types (sperm, oocytes, embryos, somatic cells and primordial germ cells or early spermatogonia) is discussed focusing on the advantages and disadvantages of each procedure according to different applications. A special review on the need of standardization of protocols has also been carried out. In summary, this comprehensive review provides information on the practical details of applications of genome cryobanking in a range of aquatic species worldwide, including the cryobanks established in Europe, USA, Brazil, Australia and New Zealand, the species and type of cells that constitute these banks and the utilization of the samples preserved. This review compiles the last advances on germplasm cryobanking of freshwater and marine fish species and invertebrates, with high value for commercial aquaculture or conservation. It is reviewed the most promising cryopreservation protocols for different cell types, embryos and larvae that could be applied in programs for genetic improvement, broodstock management or conservation of stocks to guarantee culture production.
Higaki, Shogo; Shimada, Manami; Koyama, Yoshie; Fujioka, Yasuhiro; Sakai, Noriyoshi; Takada, Tatsuyuki
2015-09-01
Establishing a cell line from endemic species facilitates the cell biological research of these species in the laboratory. In this study, an epithelium-like cell line RME1 was established from the blastula-stage embryos of the critically endangered cyprinid Honmoroko Gnathopogon caerulescens, which is endemic to ancient Lake Biwa in Japan. To the best of our knowledge, this is the first embryonic cell line from an endangered fish species. This cell line is well adapted to grow at 28°C in the culture medium, which was successfully used for establishing testicular and ovarian cell lines of G. caerulescens, and has displayed stable growth over 60 passages since its initiation in June 2011. Although RME1 did not express the genes detected in blastula-stage embryos, such as oct4, sox2, nanog, and klf4, it showed a high euploidy rate (2n = 50; 67.2%) with normal diploid karyotype morphology, suggesting that RME1 retains the genomic organization of G. caerulescens and can prove to be a useful tool to investigate the unique properties of endangered endemic fishes at cellular level.
Rodríguez-Fuentes, Gabriela; Sandoval-Gío, Juan J; Arroyo-Silva, Anita; Noreña-Barroso, Elsa; Escalante-Herrera, Karla S; Olvera-Espinosa, Francisco
2015-05-01
Personal care products have been detected in superficial waters, representing an environmental risk to the biota. Some studies indicated that 3-benzophenone (3BP) alters hormones, inducing vitellogenesis and having adverse effects on fish reproduction. Other studies have reported generation of free radicals and changes in antioxidant enzymes. Therefore, the aim of the present study was to test acute exposure to 3BP at concentrations within and beyond that found environmentally to provide important toxicological information regarding this chemical. We evaluated the effect of 3BP on vitellogenin 1 (VTG1) gene expression and the transcription of the enzymes catalase (CAT), superoxide dismutase (SOD) or glutathione peroxidase (GPx), which are involved in cellular redox balance. Zebrafish eluthero-embryos (168hpf) were exposed to 1,10, 100, 1000µg/L 3BP, in addition to a negative control and a 0.1% ethanol control for 48h. The results of our study indicated a positive significant correlation between exposure concentrations and VTG1 expression (r=0.986, p=0.0028) but only 1000µg/L 3BP produced a significant increase from control. Acute exposure showed no significant differences in transcription levels of CAT, SOD or GPx at the tested conditions. Nevertheless, a trend toward increase in GPx expression was observed as a positive significant correlation (r=0.928, p=0.017) was noted. Copyright © 2015 Elsevier Inc. All rights reserved.
Gilbert, Rebecca S; Nunez, Brandy; Sakurai, Kumi; Fielder, Thomas; Ni, Hsiao-Tzu
2016-03-24
Growing concerns about safety of ART on human gametes, embryos, clinical outcomes and long-term health of offspring require improved methods of risk assessment to provide functionally relevant assays for quality control testing and pre-clinical studies prior to clinical implementation. The one-cell mouse embryo assay (MEA) is the most widely used for development and quality testing of human ART products; however, concerns exist due to the insensitivity/variability of this bioassay which lacks standardization and involves subjective analysis by morphology alone rather than functional analysis of the developing embryos. We hypothesized that improvements to MEA by the use of functional molecular biomarkers could enhance sensitivity and improve detection of suboptimal materials/conditions. Fresh one-cell transgenic mouse embryos with green fluorescent protein (GFP) expression driven by Pou6f1 or Cdx2 control elements were harvested and cultured to blastocysts in varied test and control conditions to compare assessment by standard morphology alone versus the added dynamic expression of GFP for screening and selection of critical raw materials and detection of suboptimal culture conditions. Transgenic mouse embryos expressing functionally relevant biomarkers of normal early embryo development can be used to monitor the developmental impact of culture conditions. This novel approach provides a superior MEA that is more meaningful and sensitive for detection of embryotoxicity than morphological assessment alone.
Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.
Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen
2014-04-01
Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. © 2013 SETAC.
9 CFR 113.328 - Fowl Laryngotracheitis Vaccine.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Disregard all deaths during the first 24 hours post-injection. To be a valid test, at least four embryos in... pathogens by the chicken embryo inoculation test prescribed in § 113.37, except that, if the test is inconclusive because of vaccine virus override, the test may be repeated and if the repeat test is inconclusive...
9 CFR 113.37 - Detection of pathogens by the chicken embryo inoculation test.
Code of Federal Regulations, 2010 CFR
2010-01-01
... embryo inoculation test. 113.37 Section 113.37 Animals and Animal Products ANIMAL AND PLANT HEALTH... inoculation test. The test for detection of extraneous pathogens provided in this section shall be conducted when such a test is prescribed in an applicable Standard Requirement or in the filed Outline of...
9 CFR 113.37 - Detection of pathogens by the chicken embryo inoculation test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... embryo inoculation test. 113.37 Section 113.37 Animals and Animal Products ANIMAL AND PLANT HEALTH... inoculation test. The test for detection of extraneous pathogens provided in this section shall be conducted when such a test is prescribed in an applicable Standard Requirement or in the filed Outline of...
Targońska, Katarzyna; Kucharczyk, Dariusz; Zarski, Daniel; Cejko, Beata Irena; Krejszeff, Sławomir; Kupren, Krzysztof; Król, Radosław; Dryl, Katarzyna; Kowalski, Radosław Kajetan; Glogowski, Jan
2011-09-01
The aim of this work was to compare the effects of controlled reproduction of cultured and wild common barbel, Barbus barbus (L.). Preparations containing different GnRH analogues and dopamine receptor antagonists (Ovopel, Ovaprim) as well as human chorionic gonadotropin (hCG) (in the case of cultured fish) were applied and their influence on ovulation, spermiation and quality of gametes obtained was determined. No differences in the qualitative or quantitative parameters of semen were found between fish stimulated with different hormonal preparations and those not receiving hormonal stimulation. The high suitability of Ovaprim for ovulation induction in (cultured and wild) barbel was confirmed. The highest synchronisation of ovulation was obtained after the application of Ovopel (18 ± 3 h), but the best results of controlled reproduction (expressed as the percentage of ovulations and survival of embryos) were obtained by applying Ovaprim (83.2 ± 4.1). A significantly higher percentage of ovulation was obtained in cultured fish (80-90%) than in wild fish (< 25%).
Genes, embryos, and future people.
Glannon, Walter
1998-07-01
Testing embryonic cells for genetic abnormalities gives us the capacity to predict whether and to what extent people will exist with disease and disability. Moreover, the freezing of embryos for long periods of time enables us to alter the length of a normal human lifespan. After highlighting the shortcomings of somatic-cell gene therapy and germ-line genetic alteration, I argue that the testing and selective termination of genetically defective embryos is the only medically and morally defensible way to prevent the existence of people with severe disability, pain and suffering that make their lives not worth living for them on the whole. In addition, I consider the possible harmful effects on children born from frozen embryos after the deaths of their biological parents, or when their parents are at an advanced age. I also explore whether embryos have moral status and whether the prospects for disease-preventing genetic alteration can justify long-term cryopreservation of embryos.
Yu, Kaimin; Li, Guochao; Feng, Weimin; Liu, Lili; Zhang, Jiayu; Wu, Wei; Xu, Lei; Yan, Yanchun
2015-09-05
The potential interference of endocrine disrupting chemicals (EDCs) on aquatic animals and humans has drawn wide attention in recent years. Reports have shown that some organophosphorus pesticides were a kind of EDCs, but their effects on fish species are still under research. In present study, flow cytometry data of HEC-1B cell line showed that chlorpyrifos (CPF) could increase cell proliferation index like 17β-estradiol (E2), but the effect of CPF was weaker than of E2 in the same concentration. Moreover, CPF altered the expression pattern of estrogen-responsive gene VTG and ERα in zebrafish embryos. When exposed to CPF at various concentrations (0, 0.10, 0.25, 0.50, 0.75 and 1.00mg/L) for 48h during the embryo stage, compared with controls, the hatching rate of treated groups significantly increased at the same time and the hatching rate of embryos was proportional to CPF concentration. The mRNA expression levels of c-myc, cyclin D1, Bax and Bcl-2, which are closely related to cell proliferation and cell apoptosis, were disturbed by CPF in zebrafish embryos after exposure treated for 48h. In addition, acridine orange (AO) staining of zebrafish embryos showed that cell apoptosis was appeared in the 0.75, 1.00mg/L CPF treated groups. Taken together, the results obtained in the present study indicated that chlorpyrifos is estrogenic and alters embryonic hatching, cell proliferation and apoptosis in zebrafish. Copyright © 2015. Published by Elsevier Ireland Ltd.
Jugulam, M; Ziauddin, Asma; So, Kenny K Y; Chen, Shu; Hall, J Christopher
2015-01-01
Auxinic herbicides (e.g. dicamba) are extensively used in agriculture to selectively control broadleaf weeds. Although cultivated species of Brassicaceae (e.g. Canola) are susceptible to auxinic herbicides, some biotypes of Sinapis arvensis (wild mustard) were found dicamba resistant in Canada. In this research, dicamba tolerance from wild mustard was introgressed into canola through embryo rescue followed by conventional breeding. Intergeneric hybrids between S. arvensis (2n = 18) and B. napus (2n = 38) were produced through embryo rescue. Embryo formation and hybrid plant regeneration was achieved. Transfer of dicamba tolerance from S. arvensis into the hybrid plants was determined by molecular analysis and at the whole plant level. Dicamba tolerance was introgressed into B. napus by backcrossing for seven generations. Homozygous dicamba-tolerant B. napus lines were identified. The ploidy of the hybrid progeny was assessed by flow cytometry. Finally, introgression of the piece of DNA possibly containing the dicamba tolerance gene into B. napus was confirmed using florescence in situ hybridization (FISH). This research demonstrates for the first time stable introgression of dicamba tolerance from S. arvensis into B. napus via in vitro embryo rescue followed by repeated backcross breeding. Creation of dicamba-tolerant B. napus varieties by this approach may have potential to provide options to growers to choose a desirable herbicide-tolerant technology. Furthermore, adoption of such technology facilitates effective weed control, less tillage, and possibly minimize evolution of herbicide resistant weeds.
The red tide toxin, brevetoxin, induces embryo toxicity and developmental abnormalities.
Kimm-Brinson, K L; Ramsdell, J S
2001-01-01
Brevetoxins are lipophilic polyether toxins produced by the red tide dinoflagellate Gymnodinium breve, and their neurotoxic effects on adult animals have been documented. In this study, we characterized adverse developmental effects of brevetoxin-1 (PbTx-1) using an exposure paradigm that parallels the maternal oocyte transfer of toxin. Medaka fish (Oryzias latipes) embryos were exposed to PbTx-1 via microinjection of toxin reconstituted in a triolein oil droplet. Embryos microinjected with doses of 0.1-8.0 ng/egg (ppm) of brevetoxin-1 exhibited pronounced muscular activity (hyperkinesis) after embryonic day 4. Upon hatching, morphologic abnormalities were commonly found in embryos at the following lowest adverse effect levels: 1.0-3.0 ppm, lateral curvature of the spinal column; 3.1-3.4 ppm, herniation of brain meninges through defects in the skull; and 3.4-4.0 ppm, malpositioned eye. Hatching abnormalities were also commonly observed at brevetoxin doses of 2.0 ppm and higher with head-first, as opposed to the normal tail-first, hatching, and doses > 4.1 ng/egg produced embryos that developed but failed to hatch. Given the similarity of developmental processes found between higher and lower vertebrates, teratogenic effects of brevetoxins have the potential to occur among different phylogenetic classes. The observation of developmental abnormalities after PbTx-1 exposure identifies a new spectrum of adverse effects that may be expected to occur following exposure to G. breve red tide events. PMID:11335186
Saito, Taiju; Goto-Kazeto, Rie; Arai, Katsutoshi; Yamaha, Etsuro
2008-01-01
Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. PGCs therefore have the potential to be of value for gene banking and cryopreservation, particularly via the production of donor gametes with germ-line chimeras. Currently, it is not clear how many PGCs are required for germ-line differentiation and formation of gonadal structures. In the present study, we achieved complete germ-line replacement between two related teleost species, the pearl danio (Danio albolineatus) and the zebrafish (Danio rerio), with transplantation of a single PGC into each host embryo. We isolated and transplanted a single PGC into each blastula-stage, zebrafish embryo. Development of host germ-line cells was prevented by an antisense dead end morpholino oligonucleotide. In many host embryos, the transplanted donor PGC successfully migrated toward the gonadal anlage without undergoing cell division. At the gonadal anlage, the PGC differentiated to form one normally sized gonad rather than the pair of gonads usually present. Offspring were obtained from natural spawning of these chimeras. Analyses of morphology and DNA showed that the offspring were of donor origin. We extended our study to confirm that transplanted single PGCs of goldfish (Carassius auratus) and loach (Misgurnus anguillicaudatus) can similarly differentiate into sperm in zebrafish host embryos. Our results show that xenogenesis is realistic and practical across species, genus, and family barriers and can be achieved by the transplantation of a single PGC from a donor species.
Sayed, Alaa El-Din Hamid; Mitani, Hiroshi
2016-11-01
In the present work, the destructive effects of ultraviolet A (UVA; 366nm) irradiation on the developmental stages of Japanese medaka (Oryzias latipes) are revealed in terms of hatching success, mortality rate, and morphological malformations (yolk sac edema, body curvature, fin blistering, and dwarfism). Fertilized eggs in stage 4 were exposed to 15, 30, and 60min/day UVA for 3days in replicates. Fish were staged and aged following the stages established by Iwamatsu [1]. We observed and recorded the hatching time and deformed and dead embryos continuously. The hatching time was prolonged and the deformed and dead embryos numbers were increased by UVA dose increase. At stage 40, samples from each group were fixed to investigate their morphology and histopathology. Some morphological malformations were recorded after UVA exposure in both strains. Histopathological changes were represented as different shapes of curvature in notochord with collapse. The degree of collapsation was depended on the dose and time of UVA exposure. Our findings show that exposure to UVA irradiation caused less vertebral column curvature in medaka fry. Moreover, p53-deficient embryos were more tolerant than those of wild-type (Hd-rR) Japanese medaka. This study indicated the dangerous effects of the UVA on medaka. Copyright © 2016 Elsevier B.V. All rights reserved.
Pasparakis, Christina; Sweet, Lauren E; Stieglitz, John D; Benetti, Daniel; Casente, Conrad T; Roberts, Aaron P; Grosell, Martin
2017-10-01
The Deepwater Horizon oil spill occurred in the summer of 2010 and coincided with the spawning window of the ecologically and economically important pelagic fish mahi-mahi (Coryphaena hippurus). During summer months, early life stage mahi-mahi were likely also exposed to other naturally occurring stressors such as increased temperature and ultraviolet radiation (UV). Previous research has shown that co-exposure to oil and additional natural stressors can affect the timing and duration of negative buoyancy in mahi-mahi embryos. The current study aimed to elucidate the factors affecting the onset of negative buoyancy and to also explore possible mechanisms behind buoyancy change. Embryos co-exposed to oil and/or increased temperature and UV radiation displayed early onset of negative buoyancy with concurrent increases in oxygen consumption and sinking rates, which are normally only seen during the period directly preceding hatch. Results also suggest a behavioral response in which embryos avoid UV radiation by sinking down the water column but reestablish positive buoyancy once the UV radiation is removed. These findings imply that embryos can dynamically change their position in the water column in response to external cues and thus may have much greater control over buoyancy than previously thought. Copyright © 2017 Elsevier B.V. All rights reserved.
[The vestibular apparatus of quail embryos in an experiment on the Kosmos-1129 biosatellite].
Lychakov, D V; Il'inskaia, E V; Dadasheva, O A; Gur'eva, T S
1993-01-01
The light microscope was used to study serial sections of labyrinths of quail embryos incubated and reared during 12 d orbiting of Cosmos 1129. On recovery the embryos were aged 9, 11.5 and 12 days. No significant deviations in the development of the vestibular apparatus in flight species were noted as compared to the controls. Given this and our experimental data about in-space development of fish and amphibians we may deduce that hypo-g does not exert a noticeable altering effect on the vestibular embryogenesis. Nevertheless, it should be pointed out that in all otolith organs and semicircular channel ampules of the flight embryos cup-form neural endings innervating type I sensory cells were markedly swollen in contrast to the control. Earlier swollen cup-form nerve endings have been found in one adult rat after 7 days of space flight aboard Cosmos 1667. However, exposure in space does not bring about a substantial swelling of bud-like nerve endings which contact type II sensory cells. Thus, a conclusion may be drawn that spaceflight factors are liable to produce shifts in the type I sensory cell--cup-form nerve ending unit but they do not affect type II sensory cell--bud-like nerve ending unit to the extent when effects can be identified by light microscopy.
Zebrafish (Danio rerio) embryos as a model for testing proteratogens.
Weigt, Stefan; Huebler, Nicole; Strecker, Ruben; Braunbeck, Thomas; Broschard, Thomas H
2011-03-15
Zebrafish embryos have been shown to be a useful model for the detection of direct acting teratogens. This communication presents a protocol for a 3-day in vitro zebrafish embryo teratogenicity assay and describes results obtained for 10 proteratogens: 2-acetylaminofluorene, benzo[a]pyrene, aflatoxin B(1), carbamazepine, phenytoin, trimethadione, cyclophosphamide, ifosfamide, tegafur and thio-TEPA. The selection of the test substances accounts for differences in structure, origin, metabolism and water solubility. Apart from 2-acetylaminofluorene, which mainly produces lethal effects, all proteratogens tested were teratogenic in zebrafish embryos exposed for 3 days. The test substances and/or the substance class produced characteristic patterns of fingerprint endpoints. Several substances produced effects that could be identified already at 1 dpf (days post fertilization), whereas the effects of others could only be identified unambiguously after hatching at ≥ 3 dpf. The LC₅₀ and EC₅₀ values were used to calculate the teratogenicity index (TI) for the different substances, and the EC₂₀ values were related to human plasma concentrations. Results lead to the conclusion that zebrafish embryos are able to activate proteratogenic substances without addition of an exogenous metabolic activation system. Moreover, the teratogenic effects were observed at concentrations relevant to human exposure data. Along with other findings, our results indicate that zebrafish embryos are a useful alternative method for traditional teratogenicity testing with mammalian species. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
The Effect of Elevated CO2 and Temperature on the Hatch Rate and Survival of Estuarine Forage Fish
NASA Astrophysics Data System (ADS)
Merlo, L. R.; Gobler, C.
2016-02-01
The World Oceans are acidifying and warming, yet little is known regarding how these processes will combine to impact fish populations. In estuaries, microbial respiration of eutrophication-enhanced organic matter can create elevated CO2 levels during late spring and summer seasons when thermal extremes can occur and temperate fish spawn. Here, we report on experiments that exposed fish embryos (e.g. Menidia beryllina, inland silverside) to normal and elevated CO2 (400 and 2,000 ppm) and the range of temperatures experienced within temperate estuaries during the spawning season (16 - 30C). Fish survival and growth rates were quantified from hatching through early life, larval stages. Temperature controlled egg hatching times, with elevated temperatures leading to more rapid hatch rates. Elevated levels of CO2 significantly depressed post-hatch survival of fish. Survival rates of fish exposed to elevated CO2 at lower than ideal temperatures were significantly lower than predicted by either variable individually indicating the ability of these stressors to synergistically interact. Since embryonic stages have been identified as being highly sensitive to acidification, this finding may be associated with the extended exposure of eggs to high CO2 at lower temperatures. The physiological mechanisms driving experimental trends and broader ecological implications of the study will be discussed.
Martinez, Guillaume; Gillois, Pierre; Le Mitouard, Marine; Borye, Rémy; Esquerré-Lamare, Camille; Satre, Véronique; Bujan, Louis; Hennebicq, Sylviane
2013-01-01
Approximately 1% of the spermatozoa found in ejaculate of healthy men are aneuploid and this rate increases in the population of subfertile and infertile men. Moreover, fertilization with these aneuploid sperm can lead to impaired embryo development. Fluorescent In Situ Hybridization (FISH) is the common cytogenetic tool used for aneuploidy screening on sperm. However, it is a time-consuming technique and cytogenetic or in vitro fertilization laboratories cannot routinely use it and face the increasing demand of such analyses before Assisted Reproductive Techniques (ART). As automation can be a clue for routine practice, this study compares manual and automated scoring of sperm aneuploidy rates using a Metafer Metasystems® device. The results obtained also contribute to global data about FISH on sperm cells. We recruited 100 men addressed for sperm cryopreservation. They all signed an informed consent to participate in the study. 29 men were donors or consulted before vasectomy (control group) and 71 were suffering of Hodgkin's disease or non Hodgkin lymphoma (patient group). One semen sample was collected for each patient, analyzed according to WHO criteria and prepared for a triple-color FISH using centromeric probes for chromosomes 18, X and Y. Automated scoring was performed using a Metafer Metasystems® device. 507,019 cells were scored. We found a strong concordance between the automated and the manual reading (d < 0.01 in Bland-Altman test). We also did not find a statistically significant difference between the automated and the manual reading using Wilcoxon test for total aneuploidy rate (p = 0.06), sex chromosomes disomy (p = 0.33), chromosome 18 disomy (p = 0.39) and diploidy (p = 0.21). Cumulative rate of total aneuploidy was 0.78% ± 0.212% for patient group and 0.54% ± 0.15 for control group and among this, sex chromosome XY disomy rate was of 0.54% for patient group and 0.27% for control group. This study validates the automated reading for FISH on sperm with a Metafer Metasystems® device and allows its use in a laboratory routine.
Effect of air bubble localization after transfer on embryo transfer outcomes.
Tiras, Bulent; Korucuoglu, Umit; Polat, Mehtap; Saltik, Ayse; Zeyneloglu, Hulusi Bulent; Yarali, Hakan
2012-09-01
Our study aimed to provide information about the effects of air bubble localization after transfer on embryo transfer outcomes. Retrospective analysis of 7489 ultrasound-guided embryo transfers. Group 1 included 6631 embryo transfers in which no movement of the air bubbles was observed after transfer. Group 2 consisted of 407 embryo transfers in which the air bubbles moved towards the uterine fundus spontaneously, a little time after transfer. Group 3 included 370 embryo transfers in which the air bubbles moved towards the uterine fundus with ejection, immediately after transfer. Group 4 consisted of 81 embryo transfers in which the air bubbles moved towards the cervical canal. The four patient groups were different from one another with respect to positive pregnancy tests. Post hoc test revealed that this difference was between group 4 and other groups. An initial finding of our study was significantly decreased positive pregnancy test rates and clinical pregnancy rates with air bubbles moving towards the cervical canal after transfer. Although air bubbles moving towards the uterine fundus with ejection were associated with higher pregnancy rates, higher miscarriage rates and similar live birth rates were observed compared to air bubbles remaining stable after transfer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Di Paolo, Carolina; Groh, Ksenia J; Zennegg, Markus; Vermeirssen, Etiënne L M; Murk, Albertinka J; Eggen, Rik I L; Hollert, Henner; Werner, Inge; Schirmer, Kristin
2015-12-01
The occurrence of chronic or delayed toxicity resulting from the exposure to sublethal chemical concentrations is an increasing concern in environmental risk assessment. The Fish Embryo Toxicity (FET) test with zebrafish provides a reliable prediction of acute toxicity in adult fish, but it cannot yet be applied to predict the occurrence of chronic or delayed toxicity. Identification of sublethal FET endpoints that can assist in predicting the occurrence of chronic or delayed toxicity would be advantageous. The present study characterized the occurrence of delayed toxicity in zebrafish larvae following early exposure to PCB126, previously described to cause delayed effects in the common sole. The first aim was to investigate the occurrence and temporal profiles of delayed toxicity during zebrafish larval development and compare them to those previously described for sole to evaluate the suitability of zebrafish as a model fish species for delayed toxicity assessment. The second aim was to examine the correlation between the sublethal endpoints assessed during embryonal and early larval development and the delayed effects observed during later larval development. After exposure to PCB126 (3-3000ng/L) until 5 days post fertilization (dpf), larvae were reared in clean water until 14 or 28 dpf. Mortality and sublethal morphological and behavioural endpoints were recorded daily, and growth was assessed at 28 dpf. Early life exposure to PCB126 caused delayed mortality (300 ng/L and 3000 ng/L) as well as growth impairment and delayed development (100 ng/L) during the clean water period. Effects on swim bladder inflation and cartilaginous tissues within 5 dpf were the most promising for predicting delayed mortality and sublethal effects, such as decreased standard length, delayed metamorphosis, reduced inflation of swim bladder and column malformations. The EC50 value for swim bladder inflation at 5 dpf (169 ng/L) was similar to the LC50 value at 8 dpf (188 and 202 ng/L in two experiments). Interestingly, the patterns of delayed mortality and delayed effects on growth and development were similar between sole and zebrafish. This indicates the comparability of critical developmental stages across divergent fish species such as a cold water marine flatfish and a tropical freshwater cyprinid. Additionally, sublethal effects in early embryo-larval stages were found promising for predicting delayed lethal and sublethal effects of PCB126. Therefore, the proposed method with zebrafish is expected to provide valuable information on delayed mortality and delayed sublethal effects of chemicals and environmental samples that may be extrapolated to other species. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Buffington, J. M.; Buxton, T.; Fremier, A. K.; Hassan, M. A.; Yager, E.
2013-12-01
The construction of redds by spawning salmonids modifies fluvial processes in ways that are beneficial to egg and embryo survival. Redd topography induces hyporheic flow that oxygenates embryos incubating within the streambed and creates form drag that reduces bed mobility and scour of salmonid eggs. Winnowing of fine material during redd construction also coarsens the streambed, increasing bed porosity and hyporheic flow and reducing bed mobility. In addition to the biological benefits, redds may influence channel morphology by altering channel hydraulics and bed load transport rates depending on the size and extent of redds relative to the size of the channel. A key question is how long do the physical and biological effects of redds last? Field observations indicate that in some basins redds are ephemeral, with redd topography rapidly erased by subsequent floods, while in other basins, redds can persist for years. We hypothesize that redd persistence is a function of basin hydrology, sediment supply, and characteristics of the spawning fish. Hydrology controls the frequency and magnitude of bed mobilizing flows following spawning, while bed load supply (volume and caliber) controls the degree of textural fining and consequent bed mobility after spawning, as well as the potential for burial of redd features. The effectiveness of flows in terms of their magnitude and duration depend on hydroclimate (i.e., snowmelt, rainfall, or transitional hydrographs), while bed load supply depends on basin geology, land use, and natural disturbance regimes (e.g., wildfire). Location within the stream network may also influence redd persistence. In particular, lakes effectively trap sediment and regulate downstream flow, which may promote long-lived redds in stream reaches below lakes. These geomorphic controls are modulated by biological factors: fish species (size of fish controls size of redds and magnitude of streambed coarsening); life history (timing of spawning and incubation relative to high flows); and population size (density of redds and extent of streambed alteration within a given reach). Species and life history also control the location of spawning within the basin, dictating the flow and sediment supply regimes. A theoretical framework is developed for predicting redd persistence as a function of the above physical and biological factors. We expect that long-lived redds will indicate either that the river is not competent to re-work the effects of spawning or that spawning occurs after peak flow events that are capable of modifying redd features. The longevity of redds and their associated effects on fluvial processes also provides a measure of the degree of potential ecological conditioning for future generations of fish. Future work will test the framework in field and laboratory settings.
USDA-ARS?s Scientific Manuscript database
Variable egg quality is one of the most important constrains to the development of aquaculture. The quality of eggs that are manually stripped from channel catfish are affected by variation in parental genetics, maturity, type and dose of hormone, age and pre-spawning stress of female fish. Furthe...
USDA-ARS?s Scientific Manuscript database
Carboxyfluorescein diacetate succinimidyl ester (CFSE) vital dye has been used in leukocyte studies involving mice, rats, sheep, heifers, nonhuman primates, teleost fish and avian embryos. Mice and sheep appear to be the only animals that have received intravenous (IV) CFSE administration, and the ...
Ammonia and urea handling by early life stages of fishes.
Zimmer, Alex M; Wright, Patricia A; Wood, Chris M
2017-11-01
Nitrogen metabolism in fishes has been a focus of comparative physiologists for nearly a century. In this Review, we focus specifically on early life stages of fishes, which have received considerable attention in more recent work. Nitrogen metabolism and excretion in early life differs fundamentally from that of juvenile and adult fishes because of (1) the presence of a chorion capsule in embryos that imposes a limitation on effective ammonia excretion, (2) an amino acid-based metabolism that generates a substantial ammonia load, and (3) the lack of a functional gill, which is the primary site of nitrogen excretion in juvenile and adult fishes. Recent findings have shed considerable light on the mechanisms by which these constraints are overcome in early life. Perhaps most importantly, the discovery of Rhesus (Rh) glycoproteins as ammonia transporters and their expression in ion-transporting cells on the skin of larval fishes has transformed our understanding of ammonia excretion by fishes in general. The emergence of larval zebrafish as a model species, together with genetic knockdown techniques, has similarly advanced our understanding of ammonia and urea metabolism and excretion by larval fishes. It has also now been demonstrated that ammonia excretion is one of the primary functions of the developing gill in rainbow trout larvae, leading to new hypotheses regarding the physiological demands driving gill development in larval fishes. Here, we highlight and discuss the dramatic changes in nitrogen handling that occur over early life development in fishes. © 2017. Published by The Company of Biologists Ltd.
Okuyama, Teruhiro; Isoe, Yasuko; Hoki, Masahito; Suehiro, Yuji; Yamagishi, Genki; Naruse, Kiyoshi; Kinoshita, Masato; Kamei, Yasuhiro; Shimizu, Atushi; Kubo, Takeo; Takeuchi, Hideaki
2013-01-01
Background Genetic mosaic techniques have been used to visualize and/or genetically modify a neuronal subpopulation within complex neural circuits in various animals. Neural populations available for mosaic analysis, however, are limited in the vertebrate brain. Methodology/Principal Findings To establish methodology to genetically manipulate neural circuits in medaka, we first created two transgenic (Tg) medaka lines, Tg (HSP:Cre) and Tg (HuC:loxP-DsRed-loxP-GFP). We confirmed medaka HuC promoter-derived expression of the reporter gene in juvenile medaka whole brain, and in neuronal precursor cells in the adult brain. We then demonstrated that stochastic recombination can be induced by micro-injection of Cre mRNA into Tg (HuC:loxP-DsRed-loxP-GFP) embryos at the 1-cell stage, which allowed us to visualize some subpopulations of GFP-positive cells in compartmentalized regions of the telencephalon in the adult medaka brain. This finding suggested that the distribution of clonally-related cells derived from single or a few progenitor cells was restricted to a compartmentalized region. Heat treatment of Tg(HSP:Cre x HuC:loxP-DsRed-loxP-GFP) embryos (0–1 day post fertilization [dpf]) in a thermalcycler (39°C) led to Cre/loxP recombination in the whole brain. The recombination efficiency was notably low when using 2–3 dpf embyos compared with 0–1 dpf embryos, indicating the possibility of stage-dependent sensitivity of heat-inducible recombination. Finally, using an infrared laser-evoked gene operator (IR-LEGO) system, heat shock induced in a micro area in the developing brains led to visualization of clonally-related cells in both juvenile and adult medaka fish. Conclusions/Significance We established a noninvasive method to control Cre/loxP site-specific recombination in the developing nervous system in medaka fish. This method will broaden the neural population available for mosaic analyses and allow for lineage tracing of the vertebrate nervous system in both juvenile and adult stages. PMID:23825546
Faught, Erin; Best, Carol; Vijayan, Mathilakath M
2016-02-01
Abnormal embryo cortisol level causes developmental defects and poor survival in zebrafish (Danio rerio). However, no study has demonstrated that maternal stress leads to higher embryo cortisol content in zebrafish. We tested the hypothesis that maternal stress-associated elevation in cortisol levels increases embryo cortisol content in this asynchronous breeder. Zebrafish mothers were fed cortisol-spiked food for 5 days, to mimic maternal stress, followed by daily breeding for 10 days to monitor temporal embryo cortisol content. Cortisol treatment increased mean embryo yield, but the daily fecundity was variable among the groups. Embryo cortisol content was variable in both groups over a 10-day period. A transient elevation in cortisol levels was observed in the embryos from cortisol-fed mothers only on day 3, but not on subsequent days. We tested whether excess cortisol stimulates 11βHSD2 expression in ovarian follicles as a means to regulate embryo cortisol deposition. Cortisol treatment in vitro increased 11β HSD2 levels sevenfold, and this expression was regulated by actinomycin D and cycloheximide suggesting tight regulation of cortisol levels in the ovarian follicles. We hypothesize that cortisol-induced upregulation of 11βHSD2 activity in the ovarian follicles is a mechanism restricting excess cortisol incorporation into the eggs during maternal stress.
Involvement of L(-)-rhamnose in sea urchin gastrulation: a live embryo assay.
Smith, Tiffany N; Oppenheimer, Steven B
2015-04-01
The sea urchin embryo is a National Institutes of Health model system that has provided major developments, and is important in human health and disease. To obtain initial insights to identify glycans that mediate cellular interactions, Lytechinus pictus sea urchin embryos were incubated at 24 or 30 h post-fertilization with 0.0009-0.03 M alpha-cyclodextrin, melibiose, L(-)-rhamnose, trehalose, D(+)-xylose or L(-)-xylose in lower-calcium artificial sea water (pH 8.0, 15°C), which speeds the entry of molecules into the interior of the embryos. While α-cyclodextrin killed the embryos, and L(-)-xylose had small effects at one concentration tested, L(-)-rhamnose caused substantially increased numbers of unattached archenterons and exogastrulated embryos at low glycan concentrations after 18-24 h incubation with the sugar. The results were statistically significant compared with the control embryos in the absence of sugar (P < 0.05). The other sugars (melibiose, trehalose, D(+)-xylose) had no statistically significant effects whatsoever at any of the concentrations tested. In total, in the current study, 39,369 embryos were examined. This study is the first demonstration that uses a live embryo assay for a likely role for L(-)-rhamnose in sea urchin gastrula cellular interactions, which have interested investigators for over a century.
Liu, Li; Xiao, Yuan-Yuan; Ji, Yan-Hong; Liu, Ming-Zhi; Chen, Yao; Zeng, Yu-Lian; Zhang, Yao-Guang; Jin, Li
2017-08-01
Chinese rare minnow (Gobiocypris rarus) embryos were used as an experimental model to investigate the effects of CuInS 2 /ZnS quantum dots (QDs) on the early life stages of G. rarus. Normal developmental parameters (survival rate, body length and average heart rate), biomarker genes [stress response (Hsp70), detoxification (Cyp1a), organizer function and axis formation (Wnt8α), and muscle (Mstn)], enzymatic activity and DNA damage were recorded as endpoints in the developing embryos/larvae after exposure until 96h post-fertilization (hpf). Reduced survival rate, decreased heart rate, altered body length, increased malformation rate, decreased hatching rate, advanced hatching time in response to low concentrations (50 and 100nmol/L) and delayed hatching time in response to high concentrations were observed after exposure, as were many other toxic effects, including pericardial edema and bent tails. The 72 hpf LC 50 (median lethal concentration) was determined to be 624.364nmol/L. Treatment with certain concentrations of CuInS 2 /ZnS QDs significantly increased the superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels and significantly induced DNA damage. After treatment with CuInS 2 /ZnS QDs, the embryos showed highly up-regulated expression of Hsp70, Cyp1a and Wnt8a and significantly up-regulated expression of Mstn at 12 hpf. Overall, this study indicates that CuInS 2 /ZnS QDs are potentially toxic to G. rarus embryos. The information presented in this study will be helpful for fully understanding the toxicity induced by CuInS 2 /ZnS QDs in fish embryos. Copyright © 2017 Elsevier Inc. All rights reserved.
Yasuda, Takako; Oda, Shoji; Yasuda, Hiroshi; Hibi, Yusuke; Anzai, Kazunori; Mitani, Hiroshi
2011-01-01
Purpose: Exposure to heavy-ion radiation is considered a critical health risk on long-term space missions. The developing central nervous system (CNS) is a highly radiosensitive tissue; however, the biological effects of heavy-ion radiation, which are greater than those of low-linear energy transfer (LET) radiation, are not well studied, especially in vivo in intact organisms. Here, we examined the effects of iron-ions on the developing CNS using vertebrate organism, fish embryos of medaka (Oryzias latipes). Materials and methods: Medaka embryos at developmental stage 28 were irradiated with iron-ions at various doses of 0-1.5 Gy. At 24 h after irradiation, radiation-induced apoptosis was examined using an acridine orange (AO) assay and histo-logically. To estimate the relative biological effectiveness (RBE), we quantified only characteristic AO-stained rosette-shaped apoptosis in the developing optic tectum (OT). At the time of hatching, morphological abnormalities in the irradiated brain were examined histologically. Results: The dose-response curve utilizing an apoptotic index for the iron-ion irradiated embryos was much steeper than that for X-ray irradiated embryos, with RBE values of 3.7-4.2. Histological examinations of irradiated medaka brain at 24 h after irradiation showed AO-positive rosette-shaped clusters as aggregates of condensed nuclei, exhibiting a circular hole, mainly in the marginal area of the OT and in the retina. However, all of the irradiated embryos hatched normally without apparent histological abnormalities in their brains. Conclusion: Our present study indicates that the medaka embryo is a useful model for evaluating neurocytotoxic effects on the developing CNS induced by exposure to heavy iron-ions relevant to the aerospace radiation environment. PMID:21770703
Philipp, Melanie; Berger, Ina M; Just, Steffen; Caron, Marc G
2014-09-19
G protein-coupled receptor kinases 2 (GRK2) and 5 (GRK5) are fundamental regulators of cardiac performance in adults but are less well characterized for their function in the hearts of embryos. GRK2 and -5 belong to different subfamilies and function as competitors in the control of certain receptors and signaling pathways. In this study, we used zebrafish to investigate whether the fish homologs of GRK2 and -5, Grk2/3 and Grk5, also have unique, complementary, or competitive roles during heart development. We found that they differentially regulate the heart rate of early embryos and equally facilitate heart function in older embryos and that both are required to develop proper cardiac morphology. A loss of Grk2/3 results in dilated atria and hypoplastic ventricles, and the hearts of embryos depleted in Grk5 present with a generalized atrophy. This Grk5 morphant phenotype was associated with an overall decrease of early cardiac progenitors as well as a reduction in the area occupied by myocardial progenitor cells. In the case of Grk2/3, the progenitor decrease was confined to a subset of precursor cells with a committed ventricular fate. We attempted to rescue the GRK loss-of-function heart phenotypes by downstream activation of Hedgehog signaling. The Grk2/3 loss-of-function embryos were rescued by this approach, but Grk5 embryos failed to respond. In summary, we found that GRK2 and GRK5 control cardiac function as well as morphogenesis during development although with different morphological outcomes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Scott, L F; Sundaram, S G; Smith, S
1993-09-01
To define both the limits of a mouse embryo bioassay for quality control in an assisted reproductive technology (ART) program and the areas where it can be effectively used. Embryos at the pronuclear and two-cell stage from three different strains of mice were used to assess the effectiveness of this assay for media quality control using five different media routinely used in ART. Pronuclear and two-cell embryos from CD-1 mice were used to test the ability of a mouse embryo bioassay to control for water quality, contaminants in the culture system, and fluctuations in the environmental conditions using a medium, culture system, and scoring technique that were optimized for this strain. The mouse embryo bioassay is not effective in differentiating media appropriate for supporting human embryo development since the development of mouse embryos in vitro is strain, stage, and media related. However, CD-1 embryos were shown to be sensitive to variations in water quality, pH, temperature, incubator conditions, and contaminants in the system when grown in a protein-free medium optimized for their development. Both total blastocyst number and the cell count in the blastocysts were affected. Pronuclear embryos were more sensitive to perturbations in the culture system than two-cell embryos. A mouse embryo bioassay can be effectively used as a means of quality control of water, chemicals, and contact materials and for technique standardization and training in an assisted reproduction program. All the conditions of the test should be defined, pronuclear embryos should be used, and the end point should be fully expanded blastocysts and/or cell numbers in these blastocysts where appropriate.
2011-01-01
Background PreImplantation Factor (PIF), a novel peptide secreted by viable embryos is essential for pregnancy: PIF modulates local immunity, promotes decidual pro-adhesion molecules and enhances trophoblast invasion. To determine the role of PIF in post-fertilization embryo development, we measured the peptide's concentration in the culture medium and tested endogenous PIF's potential trophic effects and direct interaction with the embryo. Methods Determine PIF levels in culture medium of multiple mouse and single bovine embryos cultured up to the blastocyst stage using PIF-ELISA. Examine the inhibitory effects of anti-PIF-monoclonal antibody (mAb) added to medium on cultured mouse embryos development. Test FITC-PIF uptake by cultured bovine blastocysts using fluorescent microscopy. Results PIF levels in mouse embryo culture medium significantly increased from the morula to the blastocyst stage (ANOVA, P = 0.01). In contrast, atretic embryos medium was similar to the medium only control. Detectable - though low - PIF levels were secreted already by 2-cell stage mouse embryos. In single bovine IVF-derived embryos, PIF levels in medium at day 3 of culture were higher than non-cleaving embryos (control) (P = 0.01) and at day 7 were higher than day 3 (P = 0.03). In non-cleaving embryos culture medium was similar to medium alone (control). Anti-PIF-mAb added to mouse embryo cultures lowered blastocyst formation rate 3-fold in a dose-dependent manner (2-way contingency table, multiple groups, X2; P = 0.01) as compared with non-specific mouse mAb, and medium alone, control. FITC-PIF was taken-up by cultured bovine blastocysts, but not by scrambled FITC-PIF (control). Conclusions PIF is an early embryo viability marker that has a direct supportive role on embryo development in culture. PIF-ELISA use to assess IVF embryo quality prior to transfer is warranted. Overall, our data supports PIF's endogenous self sustaining role in embryo development and the utility of PIF- ELISA to detect viable embryos in a non-invasive manner. PMID:21569635
Bolnick, Alan; Abdulhasan, Mohammed; Kilburn, Brian; Xie, Yufen; Howard, Mindie; Andresen, Paul; Shamir, Alexandra M; Dai, Jing; Puscheck, Elizabeth E; Secor, Eric; Rappolee, Daniel A
2017-12-01
This study tests whether metformin or diet supplement BR-DIM-induced AMP-activated protein kinase (AMPK) mediated effects on development are more pronounced in blastocysts or 2-cell mouse embryos. Culture mouse zygotes to two-cell embryos and test effects after 0.5-1 h AMPK agonists' (e.g., Met, BR-DIM) exposure on AMPK-dependent ACCser79P phosphorylation and/or Oct4 by immunofluorescence. Culture morulae to blastocysts and test for increased ACCser79P, decreased Oct4 and for AMPK dependence by coculture with AMPK inhibitor compound C (CC). Test whether Met or BR-DIM decrease growth rates of morulae cultured to blastocyst by counting cells. Aspirin, metformin, and hyperosmotic sorbitol increased pACC ser79P ~ 20-fold, and BR-DIM caused a ~ 30-fold increase over two-cell embryos cultured for 1 h in KSOMaa but only 3- to 6-fold increase in blastocysts. We previously showed that these stimuli decreased Oct4 40-85% in two-cell embryos that was ~ 60-90% reversible by coculture with AMPK inhibitor CC. However, Oct4 decreased only 30-50% in blastocysts, although reversibility of loss by CC was similar at both embryo stages. Met and BR-DIM previously caused a near-complete cell proliferation arrest in two-cell embryos and here Met caused lower CC-reversible growth decrease and AMPK-independent BR-DIM-induced blastocyst growth decrease. Inducing drug or diet supplements decreased anabolism, growth, and stemness have a greater impact on AMPK-dependent processes in two-cell embryos compared to blastocysts.
Yang, Qibin; Zheng, Panlong; Ma, Zhenhua; Li, Tao; Jiang, Shigui; Qin, Jian G
2015-12-01
The retinoid X receptors (RXRs) are involved in the skeletal development and other biological process such as blood vessel formation and metabolism. Partial sequences of RXRα and β genes were obtained, and their expressions were quantified on golden pompano Trachinotus ovatus at 28 days post hatching (DPH) to explore the molecular response to nutritional manipulation in fish larvae. As live food, Artemia nauplii were separately enriched with Nannochloropsis and Algamac 3080 and non-enriched Artemia nauplii (control) for fish feeding. The expressions of RXRs were detected in the embryos and fish larvae at early stages, suggesting that the skeletal development in golden pompano initiated before yolk re-sorption completion. Fish fed non-enriched Artemia nauplii ended up with higher jaw malformation. The highest specific growth rate was obtained when fish were fed with the Artemia nauplii enriched with Algamac 3080, and the lowest growth rate was observed when fish were fed with unenriched Artemia nauplii. The highest survival was obtained when fish were fed with non-enriched or Nannochloropsis-enriched Artemia nauplii. This study indicates that the use of enriched formula for Artemia nauplii can significantly affect the expression levels of RXRs and jaw malformation of golden pompano larvae, but there is no clear correlation between RXRs expressions and malformation rates when fish are subjected to nutrient challenge.
Testing the embryo, testing the fetus.
Ehrich, K; Farsides, B; Williams, C; Scott, Rosamund
2007-12-01
This paper stems from an ethnographic, multidisciplinary study that explored the views and experiences of practitioners and scientists on social, ethical and clinical dilemmas encountered when working in the area of PGD for serious genetic disorders. We focus here on staff perceptions and experiences of working with embryos and helping women/couples to make choices that will result in selecting embryos for transfer and disposal of 'affected' embryos, compared to the termination of affected pregnancies following PND. Analysis and discussion of our data led us to consider the possible advantages of PGD and whether a gradualist account of the embryo's and fetus's moral status can account for all of these, particularly since a gradualist account concentrates on the significance of time (developmental stage) and makes no comment as to the significance of place (in-vitro, in-utero).
1992-09-12
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists’ first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).
1992-09-12
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists’ first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Fight Center (MSFC).
Kynard, B.; Horgan, M.
2002-01-01
Ontogenetic behavior of Hudson River Atlantic sturgeon and Connecticut River shortnose sturgeon early life intervals were similar during laboratory observations. After hatching, free embryos were photonegative and sought cover. When embryos developed into larvae, fish left cover, were photopositive, and initiated downstream migration. Free embryos may remain at the spawning site instead of migrating downstream because the risk of predation at spawning sites is low. The two species are sympatric, but not closely related, so the similarities in innate behaviors suggest common adaptations, not phylogenetlc relationship. Atlantic sturgeon migrated downstream for 12 days (peak, first 6 days), shortnose sturgeon migrated for 3 days, and year-0 juveniles of both species did not resume downstream migration. Short or long migrations of larvae may reflect different styles related to the total migratory distance from spawning sites to juvenile rearing areas. Atlantic sturgeon need to move a short distance to reach rearing areas and they had a long 1-step migration of 6-12 days. In contrast, shortnose sturgeon need to move a long distance to reach all rearing areas. This may be accomplished by a 2-step migration, of which the brief migration of larvae is only the first step. Early migrant Atlantic sturgeon were nocturnal, while late migrants were diurnal, and shortnose sturgeon were diurnal. These diel differences may also be adaptations for long (Atlantic sturgeon) or short (shortnose sturgeon) migrations. Cultured shortnose sturgeon, and possibly Atlantic sturgeon, have a dominance hierarchy with large fish dominant when competing for limited foraging space. Social behavior may be more important in the life history of wild sturgeons than is generally recognized.
Perturbation of metabonome of embryo/larvae zebrafish after exposure to fipronil.
Yan, Lu; Gong, Chenxue; Zhang, Xiaofeng; Zhang, Quan; Zhao, Meirong; Wang, Cui
2016-12-01
The escalating demand for fipronil by the increasing insects' resistance to synthetic pyrethroids placed a burden on aquatic vertebrates. Although awareness regarding the toxicity of fipronil to fish is arising, the integral alteration caused by fipronil remains unexplored. Here, we investigated on the development toxicity of fipronil and the metabolic physiology perturbation at 120h post fertilization through GC-MS metabolomics on zebrafish embryo. We observed that fipronil dose-dependently induced malformations including uninflated swim bladder and bent spine. Further, the "omic" technique hit 26 differential metabolites after exposure to fipronil and five significant signaling pathways. We speculated that changes in primary bile acid synthesis pathway and the content of saturated fatty acid in the chemical-related group indicated the liver toxicity. Pathway of Aminoacyl-tRNA biosynthesis changed by fipronil may relate to the macromolecular synthesis. Concurrently, methane metabolism pathway was also identified while the role in zebrafish needs further determination. Overall, this study revealed several new signaling pathways in fipronil-treated zebrafish embryo/larval. Copyright © 2016 Elsevier B.V. All rights reserved.
Green, Bridget S
2004-05-01
Variation in size at hatching is common in demersal spawning organisms, suggesting that processes during embryonic development may be critical in determining growth and development. To examine critical periods during embryonic development in the demersal spawning reef fish Amphiprion melanopus, the rate of oxygen consumption within an egg clutch was compared to morphological changes in the embryos. Oxygen consumption was least on day 1 of development where organ differentiation had not begun (mean 1.73+/-0.34x10(-5) micromol O(2) egg(-1) s(-1)). Tail movement throughout the perivitelline fluid began on day 3 and is likely to assist in moving oxygen around the embryo, complementing diffusive transport. The appearance of haemoglobin in the blood corresponded to a peak in oxygen consumption on day 4, where the highest mean rate of oxygen consumption was recorded (6.73+/-0.82x10(-5) micromol O(2) egg(-1) s(-1)). This could be a critical period in development whereby risk of mortality is increased through increased embryo requirements at developmental thresholds.
Fekany, K; Yamanaka, Y; Leung, T; Sirotkin, H I; Topczewski, J; Gates, M A; Hibi, M; Renucci, A; Stemple, D; Radbill, A; Schier, A F; Driever, W; Hirano, T; Talbot, W S; Solnica-Krezel, L
1999-04-01
The dorsal gastrula organizer plays a fundamental role in establishment of the vertebrate axis. We demonstrate that the zebrafish bozozok (boz) locus is required at the blastula stages for formation of the embryonic shield, the equivalent of the gastrula organizer and expression of multiple organizer-specific genes. Furthermore, boz is essential for specification of dorsoanterior embryonic structures, including notochord, prechordal mesendoderm, floor plate and forebrain. We report that boz mutations disrupt the homeobox gene dharma. Overexpression of boz in the extraembryonic yolk syncytial layer of boz mutant embryos is sufficient for normal development of the overlying blastoderm, revealing an involvement of extraembryonic structures in anterior patterning in fish similarly to murine embryos. Epistatic analyses indicate that boz acts downstream of beta-catenin and upstream to TGF-beta signaling or in a parallel pathway. These studies provide genetic evidence for an essential function of a homeodomain protein in beta-catenin-mediated induction of the dorsal gastrula organizer and place boz at the top of a hierarchy of zygotic genes specifying the dorsal midline of a vertebrate embryo.
Robust measurement of telomere length in single cells
Wang, Fang; Pan, Xinghua; Kalmbach, Keri; Seth-Smith, Michelle L.; Ye, Xiaoying; Antumes, Danielle M. F.; Yin, Yu; Liu, Lin; Keefe, David L.; Weissman, Sherman M.
2013-01-01
Measurement of telomere length currently requires a large population of cells, which masks telomere length heterogeneity in single cells, or requires FISH in metaphase arrested cells, posing technical challenges. A practical method for measuring telomere length in single cells has been lacking. We established a simple and robust approach for single-cell telomere length measurement (SCT-pqPCR). We first optimized a multiplex preamplification specific for telomeres and reference genes from individual cells, such that the amplicon provides a consistent ratio (T/R) of telomeres (T) to the reference genes (R) by quantitative PCR (qPCR). The average T/R ratio of multiple single cells corresponded closely to that of a given cell population measured by regular qPCR, and correlated with those of telomere restriction fragments (TRF) and quantitative FISH measurements. Furthermore, SCT-pqPCR detected the telomere length for quiescent cells that are inaccessible by quantitative FISH. The reliability of SCT-pqPCR also was confirmed using sister cells from two cell embryos. Telomere length heterogeneity was identified by SCT-pqPCR among cells of various human and mouse cell types. We found that the T/R values of human fibroblasts at later passages and from old donors were lower and more heterogeneous than those of early passages and from young donors, that cancer cell lines show heterogeneous telomere lengths, that human oocytes and polar bodies have nearly identical telomere lengths, and that the telomere lengths progressively increase from the zygote, two-cell to four-cell embryo. This method will facilitate understanding of telomere heterogeneity and its role in tumorigenesis, aging, and associated diseases. PMID:23661059
Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis
2016-07-01
Several organic UV filters have hormonal activity in vertebrates, as demonstrated in fishes, rodents and human cells. Despite the accumulation of filter contaminants in aquatic systems, research on their effects on the endocrine systems of freshwaters invertebrates is scarce. In this work, the effects of five frequently used UV filters were investigated in embryos and larvae of Chironomus riparius, which is a reference organism in ecotoxicology. LC50 values for larvae as well as the percentage of eclosion of eggs were determined following exposures to: octyl-p-methoxycinnamate (OMC) also known as 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4MBC); 4-hydroxybenzophenone (4HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). To assess sublethal effects, expression levels of the genes coding for the ecdysone receptor (EcR) and heat shock protein HSP70 were investigated as biomarkers for endocrine and stress effects at the cellular level. Life-stage-dependent sensitivity was found. In embryos, all of the UV filters provoked a significant overexpression of EcR at 24h after exposure. OC, 4MBC and OD-PABA also triggered transcriptional activation of the hsp70 stress gene in embryos. In contrast, in larvae, only 4MBC and OMC/EHMC increased EcR and hsp70 mRNA levels and OD-PABA upregulated only the EcR gene. These results revealed that embryos are particularly sensitive to UV filters, which affect endocrine regulation during development. Most UV filters also triggered the cellular stress response, and thus exhibit proteotoxic effects. The differences observed between embryos and larvae and the higher sensitivity of embryos highlight the importance of considering different life stages when evaluating the environmental risks of pollutants, particularly when analyzing endocrine effects. Copyright © 2016 Elsevier B.V. All rights reserved.
Morick, Danny; Faigenbaum, Or; Smirnov, Margarita; Fellig, Yakov; Inbal, Adi
2015-01-01
Nervous necrosis virus (NNV) is a member of the Betanodavirus genus that causes fatal diseases in over 40 species of fish worldwide. Mortality among NNV-infected fish larvae is almost 100%. In order to elucidate the mechanisms responsible for the susceptibility of fish larvae to NNV, we exposed zebrafish larvae to NNV by bath immersion at 2, 4, 6, and 8 days postfertilization (dpf). Here, we demonstrate that developing zebrafish embryos are resistant to NNV at 2 dpf due to the protection afforded by the egg chorion and, to a lesser extent, by the perivitelline fluid. The zebrafish larvae succumbed to NNV infection during a narrow time window around the 4th dpf, while 6- and 8-day-old larvae were much less sensitive, with mortalities of 24% and 28%, respectively. PMID:25746990
Morick, Danny; Faigenbaum, Or; Smirnov, Margarita; Fellig, Yakov; Inbal, Adi; Kotler, Moshe
2015-05-15
Nervous necrosis virus (NNV) is a member of the Betanodavirus genus that causes fatal diseases in over 40 species of fish worldwide. Mortality among NNV-infected fish larvae is almost 100%. In order to elucidate the mechanisms responsible for the susceptibility of fish larvae to NNV, we exposed zebrafish larvae to NNV by bath immersion at 2, 4, 6, and 8 days postfertilization (dpf). Here, we demonstrate that developing zebrafish embryos are resistant to NNV at 2 dpf due to the protection afforded by the egg chorion and, to a lesser extent, by the perivitelline fluid. The zebrafish larvae succumbed to NNV infection during a narrow time window around the 4th dpf, while 6- and 8-day-old larvae were much less sensitive, with mortalities of 24% and 28%, respectively. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission
NASA Technical Reports Server (NTRS)
1992-01-01
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Fight Center (MSFC).
First Materials Processing Test in the Science Operation Area (SOA) During STS-47 Spacelab-J Mission
NASA Technical Reports Server (NTRS)
1992-01-01
The science laboratory, Spacelab-J (SL-J), flown aboard the STS-47 flight was a joint venture between NASA and the National Space Development Agency of Japan (NASDA) utilizing a manned Spacelab module. The mission conducted 24 materials science and 20 life science experiments, of which 35 were sponsored by NASDA, 7 by NASA, and two collaborative efforts. Materials science investigations covered such fields as biotechnology, electronic materials, fluid dynamics and transport phenomena, glasses and ceramics, metals and alloys, and acceleration measurements. Life sciences included experiments on human health, cell separation and biology, developmental biology, animal and human physiology and behavior, space radiation, and biological rhythms. Test subjects included the crew, Japanese koi fish (carp), cultured animal and plant cells, chicken embryos, fruit flies, fungi and plant seeds, and frogs and frog eggs. Featured together in the Science Operation Area (SOA) are payload specialists' first Materials Processing Test during NASA/NASDA joint ground activities at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at Marshall Space Flight Center (MSFC).
21 CFR 884.6160 - Assisted reproduction labware.
Code of Federal Regulations, 2011 CFR
2011-04-01
... equipment or supplies intended to prepare, store, manipulate, or transfer human gametes or embryos for in..., dishes, plates, and other vessels that come into physical contact with gametes, embryos or tissue culture media. (b)Classification. Class II (special controls) (mouse embryo assay information, endotoxin testing...
21 CFR 884.6160 - Assisted reproduction labware.
Code of Federal Regulations, 2012 CFR
2012-04-01
... equipment or supplies intended to prepare, store, manipulate, or transfer human gametes or embryos for in..., dishes, plates, and other vessels that come into physical contact with gametes, embryos or tissue culture media. (b)Classification. Class II (special controls) (mouse embryo assay information, endotoxin testing...
21 CFR 884.6160 - Assisted reproduction labware.
Code of Federal Regulations, 2014 CFR
2014-04-01
... equipment or supplies intended to prepare, store, manipulate, or transfer human gametes or embryos for in..., dishes, plates, and other vessels that come into physical contact with gametes, embryos or tissue culture media. (b)Classification. Class II (special controls) (mouse embryo assay information, endotoxin testing...
21 CFR 884.6160 - Assisted reproduction labware.
Code of Federal Regulations, 2013 CFR
2013-04-01
... equipment or supplies intended to prepare, store, manipulate, or transfer human gametes or embryos for in..., dishes, plates, and other vessels that come into physical contact with gametes, embryos or tissue culture media. (b)Classification. Class II (special controls) (mouse embryo assay information, endotoxin testing...
Ye, F; Jin, Y; Kong, Y; Shi, J Z; Qiu, H T; Zhang, X; Zhang, S L; Lin, S M
2013-05-01
This study aimed to confirm that vertical transmission of hepatitis B virus (HBV) can occur via the infected ovum. Specimens studied were obtained from discarded test-tube embryos from mothers with chronic HBV infection who had received in vitro fertilization treatment. Single-cell reverse transcriptase-polymerase chain reaction was used to detect HBV mRNA in the embryos. HBV mRNA was detected in the cleavage embryos of patients with chronic HBV infection, with a detection rate of 13.2% (5/38). The level of serum HBV DNA was not related to the HBV mRNA positivity rates in embryos. In this study, HBV mRNA was detected in test-tube embryos from HBV-infected mothers who had received in vitro fertilization treatment. This confirms the theory of vertical transmission of HBV via the ovum, thereby providing an important theoretical basis for further study on the mechanism of HBV vertical transmission, influencing factors and blocking measures.
Larval rearing of zebrafish at suboptimal temperatures.
Delomas, Thomas A; Dabrowski, Konrad
2018-05-01
Temperature-sensitive mutants have been widely utilized in single-cell and invertebrate model systems, particularly to study the function of essential genes. Few temperature-sensitive mutants have been identified in zebrafish, likely due to the difficulty of raising zebrafish at low temperatures. We describe a novel rearing protocol that allows rapid growth of larval and juvenile zebrafish at 23 °C compared to previous data in the literature. Embryos collected from four breeding pairs were maintained at 28.5 ± 0.5 °C until 5 days post-fertilization (dpf) - the onset of exogenous feeding. Larvae were then divided to six tanks and three tanks were cooled to 23 ± 0.2 °C. Fish were fed a live diet (marine rotifers Brachionus plicatilis and Artemia nauplii) and maintained under a set of environmental parameters shown to increase growth rate: continuous light, low salinity (3ppt), and algal turbidity. Mean total length and weight of fish at 21dpf were 12.7 ± 0.3 mm and 20.5 ± 1.5 mg for the 23 °C treatment and 18.5 ± 0.4 mm and 67.3 ± 3.4 mg for the 28.5 °C control. By 35 dpf, the fish raised at 23 °C had reached a mean length and weight of 18.9 ± 0.7 mm and 76.4 ± 6.7 mg, approximately the size control fish reached at 21 dpf. At 35 dpf, water temperature was raised to 28 °C and fish were reared to maturity (75 dpf) under standard conditions (freshwater, 13 L:11D photoperiod, dry diet, no added algal turbidity). Sex ratio and fertility were assessed and compared between temperature groups. There were no significant differences in sex ratio, fertilization rate, embryo viability at 1 dpf, clutch size, or relative fecundity. This rearing protocol will allow for efficient utilization of temperature-sensitive mutations in the zebrafish model system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ecological Risk Assessment of Perchlorate in Avian Species, Rodents, Amphibians and Fish
2007-06-01
also pose toxicological risk to terrestrial and aquatic organisms. In some instances, the occurrence of these metabolites in soils at live firing...embryo (Acheta domesticus) as an invertebrate teratology model. Fundamental and Applied Toxicology . 3:233-236. Zhang, B., P.N. Smith, and T.A...exposure on the hibernation success of the American toad (Bufu americanus). Archives of Environmental Contamination and Toxicology . 46:518- 527
Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio).
Uren Webster, Tamsyn M; Laing, Lauren V; Florance, Hannah; Santos, Eduarda M
2014-01-21
Roundup and its active ingredient glyphosate are among the most widely used herbicides worldwide and may contaminate surface waters. Research suggests both Roundup and glyphosate induce oxidative stress in fish and may also cause reproductive toxicity in mammalian systems. We aimed to investigate the reproductive effects of Roundup and glyphosate in fish and the potential associated mechanisms of toxicity. To do this, we conducted a 21-day exposure of breeding zebrafish (Danio rerio) to 0.01, 0.5, and 10 mg/L (glyphosate acid equivalent) Roundup and 10 mg/L glyphosate. 10 mg/L glyphosate reduced egg production but not fertilization rate in breeding colonies. Both 10 mg/L Roundup and glyphosate increased early stage embryo mortalities and premature hatching. However, exposure during embryogenesis alone did not increase embryo mortality, suggesting that this effect was caused primarily by exposure during gametogenesis. Transcript profiling of the gonads revealed 10 mg/L Roundup and glyphosate induced changes in the expression of cyp19a1 and esr1 in the ovary and hsd3b2, cat, and sod1 in the testis. Our results demonstrate that these chemicals cause reproductive toxicity in zebrafish, although only at high concentrations unlikely to occur in the environment, and likely mechanisms of toxicity include disruption of the steroidogenic biosynthesis pathway and oxidative stress.
Cryobanking of aquatic species
Martínez-Páramo, Sonia; Horváth, Ákos; Labbé, Catherine; Zhang, Tiantian; Robles, Vanesa; Herráez, Paz; Suquet, Marc; Adams, Serean; Viveiros, Ana; Tiersch, Terrence R.; Cabrita, Elsa
2017-01-01
This review is focused on the applications of genome cryobanking of aquatic species including freshwater and marine fish, as well as invertebrates. It also reviews the latest advances in cryobanking of model species, widely used by the scientific community worldwide, because of their applications in several fields. The state of the art of cryopreservation of different cellular types (sperm, oocytes, embryos, somatic cells and primordial germ cells or early spermatogonia) is discussed focusing on the advantages and disadvantages of each procedure according to different applications. A special review on the need of standardization of protocols has also been carried out. In summary, this comprehensive review provides information on the practical details of applications of genome cryobanking in a range of aquatic species worldwide, including the cryobanks established in Europe, USA, Brazil, Australia and New Zealand, the species and type of cells that constitute these banks and the utilization of the samples preserved. Statement of relevance This review compiles the last advances on germplasm cryobanking of freshwater and marine fish species and invertebrates, with high value for commercial aquaculture or conservation. It is reviewed the most promising cryopreservation protocols for different cell types, embryos and larvae that could be applied in programs for genetic improvement, broodstock management or conservation of stocks to guarantee culture production. PMID:29276317
Chen, Rui; Yuan, Lilai; Zha, Jinmiao; Wang, Zijian
2017-04-01
In the present study, to evaluate embryonic toxicity and the thyroid-disrupting effects of 2,4-dichloro-6-nitrophenol (DCNP), embryos and adults of Chinese rare minnow (Gobiocypris rarus) were exposed to 2, 20, and 200μg/L DCNP. In the embryo-larval assay, increased percentages of mortality and occurrence of malformations, decreased percentage of hatching, and decreased body length and body weight were observed after DCNP treatment. Moreover, the whole-body T3 levels were significantly increased at 20 and 200μg/L treatments, whereas the T4 levels were markedly decreased significantly (p<0.05) for all DCNP concentrations. In the adult fish assay, plasma T3 levels were significantly increased whereas plasma T4 levels were significantly reduced in the fish treated with 20 and 200μg/L (p<0.05). In addition, DCNP exposure significantly changed the transcription levels of thyroid system related genes, including dio1, dio2, me, nis, tr, and ttr. The increased responsiveness of thyroid hormone and mRNA expression levels of thyroid system related genes suggested that DCNP could disrupt the thyroid hormone synthesis and transport pathways. Therefore, our findings provide new insights of DCNP as a thyroid hormone-disrupting chemical. Copyright © 2017 Elsevier B.V. All rights reserved.
Puy-Azurmendi, E; Olivares, A; Vallejo, A; Ortiz-Zarragoitia, M; Piña, B; Zuloaga, O; Cajaraville, M P
2014-01-01
Commercial OP and NP are complex isomer mixtures that can be individually present in the environment, showing different estrogenic potencies. The aims of this study were to establish the estrogenic potency of some AP isomers in comparison to the commercial NP (cNP) mixture in vitro and to investigate in vivo their possible effects during the embryo and larval development of zebrafish. An in vitro estrogen receptor-based recombinant yeast assay was used to test the estrogenicity of specific AP isomers (22-OP, 33-OP, 22-NP, 33-NP and 363-NP) and cNP. The EC₅₀ was in the range of 0.6-7.7 mg/L. Both OP isomers and 363-NP exhibited higher estrogenic activity than cNP. For in vivo experiments, one-day postfertilisation (dpf) embryos were exposed to cNP (50, 250 and 500 μg/L), 363-NP and 33-OP (50 μg/L), 17β-estradiol (100 ng/L) and DMSO (0.01% v/v) for 4weeks. After exposure fish were maintained for 2 weeks in clean water in order to evaluate a possible recovery. Fish of groups exposed to cNP and 363-NP were the last to hatch. Histological alterations were not observed after 7, 28 or 42 dpf. Exposure to 33-OP increased transcriptional levels of erα, vtg and cyp19a1b genes. However, transcriptional response in E2 exposure was observed at later stages and with higher fold induction levels. Exposure to cNP decreased levels of erα whereas increased levels of rxrγ and cyp19a1b. Exposure to 363-NP did not cause changes in transcriptional levels of studied genes. The differences in response of the OP isomer compared to the NP isomer in zebrafish could be related to the rapid decay in concentration of the latter. Copyright © 2013 Elsevier B.V. All rights reserved.
Opportunities for embryo transfer in the age of DNA testing
USDA-ARS?s Scientific Manuscript database
Embryo transfer (ET) has contributed to increasing selection intensity in cattle breeding for many years. Preimplantation DNA testing offers the opportunity to increase selection response further through increasing within-family selection intensity. Further increases in between-family selection inte...
NASA Astrophysics Data System (ADS)
Yang, Zhihui; Zhang, Xiangjing; Cai, Zhonghua
2009-05-01
As the most widely used plasticizers in the world, phthalate esters (PAEs) are potential endocrine disruption compounds (EDCs). In the present study, the toxicity of dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), di (2-ethylhexyl) phthalate (DEHP) on embryogenesis and larvae development of the marine univalve Haliotis diversicolor supertexta was examined in laboratory. The results show that the malformation of embryos appeared during the experiment, such as embryos died or lysed, small transparent flocculent rings studded on the periphery of the embryo, and the larvae could failed to hatch. In embryo toxic test, embryos incubated at the highest concentration of DMP, DEP and DBP solutions showed significantly high abnormal rate compared with the control, while DEHP solutions displayed no significant difference. In larval toxic test, in all concentrations of DMP, DEP and DBP solutions, larval settlement rates were low significantly than that of the control. Similarly, DEHP solutions show nearly no effect on the larval settlement. The order of toxicity on embryos and larvae is DBP>DEP>DMP>DEHP. Being a simple and easy stimulation to indoor spawn, sensitive to environmental factors, and short culture time, the embryos of H. diversicolor supertexta can be used to indicate toxicity of the PAEs.
The effect of creosote on vitellogenin production in rainbow trout (Oncorhynchus mykiss)
Sherry, J.P.; Whyte, J.J.; Karrow, N.A.; Gamble, A.; Boerman, H.J.; Bol, N.C.; Dixon, D.G.; Solomon, K.R.
2006-01-01
As part of a broader investigation into the effects of creosote treatments on the aquatic biota in pond microcosms, we examined the possible implications for vitellogenin (Vtg) production in Oncorhynchus mykiss [rainbow trout (RT)]. Vtg is the precursor of egg yolk protein and has emerged as a useful biomarker of exposure to estrogenic substances. Our a priori intent was to assess the ability of the creosote treatments (nominal cresoste concentrations were 0, 3, and 10 ??l/L immediately after the last subsurface addition) to induce estrogenic responses in RT. The data showed no evidence of an estrogenic response in the treated fish. During the course of the experiment, however, the fish matured and began to produce Vtg, probably in response to endogenous estrogen. A posteriori analysis of the Vtg data from the maturing fish showed that after 28 days, the plasma Vtg concentrations were about 15-fold lower in fish from the creosote-treated microcosms compared with fish from the reference microcosm. Although the experiment design does not permit mechanistic insights, our observation suggests that exposure of female fish to PAH mixtures such as creosote can impair the production of Vtg with possible health implications for embryos and larvae. ?? 2006 Springer Science+Business Media, Inc.
Sørensen, Lisbet; Sørhus, Elin; Nordtug, Trond; Incardona, John P; Linbo, Tiffany L; Giovanetti, Laura; Karlsen, Ørjan; Meier, Sonnich
2017-01-01
The impact of crude oil pollution on early life stages (ELS) of fish, including larvae and embryos, has received considerable attention in recent years. Of the organic components present in crude oil, polycyclic aromatic hydrocarbons (PAHs) are considered the main class of compounds responsible for toxic effects in marine organisms. Although evidence suggests that they are more toxic, alkylated PAHs remain much less studied than their unsubstituted congeners. Recently, it was established that embryos of Atlantic haddock (Melanogrammus aeglefinus) are particularly sensitive to dispersed crude oil, and it was hypothesized that this was caused by direct interaction with crude oil droplets, which adhered to the chorion of exposed embryos. Such a phenomenon would increase the potential for uptake of less water-soluble compounds, including alkylated PAHs. In the current study, we compared the uptake of parent and alkylated PAHs in Atlantic cod (Gadus morhua) and haddock embryos exposed to dispersed crude oil at a range of environmentally relevant concentrations (10-600 μg oil/liter seawater). Although the species are biologically very similar, the cod chorion does not become fouled with oil droplets, even when the two species are exposed to dispersions of crude oil droplets under similar conditions. A close correlation between the degree of fouling and toxicological response (heart defects, craniofacial malformation) was observed. Oil droplet fouling in haddock led to both quantitative and qualitative differences in PAH uptake. Finally, kinetic data on a large suite of PAHs showed differential elimination, suggesting differential metabolism of unsubstituted versus alkylated compounds.
Sørhus, Elin; Nordtug, Trond; Incardona, John P.; Linbo, Tiffany L.; Giovanetti, Laura; Karlsen, Ørjan; Meier, Sonnich
2017-01-01
The impact of crude oil pollution on early life stages (ELS) of fish, including larvae and embryos, has received considerable attention in recent years. Of the organic components present in crude oil, polycyclic aromatic hydrocarbons (PAHs) are considered the main class of compounds responsible for toxic effects in marine organisms. Although evidence suggests that they are more toxic, alkylated PAHs remain much less studied than their unsubstituted congeners. Recently, it was established that embryos of Atlantic haddock (Melanogrammus aeglefinus) are particularly sensitive to dispersed crude oil, and it was hypothesized that this was caused by direct interaction with crude oil droplets, which adhered to the chorion of exposed embryos. Such a phenomenon would increase the potential for uptake of less water-soluble compounds, including alkylated PAHs. In the current study, we compared the uptake of parent and alkylated PAHs in Atlantic cod (Gadus morhua) and haddock embryos exposed to dispersed crude oil at a range of environmentally relevant concentrations (10–600 μg oil/liter seawater). Although the species are biologically very similar, the cod chorion does not become fouled with oil droplets, even when the two species are exposed to dispersions of crude oil droplets under similar conditions. A close correlation between the degree of fouling and toxicological response (heart defects, craniofacial malformation) was observed. Oil droplet fouling in haddock led to both quantitative and qualitative differences in PAH uptake. Finally, kinetic data on a large suite of PAHs showed differential elimination, suggesting differential metabolism of unsubstituted versus alkylated compounds. PMID:28678887